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Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 
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The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 
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Compute Continuum: From Edge to Cloud

Abstracts the edge/cloud 
complexity
• Edge computing allows moving 

analytics close to data-sources
– Enables faster real-time processing, 

higher privacy control and lower 
network costs

– The use of powerful heterogeneous 
and parallel embedded processor 
architectures becomes fundamental

• Cloud computing provides 
computational intensive, batch 
processes and storage
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computing/communication resources?



Edge Computing

Host-centric paradigm: The parallel computation is orchestrated 
by the general-purpose multi-core
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Non-functional Requirements (NFR)
• Inherited due to the cyber-physical interactions, e.g.,

– Real-time: The end-to-end response time (from sensor to 
actuator) must be within a given time budget

– Power/Thermal: The energy/temperature of the computing 
elements must be within a given budget due to power 
supply/operational environment limitations

– Safety: Built guaranteeing the correctness and integrity of its 
operation

– Security: Prevent external elements not to affect the 
correctness and integrity of the system
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How to develop workflows on 
the compute continuum?
1. Exploit the parallel 

performance capabilities of the 
(different) processor 
architectures

2. Efficiently distribute the data-
analytics workflow across the 
compute continuum

3. Guarantee functional 
correctness and the non-
functional requirements
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Parallel Programming Models

• A set of programming elements to describe the parallel 
behaviour of an application and abstract the 
complexities of the underlying parallel platform
– Granularity level of parallelism exploited: instruction, 

statement, loop, procedural
– Synchronization model: coarse-grain, fine-grain
– Execution model: fork-join, thread-pool, etc.
– Memory model: Shared, distributed

• Commonly built on top of a base programming language
13



Parallel Programming Models

Parallel Programming Models

Mandatory to enhance productivity
• Programmability. Abstracts the parallelism while 

hiding the underlying computing platform 
complexities

• Portability/scalability. The same source code is 
valid in different parallel platforms

• Performance. Rely on run-time mechanisms to 
exploit the performance capabilities of parallel 
platforms 
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Parallel Programming Models and 
Programming Languages
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Model Base 
Language
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PPM
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architect
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Python

HW-
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NVIDIA GPU Struct/ 
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GPU/ 
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Struct/ 
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Why OpenMP?
Mature language constantly reviewed (last 
release Nov 2024, v6.0)
• Defacto industrial standard in HPC
• Active research community with an increasing 

interest on the edge domain

Productivity in parallel programming
• Performance

– Exploitation of structured and unstructured parallelism 
coupled with an advanced accelerator model

– Powerful task-based model supporting fine-grain 
synchronization mechanisms

– Powerful erformance analysis tools

• Portability 
– Supported by many chip vendors

• Programmability 
– Interoperability with other models (CUDA, OpenCL)
– Allows incremental parallelization

Programming distribute framework highly 
inspired in the OpenMP tasking model
• The code is annotated to describe task and 

data dependencies

Productivity in distributed programming
• Performance

– Exploitation of distributed computation
– Powerful performance analysis tools

• Portability 
– Supports many cloud technologies: Docker, 

Kubernetes, Serverless, etc.

• Programmability 

– Interoperability with other programming models 
(OpenMP)

– Allows incremental parallelization

Why COMPSs?

You can choose any other task-based parallel 
programming model you like! 



void main() { 
    #pragma omp parallel
    #pragma omp single
    {
        int x,y;
        #pragma omp task depend(out:x,y) 
        { f1(&x,&y); }
        #pragma omp task depend(in:x)
        { f2(x); }
        #pragma omp target map(to:y) depend(in:y)
        { f3(y); } 
    }
}
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        { f1(&x,&y); }
        #pragma omp task depend(in:x)
        { f2(x); }
        #pragma omp target map(to:y) depend(in:y)
        { f3(y); } 
    

OpenMP version

f3
f1

f2

main

f3f1 f2main

f1

f2 f3

yx

main



Task Dependency Graph (TDG)
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#pragma omp parallel
#pragma omp master
{
    int x,y;
    #pragma omp task depend(out:x,y) shared(x,y) // T1
    { f1(&x,&y); }
    #pragma omp task depend(in:x) firstprivate(x) // T2
    { f2(x); }
    #pragma omp task depend(in:y) firstprivate(y) // T3
    { f3(y); } 
}

A representation of the parallel nature of 
a workflow
• Includes all the information for functional 

and non-funcional correctness
– Parallel units and synchronization 

dependencies
– Liveness analysis of variables and data-

sharings involved in the parallel execution
• Independent from the targeted parallel 

platform (but can include HW dependent 
information)
– Execution characterisation of parallel units 

(e.g., time, energy, memory behaviour)

T1

T2 T3
yx

mas
ter

firstprivate(y)firstprivate(x)

shared(x,y)
live vars: x,y

live vars: ylive vars: x

task creation



Principle behind Tasking Models
• Tasking provides a great expressiveness to describe the parallel 

nature of applications
– It specifies what the application does and not how it is done
– The framework is responsible of orchestrating the execution

Computing/Communication Resources

 
D1.1 Use case requirement specification and definition    
Version 1.0  
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Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 
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The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 
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Figure 4. Block diagram of the ODAS use-case. 
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Orchestration of resources
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v1 v3

v2 v5
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workflow response time

v7 v10v9
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…



Conclusions

1. The compute continuum provides the computing capabilities to cope with 
the performance requirements of complex data-analytics workflows, and…

2. … task-based parallel programming models allows to reasoning about 
functional and time predictability while removing from developers the 
responsibilty of managing the complexity of the compute continuum
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VERY INTERESTING RESEARCH IS 
STILL PENDING!
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