
Ada
User
Journal

The journal for the international
Ada community

Produced by Ada-Europe

Volume 45
Number 3

September 2024

Editorial
Quarterly News Digest

Conference Calendar
Forthcoming Events

Articles from the AEiC 2024 Ada Developers Workshop
F. Oleo Blanco, D. Craeynest. First Ada Developers

Workshop at AEiC 2024

G. Galeotti. SweetAda: a Lightweight Ada-Based Framework

J. R. Carter. Avoiding Access Types

G. A. Hazebrouk. G-NAV: Soaring the Clouds with AdaWebPack

A. R. Mosteo. Alire 2.0: a ‘Quality of Life’ Update

J. G. Rivera. HiRTOS: A Multi-core RTOS Written in SPARK Ada

C. Simon. Ironclad: A Formally Verified OS Kernel Written in SPARK/Ada

J. P. Rosen. An Ada Story of Time

J. R. Carter. Controlled I/O: a Library for Scope-Based Files

F. Oleo Blanco. Ada Community Advocacy

Article
R. Krishnan, A. Gupta, N. Chandrachoodan, V. R. Lalithambika

Formal Verification of Safety Critical Software in Ada: Two Approaches

131
132
146
154

156
157
159
161
162
164
168
171
173
175

178

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada User Journal Editorial Board
Luís Miguel Pinho
Associate Editor

Polytechnic Institute of Porto, Portugal
lmp@isep.ipp.pt

Jorge Real
Deputy Editor

Universitat Politècnica de València, Spain
jorge@disca.upv.es

Patricia López Martínez
Assistant Editor

Universidad de Cantabria, Spain
lopezpa@unican.es

Dirk Craeynest
Events Editor

KU Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

Alejandro R. Mosteo
News Editor

Centro Universitario de la Defensa, Zaragoza, Spain
amosteo@unizar.es

Ada-Europe Board
Luís Miguel Pinho (President)
Polytechnic Institute of Porto

Portugal

Dirk Craeynest (Vice-President)
Ada-Belgium & KU Leuven

Belgium

Dene Brown (General Secretary)
SysAda Limited

United Kingdom

Ahlan Marriott (Treasurer)
White Elephant GmbH

Switzerland

António Casimiro (Ada User Journal)
University of Lisbon

Portugal

Ada-Europe General Secretary
Dene Brown
SysAda Limited
Signal Business Center
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Tel: +44 2891 520 560
Email: Secretary@Ada-Europe.org
URL: www.ada-europe.org

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journa l Volume 45, Number 3, September 2024

ADA
USER
JOURNAL

Volume 45

Number 3

September 2024

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

Quarterly News Digest 132

Conference Calendar 146

Forthcoming Events 154

Articles from the AEiC 2024 Ada Developers Workshop
 F. Oleo Blanco, D. Craeynest

“First Ada Developers Workshop at AEiC 2024” 156
 G. Galeotti

“SweetAda: a Lightweight Ada-Based Framework” 157
 J. R. Carter

“Avoiding Access Types” 159
 G. A. Hazebrouk

“G-NAV: Soaring the Clouds with AdaWebPack” 161
 A. R. Mosteo

“Alire 2.0: a ‘Quality of Life’ Update” 162
 J. G. Rivera

“HiRTOS: A Multi-core RTOS Written in SPARK Ada” 164
 C. Simon

“Ironclad: A Formally Verified OS Kernel Written in SPARK/Ada” 168
 J. P. Rosen

“An Ada Story of Time” 171
 J. R. Carter

“Controlled I/O: a Library for Scope-Based Files” 173
 F. Oleo Blanco

“Ada Community Advocacy” 175

Article

 R. Krishnan, A. Gupta, N. Chandrachoodan, V. R. Lalithambika
“Formal Verification of Safety Critical Software in Ada: Two Approaches” 178

Ada-Europe Associate Members (National Ada Organizations) 194

Ada-Europe Sponsors Inside Back Cover

130

Volume 45, Number 3, September 2024 Ada User Journa l

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 131

Ada User Journa l Volume 45, Number 3, September 2024

Editorial

As we welcome you to this September issue of the Ada User Journal, I would like to begin by extending my warmest
congratulations to Luís Miguel Pinho, our Associate Editor, on his appointment as President of Ada-Europe. I would also like
to express my appreciation for Tullio Vardanega, who, after serving as President of Ada-Europe for so many years, now takes
on the leadership of the newly established Ada User Society. Both assume significant responsibilities in shaping the future of
the Ada language, and I wish them every success in their new roles. Their dedication and expertise will undoubtedly contribute
to ensuring the continuity and, hopefully, the growth of the Ada community.

Regarding the technical content, this issue features the Proceedings of the Ada Developers Workshop, which was co-located
with the 28th Ada-Europe International Conference on Reliable Software Technologies (AEiC 2024) last June in Barcelona.
The proceedings open with an introductory note by the workshop organizers, Fernando Oleo Blanco and Dirk Craeynest,
followed by nine concise articles summarizing the respective presentations at the workshop. These contributions explore
various aspects of the Ada language, including language-specific features, related tools, and systems written in Ada, as well as
an especially thought-provoking article reflecting on the present and future of Ada. We hope these proceedings will offer
valuable insights and perhaps inspire participation in future editions for those who could not attend the workshop —or even for
those who did—.

This issue also features a contributed article on the formal verification of safety-critical software written in Ada, authored by a
team of researchers from the Vikram Sarabhai Space Centre, IIT Bombay, and IIT Madras in India. The article explores the use
of the SPIN model checker, combined with a custom toolchain, to perform static analysis of Ada code and help ensuring
software reliability in critical applications.

As always, we include our News Digest and Calendar sections, expertly curated by their respective editors, Alejandro R. Mosteo
and Dirk Craeynest. Following the calendar, readers will find the Call for Papers for the 29th Ada-Europe International
Conference on Reliable Software Technologies (AEiC 2025), set to take place from June 10–13, 2025, in Paris, France. With
multiple tracks and submission formats available, we encourage everyone to contribute and be part of this exciting event!

 Antonio Casimiro
Lisboa

September 2024
 Email: AUJ_Editor@Ada-Europe.org

132

Volume 45, Number 3, September 2024 Ada User Journa l

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 132
Ada-related Events 132
Ada-related Resources 133
Ada-related Tools 136
Ada Inside 137
Ada and Other Languages 138
Ada Practice 138

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

Today, I want to highlight two
conversations in the Digest that interested
me particularly. Firstly, documentation
about the ‘Red’ language has been found
online, and it seems that this completes
the availability of all contestants from
which Ada emerged victorious [1].
Curiously, I found the style of the code
not that unfamiliar for an Ada
programmer.

Secondly, an animated discussion
emerged around the idea of “what Jean
Ichbiah would want to find in Ada 2022”
[2]. Therein you can also find the
reservations he had about preliminary
versions of Ada 95 [3], which is in itself
worth a read if you have not read them
before (as I had not).

Sincerely,
Alejandro R. Mosteo.

[1] “‘Red’ and the DoD Language
Competition”, in Ada and Other
Languages.

[2] “Ichbiah 2022 Compiler Mode”, in
Ada Practice

[3] https://web.elastic.org/~fche/
mirrors/old-usenet/ada-with-null

Ada-related Events

[AEiC 2024] Ada Developers
Workshop Videos and Slides

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: [AEiC 2024] Ada Developers
Workshop videos and slides are public

Date: Thu, 8 Aug 2024 20:49:18 +0200
Newsgroups: comp.lang.ada

Dear Ada community,

the recordings of the talks that were held
in the Ada Developers Workshop have
been made available in the AEiC 2024
website [1]. The slides for each
presentation can also be found there. The
links can be found just under the title for
each entry.

Also, huge thanks to Dirk, Nam, Fabien,
the organisers of the conference; Ada-
Europe and AdaCore for their sponsorship
and their funding to get the technology
ready to record the Workshop.

[1] https://www.ada-europe.org/
conference2024/adadev.html

Best regards,
Fer & the Ada Developers Workshop
team

P.S: any kind of feedback is more than
welcome!

Ada Monthly Meetup,
September 2024

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meetup, September
2024

Date: Sun, 11 Aug 2024 17:21:09 +0200
Newsgroups: comp.lang.ada

I would like to announce the September
(2024) Ada Monthly Meetup which will
be taking place on the 7th of September at
13:00 UTC time (15:00 CEST). As
always the meetup will take place over at
Jitsi. The Meetup will also be
livestreamed/recorded to Youtube.

If someone would like to propose a talk or
a topic, feel free to do so! We currently
have no proposals. Nonetheless, I would
like to talk about the AEiC 2024 Ada
Developers Workshop, remind people
about the 2024 Crate of the Year Award

and maybe talk a bit about the Ada Users
Society :)

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is Jitsi Meet The room
name is “AdaMonthlyMeetup” and in
case it asks for a password, it will be set
to “AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

Ada Monthly Meetup, 5th
October 2024

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Subject: Ada Monthly Meetup, 5th October
2024

Date: Mon, 16 Sep 2024 22:43:14 +0200
Newsgroups: comp.lang.ada

I would like to announce the October
(2024) Ada Monthly Meetup which will
be taking place on the **5th of October at
13:00 UTC time (15:00 CEST).** As
always the meetup will take place over at
Jitsi. The Meetup will also be
livestreamed/recorded to Youtube.

**If someone would like to propose a talk
or a topic, feel free to do so! We currently
have no proposals.** Nonetheless, I
would like to bring some topics that were
left off during September’s Meetup.

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi [1], a conferencing
software that runs on any modern
browser. The link is Jitsi Meet The room
name is “AdaMonthlyMeetup” and in
case it asks for a password, it will be set
to “AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

Best regards and see you soon!
Fer

[1] https://meet.jit.si/AdaMonthlyMeetup

Ada-related Resources 133

Ada User Journa l Volume 45, Number 3, September 2024

P.S: you can see the September summary
in https://forum.ada-lang.io/t/
ada-monthly-meeting-september-2024/
1073/6 or in YouTube (with audio issues)
https://www.youtube.com/live/
i_bVoiDlw5E

Ada-related Resources
[Delta counts are from July 11th to
November 13th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 13 Nov 2024 19:35 CET[b]
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_868 (+127) members [1]

- LinkedIn: 3_549 (+28) members [2]

- Stack Overflow: 2_426 (+15)
 questions [3]

- Ada-lang.io: 287 (+46) users [4]

- Gitter: 271 (+13) people [5]

- Telegram: 208 (+3) users [6]

- Libera.Chat: 69 (-4) concurrent
 users [7]

[1] https://old.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] https://stackoverflow.com/questions/
tagged/ada

[4] https://forum.ada-lang.io/u

[5] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[6] https://t.me/ada_lang

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 13 Nov 2024 19:39 CET[c]
To: Ada User Journal readership

GitHub: >1_000* (+260) developers [1]

Rosetta Code: 1_005 (+26) examples [2]

 42 (=) developers [3]

Alire: 483 (+71) crates [4]

 1_268 (+200) releases [5]

Sourceforge: 251 (-1) projects [6]

Open Hub: 214 (=) projects [7]

Codelabs: 60 (+3) repositories [8]

Bitbucket: 37 (=) repositories [9]

*This number is a lower bound due to
GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] `alr search --list --full`

[6] https://sourceforge.net/directory/
language:ada/

[7] https://www.openhub.net/tags?
names=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 13 Nov 2024 19:48 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 25 (-1) 0.71%
 (-0.08%) [1]

- PYPL Index: 15 (+2) 1.03%
 (+0.07%) [2]

- Languish Trends: 153 (+39) 0.01%
 (+0.01)% [3]

- Stack Overflow Survey: 40 (+2)
 0.9% (+0.13%) [4]

- IEEE Spectrum (general): 50 (-14)
 Score: 0.0014 0107 (-0.093) [5]

- IEEE Spectrum (jobs): 55 (-26)
 Score: 0.0 (-0.0173) [5]

- IEEE Spectrum (trending): 46 (-16)
 Score: 0.0022 (0.01) [5]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://tjpalmer.github.io/languish/

[4] https://survey.stackoverflow.co/2024/

[5] https://spectrum.ieee.org/top-
programming-languages/

Re: Ada-Lang and Its
Forum

From: Randy Brukardt
<randy@rrsoftware.com>

Subject: Re: Ada-Lang and it's (more active
than CLA) forum

Date: Tue, 2 Jul 2024 02:55:49 -0500
Newsgroups: comp.lang.ada

[Cont’d from AUJ 45-2, April 2024
—arm]

> Ada-Lang is a community maintained
and supported webpage whose intent is
to give a nice "landing page" to
anybody wanting to learn Ada and
become a hub for all Ada users.

I was adding this site to AdaIC's "Learn"
pages (I think it disappeared some years
ago, it is good to see it back), and noted
that nowhere does it identify itself as
"Ada-Lang" or any other short name on
the site itself. It just calls itself "Ada
Programming Language", which is a bit
grandiose (there are a number of sites that
can lay claim to part of that title, but
surely none that can lay claim to all of it).
Within the Ada Community in particular,
it helps to identify the site more precisely.
And I don't think that many people really
look at the links that they click on, I doubt
many people using AdaIC do, so just
using the domain name and assuming
people know what it is without any
identification elsewhere is not ideal.

My two cents worth. (Humm, given prices
these days, I don't think you can actually
buy anything with two cents. That's
probably one cliche that needs updating.
;-)

AWS-friendly Web Hosting

From: Marius Alves
<marius2023pt@gmail.com>

Subject: Ada/GNAT/AWS-friendly web
hosting

Date: Thu, 12 Sep 2024 15:25:41 +0100
Newsgroups: comp.lang.ada

Researching how to build an HTTP server
(serving a website) on a local machine
(MacOS) using AWS (Ada Web Server)
and deploy it on a web hosting provider
(e.g. 1dollar-webhosting.com).

Anyone done that? I've searched but could
not find [anything].

Thanks.

Some specific questions on my mind
follow.

Is a macOS host required (e.g. Ultahost
15 euros/month; I'd rather stay with
1dollar)?

If the host runs on Linux then cross-
building (from macOS to Linux) is
required, right? GNAT does that, right?

Or, must the program be built in the host?
(Thus requiring GNAT to be there.)

The host is already running an HTTP
server program (probably Apache). Must
it be turned off? How?

In general, can the executable be launched
on a VPS (Virtual Private Server)? Which
port?

134 Ada-re lated Resources

Volume 45, Number 3, September 2024 Ada User Journa l

Will dynamic linking work? I'm guessing
not, so, static; but then, will GNAT
integrate the right libraries for Linux in
the executable?

Will "Community GNAT" do? (Instead of
GNAT Pro.)

Are those the right questions?

Thanks, thanks, thanks, thanks, thanks,
thanks and thanks.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 12 Sep 2024 16:48:40 +0200

Adalog's site (https://www.adalog.fr/) is a
standalone program written in Ada with
AWS.

So are the sites for the various Ada-
Europe conferences (see https://www.ada-
europe.org/conference2024/ for example).

And many others...

> Is a macOS host required

No

> If the host runs on Linux then cross-
building (from macOS to Linux)
required, right?

Never tried, but no reason it shouldn't be
possible

> Or, must the program be built in the
host?

That's what I do

> The host is already running an HTTP
server program (probably Apache).
Must it be turned off? How?

Of course, you cannot have two programs
listening on the same port, so if you want
to listen to 80 or 8080, you'd better stop
Apache (or any other program) to do that.
As for me, I don't run Apache at all.

> In general, can the executable be
launched on a VPS (Virtual Private
Server)? Which port?

The port is given by the initial data of
AWS

> Will dynamic linking work?

You just compile your program like any
other Ada program

> Will "Community GNAT" do? (Instead
of GNAT Pro.)

Yes, that's what I do

> Are those the right questions?

All questions are right....

> Thanks, thanks, thanks, thanks, thanks,
thanks and thanks.

You're welcome

From: Drpi <314@drpi.fr>
Date: Thu, 12 Sep 2024 16:54:45 +0200

> The host is already running an HTTP
server program (probably Apache).
Must it be turned off? How?

The usual way is to use Apache (or nginx
or another one) as a front end. Your
application uses port 1080 (or something
else) and the front end relays this port to
the external 80 port.

This way, the security stuff is managed by
the front end, not your application. You
can also run multiple applications, each
being redirected to its domain name/path.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 12 Sep 2024 18:22:28 +0200

> Researching how to build an HTTP
server (serving a website) on a local
machine (MacOS) using AWS (Ada
Web Server) and deploy it on a web
hosting provider (e.g. 1dollar-
webhosting.com).

In my experience, this would be easier
done with Gnoga (https://sourceforge.net/
projects/gnoga/) than AWS. On a web-
based system using AWS quite a while
ago, we had to have a number of JS files.
Although we had a lot more Ada than JS,
we spent a lot more effort correcting JS
errors than Ada errors.

Gautier de Montmollin has made Gnoga
programs publicly available, such as his
Pasta! game (http://pasta.phyrama.com/),
so might be able to help with your hosting
questions.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 12 Sep 2024 19:06:08 +0200

> This way, the security stuff is managed
by the front end

But security breaches mainly use known
bugs in Apache... If you write your own
server with AWS, the attacker knows
nothing about the software that answers!
And as for buffer overflow attacks... Well,
it's Ada. You'll see some handled
Constraint_Error in the log file, end of
story!

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 12 Sep 2024 17:16:29 -0000

> But security breaches mainly use known
bugs in Apache… [...]

AWS uses OpenSSL or a fair bit better
LibreSSL for TLS, written in C and quite
often found vulnerable. You could isolate
the nginx proxy to another machine
though.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 12 Sep 2024 20:48:29 +0200

> Researching how to build an HTTP
server (serving a website) on a local
machine (MacOS) using AWS (Ada
Web Server) and deploy it on a web
hosting provider (e.g. 1dollar-
webhosting.com).

That depends on what the provider would
allow you to upload to the host. Likely
nothing executable... (:-))

> If the host runs on Linux then cross-
building (from macOS to Linux) is
required, right?

It is possible, but far simpler would be a
virtual machine running Linux. E.g. I
compile for Linux targets on virtual
machines. Only for ARM I am using
physical machines. You must know what
kind of Linux your provider has in order
to choose the right version of the libc etc.
[...]

> Will dynamic linking work?

If you ship the libraries together with the
server. Then if the host runs Apache it
must have some TLS library installed.
You must learn the version and link
against it. In any case you need either
OpenSSL or else GNUTLS. The HTTP
server from Simple Components can use
both. I believe that either can be built as a
static library. I see no reason why AWS
could not be linked statically. BTW you
must maintain certificates on the server.

> Will "Community GNAT" do?

I am not sure if all-static builds were
possible, e.g. libc, libgnat.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:29:36 -0000

> we spent a lot more effort correcting JS
errors than Ada errors.

Did you “use strict”?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 13 Sep 2024 11:03:03 +0200

> Did you “use strict”?

I don't know. It was quite a while ago and
I didn't work on the JS. But the point is
that when you use Gnoga, you don't need
any to create any JS.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:35:20 -0000

> But security breaches mainly use known
bugs in Apache…

That’s called “security through
obscurity”. Not recommended.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:40:35 -0000

> The usual way is to use Apache (or
nginx or another one) as a front end.

Yup, I do things this way for my
Python+ASGI code, too. This is called a
“reverse proxy”, though I don’t know
why -- I think “server-side proxy” would
be more accurate.

Make sure your back-end server is
listening only on a loopback address:
127.0.0.0/8 (IPv4) or ::1 (IPv6). That way
the only access to it from outside the
machine is through the public web-server
front end.

Ada-related Resources 135

Ada User Journa l Volume 45, Number 3, September 2024

(Question to ponder: why does Ipv4 offer
over 16 million different loopback
addresses, while IPv6, with its much
larger address space, has to make do with
only one?)

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 13 Sep 2024 08:46:33 +0200

> That’s called “security through
obscurity”. Not recommended.

No, AWS is public and there is nothing
hidden. Just that, since there are wayyyyy
more users of Apache than of AWS,
attackers will not bother to try to break in

From: Stéphane Rivière
<stef@genesix.org>

Date: Fri, 13 Sep 2024 15:15:03 +0200

As a professional web hoster, I strongly
advise you to forget Apache and use only
Nginx, both as a proxy (in your case) and
as a web server (generic case). Not only
does Apache have security problems, but
its performance is pitiful compared to
Nginx.

If you have several sites, the ideal
solution is to enter everything in
https/port 443 on the nginx proxy (which
will be able to manage X509/TLS https
certificates) and exit on as many ports
8080, 8081, 8082, etc. as you have
websites.

From: Björn Persson
<bjorn@xn--rombobjrn-67a.se>

Date: Fri, 13 Sep 2024 16:33:15 +0200

> Researching how to build an HTTP
server (serving a website) on a local
machine (MacOS) using AWS (Ada
Web Server) and deploy it on a web
hosting provider (e.g. 1dollar-
webhosting.com).

I don't know about 1dollar, but a typical
web hosting provider will only let you
upload static files (HTML, pictures et
cetera), limited snippets of web server
configuration, and certain kinds of
programs that run under their web server's
control. PHP is common. Some might run
Perl programs with mod_perl, or Python
programs using WSGI.

Maybe some web hosts support CGI or
FastCGI. Those interfaces can be
implemented in Ada. I think you'll have
limited use for AWS in that case, as the
HTTP parsing is handled by the web
server.

I think it would be hard to find a web host
that lets you run arbitrary network-facing
daemons. To run your own web server
you want a VPS (or a physical server in a
colocation facility, but if your security
needs don't rule out a web host, then a
VPS is also fine).

> The host is already running an HTTP
server program (probably Apache).
Must it be turned off? How?

A typical web host won't let you turn off
their web server. They serve many
customers' content from the same Apache
instance, so turning that off would break
all those websites.

> In general, can the executable be
launched on a VPS (Virtual Private
Server)?

Sure. In a VPS you have the whole
operating system to yourself (maybe
except for the kernel if the VPS provider
uses OpenVZ). You install and run
whatever programs you want, just like on
your own physical computer. Maybe
you'll be able to get a VPS with macOS, if
that's your preference.

In a VPS it's also your responsibility to
install updates regularly, and upgrade to a
new major OS version from time to time.
If you fail to keep up, then criminals will
take over your VPS and use it as a relay
when attacking others. Make sure that
you'll be notified automatically when
there are updates to install.

> If the host runs on Linux then cross-
building (from macOS to Linux) is
required, right?

GCC – and thus GNAT – can be built as a
cross-compiler. Perhaps you can find one
that someone has built and packaged for
MacOS. Otherwise you'll need to build
your own from the GCC source code,
configuring it to be a cross-compiler.
(That's theoretical knowledge. I have no
practical experience with cross-
compilation).

> Or, must the program be built in the
host? (Thus requiring GNAT to be
there.)

No, but in my opinion it's much easier
that way. Either build on the computer
you'll run on, or on another computer of
the same processor architecture, running
the same version of the same operating
system. That way you don't need to worry
about getting the wrong version of some
library or build tool.

> Will dynamic linking work?

Cross-compilation should be able to work
with shared libraries. Regardless of
whether the libraries are shared or static,
libraries for the target machine must be
available on the build host. I guess you
would either install packaged libraries on
the target machine, and copy those to the
build host, or else cross-compile the
libraries too. You need to configure
search paths carefully so that both the
compiler and the linker find the cross-
libraries instead of the native ones. This is
one of the complications you avoid by
building natively.

> Which port?

Normally port 443, because of course
you'll use HTTPS, won't you? Optionally
you can also have an HTTP server on port

80 that responds to every request with a
redirection to HTTPS.

If you choose to put AWS behind a
reverse proxy like DrPi suggested, then
the reverse proxy listens on port 443 on
your public IP address, and you tell AWS
to listen on some other port and only on
the localhost address, ::1 or 127.0.0.1.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 14 Sep 2024 01:38:16 -0500

> That's called "security through
obscurity". Not recommended.

That's the wrong way to look at it. An
Ada program is better thought of as
"security by simplicity and correctness",
because you are running an Ada that only
does a few things (and which can be
thoroughly tested, checked with static
analysis, and so on) rather than a general
program that does a zillion things (with
many combinations that can't be tested).

The only place "obscurity" comes into it
is that no one else is running the exact
same program as you. So attacks that
depend on any sort of knowledge of the
program cannot succeed.

In any case, there is no such thing as
"secure", there are only levels, and for the
sorts of non-critical stuff that we're doing,
an Ada program is certainly secure
enough. I wouldn't try to run a storefront
on it (although that would be more
because you'd have a hard time
convincing your bank that it is OK than
any real problems), or anything that needs
high-level security.

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Sat, 14 Sep 2024 12:02:05 -0000

> work with Gnoga
(https://v22.soweb.io).

Runs on Android/IOS. Does that require
an internet web server?

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 14 Sep 2024 15:00:00 +0200

> Runs on Android/IOS.

Yes, v22.Gui/Gnoga is responsive. Tested
with 5" smartphones as old as Nexus 5
(with a browser more recent than the
stock one to handle websockets). Also
tested on 43” 4K ;)

On some iOS devices, the menu bar is
slightly offset. I didn't look too hard. It's a
Safari problem. It works fine with Firefox
and Chrome.

> Does that require an internet web
server?

Not necessarily. v22.Gui/Gnoga supports
itself X509 TLS https certificates (tested).
However, for various reasons (such as the
possibility of having several web
applications on the same instance and on

136 Ada-re lated Tools

Volume 45, Number 3, September 2024 Ada User Journa l

the same 80/443 input port), in
production, I've always chosen to have a
Nginx proxy on the front end, which is
also more flexible and handles automatic
switching from http/80 to https/443.

adaic.org; Is There a
Problem?

From: John Mccabe
<john@nospam.mccabe.org.uk>

Subject: adaic.org; is there a problem?
Date: Tue, 17 Sep 2024 16:19:47 -0000
Newsgroups: comp.lang.ada

Sorry to ask here; I wasn't sure where else
to go, but is www.adaic.org ok for
everyone? I'm just seeing a mostly white
screen with a blackish bar at the top on
Firefox, Chrome and Edge (Chrome on
both Windows and Android). It might just
be me, but I thought I'd ask in case
anyone else sees it like that and can prod
the right people to fix it or, alternatively,
just let me know that it's a problem at my
end!

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Tue, 17 Sep 2024 18:35:16 +0200

FOOBAR.

It looks as though a significant part of the
HTML is missing.

From: John Mccabe
<john@nospam.mccabe.org.uk>

Date: Tue, 17 Sep 2024 16:42:37 -0000

Thanks for that Bill; at least I'm not going
mad then :-)

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Date: Tue, 17 Sep 2024 17:59:37 -0000

I noticed the problem with adaic.org as
well, and have informed Randy, its
webmaster, yesterday already. Stay tuned
until he kicks the server back into action...
;-)

From: Blady <p.p11@orange.fr>
Date: Mon, 23 Sep 2024 20:31:42 +0200

I noticed a similar problem with
www.ada-auth.org?

From: Luke A. Guest
<laguest@archeia.com>

Date: Tue, 24 Sep 2024 13:56:47 +0100

Yup both down, just tried them.

Ada-related Tools

GNAT Studio 25.0 for
macOS Ventura.

From: Blady <p.p11@orange.fr>
Subject: [ANN] GNAT Studio 25.0 for

macOS Ventura.
Date: Fri, 26 Jul 2024 12:02:15 +0200
Newsgroups: comp.lang.ada

Here is a very preliminary version of
GNAT Studio 25.0wa as a standalone app
for macOS:
https://sourceforge.net/projects/gnuada/
files/GNAT_GPL Mac OS X/
2024-ventura

NEW:

The GNATStudio launcher looks for a
gnatstudio_launcher.rc file in the
.gnatstudio folder from either $HOME or
$GNATSTUDIO_HOME locations. If it
exists, we can define some environment
variables with the standard syntax
VAR=VALUE. If the VAR exists then
VALUE is appended to it. If not, VAR is
created with VALUE. Thus, it permits to
set extra PATH to GNAT compiler and
builder folders or
GPR_PROJECT_PATH. If a line begins
with ‘#’ then it is not considered. An
example file of gnatstudio_launcher.rc is
provided in the archive. Modify the
content and put it in your .gnatstudio
folder.

See readme for details.

Limitation: Ada Language Server has
some latences and doesn't respond when
parsing source code with more than 1000
lines. It may be due to some compilation
options I missed.

There could be some other limitations that
you might meet.

Feel free to report them here.

Any help will be really appreciated to fix
these limitations.

KDF9 Pascal, Thanks to Ada

From: Moi <findlaybill@blueyonder.co.uk>
Subject: KDF9 Pascal, thanks to Ada
Date: Tue, 2 Jul 2024 01:27:43 +0100
Newsgroups: comp.lang.ada

Some time ago it occurred to me that the
best way to illustrate the remarkable
architecture of the EE KDF9 would be to
write a cross-compiler that generates
idiomatic KDF9 Usercode (assembly
language) and displays it in association
with the source code.

I chose Pascal as the source language,
having compiler texts available for
retargeting.

PASKAL, which implements a large
subset of Pascal, is now available.

The only parts of Pascal not implemented
are file types and packed types, including
the 'text' type, which means that there is
no Standard Pascal I/O. However, I
provide some basic KDF9-oriented output
routines as a stopgap. They are more than
adequate to show the correct execution of,
for example, the Whetstone Benchmark,
and many other classic codes, such as
Quicksort.

PASKAL is written in Pascal, using the
fpc compiler, and in Ada 2012, and is
included with V11.2c of ee9, my KDF9
emulator (also in Ada 2012).

Included with it are the following
documents:

* PASKAL: Users' Guide

* PASKAL: Object Program Structure.

* PASKAL: Implementation Overview

Compiled binaries are available for:

* Apple Silicon Macs

* Intel Macs

* 64-bit Intel (Debian Bookworm) Linux

* 64-bit Raspberry Pi (Debian
Bookworm) OS

The Intel Linux binary should run under
WSL on MS Windows 10 or 11.

Get your copy here:
http://www.findlayw.plus.com/KDF9/
#PSK

There is a direct link there to the Users'
Guide. It includes an example of a
complete Pascal program and the
corresponding KDF9 Usercode, should
that be the extent of your interest.

Gnoga's 10th Anniversary -
2.2 Released.

From: Blady <p.p11@orange.fr>
Subject: Gnoga's 10th anniversary - V2.2

released.
Date: Sun, 8 Sep 2024 18:30:49 +0200
Newsgroups: comp.lang.ada

Gnoga was born on SourceForge [1] on
September 8, 2014.

Gnoga (GNU Omnificent Gui for Ada) is
the multi-platform graphics library
created natively in Ada. I immediately
liked Gnoga for the coherence and
simplicity of these APIs naturally fitting
together. The programmer can rely on
Ada for his business code and on the
multitude of Javascript libraries for the
graphical interface.

For 10 years Gnoga has evolved in
maturity to fulfill its founding principles:

- providing a framework and associated
tools for developing GUI applications
using the Ada language, leveraging web
technologies for application developers

- developing native applications for
desktop and mobile just as easy to
create, all using the same code base

- providing better tools means better
application quality

- offering the application developer a
powerful toolset for secure cloud based
computing, mobile apps, desktop apps
and web apps the combination not found
in any other set of tools in any other
language

Ada Ins ide 137

Ada User Journa l Volume 45, Number 3, September 2024

Gnoga statistics:

- 1031 commits

- 2200 downloads

- 2196 posts on the mailing list

- 56 tickets

You'll find a special Gnoga's wiki
anniversary page [2] with some materials
and my testimony.

Feel free to post your testimony, your
own story with Gnoga.

On this occasion, Gnoga V2.2a has been
released [3] and [4], with main changes:

- Added key field to keyboard event

- If present command line options gnoga-
host, gnoga-port, gnoga-boot and gnoga-
verbose will override host, port, boot file
and verbosity programmed in source
code (see TIPS).

- Improve logging implementation in a
separate package in order to allow user
defined logging handlers.

- Add a backslash compatibility mode on
the behavior of Escape_String for
SQLite with the one for MySQL.

- Change MYSQL_Real_Connect profile
to better match with documentation

This version has been tested on macOS
13.6 and GNAT 14.1. Please provide
feedback of other environments.

[1] https://sourceforge.net/p/gnoga/
 code/ci/45c76779e7af7b869deacc698
 478eb3ef25cfe91

[2] https://sourceforge.net/p/gnoga/wiki/
 Gnoga-Anniversary

[3] https://sourceforge.net/projects/
 gnoga/files

[4] https://sourceforge.net/p/gnoga/code/
 ci/dev_2.2/tree

Ada Inside

Canal+ Crash

From: Nicolas Paul Colin De Glocester
<master_fontaine_is_dishonest
@strand_in_london.gov.uk>

Subject: Canal+ crash
Date: Fri, 19 Jul 2024 23:41:44 +0200
Newsgroups: fr.comp.lang.ada,

comp.lang.ada

Canal+ uses Ada but one is alleging that
Canal+ suffered a crash today with
Windows. Cf.

https://www.UniversFreeBox.com/
article/568957/orange-canal-et-bouygues-
telecom-annoncent-a-leurs-abonnes-etre-
touches-par-la-panne-informatique-
mondiale

Cf. a complaint by Mister Brukardt that
Ada cannot control non-Ada software on
a shared system.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 20 Jul 2024 09:23:11 +0200

It is not about Ada. It is about the
fundamental principle that security cannot
be added on top of an insecure system.
The lesson never learned is that security
levels impose safety problems not solving
security issues. Modern security
architectures are nothing but a huge scam.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 20 Jul 2024 07:43:18 -0000

> It is about the fundamental principle
that security cannot be added on top of
an insecure system.

Actually, it can. Notice how the Internet
itself is horribly insecure, yet we are
capable of running secure applications
and protocols on top of it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 20 Jul 2024 11:08:47 +0200

> we are capable of running secure
applications and protocols on top of it.

Of course we can. That is the whole idea
of the scam. Why on earth do we need
security updates? Do you update your
screwdriver each week?

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 01:04:44 -0000

> Why on earth do we need security
updates?

Because computer systems are complex,
and new bugs keep being discovered all
the time.

> Do you update your screwdriver each
week?

I don’t depend on my screwdriver to keep
my bank account secure.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 09:22:06 +0200

> Because computer systems are complex,
and new bugs keep being discovered all
the time.

This does not make sense. You can create
a very complex system out of
screwdrivers and still each screwdriver
would require no update.

Systems consist of computers and
computers of software modules. There is
nothing inherently complex about making
a module safe and bug free. Security
interactions are primitive and 100%
functional. There are no difficult issues
with non-functional stuff like real-time
problems. It is purely algorithmic while
all mathematical complexity of
cryptography is NOT what gets updated.
It is complex only because it was
designed as a Wood Block Tumbling
Game.

> I don’t depend on my screwdriver to
keep my bank account secure.

I don't need a bank account to fasten the
screws. Application area is irrelevant.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 21 Jul 2024 11:00:36 +0300

> Security interactions are primitive and
100% functional. There is no difficult
issues with non-functional stuff like
real-time problems.

Well, several recent attacks use variations
in execution timing as a side-channel to
exfiltrate secrets such as crypto keys. The
crypto code can be functionally perfect
and bug-free, but it may still be open to
attack by such methods.

But certainly, most attacks on SW have
used functional bugs such as buffer
overflows.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 21 Jul 2024 11:10:06 +0200

> But certainly, most attacks on SW have
used functional bugs such as buffer
overflows.

A problem that has been solved since
1983, and even before (Pascal had bounds
checking). Sigh…

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 11:19:30 +0200

> Well, several recent attacks use
variations in execution timing as a side-
channel to exfiltrate secrets such as
crypto keys.

It is always a tradeoff between the value
of the information and costs of breaking
the protection. I doubt that timing attack
are much more feasible in that respect
than brute force.

> But certainly, most attacks on SW have
used functional bugs such as buffer
overflows.

Exactly. Non-functional attacks are
hypothetical at best. They rely on internal
knowledge which is another problem. An
insider work is the most common case of
all breaches. So, maybe, it is better to
update the staff? (:-))

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 11:34:14 +0200

> A problem that has been solved since
1983, and even before (Pascal had
bounds checking). Sigh...

Yup, however some crackpot could
always suggest an attack on bounds
checking, e.g. exception vs. not, index to
bounds comparison dependent on the
actual values etc., and then produce a
lengthy paper on a constructed absolutely
unrealistic scenario... (:-))

138 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journa l

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 21 Jul 2024 14:31:27 +0300

> I doubt that timing attack are much
more feasible in that respect than brute
force.

Security researchers and crypto
implementers seem to take timing attacks
quite seriously, putting a lot of effort into
making the crucial crypto steps run in
constant time.

> Non-functional attacks are hypothetical
at best. They rely on internal
knowledge which is another problem.

As I understand it, the "internal
knowledge" needed for timing attacks is
mostly what is easily discoverable from
the open source-code of the SW that is
attacked.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 21 Jul 2024 18:49:27 +0200

> Security researchers and crypto
implementers seem to take timing
attacks quite seriously

Cynically: they certainly know how to
butter their bread...

> the "internal knowledge" needed for
timing attacks is mostly what is easily
discoverable from the open source-code

Considering many many layers of
software to predict timing from code in
uncontrolled environment would be a
challenge.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 21:52:58 -0000

> You can create a very complex system
out of screwdrivers and still each
screwdriver would require no update.

There is an old engineering adage, that the
complexity of a system arises, not so
much from the number of individual
components, as from the number of
potential interactions between them.

If you have a box full of screwdrivers,
then all you have is a box full of
screwdrivers.

If you have a computer system made up
of a bunch of modules interacting with
each other, then you could have,
potentially, quite a complex system
indeed.

Look up the term “combinatorial
explosion” to learn more.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 21:53:46 -0000

> A problem that has been solved since
1983, and even before (Pascal had
bounds checking). Sigh...

Pascal had no checking for memory leaks
or double-frees.

Rust certainly seems to be a next-
generation solution to these sorts of
memory problems.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 21 Jul 2024 21:55:10 -0000

> Considering many many layers of
software to predict timing from code in
uncontrolled environment would be a
challenge.

And yet it has been successfully done on
the hardware itself, right down under all
those layers of software (cf
Spectre/Meltdown).

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 22 Jul 2024 08:36:08 +0200

> Pascal had no checking for memory
leaks or double-frees.

> Rust certainly seems to be a next-
generation solution to these sorts of
memory problems.

We were talking about bounds checking,
that Pascal had. Nowadays, you should
not use pointers directly, but containers.
Pointers are necessary only for writing
containers, thanks to Ada's features not
found in other languages, like allocating
dynamically sized arrays on the stack.

Note that in Rust, containers are written
using unsafe Rust, therefore Rust is not
better than Ada on that aspect, it is a
complicated solution to a problem that
Ada doesn't have.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 22 Jul 2024 09:16:09 +0200

> If you have a computer system made up
of a bunch of modules interacting with
each other, then you could have,
potentially, quite a complex system
indeed.

Tight coupling = bad design. No
difference to screwdrivers. However you
can take integer arithmetic if you dislike
screwdrivers. However complex system
you build, there is no need to update
integers.

> Look up the term “combinatorial
explosion” to learn more.

Bad design leads to explosion of non-
trivial unanticipated system states making
it unpredictable. This is what happens
when you add security on top. You patch
holes drilling new ones to fix the patches.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Tue, 23 Jul 2024 01:48:12 -0000

> We were talking about bounds
checking, that Pascal had.

Which is only one potential pitfall for
bugs with security implications.

Ada and Other
Languages

“Red” and the DoD
Language Competition

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Subject: “Red” And The DoD Language
Competition

Date: Fri, 6 Sep 2024 01:55:00 -0000
Newsgroups: comp.lang.ada

While browsing around for Ada-related
docs some years ago, I came across this
site:
https://iment.com/maida/computer/
redref/index.htm
which collects info on the DoD’s
“Strawman”, “Woodenman”, “Tinman”,
“Ironman” and “Steelman” series of
RFPs, and the specs for the “Red”
language that didn’t become Ada.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 7 Sep 2024 17:43:26 +0100

We have all the colours now:
https://www.reddit.com/r/ada/comments/
165f5zg/common_hol_phase_1_reports/

Ada Practice

Accessing the Command
Line

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Subject: Accessing The Command Line
Date: Thu, 4 Jul 2024 00:08:56 -0000
Newsgroups: comp.lang.ada

with Ada.Command_Line;
with Ada.Text_IO;
procedure Echo is
package cli renames
 Ada.Command_Line;
 package tio renames Ada.Text_IO;
 package int_io is new tio.Integer_IO

(Num => Integer);
begin
 tio.put("my name: ");
 tio.put(cli.Command_name);
 tio.Put_Line("");
 tio.Put("nr args: ");
 int_io.Put(cli.Argument_Count, width => 1);
 tio.Put_Line("");
 for i in 1 .. cli.Argument_Count loop
 tio.put("[");
 int_io.put(i, width => 1);
 tio.put("]: ");
 tio.put(cli.argument(i));
 tio.put_line("");
 end loop;
end Echo;

Comments:

Ada, like Python, offers the convenience
of being able to specify local “nicknames”

Ada Prac t ice 139

Ada User Journa l Volume 45, Number 3, September 2024

for imported packages, to save some
typing.

Having become used to the convenience
of printf-style formatting in C and other
languages that have adopted it (including
Lisp and Python), I don’t miss the tedium
of having to format and output one item at
a time. Though I recognize that there is no
way to do printf style in a type-safe
fashion, short of going to a fully-dynamic
language.

Being able to access the POSIX command
line via some globally-defined entity
instead of arguments to a “mainline”
procedure is something that just about
every decent language offers. C is notably
absent from this list.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 03 Jul 2024 18:16:01 -0700

> Though I recognize that there is no way
to do printf style in a type-safe fashion,
short of going to a fully-dynamic
language.

C++ does that polymorphism stuff in
iostream so you'd write std::cout << "my
name: " << command_line << ...

Haskell does something sort of similar
with additional machinery.

printf for some people is one of the
motivations for dependent types.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 4 Jul 2024 01:50:59 -0000

> C++ does that polymorphism stuff in
iostream so you'd write std::cout <<
"my name: " << command_line << ...

I know. The disadvantage of the C++
scheme is you cannot easily reorder items
as necessary to fit the grammar of
localized messages. That, I think, is why
lots of other languages (including Python
and Lisp) have copied the printf scheme,
yet none have seen fit to copy the C++
scheme.

> printf for some people is one of the
motivations for dependent types.

I wonder how you would express such a
thing in an Ada-friendly fashion?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 4 Jul 2024 13:27:05 +0200

Remember that you can concatenate
strings:

> tio.put("my name: ");

> tio.put(cli.Command_name);

> tio.Put_Line("");

Tio.Put_Line (Item => "my name: " &
Cli.Command_Name);

Image functions thus allow similar
simplifications. 'Image is one such

function, if you can accept the initial
space for non-negative values:

> tio.Put("nr args: ");

> int_io.Put(cli.Argument_Count,
width => 1);

> tio.Put_Line("");

Tio.Put_Line (Item => "nr args:" &
Cli.Argument_Count'Image);

For simple cases you can roll your own:

function Image (Value : in Integer) return
String is
 Raw : constant String := Value'Image;
begin -- Image
 return Raw ((if Value < 0 then 1 else 2) ..
 Raw'Last);
end Image;

> tio.put("[");

> int_io.put(i, width => 1);

> tio.put("]: ");

> tio.put(cli.argument(i));

> tio.put_line("");

Tio.Put_Line (Item => '[' & Image (I) & "]: " &
Image (Cli.Argument (I)));

For more complex uses, you can use
something like
PragmARC.Images[.Image]

(https://github.com/jrcarter/PragmARC).

You probably should review the
definition of Ada.Text_IO

(http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-A-10.html),
especially

for procedure New_Line.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jul 2024 15:01:05 +0200

> with Ada.Command_Line;

> with Ada.Text_IO;

[...]

A general advice processing strings, any
strings: messages, commands, payload
etc.

Always read a complete string into a fixed
size buffer (safety). Never use streams.
Process the whole string consequently.
Never tokenize. Never copy anything.
Ada has slices.

The same is true for the output. Build a
complete substring in a buffer.
Consequently. Flush the complete
substring to the output.

Do not use Unbounded_String.

From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 5 Jul 2024 01:13:36 +1000

> I wonder how you would express such a
thing in an Ada-friendly fashion?

There is the 'GNAT.Formatted_String'
package, which provides 'printf'
functionality.

Unfortunately, its formatting is somewhat
buggy and has been so for many years.
Usage is quite simple and reasonably
elegant but the occasional incorrect
formatting is a major problem, essentially
rendering the package useless.

There is also the new 2022 f"X =
{An_X_Variable} notation for embedding
Variable'Image into strings, which is very
nice. However, it does not allow for
formatting, so not useful for your needs.
Just thought I'd mention it, as it is now
available in GCC 14.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jul 2024 18:15:54 +0200

>> printf for some people is one of the
motivations for dependent types.

> I wonder how you would express such a
thing in an Ada-friendly fashion?

For example:
http://www.dmitry-kazakov.de/ada/
strings_edit.htm

From: Ben Bacarisse <ben@bsb.me.uk>
Date: Thu, 04 Jul 2024 20:42:00 +0100

> ... Though I recognize that there is no
way to do printf style in a type-safe
fashion, short of going to a fully-
dynamic language.

Not so. Haskell has Text.Printf.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 04 Jul 2024 15:06:00 -0700

> Not so. Haskell has Text.Printf.

Text.Printf is not fully type safe. printf
"%d\n" "foo" throws a "bad formatting
character" exception, really amounting to
a runtime type exception.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 4 Jul 2024 23:54:49 -0000

> Remember that you can concatenate
strings:

> Tio.Put_Line (Item => "my name: " &
Cli.Command_Name);

I’m sure I can, but I’m not sure what the
point is. Let Ada collect the pieces in its
own buffers. That saves copying steps.

> PragmARC.Images[.Image]
(https://github.com/jrcarter/
PragmARC).

I don’t really feel the need to resort to
third-party libraries just to do simple I/O.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 5 Jul 2024 10:58:00 +0200

> I’m sure I can, but I’m not sure what the
point is. Let Ada collect the pieces in
its own buffers. That saves copying
steps.

140 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journa l

Agreed. I don't understand why people
dislike printing piece by piece. In the old
FORTRAN, you could write only line by
line, but this time is long gone…

With the various Put procedures, you
have individual formatting options that
you don't have otherwise. Moreover, there
is a nice property that few people noticed:
if you have an algorithm writing data to a
file, with loops and so on, you can keep
the exact same structure replacing every
Put with the matching Get, and you will
read your data correctly. This feature goes
away as soon as you have a 'Image.

Reduction Expressions

From: Simon Wright
<simon@pushface.org>

Subject: Reduction expressions
Date: Tue, 13 Aug 2024 13:36:54 +0100
Newsgroups: comp.lang.ada

Are the Accum_Type & Value_Type
(ARM 4.5.10(9/5)) of a reduction
attribute reference required to be definite?

ARM 4.5.10(24/5) & (25.5) seem to
imply so, which explains why GNAT
doesn't support e.g. String.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 19 Aug 2024 22:59:04 -0500

Accum_Subtype (we changed the name
since it is a subtype, not a type; various
clarifications were made to the wording as
well in AI22-0011-1, AI22-0047-1, and
AI22-0069-1) most likely has to be
definite since the accumulator is of that
type, and the bounds/constraints of the
accumulator are thus defined by the initial
value. In most uses, the first call on
Reduce would then raise Constraint_Error
(because the bounds/constraints are
incorrect). I don't think there is any reason
that the Value_Subtype has to be definite
for a sequential reduce (a parallel reduce
requires the two subtypes to statically
match).

Note that if someone has a clever way to
use an indefinite result, it is allowed. For
instance, I could see a class-wide result
making sense in some limited
circumstances. But I don't think String
would do anything useful, since the
bounds are determined by the initial
value.

BTW, this answer is essentially topic #1
of AI22-0011-1.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 20 Aug 2024 22:23:27 +0100

> Accum_Subtype (we changed the name
since it is a subtype, not a type;

Amazing how a person (I) can have used
Ada for ~40 years and still be hard put to
it to describe the difference, at least in a
case like this one, where the ARG

members clearly see meanings that leave
me lukewarm if not cold. Maybe "the
heart of twilight"?

> But I don't think String would do
anything useful

String was just the simplest indefinite
type for an example.

> BTW, this answer is essentially topic #1
of AI22-0011-1.

Thanks for the pointer.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Tue, 20 Aug 2024 23:30:54 -0000

> Amazing how a person (I) can have
used Ada for ~40 years and still be hard
put to it to describe the difference

I thought the difference was obvious.
“subtype” is the C equivalent of
“typedef”, just giving a new name to an
existing type. So

 subtype A is B;

(where A and B are simple identifiers) is
valid, whereas

 type A is B;

is not: a “type” declaration always creates
a new type: you have to write at least

 type A is new B;

and now you have two types with
different names that are structurally the
same, but not compatible.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Tue, 20 Aug 2024 16:41:55 -0700

> I thought the difference was obvious.
“subtype” is the C equivalent of
“typedef” [...]

A subtype with no added constraint is
similar to a C typedef, but given

 subtype Digit is Integer range 0..9;

Digit is distinct from Integer (though
they're both the same type).

C doesn't have anything directly
corresponding to Ada subtypes.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Wed, 21 Aug 2024 01:37:22 -0000

> Digit is distinct from Integer (though
they're both the same type).

“Integer range 0..9” is a subtype of
Integer, and is valid for example as a
return type where Integer is expected. The
“subtype” declaration doesn’t actually
create the subtype: “Digit” is just a
shorthand name for that, just like a C
typedef.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 21 Aug 2024 08:47:49 +0100

> I thought the difference was obvious.
[...]

Yes, I've understood that for a long time
but ... ARM22 4.5.10(8,9)[1] say

(8) The expected type for a
reduction_attribute_reference shall be a
single nonlimited type.

(9) In the remainder of this subclause, we
will refer to nonlimited subtypes
Value_Type and Accum_Type of a
reduction_attribute_reference. ...

and in AI 22-0011-1 [2] starting at 22-
Oct-2021 5:25 PM,

* SB: raises a series of observations,

* STT: "... You really need to think of
Accum_Type as a particular *subtype*"

* SB: "Ok, I was confused - Accum_Type
is a subtype, not a type. So a lot of my
message was noise."

If SB can be confused, so can I!

[1] http://www.ada-auth.org/standards/
22rm/html/RM-4-5-10.html#p8

[2] http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai22s/
ai22-0011-1.txt?rev=1.2

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 23 Aug 2024 23:27:48 -0500

> If SB can be confused, so can I!

Which is why we changed the name - if
SB can be confused, it is a good bet that
there is something wrong with the
wording. That's why I usually recommend
bleeding edge users use the bleeding edge
RM - no point in rediscovering all of the
bugs that we already know about.
Unfortunately, in this case, I'm the only
one that has the bleeding edge RM
because I haven't finished adding all of
the approved AIs to it. This group is some
that I've done, which is why the answer to
your question was relatively easy to find.

Ichbiah 2022 Compiler
Mode

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Subject: Ichbiah 2022 compiler mode
Date: Thu, 5 Sep 2024 11:52:37 -0000
Newsgroups: comp.lang.ada

I guess this is a very subjective question.

A number of Ada users have expressed
that they would rather Ada was simpler
whilst others desire more features.

I appreciate Ada 83 portability but also
like a lot of modern Ada features.

Out of interest. Could anyone help me
with what a GNAT or other compiler
Ichbiah_2022_Mode might look like.
Perhaps it might be possible to use
pragmas to get an estimated mode of what
features he might keep or drop.

Ada Prac t ice 141

Ada User Journa l Volume 45, Number 3, September 2024

I can continue research but currently I do
not have the details of his objections to
Ada 95 and how those may have
continued through to today is perhaps a
nuanced question.

What do you think Ichbiah would jettison
from Ada 2022? All comments welcome.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 5 Sep 2024 15:40:35 +0200

> I do not have the details of his
objections to Ada 95

Ichbiah's objections to Ada 95 are in
https://web.elastic.org/~fche/mirrors/
old-usenet/ada-with-null

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 5 Sep 2024 16:08:01 -0000

What does this mean?

"elimination of accuracy constraints in
subtypes"

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 5 Sep 2024 21:24:05 +0200

> "elimination of accuracy constraints in
subtypes"

See ARM-95 J.3
(https://www.adaic.org/resources/
add_content/standards/95lrm/
ARM_HTML/RM-J-3.html),

Reduced Accuracy Subtypes.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 5 Sep 2024 19:03:22 -0500

> What do you think Ichbiah would
jettison from Ada 2022?

My recollection is that he wanted a more
complex "class" feature, which IMHO
would have made Ada more complex, not
simpler.

In any case, I can't guess what Ichbiah
would have suggested after 40 years of
experience. (He probably would have
moved on to some other language
anyway, you have to be somewhat
resistant to change to stick with a single
language for your entire career. I seem to
resemble that remark... ;-)

What I can do is suggest what an
RLB_2022 mode would look like, as I did
the exercise when we all were cooped up
during the early days of the pandemic. My
philosophy is that Ada has a lot of
combinations of features that cause a lot
of implementation trouble, but which are
not very useful. So I want to reduce the
combinations that cause trouble. I note
that every feature is useful for something
(else it wouldn't be in Ada in the first
place). But some things are not useful
enough for the trouble that they cause.
Also note that I am not worrying about
compatibility with Ada, which is always a
problem when updating Ada itself.

Here's some highlights off the top of my
head:

(1) Simplify the resolution model;
essentially everything resolves like a
subprogram. For instance, objects resolve
similarly to enumeration literals. This
substantially reduces the danger of use
clauses (having matching profiles and
names is less likely than just matching
names), and eliminates the subtle
differences between a constant and a
function (they should really act the same).

(2) Operator functions have to be
primitive for at least one of the types in
the profile. (Operators in a generic formal
part have a pseudo-primitive
requirement.) That includes renamings. In
exchange for that, operators have the
same visibility as the type (which means
they are always directly visible when any
object of the type is visible). One then can
eliminate "use type" (since it would
literally do nothing).

(3) A number of syntax options are
eliminated. Matching identifiers are
required at the end of subprograms and
packages. Initializers are always required
(<> can be used if default initialization is
needed). Keyword "variable" is needed to
declare variables (we do not want the
worst option to be the easiest to write, as
it is in Ada).

(4) Anonymous types of all sorts are
eliminated. For access types, we would
use aspects to declare properties (static vs.
dynamic accessibility, "closure" types,
etc.). For arrays, see next item.

(5) The array model would be greatly
simplified. New Ada users (and old ones
as well) have a hard time dealing with the
fact that the lower bound is not fixed in
Ada. Additionally, the existing Ada
model is very complex when private types
are involved, with operators appearing
long after a type is declared. The more
complex the model, the more complex the
compiler, and that means the more likely
that errors occur in the compiler. There
also is runtime overhead with these
features. The basic idea would be to
provide the features of an
Ada.Containers.Vector, and no more.
Very little is built-in. That means that
arrays can only be indexed by integers,
but that is a good thing: an array indexed
by an enumeration type is really a map,
and should use a map interface. So I
would add a Discrete_Map to the
Ada.Containers packages.
Bounded_Arrays are a native type (most
of the uses of arrays that I have are really
bounded arrays built by hand).

A side-effect of this model change is to
greatly simplify what can be written as
discriminant-dependent components.
Discriminant-dependent arrays as we
know them are gone, replaced by a
parameterized array object that has only

one part that can change. Much of the
nonsense associated with discriminant-
dependent components disappears with
this model.

(6) Static items have to be declared as
such (with a "static" keyword rather than
"constant"). Named numbers are replaced
by explicit static constants. (I would allow
writing Universal_Integer and
Universal_Real, so one could declare
static objects and operations of those
types.)

(7) Types and packages have to be
declared at library-level. This means that
most generic instances also have to be
declared at library-level. Subtypes,
objects, and subprograms still can be
declared at any nesting level. I make this
restriction for the following reasons:

 (A) Accessibility checks associated
with access types are simplified to
yes/no questions of library-level or not.
The only cases where accessibility
checks do any real good is when library-
level data structures are constructed out
of aliased objects. These would still be
allowed, but almost all of the
complication would be gone. Even if the
check needs to be done dynamically, it
is very cheap.

 (B) Tagged types declared in nested
scopes necessarily require complex
dynamic accessibility checks to avoid
use of dangling types (that is, an object
which exists of a type that does not
exist).

 (C) Reusability pretty much requires
ODTs to be declared in library-level
packages. Mandating that won't change
much for most programs, and you'll be
happier in the long run if you declare the
types in library packages in the first
place.

 (D) There are a lot of semantic
complications that occur from allowing
packages in subprograms, but this is
rarely a useful construct.

(8) Protected types become protected
records (that is, a regular record type with
the keyword "protected"). Primitive
operations of a protected record type are
those that are protected actions. (Entries
can be declared and renamed as such, they
would no longer match procedures, which
leads to all kinds of nonsense.) This
would eliminate the problems declaring
helper types and especially *hiding*
helper types for protected types. (See the
problems we had defining the queues in
the Ada.Containers to see the problem.)
The protected operations would allow the
keyword "protected" in order to make the
subprograms involved explicit.

(9) Strings are not arrays! Strings would
be provided by dedicated packages,
supporting a variety of representations.
There would be a Root_String'Class that
encompasses all string types. (So many

142 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journa l

operations could be defined on
Root_String'Class).

(10) Variable-returning functions are
introduced. They're pretty similar the
semantics of anonymous access returns
(or the aliased function returns suggested
by Tucker). This means that a variable
can easily be treated as a function (and
indeed, a variable declaration is just
syntactic sugar for such a function).

(11) Various obsolete features like
representation_clauses, representation
pragmas, and the ability to use 'Class on
untagged private types are eliminated or
restricted.

There were a couple of areas that I never
made up my mind on:

(A) Do we need tasks at all? Parallel and
task are very much overlapping
capabilities. But the parallel model would
need substantial changes if we were to
allow suspension of parallel threads (Ada
2022 does not allow this). Suspension
seems necessary to support intermittent
inputs of any type (including interrupts)
without wasting resources running busy-
wait loops.

(B) Should type conversions be operators
or remain as the type name as in Ada? A
type conversion operator, automatically
constructed, would allow user-defined
types to have the same sort of conversions
to numeric and string types that the
predefined do. But an operator would
make conversions easier, which is
probably the wrong direction for a
strongly typed language.

(C) I wanted to simplify the assignment
model, but my initial attempt did not work
semantically. I'm not sure that
simplification is possible with the Ada
feature set (I'm sure Bob and Tuck tried to
do that when creating Ada 95, but they
failed). The main issue is that one would
like to be able to replace discriminant
checks on user-defined assignment.
(Imagine the capacity checks on a
bounded vector; Ada requires these to
match, but that's way too strong; the only
problem is if the target capacity cannot
hold the actual length of the source object.
A user-defined replacement would be
helpful.)

My $20 worth (this was a lot more work
than $0.02!!). I probably forgot a number
of items; my actual document is about 20
pages long.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Fri, 6 Sep 2024 00:58:05 -0000

> Keyword "variable" is needed to declare
variables

One language idea I toyed with years ago
was that

 «name» : «type»;

declared a variable, while

 «name» : «type» := «value»;

declared a constant. So, no initialization
of variables at declaration time allowed.

> (10) Variable-returning functions are
introduced.

Is this like updater functions in POP-11,
or “setf” in Lisp? So you have a
procedure

 set_var(«var», «new value»)

which is declared to be attached to «var»
in some way, such that when you write

 «var» := «new_value»

this automatically invokes set_var?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 6 Sep 2024 13:07:27 +0200

> Out of interest. Could anyone help me
with what a GNAT or other compiler
Ichbiah_2022_Mode might look like.

I have no idea what he would have done.
For an idea of what I think a language
should have, you can look at my informal
description of King
(https://github.com/jrcarter/King).

From: Simon Wright
<simon@pushface.org>

Date: Fri, 06 Sep 2024 22:22:08 +0100

> (A) Do we need tasks at all? Parallel
and task are very much overlapping
capabilities.

I don't think I've ever wanted parallel.
Most embedded system tasks are one-off,
aren't they?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 7 Sep 2024 20:13:03 +0300

> I don't think I've ever wanted parallel.
Most embedded system tasks are one-
off, aren't they?

More and more embedded systems use
multi-core processors and do heavy,
parallelizable computations. "Parallel" is
intended to support that in a light-weight
way. In a recent discussion with the
European Space Agency, they expressed
interest in using OpenMP for such
computations on-board spacecraft with
multi-core processors, which is an
"embedded" context.

Regarding tasks in embedded systems, I
agree that most are one-off, but I have
occasionally also used tens of tasks of the
same task type.

I disagree with Randy's view that tasks
and "parallel" are much overlapping.
Tasks are able to communicate with each
other, but AIUI parallel tasklets are not
meant to do that, and may not be able to
do that. Tasks can have different
priorities; tasklets cannot.

From: Nioclás Pól Caileán De Ghloucester
<master_fontaine_is_dishonest
@strand_in_london.gov.uk>

Date: Sat, 7 Sep 2024 22:34:52 +0200

"[...] they expressed interest in using
OpenMP for such computations [...]"

Hei!

Most of the languages which are referred
to by WWW.OpenMP.org/resources/
openmp-compilers-tools facilitate bugs.
(The Spark which is referred to thereon is
not the Ada-related Spark language.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 11 Sep 2024 23:39:27 -0500

>> (10) Variable-returning functions are
introduced.

> this automatically invokes set_var?

No, it is a function that returns a variable,
meaning you can assign into the function
result. If you have:

 function Foo return variable Integer;

then you can use Foo on either side of an
assignment:

 Foo := 1;

 Bar := Foo + 1;

Essentially, this idea treats:

 Var : variable Integer;

as syntactic sugar for

 function Var return variable Integer;

The worth of that is two-fold: (1) Objects
and functions now resolve the same; (2)
one can write a function that acts exactly
like an object, and thus can replace it in
all uses.

Note that Ada currently has generalized
reference objects and functions that return
anonymous access types, and both of
these act similarly to a variable returning
function. But neither is quite a perfect
match.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Thu, 12 Sep 2024 22:24:29 -0000

> No, it is a function that returns a
variable, meaning you can assign into
the function result.

I think an updater function would be more
generally useful. Because some things
you want to update might not (depending
on the implementation) live independently
in an explicit variable. And it seems good
not to constrain implementations
unnecessarily.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 14 Sep 2024 01:18:25 -0500

> I think an updater function would be
more generally useful.

Ada Prac t ice 143

Ada User Journa l Volume 45, Number 3, September 2024

Unfortunately, "updater" functions don't
work with the Ada model of components,
because you can't tell what to do when a
component appears or disappears in an
assignment. (That's why Ada doesn't
allow overloading ":=".) And composition
is very important to Ada -- stand-alone
objects are pretty rare outside of those for
scalar types. I don't think something that
only worked with stand-alone objects
would be very useful (can't use those with
ODTs, for instance).

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 14 Sep 2024 07:18:29 -0000

> Unfortunately, "updater" functions don't
work with the Ada model of
components [...]

But it’s just syntactic sugar, nothing more.
Instead of

 a := obj.get_prop()

 obj.set_prop(a)

(both of which have valid Ada
equivalents), you can unify them into

 a:= obj.prop

 obj.prop := a

What difference does writing it differently
make?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 11 Sep 2024 23:46:18 -0500

> Tasks are able to communicate with
each other, but AIUI parallel tasklets
are not meant to do that, and may not
be able to do that. Tasks can have
different priorities; tasklets cannot.

I was (of course) presuming that
"tasklets" would get those capabilities if
they were to replace tasks. That's what I
meant about "suspension", which is not
currently allowed for threads in Ada
(parallel code is not allowed to call
potentially blocking operations). If that
was changed, then all forms of existing
task communication would be allowed.

I'm less certain about the value of
priorities, most of the time, they don't
help writing correct Ada code. (You still
need all of the protections against race
conditions and the like.) I do realize that
they are a natural way to express
constraints on a program. So I admit I
don't know in this area, in particular if
there are things that priorities are truly
required for.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 12 Sep 2024 10:42:38 +0300

> I was (of course) presuming that
"tasklets" would get those capabilities

Ok, I understand. In that case, what
"parallel" adds to the current tasking
feature is an easy way to create a largish
and perhaps dynamically defined number

of concurrent threads from a "parallel"
loop, where the threads are automatically
created when the loop is started and
automatically "joined" and destroyed
when the loop completes.

I don't mind at all if a future Ada
evolution merges tasks and "parallel",
although it might defeat the easier access
to multi-core true parallelism that is the
goal of the "parallel" extension, AIUI.

> I'm less certain about the value of
priorities

Priorities (or the equivalent, such as
deadlines) are absolutely required for
real-time systems where there are fewer
cores than concurrent/parallel activities so
that the system has to schedule more than
one such activity on one core.

If Ada did not have tasks with priorities,
most of the Ada applications I have
worked on in my life would have had to
avoid Ada tasking and retreat to using
some other real-time kernel, with ad-hoc
mapping of the kernels's threads to Ada
procedures.

Despite the transition to multi-core
processors, I think that there will continue
to be systems where scheduling is
required, because the number of
concurrent/parallel activities will increase
too.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 12 Sep 2024 11:04:58 +0200

> I was (of course) presuming that
"tasklets" would get those capabilities
[...]

Well, tasks are not only for speeding up
code. They can be a very useful design
tool (active objects, independent
activities). I think the Ada model is clean
and simple, I would hate to see it
disappear.

> I'm less certain about the value of
priorities [...]

If you had as many cores as tasks, you
would not need priorities. Priorities are
just optimization on how to manage cores
when there are not enough of them.

I know that people use priorities to
guarantee mutual exclusion, and other
properties. All these algorithms were
designed at the time of mono-CPU
machines, but they fail on multi-cores.
Nowadays, relying on priorities for
anything other than optimization is bad -
and dangerous- design.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 12 Sep 2024 11:07:01 +0200

> I don't mind at all if a future Ada
evolution merges tasks and "parallel"
[...]

To me usefulness of "parallel" is yet to be
seen, while tasks proved to be immensely
useful on all architectures available.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 12 Sep 2024 14:35:27 +0300

> Well, tasks are not only for speeding up
code. They can be a very useful design
tool (active objects, independant
activities). I think the Ada model is
clean and simple, I would hate to see it
disappear.

I agree.

> Priorities are just optimization on how
to manage cores when there are not
enough of them.

In some contexts it could be optimization
-- for example, to increase throughput in a
soft real-time system -- but in hard real-
time systems priorities (or deadlines) are
needed for correctness, not just for
optimization.

> I know that people use priorities to
guarantee mutual exclusion, and other
properties. All these algorithms were
designed at the time of mono-CPU
machines, but they fail on multi-cores.

In SW for multi-core systems it can be
beneficial to collect tasks that frequently
interact with each other or with the same
single-user resources in the same core,
and then the mono-core mutual-exclusion
algorithms like priority ceiling inheritance
can be used for that group of tasks, while
using other algorithms for mutual
exclusion between tasks running in
different cores.

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 12 Sep 2024 12:36:19 -0000

>If Ada did not have tasks with priorities,
most of the Ada applications I have
worked on in my life would have had to
avoid Ada tasking and retreat to using
some other real-time kernel, with ad-
hoc mapping of the kernels's threads to
Ada procedures.

Counter intuitively it is possible that this
is holding Ada back. A lot of Ada code
cannot run without some fairly complex
runtime support due to tasks, protected
objects, finalization etc.. Runtimes have
to be developed for each chip instead of
each cpu. At Least I assume that that is
why these features are not available to
e.g. the light cortex-m33 or cortex-m4 or
cortex-m0+ runtimes. This requires
rewriting code which isn't required with
equivalent C code such as containers and
ip stacks etc.. Even support for the Ada
interrupt package is missing but it looks
like porting that support to chips is less
work and research.

If you need advanced multi core support
then using an OS seems like a more
suitable situation to be in to me.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 12 Sep 2024 18:43:45 +0300

144 Ada Pract ice

Volume 45, Number 3, September 2024 Ada User Journa l

> Counter intuitively it is possible that
this is holding Ada back. [...]

True, however an Ada RTS can
implement many of the tasking features
with moderate effort on top of non-Ada
real-time kernels such as FreeRTOS,
VxWorks, etc., as AdaCore have done for
some kernels. At least for the Ravenscar
and Jorvik profiles. AIUI, the processor-
specific stuff is then mainly in the kernel,
not in the RTS.

> If you need advanced multi core support
then using an OS seems like a more
suitable situation to be in to me.

Using a large OS like Linux would not be
acceptable for many embedded systems.
Fortunately the smaller real-time kernels
are adding multi-core support too.

The great advantage of using the standard
Ada tasking feature, special syntax and
all, is that your embedded Ada program
can then be executed on a PC or other
non-embedded computer, for testing or
other purposes, tasking and all. It can also
be analysed by static-analysis tools such
as AdaControl for race conditions and
other tasking-sensitive issues.

From: Nioclás Pól Caileán De Ghloucester
<master_fontaine_is_dishonest
@strand_in_london.gov.uk>

Date: Fri, 13 Sep 2024 22:45:03 +0200

> Counter intuitively it is possible that
this is holding Ada back [...]

A book by Burns and Wellings unsensibly
boasts that the demanding runtime
demands of Ada are an advantage because
if you are with them then you are with
them, whereas as Kevin Chadwick points
out - they are not easy to make.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 14 Sep 2024 01:13:28 -0500

> [...] in hard real-time systems priorities
(or deadlines) are needed for
correctness, not just for optimization.

This I don't buy: priorities never help for
correctness. At least not without extensive
static analysis, but if you can do that, you
almost certainly can do the correctness
without depending upon priorities.

I view priorities as similar to floating
point accuracy: most people use them and
get the results they want, but the reason
for that is that they got lucky, and not
because of anything intrinsic. Unless you
do a lot of detailed analysis, you don't
know if priorities really are helping or not
(and similarly, whether your results
actually are meaningful in the case of
floating point).

Anyway, I don't see any such changes
coming to Ada, but rather to some
separate follow-on language (which
necessarily needs to be simpler), and thus
some things that are sometimes useful
would get dropped.

(Different message)

...

> [...] what "parallel" adds to the current
tasking feature is an easy way to create
a largish and perhaps dynamically
defined number of concurrent threads
from a "parallel" loop [...]

I think the parallel block is more useful
for general tasking. The advantage of
using parallel structures is that they look
very similar to sequential structures, and
one lets the system do the scheduling
(rather than trying to figure out an
organization manually).

One of the advantages of the model I'm
thinking about is that it separates concerns
such as parallel execution, mutual
exclusion, inheritance, organization
(privacy, type grouping), and so on into
separate (mostly) non-overlapping
constructs. Ada started this process by
having tagged types a separate construct
from packages; you need both to get
traditional OOP, but you can also
construct many structures that are quite
hard in traditional "one construct" OOP. I
think that ought to be done for all
constructs, and thus the special task and
protected constructs ought to go. We
already know that protected types cause
problems with privacy of implementation
and with inheritance. Tasks have similar
issues (admittedly less encountered), so
splitting them into a set of constructs
would fit the model.

In any case, this is still a thought
experiment at this time, whether anything
ever comes of it is unknown.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 14 Sep 2024 08:47:49 +0200

> The advantage of using parallel
structures is that they look very similar
to sequential structures, and one lets the
system do the scheduling (rather than
trying to figure out an organization
manually).

Tasking is not about scheduling. It is
about program logic expressed in a
sequential form. It is about software
decomposition. Parallel constructs simply
do not do that.

> One of the advantages of the model I'm
thinking about is that it separates
concerns such as parallel execution,
mutual exclusion, inheritance,
organization (privacy, type grouping),
and so on into separate (mostly) non-
overlapping constructs.

To me it is exactly *one* construct:
inheritance. You should be able to inherit
from an abstract protected interface at any
point of type hierarchy in order to add
mutual exclusion:

 type Protected_Integer is new Integer and
 Protected;

> Ada started this process by having
tagged types a separate construct from
packages;

I see modules and types as unrelated
things.

> you need both to get traditional OOP,
but you can also construct many
structures that are quite hard in
traditional "one construct" OOP. I think
that ought to be done for all constructs,
and thus the special task and protected
constructs ought to go.

Constructs yes, they must go. It must be
all inheritance. The concepts must stay.

> We already know that protected types
cause problems with privacy of
implementation and with inheritance.
Tasks have similar issues (admittedly
less encountered) [...]

The problems are of syntactic nature,
IMO.

There is an issue with an incomplete
inheritance model. You need not just
complete overriding but also more fine
mechanisms like extension in order to
deal with entry point implementations.
The same problem is with constructors
and destructors, BTW. What should really
go is Ada.Finalization mess replaced by a
sane user construction hooks model for all
types, class-wide ones included.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sat, 14 Sep 2024 07:19:47 -0000

> ... priorities never help for correctness.

Concurrent programming was never about
correctness, it was about
efficiency/performance (throughput,
latency, whatever is appropriate). And
priorities are just another part of this.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 14 Sep 2024 11:12:43 +0300

> This I don't buy: priorities never help
for correctness. At least not without
extensive static analysis, but if you can
do that, you almost certainly can do the
correctness without depending upon
priorities.

You misunderstood me; perhaps I was too
brief.

I said "hard real-time systems", which
means that the program is correct only if
it meets its deadlines, for which priorities
or deadline-based scheduling are
necessary if there are fewer cores than
concurrent/parallel activities, and the
application has a wide range of deadlines
and activity execution times.

(To be honest, there is the alternative of
using a single thread that is manually
sliced into small bits, interleaving all the
activities increment by increment,
according to a static, cyclic schedule, but
that is IMO a horribly cumbersome and

Ada Prac t ice 145

Ada User Journa l Volume 45, Number 3, September 2024

unmaintainable design, though
unfortunately still required in some
contexts.)

I believe we agree that priorities should
be used for other things, such as
controlling access to shared data, only if
there is a well-defined and safe

mechanism for it, such as protected
objects with priority ceilings and priority
inheritance on a single core.

146

Volume 45, Number 3, September 2024 Ada User Journa l

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2024

October 01-03 2024 International Conference on Software Engineering Research & Development (SERD'2024),

Oklahoma City, Oklahoma, USA & Online. Topics include: general and social aspects of software
engineering (SE); software design, testing, evolution, and maintenance; formal methods and theoretical
foundations; programming languages (PLs), systems, and environments; object- oriented (OO) design and
analysis; emerging SE technologies and dependability; distribution, componentization, and collaboration;
concurrent, parallel and distributed systems; etc.

October 05 Ada Monthly Meetup 2024 October, Internet. New edition of the monthly online meeting to
gather the community, see each other, talk about some things, and let people present or
showcase their work and discuss the news.

October 07-08 24th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM'2024), Flagstaff, Arizona, USA. Topics include: abstract interpretation, bad smell detection, clone
detection, program comprehension, program slicing, program transformation and refactoring, security
vulnerability analysis, source level metrics, source level optimization, source-level testing and
verification, static and dynamic analysis, etc.

 October 13-16 33rd International Conference on Parallel Architectures and Compilation Techniques (PACT'2024),
Long Beach, California, USA. Topics include: parallel architectures; compilers and tools for parallel
architectures; applications and experimental systems studies of parallel processing; computational models
for concurrent execution; support for correctness in hardware and software; reconfigurable parallel
computing; parallel programming languages, algorithms, and applications; middleware and run time
system support for parallel computing; distributed computing architectures and systems; etc.

October 15-18 24th International Conference on Runtime Verification (RV'2024), Istanbul, Türkiye. Topics include:
monitoring and analysis of runtime behavior of software, hardware, and cyber-physical systems; program
instrumentation; combination of static and dynamic analysis; monitoring techniques for concurrent and
distributed systems; fault localization, containment, resilience, recovery and repair; etc.

October 15-18 24th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2024),
Prague, Czech Republic. Topics include: methods, technologies, theoretical results, and tools for
reasoning formally about computing systems; formal aspects of computer-aided system design including
verification, specification, synthesis, and testing; etc.

October 16-18 17th International Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS'2024), Djerba, Tunisia. Topics include: analysis of computer and communication
systems, where functional and extra-functional properties are inter-related; cross-fertilization between
various formal verification and evaluation approaches, methods and techniques, especially those
developed for concurrent and distributed hardware/software systems.

October 20-22 31st Static Analysis Symposium (SAS'2024), Pasadena, USA. Co-located with SPLASH'2024. Topics
include: static analysis as fundamental tool for program verification, bug detection, compiler optimization,
program understanding, and software maintenance.

 October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH'2024), Pasadena, California, USA.

Conference Calendar 147

Ada User Journa l Volume 45, Number 3, September 2024

October 20-21 17th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2024). Topics include: software language engineering in general rather than
engineering a specific software language; software language design and implementation;
validation of software language tools and implementations (verification and formal
methods, testing techniques, simulation techniques); software language maintenance
(software language reuse; language evolution; language families and variability,
language and software product lines); software language integration and composition
domain-specific approaches for any aspects of SLE; (analysis, design, implementation,
validation, maintenance); empirical studies and experience reports of tools (user studies
evaluating usability, performance benchmarks, industrial applications); etc.

 Oct 20-25 Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2024). Topics include: all practical and theoretical
investigations of programming languages, systems and environments, targeting any stage
of software development, including requirements, modelling, prototyping, design,
implementation, generation, analysis, verification, testing, evaluation, maintenance, and
reuse of software systems; development of new tools, techniques, principles, and
evaluations.

October 21-24 21st International Symposium on Automated Technology for Verification and Analysis
(ATVA'2024), Kyoto, Japan. Topics include: theoretical and practical aspects of automated analysis,
synthesis, and verification of hardware and software systems; program analysis and software verification;
analytical techniques for safety, security, and dependability; testing and runtime analysis based on
verification technology; analysis and verification of parallel and concurrent systems; verification in
industrial practice; applications and case studies; automated tool support; etc.

 October 22 High Integrity Software Conference (HISC'2024), Newport, South Wales, UK. Topics include:
advanced software development for high-integrity and high-assurance systems, including programming
languages, verifiable code generation; verification and testing of high-integrity systems; assurance of
high-integrity systems; infrastructure and ecosystem for high-integrity software; etc.

October 22-24 22nd Asian Symposium on Programming Languages and Systems (APLAS'2024), Kyoto, Japan.
Topics include: all areas of programming languages and systems; programming paradigms and styles;
methods and tools to specify and reason about programs and languages; programming language
foundations; methods and tools for implementation; concurrency and distribution; applications, case
studies and emerging topics.

Oct 27 – Nov 01 39th IEEE/ACM International Conference on Automated Software Engineering (ASE'2024),
Sacramento, California, USA. Topics include: foundations, techniques, and tools for automating analysis,
design, implementation, testing, and maintenance of large software systems.

October 28-31 35th IEEE International Symposium on Software Reliability Engineering (ISSRE'2024), Tsukuba,
Japan. Topics include: development, analysis methods and models throughout the software development
lifecycle; dependability attributes (i.e., security, safety, maintainability, survivability, resilience,
robustness) impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors,
failures; reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); software
testing and formal methods; software fault localization, debugging, root-cause analysis; reliability of AI-
based systems; reliability of model-based and auto-generated software; reliability of open-source
software; normative/regulatory/ethical spaces about software reliability; societal aspects of software
reliability; etc.

November 04-08 22nd International Conference on Software Engineering and Formal Methods (SEFM'2024), Aveiro,
Portugal. Topics include: software development methods (formal modelling, specification, and design;
software evolution, maintenance, re-engineering, and reuse; design principles); programming languages
(abstraction and refinement, ...); software testing, validation, and verification (testing and runtime
verification, security and safety, ...); security, privacy, and trust (safety-critical, fault-tolerant, and secure
systems; software certification; applications and technology transfer); real-time, hybrid, and cyber-
physical systems; intelligent systems and machine learning; education; case studies, best practices, and
experience reports; etc. Deadline for early registration: October 15, 2024.

 Nov 07-08 32nd International Conference on Real-Time Networks and Systems (RTNS'2024), Porto, Portugal.

148 Conference Calendar

Volume 45, Number 3, September 2024 Ada User Journa l

Nov 06 17th Junior Researcher Workshop on Real-Time Computing (JRWRTC'2024).
Topics include: real-time system design and analysis (task and message scheduling;
modeling, verification and evaluation; model-driven development; worst-case execution
time estimation; distributed systems; fault tolerance; quality of service and security),
software technologies for real-time systems (compilers and programming languages,
middleware and component-based technologies, tools, ...), real-time applications
(automotive and avionics applications; process control; telecommunications and
multimedia; medical applications), etc. Deadline for submissions: October 3, 2024
(abstracts), October 8, 2024 (full papers).

November 13-15 19th International Conference on integrated Formal Methods (iFM'2024), Manchester, UK. Topics
include: recent research advances in the development of integrated approaches to formal modelling and
analysis; all aspects of the design of integrated techniques, including language design, verification and
validation, automated tool support and the use of such techniques in software engineering practice.

November 13-15 29th IEEE Pacific Rim International Conference on Dependable Computing (PRDC'2024), Osaka,
Japan. Topics include: software and hardware reliability, resilience, safety, security, testing, verification,
and validation; dependability measurement, modeling, evaluation, and tools; architecture and system
design for dependability; reliability analysis of complex systems; dependability issues in computing
systems (e.g. high performance computing, real-time systems, cyber-physical systems, ...); emerging
technologies (autonomous systems including autonomous vehicles, human machine teaming, smart
devices/Internet of Things); etc.

 November 17 Parallel Applications Workshop, Alternatives to MPI+X (PAW-ATM'2024), Atlanta, Georgia, USA.
Topics include: alternatives to the MPI+X model, novel application development using high-level parallel
programming languages and frameworks; examples that demonstrate performance, compiler
optimization, error checking, and reduced software complexity; experience with the use of new compilers
and runtime environments; etc.

November 21-22 23rd Belgium-Netherlands Software Evolution Workshop (BENEVOL'2024), Namur, Belgium.
Topics include: software evolution and maintenance. Deadline for registration: October 21, 2024.

November 26-29 13th Latin-American Symposium on Dependable Computing (LADC'2024), Recife, Pernambuco,
Brazil. Topics include: all aspects of dependable and secure systems and networks; critical infrastructure
protection, cyber-physical systems, safety-critical systems; software (software frameworks and
architectures, model-driven engineering, testing, V&V, certification, runtime verification, ...); formal
methods for dependable and secure systems; etc.

December 03-06 31st Asia-Pacific Software Engineering Conference (APSEC'2024), Chongqing, China. Topics include:
requirements and design; component-based software engineering; software architecture, modeling and
design; middleware, frameworks, and APIs; software product-line engineering; testing and analysis;
testing, verification, and validation; program analysis; program repairs; formal aspects of software
engineering; formal methods; model-driven and domain-specific engineering; software comprehension
and traceability; dependability, safety, and reliability; software maintenance and evolution; refactoring;
reverse engineering; software reuse; debugging and fault localization; software repository mining; etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 December 10-13 45th IEEE Real-Time Systems Symposium (RTSS'2024), York, UK. Topics include: addressing some
form of real-time requirements/constraints, such as deadlines, response time, or delay/latency. Deadline
for submissions: October 15, 2024 (TCRTS award nominations).

December 13-15 25th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2024), Hong Kong, China. Topics include: all facets of parallel and distributed
computing, task mapping and job scheduling, formal methods and programming languages,
parallel/distributed algorithms, security and privacy, high performance systems, etc.

2025

 January 19-25 52nd ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2025), Denver,

Colorado, USA. Topics include: all aspects of programming languages and programming systems, both
theoretical and practical; fundamental principles and important innovations in the design, definition,

Conference Calendar 149

Ada User Journa l Volume 45, Number 3, September 2024

analysis, transformation, implementation and verification of programming languages, programming
systems, and programming abstractions.

January 20-21 International Conference on Certified Programs and Proofs (CPP'2025). Topics
include: research areas related to formal certification of programs and proofs; new
languages and tools for certified programming; program analysis, program verification,
and program synthesis; program logics, type systems, and semantics for certified code;
teaching mathematics and computer science with proof assistants; etc.

January 20-21 26th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI'2025), Denver, Colorado, USA. Co-located with POPL'2025. Topics include: program
verification, model checking, abstract interpretation, static analysis, type systems, program certification,
detection of bugs and security vulnerabilities, hybrid and cyber-physical systems, concurrent and
distributed systems, analysis of numerical properties, analysis of smart contracts, etc., case studies on all
of the above topics. Deadline for submissions: October 1, 2024 (papers).

January 20-22 20th International Conference on High Performance and Embedded Architecture and Compilation
(HiPEAC'2025), Barcelona, Spain. Topics include: computer architecture, programming models,
compilers and operating systems for general-purpose, embedded and cyber-physical systems.

 January 20 6th Workshop on Next Generation Real-Time Embedded Systems (NG-RES'2025).
Topics include: application of formal methods to distributed and/or parallel real-time
systems; programming models, paradigms and frameworks for real-time computation on
parallel and heterogeneous architectures; dependable systems and networks; compiler-
assisted solutions for distributed and/or parallel real-time systems; middlewares for
distributed and/or parallel real-time systems; scheduling and schedulability analysis for
distributed and/or parallel real-time systems; etc. Deadline for paper submissions:
November 17, 2024.

February 02 12th Ada Developer Room at FOSDEM 2025, Brussels, Belgium. FOSDEM 2025 is a two-
day event (Sat-Sun 1-2 Feb), held in hybrid mode. This year's edition includes once more an
Ada Developer Room, held on Sunday morning 2 February.

February 04-06 19th International Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS'2025), Rennes, France. Topics include: variability across the software lifecycle, test and
verification of variable systems, evolution of variability-intensive systems, runtime variability, variability
mining, reverse-engineering of variability, economic aspects of variability, variability and quality
requirements, industrial development of variable systems, experience reports from managing variability
in practice, etc. Deadline for submissions: October 25, 2024 (abstracts), November 1, 2024 (papers).

March 01-05 ACM/IEEE International Symposium on Code Generation and Optimization (CGO'2025), Las
Vegas, USA.

March 04-07 32nd IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER'2025), Montreal, Quebec, Canada. Topics include: software tools for software evolution and
maintenance; software analysis, parsing, and fact extraction; software reverse engineering and
reengineering; program comprehension; software evolution analysis; software architecture recovery and
reverse architecting; program transformation and refactoring; mining software repositories and software
analytics; software reconstruction and migration; software maintenance and evolution; program repair;
software release engineering, continuous integration and delivery; empirical studies on all the above
topics; education related to all of the above topics; etc. Deadline for submissions: October 4, 2024
(research track abstracts), October 11, 2024 (research track papers), November 1, 2024 (industrial track
abstracts, Reproducibility Studies and Negative Results (RENE) track abstracts), November 4, 2024 (short
papers and posters track abstracts, Early Research Achievement (ERA) track abstracts), November 6,
2024 (registered report track), November 8, 2024 (industrial track papers, Reproducibility Studies and
Negative Results (RENE) track papers), November 11, 2024 (short papers and posters track papers, Early
Research Achievement (ERA) track papers, tool demo track papers), November 17-22, 2024 (workshop
paper abstracts), November 8-29, 2024 (workshop papers), December 3, 2024 (Journal-First track papers).

March 12-14 33rd Euromicro/IEEE International Conference on Parallel, Distributed and Network-Based
Processing (PDP'2025), Turin, Italy. Topics include: embedded parallel systems; dependability,
survivability, fault-tolerance; programming languages, compilers, middleware; runtime, systems

150 Conference Calendar

Volume 45, Number 3, September 2024 Ada User Journa l

software; performance prediction and analysis; simulation and modeling of parallel/distributed systems;
etc. Deadline for submissions: October 29, 2024 (abstracts), November 5, 2024 (papers).

Mar 30 - Apr 03 20th European Conference on Computer Systems (EuroSys'2025), Rotterdam, the Netherlands. Topics
include: all areas of computer systems research, such as distributed systems, language support and runtime
systems, systems security and privacy, dependable systems, analysis, testing and verification of systems,
parallelism, concurrency, and multicore systems, real-time, embedded, and cyber-physical systems, etc.
Fall deadline for submissions: October 15, 2024 (abstracts), October 22, 2024 (submissions).

Mar 31 - Apr 04 40th ACM/SIGAPP Symposium on Applied Computing (SAC'2025), Catania, Italy. Topics include:
latest developments, trends, experiences, and challenges in applied computing. 42 specialized tracks,
including: cyber-physical systems; dependable, adaptive, and secure distributed systems; embedded
system; IoT and edge computing; interoperability; programming languages; software engineering;
computer security; software verification and testing; etc.

 Mar 31-Apr 04 Track on Programming Languages (PL'2025). Topics include: technical ideas and
experiences relating to implementation and application of programming languages, such
as compiling techniques, domain-specific languages, garbage collection, language design
and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, etc. Deadline for submissions: October 4,
2024 (full papers), January 9, 2025 (student travel award program application). Deadline
for author registration: December 6, 2024.

Mar 31-Apr 04 Software Verification and Testing Track (SVT'2025). Topics include: new results in
formal verification and testing, technologies to improve the usability of formal methods
in software engineering, applications of mechanical verification to large scale software,
model checking, correct by construction development, model-based testing, software
testing, static and dynamic analysis, abstract interpretation, analysis methods for
dependable systems, software certification and proof carrying code, fault diagnosis and
debugging, verification and validation of large scale software systems, real world
applications and case studies applying software testing and verification, etc. Deadline for
submissions: October 13, 2024 (regular papers, student research competition research
abstracts).

Mar 31-Apr 04 20th Track on Dependable, Adaptive, and Secure Distributed Systems (DADS'2025).
Topics include: Dependable, Adaptive, and secure Distributed Systems (DADS);
modeling, design, and engineering of DADS; foundations and formal methods for DADS;
applications of DADS; etc. Deadline for paper submissions: October 4, 2024.

Mar 31 - Apr 04 22nd IEEE International Conference on Software Architecture (ICSA'2025), Odense, Denmark.
Topics include: linking architecture to requirements and/or implementation; methods to address the
intertwining of specification and design; model-driven architecture; component-based software
engineering; architecture frameworks and architecture description languages; evaluating quality aspects
(e.g., security, performance, reliability, evolvability); automatic extraction and generation of software
architecture descriptions; architecture & continuous integration/delivery, and DevOps; refactoring and
evolving architecture design decisions and solutions; roles and responsibilities for software architects;
training, soft skills, coaching, mentoring, education, and certification; etc. Deadline for submissions:
November 8, 2024 (abstracts), November 15, 2024 (full papers).

Mar 31-Apr 01 9th International Workshop on Formal Approaches for Advanced Computing
Systems (FAACS'2025). Topics include: integration between formal methods and
software architecture, architecture description languages and metamodels, model-driven
engineering, approaches and tools for verification and validation, reports on practical
experience in the application of formal methods to industrial case studies, etc. Deadline
for submissions: December 20, 2024.

Mar 31 - Apr 04 18th IEEE International Conference on Software Testing, Verification and Validation (ICST'2025),
Naples, Italy. Topics include: formal verification; replications, empirical studies, case studies, experience
reports; software reliability; static and dynamic analysis; test automation; testability, test design, and
adequacy criteria; testing and development processes; testing, debugging, and repair tools; testing in
specific domains (embedded/cyber-physical systems, concurrent, distributed, real-time systems, ...);

Conference Calendar 151

Ada User Journa l Volume 45, Number 3, September 2024

testing of non-functional properties such as security; etc. Deadline for submissions: October 2, 2024 (full
papers).

April 07-08 11th International Conference on Fundamentals of Software Engineering (FSEN'2025), V ster s,
Sweden. Topics include: all aspects of formal methods, especially those related to advancing the
application of formal methods in the software industry and promoting their integration with practical
engineering techniques; models of programs and software systems; software specification, validation, and
verification; software testing; software architectures and their description languages; integration of formal
and informal methods; component-based and service-oriented software systems; cyber-physical software
systems; model checking and theorem proving; software verification; CASE tools and tool integration;
industrial applications; etc. Deadline for submissions: October 7, 2024 (abstracts), October 14, 2024
(papers).

April 07-10 31st International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2025), Barcelona, Spain. Theme: "Social REsponsibility". Deadline for submissions:
October 25, 2024 (workshops), November 1, 2024 (research paper abstracts), November 8, 2024 (research
papers), February 7, 2025 (papers to workshops, education and training, posters and tools, and doctoral
symposium).

April 08-11 20th European Dependable Computing Conference (EDCC'2025), Lisbon, Portugal. Topics include:
latest ideas and results on theory, experiments, techniques, systems and tools for the design, validation,
operation and evaluation of dependable and secure computing systems; hardware and software
architecture of dependable systems; dependability and security modelling, evaluation, and tools; safety-
critical systems design and analysis; mixed-criticality systems design and evaluation; testing and
validation methods; dependability and security of: artificial intelligence systems, cyber-physical systems,
e.g. intelligent vehicles, (industrial) Internet of Things, ...; etc. Deadline for submissions: October 7, 2024
(full papers).

Apr 26 – May 04 47th International Conference on Software Engineering (ICSE'2025), Ottawa, Ontario, Canada.
Topics include: the full spectrum of Software Engineering (SE), trustworthy AI for SE; AI-assisted
software design and model driven engineering; mining software repositories; software metrics (and
measurements); software design methodologies, principles, and strategies; architecture quality attributes,
such as security, privacy, performance, reliability; modularity and reusability; dependency and
complexity analysis; patterns and anti-patterns; technical debt in design and architecture; formal methods
and model checking; reliability, availability, and safety; resilience and antifragility; design for
dependability and security; vulnerability detection to enhance software security; dependability and
security for embedded and cyber-physical systems; evolution and maintenance; API design and evolution;
software reuse; refactoring and program differencing; program comprehension; reverse engineering;
environments and software development tools; human and social aspects (focusing on programming
languages, environments, and tools supporting individuals, teams, communities, and companies; focusing
on software development processes; ...); modeling and model-driven engineering; variability and product
lines; modeling languages, techniques, and tools; empirical studies on the application of model-based
engineering; software testing; automated test generation techniques such as fuzzing, search-based
approaches, and symbolic execution; testing and analysis of non-functional properties; program analysis;
debugging and fault localization; runtime analysis and/or error recovery; etc. Deadline for submissions:
October 1 - November 19, 2024 (abstracts co-located conferences), October 8 - December 6, 2024 (papers
co-located conferences), October 21, 2024 (TCSE Award nomination intention), October-November,
2024 (special tracks), November 4, 2024 (TCSE Award nomination), November 11, 2024 (workshop
papers).

April 27-28 13th International Conference on Formal Methods in Software Engineering
(FormaliSE'2025). Topics include: approaches, methods and tools for verification and
validation; formal approaches to safety and security related issues; scalability of formal
method applications; integration of formal methods within the software development
lifecycle; model-based engineering approaches; correctness-by-construction approaches
for software and systems engineering; application of formal methods to specific domains,
e.g., autonomous, cyber-physical, intelligent, and IoT systems; formal methods in a
certification context; case studies developed/analyzed with formal approaches;
experience reports on the application of formal methods to real-world problems;
guidelines to use formal methods in practice; usability of formal methods; etc. Deadline
for submissions: November 11, 2024 (abstracts), November 18, 2024 (papers).

152 Conference Calendar

Volume 45, Number 3, September 2024 Ada User Journa l

Apr 27 - May 03 37th International Conference on Software Engineering Education and Training (CSEET'2025),
Ottawa, Ontario, Canada. Topics include: all dimensions of learning and teaching in the area of software
engineering. Deadline for submissions: October 3, 2024 (abstracts), October 10, 2024 (papers).

May 03-08 28th ETAPS International Joint Conferences on Theory and Practice of Software (ETAPS'2025),
Hamilton, Canada. Deadline for submissions: October 10, 2024 (TACAS, FoSSaCS, FASE), October 24,
2024 (TACAS artifacts), January 9, 2025 (FASE, FoSSaCS artifacts).

May 05-08 24rd European Symposium on Programming (ESOP'2025). Topics include:
fundamental issues in the specification, design, analysis, and implementation of
programming languages and systems, such as programming paradigms and styles,
methods and tools to specify and reason about programs and languages, programming
language foundations, methods and tools for implementation, concurrency and
distribution, etc. Deadline for submissions: October 10, 2024 (round 2).

May 06-09 18th Cyber-Physical Systems and Internet of Things Week (CPS-IoT Week'2025), Irvine, USA. Event
includes: 5 top conferences, HSCC, ICCPS, IoTDI, IPSN, and RTAS, as well as poster and demo sessions,
workshops, tutorials, competitions, industrial exhibitions, PhD forums, and summits.

May 06-09 16th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'2025).
Topics include: safety and resilience for CPS; software platforms and systems for CPS;
specification languages and requirements; design, optimization, and synthesis; testing,
verification, certification, assurance; security, trust, and privacy in CPS; tools, testbeds,
demonstrations and deployments; CPS applications in power systems, infrastructure
networks, transportation, healthcare, automotive, aerospace, etc. Deadline for
submissions: November 7, 2024 (abstracts), November 14, 2024 (papers).

May 12-16 28th Ibero-American Conference on Software Engineering (CIbSE'2025), Ciudad Real, Spain. Topics
include: community-based software engineering (SE) (e.g., open source, crowdsourcing); ethics in SE;
industrial experience reports in SE; software architecture and variability; software ecosystems and
systems of systems; SE education and training; SE for emerging application domains (cyber-physical
systems, Internet of Things, ...); software evolution and modernisation; software modeling and model-
driven engineering; software processes; software product lines and processes; software quality, quality
models and technical debt management; software reliability; software repository mining and software
analytics; software reuse; software testing; etc. Deadline for submissions: January 17, 2025 (abstracts),
January 31, 2025 (papers, doctoral symposium, journal first).

May 20-22 17th Software Quality Days (SWQD'2025), Munich, Germany. Theme: "Balancing Software Innovation
and Regulatory Compliance" Topics include: all topics related to software and systems quality; methods
and tools for constructive and analytical quality assurance; testing of software and software-intensive
systems; process improvement for development and testing; automation in quality assurance and testing;
domain-specific quality issues such as embedded, medical, and automotive systems; continuous
integration, deployment, and delivery; project and risk management; secure coding, software engineering,
and system design; detection and prevention of vulnerabilities and security threats; etc. Deadline for
submissions: October 31, 2024.

June 03-07 39th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2025), Milan, Italy.
Topics include: research in high performance computing in parallel and distributed processing; real-world
applications that use parallel and distributed computing concepts; experiments and performance-oriented
studies in the practice of parallel and distributed computing; programming models, compilers, and runtime
systems (ranging from the design of parallel programming models and paradigms, to languages and
compilers supporting these models and paradigms, to runtime and middleware solutions); etc. Deadline
for submissions: October 3, 2024 (abstracts), October 10, 2024 (papers).

 June 10-13 29th Ada-Europe International Conference on Reliable Software Technologies
(AEiC'2025), Paris, France. Organized by Ada-Europe and Ada-France. Deadline for submissions:
January 20, 2025 (journal track papers), February 24, 2025 (industrial track and work-in-
progress papers, tutorial and workshop proposals). #AEiC2025 #AdaEurope #AdaProgramming

June 12-13 Software Technologies: Applications and Foundations (STAF'2025), Koblenz, Germany.

June 12-13 18th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2025). Topics include: software language engineering in general, rather than

Conference Calendar 153

Ada User Journa l Volume 45, Number 3, September 2024

engineering a specific software language, such as software language design and
implementation, software language validation (verification and formal methods for
languages, testing techniques for languages, simulation techniques for languages, ...),
software language integration and composition, software language maintenance
(software language reuse; language evolution; language families and variability,
language and software product lines), domain-specific approaches for any aspects of SLE
(design, implementation, validation, maintenance), empirical evaluation and experience
reports of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications), etc. Deadline for submissions: February 7, 2025
(abstracts), February 14, 2025 (papers).

June 23-27 33rd ACM International Conference on the Foundations of Software Engineering (FSE'2025),
Trondheim, Norway. Topics include: debugging and fault localization; dependability, safety, and
reliability; embedded software, safety-critical systems, and cyber-physical systems; model checking;
model-driven engineering; parallel, distributed, and concurrent systems; program analysis; programming
languages; software architectures; software engineering education; software evolution; software security;
software testing; software traceability; symbolic execution; tools and environments; etc.

September 09-12 44th International Conference on Computer Safety, Reliability and Security (SafeComp'2025),
Stockholm, Sweden. Topics include: all aspects related to the development, assessment, operation, and
maintenance of safety-related and safety-critical computer systems; fault detection and recovery
mechanisms; safety guidelines and standards; safety/security co-engineering and trade-offs; safety and
security qualification, quantification, assurance and certification; threats and vulnerability analysis;
model-based analysis, design, and assessment; formal methods for verification, validation, and fault
tolerance; testing, verification, and validation methodologies and tools; etc. Domains of application
include: railways, automotive, space, avionics & process industries; highly automated and autonomous
systems; telecommunication and networks; safety-related applications of smart systems and IoT; critical
infrastructures, smart grids, SCADA; medical devices and healthcare; surveillance, defensed, emergency
& rescue; logistics, industrial automation, off-shore technology; education & training. Deadline for
submissions: 7 February 2025 (workshops, abstracts), 14 February 2025 (full papers).

 October 12-18 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH'2025), Singapore.

 Oct 12-25 Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2025). Deadline for submissions: October 15, 2024 (round 1),
March 25, 2025 (round 2).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Conference Chair
Jean-Pierre Rosen
rosen@adalog.fr
Adalog & Ada-France

Journal track Co-chairs
Laurent Pautet
laurent.pautet@telecom-paris.fr
Telecom Paris
Sara Royuela
sara.royuela@bsc.es
Barcelona Supercomputing Center

Industrial track Co-chairs
Daniela Cancila
daniela.cancila@cea.fr
CEA LIST
Laurent Gouzenes
lgouzenes@pactenovation.fr
Pacte-Novation

Work-in-progress track Co-chairs
Hai Nam Tran
hai-nam.tran@univ-brest.fr
University of Brest
Anish Bhobe
anish.bhobe@telecom-paris.fr
Telecom Paris

Workshop Chair
Anish Bhobe
anish.bhobe@telecom-paris.fr
Telecom Paris

Tutorial Chair
Robert Cholay
robert.cholay@free.fr
Systerel

Exhibition & Sponsorship Chair
Ahlan Marriott
ahlan@Ada-Switzerland.ch
White Elephant GmbH

Finance Chair
Paul Duquennoy
paul.duquennoy@free.fr

Publicity Chair
Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be
Ada-Belgium & KU Leuven

Webmaster
Hai Nam Tran
hai-nam.tran@univ-brest.fr
University of Brest

Local Chair
Pierre Jouvelot
pierre.jouvelot@minesparis.psl.eu
Mines Paris, PSL University

General Information

The 29th Ada-Europe International Conference on Reliable Software Technologies
(AEiC 2025) will take place in Paris, France. The conference schedule comprises a journal
track, an industrial track, a work-in-progress track, a vendor exhibition, parallel tutorials,
and satellite workshops.

 Journal track papers present research advances supported by solid theoretical
foundation and thorough evaluation.

 Industrial track contributions highlight the practitioners' side of a challenging case
study or industrial project.

 Work-in-progress track papers illustrate novel research ideas that are still at an
initial stage, between conception and first prototype.

 Tutorials guide attenders through a hands-on familiarization with innovative
developments or with useful features related to reliable software.

 Workshops provide discussion forums on themes related to the conference topics.

Schedule

Scope and Topics

The conference is a leading international forum for providers, practitioners, and
researchers in reliable software technologies. The conference presentations will illustrate
current work in the theory and practice of the design, development, and maintenance of
long-lived, high-quality software systems for a challenging variety of application domains.
The program will allow ample time for keynotes, Q&A sessions, discussions, and social
events. Participants include practitioners and researchers from industry, academia, and
government organizations active in the promotion and development of reliable software
technologies.

The topics of interest for the conference include but are not limited to:

 Formal and model-based engineering of critical systems

 High-integrity systems and reliability

 AI for high-integrity systems engineering

 Real-time systems

 Ada language
 Applications in relevant domains

More specific topics are described on the conference web page.

20 January 2025 Deadline for submission of journal track papers
24 February 2025 Deadline for submission of industrial track papers, work-in-

progress papers, and tutorial and workshop proposals
28 March 2025 First round notification for journal track papers, and notification

of acceptance for all other types of submissions
10-13 June 2025 Conference

29th Ada-Europe International Conference on
Reliable Software Technologies (AEiC 2025)

10-13 June 2025, Paris, France

http://www.ada-europe.org/conference2025

Call for Journal Track Submissions

Following a journal-first model, this edition of the conference includes a journal track, which seeks original and high-quality papers that describe mature
research work on the conference topics. Accepted journal track papers will be published in a Special Issue of Elsevier JSA – the Journal of Systems
Architecture (Q1 ranked, CiteScore 8.5, impact factor 3.7). Contributions must be submitted by 20 January 2025.

JSA has adopted the Virtual Special Issue model to speed up the publication process, where Special Issue (SI) papers are published in regular issues, but
marked as SI papers. Acceptance decisions are made on a rolling basis. Therefore, authors are encouraged to submit papers early, and need not wait
until the submission deadline. Authors who have successfully passed the first round of review will be invited to present their work at the conference.
Ada-Europe will waive the Open Access fees for the first four accepted papers (whose authors do not already enjoy Open Access agreements).
Subsequent papers will follow JSA regular publishing track.

Prospective authors may direct all enquiries regarding this track to the corresponding chairs, Laurent Pautet and Sara Royuela.

Call for Industrial Track Submissions

The conference seeks industrial-practitioner presentations that deliver insight on the challenges of developing reliable software. Especially welcome
kinds of submissions are listed on the conference web site. Given their applied nature, such contributions will be subject to a dedicated practitioner-
peer-review process. Interested authors shall submit a one-to-two pages abstract, by 24 February 2025.

The abstracts of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime-time technical program of the conference and will also be invited to expand their contributions into full-fledged articles for publication in the
Ada User Journal, which will form the proceedings of the industrial track of the Conference. Prospective authors may direct all enquiries regarding this
track to its chairs, Daniela Cancila and Laurent Gouzenes.

Call for Work-in-progress Track Submissions

The work-in-progress (WiP) track seeks two kinds of submissions: (a) ongoing research and (b) early-stage ideas. Ongoing research submissions are 4-
page papers describing research results that are not mature enough to be submitted to the journal track. Early-stage ideas are 1-page papers that pitch
new research directions that fall within the scope of the conference. Both kinds of submissions must be original and shall undergo anonymous peer
review. Submissions by recent MSc graduates and PhD students are especially sought. Authors shall submit their work by 24 February 2025.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime-time technical program of the conference and will also be offered the opportunity to expand their contributions into 4-page articles for
publication in the Ada User Journal, which will form the proceedings of the WiP track of the conference. Prospective authors may direct all enquiries
regarding this track to the corresponding chairs, Hai Nam Tran and Anish Bhobe.

Call for Tutorials

The conference seeks tutorials in the form of educational seminars on themes falling within the conference scope, with an academic-for-practitioner
slant, including hands-on or practical elements. Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the
presentation, the proposed duration (half-day or full-day), the intended level of the contents (introductory, intermediate, or advanced), and a statement
motivating attendance. Tutorial proposals shall be submitted at any time but no later than 24 February 2025 to the respective chair, Robert Cholay.
The authors of accepted full-day tutorials will receive a complimentary conference registration, halved for half-day tutorials. The Ada User Journal will
offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

The conference welcomes satellite workshops centred on themes that fall within the conference scope. Proposals may be submitted for half- or full-
day events, to be scheduled at either end of the AEiC conference. Workshop organizers shall also commit to producing the proceedings of the event,
for publication in the Ada User Journal. Workshop proposals shall be submitted at any time but no later than 24 February 2025 to the respective chair,
Anish Bhobe. Once submitted, each workshop proposal will be evaluated by the conference organizers as soon as possible.

Call for Exhibitors

The conference will include a vendor and technology exhibition. Interested providers should direct inquiries to the Exhibition & Sponsorship Chair,
Ahlan Marriott.

Venue

The conference will take place at Mines Paris. Mines Paris - PSL, a founding
member of Université PSL, is a leading French engineering school and the
French leader institution in research partnerships. Founded 240 years ago to
help spur the energy efforts called by the Industrial Revolution, it has been
since training engineers in a wide spectrum of scientific disciplines. With
about 1,500 students, including 100 PhD graduates per year, Mines Paris - PSL
hosts 18 research centres and 5 academic departments. It is located along the
Luxembourg gardens, next to the Quartier Latin, and is close to public
transportation, including line B of the RER to Charles De Gaulle airport (CDG).

Paris, the capital city of France, is renowned for its rich history, stunning
architecture, and vibrant culture. Often referred to as "The City of Light," Paris
is home to iconic landmarks such as the Eiffel Tower, the Louvre Museum, and
Notre-Dame Cathedral. The city is a global centre for art, fashion, gastronomy,
science and culture, attracting millions of visitors each year.

Front picture generated with the assistance of AI (DALL·E 2). Back picture provided by Mines Paris.

156

Volume 45, Number 3, September 2024 Ada User Journa l

First Ada Developers Workshop at AEiC 2024
Fernando Oleo Blanco
Open Source & Ada aficionado; Tel: +34 689 44 27 45; email: irvise@irvise.xyz

Dirk Craeynest
KU Leuven, Dept. of Computer Science, B-3001 Leuven, Belgium; email: Dirk.Craeynest@cs.kuleuven.be

Abstract

At this year’s Ada-Europe conference, the new “Ada
Developers Workshop” created an informal platform
for Ada developers to meet, share insights, and
present their latest projects or project updates. A
short overview of the full-day program is given,
followed by reports of the presentations by their
respective authors.

Keywords: developers, community, Ada.

1 Introduction

During the 28th Ada-Europe International Conference,
AEiC 2024 [1], which took place in Barcelona this year, a
new hybrid workshop focusing on the Ada programming
language, Ada-related technology, and the Ada community
was born on Friday 14 June. This “Ada Developers
Workshop” [2] was proposed and organised to give the Ada
community an informal place where projects, ideas and
topics could freely be shared and discussed among fellow
Ada users.

One of the goals of the workshop was to make it as
affordable as possible, so as to lower the barrier of entry
and maximize the community’s involvement. Thanks to the
sponsorship of AdaCore [3] and Ada-Europe [4] the
registration fee for on-site participation, including breaks
and lunch, was minimal, and there was no fee at all for
online participation. Additionally, AdaCore sponsored
much of the recording and streaming equipment that was
used. The workshop was mainly organised by Fernando
Oleo Blanco, Fabien Chouteau and Dirk Craeynest, with
the help of the Barcelona Supercomputing Center [5], and
saw a good level of interest: 19 in-person participants, plus
some 15-20 remotely for part or all of the day.

2 Program overview

In this first workshop edition, 9 presentations took place,
given by 8 speakers from 5 countries. In chronological
order they were:

 “SweetAda: a Multi-architecture Embedded
Development Framework”, by Gabriele Galeotti
(Italy) and Fernando Oleo Blanco (Spain);

 “Avoiding Access Types”, by Jeffrey R. Carter
(Belgium);

 “G-NAV: Soaring the Clouds with AdaWebPack”, by
Guillermo A. Hazebrouck (Belgium);

 “Alire 2.0: a ‘Quality of Life’ Update”, by Alejandro
Mosteo (Spain);

 “HiRTOS: a Multi-core RTOS Written in SPARK
Ada” presented J. German Rivera (USA);

 “Ironclad: a Formally Verified OS Kernel Written in
SPARK/Ada”, by Cristian Simon (Spain);

 “An Ada Story of Time”, by Jean-Pierre Rosen
(France);

 “Controlled I/O: a Library for Scope-Based Files”,
by Jeffrey R. Carter (Belgium);

 “Ada Community Advocacy”, by Fernando Oleo
Blanco (Spain).

The topics covered by the different presentations were
quite diverse: we had two talks focused on Operating
Systems: HiRTOS and Ironclad; one on embedded systems
development: SweetAda; one about navigation and using
Ada for web development and related technologies
(WASM): G-NAV; one about package management: Alire;
one about Ada and its features: Avoiding Access Types;
one about utilities and libraries for Ada: Controlled I/O;
one about the theory, measurement and management of
time: An Ada Story of Time; and finally, we had a
presentation about Ada and its evolving community: Ada
Community Advocacy.

3 Informal proceedings

All presenters were invited to prepare short papers. The
collection of those mini-papers is provided in this AUJ
issue, as informal proceedings of the workshop.

In addition, the slides as well as the video recordings of all
presentations are publicly available via the workshop's
website [2].

References
[1] https://www.ada-europe.org/conference2024/

[2] https://www.ada-europe.org/conference2024/
adadev.html

[3] https://www.adacore.com/

[4] https://www.ada-europe.org/

[5] https://www.bsc.es

 157

Ada User Journa l Volume 45, Number 3, September 2024

SweetAda: a Lightweight Ada-based Framework
Gabriele Galeotti
SweetAda home, 50019 Sesto Fiorentino (FI), Italy; email: gabriele.galeotti@sweetada.org,
gabriele.galeotti.xyz@gmail.com

Abstract

This article introduces and describes the status of
SweetAda1 development since the last 0.10 release.

Keywords: Ada, SweetAda, embedded, RISC-V, ARM

1 Introduction

SweetAda is a lightweight development framework whose
purpose is the implementation of Ada-based software
systems directly on hardware. SweetAda can be thought of
as an advanced embedded systems framework, with plenty
of functionality and quality-of-life features, that does not
reach Operating System levels of complexity nor size. The
users of SweetAda are encouraged to further develop and
build their own solutions based on the building blocks that
SweetAda provides and create tailored solutions for their
hardware.

The code produced by SweetAda is able to run on a wide
range of machines, from ARM® embedded boards up to
x86-64-class machines, as well as RISC-V machines and
Virtex®/Spartan® PowerPC®/MicroBlaze® FPGAs. It
could theoretically run even on System/390® IBM®
mainframes (indeed it runs on the Hercules emulator).
SweetAda is not an operating system, however it includes
a set of both low- and high-level primitives and kernel
services, like memory management, PCI bus handling,
FAT mass-storage handling, which could be used as
building blocks in the construction of complex software-
controlled devices.

More than 2 years have passed since the last official release
of SweetAda 0.10 and, after almost 3000 commits, things
have changed significantly. Much of the work done has led
SweetAda into a usable product in various contexts.

We are going to describe the latest changes, features and
additions, which were also shown during the Ada
Developers Workshop [1] that took place with the AEiC
2024 event, last June, in Barcelona, Spain.

2 Development Environment

The native environment of SweetAda was primarily the
mainstream PC machine running a Linux OS. But this
seems almost too limiting, since many users prefer to stick
with a Windows machine or a macOS one, so one of the
targets was to make the SweetAda environment usable
under these very different OSes. This generates a huge set

1 https://www.sweetada.org,

https://github.com/gabriele-galeotti/SweetAda

of problems, ending up in dealing with filesystem quirks,
shell portability, and so on.

Putting focus on the classical *nix shell, we had to make
shell scripts portable by sticking to POSIX rules. This was
not simple, since it prevents the use of arrays, and imposes
severe limits in the handling of objects. But careful
programming was successful and, in the end, a user could
use SweetAda nearly in every shell with a Bash-style
heritage, like ash, or the shell of a macOS machine.
MSYS2 in Windows is working perfectly too. Making it
work in a cmd.exe was another different story, and a set of
PowerShell scripts were necessary to process the whole
build system, due to the intrinsic limitations of this ancient
command line processor.

The final results are that, nowadays, SweetAda is usable in
many mainstream machines, works with every GNAT
toolchain, and is completely agnostic, since it does not use
any third-party packages.

3 Build System

GNATMAKE was initially selected due to its wide
availability, since it is automatically generated when you
build a GNAT compiler from the sources. It is simple to
use, and it is fast. The AdaCore GPRbuild system gained
popularity, so it was natural to try to make SweetAda use
this kind of tool. Nowadays, one can use any of these two
tools in SweetAda.

One nice side effects is that SweetAda has a .gpr
configuration file that is correctly loaded inside GNAT
Studio, and you can use this IDE to do development, like
editing, computing metrics, and so on. GNAT Studio
detects the build targets inside the SweetAda Makefile and
you can issue commands like in an interactive shell.

Figure 1: SweetAda GNAT Studio session in Windows

158 SweetAda: a L ightweight Ada-based Framework

Volume 45, Number 3, September 2024 Ada User Journa l

4 Ada Code Development

A lot of cleanup in the code was also necessary. Many
unused and/or redundant subprograms have been deleted,
and the code formatting has been made more mainstream.

The core complex has been completely made CPU-
independent, and nearly all subprograms are now separate,
leading to the possibility of overriding them with user-
optimized code.

SweetAda now has a very basic mutex object which is
sufficient to do some experiments in SMP. Indeed, you can
find a primitive form of SMP in the QEMU-AArch64 and
QEMU-RISC-V target platforms, where 4 CPUs run in
parallel. Physical boards like Raspberry Pi are in the initial
phase of this kind of development.

5 Targets

Various targets are new in SweetAda, focusing on those
which have popularity and wide attention. So, RISC-V
device targets, both virtual and physical, were
implemented.

The first attempt was to experiment on a SiFive HiFive 1
board. Then other targets were positively checked, like
FPGA implementations, or even complete virtual VHDL
environments running under GHDL. As a matter of fact,
SweetAda run flawlessly in a NEORV32 device placed in
Xilinx or Altera chips. Fernando Oleo Blanco [2] was able
to autonomously and easily port SweetAda to a ULX3S
FPGA board, and gently showed us this achievement
during the AEiC ‘24 meeting.

The OpenRisc CPU was also implemented, at least in a
QEMU platform.

6 Running and Debugging

Real code runs on real platforms. Great effort was put to
make SweetAda usable on physical target platform, so an
infrastructure to use OpenOCD is now readily available.
By simply configuring some script variables, Ada code can

be made run on JTAG-enabled hardware, and GDB
debugging is fully enabled.

Figure 2: FRDM-KL46Z target under debugging in an
OpenOCD session driven by SweetAda build system

References

[1] https://www.youtube.com/watch?v=pI-WWgJWgnc

[2] https://irvise.xyz/

Trademarks

Linux® is a registered trademark of Linus Torvalds.

POSIX™ is a registered trademark of IEEE.

macOS™ is a trademark of Apple, Inc.

Windows® is a registered trademark of Microsoft
Corporation.

SiFive™ is a trademark of SiFive, Inc.

Xilinx™ is a trademark of Advanced Micro Devices, Inc.

Altera® is a registerd trademark of Intel Corporation.

QEMU™ is a trademark of Fabrice Bellard.

Raspberry Pi is a trademark of Raspberry Pi Foundation.

All other trademarks and trade names are properties of their
respective owners.

 159

Ada User Journa l Volume 45, Number 3, September 2024

Avoiding Access Types
Jeffrey R. Carter
PragmAda Software Engineering; email: jrcarter@acm.org; https://github.com/jrcarter

Abstract

This paper is a summary of the presentation at the
2024 Ada-Europe International Conference Ada
Developers Workshop. Access types and their
associated memory management are a constant
source of errors, so it is desirable to avoid them.
Access types are very rarely needed. Some techniques
for avoiding their use are presented.

Keywords: access types, memory management, Ada.

1 Introduction

Ada has two types of access types: access-to-object types
and access-to-subprogram types. Here we are dealing with
access-to-object types and will call them "access types" for
short.

Access types and their associated memory management are
a constant source of errors, so it is desirable to avoid them.
In Ada, access types are never needed (valid as a first-order
approximation, and probably as second). Most uses can be
replaced with unbounded components from the standard
library; most remaining cases can be encapsulated and
hidden within a custom component. Encapsulation and
hiding make it easier to get the memory management right.

There are three main cases where access types can be
avoided:

 Returning large objects with unknown constraints

 Making private types private

 Self-referential types

2 Returning large objects

Sometimes it is necessary to return an object with
constraints that are not known at the point of the call.
Typically, this is provided by a function that returns an
unconstrained type:

type T is array
 (Positive range <>, Positive range <>) of Thing;
function Read (File_Name : in String) return T;

Depending on what T represents, the result may be
arbitrarily large, so it must be allocated on the heap. But
then there is a memory-management issue: how to return
the result value and still deallocate the allocated memory.

A common solution is to return the access value, but using
access types in the visible part of package specifications is
poor design, and forcing the client to do the memory
management, as this would, is very poor design.

We could use a smart pointer internally, which would
automatically deallocate the memory after the return
expression has been evaluated, but then there is still the
problem of what the caller can do with such a large object,
often leading to the use of access types by the client. We
would like to avoid that.

A solution which avoids all these problems is to return a
holder:

package T_Holders is new
 Ada.Containers.Indefinite_Holders
 (Element_Type => T);
procedure Read
 (File_Name : in String;
 Item : in out T_Holders.Holder);
...
declare
 type T_Ptr is access T;
 Ptr : T_Ptr := new T (...);
begin
 Item.Replace_Element (New_Element => Ptr.all);
 Free (Ptr);
 -- Operate on Item using Update_Element
exception
when others =>
 Free (Ptr);
end;

This involves declaring an access type, allocating the
necessary space, copying that space into the holder, and
freeing the access value. It is easy to get this memory
management correct since the allocation and deallocation
occur within a few lines. If the copy proves to have
unacceptable consequences, one can create a custom holder
to avoid it.

3 Making private types private

In Ada 83, the full type of a private type was only visible
within the package. Ada 95 added child packages as a form
of programming by extension, allowing visibility of the full
type in descendant packages. While this is sometimes
desirable, there are also cases when it is not [2].

Consider a large record type with constraints between
various components that are difficult to enforce
automatically. The package would like all modifications of
objects of the type to be done by subprograms provided by
the package, which ensure that the constraints hold. If the
full type is visible to child packages, even the best-
intentioned developer of such a child package might forget
and assign directly to a component of the object, violating

160 Avoid ing Access Types

Volume 45, Number 3, September 2024 Ada User Journa l

the constraints. It is necessary to make the type invisible to
child packages to avoid this.

A question on Stack Overflow a few years ago [5]
addressed just this situation. The first solution posted (by
Jere) used access types, and included memory
management. It is instructive to note that the memory
management is incorrect, thus demonstrating yet again why
access types should be avoided if possible.

My solution used holders, again:

private – Parent
 type Root is abstract tagged null record;
 function Equal
 (Left : in Root'Class; Right : in Root'Class)
 return Boolean is
 (Left = Right);
 package Class_Holders is new
 Ada.Containers.Indefinite_Holders
 (Element_Type => Root'Class, "=" => Equal);
 type Item is record
 Value : Class_Holders.Holder;
 end record;
end Parent;
package body Parent is
 type Real_Item is new Root with record
 Value : Boolean;
 end record;

The language prevents instantiating Indefinite_Holders
with an incomplete private type, leading to the use of a
class-wide type. The function Equal is needed because
class-wide types have no primitive operations. Since the
full type extends Root, it can be stored in the holder; values
have to be converted to their actual type when retrieved:

R : Real_Item;
V : Item;
...
R.Value := True;
V.Value.Replace_Element (New_Item => R);
...
R := Real_Item (V.Value.Element);

4 Self-referential types

A self-referential type is a type that contains components
of itself. Access types are often used to implement them;
however, even here access types can be avoided.

A common example of a self-referential type is the binary
tree, which contains

 A Value
 Left and Right subtrees

Conceptually

type Tree is record
 Value : Element;
 Left : Tree;

 Right : Tree;
end record;

which is clearly not valid Ada. Again, holders can be used
[1]:

type Root is abstract tagged null record;
function Equal
 (Left : in Root'Class; Right : in Root'Class)
return Boolean is
 (Left = Right);
package Tree_Holders is new
 Ada.Containers.Indefinite_Holders
 (Element_Type => Root'Class, "=" => Equal);
type Tree is new Root with record
 Value : Element;
 Left : Tree_Holders.Holder;
 Right : Tree_Holders.Holder;
end record;

Again, the values obtained from the holders must be
converted to type Tree.

All of the examples presented here have used holders, but
there are cases, especially of self-referential types, for
which another container would be better. For example, S-
Expressions (usually shortened to SEXes) can contain a list
of SEXes. Implementing that using access types would
involve implementing a complete list abstraction. Far
better to reuse the implementation in
Ada.Containers.Indefinite_Doubly_Linked_Lists, using the
techniques presented here. I present this in a draft paper [4]
and on comp.lang.ada [3].

5 Summary

Access types are often used unnecessarily. Avoiding access
types enhances the correctness of programs, since it
prevents the errors associated with memory management.
Avoiding access types is often less effort than
implementing correct memory management.

References
[1] J. Carter, Binary-tree implementation, https://github.

com/jrcarter/Binary_Trees.

[2] J. Carter, “Breaking the Ada Privacy Act”, Ada
Letters, Volume XVI, Number 3 [1996 May/June]
[https://github.com/jrcarter/Papers].

[3] J. Carter, Reply to “Recursive algebraic data types”,
comp.lang.ada, https://usenet.ada-lang.io/comp.lang.
ada/ p7mv5srig1@dont-email.me/ [2018-03-06].

[4] J. Carter, “Self-Referential Data Types Without
Access Types”, https://github.com/jrcarter/Papers/
[2021-09-13].

[5] user15552120, “Hiding record from child packages”,
https://stackoverflow.com/questions/68838455/hiding
-record-from-child-packages/ [2021-08-19]

 161

Ada User Journa l Volume 45, Number 3, September 2024

G-NAV: Soaring the Clouds with AdaWebPack
Guillermo A. Hazebrouck
Aeronautical Engineering; email: gahazebrouck@gmail.com

Abstract

The adventure of developing a new soaring application
based on Ada, WASM and WebGL.

Soaring is flying without an engine: circling on the
upwards air streams and avoiding the downwards air
streams. It is a tactical sport, based on meteorology,
aircraft performance, navigation skills, flying skills,
and confidence.

Keywords: aeronautics, open source, WebGL, Ada.

1 Presentation overview

Electronic flight instrument systems (EFIS) can effectively
increase situational awareness of glider pilots by combining
geographic data, aeronautical data, aircraft performance
models, geolocation systems and air traffic surveillance
systems.

While progressive web applications (PWA) are
consolidating in the world of mobile technology, G-NAV
explores these new possibilities to provide an alternative
EFIS solution, carrying Ada along as the main programming
language through the AdaWebPack toolchain.

With a single code base, the solution can be integrated to
different systems in different ways, as it can be provided

through the internet or through an onboard data acquisition
system.

From a developer's perspective, G-NAV implements several
particular features, like using its own vector graphics library
on top of WebGL to draw shapes, lines and even text on a
single canvas. This results in a vivid minimalistic interface
that prioritizes awareness and robustness.

Finally, the project seeks to promote open access to a tool
that can have a positive impact on safety.

2 Bio

I was born and raised in Córdoba Argentina, where I first
attended a technical school and later the university. After
graduating as an aeronautical engineer from the National
University, I moved to Belgium where I soon started
working on computer simulations for civil engineering.
After five years I jumped back to aeronautics as Ada
developer for the Belgian ANSP.

I love programming and gliding.

References

 https://go-gliding.app

 https://github.com/GuillermoHazebrouck/gnav

 https://github.com/GuillermoHazebrouck/gnav-web

162

Alire 2.0: a ‘Quality of Life’ Update

Alejandro R. Mosteo
Centro Universitario de la Defensa, Academia General Militar, 50090 Zaragoza, Spain.
Instituto de Investigación en Ingeniería de Aragón, C/ Mariano Esquillor s/n, 50018 Zaragoza,
Spain; email: amosteo@unizar.es

Abstract

Alire (from Ada Library Repository) is an open source
package manager for the Ada and SPARK programming
languages. Alire indexes projects in source form, but
also binary toolchains ready for use from the GNAT
compiler suite. Thus, starting a project with multiple
dependencies and using a variety of native or cross-
compilers becomes straightforward. This short paper
discusses the most relevant new features in its 2.0 re-
lease, published in March 2024.

Keywords: package manager, dependency management,
Ada, SPARK.

1 Introduction
Current development practices involve languages being sup-
ported by tools that simplify tasks such as dependency man-
agement, among others; that is, downloading software li-
braries and integrating them in the build of a larger system. In
the case of open source ecosystems, such a tool is particularly
important to ease the task of locating libraries scattered all
over the Internet which otherwise could be hard to find and
put into shape for integration.

Sometimes, such a tool is an integral part of the official
language development kit, such as cargo for the Rust lan-
guage [1]. For older languages, originated when such con-
cepts were not ubiquitous, unofficial package managers often
emerge, vying for widespread use.

Package managers can deal with dependencies in a variety of
ways. In the Linux world, many distributions have a package
manager as a cornerstone that typically uses pre-compiled
binary libraries, suitable only for the intended environment.
This kind of management, although integral to the success of
open source Linux distributions, has the drawback of pack-
ages being only available on particular distributions where
a maintainer has taken the time to adapt the sources to the
particular distribution procedures (see, e.g., the Debian Ada
policy [2]).

For that reason, language-oriented package managers try to be
independent of the distribution or even operating system on
which they are going to be used, to maximize the availability
of their library and application catalogs.

Alire belongs to this latter class: it is portable across main-
stream operating systems, providing a community index that

points to over 400 Ada/SPARK open source projects ready
for use.

In the next section, Alire is characterized in more detail. Sec-
tion 3 follows by addressing the new features in Alire 2.0.
Conclusions close this document in Section 4.

2 Standard features
To better characterize Alire, and contextualize its new fea-
tures, its basic properties are presented first. Alire is a user-
oriented package manager, intended to be used without re-
placing a system-provided package manager. For example,
on Debian, it may leverage apt to reuse Debian-provided
libraries, but will not interfere with it.

Alire packages are called “crates”, to avoid confusion with
Ada’s package concept. A crate may contain one or more
GNAT project files, and as many Ada packages as needed,
although it is encouraged to use a root package with the same
name as the crate. This limits the risk of name clashes and
simplifies identifying a crate’s code during development.

Crates are downloaded in source form, given that compilation
can be tweaked to use three main modes and any number of
custom variations. These modes are: development, where
switches suitable for debugging are used; validation, where
switches suitable to exhaustive checking of contracts and
other validity checks are enabled; and release, where compi-
lation is optimized for performance.

Despite the main focus on sources, binaries can be distributed
by Alire in cases where this is advisable. The main exam-
ple is GNAT toolchains, which can be very complex and
time-consuming to bootstrap and build. Alire provides native
compilers for Windows, Linux and macOS. For the latter, both
AMD64 and AARCH64 architectures are supported. Also
available is a growing selection of cross-compilers suitable
for embedded development, for targets like ARM, AVR and
RISCV64.

When Alire debuted in February 2021 with its 1.0 release,
it already had the core features expected from a package
manager: ability to search for keywords in its repertoire of
crates, automatic download and inclusion of dependencies
into the build, a full solver able to find a complete solution
whenever it exists, to name the main ones. Further develop-
ments within the 1.x branch enhanced the ability to work with
several in-progress libraries with a flexible pinning system.

Publishing a user’s work to the community index was at the
time a manual process for the most part: Alire would generate

Volume 45, Number 3, September 2024 Ada User Jour na l

A. R. Mosteo 163

a manifest file (which provides the necessary metadata to
locate sources and drive the build), but this file would have
to be submitted manually through a standard GitHub pull-
request.

This latter process entails a number of manual steps that can
be daunting for a first-time user: forking and cloning the
community index repository, committing and uploading the
manifest to the appropriate location in the repository, and
finally opening the pull-request.

Another feature that was missing and often requested was
a way to reuse dependencies: initially, Alire offered only
a sandbox mode in which every user workspace for a crate
contains also all of its dependencies. While this is convenient
to ensure proper isolation, the need to download and build
multiple times a large number of possibly heavy dependencies
could become a noticeable nuisance.

3 New features
Considering the expression ‘quality of life’ in the title, it will
be no surprise that the main enhancements in the 2.0 release
addressed these limitations just mentioned. These and other
improvements are described now.

3.1 Automated publishing
Alire’s publishing features now leverage the GitHub API
under the hood to automate all steps previously de-
scribed. Cloning, forking and pull-request creation is
done by Alire. The user can then monitor the server-
side integration checks from the command-line with
alr publish --status. Assuming these checks are
successful, the final approval1 can also be requested simply
with alr publish --request-review. This also
opens the way to full automated submission of new crate
releases without any user intervention (barring any failures in
the integration checks).

3.2 Shared dependencies
In addition to the sandboxed mode described in Section 2,
Alire 2.0 offers a new shared mode (enabled by default), in
which sources of dependencies are downloaded once to a sin-
gle read-only vault location. To avoid interferences between
builds with different configuration or compiler switches, a
unique hash is computed to characterize a build, and a unique
build is performed within a cache location, common to all
user projects.

In this way, as long as two projects use a dependency with
the same build settings, they will reuse the build, reducing
redundant source downloads and compilations.

The aforementioned hash includes recursively the hashes of
all dependencies, but also all other factors that might cause a
difference in the build: compiler version and target, switches
and environment variables.

1At this time, the community index is curated, requiring final approval by
a maintainer as the last step.

3.3 Lazy index loading
Another problem reported by users was long startup times of
Alire’s command-line tool, alr. This was caused by the load
of the full community index on most operations, which was
becoming time-consuming as the amount of releases grew, but
also due to the attempts to detect system libraries described
also in the index.

In Alire 2.0, release metadata is only loaded on demand,
when needed by the solver or other look-up operations into
the index. Not only does this feature significantly reduce
the amount of information loaded for solving and searching,
but in most operations that rely on a previously computed
dependency solution, no index loading is needed at all.

3.4 Unicode defaults
Although the GNAT compiler provides comprehensive con-
figuration options to tackle source and output encodings, its
defaults are not in line with modern practices in which every
text is considered Unicode, and often UTF-8-encoded. This
caused interoperability problems in projects where several
crates used different configurations, as specifications could
be included in the build several times with inconsistent con-
figurations, causing difficult-to-diagnose issues.

In what was seen as a risky but necessary move at the time,
Alire 2.0 defaults to full Unicode mode, which is also fully
Ada compliant. So far, no significant problems have been
reported as a consequence of this breaking change in the
default build options.

3.5 Nested crate detection
A concern when using a new library is the existence of ex-
amples, tests or demos that can help to understand and learn
its usage. Of course, proper documentation will go a long
way in this regard, but often such examples may exist and go
unnoticed.

Alire 2.0 tries to help with this issue by automatically de-
tecting nested crates within a dependency the first time one
is downloaded. Any such nested crates (which are essen-
tially projects nested within the main library of interest) are
reported with their description, which may point the user
towards useful resources.

4 Conclusion
Alire, the Ada/SPARK package manager, has now reached
a new level of maturity with a suite of features that address
unpolished or missing aspects that were detected during its
1.0 days. These include a full publishing workflow, reuse
of dependency builds while preserving isolation, and a stan-
dardized Unicode configuration, besides other less impactful
improvements.

References
[1] S. Klabnik and C. Nichols, The Rust programming lan-

guage. No Starch Press, 2023.

[2] L. Brenta, “Debian policy for Ada.” https:
//people.debian.org/~lbrenta/
debian-ada-policy.html, 2014. Accessed:
2024-10-23.

Ada User Jour na l Vo lume 45, Number 3, September 2024

https://people.debian.org/~lbrenta/debian-ada-policy.html
https://people.debian.org/~lbrenta/debian-ada-policy.html
https://people.debian.org/~lbrenta/debian-ada-policy.html

164

HiRTOS: A Multi-core RTOS Written in SPARK
Ada

J. Germán Rivera
Austin, TX, USA; email: jgrivera67@gmail.com

Abstract

This paper describes the design of HiRTOS (High-
Integrity RTOS), a simple real-time operating system
kernel and separation kernel written in SPARK Ada.
HiRTOS targets safety-critical and security-sensitive
embedded software applications that run in multi-core
microcontrollers.

Keywords: RTOS, multi-core, high-integrity, Ada,
SPARK.

1 Introduction
Although there are several popular RTOSes for embedded
applications that run on small microcontrollers, most of them
are not designed with high-integrity applications in mind, and
as such are written in C, an unsafe language. So, it would
be desirable to have an RTOS specifically designed for high-
integrity applications, and written in a safer language, even if
application code is written in C/C++.

HiRTOS (High Integrity RTOS) [1] is a small RTOS kernel
and separation kernel for embedded single-core and multi-
core platforms that have a memory protection unit (MPU).
HiRTOS has a preemptive thread scheduler with fixed priori-
ties and round-robin for threads with the same priority. On a
multi-core platform, each core has its own thread scheduler
and threads always execute in the same core where they were
created. No HiRTOS resources are shared between CPUs and
no communication/synchronization across CPU cores is sup-
ported by HiRTOS. Mutexes and condition variables [2] are
the only synchronization primitives in HiRTOS, and they only
support synchronizing threads running on the same core. HiR-
TOS mutexes support both priority inheritance and priority
ceiling protocols [5]. Unlike traditional condition variables,
HiRTOS condition variables can also be waited on while
having interrupts disabled, not just while holding a mutex.

Given the fact that there is a separate instance of the HiRTOS
scheduler per CPU, and there is no interaction between CPUs
at the HiRTOS level, we just need to do formal verification of
the HiRTOS thread scheduler for the single-core case.

HiRTOS is written in the SPARK subset of Ada [3], without
using pointers (Ada access types). All RTOS objects such
as threads, mutexes and condition variables are allocated
internally by HiRTOS, from statically allocated internal object
pools. These object pools are RTOS-private global arrays of
the corresponding RTOS object types, sized at compile time

via configuration parameters, whose values are application-
specific. RTOS object handles provided to application code
are just indices into these internal object arrays. No actual
RTOS object pointers are exposed to application code. No
dynamic allocation/deallocation of RTOS objects is supported
and no static allocation of RTOS objects in memory owned
by application code is supported either.

2 HiRTOS Overview
2.1 Major Design Decisions

• For API simplicity, inspired by the thread synchroniza-
tion primitives of the C11 standard library [4], mutexes
and condition variables are the only synchronization
primitives in HiRTOS. Other synchronization primitives
such as semaphores, event flags and message queues
can be implemented on top of mutexes and condition
variables.

• Unlike C11 mutexes, HiRTOS mutexes can change the
priority of the thread owning the mutex. HiRTOS mu-
texes support both priority inheritance and priority ceil-
ing [5].

• Unlike C11 condition variables, HiRTOS condition vari-
ables can also be waited on while having interrupts dis-
abled, not just while holding a mutex.

• HiRTOS atomic levels can be used to disable the thread
scheduler or to disable interrupts at and below a given
priority or to disable all interrupts.

• In a multi-core platform, there is one HiRTOS instance
per CPU Core. Each HiRTOS instance is independent of
each other. No resources are shared between HiRTOS
instances. No communication between CPU cores is
supported by HiRTOS, so that the HiRTOS API can stay
the same for both single-core and multi-core platforms.
Inter-core communication would need to be provided
outside of HiRTOS, using doorbell interrupts and mail-
boxes or shared memory, for example.

• Threads are bound to the CPU core in which they were
created, for the lifetime of the thread. That is, no thread
migration between CPU cores is supported.

• All RTOS objects such as threads, mutexes and condi-
tion variables are allocated internally by HiRTOS from
statically allocated internal object pools. These object

Volume 45, Number 3, September 2024 Ada User Jour na l

J. G. Rivera 165

pools are just RTOS-private global arrays of the corre-
sponding RTOS object types, sized at compile time via
configuration parameters, whose values are application-
specific. RTOS object handles provided to application
code are just indices into these internal object arrays. No
actual RTOS object pointers exposed to application code.
No dynamic allocation/deallocation of RTOS objects is
supported and no static allocation of RTOS objects in
memory owned by application code is supported either.

• All application threads run in unprivileged mode. For
each thread, the only writable memory, by default, is its
own stack and global variables. Stacks of other threads
are not accessible. MMIO space is only accessible to
privileged code, by default. Application driver code,
other than ISRs, must request access (read-only or read-
write permission) to HiRTOS via a system call.

• Interrupt service routines (ISRs) are seen as hardware-
scheduled threads that have higher priority than all
software-scheduled threads. They can only be preempted
by higher-priority ISRs. They cannot block waiting on
mutexes or condition variables.

2.2 Separation Kernel Major Design Decisions
Besides being a fully functional RTOS, HiRTOS can be used
as a separation kernel [6].

• In a multi-core platform, there is one separation kernel
instance per CPU Core. Each instance is independent
of each other. No resources are shared between separa-
tion kernel instances. No communication between CPU
cores is supported, so that the separation kernel API
can stay the same for both single-core and multi-core
platforms. Inter-core communication would need to be
provided outside of HiRTOS, using doorbell interrupts
and mailboxes or shared memory, for example.

• Each separation-kernel instance consists of one or more
partitions. A partition is a spatial and temporal separa-
tion/isolation unit on which a bare-metal or RTOS-based
firmware binary runs. Each partition consists of one
more disjoint address ranges covering portions of RAM
and MMIO space that only that partition can access.
Also, each partition has its own interrupt vector table,
its own set of physical interrupts and its own global ma-
chine state. So, the firmware hosted in each partition
has the illusion that it owns an entire physical machine,
with is own set of of physical peripherals, dedicated
memory and CPU core. The CPU core is time-sliced
among the partitions running on the same separation
kernel instance.

• Partitions are bound to the CPU core in which they were
created. That is, no partition migration between CPU
cores is supported.

• Partitions are created at boot time before starting the
partition scheduler on the corresponding CPU core. Par-
titions cannot be destroyed or terminated.

• The separation kernel code itself runs in hypervisor priv-
ilege mode. All partitions run at a privilege lower than
hypervisor mode. Partitions can communicate with the
separation kernel via hypervisor calls and via traps to
hypervisor mode triggered from special machine instruc-
tions such as WFI . The separation kernel can commu-
nicate with partitions, by forwarding interrupts targeted
to the corresponding partition.

2.3 HiRTOS Code Architecture
To have wider adoption of an RTOS written in bare-metal
Ada, providing a C/C++ programming interface is a must.
Indeed, multiple interfaces or “skins” can be provided to
mimic widely popular RTOSes such as FreeRTOS [7] and
RTOS interfaces such as the CMSIS RTOS2 API [8]. As
shown on figure 1, HiRTOS has a C/C++ interface layer
that porvides a FreeRTOS skin and and a CMSIS RTOS2
skin. Both skins are implemented on top of a native C skin.
The native C skin is just a thin C wrapper that consists of
a C header file containing the C functions prototypes of the
corresponding Ada subprograms of the SPARK Ada native
interface of HiRTOS.

In addition to the C/C++ interface, HiRTOS should also pro-
vide an Ada runtime library (RTS) skin, as shown on figure
2, so that baremetal Ada applications that use Ada tasking
features can run on top of HiRTOS. This can be especially
useful, given the limited number of microcontroller platforms
for which there is a bare-metal Ada runtime library avail-
able with the GNAT Ada compiler. an all platforms where is
avaiable now or in the future.

HiRTOS has been architected to be easily portable to any
multi-core microcontroller or bare metal platform for which
a GNAT Ada cross compiler is available. All platform-
dependent code is isolated in the HiRTOS porting layer, which
provides platform-independent interfaces to the rest of the
HiRTOS code. To avoid any depdendency on a platform-
specific bare-metal Ada runtime library, provided by the com-
piler, HiRTOS sits on top of a platform-independent portable
minimal Ada runtime library.

Figure 3 shows the major code components of HiRTOS. The
HiRTOS code base is structured in three conceptual layers.
The HiRTOS API layer, the HiRTOS internals layer and the
HiRTOS porting layer.

The HiRTOS API layer contains the HiRTOS public interface
components. The HiRTOS_Interrupt_Handling Ada
package contains the services to be invoked from top-level
interrupt handlers to notify HiRTOS of entering an exiting
interrupt context. HiRTOS_Memory_Protection con-
tains the services to protect ranges of memory and MMIO
space. HiRTOS_Thread contains the services to create and
manage threads.

The HiRTOS internals layer contains HiRTOS-private com-
ponents that are hardware-independent.

The HiRTOS porting layer contains hardware-dependent com-
ponents that provide hardware-independent interfaces to up-
per HiRTOS layers.

Ada User Jour na l Vo lume 45, Number 3, September 2024

166 HiRTOS: A Mul t i -core RTOS Wr i t ten in SPARK Ada

HiRTOS

HiRTOS Porting Layer

HiRTOS API

HiRTOS internals

Cpu Architecture Specific Platform Specific

HiRTOSHiRTOS

HiRTOS.Interrupt_HandlingHiRTOS.Interrupt_Handling HiRTOS.Memory_ProtectionHiRTOS.Memory_Protection

HiRTOS.ThreadHiRTOS.Thread HiRTOS.TimerHiRTOS.Timer

HiRTOS.CondvarHiRTOS.Condvar HiRTOS.MutexHiRTOS.Mutex

RTOS_PrivateRTOS_Private

HiRTOS.Interrupt_Handling_PrivateHiRTOS.Interrupt_Handling_Private HiRTOS.Memory_Protection_PrivateHiRTOS.Memory_Protection_Private

HiRTOS.Thread_PrivateHiRTOS.Thread_Private HiRTOS.TimerPrivateHiRTOS.TimerPrivate

HiRTOS.CondvarPrivateHiRTOS.CondvarPrivate HiRTOS.MutexPrivateHiRTOS.MutexPrivate

Generic_Linked_ListGeneric_Linked_ListGeneric_Execution_StackGeneric_Execution_Stack

HiRTOS_Cpu_Arch_ParametersHiRTOS_Cpu_Arch_Parameters

HiRTOS_Cpu_InterfaceHiRTOS_Cpu_Interface

HiRTOS_Cpu_Startup_InterfaceHiRTOS_Cpu_Startup_Interface

HiRTOS_Cpu_Multi_Core_InterfaceHiRTOS_Cpu_Multi_Core_Interface

HiRTOS_Platform_ParametersHiRTOS_Platform_Parameters

HiRTOS_Cpu_Interface.InterruptsHiRTOS_Cpu_Interface.Interrupts

HiRTOS_Low_Level_Debug_InterfaceHiRTOS_Low_Level_Debug_Interface

Figure 3: HiRTOS Code Components

Bare Metal C/C++ Applications

C Interface Skins Library

HiRTOS Library Crate

Portable Minimal Ada RTS Library Crate

CMSIS RTOS2 Skin FreeRTOS Skin

C Interface Skin

HiRTOS

HiRTOS Porting Layer

Figure 1: HiRTOS Code Architecture for C/C++ Applications

Bare Metal Ada Applications

Ada RTS Tasking Skin Library Crate

HiRTOS Library Crate

Portable Minimal Ada RTS Library Crate

HiRTOS

HiRTOS Config Parameters

HiRTOS Porting Layer

Figure 2: HiRTOS Code Architecture for Ada Applications

Volume 45, Number 3, September 2024 Ada User Jour na l

J. G. Rivera 167

References
[1] J. German Rivera, “HiRTOS: a high-integrity multi-core

RTOS kernel and separation kernel written in SPARK
Ada”
https://github.com/jgrivera67/HiRTOS

[2] Andrew Birrell et al, “Synchronization primitives for a
multiprocessor: a formal specification”, Proceedings of
the 11th Symposium on Operating System Principles,
November, 1987

[3] John W. McCormick, Peter C. Chapin,“Building High
Integrity Applications with SPARK”, Cambridge
University Press, 2015
https://www.amazon.com/
Building-High-Integrity-Applications-SPARK/
dp/1107040736

[4] ISO, “N2731: Working draft of the C23 standard, section
7.26”, October 2021
http://www.open-std.org/jtc1/sc22/

wg14/www/docs/n2596.pdf#page=345&
zoom=100,102,113

[5] Lui Sha et al, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization”, IEEE Transac-
tions on Computers, September 1990
https://www.csie.ntu.edu.tw/~r95093/
papers/Priority%20Inheritance%
20Protocols%20An%20Approach%20to%
20Real-Time%20Synchronization.pdf

[6] John Rushby, “Design and Verification of Secure
Systems”, ACM SIGOPS Operating Systems Review,
1981
https://www.csl.sri.com/users/rushby/
papers/sosp81.pdf

[7] FreeRTOS https://www.freertos.org/

[8] CMSIS-RTOS API v2 (CMSIS-RTOS2) https:
//www.keil.com/pack/doc/CMSIS/RTOS2/
html/group__CMSIS__RTOS.html

Ada User Jour na l Vo lume 45, Number 3, September 2024

https://github.com/jgrivera67/HiRTOS
https://www.amazon.com/Building-High-Integrity-Applications-SPARK/dp/1107040736
https://www.amazon.com/Building-High-Integrity-Applications-SPARK/dp/1107040736
https://www.amazon.com/Building-High-Integrity-Applications-SPARK/dp/1107040736
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf#page=345&zoom=100,102,113
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf#page=345&zoom=100,102,113
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf#page=345&zoom=100,102,113
https://www.csie.ntu.edu.tw/~r95093/papers/Priority%20Inheritance%20Protocols%20An%20Approach%20to%20Real-Time%20Synchronization.pdf
https://www.csie.ntu.edu.tw/~r95093/papers/Priority%20Inheritance%20Protocols%20An%20Approach%20to%20Real-Time%20Synchronization.pdf
https://www.csie.ntu.edu.tw/~r95093/papers/Priority%20Inheritance%20Protocols%20An%20Approach%20to%20Real-Time%20Synchronization.pdf
https://www.csie.ntu.edu.tw/~r95093/papers/Priority%20Inheritance%20Protocols%20An%20Approach%20to%20Real-Time%20Synchronization.pdf
https://www.csl.sri.com/users/rushby/papers/sosp81.pdf
https://www.csl.sri.com/users/rushby/papers/sosp81.pdf
https://www.freertos.org/
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html

168

Volume 45, Number 3, September 2024 Ada User Journa l

Ironclad: A Formally Verified OS Kernel Written in
SPARK/Ada
Cristian Simon
email: streaksu@mailbox.org; website: https://ironclad.nongnu.org, https://ironclad.cx

Abstract

Ironclad is a partially formally verified, hard real-time
capable kernel for general-purpose and embedded
uses, written in SPARK and Ada. This paper delves into
what the kernel is capable of, what makes it special,
and the future of the project.

Keywords: operating systems, scheduling, SPARK,
Ada.

1 Introduction

Ironclad was started as a fully free software [1] hobbyist
project to develop a kernel for powering general purpose
operating systems, but, with time, broadened its scope to the
field of formal verification and real-time computing. After
two years of development, Ironclad is an actively developed
feature rich operating system kernel capable of running
complex workloads with a focus on system security and
pragmatic formal verification.

Currently, Ironclad features ports to several architectures in
different levels of completion, the most complete one being
the x86_64 port. It is featured as the kernel of choice for
Gloire [2], a fully featured operating system for general use.

2 Operating system architecture

Ironclad at its heart is a UNIX-like kernel, that means, it
attempts to follow the model set forth by the original UNIX®
[3] operating system family within reason.

Like so many UNIX-like kernels before it, Ironclad is of
monolithic design, meaning that all the facilities of the
kernel lie alone in kernel space, while the rest of userland
consumes them thru syscalls and other APIs. (See Fig. 1).

Figure 1: Kernel / Userland separation in Ironclad

The monolithic configuration of Ironclad allows it to remain
performant and eases up development and deployment,

while its formal verification, even if partial, mitigates in part
the security concerns that arise from said design.

Ironclad does not support kernel modules at this point, but
the feature might be implemented in the future, as the
growing number of drivers might necessitate it.

3 Mandatory Access Control (MAC)

Ironclad has a strong focus in security, and one of the main
ways the kernel has to maintain security is Mandatory
Access Control (MAC), which manages access to devices
and resources, like memory, and handles inheritance of
permissions from process to process. MAC is always
enabled, and works independently from root (UID 0) access,
thus making sure that undesired root access will not be able
to compromise the whole system.

3.1 Mechanism
Ironclad’s MAC implementation works by imposing
permission checks when accessing a protected resource, be
it when allocating memory, or when accessing a path, by
checking previously configured data on what resources can
be accessed, on which quantity, and quality of access.

These checks are done against four types of access
permission that a process can have. These are grouped in
what is called a “MAC Context”. A context consists of:

 Capabilities of the process: An array of broad
permissions akin to Linux’s capabilities [4], which
allow to configure on broad strokes what a process can
and cannot do, examples are: access to kernel-based
entropy and clock sources, the ability to allocate shared
memory, or the ability to modify the mandatory access
control data associated with itself.

 Paths the process can access: MAC works by
specifying which paths the process can access, any
path not explicitly specified will not be accessible, that
includes virtual devices.

 Resource limits for countable resources: Maximum
amount of memory a process can allocate, amount of
file descriptors a process can hold, among others.

 The failure policy to follow if a MAC violation is
detected, options include killing the offending process,
or logging the event and denying the request (the
default).

MAC contexts can only be modified to lower permissions,
and permission escalation is not allowed, that means, no
resource limits may be raised, no filesystem paths added to

C. Simon 169

Ada User Journa l Volume 45, Number 3, September 2024

allowed path lists, and no capabilities may be regained, only
lost.

The MAC context associated with a process is copied from
its parent at time of creation, the copy then is independent
from the parent’s context. Contexts and their added
restrictions are inherited this way starting from to the first
process of the system, which is created with a context
featuring no restrictions, this starting context is denominated
“zero MAC context”.

3.2 MAC user interfaces
Ironclad provides a family of syscalls to interface with MAC
data that allow for setting and retrieving information. If
desired, these may be used to change children process
permissions before handing off execution when using the
UNIX syscalls fork() / exec(), by utilizing the window
between them. spawn() equivalents also exist that allow for
passing MAC configuration data as an argument.

The Ironclad project provides, as well, a series of userland
programs, compiled under the name util-ironclad, that
provide utilities to, among other things, execute programs
with specific MAC settings from the command line.

4 Scheduling and real-time guarantees

Due to the generalist intentions of Ironclad, the system
supports general purpose computing while providing real
time facilities, this is accomplished by use of its thread
scheduler, and the introduction of thread clusters.

On top of the classic thread and process, Ironclad adds a third
entity, thread clusters, which bundle threads and their
scheduling requirements. These bundles then can be
assigned chunks of the overall system execution time, along
with other settings, which will result in highly deterministic
scheduling policies (See Fig. 2).

Figure 2: Scheduling of 3 thread clusters

A thread is assigned a thread cluster at creation, and may be
migrated from a cluster to another at a later time.

Clusters are identified using a Thread Cluster ID (TCID). In
order to provide a familiar environment for developers, at
boot, Ironclad has only one cluster, which is configured to
use 100% of the CPU time with “sane” configuration flags,
going by TCID 1. Users may then configure that cluster,
remove it, or add others, up to a system defined limit. As of
writing, this limit is 10 clusters.

5 Formal verification

With formal verification, Ironclad aims to ensure correct
execution of the kernel’s most important components
without hindering kernel development, by consuming too
much development time with our current limited team. To

this end, the project features a mix of verified SPARK
modules with unverified plain Ada components. As time
goes on, based on availability and priority, unverified
modules are “promoted” to verified ones via small rewrites
and modifications.

The verification process is ongoing, and currently centered
around security-critical components, like Mandatory Access
Control (MAC) routines, Address Space Layout
Randomization (ASLR) routines, and randomization and
entropy sources, to then proceed into the verification of
architecture independent components, like process
management, to then end at architecture-specific code.

As of writing, all security critical facilities along with a big
chunk of architecture independent components are formally
verified to SPARK’s gold level [5], as reflected by
gnatprove’s automated checks, which ensures absence of
runtime errors. Architecture-specific verification is scarce.

6 What is Ironclad capable of?

Ironclad is featured as the kernel of Gloire, an operating
system using it alongside utilities of the GNU [6] project for
its core userland, and mlibc from the managarm [7] project
as its C library. Attempts to port GNU’s glibc as the system’s
C library have been done, but have not yet been successful
due to glibc’s convoluted porting process.

Along with the basic GNU utilities like GCC, coreutils, and
binutils, Gloire features graphical applications and
environments based on Xorg, all running using Ironclad (See
Fig 3).

Figure 3: Screenshot of Gloire as of June 2024

Gloire, just like Ironclad, is fully free software, and disk
images ready for use, along with instruction on how to use
them, and other relevant documentation, are available on-
line at https://github.com/streaksu/gloire.

7 Future plans and roadmap

In the future, we expect to delve on porting Ironclad and
Gloire to RISCV architectures, and improving support for
the existing ones. Work on the networking department is due
as well, and overall there is a lot to polish in the whole
structure of the system.

The next few months of the project will see bug fixing and
consolidation of new features to then start work on advanced
networking hardware support and other architectures.

170 I ronc lad: A Formal ly Ver if ied OS Kernel Wr it ten in SPARK/Ada

Volume 45, Number 3, September 2024 Ada User Journa l

Ironclad’s documentation, as well as download links,
presentation materials, and RSS feeds to follow
development, among others, are available on-line at
https://ironclad.nongnu.org.

References
[1] Free Software Foundation, “What is Free Software?”.

https://www.gnu.org/philosophy/free-sw.html.en

[2] Gloire: An OS built with the Ironclad kernel and GNU
tools, https://github.com/streaksu/gloire

[3] The Open Group, The UNIX® Standard.
https://www.opengroup.org/membership/forums/
platform/unix

[4] Linux’s capabilities man documentation, from Linux’s
online documentation, https://www.man7.org/linux/
man-pages/man7/capabilities.7.html

[5] AdaCore , “Applying SPARK in practice”, part of the
SPARK’s User Guide, covering assurance levels,
https://docs.adacore.com/spark2014-docs/html/ug/en/
usage_scenarios.html

[6] GNU Operating System Project, “What is GNU?”
https://www.gnu.org/

[7] The Managarm project’s GitHub repository,
https://github.com/managarm/managarm.

 171

Ada User Journa l Volume 45, Number 3, September 2024

An Ada Story of Time
J-P. Rosen
Adalog, 2 rue du Docteur Lombard, 92130 Issy-Les-Moulineaux, France; email: rosen@adalog.fr

Abstract

This paper is a summary of the presentation that was
given at the Ada Developers Workshop during
AEiC2024 in Barcelona, Spain.

It introduces the various notions covered by “time” in
the context of software, and how Ada addresses the
issues.

Keywords: Ada, time, time zones, UTC.

1 Introduction

All programming languages provide constructs dealing with
time and durations, either as statements or as predefined
libraries.

However, these notions are generally weakly defined, with
statements like “Time is as returned by the operating system”
or “The duration of sleep (delay or equivalent) is
approximate”. Of course, this is not sufficient for demanding
applications, like those dealing with real-time constraints. In
this paper, we present these issues, and the way Ada deals
with them.

2 Some definitions

From a software point of view, time is something that varies
(generally increasing) during computations; the value of
time is given by a time base (aka clock). Note that computer
time varies in jumps (not continuously).

A duration is a number (not necessarily an integer number)
of seconds between two times.

TAI (International Atomic Time) is an absolute time, valid in
the whole universe (not related to earth’s rotation). It is the
only time that makes sense if you are programming a device
like a lunar probe, for example! It is measured by atomic
clocks, with an extreme accuracy: drift of 1 second in 100
million years.

Since a year is exactly 365.2422 days, a day is added to the
year every 4 years (with minor adjustments every 100 years,
400 years, and 4000 years). Years with an extra day are
called leap years. Moreover, the rotation of the earth suffers
minor variations due to meteorites, polar ice melting, etc. To
compensate for these (unpredictable) variations, a second is
added or subtracted in some years; this second is called a
leap second.

UTC (Coordinated Universal Time) is a time intended to be
used on earth (but anywhere on earth). It is equal to TAI + a
certain number of leap seconds. Currently, UTC=TAI – 37s.

Legal time (wall-clock time, local time) is the time at a given
location on earth. It depends on the location and time, due to

changes between summer time (DST) and winter time. Time
zones define the offset, in minutes, between the legal time at
a given place and UTC. Note that local time depends on
time! It is not necessarily unique for a given place: a local
time may happen twice, or not at all.

CPU time is the duration spent by a task while holding the
CPU. Although it is referred to as a time, it is actually more
like a duration since some arbitrary time 0, often the start of
the program.

3 Time types in Ada

Some types are defined in the standard as being time types.
Some contexts require a value of a time type, but any time
type can be used (more on this below).

The core language defines Ada.Calendar.Time as a time
type, as returned by the function Ada.Calendar.Clock. The
returned value is provided by an implementation defined
time base, and its time zone is also implementation defined
(it can even vary during execution when switching between
summer and winter time… or by passing the border between
Spain and Portugal!). The minimum variation of Time
between two calls to Clock is given by the constant
System.Tick.

In addition, an implementation is allowed to provide other
time types. This is intended to provide access to high
accuracy hardware clocks on external boards for example.
Such time types can be used as replacements for
Ada.Calendar.Time.

4 Ada packages dealing with time

The package Standard defines the fixed-point type Duration
that corresponds to a duration. The language requires its
range to cover at least 86400.0 s. (one day), with a ‘Small not
greater than 20ms.

As mentioned above, the package Ada.Calendar hosts the
Time type (a private type) and the Clock function that returns
the current time, as well as various constructors/selectors
between Time and day/month/year and
hours/minutes/seconds, and arithmetic functions between
Time and Duration. However, the package dates back to Ada
83, and no provisions was made at the time for time zones
and leap seconds, therefore the time zone is left
implementation defined; friendly compilers would use the
local time, but this is not guaranteed.

The situation was fixed in Ada 95 with the introduction of
new packages:

 Ada.Calendar.Time_Zones defines time zones as an
offset given as a number of minutes (some time zones
are off by 30mn, but the seconds are always the same);

172 An Ada Story o f T ime

Volume 45, Number 3, September 2024 Ada User Journa l

 Ada.Calendar.Arithmetic provides some arithmetic
operations that handle correctly leap seconds;

 Ada.Calendar.Formatting provides not only formatting
functions for Time (Image, Value, Day_Of_Week), but
also operations similar to the ones in Calendar with an
extra parameter Time_Offset to account for the time
zone, as well as overloaded versions to handle leap
seconds.

In addition, annex D (the real-time annex) offers additional
packages:

 Ada.Real_Time provides a time type (also named
Time) which is defined as a (non integer) number of
seconds since an implementation-defined epoch, and is
guaranteed to be non-decreasing (no time-zone effect).
The package defines also a private type Time_Span
(similar to Duration) and a constant Tick, with
arithmetic operations between these, and conversions
to/from Duration and seconds/subseconds. The child
package Ada.Real_Time.Timing_Events allows
triggering some actions at a given Time.

 Ada.Execution_Time defines the type CPU_Time,
which is not a time type, with a Clock function and the
usual arithmetic operations. It represents the time spent
by a task while holding the CPU. Various child
packages provide functionalities needed by some
scheduling algorithms (Ada.Execution_Time.Timers,
Ada.Execution_Time.Group_Budgets,
Ada.Execution_Time.Interrupts).

5 Issues with duration

As mentioned above, the type Duration is a fixed point type.
It is worth noting that a duration should never be represented
as a floating point type; otherwise, as time passes, the
(absolute) inaccuracy between two points in time increases,
eventually being bigger than the duration of the main loop.
And time would cease to increase!

Some languages deal with this issue by having a duration
represented as an integer number of nanoseconds. This is of
course arbitrary, in the hope that the accuracy of one
nanosecond is enough… Ada is fortunate to have fixed point
reals that deal appropriately with that issue.

6 The delay statements

Ada 83 had only one statement to suspend execution: the
delay statement (now called delay-relative statement). Its
argument, of type Duration, gives (in seconds) how long
execution should be suspended. However, using this
statement to suspend execution until a given time is subject
to a race condition. If you want a task to resume at time T,
you may write:

delay T-Clock;

1 Rust provides a sleep_until function, but the language reference says
that is implemented using sleep, therefore presumably subject to the same
race condition.

But the following sequence of events could happen:

1. Compute T-Clock = 2s

2. After computing and before entering the delay: A
higher priority task is activated

3. The task runs for 5 s. OK, it is of higher priority.

4. The first task resumes and delays for 2s., although
the wake-up time has passed!

Since there was no way to avoid this race condition, Ada 95
introduced the delay until statement, where the parameter is
given as the wake-up time. The type of the parameter must
be a time type, but it can be any time type, not necessarily
Ada.Calendar.Time. Note that it is the only use of the until
keyword in Ada! And it is sad to see that, 30 years after the
problem was fixed in Ada, many languages still provide only
a delay relative statement1…

How long will a delay actually sleep? Many languages just
say that the actual suspension time is approximate, i.e. you
do not know. Ada guarantees that a task is never awaken
before the required wake-up time. In addition,
implementations that conform to annex D must document
the maximum time taken by a negative or null delay (a time
in the past for a delay until statement), and the maximum
lateness of a delay or delay until statement in a situation
where the task has sufficient priority to preempt the
processor as soon as it becomes ready. This provides an
upper bound of the difference between the required and
actual delay, thus allowing the computation of worst-case
execution time as required by demanding real-time
programs.

7 Conclusion and recommendations

Ada offers a more precise definition of time and time-related
operations than other languages. However, the issue of time
management in computers is tricky, and a certain number of
caveats are necessary.

Use Calendar only for casual usage, since its behavior in
case of changing time zones or leap seconds is
implementation defined; i.e. if you just need the “wall-
clock” time for display.

If you are doing serious time-related computations, then
keep all times as UTC internally; use time zones for human
output only. Use only operations provided by
Ada.Calendar.Arithmetic and Ada.Calendar.Formatting for
computations, since these have a well-defined behavior
related to time zones and leap seconds.

Always use the delay until statement; the relative delay has
been kept only for compatibility with Ada 83.

And be careful with leap seconds, and time zones, especially
since daylight saving time may cause unexpected changes of
time zone.

 173

Ada User Journa l Volume 45, Number 3, September 2024

Controlled I/O: a Library for Scope-Based Files
Jeffrey R. Carter
PragmAda Software Engineering; email: jrcarter@acm.org; https://github.com/jrcarter

Abstract

This paper is a summary of the presentation at the 2024
Ada-Europe International Conference Ada Developers
Workshop. A recent posting of a wishlist requested
"Scope-based files". Controlled I/O is a response to
that request.

Keywords: access types, memory management, Ada.

1 Introduction

A recent posting (by user pyj) [3] on the ada-lang.io forum
requested "Scope-based files (controlled-type files), that
close when they go out of scope". Since wrapping a
File_Type in a limited-controlled type, and overriding
Finalize to close the file if it is open, is trivial, I concluded
that the poster would have spent the few minutes needed to
implement it if that was all that was desired. Attempting to
think what such a library would include in addition, I created
package Controlled_IO [1].

2 Specification

Controlled_IO is defined by its specification:
with Ada.Directories;
with Interfaces;
package Controlled_IO is
 type File_Handle (<>) is tagged limited private;
 -- Opened/created on creation, closed on finalization
 -- Can be both read and written
 use type Ada.Directories.File_Kind;
 function Opened (Name : in String;
 Form : in String := "")
 return File_Handle with
 Pre => Ada.Directories.Exists (Name) and then
 Ada.Directories.Kind (Name) =
 Ada.Directories.Ordinary_File,
 Post => Opened'Result.Position = 1;
 -- Opens an existing file
 function Created (Name : in String;
 Form : in String := "")
 return File_Handle with
 Post => Created'Result.Position = 1;
 -- Creates a new file named Name (deleting any
existing file named Name)
 function Opened_Or_Created (Name : in String;
 Form : in String := "")
 return File_Handle is
 (if Ada.Directories.Exists (Name) then
 Opened (Name, Form)
 else
 Created (Name, Form));

 function End_Of_File (File : in File_Handle)
 return Boolean;
 -- Returns File.Position > File.Size
 subtype Byte is Interfaces.Unsigned_8;
 type Byte_List is array (Positive range <>) of Byte;
 type Count_Value is mod 2 ** 64;
 subtype Position_Value is Count_Value range
 1 .. Count_Value'Last;
 function Size (File : in File_Handle)
 return Count_Value;
 -- Returns the current number of bytes in File
 procedure Set_Position (File : in out File_Handle;
 Position : in Position_Value)
 with
 Pre => Position in 1 .. File.Size + 1;
 -- Sets the current position of File to Position
 function Position (File : in File_Handle)
 return Position_Value;
 -- Returns the current position in File
 function Next (File : in out File_Handle)
 return Byte with
 Pre => not File.End_Of_File;
 -- Returns the byte in File at the current position and
increments the current position
 procedure Read (File : in out File_Handle;
 List : out Byte_List)
 with
 Pre => not File.End_Of_File and then
 File.Size - File.Position + 1 >= List'Length;
 -- Calls File.Next for every Byte in List
 procedure Write
 (File : in out File_Handle; Value : in Byte);
 -- Writes Value to File at the current position and
increments the current position
 procedure Write
 (File : in out File_Handle; Value : in Byte_List);
 -- Calls File.Write for every Byte in Value
private -- Controlled_IO
...
end Controlled_IO;

A File_Handle is open when it exists, and closed when it
ceases to exist. All files allow input, output, and seeking.

3 Children

There are two child packages of Controlled_IO: Text and
UTF. Text implements text I/O similar to Ada.Text_IO. UTF
implements the Universal Text File format [2] (not to be
confused with Unicode Transformation Format).

4 Example/test programs

There are also three example programs.

174 Contro l led I /O: a L ibrary for Scope-Based Fi les

Volume 45, Number 3, September 2024 Ada User Journa l

Controlled_Test and Controlled_Text are user-unfriendly
file-copy programs. Controlled_Test performs a binary copy;
the output should always be identical to the input.
Controlled_Text performs a line-by-line copy of text files;
the output may have different line terminators than the input.

Controlled_UTF is a user-unfriendly program to convert a
native text file to a Universal Text File.

5 Summary

Controlled I/O is a library for scope-based files that is
somewhat more complete and complex than simply
wrapping a File_Type in a limited-controlled type and

overriding Finalize to close the file if it is open. Files are
open when they exist, and closed when they cease to exist.
All files allow input, output, and seeking.

References
[1] J. Carter, Controlled_IO implementation,

[https://github.com/jrcarter/Controlled_IO].

[2] J. Carter, Universal Text File implementation,
[https://github.com/jrcarter/Universal-Text-File].

[3] pyj, Ada wishlist, [https://forum.ada-lang.io/t/ada-
library-wishlist/14/5].

175

Ada Community Advocacy

Fernando Oleo Blanco
Open Source & Ada aficionado; Tel: +34 689 44 27 45; email: irvise@irvise.xyz

Abstract

As Bob Dylan’s famous song says, “The Times They Are
A-Changin’”, and indeed they are! However, Ada’s com-
munity, in the opinion of the author, is not keeping up
pace with the new ages. While the wider programming
world has seen its importance grow and the number
of professional programmers multiply, Ada has barely
changed in the past couple of decades. The industries
that it used to dominate are starting to change their pref-
erence to newer or other already proven technologies.
The resources available to new programmers seeking
out Ada are basically the same in style and format as
they used to be forty years ago. On the other hand, the
community is slowly changing and updating itself, so
there is plenty to be happy about, but more remains to
be done!

The following article will summarize the main ideas and
goals presented in the Ada Developers Workshop in the
talk of the same name as the article.

Keywords: community, sustainability, growth, Open
Source, GSoC, Ada.

1 The author’s point of view
The author would like to preface the entirety of this article
with a disclaimer, “I am not a programmer, less so an Ada
one!” I believe it is important for me to introduce how I
found Ada and what made me stick with it, since my personal
experience is likely to be completely different to that of the
majority of the readers. This way, you, the reader, will be able
to use your own experience and point of view with my own
and hopefully create a more perfect narrative and conclusion
than the one presented in this article.

I originally found Ada in 2019 after working for a few months
on a FORTRAN 66 code used for thermo-hydraulic transients
in nuclear reactor cores. Working with such an old program
(originally written in punch-cards!) was a wonderful and
painful experience, which taught me a lot about clean and
structured code, making sure that it was readable and easy
to follow with the proper documentation. However, during
that time, I made plenty of mistakes, introduced several bugs
and I spent too much time debugging the program and try-
ing to answer the question “why is this happening?” After
this experience I wondered if there were better programming
languages and tools which would greatly aid in the clarity
and correctness of programs. I knew C and Matlab and
I was aware of C++. All those presented great advantages

over FORTRAN 66 thanks to a better type system and better
control flow than the omnipresent GOTO. However, I knew
that it was still easy to make mistakes in those languages
and create cryptic and unreadable code; so I searched for bet-
ter languages. During this time I learned modern Fortran
2008-18, which is a wonderful language for scientific com-
puting and presented a night-and-day change with respect to
the 66 standard. And as an aside, the Fortran community had
a similar article published [1] discussing similar topics as the
one here.

However, I still had a lingering desire for a language with-
out memory issues, without mixing types, with the ability
to prove its correctness, with a compiler that would find
errors before the program is generated, ready to do high-
performance computing, etc. Languages such as Rust [2] or
Coq [3], frameworks such as Frama-C [4] or projects as the
seL4 microkernel [5] started popping up quite frequently
in my search. They are all incredible projects and basically
ticked all the check-boxes that I was looking for. However, I
also quickly found Ada, and after seeing its expressive type
system and the SPARK language/prover, it had pretty much
everything I was looking for and then some more!

1.1 Discovering and learning Ada
After reading some Ada examples, I decided to dive deeper
and learn it a bit more systematically. So I jumped into
Youtube and searched for some Ada tutorials... I was very
negatively surprised that there were basically only two cre-
ators making videos about Ada. One is the well-known and
reveered AdaCore, the other one was Patrick Kelly. I used
Patrick’s videos and tutorials in order to understand the lan-
guage more. After watching them, I wanted to know even
more, so I started searching for more information about Ada
in a search engine. As I prefer videos for learning com-
puter skills, I quickly found and watched Jean-Pierre Rosen’s
FOSDEM videos, such as his excellent An Introduction to
Ada for Beginning and Experienced Programmers. Finally I
also watched AdaCore’s videos and talks about various topics.
All of these videos and the learning experience were enjoy-
able and helped me greatly in discovering how truly amazing
the Ada language is. Though I must also say that I watched
videos on C++, such as the ones uploaded to CppCon and
plenty of Rust tutorials; which were very informative and
useful for general programming knowledge.

2 Great features... and lack of success?
If any Ada programmer is asked about why Ada is so great and
why should people use it more, the reply would go something
like:

Ada User Jour na l Vo lume 45, Number 3, September 2024

https://www.youtube.com/@AdaCore05
https://www.youtube.com/@PatrickKellyLoneCoder
https://archive.fosdem.org/2020/schedule/event/ada_intro/
https://archive.fosdem.org/2020/schedule/event/ada_intro/
https://www.youtube.com/@CppCon

176 Ada Communi ty Advocacy

• Readable and easy to learn syntax! It is quite similar to
that of Pascal, Python or Lua.

• Great type system! Newer languages are realizing the
value of types, take a look at TypeScript, modern Python
3 or even PHP! And they barely scratch the surface of
what Ada is capable of!

• Great module system!

• Amazing features such as tasking, contract, C-interop
and we can even target WASM!

• It is mature, well understood, documented and standard-
ized.

• SPARK.

And the author fully agrees with this assessment. But then,
the obvious question becomes... “If Ada is so good, why isn’t
it used more widely and why doesn’t it get the same amount
of praise as other do?”

2.1 Success in theory and in practice
When analyzing a given object, product, task, project, etc; and
how successful it should be, we tend to think about properties
such as quality, low-cost, readiness, ease-of-use, features...
The better the analyzed system fairs within these aspects,
the more successful it should be. Applying this framework
to Ada, it is obvious that Ada has to be one of the greatest
languages available, back in the 80s as in today’s environment.
However, that does not seem to be the case in real life...

In thermodynamics, specially in the thermal-energy sector
(think of coal, gas and nuclear), there is the concept of ideal
thermodynamic performance and the real one. The ideal
performance comes from Carnot’s equation, but the real one
is a lower value that is obtained from multiplying Carnot’s
equation with an efficiency factor. This efficiency factor
represents the reality of the system, its inefficiencies, its limits
and compromises. It is the opinion of the author that while
Ada’s theoretical success should be high, it does not translate
to the real world due to a low “efficiency factor”, just like in
the example given above.

It is the opinion of the author that Ada has some major draw-
backs that lower its impact in the wider programming world,
even if these are not related to any technical subject. Here
are some of the points, that the author believes, lower Ada’s
efficiency to translate its strengths into real results:

• Ada is less profitable for people to learn. This boils
down to Ada having less job positions available, and
quite a few professionals focus on investing time on
technologies that will yield some kind of return.

– Newer languages have also suffered from this issue,
but continued growth and the commitment of com-
panies to use them, has allowed for the creation of
new job positions.

• Lack of momentum/trend. People tend to think some-
thing new is better than the old, which is a really good
rule of thumb. After all, this is the very definition of hu-
man progress. However, as we know, this is not always
true, and Ada suffers this fate of being considered old
by the general public.

• Lack of monopoly. Ada has no longer a field in which it
is the only language that can be used. This is in contrast
to Java/Kotlin being the de-facto languages in Android,
Swift in the Apple ecosystem, TypeScript/JS in the web,
Python for LLMs/AI/scientific computing, etc.

• Ada is less enjoyable or “smart”, as it focuses on getting
stuff done with a good level of quality. Quite a few
programmers focus on personal enjoyment rather than
project results when considering a new language to learn.

• Lack of (new) learning resources and ease of access. As
the author indicated in the introduction, there are few
Youtube videos, which are now a common form of learn-
ing for the younger people. Blogs are nowadays another
common way of learning. Up until recently, the main
discussion forum was still in Usenet, and once again,
such system is no longer used by the newer generations.

– Another issue is that some documentation has be-
come slightly obsolete with the appearance of
newer standards, tools such as Alire or libraries and
bindings. This does not help with easily finding
good and up-to-date information. On top of that,
a wonderful resource, the Ada Reference Manual
((A)RM), is quite daunting to new programmers
as they are not used to reading standards, mostly
because other languages do not have them readily
available.

• A sense of belonging to a community. Finally, the Ada
community is quite small and it is sometimes difficult
to interact with it due to differences in expertise or the
platform. The conversations and topics that take place
are also sometimes self-defeating, such as discussing
how Ada does something better than Rust. This just
creates an echo chamber and does not propel Ada in a
productive direction.

3 Community

The author won’t define what the word community means in
a technical manner. Instead, I want to describe what kind
of community I am referring to and will discuss in the rest
of the article. When the Ada community is brought up, it is
tempting to think about companies such as PTC or AdaCore
which provide tools to work with Ada. We could also think
about users of Ada, such as the US military, Eurocontrol
and Codelabs. Or organizations involved with the design of
Ada or its members such as WG9 or Ada-Europe. However,
none of these groups are what I refer here as the wider Ada
community. The community I will be talking about are the
general users of Ada and people who interact in informal,
everyday platforms. Those people who discuss Ada, share
knowledge and are independent with each other. Of course,
the companies and groups that I have specifically mentioned
before are also part of this wider informal community and
they play a very important role there, but I will leave this
point to the side for the rest of the article.

Volume 45, Number 3, September 2024 Ada User Jour na l

https://www.typescriptlang.org/
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://www.php.net/manual/en/language.types.declarations.php
https://blog.adacore.com/use-of-gnat-llvm-to-translate-ada-applications-to-webassembly
https://alire.ada.dev/
https://www.ptc.com/en/products/developer-tools/objectada
https://www.adacore.com/
https://www.eurocontrol.int/
https://codelabs.ch/
https://www.open-std.org/jtc1/sc22/wg9/
http://www.ada-europe.org/

F. Oleo 177

3.1 Community as a reflection of success
It is the opinion of the author that the community of a program-
ming language is a reflection of the efficiency and efficacy
with which it is able to bring its strengths to the rest of the
world. The quality of the community serves as an indirect
measurement of the health of the language.

Luckily, the past few years have seen a huge improvement
of the Ada community. The creation of Learn.AdaCore has
greatly improved the learning experience for new users. Ada-
Lang has modernized the first impression that newcomers
to Ada have. It has also provided a modern forum for dis-
cussions. There are now group chats in Element, Discord
and Telegram. Alire has greatly simplified the discovery of
Ada libraries and the installation of a toolchain. The creation
of Ada_Language_Server and the support in Visual Studio
Code have also brought Ada closer to the mainstream trends
and expectations. Nonetheless, the author believes we, the
community, can do better in a few areas.

• Focus on the needs of Ada instead of on its already
achieved goals. It is quite common to see discussions
laying out how Ada is much better than Rust or other lan-
guages in one or another way. However, this discussions
do very little to improve Ada and its ecosystem. A much
healthier approach is to acknowledge what other commu-
nities and technologies get right and try an implement
those in Ada. Alire is a great example of this.

• Spread the word of Ada in a kind and reasonable manner.
Talking about Ada to other Ada programmers is not
going to help it grow much. As indicated above, the
Ada community knows about other languages, but the
opposite is not true. We should bring Ada’s nature and
knowledge to other people who are outside of Ada circles
and may be interested in it. We also have to do so with
kindness and without arrogance. We should also try
to use the same language that other use and like. For
example, in the Rust world, the expression “blazingly
fast” is used often to define a fast language. We are as
fast as them, so lets use those expressions and selling
points too! We should also use generic conferences to
try to bring attention to the language and some of the
projects that are written in it.

• Help other member of the community, specially when
they are alone. As an example, the GNAT compiler for
OSX is mostly maintained by a single person, Simon
J. Wright. This does not exemplify an ecosystem and
community that acknowledges the work that others do
and tries to be sustainable. We need to get to work and
help each other.

• Encourage younger people to join. The Ada community
is filled with knowledgeable and seasoned programmers,

but a young and thriving community ensures that it is
going to be long lasting and that knowledge is being
transmitted. And I would say that a few young people
would be very pleased to learn Ada due to its unique set
of features.

• Use the opportunities that are available, specially fund-
ing. There are programs to get funding which could be
utilized by the Ada community to improve its tooling,
libraries or major projects. For example, the Ironclad
project was recently given a grant by the NLnet founda-
tion. The author has previously talked about the oppor-
tunities that the GSoC program presents to open source
projects and how Ada could make use of it.

4 Path forward
The list above does not form an exhaustive set of tasks, but
a general road-map and set of goals. However, they should
serve to tackle the list of shortcomings which was indicated in
the previous section. Moreover, this list is not meant to just be
a list. The reader may have noticed that all of them are actions,
they require a proactive exercise from within the community.
The author would also like to point that the desired result
of all of these points, to increase the “efficiency”, is not a
quick process. It takes years to build and foster a thriving
community. So lets have patience, energy, a big smile and
keep on moving! The author believes there is an important
place for Ada/SPARK in the wider ecosystem of languages
and people are waiting to use it and build impressive products!

5 Citations and references
References
[1] M. Curcic, O. Čertík, B. Richardson, S. Ehlert, L. Ked-

ward, A. Markus, I. Pribec, and J. Vandenplas, “Toward
modern fortran tooling and a thriving developer commu-
nity,” 2021.

[2] S. Klabnik and C. Nichols, The Rust Programming Lan-
guage. USA: No Starch Press, 2018.

[3] T. C. D. Team, “The coq proof assistant,” 2024.

[4] L. Correnson, P. Cuoq, F. Kirchner, A. Maroneze, V. Pre-
vosto, A. Puccetti, J. Signoles, and B. Yakobowski,
Frama-C User Manual.

[5] A. Lyons, K. McLeod, A. Danis, G. Klein, yyshen,
A. Heider, C. Millar, S. Sherratt, R. Kolanski, L. Prion,
S. Shields, M. Brecknell, J. Beeren, I. Velickovic,
J. Brush, I. Zupancic, C. Guikema, E. Pierzchalski,
S. Zhuang, N. Spinale, A. Zarrabi, sorear, S. Gau-
thier, matt rice, branden data61, MattPhillips1, A. Fe-
lizzi, michaelmcinerney, A. Boettcher, and J. Millwood,
“sel4/sel4: sel4 13.0.0,” 2024.

Ada User Jour na l Vo lume 45, Number 3, September 2024

https://learn.adacore.com/
https://ada-lang.io/
https://ada-lang.io/
https://alire.ada.dev/
https://github.com/AdaCore/ada_language_server
https://nlnet.nl/project/Ironclad/
https://nlnet.nl/project/Ironclad/

178

Volume 45, Number 3, September 2024 Ada User Journa l

Formal Verification of Safety Critical Software in
Ada: Two Approaches
Ranjani Krishnan
Vikram Sarabhai Space Centre, Trivandrum, Kerala, 695022, India.; email: ranjani141@gmail.com

Ashutosh Gupta
IIT Bombay, Powai, Mumbai, Maharashtra, 400076, India.; email: akg@iitb.ac.in

Nitin Chandrachoodan, Lalithambika VR
IIT Madras, Chennai, Tamil Nadu, 600036, India; email: nitin@ee.iitm.ac.in, vrlalithambika@gmail.com

Abstract

The verification of real-time, embedded software in
complex, safety critical systems such as crewed space
launch vehicles is as significant as the design.
Approaches based on formal methods are necessary to
ensure exhaustive validation, in addition to the
traditional testing and simulation techniques. In this
work, the application of software model checking and
static analysis in the verification and validation of
safety critical software in Ada is explored. With the
embedded flight control software in the onboard
computer of an aerospace system as the case study, we
apply the SPIN model checker and also develop a
custom tool chain based on bounded model checking,
for formal static analysis of Ada code. The major
contributions include the definition of a systematic
procedure for model checking with SPIN tool and the
development of a new verification framework for
formal static analysis of Ada programs. The two
approaches are applied to an actual case study through
accurate modelling of the execution environment for
the concurrent onboard software in a launch vehicle.
The results are compared and the advantages and
drawbacks of both approaches are summarized.

Keywords: Ada, Safety-critical systems, Formal
verification.

1 Introduction

Safety critical systems are those in which failures could lead
to loss of human lives, damage to the environment or
property. Aircraft, cars, medical devices, nuclear power
plants and space systems are examples of such systems.
These are large, distributed systems with subsystems
developed by different teams. The embedded software in
these systems performs critical tasks, typically collecting
necessary inputs with various kinds of sensors and
generating required outputs to control actuators such as
valves, motors etc. It has to meet strict timing deadlines also.
The safety requirements for such complex systems are much
more than the functional requirements. The redundancy in
the systems and very high reliability requirements call for
thorough testing and validation, of both the hardware and

software. Often, a single changed requirement could
necessitate a complete re-verification of the entire project as
it could introduce a new error. Hence, for safety-critical
systems, both the design and testing are equally important.

The launch vehicle is a safety critical system which is used
for injecting satellites into the required orbits as well as for
transporting humans to space, with such manned flights
becoming more frequent now. In a launch vehicle, the flight
software in the onboard computer (OBC) receives attitude,
rate and acceleration data through gyros and accelerometers
interfaced to navigation computers and fuel tank pressure
data from pressure sensors. The OBC communicates with
redundant input systems and selects the data based on certain
validation criteria. These data are provided to the various
software modules such as navigation, rate data processing,
digital autopilot, guidance, sequencing, and fuel tank vent
algorithm. The Real Time OS (RTOS) in the OBC carries
out these data acquisition and interfacing functions as well
as the scheduling of the various tasks at the specified time
with the required periodicity. The OBC then distributes the
outputs - control and sequencing commands – to the control
and sequencer systems, which are the output modules.
Important parameters and internal states of each software
component are monitored through the vehicle telemetry
system to assess the system performance.

The software in aerospace systems has been growing
exponentially in terms of volume of computations and
complexity. Verification of the real-time, embedded
software in these systems is therefore as significant as the
design. There have been several instances of software bugs
causing mission failures. The failure of the first Ariane5
launch [1] in 1996 was attributed to a software error. The
software exception, viz. overflow, was caused during the
data type conversion from a 64-bit floating point data to a
16-bit signed integer. The Therac-25 radiation therapy
machine malfunction [2] was caused due to a race condition.
The Patriot missile failure [3] during the first Gulf War was
a consequence of a software rounding error that led to
incorrect calculation of the time. The Mars climate orbiter
crash [4] was due to an error in the thruster control software.
The unit used for computation of force was pounds, instead
of Newtons, which was the actual NASA specification.

R. Krishnan et a l. 179

Ada User Journa l Volume 45, Number 3, September 2024

As illustrated by the above examples, the design and
verification of onboard, real-time software in aerospace
systems like rockets is significantly more intricate compared
to the software in desktop systems, user applications or other
IT systems. This is mainly due to the interplay of multiple
concurrent processes and the inherent complexity of fault-
tolerant systems. As the time and effort required for
validation of software is directly proportional to its
complexity, ensuring the correctness of the code in safety
critical systems is extremely difficult. It is also important
that verification methods be able to support the increasing
size and complexity of the software in such systems.

The traditional techniques employed for validation of
embedded software include testing, analysis, review,
inspection and simulation. But with these methods, the main
drawback is that all combinations of input values cannot be
applied to the system to ensure complete verification: they
are incomplete and time-consuming. Also, these cannot
detect faults early, during the requirements or design phase
and cannot be fully automated. Inspecting the code manually
is prone to human errors as well as risky, as undetected bugs
can lead to failure of the mission or even loss of lives. Hence,
for safety-critical systems, it is clear that conventional
techniques of verification are inadequate.

Since even a single fault in the software can have
catastrophic consequences including mission failure and
damage to life, thorough validation of the launch vehicle
OBC software is a must. It is tested at different levels such
as designer level testing, code inspection, module testing and
integrated testing which are all carried out manually by an
independent QA team. Numerous simulation tests at
subsystem and system levels are also conducted to validate
the software. But there is very little automated verification
with tools at present. Tool support is essential for testing to
provide a guarantee of software quality. To ensure
exhaustive validation, approaches based on formal methods
are necessary. Certification standards [5,6] for safety critical
software also prescribe the application of formal
verification. It involves proving that the program semantics
(events during the actual program executions) meets its
specification (how the program is expected to execute) using
mathematical methods.

Advances in tools have made formal verification practical
and different methods are being adopted for its application
to embedded software. Theorem proving, model checking
and static analysis are some of the popular formal
techniques. Theorem proving or deductive verification [7] is
a powerful method which raises few false alarms; but it
demands a high degree of expertise and interaction from the
users, for example, by writing contracts for functions.
Verification techniques relying on abstract interpretation [8]
are used in several tools like the software bounded model
checker CBMC [23] and Polyspace [9]; however, such tools
generate too many false alarms and the user needs to spend
considerable time and effort to identify the actual bugs.
Software model checking is an attractive alternative that is
automated, simple to understand and learn and can be
applied for verification of assertions and temporal properties

in various types of software. Verification based on bounded
model checking [10] carries out the analysis on a smaller set
of program traces with bounded length; hence it overcomes
the disadvantages of state explosion and long verification
time. It does not require much intervention from the user and
scales for large systems, without compromising significantly
on accuracy.

In this work, the verification and validation of safety critical
software in Ada by applying formal methods to complement
traditional testing and simulation is explored. Specifically,
software model checking and static analysis are used in this
work. With the embedded flight control software in the
onboard computer of an aerospace system as the case study,
we apply the SPIN model checker [11] and also a custom
tool chain developed for formal static analysis of Ada code.
The primary goals of this work are to: 1) Formally verify the
embedded software in a launch vehicle application using two
different approaches 2) Define and develop a systematic
procedure for modelling and verification of Ada software 3)
Evaluate the challenges involved in both approaches 4)
Examine the feasibility of practical application of these
methods in the software development lifecycle process.

The major contributions of this work are the following: 1)
Definition of a systematic procedure for model checking
with SPIN tool incorporating translation of Ada source code
to Promela language 2) Application of a verification
framework based on bounded model checking for formal
static analysis of Ada programs with a pre-defined priority
for the tasks 3) Definition of a methodical process to
translate functional requirements of a software module into
specifications for verification.

The rest of this paper is organized as follows: the related
work in formal verification of different safety critical
systems using varied approaches is summarized in Section
II. The launch vehicle software organization is described in
Section III. The overall approach followed for our
verification, with model checking and static analysis are
explained in Sections IV and V. Section VI describes the
experiments carried out using the two techniques and the
results and also discusses the merits and demerits of both.
Section VII comprises the conclusion and the possible
course of future work in this area.

2 Related Work

In [12], the authors describe the application of the Frama-C
tool for verification of the embedded control software in a
Brazilian launch vehicle. The Frama-C tool has different
plug-ins: the value analysis plug-in enables static analysis of
software based on the principle of abstract interpretation
while the Jessie plug-in permits deductive verification of C
programs annotated using the ANSI C specification
language. Reference [13] explains the application of the
ACL2 theorem prover in various industrial projects for the
formal specification of microprocessors, proofs of hardware
design models, verification of android apps and several
others. The use of formal methods for demonstrating that a
software unit serving as a user interface complies with user
specifications is elaborated in [14]. A case study from the

180 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

medical field, a commercial infusion pump is analysed using
the PVS theorem prover tool. In [15], the formal
specification of a flight control software in Ada using Larch
and its formal verification using Penelope, an interactive
verification environment based on theorem proving, are
attempted by the authors. Reference [16] elaborates on
specifying and verifying the requirements of a memory
management system using the proof assistant Coq. This
method is applied for the verification of an algorithm in a
safety-critical embedded OS. The authors report on their use
of the Dafny theorem prover to formally verify an algorithm
for grasping a spacecraft motor nozzle, part of an
autonomous space robotics software in [17]. All of the above
are applications of different theorem proving tools to critical
systems.

Considering static analysis, in [18], the design of ASTREE,
a static analysis tool for C programs, which works on the
principle of abstract interpretation is described. It was
applied successfully to safety-critical, large sized, embedded
control, real-time software in aircrafts for detection of run-
time errors. Reference [19] elaborates the application of two
formal tools, ASTREE and FLUCTUAT, for analyzing the
onboard software of ATV space vehicle in C. These tools are
suitable for C programs, but cannot be used for other
languages like C++ or Ada. The application of different
formal verification techniques, such as theorem proving,
static analysis and model checking to automotive embedded
software in C is described in [20]. ASTREE and Polyspace
(Abstract interpretation-based static analysis), SCADE
design verifier (model checking), Frama-C and SPARK
(deductive techniques) are the tools employed by the
authors. Reference [21] explains the verification of the
onboard software in Ariane 5 launch vehicle of ESA
manually, as well as using formal static analysis. The real-
time kernel ARTK was checked manually for dead code,
exceptions handling, dynamic allocation and critical
sections. The INRIA static analysis tool was used to check
whether all variables are properly initialized, shared data are
protected from simultaneous access and other possible errors
that could occur at run time. The development of a formal
static analysis tool and its application to the software in
Programmable Logic Controllers (PLCs) at CERN is
discussed in [22].

Reference [23] presents the CBMC tool for the formal
verification of ANSI-C programs, based on the principle of
bounded model checking. In [24], various formal techniques,
such as equivalence and inductive proof methods are
combined with bounded model checking using Systerel
Smart Solver toolset and used to verify the anti-collision
system software onboard a rover. A Counter Example
Guided Abstraction Refinement (CEGAR)-based static
analysis tool named SDMC for C programs is presented in
[25]. The authors explain an algorithm combining k-
induction along with invariant inference and evaluate
it through verification of the software in unmanned aerial
vehicles (UAV) in [26]. These are instances of applying
various bounded model checkers for software verification.

Finally, there have been multiple attempts at modeling and
verifying critical software using diverse model checking
approaches. In [27] the application of UPPAAL, a real-time
model checker, for validation of high integrity software
developed in Ada95, is discussed. The authors develop a
formal definition of a Ravenscar compliant run-time kernel,
as the Ravenscar Ada subset [28] supports tasking also. The
authors present the specification and model checking of the
mode logic in the flight control system of an aircraft using
Simulink and NusMV model checker in [29]. Reference [30]
describes the development of CASE tools to support design,
formal verification and analysis of the digital control system
for a nuclear reactor. In [31], the redundancy management
system (RMS) in VentureStar rocket is formally verified
using the PARAGON toolset suitable for real time systems.
Reference [32] explains a systematic method for modeling
and formal verification of software case studies in nuclear
systems, using the NuSMV and UPPAAL model checkers.
The specification of requirements and the formal verification
of the level-crossing control system for trains are carried out
by the authors in [33] using the mCRL2 tool.

In [34], the NuSMV2 model checker is applied for symbolic
model checking of the embedded Ada software in the
attitude and orbit control system (AOCS) of a spacecraft. A
method for mapping the model of a real-time tasking system
that follows the Ravenscar profile, by translating AADL
models to LNT specifications and its verification with
CADP toolbox is presented in [35]. This technique is applied
to a line follower robot, as well as a flight control system, for
illustration. Reference [36] proposes a method using timed
automata networks to model concurrent, real-time systems
and formally verify them using SMV model checker, with
the automatic train protection system as a case study.
Analysis methods for validation of timing parameters related
to safety and security for automotive systems are proposed
in [37]. Verification is performed by applying UPPAAL-
SMC to a case study in the automotive domain considering
various possible attack scenarios. In [38], the authors
propose a new protocol, MQTT-CV and validate it formally
through SPIN model checker, before testing it on real-world
connected cars. A tool named ATOS, that automatically
extracts a SPIN model from Ada programs, along with
correctness properties is explained in [53]. In [54], the
authors describe the design of a bounded model checker for
SPARK code.

3 Launch Vehicle Onboard Software

The flight software in the onboard computer (OBC) plays a
crucial role in the functioning of the launch vehicle by
carrying out various activities like computing the
quaternions from the sensed position and velocity,
calculating the manoeuvres to steer the vehicle along the
optimum trajectory, computing the control commands
through the autopilot algorithm, generation of various
sequencing commands such as ignition and separation and
maintaining the pressures of fuel tanks at required levels.
Thus, the software consists of different components like
navigation, guidance, digital autopilot, sequencing and fuel
tank vent algorithm. To interface the varied software

R. Krishnan et a l. 181

Ada User Journa l Volume 45, Number 3, September 2024

components, to manage the hardware resources and also to
schedule these tasks as per requirements, a system software
is essential. An indigenously developed, 16-bit processor is
used as the OBC in the rocket. The embedded software in the
onboard computer is developed partly in Ada83 and partly
in the assembly language of the indigenous processor. The
software components in the OBC are represented in Fig.1
and the inputs/outputs of these are listed in Table 1.

The navigation computer acquires the digital and analog data
from gyros and accelerometers, carries out necessary pre-
processing and sends the data, along with sensor health
status, in real time to the OBC. The navigation software
processes this data to generate the outputs for use by other
application modules like autopilot, sequencing and
guidance. The rate data processing software carries out
sensor error compensation, failure detection and isolation
and data selection for posting to autopilot. The function of
guidance software is to steer the vehicle along the most
optimal trajectory from lift-off till satellite injection. The
autopilot software carries out control of the vehicle attitude
to track the steering commands and ensure collision-free
stage separation events. The sequencing software detects the
critical flight events, which are triggered by specified
dynamic conditions in real time, such as acceleration, lift-off
signal and guidance flags within pre-determined time
windows. Control of the fuel tank pressures for maintaining
it within specified limits is the main function of fuel tank
vent algorithm software.

For seamless interfacing of the different OBC software
components and to interact with the hardware, a supervisor
software is essential. The RTOS software in the OBC is
responsible for this. Synchronized operation of all onboard
computers with respect to their clocks till the end of the
mission is ensured by the RTOS. It collects the inputs,
executes the tasks and posts the outputs to the execution
modules periodically by scheduling the tasks in real time. It

collects the data to be monitored and packs it for telemetry.
It services the hardware interrupts, handles the hardware and
software errors occurring during the flight and assesses the
health of all subsystems in the rocket periodically.

There are tasks running at two periodicities in the embedded
software - minor cycle (typically 20ms) tasks and major
cycle (typical value 500ms) tasks. The minor cycle tasks
follow a pre-defined, static, sequential scheduling and they
are executed one after another without pre-emption. In every
minor cycle period, after all the minor cycle tasks are
completed, the major cycle tasks are scheduled. At the end
of every 20 ms cycle, a timer interrupt occurs. Then, the
major task is interrupted, its state is saved and the next minor
cycle begins. Again, the major task is resumed by restoring
its context subsequent to completion of all the minor tasks.
This is referred to as the rate monotonic scheduling scheme,
in which tasks running at higher frequency always have
higher priority than those executing at lower frequencies.

Table 1: Inputs and outputs to different software

4 Verification Approach with SPIN Model
Checker

4.1 SPIN Model Checker

SPIN [11] is a model checking tool that is highly popular for
formal representation and verification of communication
protocols and embedded software. The models are
developed in the Process Meta Language (Promela) in this
tool. This input language enables the construction of simple
system models through three fundamental constituents:
processes (asynchronous), channels for messages and global
data. Data types that are supported include bit, bool, byte,
short and int. The user is permitted to define other structured
data types combining the basic ones. It is also possible to
embed a restricted subset of C code directly in the model.

For modelling in SPIN, the system should be closed, that is,
all possible inputs to the system should be defined in the

Software Inputs Outputs

Navigation Angle and velocity
increments, analog
rates and
acceleration

Quaternions, body
rates, velocity,
position and orbital
parameters

Guidance Altitude, position,
velocity and stage
information flags

Commanded
quaternions

Autopilot Attitude, body
rates, commanded
quaternions

Control commands

Sequencing Vehicle
acceleration, flight
time and fuel tank
valve status

Sequencing
commands

Fuel tank
vent
algorithm

Commands to start
the algorithm and
fuel tank pressures

Commands for
close/open of
valves

OS –
Scheduling,

I/O, Error
handling
(Ada &

Assembly)

Sequencing
(Ada)

Guidance
(Ada)

Autopilot
(Ada)

Navigation
(Ada)

Pressure
venting
(Ada)

Figure 1: Launch vehicle software organization

182 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

model, usually done by approximating the input behaviour
in a conservative manner. This environment model serves as
a test driver for the verification with SPIN. SPIN generates
the state vector for the system consisting of all global and
local variables, message channels and processes. The
statements are interleaved and executed asynchronously.
Depending on the process that is selected for execution from
the threads that are executable, several different
interleavings of process statements are possible. An
exhaustive exploration of the state space is extremely
complex and time-consuming. To limit the time and memory
required for storage of state space, SPIN follows various
methods and approximations, including partial order
reduction and on-the-fly generation of a minimal recognizer
for reachable states.

Given an input model in Promela, SPIN can check for safety
and liveness properties like presence of dead code, deadlock,
violation of assertions specified by users and Linear
Temporal Logic (LTL) formulas representing temporal
properties of the system. If a particular property is violated,
it gives the error trace for the counterexample, a sequence of
transitions that violate the specification. SPIN also has a
provision to automatically extract the model from C source
code using the FEAVER model extractor [39]. Though SPIN
model checker has been successfully used for modelling and
verification of numerous satellite systems at NASA [39-43],
literature on verification of launch vehicle software with
SPIN is not available. Considering the usage history of this
tool for aerospace systems, it was chosen for the first part of
our work.

4.2 Formal Verification with the SPIN Model Checker

The overall approach employed for the verification of
embedded software through model checking is shown in
Fig.2. In the context of Indian launch vehicles, the onboard
software is developed partly in Ada [44] language and partly
in the assembly language of the indigenous processor used
as the onboard computer. As there are different components
in the software, we focus on specific portions, namely the
scheduler, the tank pressure vent algorithm, input and output
data processing, clock synchronization module and the
1553B communication. Since the scheduler is developed in
the assembly language of the indigenous processor, no
existing tools can support its verification and the process is
completely manual at present. The modules like tank
pressure vent algorithm, the input and output data processing
and clock synchronization module are written in Ada. For
model checking, the assembly code and the Ada programs
were translated into Promela with abstractions and the
models were fed as input to SPIN. The safety and liveness
properties were derived from the software documentation
such as the requirements document and specified in LTL.

The modeling, verification and results of the validation of
the scheduler in assembly using SPIN were described in a
prior work carried out by us [47]. Here, we focus on our
further work: modeling of launch vehicle software
components in Ada using Promela and our new tool
LLVMBMC and verification of specifications extracted
from requirements. The individual components which were

verified using one or both methods include input data
acquisition module, navigation, guidance, fuel tank vent
algorithm, rate data processing, clock synchronization
algorithm and output data posting module.

In addition to application of the SPIN model checker for
verifying critical software, the process involved a
methodical sequence of activities. For the software modules
in Ada, a systematic procedure was defined for manual
translation of Ada source code to Promela. As shown in Fig.
3, each procedure in the source program was translated into
an inline function in SPIN. For global variables, we used
variables with simplifications to reduce the state space in

Figure 2: Overall approach with SPIN model checker

Abstracted model

SPIN Model
Checker

Flight code
(Assembly / Ada)

Results – Pass/
Violation

Properties

Software
documents

Global Variables Variables with
abstraction

Procedure Inline function

Promela
model

Source code in
Ada

If / case construct If construct with default
‘skip’ option

Inputs :
Scheduler
process

Periodicity
: Timer
process

For loops,
assignments,
procedure call

Equivalent
constructs in

Promela

Outputs :
Telemetry
process

Figure 3: Translation from Ada source code to Promela

R. Krishnan et a l. 183

Ada User Journa l Volume 45, Number 3, September 2024

Promela. For if/ case statements, for loops, assignments and
procedure calls, equivalent constructs in Promela were
employed. The execution environment for the high level
software components was simulated using a driver scheduler
process which supplies the inputs (done by the RTOS in the
flight software) and the minimal hardware behaviour (timer
and interrupt) was modelled using a timer process. The
gathering of outputs, as done by the RTOS, was simulated
by means of a telemetry process. A similar procedure can be
adopted by other design and testing teams developing safety
critical, embedded software for translation to Promela.

Abstraction of the actual system is necessary to enable
verification with SPIN. This is a challenging process, which
involves derivation of a system with a finite state space from
a large program, by simplifying the states that are not
germane to the operation we are interested in. It is done
through various methods, including removal of code that is
irrelevant to the property being verified, substituting infinite
data types with finite intervals, restricting the count of tasks
executing simultaneously etc. A good understanding of the
source program is necessary to perform good
simplifications. Separate validation of independent
functional requirements is also a kind of reduction. Some of
the major simplifications that were applied are listed in Table
2. The portions of the code, independent of and irrelevant to
the parts under verification were removed as part of model
reduction.

Table 2: Examples of reductions

Construct Ada code Abstraction Promela
code

16 bit
integer
flags that
take only 2
possible
values

Msg_Sts1,
Msg_Sts2,
Msg_Sts3:

Unsigned_16;

Replace with
bit type

bit
Msg_Sts1,
Msg_Sts2,
Msg_Sts3

16 bit
integer
flags in
which only
2 bits are
relevant

SFlag, SFlagC:
Unsigned_16;

Replace with
user-defined
type with 2
bits

typedef
Bits2 { bit
b[2] };

Bits2 SFlag,
SFlagC;

Range of
values for
integer type

Pr1,Pr2,Pr3 :
short_integer;

Specify range
of values for
pressure data
during
verification

600 – 1200
instead of -
32768 -
32767

Remove
irrelevant
code

Algorithm 1 to
be verified

Algorithm 2
code not
relevant

Remove
code for
Algorithm 2

In the real system, several kinds of errors can occur which
affect the performance of the software. Aerospace avionics
systems normally have built-in redundancy and fault
handling mechanisms to mitigate the effect of such errors.
To ensure the software behaves as expected in erroneous

situations, a procedure was defined for introducing and
simulating random errors in the model. After reading each
input, it is first checked whether it is relevant for the property
being currently verified. If the variable is a part of the
property, it is considered significant and its value will affect
the correctness of the property. Then, a random error is
injected in the variable by assigning a value out of bounds,
either intermittently or throughout. Otherwise, it is set to a
nominal value, within the permitted ranges. The test results
of model checking the launch vehicle software components
with SPIN are presented in Section VI.

5 Modeling and Verification with
Bounded Model Checking Approach

In Indian launch vehicles, the onboard software is developed
in a safe subset of Ada83. Ada language is considered
suitable for safety critical concurrent systems, due to its
strong typing, ability to catch more errors during compile
time rather than during runtime and tasking feature. Ada is
mostly used for software development in rockets, missiles
and nuclear systems. In the launch vehicle software, there
are hardware specific constructs, user-defined data
structures and data type conversions/ type casting supported
by the in-house compiler for the indigenous onboard
computer. These are specified in a library file. Also, each
flight software component has to satisfy specific properties
depending on its functional requirements. These cannot be
verified directly with the available tools, like Polyspace,
Vectorcast or GNAT.

There are several tools based on bounded model checking
for C programs, such as SMACK [48], SeaHorn [49],
CBMC, EsBMC, LLBMC [50], Frama-C [51] and so on. To
the best of the authors’ knowledge, none of these tools have
a frontend support for Ada language. Also, some of these,
for instance LLBMC and SeaHorn, do not handle concurrent
systems. The embedded software in the OBC is real-time as
well as concurrent, with a specific priority for different tasks.
The existing tools do not consider the priority of tasks in the
modeling. So a custom tool chain which can model the
launch vehicle flight software execution environment,
translate the Ada code into a suitable IR, accept properties
given in a specification file and verify it is essential.

We developed such a tool chain for Ada which is also
automated, with some existing tools as the foundation.
Except for the requirement of preparing the specification file
in a standard format for parsing by the tool, this tool is fully
automated and can be run from the command line. It is
general enough to model and verify other similar, periodic,
safety critical, embedded software, like those in satellites,
nuclear systems and aircraft. The overall approach followed
for the development of this tool chain is shown in Fig. 4 and
the details of each stage of processing are described in
subsequent sections. The mathematical background for the
tool is explained in our previous work [52]. Here, we focus
on its application to a safety critical system.

The first requirement is a front-end/ pre-processor to extract
relevant details from the Ada code to an intermediate data
structure such as a Control Flow Graph (CFG) or Abstract

184 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

Syntax Tree (AST). Dragonegg [45], a gcc plug-in which can
generate LLVM IR, was chosen for this purpose. LLVM is a
compiler and tool chain designed around a language
independent intermediate representation (IR). Dragonegg is
a gcc plug-in which uses the optimizers and code generators
from the LLVM project in place of GCC components. It has
support for different target platforms, including ARM, x86-
32/64 and others. It can act as a frontend for a wide variety
of languages, including Fortran, C/C++ and Ada, besides
partial handling of other languages like Java, Obj-C/C++ and
Go. It accepts Ada input programs and generates LLVM IR.
Since dragonegg was not compatible with the latest version
of LLVM or GCC tools, several changes were implemented
to customize it for our application.

The next step is to feed the LLVM IR to the static analysis
tool. For this, we developed a bounded model checker named
LLVMBMC. It uses Microsoft Z3 as the underlying verifier
and can accept the LLVM IR generated for our software in
Ada through dragonegg. The different components in the
software are verified separately using our custom tool. Each
component in the launch vehicle OBC software consists of
multiple files. Each of these is pre-processed individually
using dragonegg. Since there are function calls across files,
llvm-link was used to merge all the .s files together manually
before passing it as input to LLVMBMC. The overall
approach for our verification with bounded model checking,
starting with this merged LLVM IR file is shown in Fig 5.

We defined a specification file format for the system,
containing details of each thread, including its name, entry
function, priority, periodicity and the global variables
relevant to the properties. The pre-conditions for the system
are part of the file. All the properties of each software
component, derived from the corresponding functional
requirements document, are also specified in this file in
terms of the input and output global variables as post
conditions. This specification file is written in the standard
SMT2 format and fed as an input to the model checker along

with the IR file. A sample specification file for a system with
two threads is shown below in Fig. 6. Thread1 and 2 are the
two threads, with periodicity of 1ms and 2ms and priority 1
and 2, respectively. A post condition for the concurrent
system is also shown.

The details of the various steps of processing carried out
within the tool are now explained. The sequence of steps
implemented for processing an input file in LLVM IR format
is represented in Fig.7. We developed the parser for the
specification file to populate different data structures. For
each global variable, the name and type are stored. All
parameters related to each thread, including its name, entry
function, periodicity and priority are populated. The Least
Common Multiple (LCM) of the periods of all threads is then
computed to determine the number of iterations of each
thread in a cycle. The pre- and post conditions are recognized
by means of assert statements, parsed and converted to Z3
expressions. This parsing of the specification file constitutes
the first step in LLVMBMC.

(declare-var var i16)

(declare-thread one dekker__thread0)

(invoke-param one repeated 1 priority 1)

(end-thread one)

(declare-thread two dekker__thread1)

(invoke-param two repeated 2 priority 2)

(end-thread two)

(post-condition all (assert (= var #x0002)))

Figure 6: A sample specification file

The translation from the functional requirement of a
software module to the SMT2 format for inclusion in the
specification file is illustrated with two examples below:

Figure 4: Verification approach with Bounded Model
Checking

Standard Intermediate
Representation

Verifier

Flight software in
Ada

Results – Sat/ Unsat?

Specifications

Figure 5: Steps in LLVMBMC

Z3 constraints and assertions

LLVM Bounded Model Checker

LLVM .s file

Specification
satisfied or

not?

Specifications in
SMT2 format

Functional
Requirements

Document

R. Krishnan et a l. 185

Ada User Journa l Volume 45, Number 3, September 2024

Figure 7: Processing in LLVMBMC

Requirement1 (in Requirements document): Fuel tank
pressure should always be maintained within the lower and
upper limits

Property (in terms of input and output variables): Always
(@FuelVent__Pr >= @FuelVent__LowerLimit) and
(@FuelVent__Pr <= @FuelVent__UpperLimit)

Specification (in SMT2 format): (post-condition all

(assert(and (bvuge @fuelvent__pr

@fuelvent__lowerlimit) (bvule @fuelvent__pr

@fuelvent__upperlimit))))

Requirement2 (in document): Clock synchronization is
disabled if window out error occurs for 5 cycles

Property (in terms of input and output variables): if
(@synchronization__sync_out_wndw_err_cnt >= 5), then
@synchronization__sync_disable_flg is set

Specification (in SMT2 format): (post-condition all

(assert(=> (= @synchronization__sync_disable_flg

#xAAAA)(bvsge

@synchronization__sync_out_wndw_err_cnt #x0005))))

In the next step, the combined IR file is prepared for
verification by invoking the inlining pass in LLVM. Starting
with the entry function, the module is completely inlined.
The initial memory state is then defined, containing the
parameters such as name and data type of all global variables
in the module. The arrays in the module are also processed.
Then, the details of loops in the inlined function are
gathered. Some of the software components in our launch

vehicle case study have only a single thread, while some
have multiple threads. For a concurrent system with more
than one thread, the truly global variables are collected as
follows: for each global variable that is read or written by a
particular thread, if the same variable is loaded or stored by
any other thread, it is considered a concurrent global
variable. The start and final events for the system are also
declared here.

The processing then proceeds with the translation of the
threads in the system. The pre-conditions are translated by
substituting the global variable names with their updated
names in the initial memory state. In the post conditions, the
variable names are replaced by their modified names in the
last basic block in the module being processed. These are
then converted to Z3 expressions and added to the data
structure containing the list of specifications. Subsequently,
processing of every instruction in each basic block of the
module is commenced.

The various instructions - arithmetic, logical, compare, load,
store, call, branch, select and so on - are then translated to
Z3 constraints. For each store and load to a truly global
variable, write and read events are created and inserted into
the event list of the thread. The final event for every thread
is also defined. Depending on the number of iterations of a
thread, copies of the constraints are created with new names
for the variables in each copy. Copies of the event list of the
threads are also generated according to their respective
periodicities with the events renamed in the copies. For
analyzing the different interleavings of events possible in the
concurrent system, the principle of symbolic predictive
analysis [46] is applied. The program execution is encoded
in Static Single Assignment (SSA) form where every new
write and read to a variable is distinguished using a distinct
name for the variable. The writes could happen in different
threads according to the program execution trace. A
selection function chooses the value from the most recent
write to a particular global variable for each read.

The constraints on order of events are then included. This
consists of specifying that the start event for each thread
occurs before all other events and the end event is the last
event executed in the thread. Also, for the rate monotonic
scheduling scheme followed in the embedded software in
our launch vehicle case study, additional constraints are
required. For a particular thread, every event can occur either
before the start event or after the final event in a specific
iteration of all threads of higher priority. For instance, if we
consider a typical system with minor and major threads and
higher priority for the minor threads, all events in the minor
thread would be completed before any event in the major
thread can occur. That is, the major thread can execute only
between two iterations of the minor thread and never in the
middle of an iteration of the minor thread. The lower priority
thread cannot interrupt the execution of the higher priority
threads.

Verification involves checking properties like confirming
whether a function is invoked, in-order execution of actions,
timing of events, conditional execution of events etc.
Assuming the pre-conditions are true, the verifier checks

Pre-processing: Inlining, initial state, arrays,
loops, concurrent globals, start & final events

Parsing of spec file

Z3
model

Input in LLVM IR
& Spec file

Translation of instructions, pre-
and post conditions to Z3

expressions

Copies of
constraints

& events

Constraints
on order,
priority

Create
write &

read
events

Verification

186 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

whether the post conditions are satisfied or not. In case any
property is not satisfied, the execution trace can be dumped
and checked to get the sequence of events leading to the
violation. The tool can be used for checking standard errors
such as overflow, underflow and array index out of bounds.
Custom specifications for the embedded software in safety
critical aerospace or nuclear systems can also be verified by
preparing the corresponding specification file.

The definitions, algorithm and mathematical background of
LLVMBMC as explained in [52] are summarized here.

Definitions

 Concurrent, loop-free programs P consisting of a set of
global variables G, a set of local variables L, pre-
condition pre, post condition post and a fixed number of
threads Ti with priorities ri and periodicities pi are
considered.

 A thread Ti comprises a set of program locations ϴi
including a start and a final location and a set of edges
Δi.

 Each edge connects two locations ϵ ϴi and an
assignment of the form Assgn := assume(c) | l :=
α | l := g | g := l, where assume(c) denotes a
conditional execution, l and g denote local and global
variables, α is the updated value for l. The last two
statements denote a read and a write respectively to a
global variable.

 A branch is modeled using a location θ with one
incoming edge and two outgoing edges with assume
statements that are complements to each other.

 An event e is of the form (t, δ, R/W, g, v), with t denoting
a thread, δ is the source edge, R/W denote Read/Write
events, g is a global variable accessed by edge δ with
value v.

 An event graph is a directed graph consisting of a set of
events E and a set of edges which satisfy well formed
condition (every read reads from exactly one write),
write serialization (writes to the same variable are
totally ordered) and from-read condition (if a read reads
from a write, the subsequent writes should happen after
the read).

 A program execution is represented by (ρ, γ, γ’, EG),
where ρ is a vector of states of the threads, γ and γ’ are
the initial and final valuation of global variables and EG
is the event graph.

Algorithm

SSA encoding

 For each global and local variable in the program,
substitute a fresh SSA variable:

For l ϵ G U L, σs(l) := fresh();

 Assign initialization events of global variables to E and
SSA encoding of pre-conditions to the SSA encoding
that is returned φssa:

E := {(0,0,W,g, σ’(g)) | g ϵ G};

φssa := σs(pre); φpre := σs(pre);

 For each thread t,

Initialize substitution and condition map for initial
thread location θs :

σ(θs) := σs; Cs(θs) := φpre;

 Process each stmt as follows:

o assume(c) : Create a dummy event

 E := E U (t,i,D,cd);

o l := α : Append φssa with SSA encoding of stmt and
assign a fresh variable z for the value produced by
stmt to σ’(l)

φssa := φssa ^ σ’(z := α); σ’(l) := z; E := E U (t,i,D,cd);

o l := g : Assign z to σ’(l) and add a new ‘read’ event.

σ’(l) := z; E := E U (t,i,R,g,z,cd);

o g := l : Append φssa to record the write to g and create
a new ‘write’ event.

φssa := φssa ^ σ’(z := α); E := E U (t,i,W,g,z,cd);

Constraint generation

 For encoding the event orderings, integer clock variable
ce is used as follows:

HB (e, e’) is defined as e.cd ^ e’.cd => ce < ce’ (if e and
e’ occur, e happens before e’)

 For each global variable g, for each read r,

o well-formed condition φwf: r reads from exactly one
write

o from read condition φfr: if r reads from a write w, the
subsequent writes should happen after the read

o write serialization condition φws: all writes to g must be
ordered

o program order condition φppo: the events in a thread
must be ordered. The pre-condition occurs before and
the post-condition after all the events in a thread. Also,
for the rate monotonic scheduling, the events in a
thread can occur either before the start event or after
the final event in every iteration of all threads of higher
priority. These are encoded as follows:

for e,e’ ϵ E, if e < e’, φppo:= φppo ^ HB(e,e’)

for e ϵ E|W, e’ ϵ E, if e.t = 0, φppo:= φppo ^ HB(e,e’)

for e ϵ E, e’ ϵ E|R, if e’.t = 0, φppo:= φppo ^ HB(e,e’)

for e ϵ E, e’ ϵ E’such that pr(e’.t) > pr(e.t)

if e’ = start, φppo:= φppo ^ HB(e,e’)

if e’ = finish, φppo:= φppo ^ HB(e’,e)

R. Krishnan et a l. 187

Ada User Journa l Volume 45, Number 3, September 2024

6 Experiments

The case study was the flight software in the onboard
computer for a typical Indian launch vehicle consisting of
the real time OS in assembly language and other components
like sequencing, fuel tank vent algorithm, guidance,
navigation, digital autopilot, clock synchronization and rate
data processing module in Ada. Together, this corresponds
to ~40000 lines of code. Out of this, ~30000 lines were
processed using LLVMBMC and ~15000 lines using SPIN.
Since the case study is classified legacy software, a subset of
the results is presented here, with comparison of the results
for verification of some of the individual software
components with both approaches. The tests were run on a
PC with 16 GB RAM and 1 TB hard disk with Ubuntu 18.04
operating system.

6.1 Model Checking with SPIN

Fuel tank vent algorithm

The fuel tank vent software (~700 LOC in Ada source code)
was modelled in Promela (~800 LOC) and simulated and
verified using SPIN. The software is responsible for
maintaining the fuel tank pressures within specified limits by
operating various valves, as shown in Fig. 8. The model was
first ensured to be executing properly as all outputs matched
the outputs from the actual software. Then, relevant errors in
input data were simulated for each specification: error in
messages from the 3 sources of pressure data, minor ID
integrity check error, sequencing command integrity error
and pressure value outside limits. These were simulated
intermittently, for a few cycles and throughout the run in
various cases. 6 safety and liveness properties were added in
the pressure vent software model.

Figure 8: Fuel tank vent algorithm

The number of states, time and memory for verification of
the model for 6 properties are shown in Table 3. As observed
from the table, properties which involve a larger state space
require more memory and time for model checking. This
memory includes the stack, the hash table and other data
structures inside the verifier. Two examples are shown

below for the properties verified in the fuel tank vent
algorithm:

Property1: Fuel tank pressure should always eventually be
maintained within the lower and upper limits

ltl STS {always eventually (p1 && q1)}

p1: Pressure >= Lower limit, q1: Pressure < Upper
limit

Property2: Invoke the algorithm processing if there is no
sequencing command integrity error

ltl STS {always (!p2 implies q2)}

p2: Sequencing command integrity error, q2: Algorithm
is invoked

The remaining properties which were verified are the
following:

Property3: When communication status is not OK for 10
cycles for the pressure sensors, the algorithm is disabled.

Property4: If there is sequencing command integrity error,
the pressure error counter and bound check failure counter
are reset.

Property5: The median value of tank pressures is computed
if the communication status is OK for the pressure sensors;
else the previous cycle data is retained.

Property6: If the algorithm is disabled, the valve in the tank
should be closed and execution of the algorithm is stopped.

Table 3: State space, time and memory for verification

Clock synchronization

The algorithm for clock synchronization (~200 LOC in Ada
source code) was modelled in Promela (~400 LOC) and
simulated and verified using SPIN. The synchronization
software maintains time synchronization between the clocks
of the processors functioning as onboard computers, as
shown in Fig. 9. With nominal inputs, we executed the model
and confirmed that the output values match those from the
actual software. 4 properties were included for verification
in the model. The properties that were verified for the clock
synchronization algorithm are listed in Table 4. The number
of states, memory and time for verification of the model are
shown in Table 5.

Property Number of
reachable
states

Elapsed time
(in seconds)

Memory
(MB)

Property1 8956344 11.1 94.235

Property2 35643699 54.9 216.305

Property3 1637 1.1 85.348

Property4 41782929 162 216.305

Property5 8962540 10.8 94.235

Property6 3618 2.1 85.739

Acquire & process fuel tank pressure data

Close valve

Pressure >
Upper limit?

Open valve

No
Yes

Scheduler
Input &
Output
data

Start

Pressure <
Lower limit?

No

Yes

188 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

Figure 9: Clock synchronization scheme

Table 4: Properties verified in clock synchronization

Table 5: State space, time and memory for verification – Clock
synchronization

Though these software modules are part of legacy code, the
verification attempt instilled confidence in the developers on
the utility of formal methods in complementing manual
testing. The properties that were satisfied re-affirmed that the
software requirements are met whereas the detection of
known bugs in older versions of the code confirmed the
utility of the tool. Compared to the traditional V&V methods
which are carried out on the code, model checking with SPIN
is done on the Promela model of the system. This model can
be generated from the software requirements itself, thus
enabling the detection of errors much earlier in the software
development lifecycle. This would be greatly beneficial for
new, complicated designs, like human-rated missions. Also,
the injection of random faults in the model helped in
establishing the correctness and adequacy of error handling
implemented in the system. Since redundancy and fault
handling are essential aspects of safety critical systems, this
error injection testing forms a significant part of the
verification workflow.

6.2 Bounded Model Checking with LLVMBMC

To ensure the correctness of the implementation of the tool
chain based on bounded model checking, simple standard
benchmarks such as concurrency litmus tests and mutual
exclusion protocols were first selected as the test programs.
The litmus tests include standard programs like Store
buffering (SB), Load buffering (LB) and other small,
carefully designed, parallel programs that exercise the
memory model of a shared memory computer. In concurrent
systems, various mutual exclusion protocols such as
Dekker’s protocol, Peterson’s algorithm and others are used
to protect shared resources from concurrent non-atomic
accesses. The litmus tests and mutual exclusion algorithms
were coded in Ada and fed into the tool for initial testing.
The verification was successful only when the priority was
also considered properly in the case of the mutual exclusion
protocols, thus increasing the confidence on the validity of
the tool.

Next, each software component in the aerospace case study
was first fed to dragonegg to generate LLVM IR. All the files
in a component were combined using llvm-link and this
combined IR .s file was given as input to our bounded model
checker LLVMBMC. The commands for running the tool
are as follows:

gcc-8 -S -fplugin=./dragonegg.so -fplugin-arg-

dragonegg-emit-ir ./Examples/test.adb -o test.s

./llvmbmc –b examples/AssemblyFiles/test.s

At first, software components with only a single thread, like
fuel tank vent algorithm, rate data processing module and
clock synchronization scheme were verified. The
specification file for each was also written in SMT2 format,
with properties derived from the corresponding functional
requirements document. The results of the verification,
including the lines of code in the source file, the number of
specifications verified and the pass/ fail status are listed in
Table 6. It was seen that one property is violated in the fuel
tank vent algorithm. On further discussions with the
designers, it was understood that though the violation

Property Details of property

Property1 If the absolute value of clock skew is
outside the lower and upper bounds, no
clock correction is applied.

Property2 Clock synchronization is disabled if
window out error occurs for 5 cycles.

Property3 If time stamp value is not received from
the master for 5 consecutive cycles, error
bit in sync flag is set.

Property4 If the absolute value of clock skew is
greater than the upper bound for 5
consecutive cycles, synchronization is
disabled permanently.

Property Number of
reachable
states

Elapsed time
(in seconds)

Memory
(MB)

Property1 193633 0.12 763.645

Property2 169937 0.13 610.352

Property3 363570 0.13 853.48

Property4 281692 0.13 816.305

Time stamp the current
cycle sync message

Apply correction to processor
clock

Scheduler

Input &
Output
data

Star

Skew within upper
and lower limits?

No Yes

Skew = Expected time -
Time stamp

R. Krishnan et a l. 189

Ada User Journa l Volume 45, Number 3, September 2024

detected by the tool is correct in a standalone manner, it is
handled properly at the system level in the real scenario.
Similarly, in the clock synchronization module, the tool
threw up a violation of one specification. This was because
one variable was not initialized in the individual module, but
it is done elsewhere in the actual integrated software. On
including this initialization in the driver file, the property
was satisfied.

Table 6: Launch vehicle software – Results

Software
component

 Size
(LOC)

No. of
specifications

Violations

Fuel tank vent
algorithm

700 6 1

Rate data
processing

900 30 0

Clock
Synchroniza-
tion

200 4 1

Guidance 1600 15 0

In the next step, the guidance software with two threads and
several complex computations was verified with
LLVMBMC. The priority among the threads was considered
correctly by the tool. All the specifications were found to be
satisfied. Some of the specifications involved checking the
proper sequence of function calls in the module during
execution. For such call sequence properties, a monitor
variable is inserted which is initialized to 0. When the first
function in the sequence is invoked, it is made equal to 1.
When the second function is called, it is checked whether the
variable is 1. If yes, it is left unchanged; otherwise it is set to
2, indicating an improper order of function calls. At the end
of the module, compare and assert instructions are added to
check the value of the monitor variable. A value of 1 for the
variable indicates that the call sequence property is satisfied
and any other value denotes a violation.

The navigation and guidance software, part of the case study,
consist of hundreds of single and double precision floating
point variables and complex computations, including
trigonometric operations. During our experiments, the
verification of some of the properties for these components
was either not completing or taking 4-5 hours for
completion. So, some trials were carried out using strategies
such as reducing the number of bits in the significand and
specifying finite ranges for some inputs through pre-
conditions. At first, a few small Ada programs were written
with arithmetic (addition, subtraction, multiplication,
division) and trigonometric (sine, cosine, sin inverse, cos
inverse, arc tan) and other (square root, exponent, logarithm)
operations on floating point variables. It was seen that, for a
single property, as number of bits in the significand for float
values decreases, the time and memory for verification also
reduce. In addition, properties with more intensive
computations like division and arc tan take more time.
Similar techniques resulted in expediting the verification of
the specifications for the navigation software also.

We also tested the tool with the onboard software
components in different missions, with bugs found during
various stages in development - designer level testing, code
inspection by QA team, simulations and launch. The
corresponding property violations were detected by
LLVMBMC, proving its utility in detecting actual bugs in
the case study. The results are summarized in Table 7. To
illustrate the nature of bugs, two of these are explained
below. In the clock synchronization module, since the timer
uses a down counter initialized to 5000, the time stamped
value is subtracted from 5000 to get the actual value. During
a simulation test, the time stamp location contained an
erroneous large value (>5000) and the subtraction operation
caused an overflow. This overflow was correctly captured by
LLVMBMC with the old code. Subsequently, the software
was corrected by limiting the time stamp value to 5000 if it
is greater than 5000. The original code snippet without the
limiting is as shown:

TimeStamp := 5000 - TimeStamp;

Skew := ExpectedTime - TimeStamp;

Table 7: Results of flight software verification

In the code for sequencing interface, the event information
(range 00H-FFH) and its logical negation are packed in the
LS byte of a flag and its complement flag, respectively. This
is extracted and assigned to the corresponding variables in
sequencing software, where the variables are checked for
integrity using complement check. After extracting the
negation of the event information from the flag, it should be
ORed with FF00H to form the complement correctly. This
was missed initially in the code and the complement check
failure was raised in a subsystem level simulation run where
this path was exercised. Later, the code was modified to

Module Error Violation
detected?

Clock
synchroniza-
tion

Overflow in computation
of skew

Yes

Navigation Saturation of result in a
computation causing
arithmetic error

Yes

Aided
navigation

Missing initialization of
global variables leading to
setting of error flag in case
of communication error

Yes

Sequencing
interface

Wrong packing of
complement of a byte in a
16 bit word leading to
complement check failure

Yes

Guidance Data passing from lower
priority to higher priority
task was non-atomic
causing failure of
complement integrity
check

Yes

190 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

form the negation properly. The initial code snippet with the
bug, where LLVMBMC detected the error as a violation of
a property (the error flag is always zero) is as shown:

Event := Bit_And(EvntIp, 16#00FF#);

EventC := Bit_And(EvntIpC, 16#00FF#);

if (Event + EventC /= 16#FFFF#) then
 Err_Flag := 16#0001#;

end if;

7 Discussion

In this section, a comparison of the two verification
approaches is presented - using SPIN model checker and
LLVMBMC. A comparison of the two approaches for some
of the modules in the launch vehicle flight software is shown
in Table 8. It lists the time and memory for verification of
the same property with both tools when applied to the same
software components.

Table 8: Comparison – Verification with SPIN and
LLVMBMC

Software
component

Time (seconds) Memory (MB)

SPIN LLVM
BMC

SPIN LLVM
BMC

Fuel tank vent
algorithm

54.9 2.6 216.305 140.968

Clock
Synchronization

0.13 0.08 853.48 104.496

Input data
validation

1.1 0.12 85.934 128.488

Output data
filling

2.7 0.13 189.524 126.788

Table 9 compares SPIN and LLVMBMC with respect to
their main features, merits and limitations. The advantages
of SPIN are that it has a simple user interface, a C-like
modelling language and is highly suitable for formal
verification of communication protocols and other software
systems. The properties to be verified can be included in the
model as assertions or LTL formulae. Sufficient data types
are supported and different switches can be used to speed up
the verification. We were also able to define a systematic
procedure for translation of Ada code to Promela. It is
possible to insert C code directly into the model too using
the c_code primitive. The code must be syntactically valid C
and can be used to include a larger piece of code that is stored
in a separate file into a model.

On the other hand, SPIN model checker has certain
drawbacks also. It does not scale for large systems.
Significant abstraction of the model is necessary to complete
the verification within a reasonable time. It is extremely
difficult to analyse an integrated flight software with several
components using a single model. The development of the

system model in Promela is a manual process and is hence
prone to errors. Promela does not support float data types and
so SPIN cannot be used for verifying computation-intensive
applications with floating point operations. Thus, launch
vehicle software components such as navigation and
guidance, involving numerous floating point computations
could not be verified with SPIN.

Table 9: Comparison of SPIN and LLVMBMC features

Coming to the bounded model checking based static analysis
tool, it is customized for Ada and is fully automated. It
accepts the Ada source code directly and does not require
any translation or abstractions. It models the rate monotonic
priority among tasks and thus represents the execution
environment of the launch vehicle software accurately. It
supports floating point data type also and can be used for
analysis of large software systems. It checks for errors like
overflows, underflows, array indices out of bounds etc. It can
accept and process custom properties listed in a specification
file in the standard SMT2 format and generate the execution
trace in case of violations. It uses LLVM IR as the
intermediate form and can be used for verification of C/C++
programs also using a Clang compiler frontend. It can be
used by other teams working on software for safety critical
applications such as the nuclear sector, satellite systems and
automotive software. The tool chain developed by us has
some limitations also. The specification file should be
written in a particular format by the user. The tool cannot be
used for analysis of assembly programs at present.

In summary, SPIN model checker is suitable for a beginner
in formal verification, to verify small systems. For
verification of large systems with varied data types and
diverse components, our custom tool would be more
advantageous and convenient. A GUI based interface
support for more general properties would make it more
user-friendly.

SPIN LLVMBMC

Simple user interface, a C-
like modelling language
named Promela

Tool is customised for Ada
and does not require any
translation or abstractions

Properties to be verified
are included in the model
as assertions or LTL
formulae

Accepts and processes
custom properties listed in
a specification file in the
standard SMT2 format

Does not support float
data types

Supports floating point
data type also

Does not scale for large
systems

Can be used for analysis of
large software systems

Possible to insert C code
directly into the model

Can be used for
verification of C/C++
programs also using a
Clang compiler frontend

R. Krishnan et a l. 191

Ada User Journa l Volume 45, Number 3, September 2024

 8 Conclusion

In this work, the formal verification of safety critical
embedded software in Ada language is attempted through
two different approaches. The first method, using the SPIN
model checker, is suitable for small to medium systems, but
requires manual development of the model with intelligent
abstractions. The customized, automated tool chain
LLVMBMC for verification of Ada programs has a suitable
front end and carries out analysis based on bounded model
checking. Both techniques were applied to a real-world case
study, the embedded software in the onboard computer of a
launch vehicle. It was seen that the custom tool is more
advantageous and can be used for verification of Ada code
in other, similar systems.

Specifically, LLVMBMC is scalable for larger software
implemented in Ada language and can be used without any
manual translation or development of models with
abstractions. It supports varied data types, including floating
point and finishes the verification typically ten times faster
than tools like the SPIN model checker. It can model any
concurrent system with tasks running at different
periodicities and priorities using minimal information
provided by the user in a specification file. Other tools do
not consider this priority automatically for a concurrent
system and demand considerable manual effort for accurate
modeling.

In future, it is proposed to develop a GUI interface so that
users can verify general and custom specifications for their
software more conveniently. It is also planned to augment
the tool by implementing optimizations for particular,
repetitive computations in the launch vehicle software.

References

[1] J.L. Lions, Ariane 5—Flight 501 Failure, European
Space Agency, Paris, France, Tech. Rep, 1996.

[2] N. G. Leveson and C. S. Turner, An investigation of the
Therac-25 accidents, in Computer, vol. 26, no. 7, pp.
18-41, 1993

[3] E. Marshall, Fatal error: how Patriot overlooked a
Scud. Science 255, no. 5050: 1347-1347, 1992.

[4] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A.
Dukeman, P. Norvig, L. S. LaPiana, P. J. Rutledge, D.
Folta, and R. Sackheim 1999, Mars Climate Orbiter
Mishap Investigation Board—Phase I Report, NASA,
Tech. Rep,1999.

[5] European Cooperation for Space Standardization Std.
ECSS-ST-40C, Space Engineering—Software, 2009.

[6] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B.
Monate, Testing or formal verification: DO-178C
alternatives and industrial experience, IEEE Softw.,
vol. 30, no. 3, pp. 50–57, 2013.

[7] C. A. R. Hoare, An axiomatic basis for computer
programming, Commun. ACM, vol. 12, no. 10, pp. 576–
580, 1969.

[8] P. Cousot and R. Cousot, Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in Proc. 4th
ACM SIGACT-SIGPLAN Symp. Principles of
Programming Languages (ser. POPL'77), New York,
NY, USA, pp. 238–252, 1997.

[9] Comprehensive Static Analysis Using Polyspace
Products-White paper by Mathworks.

[10] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu, Bounded model checking, Handbook of
satisfiability 185, no. 99, pp. 457-481, 2009.

[11] G.J.Holtzman, The SPIN Model Checker, Primer and
Reference Manual, Addison-Wesley, Boston, 2003.

[12] R.A.B e Silva, N. N. Arai, L. A. Burgareli, J. M. P. de
Oliveira, and J. S. Pinto, Formal verification with
Frama-C: A case study in the space software
domain, IEEE Transactions on Reliability 65, no. 3, pp.
1163-1179, 2015.

[13] W. A. Hunt Jr, M. Kaufmann, J. Strother Moore, and
A. Slobodova, Industrial hardware and software
verification with ACL2, Philosophical Transactions of
the Royal Society A: Mathematical, Physical and
Engineering Sciences 375, no. 2104 : 20150399, 2017.

[14] M. D..Harrison, P. Masci, J. C. Campos, and P. Curzon,
Verification of user interface software: the example of
use-related safety requirements and programmable
medical devices, IEEE Transactions on Human-
Machine Systems 47, no. 6, pp. 834-846, 2017

[15] G. Hird, Formal specification and verification of Ada
software, In 8th Computing in Aerospace Conference,
p. 3713, 1991.

[16] S. Li, L. Qiao, and M. Yang, Memory state verification
based on inductive and deductive reasoning, IEEE
Transactions on Reliability 70, no. 3, pp. 1026-1039,
1991.

[17] M. Farrell, N. Mavrakis, C. Dixon and Y. Gao, Formal
verification of an autonomous grasping algorithm,
In International Symposium on Artificial Intelligence,
Robotics and Automation in Space, ESA, 2020.

[18] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux and X. Rival, The ASTRÉE analyzer,
In Programming Languages and Systems: 14th
European Symposium on Programming, ESOP 2005,
Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005. Proceedings 14, pp.
21-30. Springer Berlin Heidelberg, 2005.

[19] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret,
K. Ghorbal, E. Goubault et al., Space software
validation using abstract interpretation, In The
International Space System Engineering Conference:
Data Systems in Aerospace-DASIA 2009, vol. 1, pp. 1-
7, European Space Agency, 2009.

192 Formal Ver i f icat ion of Safety Cr i t ica l Software in Ada

Volume 45, Number 3, September 2024 Ada User Journa l

[20] V. Todorov, F. Boulanger, and S. Taha, Formal
verification of automotive embedded software,
In Proceedings of the 6th Conference on Formal
Methods in Software Engineering, pp. 84-87, 2018.

[21] Ph Lacan, J. N. Monfort, L. V. Q. Ribal, A. Deutsch,
and G. Gonthier, Ariane 5-the software reliability
verification process, In DASIA 98-Data Systems in
Aerospace, vol. 422, p. 201, 1998.

[22] C. T. Spiliopoulou, E. B. Viñuela, and B. F. Adiego,
Experience With Static PLC Code Analysis at CERN,
In 16th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'17),
Barcelona, Spain, pp. 1787-1791, 2017.

[23] E. Clarke, D. Kroening, and F. Lerda, A tool for
checking ANSI-C programs, In Tools and Algorithms
for the Construction and Analysis of Systems: 10th
International Conference, TACAS 2004, Proceedings
10, pp. 168-176, Springer Berlin Heidelberg, 2004.

[24] N. Ge, E. Jenn, N. Breton, and Y. Fonteneau, Formal
verification of a rover anti-collision system, In Critical
Systems: Formal Methods and Automated Verification:
Joint 21st International Workshop on Formal Methods
for Industrial Critical Systems and 16th International
Workshop on Automated Verification of Critical
Systems, FMICS-AVoCS 2016, Pisa, Italy, Proceedings
21, pp. 171-188, Springer International Publishing,
2016.

[25] K. Yang, C. Tian, N. Zhang, Z. Duan and H. Du, A
CEGAR-Based Static–Dynamic Approach to Verifying
Full Regular Properties of C Programs, IEEE
Transactions on Reliability 70, no. 4, pp. 1455-1467,
2021.

[26] O.M. Alhawi, H.Rocha, M. R. Gadelha, L. C. Cordeiro,
and E. Batista, Verification and refutation of C
programs based on k-induction and invariant
inference, International journal on software tools for
technology transfer 23, pp. 115-135, 2021.

[27] L. Asplund and K. Lundqvist, Safety critical systems
based on formal models, ACM SIGAda Ada Letters 20,
no. 4, pp. 32-39, 2000.

[28] B. Dobbing and A. Burns, The Ravenscar Tasking
Profile for High Integrity Real-Time Programs, In
SIGAda’98, 1998.

[29] S. Miller, E. Anderson, L. Wagner, M. Whalen, and M.
Heimdahl, Formal verification of flight critical
software, In AIAA Guidance, Navigation, and Control
Conference and Exhibit, p. 6431, 2005.

[30] J. Yoo, E. Jee and S. Cha, Formal modeling and
verification of safety-critical software, IEEE
software 26, no. 3, pp. 42-49.

[31] O. Sokolsky, M. Younis, I. Lee, H. Kwak, and J. Zhou,
Verification of the redundancy management system for
space launch vehicle: a case study, In Proceedings of

Fourth IEEE Real-Time Technology and Applications
Symposium, pp. 220-229, 1998.

[32] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I.
Niemelä and K. Heljanko, Model checking of safety-
critical software in the nuclear engineering
domain, Reliability Engineering & System Safety, pp.
104-113, 2012.

[33] R. C. Bhushan and D. K. Yadav, Modeling and
Formally Verifying a Safety-Critical System Through
MCRL2, In 8th International Conference on Cloud
Computing, Data Science & Engineering (Confluence),
pp. 775-779, IEEE, 2018.

[34] X. Gan, J. Dubrovin, and K. Heljanko, A symbolic
model checking approach to verifying satellite onboard
software, Science of Computer Programming 82, pp.
44-55, 2014.

[35] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, A
formal approach to AADL model-based software
engineering, International Journal on Software Tools
for Technology Transfer, pp. 219-247, 2020.

[36] F. Yan and T. Tang, Formal modeling and verification
of real-time concurrent systems, In 2007 IEEE
International Conference on Vehicular Electronics and
Safety, pp. 1-6, 2007.

[37] L. Huang, EY.Kang, Formal Verification of Safety &
Security Related Timing Constraints for a Cooperative
Automotive System, In: Hähnle, R., van der Aalst, W.
(eds) Fundamental Approaches to Software
Engineering. FASE 2019, 2019.

[38] S. Chouali, A. Boukerche, A. Mostefaoui and M. A.
Merzoug, Formal Verification and Performance
Analysis of a New Data Exchange Protocol for
Connected Vehicles, in IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 15385-15397, 2020.

[39] P. R. Gluck and G. J. Holzmann, Using SPIN model
checking for flight software verification, Proceedings of
Institute of Electrical and Electronics Engineers (IEEE)
Aerospace Conference, Big Sky, MT, USA, pp. 1-1,
2002.

[40] F. Schneider, S.M.Easterbrook, J.R.Callahan, and
G.J.Holzmann, Validating Requirements for Fault
Tolerant Systems using Model Checking, Proceedings of
the Third Institute of Electrical and Electronics
Engineers (IEEE) International Symposium on
Requirements Engineering, Colorado Springs, CO,
USA, pp. 4-13, 1998.

[41] K. Havelund, M. Lowry, S.J. Park, C. Pecheur, J.
Penix, J. Visser and J.L. White, Formal Analysis of the
Remote Agent Before and After Flight, Proceedings of
Fifth NASA Langley Formal Methods Workshop,
Williamsburg, Virginia, 2000.

[42] G. Horvath, G. Jones, and R. Joshi, A Model-based
Approach to Verification of Spacecraft Software using

R. Krishnan et a l. 193

Ada User Journa l Volume 45, Number 3, September 2024

the SPIN Model Checker, AIAA SPACE 2009
Conference & Exposition, Pasadena, California, 2009.

[43] K. Havelund, M. Lowry and J. Penix, Formal analysis
of a space-craft controller using SPIN, IEEE
Transactions on Software Engineering, vol. 27, no. 8,
pp. 749-765, 2001.

[44] The Adacore website.

[45] LLVM Team, Dragonegg-Using LLVM as a GCC
Backend, 2013.

[46] C. Wang, S. Kundu, R. Limaye, M. Ganai, and A.
Gupta, Symbolic predictive analysis for concurrent
programs, Formal aspects of computing 23, pp. 781-
805, 2011.

[47] R. Krishnan and V.R Lalithambika, Modeling and
Validating Launch Vehicle Onboard Software Using the
SPIN Model Checker, Journal of Aerospace Information
Systems, 17(12), pp. 695-699, 2020.

[48] M. Carter, S. He, J. Whitaker, Z. Rakamaric and M.
Emmi, SMACK Software Verification Toolchain, 2016
Institute of Electrical and Electronics Engineers (IEEE)
/ American Computing Machinery (ACM) 38th
International Conference on Software Engineering
Companion (ICSE-C), Austin, TX, USA, pp. 589-592,
2016.

[49] A. Gurfinkel, T. Kahsai, and J. A. Navas, SeaHorn: A
framework for verifying C programs, Tools and

Algorithms for the Construction and Analysis of Systems
(TACAS), pp. 447–450, 2015.

[50] F. Merz, S. Falke, and C. Sinz, LLBMC: Bounded model
checking of C and C++ programs using a compiler IR,
Verified Software: Theories, Tools, Experiments
(VSTTE), pp. 146–161, 2012.

[51] L. Correnson, P. Cuoq, F. Kirchner, A. Maroneze, V.
Prevosto, A. Puccetti, J. Signoles and B. Yakobowski,
Frama-C User Manual For Frama-C 28.0 (Nickel),
CEA List, Saclay, France, 2023.

[52] R Krishnan and A Gupta, Modelling Task Priority in
Symbolic Predictive Analysis for Embedded Software in
Ada, Ada-Europe 2024 (accepted for presentation in
journal track).

[53] J.M. Faria, J. Martins, J.S. Pinto, An Approach to Model
Checking Ada Programs, M. Brorsson, L.M.Pinho
(eds) Reliable Software Technologies – Ada-Europe
2012, LNCS 7308, Springer-Verlag, 2012.

[54] C.B. Lourenço, M.J. Frade, J.S. Pinto, A Bounded
Model Checker for SPARK Programs, F. Cassez,
J.F.Raskin, (eds), Automated Technology for
Verification and Analysis, ATVA 2014, LNCS 8837,
Springer, 2014.

194

Volume 45, Number 3, September 2024 Ada User Journa l

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO
ci-tec GmbH
Beuthener Str. 16
76139 Karlsruhe
Germany
+491712075269
Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact: Ludovic Brenta

ludovic@ludovic-brenta.org

46 Rue d’Amsterdam
F-75009 Paris

France
sales@adacore.com
www.adacore.com

506 Royal Road
La Caverne, Vacoas 73310

Republic of Mauritius
Contact: David Sauvage

david.sauvage@adalabs.com
www.adalabs.com

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

Rue Marie de Bourgogne 52
1000 Brussels

Belgium
Contact: Emma Claus

Emma.Claus@eurocity.be
www.eurocity.com

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tool

Enterprise House
Baloo Avenue, Bangor
North Down BT19 7QT

Northern Ireland, UK
enquiries@sysada.co.uk

sysada.co.uk

1115 Rue Ren𿿿 Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

Beckeng�sschen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

http://www.ada-europe.org/info/sponsors

	MAIN.pdf
	Introduction
	Standard features
	New features
	Automated publishing
	Shared dependencies
	Lazy index loading
	Unicode defaults
	Nested crate detection

	Conclusion

	hirtos_ada_developers_workshop.pdf
	Introduction
	HiRTOS Overview
	Major Design Decisions
	Separation Kernel Major Design Decisions
	HiRTOS Code Architecture

	AUJ_Ada_Community_Advocacy.pdf
	The author's point of view
	Discovering and learning Ada

	Great features... and lack of success?
	Success in theory and in practice

	Community
	Community as a reflection of success

	Path forward
	Citations and references

