

www.proyecto-ascender.com

Barcelona Supercomputing Center Centro Nacional de Supercomputación

www.extract-project.eu

The Compute Continuum: An Efficient Use of Edge-to-Cloud Computing Resources

> Eduardo Quiñones {eduardo.quinones@bsc.es}

Ada-Europe, Barcelona, 2024

From Data to (Real-time) Knowledge

From Data to (Real-time) Knowledge

From Data to (Real-time) Knowledge

Data-Analytics Workflow executed by the tramway

Edge and Cloud Computing

Sensing capabilities of vehicles and cities can be effectively combined to Figure 4. Bu identify hazardous situations

Computing (Communication

Resources guaranteeing the safety properties of the powertrain contract ACC functionalities.

Intelligent Predictive Cruise Control (PCC) (BOS)

Maintain the functional properties of the PCC when integ further synthetic applications, to demonstrate the compos integration capabilities of the AMPERE ecosystem.

Providing a reduced development effort for integratin

Compute Continuum: From Edge to Cloud

Abstracts the edge/cloud complexity

- Edge computing allows moving analytics close to data-sources
 - Enables faster real-time processing, higher privacy control and lower network costs
 - The use of powerful heterogeneous and parallel embedded processor architectures becomes fundamental
- Cloud computing provides computational intensive, batch processes and storage

How are the data-analytics workflows developed, deployed and efficiently <u>executed</u> on highly heterogeneous computing/communication resources?

Host-centric paradigm: The parallel computation is orchestrated by the general-purpose multi-core

Deploying on Edge Computing

POSIX pthreads OpenMP

Deploying on Cloud Computing

27.May 2022, 112402468

Computing/Communication Resources

(c)

Figure 4. Bl

(H)

Non-functional Requirements (NFR)

- Inherited due to the cyber-physical interactions, e.g.,
 - Real-time: The end-to-end response time (from sensor to actuator) must be within a given time budget
 - Power/Thermal: The energy/temperature of the computing elements must be within a given budget due to power supply/operational environment limitations
 - Safety: Built guaranteeing the correctness and integrity of its operation
 - Security: Prevent external elements not to affect the correctness and integrity of the system

How to develop workflows on the compute continuum?

- Exploit the parallel performance capabilities of the (different) processor architectures
- 2. Efficiently distribute the dataanalytics workflow across the compute continuum
- **3. Guarantee** functional correctness and the non-functional requirements

SW Development Complexity

Task-based Parallel Programming Models

Parallel Programming Models

- A set of programming elements to describe the parallel behaviour of an application and abstract the complexities of the underlying parallel platform
 - Granularity level of parallelism exploited: instruction, statement, loop, procedural
 - Synchronization model: coarse-grain, fine-grain
 - **Execution model**: fork-join, thread-pool, etc.
 - Memory model: Shared, distributed
- Commonly built on top of a base programming language

Parallel Programming Models

Mandatory to enhance productivity

- **Programmability.** Abstracts the parallelism while hiding the underlying computing platform complexities
- **Portability/scalability.** The same source code is valid in different parallel platforms
- **Performance.** Rely on run-time mechanisms to exploit the performance capabilities of parallel platforms

Parallel Programming Models and Programming Languages

Model	Base Language	Type of PPM	Type of architect	Type of Parallelism
CUDA	C/C++, Python	HW- centric	NVIDIA GPU	Struct/ Unstruct
OpenCL	C/C++	App- centric	GPU/ FPGAs	Struct
OpenMP	C/C++	Parallel- centric	Shared mem	Struct/ <u>Unstruct</u>
Pthreads	C/C++	Parallel- centric	Shared mem	Unstruct
MPI	C/C++, Python	Parallel- centric	Distributed mem	Unstruct
COMPSs	C++, Java Python	Parallel- centric	Distributed mem	<u>Unstruct</u>
Spark	Java, Python	Parallel- centric	Distributed mem	Struct
Ray	C++,Java Python	Parallel- centric	Distributed mem	Unstruct

Why OpenMP?

Why COMPSs?

Mature language constantly reviewed (last release Nov 2024, v6.0)

- Defacto industrial standard in HPC
- Active research community with an **increasing interest** on the edge domain

Productivity in parallel programming

Programming distribute framework highly inspired in the OpenMP tasking model

The code is annotated to describe task and data dependencies

Productivity in distributed programming

You can choose any other task-based parallel programming model you like!

ocker,

- Portability
 - Supported by many chip vendors
- Programmability
 - Interoperability with other models (CUDA, OpenCL)
 - Allows incremental parallelization

Programmability

Dorformanco

- Interoperability with other programming models (OpenMP)
- Allows incremental parallelization

OpenMP Tasking Model

COMPSs Tasking Model

Sequential version def f1(): return x, y def f2(x): ... def f3(y)def main(): x,y=f1() f2(x) f3(y)

RAI

Task Dependency Graph (TDG)

Task Dependency Graph (TDG)

A representation of the parallel nature of a workflow

- Includes all the information for functional and non-funcional correctness
 - Parallel units and synchronization dependencies
 - Liveness analysis of variables and datasharings involved in the parallel execution
- Independent from the targeted parallel platform (but can include HW dependent information)
 - Execution characterisation of parallel units (e.g., time, energy, memory behaviour)

Principle behind Tasking Models

- Tasking provides a great expressiveness to describe the parallel nature of applications
 - It specifies what the application does and not how it is done
 - The framework is responsible of orchestrating the execution

Orchestration of resources

- 1. The compute continuum provides the computing capabilities to cope with the performance requirements of complex data-analytics workflows, and...
- ... task-based parallel programming models allows to <u>reasoning about</u> <u>functional and time predictability</u> while removing from developers the responsibility of managing the complexity of the compute continuum

VERY INTERESTING RESEARCH IS STILL PENDING!

We Need You

www.proyecto-ascender.com

Barcelona Supercomputing Center Centro Nacional de Supercomputación

www.extract-project.eu

The Compute Continuum: An Efficient Use of Edge-to-Cloud Computing Resources

> Eduardo Quiñones {eduardo.quinones@bsc.es}

Ada-Europe, Barcelona, 2024