Kronecker Algebra for Static Analysis of Ada Programs with Protected Objects

Bernd Burgstaller 1 and Johann Blieberger 2

¹Yonsei University

²Vienna University of Technology

Motivation: Task Interleavings

- Arbitrary interleaving of tasks t1 and t2: order on computation steps where each step is taken from t1 or t2 in program order
- Totality of all possible arbitrary interleavings well-suited for concurrent program analysis & comprehension

Interleavings $a \cdot b \cdot c \cdot d$ $a \cdot c \cdot b \cdot d$ $a \cdot c \cdot d \cdot b$ $c \cdot a \cdot b \cdot d$ $c \cdot a \cdot d \cdot b$ $c \cdot d \cdot a \cdot b$

Non-Arbitrary Interleavings

 Semantics of synchronization primitives constrain possible interleavings

• Example: binary semaphore s

Task t2: $\underbrace{1}^{\mathbf{p(s)}} \underbrace{2^{\mathbf{v(s)}}}_{3}$

$$\begin{array}{c|c} Interleavings \\ p(s) \cdot v(s) \cdot p(s) \cdot v(s) & \checkmark \\ p(s) \cdot p(s) \cdot v(s) \cdot v(s) & \swarrow \\ p(s) \cdot p(s) \cdot v(s) \cdot v(s) & \checkmark \\ p(s) \cdot p(s) \cdot v(s) \cdot v(s) & \checkmark \\ p(s) \cdot p(s) \cdot v(s) \cdot v(s) & \checkmark \\ p(s) \cdot v(s) \cdot v(s) \cdot v(s) & \checkmark \\ \end{array}$$

Non-Arbitrary Interleavings (cont.)

- Semantics of synchronization primitives allow additional interleavings that constitute deadlocks
 - Example: binary semaphore, self-deadlock of Task t1:

- Internal behavior of semaphore can be modelled by a deterministic finite automaton (DFA):
 - Example: binary semaphore

Internal Behavior of Protected Objects

- 1 protected body BlackBox is
- 2 entry Some when $\langle \text{condition} \rangle$ is
- 3 begin

4

- -- User-supplied code \ldots
- 5 end Some;
- 6 end BlackBox;
- Behavior of POs is characterized by:
 - The "boilerplate" semantics of entries, procedures & functions prescribed by the Ada RM
 - 2 The user-supplied code
- For static analysis of POs, "understanding" of the user-supplied code is necessary

Contributions

• Algebra-based approach to model protected objects

- Incorporates user-supplied code into analysis
- Capable to generate all interleavings of PO-related task communication
- Graph templates for protected entries, procedures and functions
 - Adaptable to chosen implementation
 - Concrete instances for the "eggshell model"
- Symbolic analysis approach to eliminate infeasible (dead) program paths

Outline

- 2 Matrix Representation of DFAs
- Skronecker Algebra of Matrices
 - Semaphores
- Protected Object Graph Templates
- 6 Running Example
- 🕖 Static Analysis

Matrices representing DFAs

Matrices representing DFAs

2 Hops in automaton = M^2

3 Hops in automaton = M^3

 $\begin{pmatrix} a^2 & ab + ba \\ 0 & a^2 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} =$ $= \begin{pmatrix} a^3 & a^2b + aba + ba^2 \\ 0 & a^3 \end{pmatrix}$

k Hops in automaton $= M^k$

 $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^{k} = \begin{pmatrix} a^{k} & \sum_{i=0}^{k-1} a^{i} b a^{k-i-1} \\ 0 & a^{k} \end{pmatrix}$

 M^*

Start and Final Nodes

Column Vector
$$F = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

1s where there is a **final** node; 0s otherwise

Start and Final Nodes

Column Vector
$$F = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

1s where there is a **final** node; 0s otherwise

Row Vector
$$S = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

1 if **start** node; 0s otherwise

Behaviour of Automaton

a a

$$S \cdot M^* \cdot F =$$

$$= \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a^* & a^*ba^* \\ 0 & a^* \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} =$$

$$= a^*ba^*$$

Definition

Given a m-by-n matrix A and a p-by-q matrix B, their Kronecker product denoted by $A \otimes B$ is a mp-by-nq block matrix defined by $A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}$.

• Simultaneous execution of A and B

- Simultaneous execution of A and B
- ullet \otimes can be used to "synchronize" automata

Definition

Given a matrix A of order m and a matrix B of order n, their Kronecker sum denoted by $A \oplus B$ is a matrix of order mn defined by

$$A\oplus B=A\otimes I_n+I_m\otimes B$$
,

where I_m and I_n denote identity matrices of order m and n, respectively.

$\begin{array}{c} \underbrace{1 \ a \ } \underbrace{2 \ b} \\ A = \begin{pmatrix} 0 \ a \ 0 \\ 0 \ 0 \ b \\ 0 \ 0 \ 0 \end{pmatrix}$

interleaving

interleaving

ullet \oplus can be used to model concurrency

Semaphores

Binary Semaphore:

Counting Semaphore:

$$S = \begin{pmatrix} 0 & p & 0 \\ v & 0 & p \\ 0 & v & 0 \end{pmatrix}$$

Concurrent Threads

Let $T^{(i)}$ be the matrix of the control flow graph of thread *i*.

Let $T^{(i)}$ be the matrix of the control flow graph of thread *i*.

Then
$$T = \bigoplus_{i=1}^{k} T^{(i)}$$
 models all interleavings of the threads.

Let $T^{(i)}$ be the matrix of the control flow graph of thread *i*.

Then
$$T = \bigoplus_{i=1}^{k} T^{(i)}$$
 models all interleavings of the threads.

Edge labels are
IDs of basic blocks and *p_j* and *v_j* for semaphore calls to semaphore *j*.

Let $T^{(i)}$ be the matrix of the control flow graph of thread *i*.

Then
$$T = \bigoplus_{i=1}^{k} T^{(i)}$$
 models all interleavings of the threads.

Edge labels are
IDs of basic blocks and *p_j* and *v_j* for semaphore calls to semaphore *j*.

Edge labeling requires splitting of basic blocks (edges).

"Concurrent" Semaphores

Let $S^{(j)}$ be the matrix of semaphore j.

Let $S^{(j)}$ be the matrix of semaphore j.

Then
$$S = \bigoplus_{j=1}^{r} S^{(j)}$$
 models all interleavings of the semaphores.

Let $S^{(j)}$ be the matrix of semaphore j.

Then
$$S = \bigoplus_{j=1}^{r} S^{(j)}$$
 models all interleavings of the semaphores.

Edge labels are • p_i and v_i .

"Synchronizing" Threads and Semaphores

• Split matrix T into summands T_S and T_V such that $T = T_S + T_V$, T_S contains only semaphore calls, and T_V contains the other edge labels.

"Synchronizing" Threads and Semaphores

- Split matrix T into summands T_S and T_V such that $T = T_S + T_V$, T_S contains only semaphore calls, and T_V contains the other edge labels.
- Behaviour of the overall system can be modelled by

$$P=T_S\otimes S+T_V\oplus S$$

"Synchronizing" Threads and Semaphores

- Split matrix T into summands T_S and T_V such that $T = T_S + T_V$, T_S contains only semaphore calls, and T_V contains the other edge labels.
- Behaviour of the overall system can be modelled by

$$P=T_S\otimes S+T_V\oplus S$$

• For simplicity we write $p_j \cdot p_j = p_j$, $v_j \cdot v_j = v_j$, and $p_i \cdot x_j = v_i \cdot x_j = 0$.

p(s) p(s)(2)(4)**3** v(s) p(s)

p(s) p(s)(2)(4)3 v(s) p(s)

$$\begin{pmatrix} 0 & \mathbf{p} & \mathbf{p} & 0 \\ 0 & 0 & 0 & \mathbf{p} \\ 0 & 0 & 0 & \mathbf{v} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

p(s) p(s)(2)(4)p(s) 3 v(s)

$$\begin{pmatrix} 0 & \mathbf{p} & \mathbf{p} & 0 \\ 0 & 0 & 0 & \mathbf{p} \\ 0 & 0 & 0 & \mathbf{v} \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \mathbf{p} \\ \mathbf{v} & 0 \end{pmatrix} =$$

p(s) $\mathbf{p}(\mathbf{s})$ (2)v(s) p(s)(3)

1

- \

Modelling Protected Objects

 User provides protected object implementation PO

Modelling Protected Objects

 User provides protected object implementation PO • User provides task calling entry OP2

Task CFG

Protected

entry call

PO OP2

to

Modelling Protected Objects

 User provides protected object implementation PO • User provides task calling entry OP2

Graph Template Instantiation

- Graph template connects protected entry's user-code with task call-site
- Provides the concurrency-semantics prescribed by the RM, clear separation with user-code
- Instantiation: insert entry code into template, then insert instantiated template at task's call-site

Protected Entry Graph Template

Blocking Task on Closed Entry

Entry Execution and Proxy Execution

Protected Object Master Lock: POSem

POSem (cont.)

of tasks queued on closed entry

Blocking tasks on closed entries

Blocking tasks on closed entries

Running Example

- 2 protected type Buffer (M: Integer)
- 3 is
- 4 entry Load (S: in String);
- 5 entry Get (C: out Character);
- 6 end Buffer;
- 7
- 8 protected body Buffer is
- 9 entry Load(S: in String)
- 10 when BufferEmpty is
- 11 begin
- 12 -- load buffer with S
- 13 end Load;
- 14
- 15 **entry** Get(C: **out** Character)
- 16 when not BufferEmpty is
- 17 begin
- 18 -- return next character
- 19 end Get; end Buffer;

- 20 B: Buffer(16);
- 21
- 22 task Getter;
- 23 task body Getter is
- 24 C: Character;
- 25 begin
- 26 **loop**
- $27 \quad B.Get(C);$
- 28 end loop;
- 29 end Getter;
- 30
- 31 **begin**
- 32 B.Load("Hello!");
- 33 end Example;

Running Example CFGs

Running Example CFGs

Running Example CFGs

- Task matrix *T* consists of Kronecker sum of Load and Get CFGs
- Synchronization Matrix S consist of Kronecker sum of
 - 1 POSem
 - 2 EntrySems (Load & Get entries)
- Result matrix (CPG):
 - size 7560x7560
 - 87 nodes, 128 edges
 - 13 deadlock nodes
 - 116ms construction time

False Positives

- Matrix algebra not concerned with edge conditions on labels
- Results in infeasible paths from CPG start-node to deadlock node
 - False positive deadlock
- Example: Getter task's guard will only become open after loader has filled the buffer
- We employ static analysis to detect infeasible program paths

Infeasible Program Path Detection

- Symbolic analysis uses symbolic expressions to describe computations as algebraic formulae
 - Derives all valid variable bindings at given program point
- We want to detect dead paths to reduce the number of false positives
- Analysis problem: prove edge condition to be false on all paths through the CPG
- For edge $e = (s \rightarrow t)$, if edge condition proven false, t is no longer reachable
 - Nodes only reachable via node *t* become unreachable, too
 - Cut nodes and adjacent edges along *t*'s dominance frontier

Running Example (cont.)

Running Example (cont.)

- Pruned result matrix (CPG):
 - 27 nodes, 33 edges
 - I deadlock node

Conclusions

- Introduced Algebra-based approach to model protected objects
 - Incorporates user-supplied code into analysis
 - Capable to generate all interleavings of PO-related task communication
- Graph templates for protected entries, procedures and functions
 - Adaptable to chosen implementation
 - Concrete instances for the "eggshell model"
- Symbolic analysis approach to eliminate infeasible deadlocks (dead program paths)

Thank You!