Kronecker Algebra for Static Analysis of Ada Programs with Protected Objects

Bernd Burgstaller¹ and Johann Blieberger²

¹Yonsei University

²Vienna University of Technology

Motivation: Task Interleavings

- Arbitrary interleaving of tasks t1 and t2: order on computation steps where each step is taken from t1 or t2 in program order
- Totality of all possible arbitrary interleavings well-suited for concurrent program analysis & comprehension

Non-Arbitrary Interleavings

- Semantics of synchronization primitives constrain possible interleavings
	- Example: binary semaphore s

Task t2: $\mathbb{O}^{p(s)} \rightarrow \mathbb{O}^{v(s)} \rightarrow \mathbb{O}$

Interleavings	
$p(s) \cdot v(s) \cdot p(s) \cdot v(s)$	\checkmark
$p(s) \cdot p(s) \cdot v(s) \cdot v(s)$	\checkmark
$p(s) \cdot p(s) \cdot v(s) \cdot v(s)$	\checkmark
$p(s) \cdot p(s) \cdot v(s) \cdot v(s)$	\checkmark
$p(s) \cdot p(s) \cdot v(s) \cdot v(s)$	\checkmark
$p(s) \cdot v(s) \cdot p(s) \cdot v(s)$	\checkmark

Non-Arbitrary Interleavings (cont.)

- **•** Semantics of synchronization primitives allow additional interleavings that constitute deadlocks
	- Example: binary semaphore, self-deadlock of Task t1:

- Internal behavior of semaphore can be modelled by a deterministic finite automaton (DFA):
	- Example: binary semaphore

Internal Behavior of Protected Objects

- protected body BlackBox is
- entry Some when \langle condition \rangle is
- 3 begin
- $4 \quad \textit{User-supplied code} \ \ldots$
- 5 end Some;
- end BlackBox;
- Behavior of POs is characterized by:
	- 1 The "boilerplate" semantics of entries, procedures & functions prescribed by the Ada RM
	- 2 The user-supplied code
- **•** For static analysis of POs, "understanding" of the user-supplied code is necessary

Contributions

• Algebra-based approach to model protected objects

- Incorporates user-supplied code into analysis
- Capable to generate all interleavings of PO-related task communication
- Graph templates for protected entries, procedures and functions
	- Adaptable to chosen implementation
	- Concrete instances for the "eggshell model"
- Symbolic analysis approach to eliminate infeasible (dead) program paths

Outline

- [Matrix Representation of DFAs](#page-7-0)
- [Kronecker Algebra of Matrices](#page-16-0)
	- [Semaphores](#page-29-0)
- [Protected Object Graph Templates](#page-45-0)
- [Running Example](#page-57-0)
- [Static Analysis](#page-61-0)

Matrices representing DFAs

Matrices representing DFAs

2 Hops in automaton $= M^2$

 $\int a b$ 0 a \setminus · $\int a b$ 0 a \setminus = $\int a^2$ ab + ba 0 a^2 \setminus

3 Hops in automaton $=M^3$

 $\int a^2$ ab + ba 0 a^2 \setminus · $\int a b$ 0 a \setminus = = $\int a^3 a^2 b + aba + ba^2$ 0 a^3 \setminus

k Hops in automaton $=M^k$

M[∗]

Start and Final Nodes

Column Vector
$$
F = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

\nIs where there is a **final** node; 0s otherwise

Start and Final Nodes

Column Vector
$$
F = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

\nIs where there is a **final** node; 0s otherwise

Row Vector
$$
S = (1 \ 0)
$$
 1 if **start** node; 0s otherwise

Behaviour of Automaton

 $\mathbf a$ $\mathbf a$

$$
S \cdot M^* \cdot F =
$$

= $(1 \ 0) \cdot \begin{pmatrix} a^* & a^*ba^* \\ 0 & a^* \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} =$
= a^*ba^*

Definition

Given a m-by-n matrix A and a p-by-q matrix B , their Kronecker product denoted by $A \otimes B$ is a mp-by-ng block matrix defined by $A \otimes B =$ $\sqrt{ }$ $\overline{1}$ $a_{1,1}B \ldots a_{1,n}B$.
.
.
. $a_{m,1}B \ldots a_{m,n}B$ \setminus \cdot

 \bullet Simultaneous execution of A and B

- \bullet Simultaneous execution of A and B
- ⊗ can be used to "synchronize" automata

Definition

Given a matrix A of order m and a matrix B of order n , their Kronecker sum denoted by $A \oplus B$ is a matrix of order *mn* defined by

$$
A\oplus B=A\otimes I_n+I_m\otimes B,
$$

where I_m and I_n denote identity matrices of order m and n, respectively.

$A =$ $\sqrt{ }$ $\overline{1}$ 0 a 0 0 0 b 0 0 0 \setminus $\overline{1}$

$$
(1)^{a} \times (2)^{b} \times (3)
$$

\n
$$
A = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
B = \begin{pmatrix} 0 & c & 0 \\ 0 & 0 & d \\ 0 & 0 & 0 \end{pmatrix}
$$

 \setminus

 $\overline{ }$

• interleaving

• interleaving

⊕ can be used to model concurrency

Semaphores

Binary Semaphore:

Concurrent Threads

Let $\mathcal{T}^{(i)}$ be the matrix of the control flow graph of thread i.

Let $\mathcal{T}^{(i)}$ be the matrix of the control flow graph of thread i.

Then
$$
\mathcal{T} = \bigoplus_{i=1}^k \mathcal{T}^{(i)}
$$
 models all interleavings of the threads.

Let $\mathcal{T}^{(i)}$ be the matrix of the control flow graph of thread i.

Then
$$
T = \bigoplus_{i=1}^{k} T^{(i)}
$$
 models all interleavings of the threads.

Edge labels are **IDs of basic blocks and** p_j and v_j for semaphore calls to semaphore j .

Let $\mathcal{T}^{(i)}$ be the matrix of the control flow graph of thread i.

Then
$$
T = \bigoplus_{i=1}^{k} T^{(i)}
$$
 models all interleavings of the threads.

Edge labels are **IDs of basic blocks and** p_j and v_j for semaphore calls to semaphore j .

Edge labeling requires splitting of basic blocks (edges).

Let $S^{(j)}$ be the matrix of semaphore j.

Let $S^{(j)}$ be the matrix of semaphore j.

Then
$$
S = \bigoplus_{j=1}^{r} S^{(j)}
$$
 models all interleavings of the semaphores.

Let $S^{(j)}$ be the matrix of semaphore j.

Then
$$
S = \bigoplus_{j=1}^{r} S^{(j)}
$$
 models all interleavings of the semaphores.

Edge labels are p_j and v_j .

"Synchronizing" Threads and Semaphores

• Split matrix T into summands T_S and T_V such that $T = T_s + T_V$, T_s contains only semaphore calls, and T_V contains the other edge labels.

"Synchronizing" Threads and Semaphores

- Split matrix T into summands T_S and T_V such that $T = T_s + T_V$, T_s contains only semaphore calls, and T_V contains the other edge labels.
- Behaviour of the overall system can be modelled by

 $P = T_S \otimes S + T_V \oplus S$

"Synchronizing" Threads and Semaphores

- Split matrix T into summands T_S and T_V such that $T = T_s + T_V$, T_s contains only semaphore calls, and T_V contains the other edge labels.
- Behaviour of the overall system can be modelled by

$$
P = T_S \otimes S + T_V \oplus S
$$

For simplicity we write $p_j\cdot p_j=p_j$, $\mathsf{v}_j\cdot \mathsf{v}_j=\mathsf{v}_j$, and $p_i \cdot x_i = v_i \cdot x_i = 0.$

 $p(s)$ $p(s)$ $\left(2\right)$ 4 \bigvee_{c} $\sqrt{\mathrm{v(s)}}$ $p(s)$

 $p(s)$ $p(s)$ $\left(2\right)$ $p(s)$ $\overbrace{\mathcal{X}(s)}$

$$
\begin{pmatrix} 0 & \mathbf{p} & \mathbf{p} & 0 \\ 0 & 0 & 0 & \mathbf{p} \\ 0 & 0 & 0 & \mathbf{v} \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

 $p(s)$. $p(s)$ $\mathcal{D}% _{M_{1},M_{2}}^{\alpha,\beta}(\mathbb{R}^{N})$ \bigcirc $\overline{v(s)}$ $p(s)$

$$
\begin{pmatrix} 0 & \mathbf{p} & \mathbf{p} & 0 \\ 0 & 0 & 0 & \mathbf{p} \\ 0 & 0 & 0 & \mathbf{v} \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \mathbf{p} \\ \mathbf{v} & 0 \end{pmatrix} \, = \,
$$

 $p(s)$ $p(s)$ Ω $\widehat{v(s)}$ $p(s)$ $\left(3\right)$

$$
\begin{pmatrix}\n0 & \mathbf{p} & \mathbf{p} & 0 \\
0 & 0 & 0 & \mathbf{p} \\
0 & 0 & 0 & \mathbf{v} \\
0 & 0 & 0 & 0\n\end{pmatrix}\n\otimes\n\begin{pmatrix}\n0 & \mathbf{p} & \mathbf{p} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}
$$

$$
\begin{pmatrix}\n0 & \mathbf{p} & \mathbf{p} & 0 \\
0 & 0 & 0 & \mathbf{p} \\
0 & 0 & 0 & \mathbf{v} \\
0 & 0 & 0 & 0\n\end{pmatrix}\n\otimes\n\begin{pmatrix}\n0 & \mathbf{p} & \mathbf{p} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}
$$

Modelling Protected Objects

• User provides protected object implementation

Modelling Protected Objects

• User provides protected object implementation

PO ? PO.OP2 Protected Task CFG entry call to

• User provides task calling entry OP2

Modelling Protected Objects

• User provides protected object implementation

User provides task calling entry OP2

Graph Template Instantiation

- Graph template connects protected entry's user-code with task call-site
- Provides the concurrency-semantics prescribed by the RM, clear separation with user-code
- Instantiation: insert entry code into template, then insert instantiated template at task's call-site $\frac{49}{49/67}$

Protected Entry Graph Template

Blocking Task on Closed Entry

Entry Execution and Proxy Execution

Protected Object Master Lock: POSem

POSem (cont.)

$#$ of tasks queued on closed entry

Blocking tasks on closed entries

Blocking tasks on closed entries

Running Example

- protected type Buffer (M: Integer)
- is
- entry Load (S: in String);
- entry Get (C: out Character);
- end Buffer;
-
- protected body Buffer is
- entry Load(S: in String)
- when BufferEmpty is
- begin
- 12 -- load buffer with S
- end Load;
-
- entry Get(C: out Character)
- when not BufferEmpty is
- begin
- 18 -- return next character
- end Get; end Buffer;
- 20 B: Buffer(16);
-
- task Getter;
- task body Getter is
- 24 C: Character;
- begin
- loop
- B. Get (C) ;
- end loop;
- end Getter;
-
- begin
- 32 B.Load("Hello!");
- end Example;

Running Example CFGs

Running Example CFGs

Running Example CFGs

- \bullet Task matrix T consists of Kronecker sum of Load and Get CFGs
- Synchronization Matrix S consist of Kronecker sum of
	- o 1 POSem
	- 2 EntrySems (Load & Get entries)
- Result matrix (CPG):
	- size 7560x7560
	- 87 nodes, 128 edges \bullet
	- 13 deadlock nodes
	- 116ms construction time

False Positives

- Matrix algebra not concerned with edge conditions on labels
- Results in infeasible paths from CPG start-node to deadlock node
	- **•** False positive deadlock
- Example: Getter task's guard will only become open after loader has filled the buffer
- We employ static analysis to detect infeasible program paths

Infeasible Program Path Detection

- Symbolic analysis uses symbolic expressions to describe computations as algebraic formulae
	- Derives all valid variable bindings at given program point
- We want to detect dead paths to reduce the number of false positives
- Analysis problem: prove edge condition to be false on all paths through the CPG
- For edge $e = (s \rightarrow t)$, if edge condition proven false, t is no longer reachable
	- Nodes only reachable via node t become unreachable, too
	- \bullet Cut nodes and adjacent edges along t 's dominance frontier

Running Example (cont.)

Running Example (cont.)

- Pruned result matrix (CPG):
	- 27 nodes, 33 edges
	- 1 deadlock node

Conclusions

- **•** Introduced Algebra-based approach to model protected objects
	- Incorporates user-supplied code into analysis
	- Capable to generate all interleavings of PO-related task communication
- Graph templates for protected entries, procedures and functions
	- Adaptable to chosen implementation
	- Concrete instances for the "eggshell model"
- Symbolic analysis approach to eliminate infeasible deadlocks (dead program paths)

Thank You!