

Ada User Journa l Volume 45, Number 1, March 2024

ADA
USER
JOURNAL

Volume 45

Number 1

March 2024

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 17

Forthcoming Events 25

Proceedings of the “ADEPT: AADL by its Practitioners Workshop” of AEiC 2023

 H. N. Tran et al
“ADEPT 2023 Workshop Summary” 28

 K. Bae, P. C. Ölveczky
“Formal Model Engineering of Synchronous CPS Designs in AADL” 31

 B. R. Larson, E. Ahmad
“BLESS Behavior Correctness Proof as Convincing Verification Artifact” 35

 J. Hughes
“Mechanizing AADL in Coq – Extended Abstract” 47

 H. Valente, M. A. de Miguel, A. G. Pérez, A. Alonso, J. Zamorano, J. A. de la Puente

 “Extension of the TASTE Toolset to Support Publisher-Subscriber Communication” 51

 L. Kosmidis

 “METASAT’s Model Based Design Solutions” 54

 R. Mittal, D. Blouin
“Facilitating AADL Model Processing and Analysis with OSATE-DIM” 55

 P. Dissaux
“LAMP: to Shed Light on AADL Models” 59

 D. Blouin, A. Bhobe, L. Pautet
“Challenges in Model Synchronization for Information Preservation Illustrated with the
FACE and AADL Standards” 63

Ada-Europe Associate Members (National Ada Organizations) 68

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

4

Volume 45, Number 1, March 2024 Ada User Journa l

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 8
Ada-related Tools 9
Ada Practice 9

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

Once more, the flagship Ada conference
is upon us [1], this year taking place in
Barcelona, Spain. Furthermore, among its
satellite activities is an “Ada Developers
Workshop” [2] that aims to fill in for the
sorely missed “Ada Developer Room” of
FOSDEM past.

For lovers of Ada nitty-gritty details, this
period includes a discussion of Container
and Cursor semantics [3] with head-
butting positions, so the reader can take
sides (or hold their unopposed personal
truth at home ;-)).

Sincerely,

Alejandro R. Mosteo.

[1] “AEiC 2024 - Ada-Europe Conference
- Deadlines Approaching”, in Ada-
related Events.

[2] “Ada Developer Workshop @ AEiC
2024, a New “FOSDEM DevRoom”
for the Community”, in Ada-related
Events.

[3] “Re: Map Iteration and Modification”,
in Ada Practice.

Ada-related Events
Ada-Europe Conference - 31
Jan Journal Track Extended
Deadline
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: Ada-Europe conference - 31 Jan

Journal Track Extended Deadline
Date: Mon, 8 Jan 2024 10:43:48 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

UPDATED Call for Contributions

28th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

www.ada-europe.org/conference2024

*** Journal track deadline EXTENDED
to 31 January 2024 ***

*** Other submissions by
26 February 2024 ***

Organized by Ada-Europe and Barcelona
Supercomputing Center (BSC), in

cooperation with ACM SIGAda, ACM
SIGBED, ACM SIGPLAN, and Ada

Resource Association (ARA)

#AEiC2024 #AdaEurope
#AdaProgramming

General Information

The 28th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2024) will take place
in Barcelona, Spain.

AEiC is a leading international forum for
providers, practitioners, and researchers in
reliable software technologies. The
conference presentations will illustrate
current work in the theory and practice of
the design, development, and maintenance
of long-lived, high-quality software
systems for a challenging variety of
application domains. The program will
also include keynotes, Q&A and
discussion sessions, and social events.
Participants include practitioners and
researchers from industry, academia, and
government organizations active in the
development of reliable software
technologies.

The topics of interest for the conference
include but are not limited to (more
specific topics are described on the
conference web page):

* Formal and Model-Based Engineering
of Critical Systems;

* High-Integrity Systems and Reliability;

* AI for High-Integrity Systems
Engineering;

* Real-Time Systems;

* Ada Language;

* Applications in Relevant Domains.

The conference comprises different tracks
and co-located events:

* Journal track papers present research
advances supported by solid theoretical
foundation and thorough evaluation.

* Industrial track contributions highlight
industrial open challenges and/or the
practitioners' side of a relevant case
study or industrial project.

* Work-in-progress track papers illustrate
novel research ideas that are still at an
initial stage, between conception and
first prototype.

* Tutorials guide attenders through a
hands-on familiarization with innovative
developments or with useful features
related to reliable software.

* Workshops provide discussion forums
on themes related to the conference
topics.

* Vendor presentations and exhibitions
allow for companies to showcase their
latest products and services.

Important Dates

31 January 2024 EXTENDED submission
deadline for journal track papers

26 February 2024 Deadline for
submission of industrial track papers,
work-in-progress papers, tutorial and
workshop proposals

22 March 2024 First round notification
for journal track papers, and notification
of acceptance for all other types of
submissions

11-14 June 2024 Conference

Call for Journal Track Submissions

Following a journal-first model, this
edition of the conference includes a
journal track, which seeks original and

 5

Ada User Journa l Volume 45, Number 1, March 2024

high-quality papers that describe mature
research work on the conference topics.
Accepted journal track papers will be
published in a Special Issue of Elsevier
JSA - the Journal of Systems Architecture
(Q1 ranked, CiteScore 8.5, impact factor
4.5). Accordingly, the conference is listed
as "Journal Published" in the latest update
of the CORE Conference Ranking
released in August 2023. Contributions
must be submitted by 31 January 2024.
Submissions should be made online at
https://www.editorialmanager.com/jsa/,
selecting the "Ada-Europe AEiC 2024"
option (submission page open from 15
November 2023) as article type of the
paper. General information for submitting
to the JSA can be found at the Journal of
Systems Architecture website.

JSA has adopted the Virtual Special Issue
model to speed up the publication
process, where Special Issue papers are
published in regular issues, but marked as
SI papers. Acceptance decisions are made
on a rolling basis. Therefore, authors are
encouraged to submit papers early, and
need not wait until the submission
deadline. Authors who have successfully
passed the first round of review will be
invited to present their work at the
conference. The abstract of the accepted
contributions will be included in the
conference booklet.

The Ada-Europe organization will waive
the Open Access fees for the first four
accepted papers (whose authors do not
already enjoy Open Access agreements).
Subsequent papers will follow JSA
regular publishing track. Prospective
authors may direct all enquiries regarding
this track to the corresponding chairs,
Bjorn Andersson
(baandersson@sei.cmu.edu) and Luis
Miguel Pinho (lmp@isep.ipp.pt).

Call for Industrial Track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Especially welcome
kinds of submissions are listed on the
conference website. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
1-to-2 pages abstract, by 26 February
2024, via EasyChair at
https://easychair.org/my/conference?conf
=aeic2024, selecting the "Industrial
Track". The format for submission is
strictly in PDF, following the Ada User
Journal style. Templates are available at
http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be invited to expand their
contributions into full-fledged articles for

publication in the Ada User Journal,
which will form the proceedings of the
industrial track of the Conference.
Prospective authors may direct all
enquiries regarding this track to its chairs
Luciana Provenzano
(luciana.provenzano@mdu.se) and
Michael Pressler
(Michael.Pressler@de.bosch.com).

Call for Work-in-Progress Track
Submissions

The work-in-progress track seeks two
kinds of submissions: (a) ongoing
research and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers describing research results that are
not mature enough to be submitted to the
journal track. Early-stage ideas are 1-page
papers that pitch new research directions
that fall within the scope of the
conference. Both kinds of submissions
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought. Authors shall
submit their work by 26 February 2024,
via EasyChair at
https://easychair.org/my/conference?conf
=aeic2024, selecting the "Work-in-
Progress Track". The format for
submission is strictly in PDF, following
the Ada User Journal style. Templates are
available at http://www.ada-
europe.org/auj/guide.

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WiP track of the Conference.
Prospective authors may direct all
enquiries regarding this track to the
corresponding chairs Alejandro R.
Mosteo (amosteo@unizar.es) and Ruben
Martins (rubenm@andrew.cmu.edu).

Awards

The organization will offer an honorary
award for the best technical presentation,
to be announced in the closing session of
the conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements. Tutorial
proposals shall include a title, an abstract,
a description of the topic, an outline of the
presentation, the proposed duration (half-
day or full-day), the intended level of the
contents (introductory, intermediate, or
advanced), and a statement motivating
attendance. Tutorial proposals shall be
submitted at any time but no later than the

26 February 2024 to the respective chair
Maria A. Serrano
(maria.serrano@nearbycomputing.com),
with subject line: "[AEiC 2024: tutorial
proposal]". Once submitted, each tutorial
proposal will be evaluated by the
conference organizers as soon as possible,
with decisions from January 1st. The
authors of accepted full-day tutorials will
receive a complimentary conference
registration, halved for half-day tutorials.
The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the AEiC conference. Workshop
organizers shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.
Workshop proposals shall be submitted at
any time but no later than the 26 February
2024 to the respective chair Sergio Saez
(ssaez@disca.upv.es), with subject line:
"[AEiC 2024: workshop proposal]". Once
submitted, each workshop proposal will
be evaluated by the conference organizers
as soon as possible, with decisions from
January 1st.

Academic Listing

The Journal of Systems Architecture,
publication venue of the journal track
proceedings of the conference, is Q1
ranked, with CiteScore 8.5 and Impact
Factor 4.5. The Ada User Journal, venue
of all other technical proceedings of the
conference, is indexed by Scopus and by
EBSCOhost in the Academic Search
Ultimate database.

Call for Exhibitors and Sponsors

The conference will include a vendor and
technology exhibition with the option of a
20 minutes presentation as part of the
conference program. Interested providers
should direct inquiries to the Exhibition &
Sponsorship Chair Ahlan Marriot
(ahlan@ada-switzerland.ch).

Venue

The conference will take place in
Barcelona, Spain. Barcelona is a major
cultural, economic, and financial centre,
known for its architecture, culture, and
Mediterranean atmosphere, a hub for
technology and innovation. There's plenty
to see and visit in Barcelona, so plan in
advance!

Organizing Committee

- Conference Chair

Sara Royuela, Barcelona Supercomputing
Center, Spain
sara.royuela@bsc.es

6 Ada-re lated Events

Volume 45, Number 1, March 2024 Ada User Journa l

- Journal Track Chairs

Bjorn Andersson, Carnegie Mellon
University, USA
baandersson@sei.cmu.edu

Luis Miguel Pinho, ISEP & INESC TEC,
Portugal
lmp@isep.ipp.pt

- Industrial Track Chairs

Luciana Provenzano, Mälardalen
University, Sweden
luciana.provenzano@mdu.se

Michael Pressler, Robert Bosch GmbH,
Germany
Michael.Pressler@de.bosch.com

- Work-In-Progress Track Chairs

Alejandro R. Mosteo, CUD Zaragoza,
Spain
amosteo@unizar.es

Ruben Martins, Carnegie Mellon
University, USA
rubenm@andrew.cmu.edu

- Tutorial Chair

Maria A. Serrano, NearbyComputing,
Spain
maria.serrano@nearbycomputing.com

- Workshop Chair

Sergio Saez, Universitat Politècnica de
València, Spain
ssaez@disca.upv.es

- Exhibition & Sponsorship Chair

Ahlan Marriott, White Elephant GmbH,
Switzerland
ahlan@Ada-Switzerland.ch

- Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

- Webmaster

Hai Nam Tran, University of Brest,
France
hai-nam.tran@univ-brest.fr

- Local Chair

Nuria Sirvent, Barcelona Supercomputing
Center, Spain
nuria.sirvent@bsc.es

Journal Track Committee

Al Mok, University of Texas at Austin,
USA

Alejandro Mosteo, CUD Zaragoza, Spain

Alwyn Godloe, NASA, USA

António Casimiro, University of Lisbon,
Portugal

Barbara Gallina, Mälardalen University,
Sweden

Bernd Burgstaller, Yonsei University,
South Korea

C. Michael Holloway, NASA, USA

Cristina Seceleanu, Mälardalen
University, Sweden

Doug Schmidt, Vanderbilt University,
USA

Frank Singhoff, University of Brest, FR

George Lima, Universidade Federal da
Bahia, Brazil

Isaac Amundson, Rockwell Collins, USA

Jérôme Hugues, CMU/SEI, USA

José Cruz, Lockeed Martin, USA

Kristoffer Nyborg Gregertsen, SINTEF
Digital, Norway

Laurent Pautet, Telecom ParisTech,
France

Leonidas Kosmidis, Barcelona
Supercomputing Center, Spain

Mario Aldea Rivas, University of
Cantabria, Spain

Matthias Becker, KTH - Royal Institute of
Technology, Sweden

Patricia López Martínez, University of
Cantabria, Spain

Sara Royuela, Barcelona Supercomputing
Center, Spain

Sergio Sáez, Universitat Politècnica de
València, Spain

Tucker Taft, AdaCore, USA

Tullio Vardanega, University of Padua,
Italy

Xiaotian Dai, University of York,
England

Industrial Track Committee

Aida Causevic, Alstom, Sweden

Alexander Viehl, Research Center for
Information Technology, Germany

Ana Rodríguez, Silver Atena, Spain

Aurora Agar, NATO, Netherlands

Behnaz Pourmohseni, Robert Bosch
GmbH, Germany

Claire Dross, AdaCore, France

Elena Lisova, Volvo CE, Sweden

Enricco Mezzeti, Barcelona
Supercomputing Center, Spain

Federico Aromolo, Scuola Superiore
Sant'Anna, Italy

Helder Silva, Edisoft, Portugal

Hugo Torres Vieira, Evidence Srl, Italy

Irune Agirre, Ikerlan, Spain

Jordi Cardona, Rapita Systems, Spain

José Ruiz, AdaCore, France

Joyce Tokar, Raytheon, USA

Luciana Alvite, Alstom, Germany

Marco Panunzio, Thales Alenia Space,
France

Patricia Balbastre Betoret, Valencia
Polytechnic University, Spain

Philippe Waroquiers, Eurocontrol NMD,
Belgium

Raúl de la Cruz, Collins Aerospace,
Ireland

Santiago Urueña, GMV, Spain

Stef Van Vlierberghe, Eurocontrol NMD,
Belgium

Work-in-Progress Track Committee

Alan Oliveira, University of Lisbon,
Portugal

J. Javier Gutiérrez, University of
Cantabria, Spain

Jérémie Guiochet, LAAS-CNRS, France

Kalinka Branco, University of São Paulo,
Brazil

Katherine Kosaian, University of Iowa,
USA

Kevin Cheang, AWS, USA

Kristin Yvonne Rozier, Iowa State
University, USA

Leandro Buss Becker, University of
Manchester, UK

Li-Pin Chang, National Yang Ming Chiao
Tung University, Taiwan

Mathias Preiner, Stanford University,
USA

Raffaele Romagnoli, Carnegie Mellon
University, USA

Robert Kaiser, RheinMain University of
Applied Sciences, Germany

Sara Abbaspour, Mälardalen University,
Sweden

Sergi Alcaide, Barcelona Supercomputing
Center, Spain

Simona Bernardi, Unizar, Spain

Stefan Mitsch, School of Computing at
DePaul University, USA

Teresa Lázaro, Aragon's Institute of
Technology, Spain

Tiago Carvalho, ISEP, Portugal

Yannick Moy, AdaCore, France

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 28th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), online from Santander, Spain ('21),

 7

Ada User Journa l Volume 45, Number 1, March 2024

Ghent, Belgium ('22), and Lisbon,
Portugal ('23).

Information on previous editions of the
conference can be found at www.ada-
europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2024 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

(V4.1)

AEiC 2024 - Ada-Europe
Conference - Deadlines
Approaching
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: AEiC 2024 - Ada-Europe

conference - Deadlines Approaching
Date: Fri, 16 Feb 2024 19:07:10 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

UPDATED Call for Contributions -

Additional Tracks

28th Ada-Europe International
Conference on Reliable Software

Technologies (AEiC 2024)

11-14 June 2024, Barcelona, Spain

*** DEADLINES approaching: 26
February and 4 March 2024 ***

www.ada-europe.org/conference2024

*** Submission DEADLINE
26 February 2024 ***

Workshops: submit to Workshop Chair,
Sergio Saez ssaez@disca.upv.es
subject "[AEiC 2024: workshop
proposal]"

Tutorials: submit to Tutorial and
Education Chair,
Maria A. Serrano
maria.serrano@nearbycomputing.com
subject "[AEiC 2024: tutorial proposal]"

*** EXTENDED submission
DEADLINE 4 March 2024 ***

Industrial- and Work-in-Progress-track:
submit via https://easychair.org/my/
conference?conf=aeic2024
select "Industrial Track" or "Work in
Progress Track"

For more information please see the full
Call for Papers at www.ada-europe.org/
conference2024/cfp.html

Organized by Ada-Europe and Barcelona

Supercomputing Center (BSC), in
cooperation with ACM SIGAda, ACM
SIGBED, ACM SIGPLAN, and Ada

Resource Association (ARA)

#AEiC2024 #AdaEurope
#AdaProgramming

--

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEiC 2024 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 28th Ada-Europe Int. Conf. Reliable
Software Technologies (AEiC 2024)

* June 11-14, 2024, Barcelona, Spain,
www.ada-europe.org/conference2024

(V6.1)

Ada Developer Workshop @
AEiC 2024, a New
“FOSDEM DevRoom” for
the Community
From: Fernando Oleo / Irvise

<irvise_ml@irvise.xyz>
Subject: Ada Developer Workshop @ AEiC

2024, a new “FOSDEM DevRoom” for
the community

Date: Sat, 24 Feb 2024 22:30:03 +0100
Newsgroups: comp.lang.ada

Dear Ada community,

I come with great news! For the past two
years, there was no Ada DevRoom over
@ FOSDEM, a place where the Ada
community used to meet and share their
work and projects. Some of us wanted to
keep having such experience as we
believed it to be a greatly beneficial
aspect to the wider Ada community.

For this reason, Fabien Chouteau, Dirk
Craeynest and Fernando Oleo Blanco,
made a proposal to the Ada-Europe
International Conference on Reliable
Software Technologies (AEiC 2024 aka
Ada-Europe 2024) in order to have a
“devroom” for the wider Ada community,
just like in FOSDEM.

We were accepted and you can already
find all the information over at the Ada
Developer Workshop webpage [1]!

I would encourage everybody to take a
look at it! Nonetheless, here is a quick
summary highlighting some of the points:

- It will take place on Friday, 14th of June
in Barcelona. Friday was chosen in order
to minimise the amount of free
days/holidays that we would need to
take off from our jobs and allow us to
then use the weekend to visit and enjoy
Barcelona.

- The cost will be lower than for the main
conference. Our goal is to make it
completely free, just like FOSDEM, but
this is still a Work-In-Progress (WIP).

- The nature of the event is similar to any
past DevRoom that took place @
FOSDEM. The main difference is that
now, being an open-source project will
not be a requirement.

- March 31st, 2024 is the (current)
deadline for submissions. If you would
like to present your work or discuss
topics, please, please please, keep this
date in mind!

We are eager to hear from all of you. And
if you have any questions, please, let us
know!

[1] https://www.ada-europe.org/
conference2024/adadev.html

From: Streaksu <streaksu@mailbox.org>
Date: Tue, 27 Feb 2024 06:51:03 +0100

That sounds amazing! Thank you so much
for your work and to the people at AEiC
for making it happen.

 > The cost will be lower than for the
main conference.

That would be a huge deal. I have not
checked this edition's registrations, but if
2023's are anything to go by, as a
hobbyist Ada developer, I don't think I
can justify it for myself. But a cheaper
event would be a great alternative. Please
do keep us updated!

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Fri, 22 Mar 2024 19:18:04 +0100

Hi Ada community!

This is a kind reminder that you can still
submit any talks to the Ada Developer
Workshop that will take place during the
AEiC 2024, on the 14th of June in
Barcelona!

Entry prices should be published shortly
in the AEiC website. Nonetheless, we are
still looking for some sponsorships :)

For more information see
http://www.ada-europe.org/
conference2024/adadev.html or email any
of the organisers (Fabien, Dirk and
Fernando).

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Mon, 25 Mar 2024 23:18:42 +0100

Great news everybody! This was posted
by Dirk on the Ada-Lang forum.

Hot news! Thanks to AdaCore sponsoring
the Ada Developer Workshop in
Barcelona, the early registration fee for
in-person participation will be only 10
EUR, including lunch and coffee breaks.

That’s as low-cost as attending an Ada
Developer Room at FOSDEM in

8 Ada-re lated Resources

Volume 45, Number 1, March 2024 Ada User Journa l

Brussels, as you easily spend 10 EUR on
food and drinks there… ;)

Registration info, for the conference,
tutorials, workshops, social events, will
shortly be added to the conference
website at Ada-Europe 2024 [1].

Hope to see many of you there!

And remember, submissions are still
welcome!

[1] http://www.ada-europe.org/
conference2024/

Ada Monthly Meetup 2024
From: Fernando Oleo / Irvise

<irvise_ml@irvise.xyz>
Subject: Ada Monthly Meetup 2024
Date: Sun, 3 Mar 2024 20:31:05 +0100
Newsgroups: comp.lang.ada

Dear all, this is just a quick reminder that
the next Ada Monthly Meetup will take
place on Saturday 9th of March!

No topics were proposed for this meetup.
Nonetheless, I will take the opportunity to
talk a bit about FOSDEM (and WolfSSL),
the newly proposed Ada Developer
Workshop during AEiC, remind people
about the newly released Alire v2.0-RC1
and a few other topics if we have time.

From: Fernando Oleo / Irvise
<irvise_ml@irvise.xyz>

Date: Sun, 17 Mar 2024 10:10:26 +0100

Hello everybody!

I would like to announce the April (2024)
Ada Monthly Meetup which will be
taking place on the 6th of April at
13:00 UTC time (15:00 CEST). As
always the meetup will take place over at
Jitsi. The Meetup will also be
livestreamed to Youtube.

If someone would like to propose a talk or
a topic, feel free to do so! We currently
have no topics :wink:

Though I will try to focus more on Ada
and I would like to bring people's
attention to [Tsoding's Ada livestreams]
(https://forum.ada-lang.io/t/
making-a-game-in-ada-with-raylib/704).

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is [Jitsi Meet]
(https://meet.jit.si/AdaMonthlyMeetup)
The room name is “AdaMonthlyMeetup”
and in case it asks for a password, it will
be set to “AdaRules”.

I do not want to set up a password, but in
case it is needed, it will be the one above
without the quotes. The room name is
generally not needed as the link should
take you directly there, but I want to write
it down just in case someone needs it.

Best regards and see you soon! Fer

P.S: it is that time of year when clocks
have their time changed. So please, take a
look at whether this affects you. (Central)
Europe will now go from CET to CEST,
so +2h. USA and related countries already
had their time changed last week.

Ada-related Resources
[Delta counts are from February 19th to
May 28th. —arm]

Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: 28 May 2024 13:23 CET
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: _705 (+144) members [1]

- LinkedIn: 3_509 (+30) members [2]

- Stack Overflow: 2_405 (+12)
 questions [3]

- Gitter: 253 (+10) people [4]

- Ada-lang.io: 219 (+37) users [5]

- Telegram: 201 (+28) users [6]

- Libera.Chat: 75 (-1) concurrent users [7]

[1] http://old.reddit.com/r/ada/

[2] https://www.linkedin.com/
groups/114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[5] https://forum.ada-lang.io/u

[6] https://t.me/ada_lang

[7] https://netsplit.de/channels/details.php
?room=%23ada&net=Libera.Chat

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: 28 May 2024 13:33 CET
To: Ada User Journal readership

GitHub: >1_000* (=) developers [1]

Rosetta Code: 950 (+10) examples [2]

 42 (+4) developers [3]

Alire: 405 (+12) crates [4]

 1_048 (new) releases [5]

Sourceforge: 251 (+3) projects [6]

Open Hub: 214 (=) projects [7]

Codelabs: 57 (=) repositories [8]

Bitbucket: 38 (+1) repositories [9]

*This number is a lower bound due to
GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] `alr search --list --full`

[6] https://sourceforge.net/directory/
language:ada/

[7] https://www.openhub.net/
tags?names=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: 28 Feb 2024 13:43 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 22 (+3) 0.83%
 (+0.06%) [1]

- PYPL Index: 19 (-4) 0.82% 1.08%
 (-0.26%) [2]

- Languish Trends: 180 (new) 0.01% [3]

- Stack Overflow Survey: 42 (=)
 0.77% (=) [4]

- IEEE Spectrum (general): 36 (=)
 Score: 0.0107 (=) [5]

- IEEE Spectrum (jobs): 29 (=)
 Score: 0.0173 (=) [5]

- IEEE Spectrum (trending): 30 (=)
 Score: 0.0122 (=) [5]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://tjpalmer.github.io/languish/

[4] https://survey.stackoverflow.co/2023/

[5] https://spectrum.ieee.org/top-
programming-languages/

Certificate Error Accessing
Adapower.com
From: Juanmiuk <juanmiuk@gmail.com>
Subject: Certificate Security Error when.

access adapower.com
Date: Wed, 24 Jan 2024 05:30:39 -0800
Newsgroups: comp.lang.ada

When I tried to access adapower.com
from the last version of Chrome and

Ada Prac t ice 9

Ada User Journa l Volume 45, Number 1, March 2024

NordVPN VPN the browser shows me
this error:

Your connection isn't private. The web
page you are trying to enter is not
certified by a known certifying authority.
Attackers might be trying to steal your
information (for example, passwords,
messages, or credit cards).

This error did not happen with Safari or
Microsoft Edge (last version)

What's going on?

From: Stéphane Rivière
<stef@genesix.org>

Date: Wed, 24 Jan 2024 16:11:42 +0100

Simply no TLS certificates (see the
padlock status before the URL)

This site is in ruins, out of date and should
no longer exist.

What's more, a Google search turns up
some dubious links.

Ada-related Tools
NeoVim Plugin to Publish
Alire Packages
From: Tama Mcglinn

<t.mcglinn@gmail.com>
Subject: NeoVim plugin to publish Alire

packages
Date: Sat, 17 Feb 2024 00:01:47 -0800
Newsgroups: comp.lang.ada

In case there's any NeoVim users who
also publish Alire packages, I wrote a
plugin for that;

https://github.com/
TamaMcGlinn/nvim-alire-tools

allows you to bind or call `:AlirePublish`
which handles everything for your Alire
toml file, and intelligently sees where you
are in the version publishing process.

Aunit.Checks
From: Simon Wright

<simon@pushface.org>
Subject: AUnit.Checks
Date: Sun, 24 Mar 2024 09:19:38 +0000
Newsgroups: comp.lang.ada

Has anyone come across this package?
AFAICT it doesn't appear in the AUnit
repo on Github.

Even the spec would be invaluable!

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Mar 2024 11:17:06 +0000

Cancel that! It's in Stephe Leake's AUnit
extensions, encountered in ada-mode.

Ada Practice
Re: Map Iteration and
Modification
[Continues from AUJ 44-4, December
2023. The discussion initially addressed
how to modify a container during
iteration, to later move onto iteration
semantics. —arm]

From: G.B.
<bauhaus@notmyhomepage.invalid>

Subject: Re: Map iteration and modification
Date: Mon, 1 Jan 2024 20:27:51 +0100
Newsgroups: comp.lang.ada

>> Suppose that there is a way of orderly
proceeding from one item to the next. It
is probably known to the
implementation of map. Do single steps
guarantee transitivity, though, so that
an algorithm can assume the order to be
invariable?

> An insane implementation can expose
random orders each time.

An implementation order should then not
be exposed, right? What portable benefits
would there be when another interface is
added to that of map, i.e., to Ada
containers for general use? Would it not
be possible to get these benefits using a
different approach? I think the use case is
clearly stated:

First, find Cursors in map =: C*.

Right after that, Delete from map all
nodes referred to by C*.

> Unless removing element invalidates all
cursors. Look, insanity has no bounds.
Cursors AKA pointers are as volatile as
positions in certain implementations.
Consider a garbage collector running
after removing a pair and shuffling
remaining pairs in memory.

> [...]

> you assume that cursors are ordered and
the order is preserved from call to call.
[...]

Yes, given the descriptions of
Ordered_Maps, so long as there is no
tampering, a Cursor will respect an order.
Likely the one that the programmer has in
mind.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Jan 2024 21:55:12 +0100

> An implementation order should then
not be exposed, right?

IMO, an order should be exposed. Not
necessarily the "implementation order"
whatever that might mean.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 2 Jan 2024 21:15:01 -0600

>> There is no "natural" order to the
key/element pairs; they are effectively
unordered.

> Iteration = order. It is the same thing. If
you provide iteration of pairs in the
mapping by doing so you provide an
order of.

Certainly not. An iteration presents all of
the elements in a container, but there is no
requirement that there is an order. Indeed,
logically, all of the elements are presented
at the same time (and parallel iteration
provides an approximation of that).

If you try to enforce an order on things
that don't require it, you end up
preventing useful parallelism (practically,
at least, no one has succeeded at
providing useful parallelism to sequential
code and people have been trying for
about 50 years -- they were trying when I
was a university student in the late
1970s).

>> [...] Certainly, no concept of "forward"
or "reverse" applies to such an ordering
(nor any stability requirement).

> It does. You have a strict total order of
pairs which guarantees existence of
previous and next pairs according to.

Again, this is unrelated. Iteration can
usefully occur in unordered containers
(that is, "foreach"). Ordering is a separate
concept, not always needed (certainly not
in basic structures like maps, sets, and
bags).

[...]

Ada requires that cursors continue to
designate the same element through all
operations other than deletion of the
element or movement to a different
container. Specific containers have
additional invariants, but this is the most
general one. No other requirement is
needed in many cases.

> Yes, position is a property of
enumeration.

Surely not. This is a basis for my
disagreement with you here. The only
requirement for enumeration is that all
elements are produced. The order is an
artifact of doing an inherently parallel
operation sequentially. We don't care
about or depend on artifacts.

[...]

>> You have some problem with an
iterator interface as opposed to an array
interface??

> Yes, I am against pointers (referential
semantics) in general.

This is nonsense - virtually everything is
referential semantics (other than
components). Array indexes are just a

10 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journa l

poor man's pointer (indeed, I learned how
to program in Fortran 66 initially, and the
way one built useful data structures was
to use array indexes as stand-ins for
pointers). In A(1), 1 is a reference to the
first component of A.

So long as you are using arrays, you are
using referential semantics. The only way
to avoid it is to embed an object directly
in an enclosing object (as in a record), and
that doesn't work for many problems.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 2 Jan 2024 21:22:00 -0600

> Cursor is merely a fat pointer.

A cursor is an abstract reference. It
might be implemented with a pointer or
with an array index. Indeed, the bounded
containers pretty much have to be
implemented with an underlying array.

It would be nice if there was some
terminology for abstract references that
hadn't been stolen by some programming
language. Terms like "pointer" and
"access" and "reference" all imply an
implementation strategy. That's not
relevant most of the time, and many
programming language design mistakes
follow from that. (Anonymous access
types come to mind).

From: Moi <findlaybill@blueyonder.co.uk>
Date: Wed, 3 Jan 2024 04:05:59 +0000

> It would be nice if there was some
terminology for abstract references that
hadn't been stolen by some
programming language. [...]

What about "currency", as used in DB
systems?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Jan 2024 11:04:58 +0100

> Certainly not. An iteration presents all
of the elements in a container, but there
is no requirement that there is an order.

The meaning of the word "iterate" is
doing something (e.g. visiting an element)
again. That *is* an order.

> Indeed, logically, all of the elements are
presented at the same time (and parallel
iteration provides an approximation of
that).

Parallel iteration changes nothing because
involved tasks are enumerated and thus
ordered as well.

> If you try to enforce an order on things
that don't require it, you end up
preventing useful parallelism [...]

Ordering things does not prevent
parallelism. But storing cursors for later is
a mother of all Sequentialisms! (:-))

Whether container elements can be
effectively deleted in parallel is an

interesting but rather impractical one.
Nobody, literally nobody, cares because
any implementation would be many times
slower than the worst sequential one! (:-))

> [...] Iteration can usefully occur in
unordered containers (that is,
"foreach").

"An enumeration is a complete, ordered
listing of all the items in a collection."

 -- Wikipedia

If "foreach" exposes an arbitrary ordering
rather than some meaningful (natural)
one, that speaks for "insanity" but changes
nothing.

> Ordering is a separate concept, not
always needed

Right. But no ordering means no iteration,
no foreach etc. If I can iterate, that I can
create an ordered set of (counter, element)
pairs. Done.

> Surely not. This is a basis for my
disagreement with you here.

Then you are disagreeing with core
mathematics... (:-))

> The only requirement for enumeration
is that all elements are produced.

Produced in an order. Elements only
produced" is merely an opaque set.
Enumeration of that set is ordering its
elements.

> The order is an artifact of doing an
inherently parallel operation
sequentially.

Yes, ordering is an ability to enumerate
elements of a set. It is not an artifact it is
the sole semantics of.

[...]

> So long as you are using arrays, you are
using referential semantics. [...]

The key difference is that index does not
refer to any element. It is container +
index that do.

From the programming POV it is about
avoiding hidden states when you try to
sweep the container part under the rug.

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 3 Jan 2024 22:07:30 -0600

> Parallel iteration changes nothing
because involved tasks are enumerated
and thus ordered as well.

Nonsense. There is no interface in Ada to
access logical threads (the ones created by
the parallel keyword).

> Ordering things does not prevent
parallelism.

Yes it does, because it adds unnecessary
constraints. It's those constraints that
make parallelizing normal sequential code

hard. A parallelizer has to guess which
ones are fundamental to the code meaning
and which ones are not.

[...]

You are adding an unnecessary property
to the concept of iteration. Iteration does
not necessarily imply enumeration (it can,
of course). Iteration /= enumeration.

[...]

Iteration is not necessarily enumeration. It
is applying an operation to all elements,
and doing that does not require an order.
Some specific operations might require an
order, and clearly for those one needs to
use a data structure that inherently has an
order.

> The key difference is that index does
not refer to any element. It is container
+ index that do.

That's not a "key difference". That’s
exactly how one should use cursors,
especially in Ada 2022. The Ada
containers do have cursor-only
operations, but those should be avoided
since it is impossible to provide useful
contracts for those operations (the
container is unknown, so the world can be
modified, which is bad for parallelism and
understanding). Best to consider those
operations obsolete. (Note that I was
always against the cursor-only
operations in the containers.)

So, using a cursor implies calling an
operation that includes the container of its
parameter.

> From the programming POV it is about
avoiding hidden states when you try to
sweep the container part under the rug.

That's easily avoided -- don't use the
obsolete operations. (And a style tool like
Jean-Pierre's can enforce that for you.)

> [...] Usability always trumps
performance.

That's the philosophy of languages like
Python, not Ada. If you truly believe this,
then you shouldn't be using Ada at all,
since it makes lots of compromises to
usability in order to get performance.

> And again, looking at the standard
containers and all these *tagged*
intermediate objects one needs in
order to do elementary things, I kind of
have doubts... (:-))

The standard containers were designed to
make *safe* containers with decent
performance. As I noted, they're not a
built-in part of the programming
language, and as such have no impact on
the performance of the language proper.
One could easily replace them with an
unsafe design to get maximum
performance -- but that would have to
return pointers to elements, and you've
said you don't like referential semantics.
So you would never use those.

Ada Prac t ice 11

Ada User Journa l Volume 45, Number 1, March 2024

You also can avoid all of the "tagged
objects" (really controlled objects) by
using function Element to get a copy of
the element rather than some sort of
reference to it. That's preferred if it
doesn't cost too much for your
application.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 4 Jan 2024 12:28:04 +0100

> Iteration is not necessarily enumeration.
It is applying an operation to all
elements, and doing that does not
require an order.

That is not iteration, it is unordered
listing, a totally useless thing because the
result is the same unordered set.

You could not implement it without prior
ordering of the elements you fed to the
threads. If the threads picked up elements
concurrently there would be no way to do
that without ordering elements into a
taken / not yet taken order. You cannot
even get an element from a truly
unordered set, no way! If the programmer
tried to make any use of the listing he
would again have to impose ordering
when collecting results per some shared
object.

The unordered listing is a null operation
without ordering.

> [...] So, using a cursor implies calling an
operation that includes the container of
its parameter.

OK. It is some immensely over-designed
index operation, then! (:-)) So, my initial
question is back, why all that overhead?
When you cannot do elementary things
like preserving your indices from a well-
defined set of upon deleting elements with
indices outside that set?

[...]

> Specifically, the containers are separate
from Ada.

Not really. Like STL with C++ it
massively influenced the language design
motivating adding certain language
features and shifting general language
paradigm in certain direction.

>> Usability always trumps performance.

> That's the philosophy of languages like
Python, not Ada.

Ah, this is why Python is totally
unusable? (:-))

Ada is usable and performant because of
the right abstractions it deploys. If you
notice performance problems then,
maybe, just my guess, you are using the
wrong abstraction?

> The standard containers were designed
to make *safe* containers with decent
performance.

Well, we always wish for the best... (:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 4 Jan 2024 20:00:37 -0600

> [...]

> Ah, this is why Python is totally
unusable? (:-))

I would tend to argue that it is indeed the
case that you get dubious results when
you put usability first. Ada puts
readability/understandability,
maintainability, and consistency first
(along with performance). Those
attributes tend to provide usability, but
not at the cost of making things less
consistent or understandable.

I wrote an article on this topic a year and
a half ago that I wanted to publish on
Ada-Auth.org. But I got enough pushback
about not being "neutral" that I never did
so. (I don't think discussing why we don't
do things some other languages do is
negative, but whatever.) I've put this on
RR's blog at
http://www.rrsoftware.com/html/blog/
consequences.html
so it isn't lost.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 05 Jan 2024 09:26:03 +0000

> http://www.rrsoftware.com/html/blog/
consequences.html

Thanks for this!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 5 Jan 2024 12:51:50 +0100

> http://www.rrsoftware.com/html/blog/
consequences.html

Thanks for posting this.

I disagree with what you wrote on several
points:

1. Your premise was that use = writing.
To me using includes all aspects of
software developing and maintenance
process. Writing is only a small part of
it.

2. You argue for language regularity as if
it were opposite to usability. Again, it
is pretty much obvious that a regular
language is easier to use in any possible
sense.

3. Removing meaningless repetitions
contributes to usability. But X := X + Y
is only one instance where Ada
required such repetition. There are
others. E.g.

 if X in T'Class then
 declare
 XT : T'Class renames T'Class (X);

 T'Class is repeated 3 times. A
discussion point is whether a new name
XT could be avoided etc.

 Introducing @ for a *single* purpose
contradicts the principle of regularity. I

would rather have a regular syntax for
most if not all such instances.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 6 Jan 2024 01:25:46 -0600

> 1. Your premise was that use = writing.

Perhaps I didn't make it clear enough, but
my premise was that many people making
suggestions for Ada confuse "ease-of-use"
with "ease-of-writing". I said
"mischaracterized" for a reason (and I see
that "mis" was missing from the first use,
so I just added that). "Ease-of-writing" is
not a thing for Ada, and it isn't considered
while the other aspects are weighed. And
as I said in my last message, there is a
difference in that writing more can help
understandability, but it never helps
writing.

[...]

> T'Class is repeated 3 times. A
discussion point is whether a new name
XT could be avoided etc.

Of course, this example violates OOP
dogma, and some people would argue that
it should be harder than following it.
That's the same reason that Ada doesn't
have that many implicit conversions. In
this particular example, I tend to think the
dogma is silly, but I don't off-hand see a
way to avoid the conversion being
somewhere (few implicit conversions
after all).

> Introducing @ for a *single* purpose
contradicts the principle of regularity.

@ is regular in the sense that it is allowed
anywhere in an expression. If you tried to
expand the use to other contexts, you
would have to differentiate them, which
would almost certainly require some sort
of declaration. But doing that risks
making the mechanism as wordy as what
it replaces (which obviously defeats the
purpose).

We looked at a number of ideas like that,
but they didn't seem to help
comprehension. In something like:

 LHS:(X(Y)) := LHS + 1;

(where LHS is an arbitrary identifier), if
the target name is fairly long, it could be
hard to find where the name for the target
is given, and in any case, it adds to the
name space that the programmer has to
remember when reading the source
expression. That didn't seem to add to
readability as much as the simple @ does.

In any case, these things are trade-offs,
and certainly nothing is absolute. But @
is certainly much more general than ":=+"
would be, given that it works with
function calls and array indexing and
attributes and user-defined operations
rather than just a single operator.

12 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journa l

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 7 Jan 2024 16:06:10 +0100

> [...] But @ is certainly much more
general than ":=+" would be [...]

For the 9X and 0X revisions I suggested
adding "when <condition>" to return and
raise statements, similar to its use on exit
statements. This was rejected because the
language already has a way to accomplish
this: if statements.

Given that one can do

declare
 V : T renames Very_Long_Identifier;
begin
 V := V - 23;
end;

it seems that @ should also have been
rejected. Probably more so, since @ is
completely new syntax rather than reusing
existing syntax on some additional
statements. What is the justification of
accepting @ while still rejecting the
other?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 8 Jan 2024 22:46:59 -0600

> For the 9X and 0X revisions I suggested
adding "when <condition>" to return
and raise statements, similar to its use
on exit statements.

I don't recall ever seriously considering
this (might just my memory getting old). I
suspect that didn't get rejected so much as
not making the cut as important enough.
We do try to limit the size of what gets
added, not just adding everyone's favorite
feature.

I'd guess that "raise Foo when Something"
would get rejected now as it would be
confusing with "raise Foo with
Something" which means something very
different. (At least the types of
"Something" are different in these two.)
OTOH, we added "when condition" to
loops (which I thought was unnecessary,
but I lost that), so arguably it would be
consistent to add it to other statements
and expressions as well. Perhaps you
should raise it again on Github.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Tue, 9 Jan 2024 10:43:38 +0100

>I suspect that didn't get rejected so much
as not making the cut as important
enough.

I don't consider special syntax to shorten
names in assignment statements important
at all. We have renames for that, and it is
a more general mechanism, applying to
more than just assignments.

“Usability” (was Re: Map
Iteration and Modification)
From: Lawrence D'Oliveiro

<ldo@nz.invalid>
Subject: Re: “Usability” (was Re: Map

iteration and modification)
Date: Sat, 6 Jan 2024 02:54:09 -0000
Newsgroups: comp.lang.ada

> http://www.rrsoftware.com/html/blog/
consequences.html

Without reading that, I would never have
understood “usability” to mean “ease of
writing”. I learned from early on in my
programming career that readability was
more important than writability. So
“using” a language doesn’t end with
writing the code: you then have to test and
debug it-- basically lick it into shape--then
maintain it afterwards.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 6 Jan 2024 01:03:05 -0600

> Without reading that, I would never
have understood "usability" to mean
"ease of writing". [...]

Usability is of course not just ease-of-
writing, but a lot of people tend to co-
mingle the two. For readability, too little
information can be just as bad as too
much. For writability, the less you have to
write, the better.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 6 Jan 2024 10:14:07 +0200

> Usability is of course not just ease-of-
writing, but a lot of people tend to co-
mingle the two. For readability, too
little information can be just as bad as
too much. For writability, the less you
have to write, the better.

I feel that is too narrow a definition of
writability (and perhaps you did not
intend it as a definition). Before one can
start typing code, one has to decide what
to write -- which language constructs to
use. A systematically constructed, regular
language like Ada makes that mental
effort easier, even if it results in more
keystrokes; a plethora of special-case
syntaxes and abbreviation possibilities
makes it harder.

Perhaps "writability" should even be
taken to cover the whole process of
creating /correct/ code, and include all the
necessary testing, debugging and
corrections until correct code is achieved.
Here of course Ada shines again, with so
many coding errors caught at compile
time.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 6 Jan 2024 21:21:30 -0400

> Usability is of course not just ease-of-
writing, but a lot of people tend to co-
mingle the two.

Yes, I'm always surprised to see many
languages (including Rust) praising
themselves for being "concise". Apart
from saving some keystrokes, I fail to see
the benefit of being concise...

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Tue, 09 Jan 2024 15:19:52 +0000

> [...] Apart from saving some keystrokes,
I fail to see the benefit of being
concise...

Agreed. However, it is a bit of a totem in
the FP cult.

Limited with Too
Restrictive?
From: Blady <p.p11@orange.fr>
Subject: Limited with too restrictive?
Date: Sat, 13 Jan 2024 17:11:35 +0100
Newsgroups: comp.lang.ada

I want to break some unit circularity
definitions with access types as for
instance with record:

type R1;
type AR1 is access R1;
type R1 is record
 Data : Natural;
 Next : AR1;
end record;

In my case, I have a unit:

package test_20240113_modr is
 type R2 is record
 Data : Natural;
 end record;
 type AR2 is access R2;
end test_20240113_modr;

"limited withed" in:

limited with test_20240113_modr;
package test_20240113_mods is
end;

Let's imagine the circularity, thus PS1 and
PS2 definitions are legal.

Of course the following isn't legal:

type AS1 is array (1..2) of
test_20240113_modr.R2; -- illegal

However why not with access type:

type AS2 is array (1..2) of
test_20240113_modr.AR2; -- illegal

Likewise, why not:

type AS3 is record
 Data : Natural;
 Next : test_20240113_modr.AR2; -- illegal
end record;

Isn't "limited with" too restrictive, is it?

Well, I could make some code transfers
from unit to another or access
conversions, that's what I actually do but
at heavy cost.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 13 Jan 2024 22:31:12 -0600

Ada Prac t ice 13

Ada User Journa l Volume 45, Number 1, March 2024

> However why not with access type:

> type AS2 is array (1..2) of
test_20240113_modr.AR2; -- illegal

For a limited with, one only knows the
syntactic declarations (we cannot assume
any analysis). Therefore, we cannot know
the representation of any type, including
access types.

Specifically, compilers may support
multiple representations for access types,
for a variety of reasons (the underlying
machine has different representations, as
on the 8086 and U2200 that we did
compilers for; because additional data
needs to be carried along to implement
Ada semantics - GNAT did that for access
to unconstrained arrays, and so on). The
representation can depend upon aspect
specifications, the designated subtype,
and more, none of which is known at the
point of a limited with.

We couldn't restrict implementations to a
single representation for access types, and
thus limited with has to treat them the
same as other types.

It's necessary to declare local access types
for entities that are accessed from a
limited view. The reason that anonymous
access types were expanded was to make
that less clunky -- but I don't think it
succeeded.

> Well, I could make some code transferts
from unit to another or access
conversions, that's what I actually do
but at heavy cost.

Yup, but the alternative is worse -
requiring all access types to be the most
general representation (which can have a
heavy performance cost).

String_Access in Unbounded
String Handling?
From: Blady <p.p11@orange.fr>
Subject: String_Access in unbounded string

handling?
Date: Sun, 14 Jan 2024 12:05:40 +0100
Newsgroups: comp.lang.ada

String_Access is defined in A.4.5
Unbounded-Length String Handling:

7 type String_Access is access all String;

and note:

75 The type String_Access provides a
(nonprivate) access type for explicit
processing of unbounded-length strings.

I wonder what String_Access is for and
what could be "explicit processing"?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 14 Jan 2024 12:17:25 +0100

String_Access is a mistake that should not
exist.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 14 Jan 2024 16:12:31 +0100

> String_Access is a mistake that should
not exist.

Well, from one point of view, surely.

However I frequently need such a type
because I in general refrain from using
Unbounded_String. Now, it would be no
problem to declare it as needed, except for
generics! If you have generic packages
like:

generic
 type Object_Type (<>) is private;
 type Object_Access_Type
 is access all Object_Type;

You want all instances to share the same
String_Access. So it is conflicting. One is
true, it has no place there. It should have
been the package Standard or none.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Jan 2024 19:24:40 -0600

> String_Access is a mistake that should
not exist.

I agree with Jeffrey. Whatever reason it
was initially put into the package has long
since ceased to be relevant. And, as
Dmitry notes, when you want such a type,
it's usually because you didn't want to use
Ada.Strings.Unbounded (or Bounded). So
the placement is odd at best.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Jan 2024 19:30:57 -0600

> ... It should have been the package
Standard or none.

None for me. ;-)

One really doesn't want to put anything in
Standard that isn't widely needed, as those
names become hard to use in other
circumstances. In particular, declarations
in Standard hide anything that is use-
visible with the same name, so adding
something to Standard can be rather
incompatible.

One could mitigate use-visibility
problems by allowing more extensive
overloading (for instance, of objects), but
that causes rare and subtle cases where a
program could change meaning without
any indication. (Where a different object
would be used, for instance.) That makes
that too risky a change for Ada.

From: Blady <p.p11@orange.fr>
Date: Wed, 17 Jan 2024 10:54:24 +0100

Thanks for all your answers,

This is probably a very minor subject,
however I submitted it:
https://github.com/
Ada-Rapporteur-Group/
User-Community-Input/issues/79

From: Tucker Taft
<tucker.taft@gmail.com>

Date: Wed, 17 Jan 2024 05:34:12 -0800

> I wonder what String_Access is for and
what could be "explicit processing"?

The idea was to support the explicit use of
new String'(...), X.all, and
Unchecked_Deallocation rather than the
implicit use of the heap inherent in
Unbounded strings. It was recognized that
you need a single global access type to
avoid having to do conversions all over
the place. This predated the availability of
stand-alone objects of an anonymous
access type (aka "SAOOAAATs" ;-), but
those are not universally loved either. It
certainly cannot be removed now without
potentially very painful disruption of
existing users. It could be moved to a
different package without too much
disruption, but I haven't seen any
groundswell of interest in doing that
either.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 18 Jan 2024 19:36:59 -0600

>[...] It certainly cannot be removed now
without potentially very painful
disruption of existing users.

I'm dubious that there are any such users.
Certainly, in the handful of cases where I
needed such a type, I just declared it
(strong typing, you know?) and never
thought of Ada.Strings.Unbounded as
being a place to find such a type already
defined. It is such an odd place I doubt
anyone outside of perhaps the people who
defined the type ever used it.

OTOH, I agree that the compatibility
impact is non-zero (anyone who did use it
would have to change their code), and the
benefit of removing the type at this point
is close to zero (junk declarations abound
in long-term Ada packages, what's one
more; and certainly there is a lot of
unused stuff in any particular reusable
package and any particular use), so the
cost-benefit ratio doesn't seem to make a
change here worth it. An Ada successor
language would design
Ada.Strings.Unbounded rather differently
(so as to be able to use string literals
directly with the type) and probably
would include universal character support
as well, so it's hard to find an important
reason to change this.

Also, I'm pretty sure we're discussed this
within the ARG several times in the past,
so this is well-trodden ground.

From: Blady <p.p11@orange.fr>
Date: Tue, 30 Jan 2024 16:53:22 +0100

At least, the type String_Access could be
tagged as obsolescent.

14 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journa l

Choice Must Be Static?
From: Blady <p.p11@orange.fr>
Subject: error: choice must be static?
Date: Sun, 11 Feb 2024 13:29:59 +0100
Newsgroups: comp.lang.ada

I've got the following GNAT error:

$ GCC -c -gnat2022 -gnatl
2024/test_20240211_static_choice.adb
GNAT 13.2.0
1. procedure test_20240211_static_choice is
2.
3. package Maps is
4. type Map_Type is private
5. with Aggregate => (Empty =>
 Empty_Map,
6. Add_Named => Add_To_Map);
7. procedure Add_To_Map (M : in out
 Map_Type; Key : in Integer; Value : in
 String);
8. Empty_Map : constant Map_Type;
9. private
10. type Map_Type is array (1..10) of String
 (1..10);
11. procedure Add_To_Map (M : in out
 Map_Type; Key : in
 Integer; Value : in String) is null;
12. Empty_Map : constant Map_Type :=
 [1..10 => " "];
-- error: choice must be static
>>> error: choice must be static

I wonder what more static it should be.
Any clue?

[Full source code removed. —arm]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 11 Feb 2024 21:56:17 +0100

I don't know what this means, but it's
definitely related to the Aggregate aspect.
This compiles:

Empty_Base : constant Map_Base :=
 (1 .. 10 => (1 .. 10 => ' '));

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 12 Feb 2024 09:12:37 +0100

Square brackets are the root of all evil!
(:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 12 Feb 2024 20:12:01 -0600

Looks like a compiler bug to me. The
nonsense message gives that away... :-)

From: Simon Wright
<simon@pushface.org>

Date: Tue, 13 Feb 2024 11:45:17 +0000

> Looks like a compiler bug to me. The
nonsense message gives that away... :-)

GCC 14.0.1 says

[...]

 4. type Map_Type is private
 5. with Aggregate => (Empty =>
Empty_Map,
>>> error: aspect "Aggregate" can only be
applied to non-array type

[...]
14. Empty_Map : constant Map_Type :=
[1..10 => " "];
>>> error: choice must be static

I think the first is because of ARM
4.3.5(2), "For a type other than an array
type, the following type-related
operational aspect may be specified"[1]
and the second is a "nonsense"
consequence.

[1] http://www.ada-auth.org/standards/
22rm/html/RM-4-3-5.html#p2

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 13 Feb 2024 22:28:22 -0600

Ah, yes, I didn't notice that part. One
cannot give the Aggregate aspect on an
array type, directly or indirectly. That's
because container aggregates are designed
to work like array aggregates, and we
didn't want visibility to determine the
interpretation of an aggregate (especially
where the same syntax could have a
different meaning in different visibility)..
Thus, there can be no point where a single
type can have both array aggregates and
container aggregates.

Note that record aggregates and container
aggregates are always syntactically
different, and thus it is OK to have both in
a single location (that's one of the reasons
that we adopted square brackets for
container aggregates). That seemed
important as the majority of private types
are completed by record types, and not
allowing record types in this context
would be difficult to work around.

From: Blady <p.p11@orange.fr>
Date: Sat, 17 Feb 2024 09:51:39 +0100

Thanks Randy for the explanation, it
helps.

In-Memory Stream
From: Drpi <314@drpi.fr>
Subject: In memory Stream
Date: Fri, 16 Feb 2024 10:41:12 +0100
Newsgroups: comp.lang.ada

I want to transfer some data between
applications through a memory buffer.
The buffer transfer between applications
is under control. My problem is with the
buffer content. I thought I'll use a Stream
writing/reading in/from the memory
buffer. How can I achieve this? I've found
no example doing this.

Note: I use Ada 2012.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 16 Feb 2024 11:40:54 +0100

I don't know if this is what you want, but
at least it is an example of using
streams…

Package Storage_Streams, from Adalog's
components page:
https://adalog.fr/en/components.html#
Storage_Stream

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 16 Feb 2024 13:40:27 +0100

> How can I achieve this? I've found no
example doing this.

It of course depends on the target
operating system. You need to create a
shared region or memory mapped file etc.
You also need system-wide events to
signal the stream ends empty or full.

Simple Components has an
implementation interprocess streams for
usual suspects:
http://www.dmitry-kazakov.de/ada/
components.htm#12.7

> Note : I use Ada 2012.

No problem, it is kept Ada 95 compatible.

From: Pascal Obry <pascal@obry.net>
Date: Fri, 16 Feb 2024 13:49:54 +0100

AWS comes with a memory stream
implementation.

https://github.com/AdaCore/aws/blob/
master/include/memory_streams.ads

You may want to have a look here.

From: Simon Wright
<simon@pushface.org>

Date: Fri, 16 Feb 2024 20:19:42 +0000

A spec and body for an implementation
I've had since 2008:
https://github.com/simonjwright/
coldframe/blob/alire/src/common/
coldframe-memory_streams.ads

https://github.com/simonjwright/
coldframe/blob/alire/src/common/
coldframe-memory_streams.adb

From: Drpi <314@drpi.fr>
Date: Sat, 17 Feb 2024 14:36:46 +0100

Concerning the OS and the buffer transfer
mechanism, as I said, this is under
control. I use Windows and the
WM_COPYDATA message.

My usage is a bit special. The writing
process writes a bunch of data in a
memory buffer then requests this buffer to
be transferred to another process by way
of WM_COPYDATA. The receiving
process reads the data from the "new"
memory buffer. I say "new" since the
address is different from the one used in
the writing process (of course it cannot be
the same).

The library Jean-Pierre pointed me to
perfectly matches this usage. Light and
easy to use. Thanks.

One enhancement I see is to manage the
buffer size to avoid buffer overflow (or
did I miss something?).

Thanks again to everybody.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 17 Feb 2024 15:26:45 +0100

Ada Prac t ice 15

Ada User Journa l Volume 45, Number 1, March 2024

> The library Jean-Pierre pointed me to
perfectly matches this usage. Light and
easy to use. Thanks.

:-)

 > One enhancement I see is to manage
the buffer size to avoid buffer overflow
(or did I miss something?).

I don't see what you mean here... On the
memory side, we are reading/writing
bytes from memory, there is no notion of
overflow. And the number of bytes
processed by Read/Write is given by the
size of Item, so no overflow either...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Feb 2024 15:28:54 +0100

You ask Windows to copy a chunk of
memory from one process space into
another, so yes, it is physically different
memory. Different or same address tells
nothing because under Windows
System.Address is virtual and can point
anywhere.

As you may guess it is a quite heavy
overhead, not only because of copying
data between process spaces, but also
because of sending and dispatching
Windows messages.

Note, that if you implement stream
Read/Write as individual Windows
messages it will become extremely slow.
GNAT optimizes streaming of some built-
in objects, e.g. String. But as a general
case you should expect that streaming of
any non-scalar object would cause
multiple calls to Read/Write and thus
multiple individual Windows messages.

An efficient way to exchange data under
Windows is a file mapping. See
CreateFileMapping and MapViewOfFile.

https://learn.microsoft.com/
en-us/windows/win32/api/winbase/
nf-winbase-createfilemappinga

https://learn.microsoft.com/
en-us/windows/win32/api/memoryapi/
nf-memoryapi-mapviewoffile

Then use CreateEvent with a name to
signal states of the stream buffer system-
wide. Named Windows events are shared
between processes.

https://learn.microsoft.com/
en-us/windows/win32/api/synchapi/
nf-synchapi-createeventa

[This is how interprocess stream is
implemented for Windows in Simple
Components]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Feb 2024 15:48:05 +0100

> On the memory side, we are
reading/writing bytes from memory,
there is no notion of overflow.

In the Simple Components there is a pipe
stream.

type Pipe_Stream
 (Size : Stream_Element_Count) is
 new Root_Stream_Type with private;

When a task writes the stream full (Size
elements), it gets blocked until another
task reads something out.

Another implementation

type Storage_Stream
 (Block_Size : Stream_Element_Count)
 is new Root_Stream_Type with private;

rather allocates a new block of memory.
The allocated blocks get reused when
their contents are read out.

From: Drpi <314@drpi.fr>
Date: Sat, 17 Feb 2024 15:56:34 +0100

> [...] As you may guess it is a quite
heavy overhead [...]

In my use case, there is no performance
problem. The purpose is to make an editor
single instance. When you launch the
editor the first time, everything is done as
usual. Next time you launch the editor
(for example by double clicking on a file
in file explorer) the init code of the editor
detects an instance of the editor is already
running, transfers the command line
arguments to the first instance and exits.

The buffer transfer occurs once when
starting a new instance of the editor.

However, I keep your solution in mind. I
might need it one day.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 17 Feb 2024 18:09:02 +0000

> But as a general case you should expect
that streaming of any non-scalar object
would cause multiple calls to
Read/Write and thus multiple
individual Windows messages.

Our motivation for the memory stream
was the equivalent of this for UDP
messages; GNAT.Sockets behaves
(behaved?) exactly like this, so we
buffered the result of 'Output & wrote the
constructed buffer to the socket; on the
other side, we read the UDP message,
stuffed its contents into a memory stream,
then let the client 'Input.

I can't remember at this distance in time,
but I think I would have liked to construct
a memory stream on the received UDP
packet rather than copying the content;
the compiler wouldn't let me. Perhaps
worth another try.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 17 Feb 2024 19:52:00 +0100

> One enhancement I see is to manage the
buffer size to avoid buffer overflow (or
did I miss something?).

The purpose of this stream is to access
raw memory, so there is no notion of

"buffer size". It is up to you to match your
(user) buffer with the memory buffer. Of
course, you can add a layer with all the
checks you want...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 17 Feb 2024 22:33:17 +0100

> I can't remember at this distance in
time, but I think I would have liked to
construct a memory stream on the
received UDP packet rather than
copying the content; the compiler
wouldn't let me.

UDP is a kind of thing... Basically, there
is no use of UDP except for broadcasting,
e.g. in LAN discovery.

In all other cases it is either TCP or
multicast. Since UDP does not guarantee
either delivery or ordering. It would be a
huge overhead to implement reliable
buffered streams on top of UDP, with
sequence numbers, acknowledgements,
re-sending, reordering etc.

As for taking apart a UDP packet, it is
straightforward. You simply declare a
stream element array of the packet size
and map it on the packet using:

pragma Import (Ada, A);
for A'Address use UDP_Packet'Address;

And somewhere

pragma Assert (Stream_Element'Size = 8);

just in case...

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 18 Feb 2024 00:00:11 -0000

> The writing process writes a bunch of
data in a memory buffer then requests
this buffer to be transferred to another
process by way of WM_COPYDATA.

I thought Windows had pipes.

From: Lawrence D'Oliveiro
<ldo@nz.invalid>

Date: Sun, 18 Feb 2024 00:02:33 -0000

> When writing in the stream, you have to
care to not overflow the buffer.

With pipes, the OS takes care of this for
you. Once its kernel buffer is full, further
writes are automatically blocked until a
reader has drained something from the
buffer.

It’s called “flow control”.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 18 Feb 2024 11:06:16 +0100

> I thought Windows had pipes.

Yes it has, but very rarely used though
much better designed than UNIX pipes.
See https://learn.microsoft.com/
en-us/windows/win32/api/winbase/
nf-winbase-createnamedpipea

In general Windows has much richer and
better API regarding interprocess

16 Ada Pract ice

Volume 45, Number 1, March 2024 Ada User Journa l

communication than Linux. After all
Windows NT was sort of descendant of
VMS, which was light years ahead of
UNIX Sys V. In recent times Linux
improved, e.g. they added futex stuff etc.
BSD is far worse than Linux in respect of
API.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 18 Feb 2024 10:06:46 +0000

> UDP is a kind of thing... Basically,
there is no use of UDP except for
broadcasting, e.g. in LAN discovery.

Worked for us, sending radar
measurements p-2-p at 200 Hz

> for A'Address use
UDP_Packet'Address;

OK if the participants all have the same
endianness. We used XDR (and the
translation cost is nil if the host is big-
endian, as PowerPCs are; all the critical
machines were PowerPC).

From: Björn Lundin <bnl@nowhere.com>
Date: Sun, 18 Feb 2024 12:36:54 +0100

> I thought Windows had pipes.

It does, we use it for our IPC in both
Linux and Windows. Works very well.
We use named pipes - where each process
knows its name through via env-var At
start they create a named pipe with that
name

We use anonymous pipes for client
communication

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 18 Feb 2024 14:02:32 +0100

> OK if the participants all have the same
endianness. We used XDR [...]

I always override stream attributes and
use portable formats. E.g. some chained
code for integers. Sign + exponent +
normalized mantissa for floats, again
chained. That is all. There is no need in
XDR, JSON, ASN.1 or other data
representation mess. They are just
worthless overhead.

Raise Expressions from
AARM
From: Blady <p.p11@orange.fr>
Subject: Raise expressions from AARM.
Date: Sat, 24 Feb 2024 10:50:31 +0100
Newsgroups: comp.lang.ada

AARM Ada 2022 section 11.3 presents
some uses of raise expressions including
this one:
(http://www.ada-auth.org/standards/
22aarm/html/AA-11-3.html)

2.a.10/4 ...

B : Some_Array := (1, 2, 3, others =>
 raise Not_Valid_Error);

What could be the use cases?

My guess: whatever the size of
Some_Array (greater than 3), B is
elaborated but raises Not_Valid_Error
when accessing component beyond
position 3:

type Some_Array is array
 (Positive range 1..10) of Natural;
...
B : Some_Array := (1, 2, 3, others =>
 raise Not_Valid_Error);
...
begin
X := B (2); -- OK
X := B (6); -- raises Not_Valid_Error
end;

Is it correct?

NB: GNAT 13.2 issues a compilation
error:
>>> error: "others" choice not allowed here
see: https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=113862

Thanks, Pascal.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 24 Feb 2024 11:39:08 +0100

> Is it correct?

No. This will raise the exception upon the
elaboration of B.

The only use of this that I can imagine is
if the length of Some_Array is 3. Then the
others choice is null, so the raise
expression is never evaluated. But if
someone changes the definition of
Some_Array to be longer, then the
exception will be raised.

> NB: GNAT 13.2 issues a compilation
error:

> >>> error: "others" choice not allowed
here

> see: https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=113862

The example in the error report has
Some_Array unconstrained, in which case
an others choice is not allowed. With the
constrained definition given above, the
aggregate is valid.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 24 Feb 2024 12:39:43 +0200

> What could be the use cases?

The point of these examples (which are
only in the discussion annotation, not in
the normative standard) is to discuss what
is syntactically legal and why. The
examples need not make practical sense.

> My guess: [...] raises Not_Valid_Error
when accessing component beyond
position 3:

No. A raise-expression is not a value that
can be stored in an array or passed
around; its evaluation raises an exception
/instead/ of yielding a value.

In this example, if the evaluation of the
array aggregate that initializes B evaluates
the expression supplied for the "others"
choice, this evaluation will raise
Not_Valid_Error and disrupt the
initialization of B.

It is not clear to me if the RM requires the
evaluation of the "others" expression if
there are no "other" indices.
Experimenting with GNAT (Community
2019) shows that if the Some_Array type
has 'Length = 3, the exception is not
raised (so the "others" value is not
evaluated), while if the 'Length is greater
than 3 the exception is raised.

> type Some_Array is array (Positive
range 1..10) of Natural;

> B : Some_Array := (1, 2, 3, others =>
raise Not_Valid_Error);

That should raise Not_Valid_Error during
the initialization of B.

From: Blady <p.p11@orange.fr>
Date: Sun, 25 Feb 2024 12:09:08 +0100

If I understand well, no compiler error nor
warning at compilation time but
Not_Valid_Error raised at run time
elaboration.

To be compared with:

B1 : Some_Array := (1, 2, 3);

No compiler error, one compiler warning
"Constraint_Error will be raised at run
time" and Constraint_Error range check
failed raised at run time elaboration.

From: Blady <p.p11@orange.fr>
Date: Sun, 25 Feb 2024 12:23:48 +0100

> The examples need not make practical
sense.

Well, despite I knew that, I wanted to
draw some use cases from them.

For instance:

 A : A_Tagged := (Some_Tagged'
 (raise TBD_Error) with Comp => 'A');

It will raise TBD_Error if Some_Tagged
is not a null record, good to know, isn't it?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 26 Feb 2024 22:01:23 +0200

> It will raise TBD_Error if
Some_Tagged is not a null record, good
to know, isn't it?

Hm, not raising the exception for a null
record seems weird to me, and I cannot
deduce it from the RM. Moreover, for a
plain qualified expression

Some_Tagged'(raise TBD_Error)

not in an extension aggregate GNAT
raises the exception even if the type is a
null record. I suspect that not raising the
exception for an extension aggregate
where the ancestor type is a null record is
a bug in GNAT.

