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Motivation: Task Interleavings

Arbitrary interleaving of tasks t1 and t2: order on
computation steps where each step is taken from t1
or t2 in program order
Totality of all possible arbitrary interleavings
well-suited for concurrent program analysis &
comprehension

Interleavings
a · b · c · d
a · c · b · d
a · c · d · b
c · a · b · d
c · a · d · b
c · d · a · b
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Non-Arbitrary Interleavings

Semantics of synchronization primitives constrain
possible interleavings

Example: binary semaphore s

Interleavings
p(s) · v(s) · p(s) · v(s) X
p(s) · p(s) · v(s) · v(s) 7
p(s) · p(s) · v(s) · v(s) 7
p(s) · p(s) · v(s) · v(s) 7
p(s) · p(s) · v(s) · v(s) 7
p(s) · v(s) · p(s) · v(s) X
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Non-Arbitrary Interleavings (cont.)

Semantics of synchronization primitives allow
additional interleavings that constitute deadlocks

Example: binary semaphore, self-deadlock of Task t1:

Interleavings
p(s) · v(s) · p(s)
p(s)

Internal behavior of semaphore can be modelled by
a deterministic finite automaton (DFA):

Example: binary semaphore
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Internal Behavior of Protected Objects

1 protected body BlackBox is
2 entry Some when 〈condition〉 is
3 begin
4 -- User-supplied code . . .
5 end Some;
6 end BlackBox;

Behavior of POs is characterized by:
1 The “boilerplate” semantics of entries, procedures &

functions prescribed by the Ada RM
2 The user-supplied code

For static analysis of POs, “understanding”
of the user-supplied code is necessary
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Contributions

Algebra-based approach to model protected objects
Incorporates user-supplied code into analysis
Capable to generate all interleavings of PO-related task
communication

Graph templates for protected entries, procedures
and functions

Adaptable to chosen implementation
Concrete instances for the “eggshell model”

Symbolic analysis approach to eliminate infeasible
(dead) program paths
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Matrices representing DFAs

M =

(
a b
0 a

)

8 / 67



Matrices representing DFAs

M =

(
a b
0 a

)
9 / 67



2 Hops in automaton = M2

(
a b
0 a

)
·
(
a b
0 a

)
=

(
a2 ab + ba
0 a2

)
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3 Hops in automaton = M3

(
a2 ab + ba
0 a2

)
·
(
a b
0 a

)
=

=

(
a3 a2b + aba + ba2

0 a3

)
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k Hops in automaton = Mk

(
a b
0 a

)k

=

ak
k−1∑
i=0

aibak−i−1

0 ak
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M∗

M∗ =
∑
k≥0

Mk =


∑
k≥0

ak
∑
k≥1

k−1∑
i=0

aibak−i−1

0
∑
k≥0

ak


=

(
a∗ a∗ba∗

0 a∗

)
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Start and Final Nodes

Column Vector F =

(
0

1

)
1s where there is a final node; 0s otherwise

Row Vector S =
(

1 0
)

1 if start node; 0s otherwise
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Behaviour of Automaton

S ·M∗ · F =

=
(

1 0
)
·
(
a∗ a∗ba∗

0 a∗

)
·
(

0

1

)
=

= a∗ba∗
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Kronecker Product

Definition
Given a m-by-n matrix A and a p-by-q matrix B , their
Kronecker product denoted by A⊗ B is a mp-by-nq

block matrix defined by A⊗ B =

a1,1B . . . a1,nB
... . . . ...

am,1B . . . am,nB

.
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Example

A =

(
a b
0 0

)

B =

(
0 a
0 b

)

A⊗ B =


0 aa 0 ba
0 ab 0 bb
0 0 0 0
0 0 0 0


Simultaneous execution of A and B

⊗ can be used to “synchronize” automata
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Kronecker Sum

Definition
Given a matrix A of order m and a matrix B of order n,
their Kronecker sum denoted by A⊕ B is a matrix of
order mn defined by

A⊕ B = A⊗ In + Im ⊗ B ,

where Im and In denote identity matrices of order m and
n, respectively.
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Example

A =

0 a 0
0 0 b
0 0 0



B =

0 c 0
0 0 d
0 0 0



A⊕ B
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Example

Interleavings
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c · d · a · b

interleaving

⊕ can be used to model concurrency
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Semaphores

Binary Semaphore:

S =

(
0 p

v 0

)

Counting Semaphore:

S =

0 p 0

v 0 p

0 v 0
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Concurrent Threads

Let T (i) be the matrix of the control flow graph of
thread i .

Then T =
k⊕

i=1

T (i) models all interleavings of the

threads.

Edge labels are

IDs of basic blocks and

pj and vj for semaphore calls to semaphore j .

Edge labeling requires splitting of basic blocks (edges).
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“Concurrent” Semaphores

Let S (j) be the matrix of semaphore j .

Then S =
r⊕

j=1

S (j) models all interleavings of the

semaphores.

Edge labels are

pj and vj .
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“Synchronizing” Threads and Semaphores

Split matrix T into summands TS and TV such that
T = TS + TV , TS contains only semaphore calls,
and TV contains the other edge labels.

Behaviour of the overall system can be modelled by

P = TS ⊗ S + TV ⊕ S
For simplicity we write pj · pj = pj , vj · vj = vj , and
pi · xj = vi · xj = 0.
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Example


0 p p 0
0 0 0 p
0 0 0 v
0 0 0 0

⊗
(

0 p
v 0

)
=



0 0 0 p 0 p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Modelling Protected Objects

PO
State

OP1

OP2

OP1
CFG

OP2
CFG

User provides protected
object implementation
PO

?
PO.OP2

Protected

Task CFG

entry call
to

User provides task
calling entry OP2
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Graph Template Instantiation
PO

State

OP1

OP2

OP1
CFG

OP2
CFG

exec Entry()

to

P(...)

V(...)

Graph
template

Protected

Task CFG

entry call

PO.OP2

Graph template connects protected entry’s
user-code with task call-site
Provides the concurrency-semantics prescribed by
the RM, clear separation with user-code
Instantiation: insert entry code into template, then
insert instantiated template at task’s call-site
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Protected Entry Graph Template
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Blocking Task on Closed Entry
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Entry Execution and Proxy Execution

52 / 67



Protected Object Master Lock: POSem
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POSem (cont.)

1

2

P(
PO

Sem
)

F1

F2

V(POFSem)

V(POFSem)

P(POFSem)V(
PO

Sem
)

P(POFSem)

Fn
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# of tasks queued on closed entry
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Blocking tasks on closed entries
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Blocking tasks on closed entries
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Running Example
2 protected type Buffer (M: Integer)
3 is
4 entry Load (S: in String);
5 entry Get (C: out Character);
6 end Buffer;
7
8 protected body Buffer is
9 entry Load(S: in String)
10 when BufferEmpty is
11 begin
12 -- load buffer with S
13 end Load;
14
15 entry Get(C: out Character)
16 when not BufferEmpty is
17 begin
18 -- return next character
19 end Get; end Buffer;

20 B: Buffer(16);
21
22 task Getter;
23 task body Getter is
24 C: Character;
25 begin
26 loop
27 B.Get(C);
28 end loop;
29 end Getter;
30
31 begin
32 B.Load("Hello!");
33 end Example;
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Running Example CFGs

L.lcz

L.Load G.Get

G
.n
u
ll

G.gcz

L.lcz

L.lcm

L.j
L.v2

L.gcm

L.k

L.v3

L.n

L.v1

L.p1

L.g
L.lcp

L.v1

L.pe2

L.px2

G.gcz

G.v2

G.gcm

G.13

G.v3

G.v1

G
.1
5G
.1
6

G.p1

G.gcpG.7

G.v1

G.pe3

G.px3

G.lcm

G.10

Task matrix T consists of
Kronecker sum of Load
and Get CFGs
Synchronization Matrix S
consist of Kronecker sum
of

1 POSem
2 EntrySems (Load &
Get entries)

Result matrix (CPG):
size 7560x7560
87 nodes, 128 edges
13 deadlock nodes
116ms construction time
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False Positives

G.gcz G.Get G.lcmG.p1
not BufferEmpty:

Matrix algebra not concerned with edge conditions
on labels
Results in infeasible paths from CPG start-node to
deadlock node

False positive deadlock

Example: Getter task’s guard will only become open
after loader has filled the buffer

We employ static analysis to detect infeasible
program paths
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Infeasible Program Path Detection

Symbolic analysis uses symbolic expressions to
describe computations as algebraic formulae

Derives all valid variable bindings at given program point

We want to detect dead paths to reduce the
number of false positives

Analysis problem: prove edge condition to be false
on all paths through the CPG
For edge e = (s → t), if edge condition proven
false, t is no longer reachable

Nodes only reachable via node t become unreachable,
too
Cut nodes and adjacent edges along t’s dominance
frontier
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Running Example (cont.)

L.g

L.g

L.j

L.j

G.px3

L.j

L.kL.gcm
G.px3L.kL.v3

L.v1

L.n

G.px3
L.v1

G.px3

L.p1

G.p1

G.gcp G.pe3 G.v1 L.p1

G.p1 G.gcp

G.7

G.pe3 G.v1

G.10 G.13
G.15

G.v1

G.16

Pruned result matrix (CPG):
27 nodes, 33 edges
1 deadlock node
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Running Example (cont.)
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Conclusions

Introduced Algebra-based approach to model
protected objects

Incorporates user-supplied code into analysis
Capable to generate all interleavings of PO-related task
communication

Graph templates for protected entries, procedures
and functions

Adaptable to chosen implementation
Concrete instances for the “eggshell model”

Symbolic analysis approach to eliminate infeasible
deadlocks (dead program paths)
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Thank You!
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