

Ada User Journa l Volume 44, Number 3, September 2023

ADA
USER
JOURNAL

Volume 44

Number 3

September 2023

Contents
Page

Editorial Policy for Ada User Journal 170

Editorial 171

Quarterly News Digest 172

Conference Calendar 194

Forthcoming Events 202

Articles from the AEiC 2023 Work-in-Progress Session

 G. Jäger, G. Licht, N. Seyffer, S. Reitmann
“VR-Based Teleoperation of Autonomous Vehicles for Operation Recovery” 204

 B. Badjie, J. Cecílio, A. Casimiro
“Denoising Autoencoder-Based Defensive Distillation as an Adversarial Robustness
Algorithm Against Data Poisoning Attacks” 209

 D. Brown, G. Hawe

 “Exploring Trade-Offs in Explainable AI” 214

 D. C. Schmidt, J. Spencer-Smith, Q. Fu, J. White

 “Cataloging Prompt Patterns to Enhance the Discipline of Prompt Engineering” 220

 E. Sisinni, A. Flammini, M. Gaffurini, P.Ferrari
“Exploiting Container-Based Microservices for Reliable Smart Mobility Applications” 228

 H. Silva, T. Carvalho, L. M. Pinho
“A Real-Time Parallel Programming Approach for Rust” 232

 B. Djika Mezatio, G. Kouamou, F. Singhoff, A. Plantec
“A POSIX/RTEMS Monitoring Tool and a Benchmark to Detect Real-Time Scheduling
Anomalies” 237

Articles from the AEiC 2023 Industrial Track

 V. J. Expósito Jiménez, B. Winkler, J. M. Castella Triginer, H. Scharke, H. Schneider,
E. Brenner, G. Macher
“Safety of the Intended Functionality Concept Integration into a Validation Tool Suite” 244

Ada-Europe Associate Members (National Ada Organizations) 248

Ada-Europe Sponsors Inside Back Cover

170

Volume 44, Number 3, September 2023 Ada User Journa l

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 171

Ada User Journa l Volume 44, Number 3, September 2023

Editorial

As we get closer to the end of 2023, I would like to refer again to the merger of the Ada User Journal with the Ada Letters,
which will likely happen in 2024. Given that the two publications have been sharing content for the last couple of years, one of
the main goals of the merger is to avoid this duplication. However, instead of keeping one of them and discarding the other, we
plan to create a new publication, bringing together the expertise from both and meant to reach a wider audience. Specific details,
like the new publication's name, formatting and design issues, and distribution methods, are still to be settled. I hope to bring
you more information on this topic in the December issue.

Concerning the contents of this September issue, we conclude the publication of the articles from the AEiC 2023 Work-in-
Progress session, and we include one article, the single one that was submitted to the AUJ for publication, from the AEiC 2023
Industrial Track. Seven AEiC 2023 WiP articles are included. We start with one authored by G. Jäger et al. from the University
of Freiberg, in Germany, which describes the work being done to address the problem of remotely rescuing autonomous robots
when safety-critical requirements are involved. Then, three articles related to AI follow. The first one, by B. Badjie et al., from
the University of Lisbon, Portugal, looks at the problem of attacks on deep neural network models, describing an approach
based on data denoising and reconstruction, combined with a defensive distillation methodology to improve the robustness
against adversarial attacks. Then, D. Brown and G. Hawe, from Ulster University in the UK, present their work on the
explainability of ML-based decisions, which is very important when dealing with safety-critical systems. In concrete, the article
looks at several possible metrics to evaluate explainer models, and their trade-off. The third article in this AI-related set is
authored by D. C. Schmidt et al. from Vanderbilt University, USA. The article delves into the discipline of prompt engineering,
discussing how to code prompt patterns for correctly using Large Language Models (LLMs), namely for the development of
more reliable software systems. We then provide an article authored by E. Sisinni et al. from the University of Brescia in Italy,
which proposes an architecture for exploiting container-based systems to better support the requirements of IoT smart mobility
applications. The next article, authored by T. Carvalho et al. from ISEP in Portugal, describes ongoing work to add real-time
parallel programming extensions to the Rust language, which are not yet included in the existing parallel programming libraries.
The last WiP article is authored by B. Djika Mezatio and G. Kouamou, from the University of Yaounde, in Cameroon, and by
F. Singhoff and A. Plantec, from the University of Brest, France. It presents MONANO, a POSIX user-level library that allows
monitoring real-time applications for detecting scheduling anomalies. The final article included in this issue is derived from a
presentation at the AEiC 2023 Industrial Track. It is entitled “Safety of the Intended Functionality Concept Integration into a
Validation Tool Suite” and presents work resulting from a collaboration between Austrian industry (Virtual Vehicle Research
GmbH and AVL List GmbH) and academia (University of Graz). In concrete, the paper describes the experience in the
integration of the SOTIF concept within the AVL SCENIUSTM tool suite, which covers the entire scenario-based validation
process.

Last but not the least, the issue includes the News Digest section and the Calendar and Events section, respectively prepared
by Alejandro R. Mosteo and Dirk Craeynest, their editors.

 Antonio Casimiro
Lisboa

September 2023
 Email: AUJ_Editor@Ada-Europe.org

172

Volume 44, Number 3, September 2023 Ada User Journa l

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 172
Ada-related Events 172
Ada-related Resources 172
Ada-related Tools 174
Ada and Operating Systems 175
Ada Practice 176

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

Thanks to the efforts of a few Ada
enthusiasts, it is now possible to peruse
on-line the complete High Order
Language Phase 1 reports for the original
four candidate languages, of which Ada
would eventually emerge. During this
phase, language proposals addressed the
IRONMAN requirements without
providing a prototype implementation.
Find the link on [1]; from my initial
cursory read, there is plenty of good stuff
in there!

If you are an Ada and macOS user and
have still not been affected by the
problem reported on [2], you probably
want to be aware of it, although,
hopefully, Apple will have fixed it by the
time you read this digest.

Finally, on the practical side, I want to
highlight the emerging consensus that
when using `Text_IO` to read files, you
should rely on the End_Error exception
rather than on the End_Of_File
subprogram. This is a rather
unconventional conclusion, in which the
exception becomes the ordinary; find the
rationale in [3].

Sincerely,
Alejandro R. Mosteo.

[1] “Common HOL Phase 1 Reports”, in
Ada-related Resources.

[2] “MacOS: Best Not Upgrade to
Xcode/CLT 15.0”, in Ada and
Operating Systems.

[3] “Get Character and Trailing New
Lines”, in Ada Practice.

Ada-related Events

October Ada Monthly
Meetup 2023

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: Re: Ada Monthly Meetup 2023
Date: Wed, 13 Sep 2023 21:30:10 +0200
Newsgroups: comp.lang.ada

I would like to announce the October Ada
Monthly Meetup which will be taking
place on the 7th of October at 13:00 UTC
time (15:00 CET). As always, the meetup
will take place over at Jitsi. Hopefully this
time I will not have the same amount of
technical issues…

If someone would like to propose a talk or
a topic, feel free to do so! I will be talking
about FOSDEM, but only for a couple of
minutes, since the dates have already been
announced (the same as every year, first
weekend of February).

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is [1]. The room name
is “AdaMonthlyMeetup” and in case it
asks for a password, it will be set to
“AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

[1] https://meet.jit.si/AdaMonthlyMeetup

From: Rod Kay <rodakay5@gmail.com>
Date: Sat, 23 Sep 2023 20:06:51 +1000

I might give a small talk on swig4ada, if
that would be of interest.

If it's possible to request talks, I'd love to
see an overview of 'Pragmarc' and 'Simple
Components' by Jeffrey and Dmitry.

I used the neural net component of
Pragmarc many years ago but have not
kept up with Pragmarc’s development.

Also, I've been meaning to look into
Simple Components for quite a while.

CfC 28th Ada-Europe Int.
Conf. Reliable Software
Technologies

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC 28th Ada-Europe Int. Conf.
Reliable Software Technologies

Date: Tue, 26 Sep 2023 12:06:18 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[CfP is included in the Forthcoming
Events Section —arm]

Ada-related Resources
[Delta counts are from July 28th to
October 10th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 10 Oct 2023 18:22 CET
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_422 (+51) members [1]

- LinkedIn: 3_454 (+6) members [2]

- Stack Overflow: 2_365 (+20)
 questions [3]

- Gitter: 229 (-1) people [4]

- Telegram: 158 (-1) users [5]

- Ada-lang.io: 146 (+13) users [6]

- Libera.Chat: 72 (-1) concurrent users [7]

[1] http://www.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[5] https://t.me/ada_lang

[6] https://forum.ada-lang.io/u

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

Ada-related Resources 173

Ada User Journa l Volume 44, Number 3, September 2023

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 10 Oct 2023 18:25 CET
To: Ada User Journal readership

GitHub: 1000* (+13) developers [1]

Rosetta Code: 940 (-1) examples [2]

 38 (-3) developers [3]

Alire: 370 (+7) crates [4]

Sourceforge: 247 (+4) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 57 (=) repositories [7]

Bitbucket: 37 (+6) repositories [8]

* This number is an unreliable lower
bound due to GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] https://sourceforge.net/directory/
language:ada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 28 Jul 2023 14:53 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 23 (=) 0.77% (=) [1]

- PYPL Index: 16 (=) 1.04% (-0.02%) [2]

- Stack Overflow Survey: 42 (=)
0.77% (=) [3]

- IEEE Spectrum (general): 36 (-1) Score:
0.0107 (new) [4]

- IEEE Spectrum (jobs): 29 (+4) Score:
0.0173 (new) [4]

- IEEE Spectrum (trending): 30 (+2)
Score: 0.0122 (new) [4]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://survey.stackoverflow.co/2023/

[4] https://spectrum.ieee.org/top-
programming-languages/

IRC Is Still Alive

From: Luke A. Guest
<laguest@archeia.com>

Subject: Reminder that the IRC is still alive
Date: Wed, 16 Aug 2023 19:05:10 +0100
Newsgroups: comp.lang.ada

About twice a year we try to advertise the
#ada channel on the Libera IRC network.
The channel continues to be active and
friendly. These days it averages about 63
users at a time, large enough to support
lively and informative discussions but
small enough so it's not a madhouse. The
user numbers did suffer on the move
when Freenode imploded.

Topics range all over the map, from
building the latest GNAT to writing an
OS in Ada to daily Ada programming
issues to how to use PolyORB to use the
Distributed Systems Annex. The stated
topic is discussing Ada in the context of
free and open-source software, but
commercial users are equally welcome.

So fire up your favorite IRC client and
come join us! The network is homed at
irc.Libera.chat, but has servers all over
the world. Visit www.Libera.chat on the
web for details. Hope to see you soon!

Common HOL Phase 1
Reports

From: Luke A. Guest
<laguest@archeia.com>

Subject: Common HOL Phase 1 Reports
Date: Wed, 30 Aug 2023 14:48:48 +0100
Newsgroups: comp.lang.ada

[This post refers to the Common High-
Order Language program, started in 1975,
of which Ada would be the outcome.
DTIC stands for Defense Technical
Information Center. —arm]

Edward Fish has managed to get the
DTIC to scan in the other language's
reports.

This has been a combined effort between
a few of us on IRC to try to get the other
two languages, blue and yellow released
so we can see what could've happened.

This report contains all 4 language
reports.

https://apps.dtic.mil/sti/trecms/pdf/
ADB950587.pdf

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 30 Aug 2023 21:20:28 +0100

Now we have all 5 reference docs out in
the open, yes 5. I want to ask the people
who were there at the time, were there
any analyses of the Tartan language?

Design: https://apps.dtic.mil/sti/citations/
ADA062815

From: Stéphane Rivière
<stef@genesix.org>

Date: Thu, 31 Aug 2023 06:32:50 +0200

Fascinating (C) Spock.

Big up for this work!

US Government Looking
into Memory Safe
Programming

From: Ajdude <aj@ianozi.com>
Subject: US Government looking into

memory safe programming
Date: Sun, 24 Sep 2023 22:28:56 -0000
Newsgroups: comp.lang.ada

The US Government is requesting
information on adoption of memory safe
programming languages and open-source
software security. They’re currently
taking comments until October 9th. I
think this is a good opportunity to help
bring Ada back into the spotlight.

https://www.federalregister.gov/
documents/2023/08/10/2023-17239/
request-for-information-on-open-source-
software-security-areas-of-long-term-
focus-and-prioritization

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 25 Sep 2023 08:52:33 +0100

History is repeating itself. How long
before they relax the requirements and
idiots say "we can use C again, yay!"?

From: Stéphane Rivière
<stef@genesix.org>

Date: Mon, 25 Sep 2023 11:59:57 +0200

> History is repeating itself.

+1

> How long before they relax the
requirements and idiots say "we can use
C again, yay!"?

By the time they discover Rust?

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 25 Sep 2023 12:38:54 +0200

> By the time they discover Rust?

Or when they realize that there is only one
Rust compiler, and therefore that a single
compiler virus could ruin the whole
defense system.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Mon, 25 Sep 2023 17:55:08 +0200

> Or when they realize that there is only
one Rust compiler, and therefore that a
single compiler virus could ruin the
whole defense system.

Maybe, given the emphasis on tools,
verification and best practices, they might
consider sub-languages, or profiles, of
several existing languages.

174 Ada-re lated Tools

Volume 44, Number 3, September 2023 Ada User Journa l

It's not like memory-safety cannot be
made available in languages other than
Rust, I should think? Though, it seems to
me that Rust has so much better market-
aware development strategies than any
other language since C, outside
Microsoft's or Apple's areas of sales.

Also, I understand that Linux kernel
development is steered towards Rust and
LLVM. So, they have decided not to go
back to the 80s, just pick some good bits
and move on, possibly producing grust or
crust while at it.

In order to pick well from Ada and the
concepts embodied in it, imagine what
parts of Ada should be thrown out,
ignoring commercial enterprises living off
legacy business? What changes to Ada are
a good fit while aiming at memory safety,
verification support, or light weight and
safe parallel execution?

As you can see in [1], there is a
suggestion to make money available to
refactoring efforts.

[1] https://www.federalregister.gov/
d/2023-17239/p-37

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 25 Sep 2023 17:21:57 +0100

> What changes to Ada are a good fit
while aiming at memory safety,
verification support, or light weight and
safe parallel execution?

I started thinking about that here
https://github.com/Lucretia/orenda.

From: Stéphane Rivière
<stef@genesix.org>

Date: Tue, 26 Sep 2023 08:55:11 +0200

> Or when they realize that there is only
one Rust compiler, and therefore that a
single compiler virus could ruin the
whole defense system.

Good point!

Still some doubts about their ability to
reason that far ;)

From: Kevin Chadwick
<kc-usenet@chadwicks.me.uk>

Date: Tue, 26 Sep 2023 11:23:24 -0000

>Still some doubts about their ability to
reason that far ;)

Whilst I have in the past refused to use
lattice semiconductor hardware due to a
CDN preventing secure compiler
verification, whilst apparently none or
few noticed.

I assume you mean trojaned compiler
code inserted upstream to disable
protections or ignore unsafe code?

Or do you mean utf-8 library code
substitution aimed at a particular
compiler?

Ada Advocacy Opportunity

From: Shark8
<onewingedshark@gmail.com>

Subject: Ada Advocacy Opportunity
Date: Wed, 27 Sep 2023 22:07:14 -0700
Newsgroups: comp.lang.ada

The federal government has issued an RFI
(Request For Information) on the topic of
increasing software security. 10-page max
(excluding cover-page and appendix, if
any).

Request for Information on Open-Source
Software Security: Areas of Long-Term
Focus and Prioritization

https://www.federalregister.gov/
documents/2023/08/10/2023-17239/
request-for-information-on-open-source-
software-security-areas-of-long-term-
focus-and-prioritization

Ada-related Tools

SPARK Reusable
Components

From: Pragmada Software Engineering
<pragmada@
pragmada.x10hosting.com>

Subject: [Ann] SparkRC
Date: Tue, 1 Aug 2023 10:58:34 +0200
Newsgroups: comp.lang.ada

Those using SPARK may find this useful:

https://github.com/jrcarter/SparkRC

[From the website: SPARK Reusable
Components – A few useful components
to complement the
Ada.Containers.Formal_* components,
primarily to learn about proofs and
functional correctness: queues, stacks, an
O(logN)-searchable ordered structure, (...)
maps. These can be fully proven to
correctly implement their contracts and to
be free of run-time errors. –arm]

Ada Binding to WolfSSL

From: Joakim Strandberg
<joakimds@kth.se>

Subject: Announcing Ada binding to the
wolfSSL library

Date: Thu, 3 Aug 2023 14:02:56 -0700
Newsgroups: comp.lang.ada

On the WolfSSL blog I saw the following
announcement today:

Today we are happy to announce the
availability of an Ada/SPARK binding
that enables Ada applications to use post-
quantum TLS 1.3 encryption through the
WolfSSL embedded SSL/TLS library.

It opens the door to obtaining FIPS 140-3
and DO-178C certifications for Ada and
Spark applications that use TLS for their
encrypted communications and also
makes them quantum-safe.

Check out the Ada/SPARK binding on
GitHub here: https://github.com/wolfSSL/
wolfssl/tree/master/wrapper/Ada

The Ada port is suitable for anything from
IoT, embedded systems to Desktop and
Cloud systems.

Contact us at facts@wolfssl.com, or call
us at +1 425 245 8247 with any questions,
comments, or suggestions.

URL to blog post:
https://www.wolfssl.com/announcing-
ada-binding-to-the-wolfssl-library/

LibAWS for Debian 12

From: philip...@gmail.com
<philip.munts@gmail.com>

Subject: libaws for Debian 12 (Bookworm)
Date: Tue, 8 Aug 2023 09:55:53 -0700
Newsgroups: comp.lang.ada

Debian 12 no longer includes system
packages for the AdaCore Ada Web
Server Library. (Debian 11 had libaws20-
dev et al).

I have managed to build AWS v23.0.0 for
Debian 12 and published it in the nascent
Munts Technologies Debian 12 Package
Repository, available at:

http://repo.munts.com/debian12

The goop to build libaws*.deb is stored
at: https://github.com/pmunts/
libsimpleio/tree/master/libaws

SweetAda on NEORV32

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda on NEORV32
Date: Thu, 10 Aug 2023 06:03:18 -0700
Newsgroups: comp.lang.ada

I’ve created a NEORV32 target platform
in SweetAda (https://github.com/gabriele-
galeotti).

NEORV32
(https://github.com/stnolting/neorv32) is a
popular RISC-V SoC implementation in
VHDL, suited for FPGAs.

The setup so far is blatantly primitive and
runs under simulation by means of
GHDL, outputting a welcome message
inside the simulated UART console and
continuously output the value of the
mtime timer.

So far I have no FPGA hardware (besides
the time) ready to create a real
implementation, so if someone is using
NEORV32 on real hardware, and is
willing to test, it will be very interesting
to know about a OK/KO flag feedback.
The current setup needs only UART
clocking parameters in the CTRL register,
which I suppose it depends on the actual
clock configuration. In the meantime I
will continue to develop things inside the
simulated GHDL environment.

Ada and Operat ing Systems 175

Ada User Journa l Volume 44, Number 3, September 2023

WinRT v3

From: Alexg <agamper@bigpond.net.au>
Subject: [Ann] WinRt - version 3
Date: Sat, 26 Aug 2023 22:18:29 -0700
Newsgroups: comp.lang.ada

Dear Ada community

I have created a new git repo for the Ada
binding to WinRT (now version 3).

This version is a cleaner implementation
than the previous version and includes the
following changes:

1) Wide strings are mapped to HStrings.

2) Async operations and actions are
handled automatically.

3) code files now contain code at the
Namespace level.

Git repo is located here
https://github.com/Alex-Gamper/
Ada-WinRt3

GNAT Studio 24.0 for
MacOS Ventura.

From: Blady <p.p11@orange.fr>
Subject: [ANN] GNAT Studio 24.0 for

macOS Ventura.
Date: Wed, 6 Sep 2023 13:17:51 +0200
Newsgroups: comp.lang.ada

Here is a very preliminary version of
GNAT Studio 24.0wa as a standalone app
for macOS 13:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2023-ventura

See readme for details.

Limitation: Ada Language Server has
some latencies and doesn't respond when
parsing source code with more 2000 lines.
It may be due to some compilation
options I missed.

There could be some other limitations that
you might meet. Feel free to report them
on MacAda list (http://hermes.gwu.edu/
archives/gnat-osx.html).

Any help will be really appreciated to fix
these limitations.

Simple Components v4.68

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.68
Date: Sat, 30 Sep 2023 18:58:05 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,

deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
persistent storage, multiple connections
server/client designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes (30 September 2023) to the
version 4.67:

- Boolean types handling was added to the
Python bindings;

- Python library search path for OSX
fixed.

Ada and Operating
Systems

Ada Support on Arch Linux

From: Rod Kay <rodakay5@gmail.com>
Subject: Ada Support on Archlinux
Date: Mon, 10 Jul 2023 04:22:50 +1000
Newsgroups: comp.lang.ada

Unfortunately, the attempt to have
gprbuild and xmlada added into the
official Archlinux package repositories
has not been successful. Nonetheless,
thanks to those who voted for these
packages. The gist of the problem from
Arch's Trusted Users (who manage
adding new packages into the official
repos) was "I don't use Ada, so I won't
sponsor it.".

Given this situation, I've created a custom
repository for the (50 odd) Arch Ada
packages, currently served by a Linode.
Details (and the current package list) can
be found here ...

https://wiki.archlinux.org/title/Ada

If anyone has any suggestions for
additional Ada projects to add to the
package list, please let me know.

MacOS: Best Not Upgrade
to Xcode/CLT 15.0

From: Simon Wright
<simon@pushface.org>

Subject: macOS: best not upgrade to
Xcode/CLT 15.0

Date: Wed, 20 Sep 2023 10:35:29 +0100
Newsgroups: comp.lang.ada

If you accept the Xcode/Command Line
Tools upgrade to 15.0, you’ll get crashes
in the linker (`ld`). If you can’t resist the
upgrade, gnatmake or gprbuild with `-
largs -Wl,-ld_classic`.

You probably won’t be offered the
upgrade unless you’re already running
Ventura.

MacOS Ventura 13.6 Update
Problem

From: Moi <findlaybill@blueyonder.co.uk>
Subject: macOS Ventura 13.6 update

problem
Date: Fri, 22 Sep 2023 21:02:17 +0100
Newsgroups: comp.lang.ada

Installing the macOS Ventura 13.6
security update clobbers GNAT.
Specifically, the link stage fails:

> -macosx_version_min has been renamed
to -macos_version_min
> 0 0x104de0f43 __assert_rtn + 64
> 1 0x104ce2f43
ld::AtomPlacement::findAtom(unsigned char,
unsigned long long,
ld::AtomPlacement::AtomLoc const*&, long
long&) const + 1411
> 2 0x104cff431
ld::InputFiles::SliceParser::parseObjectFile(m
ach_o::Header const*) const + 19745
> 3 0x104d0fb71
ld::InputFiles::parseAllFiles(void (ld::AtomFile
const*)
block_pointer)::$_7::operator()(unsigned
long, ld::FileInfo const&) const + 657
> 4 0x7ff80b631066
_dispatch_client_callout2 + 8
> 5 0x7ff80b642e09
_dispatch_apply_invoke + 213
> 6 0x7ff80b631033
_dispatch_client_callout + 8
> 7 0x7ff80b6410f6
_dispatch_root_queue_drain + 683
> 8 0x7ff80b641768
_dispatch_worker_thread2 + 170
> 9 0x7ff80b7cec0f _pthread_wqthread +
257
> ld: Assertion failed: (resultIndex <
sectData.atoms.size()), function findAtom, file
Relocations.cpp, line 1336.
> collect2: error: ld returned 1 exit status
> gnatmake: *** link failed.

Simon's "magic formula", '-largs -Wl,-
ld_classic' restores sanity. I guess the
CLTs were updated without asking
permission. 8-(

From: Simon Wright
<simon@pushface.org>

Date: Sat, 23 Sep 2023 12:16:03 +0100

I managed to avoid this this morning (I've
been resisting the attempted upgrade to
CLT 15.0) by looking to see what was
proposed, seeing that there were 2
upgrades (Ventura & CLT), and
unchecking the CLT.

Iain Sandoe recommends [1] re-installing
14.3 (you should be able to download it
from the developer.apple.com website,
although you do need an apple ID to do
that)

[1] https://github.com/iains/
gcc-12-branch/issues/
22#issuecomment-1730213294

176 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

From: Leo Brewin
<leo.brewin@monash.edu>

Date: Sun, 24 Sep 2023 08:37:04 +1000

Hmm, this is odd. I'm having no
problems. I'm running mac OS Ventura
13.6 (with the security update), CLT 15.0
and GNAT based on GCC 13.1.

From: Moi <findlaybill@blueyonder.co.uk>
Date: Sun, 24 Sep 2023 01:47:57 +0100

> Hmm, this is odd. I'm having no
problems.

Ah! I'm still on GNAT 12.2.0.

I should have added that, although the
link phase works, it produces this
message, which is new:

> -macosx_version_min has been renamed
to -macos_version_min

And Free Pascal Compiler version 3.2.2
[2021/05/16] for x86_64 also complains,
thus;

> ld: warning: -multiply_defined is obsolete

But again, the linking succeeds.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Sep 2023 12:55:56 +0100

> Hmm, this is odd. I'm having no
problems. I'm running mac OS Ventura
13.6 (with the security update)

I was under the impression that 13.6
was a security update!

Investigation so far shows that linking
against the static Ada runtime (the
default, -bargs -static) crashes, against the
shared runtime (-bargs -shared) is OK.

With 12.2.0, 13.1.0, 14.0.0.

It occurs to me that it might be _any_
static library? ... later

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Sep 2023 16:38:36 +0100

> It occurs to me that it might be _any_
static library? ... later

Yes, so it is. Damn.

GNAT Linking and MacOS

From: Moi <findlaybill@blueyonder.co.uk>
Subject: GNAT linking and macOS
Date: Wed, 27 Sep 2023 20:30:17 +0100
Newsgroups: comp.lang.ada

I installed 14.0, Sonoma, on my M1 Mac
last night.

The good news:

Using GNAT 12.2.0, it all just works, *so
long as* I REMOVE '-largs -Wl,-
ld_classic' from the linker options!

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 14:32:47 +0100

> Using GNAT 12.2.0, it all just works,
so long as I REMOVE '-largs -Wl,-
ld_classic' from the linker options!

Likewise, but that didn't work for me.

It turns out there's an environment
variable DEFAULT_LINKER, which
with the 15.0 CLT would be set to

export DEFAULT_LINKER=/Library/
Developer/CommandLineTools/usr/bin/
ld-classic

(the Xcode equivalent is much longer &
more inscrutable)

I haven't tried this.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 22:00:29 +0100

> Likewise, but that didn't work for me.

You can't reinstall the 14.3 CLT under
Sonoma (it's "too old"). I reinstalled from
a Time Machine backup, but if you don't
have that set up I'd recommend taking a
copy of /Library/Developer/
CommandLineTools before updating to
15.0.

> It turns out there's an environment
variable DEFAULT_LINKER [...]

> I haven't tried this.

This affects building the compiler, not
using it.

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Fri, 29 Sep 2023 19:30:27 -0700

[...] Are there any other workarounds to
solve the inability to link? This does not
only adversely affect Ada, but everything
that uses a linker, BTW.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 30 Sep 2023 14:55:09 +0100

> Are there any other workarounds to
solve the inability to link?

I have some evidence that the issue only
arises with static libraries. Not much help.

We're hoping that the 15.1 release of
Command Line Tools fixes this. In the
meantime,

(1) using gnatmake, or gprbuild without
changing the GPR:

 $ gnatmake foo.adb -largs -Wl,-ld_classic

or

 $ gprbuild -P foo -largs -Wl,-ld_classic

(2) modifying the GPR by adding a new
package Linker:

 package Linker is
 for Default_Switches ("ada") use
 ("-Wl,-ld_classic");
 end Linker;

(3) if you already have a package Linker,
modify it as above.

Ada Practice

Text vs Binary File
Identification

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Subject: Using "pure" (?) Ada, how to
determine whether a file is a "text" file,
not a binary?

Date: Sat, 1 Jul 2023 10:15:25 -0700
Newsgroups: comp.lang.ada

Another very beginner question here...

Using "pure" (?) Ada, how to determine
whether a file is a "text" file, not a binary?

Kind of like using the UNIX/Linux "file"
command, but doesn't have to be
comprehensive (yet). Something like the
Perl "-T" feature.

On the other hand, if there already exists
an Ada implementation of the UNIX
"file" command as a library, could you
point me to that?

As a side question, how does one read
"binary" files in Ada?

A UNIX/Linux use case for the previous
sentence is the concatenation of two (or
more) "binary" files that were created
using the UNIX/Linux "split" command.

So I'd be interested in emulating the
UNIX "cat" command for "binary" files.

These are just personal experiments for
learning how to do all kinds of Ada I/O...

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 1 Jul 2023 22:39:27 +0200

> Using "pure" (?) Ada, how to determine
whether a file is a "text" file, not a
binary?

That depends on the definition of a text
file. Under Unix and Windows, all files
are sequences of bytes, and so may be
considered sequences of Characters, and
so text files.

If you can define what distinguishes text
files from binary files, then it should be
fairly easy to write Ada to distinguish
them.

For example, if a text file is one in which
all the characters, except line terminators,
are graphic characters, then it should be
clear how to determine whether a file
meets that definition of a text file.

> As a side question, how does one read
"binary" files in Ada?

Ada has Direct_IO, Sequential_IO, and
Stream_IO for reading binary files. Which
you would use and how to use it depends
on what's in the file and what you need to
do with it.

Ada Prac t ice 177

Ada User Journa l Volume 44, Number 3, September 2023

Memoization in Ada

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Subject: memoization in Ada? Hash ADT?
Date: Fri, 21 Jul 2023 20:50:04 -0700
Newsgroups: comp.lang.ada

I'm working on the Rosetta Code task:

"Stirling numbers of the second kind"

I have a working recursive solution
written in Ada but I'd like to memoize it
to cut down on the redundant and
duplicative calls (similar to a recursive
solution to calculating the Fibonacci
sequence).

So I think I need a hash ADT (which I've
used in Perl) but I've never used in Ada.

So I want to preserve the calculation of
the Stirling2 for each N and K so I can do
a lookup. If this were based on a single
unsigned integer, an array would suffice.
Maybe a 2d array would suffice?

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Fri, 21 Jul 2023 22:30:44 -0700

I solved the specific problem using a 2d
array for caching. This is not
memoization, per se, but this works very
well. The recursive calls are now very fast
as there is a maximum of one calculation
per recursive call.

So, any resources on how to write Ada
programs that take advantage of
memoization?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 24 Jul 2023 14:18:25 -0700

> So, any resources on how to write Ada
programs that take advantage of
memoization?

Look here https://forum.ada-lang.io/ for
discussions about Advent of Code
puzzles. Some solutions use (and need,
for completing in a reasonable time)
memoization.

You find with HAC
(https://hacadacompiler.sourceforge.io/) a
set of solutions (search "memoiz*" or
"cache"), mostly compiling with the HAC
subset.

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Tue, 25 Jul 2023 21:38:02 -0700

Thanks for the pointer to the forum.

Regarding HAC, isn't that Windows-
only? I'm on a Mac (M1 chip). I'll look
again at HAC.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 26 Jul 2023 08:50:01 +0100

> Regarding HAC, isn't that Windows-
only? I'm on a Mac (M1 chip). I'll look
again at HAC.

It worked well enough for me to find a
failing test case (now fixed!)

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 26 Jul 2023 14:36:15 -0700

> Regarding HAC, isn't that Windows-
only?

Not at all :-)

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Wed, 26 Jul 2023 15:18:51 -0700

> > Regarding HAC, isn't that Windows-
only?

> Not at all :-)

Downloaded and ran demo. Will
experiment further as time permits. Nice!

Rosetta Proper Divisors
Fails to Compile

From: Kenneth Wolcott
kennethwolcott@gmail.com

Subject: Rosetta Code task Proper divisors
fails to compile

Date: Tue, 25 Jul 2023 21:49:49 -0700
Newsgroups: comp.lang.ada

Trying to understand (and use) a Rosetta
Code task (Proper divisors)...
https://rosettacode.org/wiki/
Proper_divisors#Ada

it fails to compile

gnatmake -vh ./proper_divisors.adb

GNATMAKE 13.1.0
Copyright (C) 1992-2023, Free Software
Foundation, Inc.
"proper_divisors.ali" being checked ...
 -> "proper_divisors.ali" missing.
gcc -c -I./ -I- ./proper_divisors.adb
generic_divisors.ads:11:08: error: (Ada 2005)
cannot copy object of a limited type (RM-
2005 6.5(5.5/2))
generic_divisors.ads:11:08: error: return by
reference not permitted in Ada 2005
End of compilation
gnatmake: "./proper_divisors.adb"
compilation error

Why does this work for the submitter of
the Rosetta Code task and not for me?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 26 Jul 2023 10:36:12 +0200

For some reason your gnatmake seems to
be defaulting to -gnat05 mode. This code
has an expression function, which is Ada
12, so try adding -gnat12 to the command.

You also should not need to put "./" in
front of the file name, though I don't see
how that would make a difference.

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Wed, 26 Jul 2023 11:30:12 -0700

Thank you for your suggestion. Doesn't
seem to have any effect.

(*SIGH*)

gnatmake -vh -gnat2012 proper_divisors.adb

GNATMAKE 13.1.0
Copyright (C) 1992-2023, Free Software
Foundation, Inc.
"proper_divisors.ali" being checked ...
-> "proper_divisors.ali" missing.
gcc -c -gnat2012 proper_divisors.adb
generic_divisors.ads:11:08: error: (Ada 2005)
cannot copy object of a limited type (RM-
2005 6.5(5.5/2))
generic_divisors.ads:11:08: error: return by
reference not permitted in Ada 2005
End of compilation
gnatmake: "proper_divisors.adb" compilation
error

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 26 Jul 2023 21:57:37 +0200

> Thank you for your suggestion. Doesn't
seem to have any effect.

Interesting. I get the same results with
GNAT 12.

Looking more closely at the code, I think
the error, while its msg is misleading, is
correct. A function that returns a limited
type can only return an aggregate, a
function call, or an object declared by an
extended return statement. The generic
formal object None is none of these.

Changing the generic parameter to a
function

 with function None return Result_Type;

makes the code correct. You need to
change the definition of Empty in
Proper_Divisors

 function Empty return Pos_Arr is
 (1 .. 0 => <>);

and create a function to supply for the 2nd
instantiation

 function None return Natural is (0);<
 ...
 package Divisor_Count is new
 Generic_Divisors (Result_Type => Natural,
 None => None,
 One => Cnt, Add => "+");

and then it compiles and runs.

Another possibility is to make
Result_Type simply private, though that
is slightly less general. That may be how
the OP got the code to compile and run. It
might be that limited was added later
because the OP saw that it could be, and
never tested the change.

178 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

Using 'Image with Alire

From: Seth Workman
<saworkman1@gmail.com>

Subject: Using 'Image with Alire
Date: Sun, 6 Aug 2023 14:17:40 -0700
Newsgroups: comp.lang.ada

I have only started learning about Ada
recently and have discovered the 'Image
attribute that can be used on all types
starting in Ada 2022.

I am using Alire and added the following
to include the `-gnat2022` switch.

``` 
    for Default_Switches ("Ada") use  
    Learning_Config.Ada_Compiler_Switches  
    & ("-gnat2022"); 
``` 

The Alire documentation warns about
switches ~"In general, this should be
avoided to preserve consistency in the
ecosystem"

Is this the correct way about adding this
switch or is there a way to use a toolchain
that already has it by default?

From: Simon Wright
<simon@pushface.org>

Date: Sun, 06 Aug 2023 22:58:12 +0100

> Is this the correct way about adding this
switch or is there a way to use a
toolchain that already has it by default?

This works fine, but in your alire.toml
you could say

[build-switches]
"*".ada_version = "ada2022"

or

[build-switches]
"*".ada_version = ["-gnat2022"]

See "Release Information" (near the end)
and "Build Profiles and Switches" in the
documentation.

From: Seth Workman
<saworkman1@gmail.com>

Date: Sun, 6 Aug 2023 15:17:07 -0700

I see now, I think using
"*".ada_version = "ada2022"
is better for this case.

Parallel Loops in GNAT

From: Jerry <list_email@icloud.com>
Subject: Parallel loops in GNAT?
Date: Fri, 11 Aug 2023 17:44:38 -0700
Newsgroups: comp.lang.ada

Does GNAT such as Simon's GCC 13.1.0
for macOS aarch64 allow parallel loops
and blocks?

From: Simon Wright
<simon@pushface.org>

Date: Sun, 13 Aug 2023 11:39:59 +0100

No, sorry, that's one of the advanced
features that AdaCore aren't working on
yet.

https://blog.adacore.com/
ada-202x-support-in-gnat

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 13 Aug 2023 14:44:02 +0200

ISO/IEC 8652:2023 is the first Ada
standard to be approved without a
working implementation. Probably a bad
sign.

From: Jerry <list_email@icloud.com>
Date: Sun, 13 Aug 2023 15:03:20 -0700

> https://blog.adacore.com/ada-202x-
support-in-gnat

Thanks, Simon. I saw that blog post but
since it's nearly three years old, I was
hopeful. My O(N^4) radar simulations
will have to remain slow. :-(

Unifont Statically Compiled
and Stack Size

From: Micah Waddoups
<micah.waddoups@gmail.com>

Subject: Unifont static compiled and stack
size...

Date: Sun, 13 Aug 2023 09:16:27 -0700
Newsgroups: comp.lang.ada

I tried to compile the Unifont hex file,
converted with a script into variable Ada
code, but it went on forever, gradually
blowing up my memory. I used an .ads
file and aimed for a static build, but I
suspect I would have hit the stack size
limit for executables if I succeeded

My request for insight is:

(A) How do you recommend I compile
the Unifont into a form that is usable
within my Ada program. (I am thinking
compiling C and importing, since C is so
basic it might just work, but even better
would be Assembly and I don't know how
to import a large data variable compiled
in Assembly or if I can even compile that
much data using Assembly... It should
work, but the compiler might complain
and I still have to figure out the importing
part.)

(B) Do you think this has a chance of
succeeding if I compile the font as a
shared library? That doesn't affect initial
stack limits, right?

Just to be clear, I am trying to import
values 0 .. 16#FFFFF#, way beyond the
two byte limit that so many libraries are
functionally bound by in one bottle neck
or another. I want to support something
similar to 'kmscon', but with some
shortcuts since I don't want to redo
everything that others have done well. I
just want to finish my library to a point of
usefulness and focus on other projects. I
felt compelled to create this library
because every other library I looked at
was broken in some way and even the
most common font systems fail to support
Unicode's full character range, making

much of it useless. I figured I could create
the exact effects that I am trying to with
Unifont both in graphical Windows of
various OSs, and on the Linux terminal if
I rewrite enough of the low level code that
I don't have to rely on the less complete
existing libraries. Admittedly, I have too
little time to work on it, and am so far
behind other people's wonderful work that
I will certainly have many holes and
omitted functionality that should
eventually be added later. My goal is to
both make my programming projects
possible and free certain features from too
restricted licensing.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 14 Aug 2023 11:07:14 +0300

> My request for insight is: (A) How do
you recommend I compile the Unifont
into a form that is usable within my
Ada program.

Could you show a little of the script-
generated Ada code, just for us to
understand the approach you have taken
to represent the Unifont file?

While waiting for that, it may help the
compiler if you disable the more
advanced compiler optimizations, because
some of them are super-linear in
complexity and probably (but depending
on the exact form of the Ada code) do not
help for this case, anyway.

> (I am thinking compiling C [...] but
even better would be Assembly [...]

I'm not familiar with the structure of the
Unifont file, but if it is something like a
table with rows and columns, it should be
rather easy to translate it into a list of
assembly-language constant-data
definitions.

Assemblers are typically linear in
complexity and should be able to handle
large data definitions, assuming there is
not a myriad of assembler labels that
make references between different parts
of the data structure.

Exporting a data object from assembly to
Ada is simple and does not depend on the
size of the object (but I admit I don't
know how this is done for dynamically
linked libraries). The only part that needs
thought is how to define the Ada type of
the object, but if the Unifont file is a row-
column table, in other words a list of
"row" records, that should be straight-
forward too.

So I think the assembly-language solution
is highly likely to work; its drawback, of
course, is non-portability. But the
constant-data definitions of most
assembly languages are very similar to
each other, so the assembler-generating
script should be easy to port to different
assembly languages.

Ada Prac t ice 179

Ada User Journa l Volume 44, Number 3, September 2023

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Aug 2023 10:31:43 +0200

> I'm not familiar with the structure of the
Unifont file [...]

A comparable case. I have XPM to Ada
translator (for having built-in images in
GTK). It simply creates packages with
declarations of initialized arrays. No stack
issues.

Doing something like that for bitmap
fonts is just as simple. The only minor
issue is creating an index map: code point
to the bitmap image name (array),
because a flat array would blow out.

P.S. I always wanted static functions in
Ada for the purpose of all static
initializations of objects like maps etc.

From: Kevin Chadwick
<kc-usenet@chadwicks.me.uk>

Date: Mon, 14 Aug 2023 09:25:07 -0000

> a flat array would blow out.

What does blow out mean in this context?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Aug 2023 11:39:45 +0200

> What does blow out mean in this
context?

If you tried:

 type Font_Type is array (Code_Point) of
 Bitmap_Ptr;

The range of code points is
0..16#10FFFF#. E.g. when I implemented
Ada.Strings.Maps for Unicode, I could
not use such arrays either as the native
ASCII implementation does.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 14 Aug 2023 12:06:35 +0200

> I tried to compile the Unifont hex file,
converted with a script into variable
Ada code, but it went on forever,
gradually blowing up my memory. I
used an .ads file and aimed for a static
build, but I suspect I would have hit the
stack size limit for executables if I
succeeded

As I understand it, the file in question is
for code points 0 .. 16#FFFF#, with a
maximum of 32 bytes per code point. A
straightforward representation of this is

package Unifont is
 type Byte is mod 2 ** 8 with Size => 8;
 type Line is array (1 .. 2) of Byte
 with Size => 16;
 type Bitmap is array (1 .. 16) of Line
 with Size => 256;
 function Width_8 (Map : in Bitmap)
 return Boolean is
 (for all L of Map => L (2) = 0);
 type Code_Point is mod 16#FFFF# + 1;
 type Font_Map is array (Code_Point)
 of Bitmap with Size => 2 ** 24;

Font : constant Font_Map :=
 (others => (others => (others => 0)));
end Unifont;

Font will occupy 2 MB.

We can test this with

with Ada.Text_IO;
with Unifont;
procedure Unifont_Test is
 -- Empty
begin -- Unifont_Test
 Ada.Text_IO.Put_Line (Item =>
 Unifont.Font (0) (1) (1)'Image);
end Unifont_Test;

and see what happens:

$ gnatmake -m -j0 -gnat12 -gnatan -gnato2 -
O2 -fstack-check unifont_test.adb
x86_64-linux-gnu-gcc-12 -c -gnat12 -gnatan -
gnato2 -O2 -fstack-check
unifont_test.adb
x86_64-linux-gnu-gcc-12 -c -gnat12 -gnatan -
gnato2 -O2 -fstack-check unifont.ads
x86_64-linux-gnu-gnatbind-12 -x
unifont_test.ali
x86_64-linux-gnu-gnatlink-12 unifont_test.ali
-O2 -fstack-check
$./unifont_test
0

so this representation seems to be
workable. It should be trivial to write a
program to read the file and produce the
real array aggregate for Font.

From: Micah Waddoups
<micah.waddoups@gmail.com>

Date: Mon, 14 Aug 2023 08:10:01 -0700

Jeff, you missed a digit - it's five F's
16#FFFFF# because that is as high as
Unifont goes in my copy of the hex file.
[...]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 14 Aug 2023 17:59:16 +0200

> Jeff, you missed a digit - it's five F's
16#FFFFF#

You're right. Sorry for misreading that.
But increasing Code_Point to include
16#F_FFFF# still works for me.

Unicode defines code points up to
16#10_FFFF#, but perhaps those over
16#F_FFFF# are unused. Increasing
Code_Point to include 16#10_FFFF# still
works for me. That's 34 MB. It won't fit
on the stack, but luckily library-level
constants aren't allocated on the stack.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Aug 2023 18:02:58 +0200

What are you going to do with this?

1. This is not a font usable in a GUI
framework.

2. This is not a drawable in-memory
image for a GUI framework either.
Provided, you wanted to render
obtained images manually. These

images must be in a format supported
by the corresponding engine.

E.g. GTK uses Pixbuf representation for
drawable in-memory images. Which is

 type Pixbuf_Image is array
 (Natural range 0..N*M-1) of GUChar;
 pragma Convention (C, Pixbuf_Image);

containing 4 channels RGB + alpha, row-
wise.

And, no, normally you cannot draw in an
arbitrary OS window.

If you are so keen to use GNU Unifont,
why do not you install it from its available
formats like TrueType and be done with
that? What is wrong with other fixed-size
fonts?

Why do you want to render glyphs
manually instead of using existing OS
facilities and GUI libraries? You cannot
get around these libraries without
rewriting device drivers and who knows
what else making the code highly non-
portable.

From: Micah Waddoups
<micah.waddoups@gmail.com>

Date: Mon, 14 Aug 2023 21:48:03 -0700

> What are you going to do with this?

Dmitry, of course, you are correct. This
was an attempt to take an image of the
font source. [...]

The rendering is done with a small cache
of per-need rendered Glyphs - each
rendered glyph is at least eight times
larger before any styling or
transformation. Rendering all the glyphs
at once takes up more memory than is
needed and presupposes the destination
format. So, in reality, more processor
work is being done by doing it in stages,
but less is being done in each stage, so
there is more room for other processing at
each stage. This is just the raw bitmap
font that I want in the program without
having to process and read the hex file
every time it loads (that would be a very
inefficient design).

In the first rendering, the glyphs that are
actually used are rendered into a cache
with only Alpha values. This is essentially
gray-scale and is the value-map used for
any transformations, glyph combining,
and plotting on a per-line image plot map
(which is another abstraction by line and
index/column of just the first..last pixel
boundaries). The plot map can very
quickly be changed for insertions,
deletions, changing text direction or flow,
etc. and only at the final rendering of the
View-able area is the Alpha transformed
into full color (4-byte with alpha) to be
sent to the GL, framebuffer, GTK, or
other pixel-map handling system. Much
like modern rendering systems, a lot of
calculations happen behind the scenes at
each key-press, only it is my attempt to
combine it all into one library and scale it

180 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

into a project that can be plugged into
whatever graphics system is being used.
It is probably slower in response to input
than GTK or any native text handling
system because effects, layers of glyph-
combinations, markups (squiggle line,
underline, etc), and colorization all go
into the font rendering before it hits the
graphics buffer, but it feels to me more
correct and avoids having to add post-
rendering effects as a later stage as much
as possible. Markups are done late, just
before rotation (if any), but that is just as
it must be, since they are effectively a
rendered element of a different size than
the individual glyphs they markup, yet
still done before the rendered map is
turned over to the graphics system.

The reason people rely on device drivers,
native widgets, and less-portable
combinations of libraries is that they
incorporate the features and functionality
desired into them, including how to
handle input. I am attempting to take the
lowest level of input (key-presses, clicks,
touch, etc.) like a video game might, and
outputting an image already rendered for
display, thus replacing the normally
convenient functionality provided by
other systems. I am *not* trying to
replace actual device drivers or rely on a
particular operating system's device
access scheme. That is why I am
considering other well established
libraries supporting GL or maybe SDL.
Not all programs render text and input
with the convenient systems, so this is
nothing new. Also, since this scheme still
tracks each character by line and index,
even if I am only able to support text-
mode terminal interface in one situation,
that will only prevent using the full
Unicode range of glyphs and
combinations, not disable my ability to
send/receive any given text with the
display.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Tue, 15 Aug 2023 10:40:45 +0200

> P.S. I always wanted static functions in
Ada for the purpose of all static
initializations of objects like maps etc.

If data form the equivalent of a static Ada
array, thus a mapping from an index type
to a value type, could you approximate
the static initialization of maps using
expression functions?

Simplifying example:

package sttc is
 type Key is range 1 .. 7;
 type Value is new Character;
 type Cursor is private;

 function lookup (K: Key) return Cursor;
 function element (C: Cursor) return Value;

private
 type Cursor is new Key;
end sttc;

package body sttc is
 function lookup (K: Key) return Cursor is
 (Cursor (K));
 function element (C: Cursor) return Value
 is
 (case C is
 when 1 => 'M',
 when 2 => 'M',
 when 3 => 'X',
 when 4 => 'X',
 when 5 => 'I',
 when 6 => 'I',
 when 7 => 'I'
);
end sttc;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 16 Aug 2023 08:17:50 +0200

> could you approximate the static
initialization of maps using expression
functions?

In general case no. Initialization cannot be
decomposed into functions. E.g. when it
requires global [yet static] data, many
places to set etc.

P.S. Expression functions are evil. I
wonder why there is no expression gotos
and labels? If you sell your soul to the
devil, get the whole package! (:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 17 Aug 2023 22:04:18 -0500

> P.S. Expression functions are evil. I
wonder why there is no expression
gotos and labels? If you sell your soul
to the devil, get the whole package! (:-
))

Ada only allows expressions to be
evaluated at elaboration time (outside of
generic instantiations), and expressions
have a well-defined and simple control
flow (even accounting for conditional
expressions and quantified expressions,
both of which implicitly appear in
aggregates even in Ada 83 - allowing
programmers to write them explicitly
makes the code more readable than the
horrible work-arounds commonly used
pre-Ada 2012). Gotos and labels have
arbitrary control flow, which can be much
harder to analyze. (Janus/Ada converts the
majority of code into an expression form
for optimization - essentially most id
statements become if expressions, and so
on. It simply punts when the control flow
is too complex to convert, so the
unrestricted use of gotos effectively
prevents most optimization as well as
static analysis.)

If it was up to me, I would have left out
declare expressions and quantified
expressions, so the capabilities of
expression functions would have been
much more limited. But it seems valuable
to be able to abstract an expression
without changing the semantics (as
requiring a separate body does).

GCC Support for Ada 2022

From: philip...@gmail.com
<philip.munts@gmail.com>

Subject: Which GCC releases have how
much support for Ada 2022?

Date: Mon, 14 Aug 2023 13:30:06 -0700
Newsgroups: comp.lang.ada

I am interested in cross-compilers for
Linux boards such as the Raspberry Pi. I
have successfully built cross-compilers
for GNAT/GCC 12.3.1 on Debian 12
using the latest Arm GNU manifest and
Linaro ABE, and Debian 12 has system
packages for GNAT/GCC 12.2.0, native
and cross, as well.

It isn't clear to me from the GCC release
notes how complete the support for Ada
2022 is in GNAT/GCC 12.2.0 or 12.3.1.
Is there a document or table somewhere
that keeps track of that? And how does
GCC 12 compare with GCC 13 WRT Ada
2022?

From: Micah Waddoups
<micah.waddoups@gmail.com>

Date: Tue, 15 Aug 2023 14:12:18 -0700

[...] You may be able to find most of what
you are looking for with the link in his
answer:
https://blog.adacore.com/
ada-202x-support-in-gnat

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Mon, 21 Aug 2023 13:04:30 -0700

> And how does GCC 12 compare with
GCC 13 WRT Ada 2022?

This post could be helpful:
https://forum.ada-lang.io/t/
gcc-13-1-released/374/3

In https://learn.adacore.com/courses/
whats-new-in-ada-2022/index.html course
there are GCC versions per feature.
Unfortunately the feature list is not
complete.

Parameterised 'Image
Attributes

From: Rod Kay <rodakay5@gmail.com>
Subject: Parameterised 'Image Attributes
Date: Fri, 18 Aug 2023 17:18:29 +1000
Newsgroups: comp.lang.ada

There has been some recent discussion on
#ada irc regarding formatted output.

Would it be possible/desirable to allow
the 'Image attribute to have formatting
parameters ? Something along the lines of
...

 put_Line (some_Integer'Image
 (Width => 5, Padding => '0'));

... and similar 'Image attribute parameters
for other types.

Ada Prac t ice 181

Ada User Journa l Volume 44, Number 3, September 2023

If the parameters have defaults, then there
should not be any backwards
compatibility issues (I think).

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 18 Aug 2023 09:25:44 +0100

I wanted them for ages, but there was a
conversation ages ago where someone on
here said attributes were for "debugging
only," yet that's not what the ARM says.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Fri, 18 Aug 2023 11:53:44 -0700

TeleSoft's compiler (which I worked on)
had 'Extended_Image and
'Extended_Value attributes that worked
like that. I found them quite useful --
especially as an easy way to drop the
leading space on Integer'Image.

One small problem was that we had
different parameters for integer and
enumeration types, which introduced an
ambiguity for discrete formal types.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 19 Aug 2023 11:14:34 +0200

I wanted them for ages, but [...] someone
on here said attributes were for
"debugging only,"

The intent of the 'Image attribute is to
have a quick representation, mainly for
debugging purposes. If you want nice
formatted output, use the Put procedure
on String from Text_IO.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Aug 2023 12:03:09 +0200

> The intent of the 'Image attribute is [...]
mainly for debugging purposes.

It seems that for the vast majority of Ada
users this intent was wrong...

> If you want nice formatted output, use
the Put procedure on String from
Text_IO.

Put does not supersede 'Image. Put is I/O.
'Image is pure string formatting. Put is
generic and requires instantiation of some
package with some difficult-to-guess
name. 'Image is built-in [statically]
dispatching and generated automatically
by the compiler.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 19 Aug 2023 13:56:14 +0200

> It seems that for the vast majority of
Ada users this intent was wrong...

The vast majority of Ada users ignore a
number of useful features provided by the
language, and keep asking for
improvements that are already there...

> Put does not supersede 'Image. [...]

Yes, Put has nothing to do with 'Image.
Yes, Put requires instantiation. So what?
Ada is more verbose, in favor of stricter
typing. Ease of reading over ease of

writing has always been a major design
principle of Ada - although I confess it
had a bad effect on its popularity, people
want to write fast and ignore long term
maintenance issues.

If you want formatting on an integer type
(with or without IO), you instantiate
Integer_IO. I don't find it hard to guess
the name... Maybe you had something
else in mind?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Aug 2023 15:01:36 +0200

> The vast majority of Ada users ignore a
number of useful features [...]

Or these features are not that useful?
Language users and designers have often
different perspectives...

> Yes, put requires instantiation. So what?
Ada is more verbose, in favor of stricter
typing.

I don't see how instantiation is stricter
typing. In fact instantiation introduces
overloading (static ad-hoc polymorphism)
which was always frowned upon at as less
type safe than overriding.

> Ease of reading over ease of writing has
always been a major design principle of
Ada

I don't buy this either. It is

 Put (X) vs. X'Image

equally readable and writable. If you refer
to the instantiation noise or with/use
clauses you would require to put
somewhere far above in the package, that
is not ease of reading. That is just
meaningless noise.

> I don't find it hard to guess the name...
Maybe you had something else in
mind?

Yes, all other types that might require
formatting. I doubt anybody, but a
language lawyer could name the package
appropriate for formatting a fixed-point
type without looking into the RM. Which
is absolutely unneeded as 'Image would
be perfectly OK if it had the necessary
parameters. All that generic text I/O
packages are unnecessary as the stream
I/O case perfectly illustrates. Ada 95 did
stream I/O if not right, but far better
making 'Read, 'Write etc attributes
overridable. The problem of generic mess
solved. We do not have and do not need
any generics for stream I/O. Good
riddance.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 19 Aug 2023 17:27:25 +0200

> The intent of the 'Image attribute is to
have a quick representation, mainly for
debugging purposes.

There is a common problem across many
types and problem domains of having a

function that returns a string of an
appropriate length representing a value of
the type with desired formatting.
Common examples include numeric
values, dates, and times. The resulting
string is usually combined with other
information into a message that may be
stored in memory for a while, though it is
rare for it not to be output eventually. As
an example, the message may be put on a
protected queue for later output by a
logging task.

Ada 83 tended not to include anything
that the developer could implement; there
was no math library or image functions
for dates or times. The 'Image attribute
was provided, but is unsuited for most
such uses.

The use of the Text_IO generic sub-pkg
Put procedures that output to strings is not
convenient because they are procedures,
not functions.

Later versions of Ada included more
support for such needs, but not for
numeric values.

The obvious solution is to have a library
containing appropriate functions, which
can be built around the Put procedures
while still being functions. Such functions
would need to be generic, unlike attribute
functions which are automatically
available for all types.

The conflict between this common need
and the minimal functionality provided by
'Image results in such requests. It seems
desirable for the language to provide such
functions, and extending the 'Image
functions seems like a reasonable way for
it to do so, regardless of the original
intentions for the attribute.

One library with such functions is the
PragmAda Reusable Components
(https://github.com/jrcarter/PragmARC).
The package PragmARC.Images
(https://github.com/jrcarter/PragmARC/bl
ob/Ada-12/pragmarc-images.ads)
provides such functions for integer and
floating-point types. Function
PragmARC.Images.Image is an
instantiation for Standard.Integer.

PragmARC.Date_Handler
(https://github.com/jrcarter/PragmARC/
blob/Ada-12/pragmarc-date_handler.ads)
provides image functions for dates and
times; although the language now
provides a function for a date-time image,
Date_Handler continues to be useful as it
provides for customized formats rather
than the single format provided by
Ada.Calendar.Formatting. Many users
also find the semantics of the latter's time-
zone parameter to be confusing.

ISO/IEC 8652:2023 provides a date-time
image function the returns the image for
the local time zone, but as there are no
compilers* for this version of the
language, I don't consider that relevant.

182 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

(*A compiler for a version of the
language implements the entire core
language of that version of the ARM.)

From: Moi <findlaybill@blueyonder.co.uk>
Date: Sat, 19 Aug 2023 17:49:41 +0100

> The intent of the 'Image attribute is to
have a quick representation, mainly for
debugging purposes.

My code uses 'Image heavily, because it is
usually the neatest and the clearest way to
format many strings that mingle words
and numbers.

I sometimes have to pass the result of
'Image to a function that implements the
kind of functionality people are asking
for, and it would be even neater and
clearer if I could get that with parameters
to 'Image itself.

None of that output has anything to do
with debugging.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sun, 20 Aug 2023 02:25:20 -0500

The profile of the Image attribute is:

 X'Image

where X is an object of any type (or value
of most types). And the old, unnecessary
form was:

 S'Image(X)

where S and X are of any type.

If one tries to add parameters to this, one
gives up this nice form for a mis-mash of
profiles for various classes of types.
Moreover, the result no longer composes
in the obvious way (necessary to have
Image for records and arrays).

Additionally, one ends up with a magic
mechanism that only the compiler can
use. That *never* is a good idea.
Especially as there now is a way to allow
Image to support user-defined types. It
would seem necessary to also support
user-defined formatting parameters (else
one has magic only applicable to a
handful of language defined types).

Attributes do not allow named parameters
outside a few special cases, and *never*
allow reordering of parameters. Does that
need to change, too?

Float input/output in particular is very
large, especially when all of the
formatting options are included. Do you
really want to drag that into *every* Ada
program, whether it uses it or not??

'Image is convenient for integer and
enumeration output, and one can format
them in the rare case where that is
necessary. But it is useless for float output
-- manual reformatting the output of
'Image would round the results
incorrectly.

Ada has few built-in facilities because its
primary purpose is to support the

development of proper ADTs. Ease of
writing is not a goal at all, and in most
cases, the extra text is valuable to
compilers and tools (even if it is not so
valuable to human readers). If it was up to
me, I would eliminate most of the
shortcuts from Ada and require
everything to be written out. (IDEs
could/should do most of that for you
anyway, so the extra text is not adding
much effort.)

Ergo, I hope this idea is dead-on-arrival. I
certainly won't be involved in it, that's for
sure.
From: G.B.

<bauhaus@notmyhomepage.invalid>
Date: Sun, 20 Aug 2023 09:53:11 +0200

> The conflict between this common need
and the minimal functionality provided
by 'Image results in such requests.

So, also

- See how other languages address
formats (good bits, bad bits).

- Consider use cases.

- I/O is the program(mer)'s raison d'être.
Can we easily Put something into a
stream without the help of a suitable
library?

Could there be a language defined type F
whose purpose is to support the
description of formats? Objects of type F
would "configure" what 'Image does
when computing a representation of a
date, a number, ...

 My_Length'Image (Arg => diameter,
 Format => ___);

Some use cases:

- I18n of number formats (cf ARM F.3),
CHF 1'234'000.–

- Handle ubiquitous ISO formats of date-
time (as mentioned below; also cf. ARM
9.6.1)

- reporting,
- integrate own output with output of

other system components (a site-wide
monitoring system searches outputs,
say)

- fill in templates when these do not
support formatting

- 'Input an object of type F at run-time, so
that program's use of 'Image can be
changed according to customer's local
expectations.

- support the formalized exchange of
"numerical" data in heterogeneous
systems, using text streams.

These use cases are about the O of I/O.
By symmetry, it would be nice to have
implementations of Ada that support the I
part of this kind of I/O, I think, with work
to be split between implementers and
programmers.

 My_Length'Value (Arg => diameter,
 Format => ___);

Or perhaps multimethods that take a
stream and a format when they need to
write a value?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 20 Aug 2023 11:27:47 +0200

> Could there be a language defined type
F whose purpose is to support the
description of formats?

Not without multiple dispatch support and
classes:

 Type x Format [x Target]

Otherwise you get an untyped mess as in
C:

 printf ("%s", 123);

In the case of 'Image the dispatch is hard-
wired. The compiler generates it
according to one of built-in classes like
'integer type'. So yes it would be no
problem to add parameters specific to
each of the classes as well as common
parameters like padding or alignment
inside a field. But it will never ever
happen.

You seem suggesting a class-wide
parameter type instead:

 type Format_Type is tagged record
 Width: Natural:= 0;
 Alignment: Alignment_Type:= Left;
 Padding: Character:= ' ';
 end record;
 type Integer_Format is new Format_Type
 with record
 Plus_Sign : Boolean := False;
 Base : Base_Type := 10;
 end record;
 X'Image (Format => Format_Type'Class)

This still requires a change that will be
outright rejected on highest philosophical
grounds. (:-))

However with a Format_Type you do not
need 'Image. You can simply use a binary
operation, e.g.

 function "/" (Value : Integer; Format :
 Integer_Format) return String;

So would do

 Put_Line ("X=" & X / (Width=>10,
 Padding=>'0', Alignment=>Right));

instead of

 Put_Line ("X=" & X'Image (Width=>10,
 Padding=>'0', Alignment=>Right));

Of course it must be generic, which kills
all fun.

Ergo

1. Compiler magic is necessary because
the language type system is too weak to
express things like formatting.

2. No proposal however useful and
reasonable will survive ARG because
of #1.

3. Use a library that does the stuff. E.g.

Ada Prac t ice 183

Ada User Journa l Volume 44, Number 3, September 2023

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#Integer_Edit

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 20 Aug 2023 11:43:01 +0200

> Additionally, one ends up with a magic
mechanism that only the compiler can
use. That *never* is a good idea.

A better idea would be to improve the
language to remove need in magic, but
that is *never* a good idea either! (:-))

> Attributes do not allow named
parameters outside a few special cases,
and *never* allow reordering of
parameters. Does that need to change,
too?

Elementary! Attribute is just an
alternative syntactic form of a subroutine
call. There is no reason why attribute
should be limited to look like FORTRAN
IV! (:-))

> 'Image is [...] useless for float output
[...]

Which is why Float 'Image must have
parameters!

> Ada has few built-in facilities because
it's primary purpose is to support the
development of proper ADTs. Ease of
writing is not a goal at all [...]

How is this related to the attribute 'Image
lacking necessary parameters? Why is a
generic function having such parameters
OK, while 'Image with same parameters is
not?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Aug 2023 18:11:19 -0500

Your #3 is the point of course. If a
reasonable library can be written, you
should use that. After all, the Ada
philosophy is that it is suspicious to use
any built-in types. Why then should it be
less suspicious to use other things that are
built-in??

The best approach for Ada going forward
is to add things that make it easier to build
good libraries (as in user-defined literals).
And minimize magic.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Aug 2023 18:34:55 -0500

> A better idea would be to improve the
language to remove need in magic, but
that is *never* a good idea either! (:-))

No, I generally agree with this. We
probably disagree on what would
constitute an improvement, however. ;-)

> Elementary! Attribute is just an
alternative syntactic form of a
subroutine call. There is no reason why
attribute should be limited to look like
FORTRAN IV! (:-))

That turns out to be a bad idea. The
reason people love attributes so much is

that they don't have to worry about
visibility -- they're always visible. That is
not and cannot be true for subprograms.

For example, the reason that we don't
allow user-defined attributes is that they
would compromise portability. Since
they're always visible, they could
hide/make illegal attributes that are used
in units (like generic units) that don't
know anything about the additions.
Moreover, not all attributes can be
described as subprograms given Ada's
current rules (reduction attributes have a
type parameter; some of the annex 13
attributes have "any type" parameters,
etc.)

It certainly would be a very bad thing for
Janus/Ada, which would have to have its
resolution and subprogram definition
mechanisms redesigned. (All
subprograms are materialized in the
Janus/Ada symboltable, in particular for
visibility management reasons, and that
would not be possible for attributes.
Resolution only works on materialized
subprogram definitions.)

> Which is why Float 'Image must have
parameters!

Which is why one shouldn't use
Float'Image! ;-)

> Why generic function having such
parameters is OK, while 'Image with
same parameters is not?

It's perfectly OK to overload functions
however one wants, because you can keep
anything that is problem from being
considered by avoiding "use" (and
"with").

'Image is not appropriate for an attribute
in the first place; attributes are supposed
to be simple compile-time defined
properties of a type. String conversion is
not that.

My preference for making Ada easier to
use for this sort of thing is to allow class-
wide elementary types. Then one could
have non-generic subprograms that
operate on all integer and float types.
(Fixed and enumerations would still
require generics, although I suspect most
people would simply convert fixed to
float for output rather than worrying about
an instantiation.) That would make a
library simple to use, and few people
would think that something built-in is
needed.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Aug 2023 18:37:43 -0500

> Of course it must be generic, which
kills all fun.

As noted in my other message,
resurrecting the Ada 95 idea allowing
class-wide types for elementary types
would eliminate (or at least greatly
reduce) this problem. I think that would

be a more productive way to address this
problem than hacking around with 'Image
some more. (We've already proven that it
is not a good way to define anything user-
defined, thus the rather complex way to
define such 'Image attributes.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 22 Aug 2023 09:38:38 +0200

> [...] allowing class-wide types for
elementary types would eliminate (or at
least greatly reduce) this problem.

Yes, but that would be a huge change.

> I think that would be a more productive
way to address this problem than
hacking around with 'Image some
more.

One does not exclude another. If you
allowed classes then there would be no
reason not to have attributes [as] official
primitive operations. E.g. an "imaginable"
interface would provide "'Image" and the
standard Integer would inherit from
"imaginable"...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 22 Aug 2023 10:13:47 +0200

> [...] not all attributes can be described as
subprograms given Ada's current rules
[...]

It is a primitive subprogram of some
built-in class. The magic is not in the
attribute, it is the class description. For
magical classes overriding a primitive
operation could look like

for <member-type>'<primitive-operation-
name> use <subroutine-name>;

[...]

The problem is that whatever intention
Ada designers had for attributes they also
gave them the property of being a
primitive operation where no user-defined
class [is] allowed. This power steamrolls
any "good" intentions.

Nobody loves the syntax T'Image (X) or
X'Image! Give programmers X.Image and
[<path-of-package-names-nobody-
remembers>].Image (X) and they will
forget about the attribute.

[...]

> Fixed and enumerations would still
require generics

It would be interesting to play with the
ways of constructing enumeration and
fixed point classes. Both have static
parameters, e.g. list of names in the case
of enumeration. There might be a way to
achieve static polymorphism without
going full generic but also without turning
the language into a C++ templates mess!

> That would make a library simple to
use, and few people would think that
something built-in is needed.

184 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

Absolutely. Ideally, everything must go
into libraries.

From: Stephen Davies
<joviangm@gmail.com>

Date: Wed, 23 Aug 2023 03:20:07 -0700

> Nobody loves the syntax T'Image (X) or
X'Image!

I have no issue with the 'Image syntax.

Perhaps the formatting parameters could
be restricted to T'Image(X) and not
available for X'Image? Or, maybe the
language should just add 'Trim_Image
and 'Trim_Width and leave the advanced
formatting to a library.

Actually, I think it might also be nice if
Float'Trim_Image(X) returned a string
that only used exponential notation for
very large or very small values (which
seems to be the default behaviour in
Python). Different names would then be
needed (Tidy_Image and Tidy_Width?).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 23 Aug 2023 18:16:10 +0200

> it might also be nice if
Float'Trim_Image(X) returned a string
that only used exponential notation for
very large or very small values

To use the shortest representation for the
given precision unless specified
otherwise:

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#6

Ada 'Image attributes have "typographic
quality" in plain contradiction to the claim
being for debugging purposes. That is
why the plus sign is always represented
by a space and why floating-point
representation is always selected even for
exact zero and the way the exponent part
is formatted. The typographic idea is to
have *same looking* output. Note, even if
the output is mathematically incorrect as
in the case of floating-point numbers.
'Image considers precision and accuracy
same, which is *always* wrong when
dealing with floating-point numbers.

> Different names would then be needed
(Tidy_Image and Tidy_Width?).

It takes several parameters to control the
behavior in a reasonable way.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 28 Aug 2023 20:58:13 +0300

> There is no good reason why attributes
should not have the same parameter
syntax as subprograms and entry calls.

Yes in principle, but it is understandable
that making this happen now could impact
both the language definition and various
implementations in non-trivial ways.

> Neither there is one why 'Image must be
a non-overridable attribute.

In Ada 2022, 'Image is defined to call the
new attribute 'Put_Image, which can be
specified (ie. overridden) by the
programmer for any type.

See http://www.ada-auth.org/standards/
22rm/html/RM-4-10.html.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 28 Aug 2023 21:08:10 +0200

> it is understandable that making this
happen now could impact both the
language definition and various
implementations

Compared to the useless and damaging
sediments the language collects with each
new release? (:-))

> See http://www.ada-auth.org/standards/
22rm/html/RM-4-10.html.

Ah, thanks. I vaguely remembered that
there was yet another ugly hack that does
not really solve anything significant, but
could not find it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Sep 2023 20:04:00 -0500

>Neither there is one why 'Image must be
a non-overridable attribute

There actually is a good reason for this.
Attributes have global visibility. So if you
allowed overriding of attributes, then a
with added or removed in a remote part of
a program could silently change the
behavior of code that has no knowledge
of the change. That would be bad for
"programming in the large". Note that
Ada 95 was proven to have no such cases,
and we've tried very hard to avoid them.

One could imagine adding rather severe
restrictions to overriding of attributes to
eliminate this problem (for instance, only
allowing it for primitive operations of the
type), but that would eliminate all real
value of the feature (you can always use a
primitive function and "use all" to get the
same effect without any new features).

For 'Image specifically, the design of the
attribute doesn't work well for
composition (for Image for composite
types), which is why Ada 2022 has a
separate attribute that can be overridden
similar to a stream attribute.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 7 Sep 2023 11:01:58 +0200

> [...] That would be bad for
"programming in the large". [...]

Ah, but 'Image is for debugging only! (:-))

> One could imagine adding rather severe
restrictions to overriding of attributes to
eliminate this problem [...]

It must be a new type:

 type My_Integer is new Integer;
 for My_Integer'Image use Foo;

From: Rod Kay <rodakay5@gmail.com>
Date: Sat, 23 Sep 2023 20:00:26 +1000

I've been using 'Gnat.formatted_Output'
which I've found quite useful.
Unfortunately, it seems to be a little
buggy with its formatting.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Mon, 25 Sep 2023 22:47:17 -0700

You can take a look at VSS's
Virtual_String_Templates and Formatters,
see
https://github.com/AdaCore/VSS/blob/
master/source/text/
vss-strings-templates.ads

https://github.com/AdaCore/VSS/blob/
master/source/text/
vss-strings-formatters.ads

and an example of its use

https://github.com/AdaCore/gnatdoc/blob/
3e94448ac57270caf4b4502f208f78e1d51
da2b2/source
/gnatdoc-messages.adb#L130

UNAS by TRW

From: Chris Sparks
<mrada442@gmail.com>

Subject: UNAS by TRW
Date: Tue, 22 Aug 2023 05:58:37 -0700
Newsgroups: comp.lang.ada

[In the following: Universal Network
Architecture Services (UNAS) is a
product from the American TRW Inc.
corporation. –arm]

Does anyone know how to get the
complete UNAS package from TRW? I
use it at work and I see it has an open
usage clause in the source headers. Since I
am not allowed to download it from my
work, maybe I can find a source
elsewhere to get it?

Also are there any tutorials out there on
how to use it? I am in the process of
upgrading the Ada (83 to 05) in my
current project and I am getting stuck on
the plethora of calls being made by
UNAS for which I don't even know how
to set it up so it can run happily.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Thu, 24 Aug 2023 22:24:59 +0200

> maybe I can find a source elsewhere to
get it?

Doubtful.

> Also are there any tutorials out there on
how to use it?

"Out there", definitely not. In a few closed
places that still use UNAS, perhaps but
doubtful. In the one place that I know still
uses UNAS, no.

> I am in the process of upgrading the
Ada (83 to 05) in my current project
[...]

Ada Prac t ice 185

Ada User Journa l Volume 44, Number 3, September 2023

Do I divine correctly that "your current
project" is not "at work" If so I would
suggest you consider PolyORB as a
replacement*. UNAS is long dead,
unmaintained and unmaintainable, mostly
because it is proprietary software without
anyone getting a license for it other than
in their current application. Also, apart
from a couple of people I know, nobody
understands UNAS anymore. The
company that made it has abandoned it,
perhaps even gone bankrupt, so UNAS is
mostly technical debt. Sorry for the bad
"news".

* Modern multi-core computers with lots
of memory might even make it feasible to
avoid distributing the software over
multiple computers in the first place.
Maybe a monolithic application would do
the job just fine, nowadays.

From: Chris Sparks
<mrada442@gmail.com>

Date: Thu, 24 Aug 2023 16:36:00 -0700

I suspected as much. If I could only find
something that would show me how to
install it and be operational so I can finish
my upgrade project. Going to a new
software is something that would bring on
risk, unless I could narrow down what
exactly the UNAS is being used for. This
effort I am working on is for the contract I
am working on.

What would really help is documentation.
Installation, operation so that I can tell
that it is working.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Fri, 25 Aug 2023 04:13:54 +0200

> What would really help is
documentation. Installation, operation
so that I can tell that it is working.

If your customer has UNAS, they
probably have documentation, or what
passes as documentation.

BTW, UNAS is a framework for
distributed applications i.e. multiple
programs doing remote procedure calls
and message passing over the network.

From: Chris Sparks
<mrada442@gmail.com>

Date: Fri, 25 Aug 2023 17:41:09 -0700

Unfortunately they don't have any
documentation as it was set up very long
ago.

If I had it on my home PC I would have
more time to look at it.

Project Euler 26

From: Csyh (Qaq) <schen309@asu.edu>
Subject: project euler 26
Date: Mon, 4 Sep 2023 02:19:51 -0700
Newsgroups: comp.lang.ada

I am new to Ada, I know is there a good
way to start this program? Thanks

https://projecteuler.net/problem=26

[The problem is: Find the value of
d<1000 for which 1/d contains the longest
recurring cycle in its decimal fraction
part. –arm]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 4 Sep 2023 14:06:13 +0300

First invent/discover the method
(algorithm) for solving the problem,
without thinking about the programming
language.

I don't think any language has built-in
features that would lead to a direct
solution, although some functional
language with lazy evaluation could come
close, because such languages can
manipulate unbounded (potentially
infinite) sequences of values. Such
sequences can be handled in Ada, too, but
with more effort -- they are not "built in"
to Ada.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 4 Sep 2023 14:39:17 +0200

Infinite division does not require big
numbers, which Ada 22 has, but I i would
not use them anyway because the
performance would be abysmal.

BTW, Ada is perfect for numeric
algorithms no need to resort to functional
mess... (:-))

The problem itself requires as you said
mathematical analysis, because a naive
method of comparing a partial division
result with itself is obviously wrong. E.g.
let you have 0.12341234... you could not
conclude that the period is (1234) because
it could actually be (123412345).
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Mon, 04 Sep 2023 17:01:04 +0100

> BTW, Ada is perfect for numeric
algorithms no need to resort to
functional mess... (:-))

Perfect? That's a bold claim!

Mind you, I don't think this problem is
really a numerical one in that sense. It
needs some simple integer arithmetic but
then every language is perfect for that sort
of arithmetic.

Using a functional mess (Haskell) a
simple, native solution (i.e. using no
modules) is only 9 lines long.

I don't want to start a language war. Ada
is just more 'wordy' by deliberate design
so a simple Ada solution is inevitably
going to be longer in terms of lines.
Rather my purpose in posting is to steer
the OP away from thinking of this as a
numerical problem in the classical sense.
It really isn't.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 4 Sep 2023 21:20:56 +0200

[...]

> Using a functional mess (Haskell) a
simple, native solution (i.e. using no
modules) is only 9 lines long.

Apart from the fundamental inconsistency
of functional paradigm: computing is
about transition of states and nothing else;
the imperative languages express
solutions, i.e. an algorithm. Functional,
and in general, declarative languages
express puzzles.

They remind me of math examination
tasks on studying a function. Here is a
definition. Go figure out the properties
and behavior...

Or, if you want, functional is like a chess
composition: white to move and
checkmate in 4 moves. Challenging, but
Ada is about playing chess.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Mon, 04 Sep 2023 21:18:16 +0100

> Apart from the fundamental
inconsistency of functional paradigm
[...]

Rather than try to unpick that paragraph
I'll just say that they can, none the less,
give simple solutions to this sort of
programming problem.

From: Francesc Rocher
<francesc.rocher@gmail.com>

Date: Thu, 7 Sep 2023 00:31:09 -0700

> I am new to Ada, I know is there a good
way to start this program?

Please take a look at my Euler tools
repository,
https://github.com/rocher/euler_tools (not
the best math lib you'll find, I know).

I used this library tools to solve problem
26 here: https://github.com/rocher/alice-
project_euler-rocher

Let me know what you think.

Equivalence between Named
Anonymous Access

From: Blady <p.p11@orange.fr>
Subject: Equivalence between named access

and anonymous access.
Date: Wed, 6 Sep 2023 16:37:08 +0200
Newsgroups: comp.lang.ada

I'm wondering about named access and
anonymous access. In the following Ada
code, are the writing of parameter P1 type
of procedures PA and PB equivalent?

 package C1 is
 type Inst is tagged null record;
 type Class is access all Inst'Class;
 end C1;

186 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

with C1;
 package C2 is
 type Inst is tagged null record;
 type Class is access all Inst'Class;

 procedure PA (Self : Inst;
 P1 : C1.Class); -- named access
 procedure PB (Self : Inst; P1 : access
 C1.Inst'Class); -- anonymous access
 end C2;

Same with:

 function FA (Self : Inst) return C1.Class;
 -- named access
 function FB (Self : Inst) return access
 C1.Inst'Class; -- anonymous access

Are FA and FB writing equivalent?

If not, why?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 6 Sep 2023 17:54:42 +0200

They are not equivalent from the access
checks point of view:

 declare
 Y : C2.Inst;
 X : aliased C1.Inst;
 begin
 C2.PA (Y, X'Access);
 -- Non-local pointer error
 C2.PB (Y, X'Access); -- Fine
 end;

Furthermore, tagged anonymous access is
controlling (dispatches) when not class-
wide.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 6 Sep 2023 13:55:02 -0700

> In the following Ada code, are the
writing of parameter P1 type of
procedures PA and PB equivalent?

They are not equivalent because the
anonymous access opens more
possibilities (example below), but you are
certainly aware of that.

So I guess you have another question in
mind...

with C1, C2;
procedure test is
 x2 : C2.Inst;
 type My_Reference_1 is access all
 C1.Inst'Class;
 r1 : My_Reference_1;
begin
 x2.PB (r1);
 x2.PA (r1);
 -- ^ expected type "Class" defined at
 -- c1.ads:3 found type "My_Reference_1"
 -- defined at line 6
end;

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 7 Sep 2023 02:20:02 +0200

> I'm wondering about named access and
anonymous access.

The rules for using access-to-object types
are:

1. Don't use access types

2. If you think you should use access
types, see rule 1.

3. If you still think you should use access
types, don't use anonymous access
types

4. If you still think you should use
anonymous access types, don't develop
software

The semantics of named access types are
well defined and easily understood. The
semantics of anonymous access types are
defined in ARM 3.10.2, of which the
AARM says
"Subclause 3.10.2, home of the
accessibility rules, is informally known as
the 'Heart of Darkness' amongst the
maintainers of Ada. Woe unto all who
enter here (well, at least unto anyone that
needs to understand any of these rules)."

The ARG freely admits that no one
understands 3.10.2, which means that
what you get when you use anonymous
access types is whatever the compiler
writer thinks it says. This may differ
between compilers and between different
versions of the same compiler, and from
what you think it says.

So no sane person uses them.

From: Blady <p.p11@orange.fr>
Date: Thu, 7 Sep 2023 18:06:15 +0200

Thanks Dmitry, also Gautier and Jeff for
your previous answers.

Well, I was questioning myself about the
choice between named access and
anonymous access in the old Ada port of
Java library, for instance:

 type Typ;
 type Ref is access all Typ'Class;
 type Typ(LayoutManager2_I :
 Java.Awt.LayoutManager2.Ref;
 Serializable_I : Java.Io.Serializable.Ref)
 is new Java.Lang.Object.Typ
 with null record;

 -- Constructor Declarations --

 function New_BorderLayout
 (This : Ref := null) return Ref;
 function New_BorderLayout
 (P1_Int : Java.Int;
 P2_Int : Java.Int;
 This : Ref := null) return Ref;

 -- Method Declarations --

 procedure AddLayoutComponent
 (This : access Typ;
 P1_Component : access
 Standard.Java.Awt.
 Component.Typ'Class;
 P2_Object : access
 Standard.Java.Lang.
 Object.Typ'Class);

 function GetLayoutComponent
 (This : access Typ;
 P1_Object : access
 Standard.Java.Lang.
 Object.Typ'Class)
 return access Java.Awt.Component.
 Typ'Class;

Why choose named access for
New_BorderLayout and anonymous
access for AddLayoutComponent or
GetLayoutComponent for the type of
parameters P1_xxx and the return type?

Why not all named or all anonymous?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 7 Sep 2023 18:18:11 +0200

> Why choosing named access for
New_BorderLayout and anonymous
access for AddLayoutComponent

It's very poor design to have access types
in the visible part of a non-private pkg
spec.

From: Blady <p.p11@orange.fr>
Date: Thu, 7 Sep 2023 21:10:12 +0200

> It's very poor design to have access
types in the visible part of a non-private
pkg spec.

I got your point :-)

But, in this specific case, I was wondering
why not writing all with named access or
all with anonymous access?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 7 Sep 2023 22:23:37 +0200

> Well, I was questioning myself about
the choice between named access and
anonymous access in the old Ada port
of Java library [...]

Contravariance is unsafe. I gather that
Typ is tagged. If you ever derive from it,
it will "inherit" the broken construction
function, because the function is class-
wide. The safe choice here is anonymous
access. The compiler will require to
override the construction function. That is
for the return value. The case for the
argument depends. Again anonymous
access type is handier but if you going to
copy/store references, then named types
are better.

> Why not all named or all anonymous?

My rough rule is like this:

Do not expose access types if you can.

If you successfully hide them either
completely or by declaring them private,
then named they go.

If you expose access types, then
anonymous access is usually a better
choice because it is easier to use,
especially when access is merely to work
around language limitations on
argument/result passing (unconstrained
object, access rules nightmare) AKA

Ada Prac t ice 187

Ada User Journa l Volume 44, Number 3, September 2023

closures. Then it is much safer in a
hierarchy of types and it is more use-
clause friendly.

Is Gnoga Dead?

From: Reinert <reinkor@gmail.com>
Subject: Is gnoga dead?
Date: Sat, 9 Sep 2023 02:02:46 -0700
Newsgroups: comp.lang.ada

I asked google bard:
"Is gnoga currently maintained?"

And it answered:

"No, Gnoga (Ada) is also no longer
maintained. It was a fork of the original
Gnoga project that was created in 2012.
The last commit to the GitHub repository
was in 2016.

Gnoga (Ada) was an attempt to improve
the performance and scalability of Gnoga.
It used a different statistical approach to
NLG and was implemented in Ada.

There are a number of other NLG engines
available, such as GPT-3 and LaMDA,
which are more powerful and up-to-date
than Gnoga (Ada)."

Is this correct?

From: Blady <p.p11@orange.fr>
Date: Sat, 9 Sep 2023 11:53:36 +0200

Do you mean this one:
https://sourceforge.net/projects/gnoga?

If so, the answer is yes [it is maintained
–arm].

Could you please provide the link where
you found the above quoted text?

From: Reinert <reinkor@gmail.com>
Date: Sat, 9 Sep 2023 04:47:41 -0700

I just logged into my google account and
asked "bard"
(https://bard.google.com/?hl=en).

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 9 Sep 2023 13:59:00 +0200

> I asked google bard:

> [...]

 > Is this correct?

The presence of the word "also" in the
first sentence should be enough to tell you
that this is nonsense.

If you are asking about an "NLG engine"
named gnoga, then maybe this is correct.
If you are asking about the Ada web-
application framework Gnoga that Blady
maintains, then it's not correct.

From: Reinert <reinkor@gmail.com>
Date: Sat, 9 Sep 2023 09:46:26 -0700

Good to hear.

Yes, did mean the Ada web-application
framework.

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 9 Sep 2023 19:55:56 +0200

Gnoga is not dead, being maintained by
Pascal, Gautier and other individuals and
companies.

Expect a pleasant surprise (imho) before
the end of the year (with full web demos).
v22 manual abstract:

1 About v22 framework
1.1 Ready to use in production
v22 is a general purpose, KISS oriented,
modular Ada framework for GNU/Linux
Debian/Ubuntu service, console and web
programs.

v22 is composed of many packages in
charge of UTF-8 strings, program and OS
functions, HTTP(s)/WS(s) web
framework, integrated cURL, console
handling and text files, advanced network,
MySQL and SQLite high level binding,
logging and configuration files handling.

Although based on the v20 library, the
v22 framework represents a major step
forward in the following areas:

- UTF-8 compatibility;

- Simplified string processing (only one
UTF-8 String type is used);

- Internationalization;

- New and extended database API;

- Extended database access to MySQL, in
addition to SQLite, with schema on-the-
fly update at table, index, and column
level;

- Improved concurrent access and
performance for SQLite;

- New LGPLv3 licensing instead of
GPLv3;

- New FSF GNAT GCC Linux ready-to-
use development environment for v22
(not tied anymore to GPLv2 license);

- And much more.

1.2 Cooperative and open

v22's native dependencies are Gnoga,
Simple_Components, UXStrings and
Zanyblue.

v22 is both a high-level framework and an
extension to the lower level components
cited above. v22 has been designed to:

- Use unmodified components;

- Not "reinvent the wheel". Component
functions are to be used first;

- Offer higher-level functions or functions
that do not exist in the components.

.../...

In short:

- UXStrings is used throughout v22. The
v22.Uxs package extends UXStrings
functionality. The v22.Sql package
extends the functionality of
Gnoga.Server.Database. The v22.Gui

graphics framework is based on
Gnoga.Gui;

- v22's architecture allows it to be open to
additional packages, depending on the
software development required.

From: Reinert <reinkor@gmail.com>
Date: Sat, 9 Sep 2023 23:51:12 -0700

Sounds like I can somehow trust that
gnoga will be around for many years to
come.

So my special issue: I work on making
my (cancer) cellular behavior analysis
program (https://korsnesbiocomputing.no)
as a "cloud service". It's all programmed
in Ada using GLOBE_3D. I am
considering using guacamole apache. It's
intensive about handling images. So what
are the arguments for and against using
guacamole (as compared to for example
guacamole apache)?

From: Stéphane Rivière
<stef@genesix.org>

Date: Mon, 11 Sep 2023 09:52:45 +0200

> Sounds like I can somehow trust that
gnoga will be around many years to
come.

I think so.

> So my special issue: I work on making
my (cancer) cellular behavior analysis
program
(https://korsnesbiocomputing.no) as a
"cloud service".

Very interesting indeed.

> [...] So what are the arguments for and
against using guacamole (as compared
to for example guacamole apache)?

No idea. My first concerns could be
scaling.

From: Reinert <reinkor@gmail.com>
Date: Mon, 11 Sep 2023 23:00:45 -0700

Did mean *gnoga* (as compared to,
for example, guacamole apache) :-)

From: Stéphane Rivière
<stef@genesix.org>

Date: Tue, 12 Sep 2023 09:16:52 +0200

> Did mean *gnoga* (as compared to
for example guacamole apache) :-)

No, sorry, I was thinking more of
Guacamole. Not really fond of a remote
desktop vs a true Web app... But maybe
I'm wrong...

Aggregate with Derived
Types

From: Blady <p.p11@orange.fr>
Subject: Aggregate with derived types.
Date: Thu, 14 Sep 2023 16:02:39 +0200
Newsgroups: comp.lang.ada

I want to extend a container type like
Vectors, I've written:

 type My_Float_List2 is new
 My_Float_Lists.Vector with null record;

188 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

But the initialization gives an error line 6:

 1. with Ada.Containers.Vectors;
 2. with Ada.Text_IO;
 3. procedure
 test_20230914_derived_agg is
 4. package My_Float_Lists is new
 Ada.Containers.Vectors (Positive, Float);
 5. subtype My_Float_List1 is
 My_Float_Lists.Vector;
 6. type My_Float_List2 is new
 My_Float_Lists.Vector with null record;
 7. ML1 : My_Float_List1 := [-3.1, -6.7,
 3.3, -3.14, 0.0];
 8. ML2 : My_Float_List2 := ([-3.1, -6.7,
 3.3, -3.14, 0.0] with null record); |
 >>> error: no unique type for this
 aggregate
 9. begin
 10. Ada.Text_IO.Put_Line
 (ML1.Element (3)'Image);
 11. Ada.Text_IO.Put_Line
 (ML2.Element (3)'Image);
 12. end test_20230914_derived_agg;

The RM says:

4.3.2 Extension Aggregates

1 [An extension_aggregate specifies a
value for a type that is a record extension
by specifying a value or subtype for an
ancestor of the type, followed by
associations for any components not
determined by the ancestor_part.]

Language Design Principles

1.a The model underlying this syntax is
that a record extension can also be viewed
as a regular record type with an ancestor
"prefix".

The record_component_association_list
corresponds to exactly what would be
needed if there were no ancestor/prefix
type. The ancestor_part determines the
value of the ancestor/prefix.

Syntax
2 extension_aggregate ::=
(ancestor_part with
record_component_association_list)
3 ancestor_part ::= expression |
subtype_mark

It is not so clear for me what a unique
type could be? Any clue?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 14 Sep 2023 17:31:47 +0200

IIUC, you have to qualify the value:

 (My_Float_List1'[-3.1, -6.7, 3.3, -3.14, 0.0]
 with null record)

or

 (My_Float_Lists.Vector'[-3.1, -6.7, 3.3,
 -3.14, 0.0] with null record)

(not tested)

From: Blady <p.p11@orange.fr>
Date: Thu, 14 Sep 2023 22:00:19 +0200

Thanks Jeff, both proposals are compiled
ok by GNAT.

I wonder why the float list aggregate isn't
inferred by the compiler and need some
help with a qualification.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 14 Sep 2023 23:37:47 +0200

I'm not sure. But can't you simply write

 ML2 : My_Float_List2 := [-3.1, -6.7, 3.3,
 -3.14, 0.0];

? I presume that My_Float_List2 inherits
its aggregate definition from
My_Float_List1.

From: Blady <p.p11@orange.fr>
Date: Fri, 15 Sep 2023 09:27:57 +0200

Unfortunately not directly:

 10. ML2c : My_Float_List2 := [-3.1, -6.7,
 3.3, -3.14, 0.0]; |
 >>> error: type of aggregate has private
 ancestor "Vector"
 >>> error: must use extension aggregate

Shouldn't it inherit them?

Indeed you have it if you defined a private
extension with explicit aspects:

 package PA is
 type My_Float_List3 is new
 My_Float_Lists.Vector with private
 with
 Constant_Indexing =>
 Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Float,
 Aggregate =>
 (Empty => Empty,
 Add_Unnamed => Append,
 New_Indexed => New_Vector,
 Assign_Indexed =>
 Replace_Element);
 function Constant_Reference
 (Container : aliased My_Float_List3;
 Index : Positive) return
 My_Float_Lists.
 Constant_Reference_Type is
 (My_Float_Lists.Constant_Reference
 (My_Float_Lists.Vector
 (Container), Index));
 function Reference (Container : aliased
 in out My_Float_List3;
 Index : Positive) return
 My_Float_Lists.Reference_Type is
 (My_Float_Lists.Reference
 (My_Float_Lists.Vector (Container),
 Index));
 private
 type My_Float_List3 is new
 My_Float_Lists.Vector with
 null record;
 end PA;
 ML3 : PA.My_Float_List3 := [-3.1, -6.7,
 3.3, -3.14, 0.0];

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 16 Sep 2023 01:39:57 -0500

> I wonder why the float list aggregate
isn't inferred by the compiler and need
some help with a qualification.

The language rule is that the ancestor_part
of an extension aggregate is expected to
be of "any tagged type" (see 4.3.2(4/2)).
An aggregate needs to have a single
specific type, and "any tagged type" is not
that.

The reason that the ancestor is "any
tagged type" is that the type of the
ancestor determines the extension
components needed along with other
legality rules. One could imagine a
language where all of these things are
decided simultaneously, but people
worried that the complexity would make
it difficult/impossible to implement. So
aggregates are essentially black boxes
whose type has to be determinable from
the outside, and similar rules exist for
parts inside the aggregate.

Project Euler 29

From: Csyh (Qaq) <schen309@asu.edu>
Subject: project euler 29
Date: Fri, 15 Sep 2023 02:03:16 -0700
Newsgroups: comp.lang.ada

Now this time, I am facing trouble for
problem #29.

[How many *distinct* terms are in the
sequence (for a in 2 .. 100 => (for b in 2 ..
100 => a**b))? –arm]

As I know integer type is for 32 bits. but
for this problem as me to find out the 2 **
100 and even 100 ** 100.

I used Python to get the answer correctly
in 5 minutes.

context = []
for a in range(2,101):
 for b in range(2,101):
 context.append(a**b)
len(list(set(context)))

I know the algorithm is easy, but I am
pretty interested in how to calculate a
large [?] like it. And thanks for the help
from problem 26, your discussions come
to me every working hour.

For this problem I want to know how to
know is there an easy way to store a large
number like 100 ** 100, and how do you
make a similar function like "set(context)"
to delete the duplicate value in a vector.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 15 Sep 2023 11:50:42 +0200

> for this problem I want to know how to
know is there an easy way to store a
large number like 100 ** 100, and how
do U make a similar function like
"set(context)" to delete the duplicated
value in a vector.

You will need an unbounded-integer pkg.
If you want to write portable code in a
standard language, then you can write
Ada 12 using a library such as
PragmARC.Unbounded_Numbers.
Integers

Ada Prac t ice 189

Ada User Journa l Volume 44, Number 3, September 2023

(https://github.com/jrcarter/
PragmARC/blob/Ada-12/
pragmarc-unbounded_numbers-
integers.ads). This will compile with both
GNAT and ObjectAda.

If you want to write non-portable code in
a non-standard, Ada-like language, then
you can use the GNAT language, which is
mostly Ada 12 with some Ada 23
features, one of which is the Ada-23
standard package Ada.Numerics.
Big_Numbers.Big_Integers
(http://www.ada-auth.org/
standards/22aarm/html/AA-A-5-6.html).
This can only be compiled with GNAT.
Note that, unlike PragmARC.
Unbounded_Numbers.Integers, GNAT's
implementation of Ada.Numerics.
Big_Numbers.Big_Integers is not truly
unbounded. I don't know if it will hold
101 ** 101 without modification.

You can store the results directly in a set
from the standard library to avoid
duplicate values. If I understand your
Python (probably not), you would want to
output the result of Length for the
resulting set.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Fri, 15 Sep 2023 16:42:38 +0100

> I know the algorithm is easy [...]

Most of the Project Euler problems have
solutions that are not always the obvious
one (though sometimes the obvious one is
the best). You can, of course, just use a
big number type (or write your own!) but
this problem can be solved without having
to use any large numbers at all.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 15 Sep 2023 18:34:21 +0200

> As I know integer type is for 32 bits [...]

I missed this the first time.

No, you don't know that Integer is 32 bits.
ARM 3.5.4 (21)
[http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-3-5-4.html]
requires "In an implementation, the range
of Integer shall include the range
–2**15+1 .. +2**15–1."

There are compilers for which Integer is
less than 32 bits, so assuming otherwise is
not portable. I know a lot of people don't
care about portability, but I've also seen
projects that spent large sums porting
code that they thought didn't have to be
portable. The cost of writing portable
code is usually much smaller than the cost
of porting non-portable code.

Of course, you can always declare your
own integer type with whatever range is
appropriate for your problem, though the
compiler doesn't always have to accept it.
I don't know of any compiler that doesn't
accept 32-bit integer declarations, nor any
targeting 64-bit platforms that doesn't

accept 64-bit integers. But you're unlikely
to find a compiler that will accept
range 2 .. 101 ** 101

In King (https://github.com/jrcarter/King)
the compiler must accept all integer type
declarations.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Fri, 15 Sep 2023 11:04:27 -0700

> I don't know if it will hold 101 ** 101
without modification.

It only has to hold 100 ** 100. The
Python code in the parent uses the
expression `range(2,101)`. Python's
range() function yields a range that
includes the first bound and excludes the
second bound.

From: Francesc Rocher
<francesc.rocher@gmail.com>

Date: Sat, 16 Sep 2023 03:07:06 -0700

Please take a look at this solution:

https://github.com/rocher/
alice-project_euler-rocher/blob/
main/src/0001-0100/
p0029_distinct_powers.adb

It's not using any big numbers library.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 17 Sep 2023 15:54:12 -0700

> Also, do you have a different approach
to solve this 29th problem?

I see two natural approaches: 1) use
bignums--it didn't occur to me to not use
them until this discussion. 2) Notice that
a**b == c**d exactly when the two sides
have the same prime factorization, and the
factors of a**b are just the factors of a
repeated b times, so you can count up the
distinct tuples of factors.

Method #2 is efficient (since a,b,c,d are
all < 100) and doesn't use bignums, but it
is a fair amount of code to write unless
you have convenient libraries at hand for
factorization and can easily count sets of
distinct tuples. I guess there are fancier
approaches possible too, that avoid
searching 100**2 combinations, but
100**2 is just 10000 which is small.

Certainly both are easier to do if your
language or libraries has convenient
features for dealing with variable sized
objects like bignums, or sets of tuples.
The bignum approach is less efficient but
it is much easier to code. The Python
expression

len(set(a**b for a in range(2,101) for b in
range(2,101)))

takes around 25 msec to compute on my
old slow laptop.

I will look at your Ada solution!

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 17 Sep 2023 17:09:38 -0700

>> Also, do you have a different approach
to solve this 29th problem?

> Yes, but it's not in Ada. I implemented
an equality test for a^b == c^d.

Oh interesting, based on a comment in
Francesc's code, I think I see a method to
do it without the auxiliary array, at a
small increase in runtime cost. Basically
given a and b, you can find their prime
factors and easily enumerate the
combinations x,y with a**b==x**y and 1
<= x,y <= 100. You can label each
"equivalence class" by the (a,b) with the
smallest possible a.

So you just loop through 1 <= a,b <= 100
and count only the a,b pairs where a is the
smallest a for its equivalence class. I
might see if I can code this, which should
also let me describe it more concisely.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Mon, 18 Sep 2023 01:16:19 +0100

> So you just loop through 1 <= a,b <=
100 and count only the a,b pairs where
a is the smallest a for its equivalence
class.

This is likely to be fast which is why I
wanted to compile Francesc's to try it out.
Mind you, a naive a^b == c^d test gives
pretty good performance for the kind of
range requested.

Get Character and Trailing
New Lines

From: Blady <p.p11@orange.fr>
Subject: Weird behavior of Get character

with trailing new lines.
Date: Fri, 22 Sep 2023 21:30:15 +0200
Newsgroups: comp.lang.ada

I'm reading a text file with Get character
from Text_IO with a while loop
controlled by End_Of_File.

% cat test_20230922_get_char.adb

with Ada.Text_IO; use Ada.Text_IO;
procedure test_20230922_get_char is
 procedure Get is
 F : File_Type;
 Ch : Character;
 begin
 Open (F, In_File,
 "test_20230922_get_char.adb");
 while not End_Of_File(F) loop
 Get (F, Ch);
 Put (Ch);
 end loop;
 Close (F);
 Put_Line ("File read with get.");
 end;
begin
Get;
end;

All will be well, unfortunately not!

Despite the End_Of_File, I got an
END_ERROR exception when there are

190 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

several trailing new lines at the end of the
text:

[...] Execution of
../bin/test_20230922_get_char terminated by
unhandled exception
raised ADA.IO_EXCEPTIONS.END_ERROR
: a-textio.adb:517

The code is compiled with GNAT, does it
comply with the standard?

A.10.7 Input-Output of Characters and
Strings

For an item of type Character the
following procedures are provided:

 procedure Get(File : in File_Type;
 Item : out Character);
 procedure Get(Item : out Character);

After skipping any line terminators and
any page terminators, reads the next
character from the specified input file and
returns the value of this character in the
out parameter Item. The exception
End_Error is propagated if an attempt is
made to skip a file terminator.

This seems to be the case, then how to
avoid the exception?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 22 Sep 2023 22:52:21 +0300

In Text_IO, a line terminator is not an
ordinary character, so you must handle it
separately, for example like this:

 while not End_Of_File(F) loop
 if End_Of_Line(F) then
 New_Line;
 Skip_Line(F);
 else
 Get (F, Ch);
 Put (Ch);
 end if;

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 22 Sep 2023 22:05:55 +0200

As you have quoted, Get (Character)
skips line terminators. End_Of_File
returns True if there is a single line
terminator before the file terminator, but
False if there are multiple line terminators
before the file terminator. So you either
have to explicitly skip line terminators, or
handle End_Error.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 23 Sep 2023 09:02:37 +0200

And this works only if the input file is
"well formed", i.e. if it has line
terminators as the compiler expects them
to be (f.e., you will be in trouble if the last
line has no LF). That's why I never check
End_Of_File, but handle the End_Error
exception. It always works.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 23 Sep 2023 11:39:25 +0300

Hm. The code I suggested, which handles
line terminators separately, does work
without raising End_Error even if the last
line has no line terminator, at least in the
context of the OP's program.

> That's why I never check End_Of_File,
but handle the End_Error exception. It
always works.

True, but it may not be convenient for the
overall logic of the program that reads the
file. That program often wants to do
something with the contents, after reading
the whole file, and having to enter that
part of the program through an exception
does complicate the code a little.

On the other hand, past posts on this issue
say that using End_Error instead of the
End_Of_File function is faster, probably
because the Text_IO code that
implements Get cannot know that the
program has already checked for
End_Of_File, so Get has to check for that
case anyway, redundantly.

My usual method for reading text files is
to use Text_IO.Get_Line, and (I admit)
usually with End_Error termination.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 23 Sep 2023 11:25:05 +0200

> [...] having to enter that part of the
program through an exception does
complicate the code a little.

It rather simplifies the code. You exit the
loop and do whatever is necessary there.

Testing for the file end is unreliable and
non-portable. Many types of files simply
do not support that test. In other cases the
test is not file immutable with the side
effects that can change the program logic.

It is well advised to never ever use it.

From: Blady <p.p11@orange.fr>
Date: Mon, 25 Sep 2023 21:55:56 +0200

Thanks all for your helpful answers.It
actually helps.

Especially, I was not aware of the
particular behavior of End_Of_File with a
single line terminator before the file
terminator.

In my case, I prefer to reserve exceptions
for exceptional situations :-) so I've taken
the code from Niklas' example.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Sep 2023 00:53:53 -0500

> And this works only if the input file is
"well formed"

Agreed. And if the file might contain a
page terminator, things get even worse
because you would have to mess around
with End_of_Page in order to avoid
hitting a combination that still will raise
End_Error. It's not worth the mental
energy to avoid it, especially in a program

that will be used by others. (I've
sometimes used the simplest possible way
to writing a "quick&dirty" program for
my own use; for such programs I skip the
error handling as I figure I can figure out
what I did wrong by looking at the
exception raised. But that's often a bad
idea even in that case as such programs
have a tendency to get reused years later
and then the intended usage often isn't
clear.)

'Valid Attribute and Input
Operations

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Subject: Valid attribute and input
operations

Date: Sat, 23 Sep 2023 13:22:09 -0700
Newsgroups: comp.lang.ada

I am in the middle of a heated debate with
Richard Riehle on LinkedIn, where we
cannot get to terms with regard to the
exact semantics of X'Valid in the context
of input operations performed by standard
Get procedure.

In short, consider the following example:

with Ada.Text_IO;
with Ada.Integer_Text_IO;
procedure Is_Valid_Test is
 X : Integer range 0..200;
begin
 Ada.Text_IO.Put("Get an Integer: ");
 Ada.Integer_Text_IO.Get(X);
 if X'Valid then
 Ada.Text_IO.Put_Line
 ("The Input is Valid ");
 else
 Ada.Text_IO.Put_Line
 ("The Input is not Valid ");
 end if;
end Is_Valid_Test;

When the input is 500, what should be the
behavior of this program?

There are two interpretations:

1. Get is an input operation and can create
invalid representations (as stated in
13.9.2, p.7). Then, the X'Valid test that
follows Get(X) can be used to safely
recognize whether the value is in the
range or not. The program should print
the second string (from the else
branch), but should not raise any
exceptions for this input (500).

2. Get is not an input operation in the
meaning referred to in 13.9.2/7, or is an
input, but only for type Integer (and it
cannot create invalid integer
representations on typical computers
anyway). The X variable is an actual
parameter that has a subtype that is
different from the formal parameter and
is subject to conversions when the Get
subprogram exits normally
(6.4.1/17,17a). This conversion should
raise Constraint_Error for this input
(500).

Ada Prac t ice 191

Ada User Journa l Volume 44, Number 3, September 2023

I have checked the above program on
several on-line compilers, all of them
behave according to interpretation 2
above.

Richard claims to get behavior 1 on his
compiler.

What is your take on this? Any language
lawyers?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 23 Sep 2023 23:48:49 +0200

> What is your take on this? Any
language lawyers?

The important thing is the definition of
Ada.Text_IO.Integer_IO.Get [ARM
A.10.8(7-10)]:

"... skips any leading blanks, line
terminators, or page terminators, then
reads a plus sign if present or (for a
signed type only) a minus sign if present,
then reads the longest possible sequence
of characters matching the syntax of a
numeric literal without a point. ...

"Returns, in the parameter Item, the value
of type Num that corresponds to the
sequence input.

"The exception Data_Error is propagated
if the sequence of characters read does not
form a legal integer literal or if the value
obtained is not of the subtype Num."

So a call to Get can only return a valid
value of type Num (Integer for your case)
or raise Data_Error.

If Get is reading "500" then that certainly
represents a valid value of type Integer,
and Get should copy that back to the
actual parameter.

If you are using Ada (a language with
run-time checks), then a check should be
made that the value is in the range of the
actual parameter's subtype, here Integer
range 0 .. 200. That should fail and
Constraint_Error should be raised.

However, if you are not using Ada
because that check has been suppressed,
then the actual parameter will be left with
the invalid value 500 and
Constraint_Error will not be raised.

If I build your program with checks
enabled, I get Constraint_Error. If I build
it with checks suppressed, I get the not-
valid message (GNAT 12.3).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Sep 2023 01:13:53 -0500

I believe Jeffrey's analysis is correct.

Note that there are some special cases for
validity that are intended to make it easier
to write code like that you have. But they
only make sense for base subtypes (and
the type you have is not that). Moreover,
they are not foolproof -- execution is not
erroneous in these cases, but they still are

a bounded error, and it is always correct
for a bounded error to be detected and
raise Program_Error.

This can happen in practice, too. For
instance, for Janus/Ada, enumeration
types with specified representations
operate internally on the position
numbers, and thus reading an enumeration
variable will convert the representation to
a position number with a table lookup. If
the lookup fails, Program_Error is raised,
and that happens before the value ever
can be assigned to a named variable (and
thus before any possible test of validity). I
believe that we identified other similar
cases back in the day. Probably one of
them is the signalling NaN. Some bit
patterns for float values represent
signalling NaNs, which trap instantly if
read. That's at the hardware level on most
processors, so the only hope is to handle
the resulting exception. It's too late by the
time you get to 'Valid.

Moral: to make truly bulletproof code,
you have to handle exceptions AND use
'Valid. You probably can skip the
exceptions if everything is typed with
integer basetypes, but if any other kinds
of types are involved, they are necessary.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 26 Sep 2023 10:22:14 +0300

> ... for Janus/Ada, enumeration types
with specified representations operate
internally on the position numbers

Hm, that's interesting. Is that also the
representation for record components of
such an enumerated type?

For example, if I have:

 type Command is (Off, On) with Size
 => 4;
 for Command use (Off => 2, On => 5);
 type Two_Commands is record
 C1, C2: Command;
 end record
 with Pack, Size => 8;
 TwoC : Two_Commands :=
 (C1 => On, C2 => Off);

will the record components (in memory)
have the values C1 = 1 and C2 = 0
(position numbers) or C1 = 5, C2 = 2
(specified representation)?

if they are represented by position
numbers in the record, many if not most
of my embedded Ada programs would fail
if compiled with Janus/Ada, because the
record values stored in I/O control
registers or accessed via DMA would be
wrong.

Damn, I thought those programs were not
so compiler-dependent :-(

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 27 Sep 2023 22:27:41 -0500

No, the specified representation is always
used when storing to memory (with the
single exception of loop parameters,
which cannot have address clauses or
other representation specifications). I
think even enum parameters are written in
the representation. However, any time an
enumeration value is read into a register it
is converted to a position number.
Usually, such values are used in indexing,
comparing, or an attribute like 'Pos or
'Succ, all of which are defined to work on
position numbers. But if you simply
assign the value out again, it will get
converted both ways. We do have an
optimization to remove pairs of
TOREP/DEREP, but not the reverse since
Program_Error is a possibility from
DEREP. (Well, unless unsafe
optimizations are on, but I don't
recommend using those for the obvious
reasons.)

Should Light Runtimes Get
More Consideration?

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Subject: Should light runtimes get more
consideration?

Date: Tue, 26 Sep 2023 11:44:02 -0000
Newsgroups: comp.lang.ada

I created the issue below a little while
ago. Today I wonder whether Ada 2022s
'Image attribute on records use of
Unbounded strings is for good reason. Is
it an oversight that Bounded String would
work with the new light runtime or String
with all runtimes including the older zero
footprint runtimes?

Perhaps it was decided that a light
runtime would not use this feature? And I
can certainly avoid it. However I use a
light runtime with 100s of kilobytes or
RAM and many gigabytes of flash.

Ada is a much nicer language than Rust
which uses unsafe all over for embedded
but one thing that is interesting is that I
believe all Rust code can be run easily on
any target. Should Ada aspire to that?

On the other hand, micros are becoming
multiprocessors bringing more demand
for tasking (protected types are not
compatible with a light runtime) but
personally I believe multi chip single core
designs are far better than multicore and
not only due to the impossibility of side
channel attacks like Spectre.

https://github.com/
Ada-Rapporteur-Group/
User-Community-Input/issues/67

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 27 Sep 2023 22:48:16 -0500

As noted on the ARG Github, you
confused the Unbounded version of
Text_Buffers with an unbounded string
(completely unrelated things), and

192 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journa l

moreover, failed to notice that the
language provides multiple ways to use a
Bounded Text_Buffer instead. So the
language addresses this particular
concern.

I don't know if GNAT implements all of
those ways (in particular, the restriction
Max_Image_Length), but that is hardly
the fault of the language!

For anyone else interested in this
particular discussion, I recommend
reading and following up on the ARG
Githib issue rather than here
(https://github.com/Ada-Rapporteur-
Group/User-Community-Input/issues/67).

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 28 Sep 2023 09:46:23 -0000

> Bounded Text_Buffer instead. So the
language addresses this particular
concern.

> I don't know if GNAT implements all of
those ways [...]

I see. I guess the error message could
suggest those options, too. Perhaps after
the 2022 GNAT support work is
completed.

That buffer support is pretty neat but my
main concern, which GNAT may (it may
not) address more than the current
language by providing a cortex runtime, is
that such demanding runtimes are brilliant
but I am not sure if even Ravenscar is
scalable to so many microchips such as
Rust is trying to support. That isn't a huge
issue but barriers to entry like having to
work out your own exception replacement
might be turning users away. Which is
unfortunate when Ada is the best
language out there by a significant margin
for embedded development or frankly any
protocol or hardware register use.

Of course others will rightly argue Ada is
the best due to many of the more complex
runtime features but that doesn't help with
the issue of ease of adoption on an
unsupported microchip that I have raised
above.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 14:25:18 +0100

When I started on Cortex GNAT RTS [1],
a large part of the motivation (aside from
the fun element) was that AdaCore's bare-
board RTSs were GPL'd (they still are).
Not that I cared about that, but other
people did.

I took the approach of AdaCore's SFP
(small footprint) profile, now renamed to
light tasking, which implemented
Ravenscar tasking but not exception
propagation or finalization.

The tasking part wasn't too hard, though I
think exception handling and finalization
might have made things more difficult.

Basing the tasking on FreeRTOS saved a
lot of grief (there are a couple of areas
when the resulting semantic isn't _quite_
Ada's).

I did some work on finalization, not
merged.

Exception handling, without finalization,
seemed a daunting prospect, specially
since the last project I worked on before
retirement regarded an unhandled
exception as requiring a reboot (and
ditching any missiles in flight).

The current implementation has about 17
files (1 .h, 1 .s, 9 .ads, 4 .adb) to
customise to the chip (setting up interrupt
vectors, the clock, and memory). There
are about 200 Ada sources that are
common.

AdaCore currently has 68 RTS packages
in the Alire gnat_arm_elf toolchain. 18 of
these are 'embedded' packages (full Ada,
but with Jorvik tasking). I'd be surprised
if they had a higher proportion of chip
dependency than my efforts. Most if not
all of the exception handling will be chip-
independent. I'm not sure how many of
the 90 or so Ada sources in the STM32F4
gnarl/ directory are actually chip-
dependent, I get the impression it's not
high.

So, unless you're going to use some target
that AdaCore haven't released support for,
your best bet must be to either use or at
worst start from the available RTS
packages.

[1] https://github.com/simonjwright/
cortex-gnat-rts

From: Drpi <314@drpi.fr>
Date: Thu, 28 Sep 2023 19:51:57 +0200

> I'm not sure how many of the 90 or so
Ada sources in the STM32F4 gnarl/
directory are actually chip-dependent, I
get the impression it's not high.

Right, not high.

I've created 2 of them based on one of the
AdaCore RTS. I can't say it has been easy
since you first have to understand how it
works (and things change at each new
release). One important point is that some
critical parameters are hard coded in the
source code. Like the core frequency. You
MUST use a fixed clock frequency to get
correct time management (delays, ...).
This is why in their last version, you run a
script to generate part of the RTS source
code (frequency and other parameters are
injected in the source code). When you
change the core frequency you have to
regenerate the RTS binary.

I created the RTS to evaluate the potential
use of Ada on embedded targets. I have
never used them except for testing. The
main reason is that AdaCore RTS are
made for specific use (avionics, spatial...).
The code using these RTS must be
provable (or as provable as possible). This

induces big limitations. Tasking is very
limited. For example you can't use
timeouts. Never. They propose a
workaround but it is complex and not
equivalent to a real timeout management.
I'd like to have a full Ada RTS for
embedded targets, like on desktop. I don't
need to certify/prove my
hardware/software. Some people say
micro-controllers are too limited for this.
That's true for some of them. I use micro-
controllers with megabytes of FLASH
memory and hundreds of kilobytes of
RAM. Is this not enough?

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 21:53:14 +0100

> I'd like to have a full Ada RTS for
embedded targets, like on desktop.

Have you considered using something
like a Raspberry Pi?

From: Drpi <314@drpi.fr>
Date: Thu, 28 Sep 2023 23:18:15 +0200

> Have you considered using something
like a Raspberry Pi?

A RaspberryPi is a computer (based on a
microprocessor with an OS), not a
microcontroller. It consumes a lot of
electrical power. The OS (linux) is not
real time. It uses a lot of board space. The
processor is a proprietary black box...

From: Chris Townley
<news@cct-net.co.uk>

Date: Fri, 29 Sep 2023 00:51:11 +0100

> A RaspberryPi is a computer [...]

Plenty use the Raspberry Pi as a
microcontroller.

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Fri, 29 Sep 2023 09:59:37 -0000

>Plenty use the Raspberry Pi as a
microcontroller.

I think Simons point was that ARM/Linux
has a working full runtime. I guess bare
Raspberry Pi would not and I guess it
would be a rather large module or board
or single board computer depending on
the model.

WRT energy use. I use a low power run
feature on the STM32L4 which means the
system clock speed can change at any
time. That seems to be incompatible with
any runtime that I have seen except the
minimal light-cortex-m4 one. I assume
working with clocks is more scalable than
working with runtimes but I do not know
for sure.

From: Chris Townley
<news@cct-net.co.uk>

Date: Fri, 29 Sep 2023 11:42:08 +0100

> I think Simons point was that
Arm/Linux has a working full runtime.
[...]

Ada Prac t ice 193

Ada User Journa l Volume 44, Number 3, September 2023

Agreed, but in addition to the mainline Pis
there is the Zero, and the Pico, which has
a 'RP2040' made by Raspberry Pi and is a
dual-core ARM Cortex M0+ processor,
with a flexible clock running up to
133MHz.

From: Drpi <314@drpi.fr>
Date: Fri, 29 Sep 2023 15:42:17 +0200

> WRT energy use. I use a low power run
feature on the STM32L4 which means

the system clock speed can change at
any time. [...]

The fact that the clock speed is hard
coded is a design choice. It simplifies the
time management. It makes the runtime
more "hard real time" compliant since
there are less computations to be done at
execution.

From: Drpi <314@drpi.fr>
Date: Fri, 29 Sep 2023 15:44:31 +0200

> [...] which has a 'RP2040' made by
Raspberry Pi and is a dual-core ARM
Cortex M0+ processor, with a flexible
clock running up to 133MHz

A runtime for the RP2040 already exists.
It is based on the AdaCore ARM runtimes
so it has the same limitations.

194

Volume 44, Number 3, September 2023 Ada User Journa l

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. In general the situation seems to improve
further, and only a few events are still planned to be held "virtually" or in "hybrid" mode. Where available, the status of events
is indicated with the following markers: "(v)" = event is held online, (h)" = event is held in a hybrid form (i.e. partially online).

2023

October 02-04 25th International Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS'2023), Jersey City, New Jersey, USA. Topics include: design and development of distributed
systems with a focus on systems that are able to provide guarantees on their structure, performance, and/or
security in the face of an adverse operational environment; distributed and concurrent computing
(foundations, fault-tolerance and scalability); distributed, concurrent, and fault-tolerant algorithms;
synchronization protocols; formal methods, validation, verification, and synthesis; secure software and
secure programming methodologies; formal methods, semantics and verification of secure systems; fault
tolerance, reliability, availability of distributed secure systems; etc.

October 03-06 23rd International Conference on Runtime Verification (RV'2023), Thessaloniki, Greece. Topics
include: monitoring and analysis of runtime behaviour of software and hardware systems; program
instrumentation; logging, recording, and replay; combination of static and dynamic analysis; monitoring
techniques for concurrent and distributed systems; fault localization, containment, resilience, recovery
and repair; etc.

October 09-12 34th IEEE International Symposium on Software Reliability Engineering (ISSRE'2023), Florence,
Italy. Topics include: development, analysis methods and models throughout the software development
lifecycle; dependability attributes (i.e., security, safety, maintainability, survivability, resilience,
robustness) impacting software reliability; reliability threats, i.e. faults (defects, bugs, etc.), errors,
failures; reliability means (fault prevention, fault removal, fault tolerance, fault forecasting); reliability of
AI-based systems; reliability of open-source software; reliability of model-based and auto-generated
software; normative/regulatory/ethical spaces about software reliability; societal aspects of software
reliability; etc.

 October 10-12 5th International Conference on Reliability, Safety and Security of Railway Systems (RSSRail'2023),
Berlin, Germany. Topics include: safety in development processes and safety management; combined
approaches to safety and security; system and software safety analysis; formal modelling and verification
techniques; system reliability; validation according to the standards; tool and model integration, tool
chain; domain-specific languages and modelling frameworks; model reuse for reliability, safety and
security; etc.

October 16-18 8th International Conference on Engineering Computer Based Systems (ECBS'2023), Västerås,
Sweden. Topics include: any topics that involve digital computing machines, embedded and cyber-
physical systems, formal methods, software engineering for AI-based systems, parallel and distributed
systems, software testing, verification and validation, model-based design and development, industrial
applications and experimental evaluation, etc.

 October 17 High Integrity Software Conference (HISC'2023), Bristol, UK. Topics include: advanced software
development for high-integrity and high-assurance systems, including programming languages, AI-
assisted software development, verifiable code generation; verification of novel, high-integrity and high-
assurance systems; assurance of high-integrity, high-assurance systems; infrastructure & ecosystem for
high-integrity software.

Conference Calendar 195

Ada User Journa l Volume 44, Number 3, September 2023

October 18-20 (h) 16th International Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS'2023), Marrakech, Morocco. Topics include: analysis of computer and communication
systems, where functional and extra-functional properties are inter-related; cross-fertilization between
various formal verification and evaluation approaches, methods and techniques, especially those
developed for concurrent and distributed hardware/software systems.

October 19-20 (v) 19th International Conference on Formal Aspects of Component Software (FACS'2023), Internet.
Topics include: applications of formal methods in all aspects of software components and services; formal
methods, models, and languages for software-intensive systems, components and services: formal aspects
of concrete software-intensive systems, including real-time/safety-critical systems, hybrid and cyber
physical systems, components that use artificial intelligence, ...; tools supporting formal methods for
components and services; case studies and experience reports over the above topics; special track on
formal methods at large; etc.

 October 21-25 32nd International Conference on Parallel Architectures and Compilation Techniques
(PACT'2023), Vienna, Austria. Topics include: parallel architectures; compilers and tools for parallel
computer systems; applications and experimental systems studies of parallel processing; computational
models for concurrent execution; support for correctness in hardware and software; reconfigurable parallel
computing; parallel programming languages, algorithms, and applications; middleware and run time
system support for parallel computing; etc.

October 22-24 30th Static Analysis Symposium (SAS'2023), Cascais (Lisbon), Portugal. Co-located with
SPLASH'2023. Topics include: static analysis as fundamental tool for program verification, bug detection,
compiler optimization, program understanding, and software maintenance.

October 22-26 23nd IEEE International Conference on Software Quality, Reliability and Security (QRS'2023),
Chiang Mai, Thailand. Topics include: reliability, security, availability, and safety of software systems;
software testing, verification, and validation; program debugging and comprehension; fault tolerance for
software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,
measurements, and analysis; software vulnerabilities; formal methods; operating system security and
reliability; benchmark, tools, industrial applications, and empirical studies; etc.

 October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH'2023), Lisbon, Portugal. Topics include: all aspects of software construction and delivery, at
the intersection of programming, languages, and software engineering.

Oct 22 9th International Workshop on Formal Techniques for Safety-Critical Systems
(FTSCS'2023). Topics include: case studies and experience reports on the use of formal
methods for analyzing safety-critical systems, including avionics, automotive, medical,
railway, and other kinds of safety-critical and QoS-critical systems; methods, techniques
and tools to support automated analysis, certification, debugging, etc., of safety/QoS-
critical systems; code generation from validated models; etc.

Oct 22-27 16th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2023). Topics include: software language engineering rather than engineering a
specific software language; software language design and implementation; software
language validation (verification and formal methods for languages, testing techniques for
languages, simulation techniques for languages); software language integration and
composition; software language maintenance (software language reuse, language
evolution, language families and variability, language and software product lines); domain-
specific approaches for any aspects of SLE (design, implementation, validation,
maintenance); empirical evaluation and experience reports of language engineering tools
(user studies evaluating usability, performance benchmarks, industrial applications); etc.

 Oct 23-27 Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2023). Topics include: all practical and theoretical investigations of
programming languages, systems and environments, targeting any stage of software
development, including requirements, modeling, prototyping, design, implementation,
generation, analysis, verification, testing, evaluation, maintenance, and reuse of software
systems; development of new tools, techniques, principles, and evaluations.

October 23 12th Workshop on Programming Languages and Operating Systems (PLOS'2023), Koblenz,
Germany. Topics include: domain-specific and type-safe languages for the OS; the design of language-
specific unikernels; language-based approaches to crosscutting system concerns, such as security and run-

196 Conference Calendar

Volume 44, Number 3, September 2023 Ada User Journa l

time performance; PL support for system verification, testing, and debugging; the use of OS abstractions
and techniques in language runtimes; verification and static analysis of OS components; critical
evaluations of new programming language ideas in support of OS construction; experience reports on
applying new language techniques in commercial OS settings; etc.

October 24-27 (h) 28th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'2023),
Singapore. Topics include: software and hardware reliability, resilience, safety, security, testing,
verification, and validation; dependability measurement, modeling, evaluation, and tools; architecture and
system design for dependability; reliability analysis of complex systems; dependability issues in
computing systems (e.g. high performance computing, real-time systems, cyber-physical systems, ...);
emerging technologies (autonomous systems including autonomous vehicles, human machine teaming,
smart devices/internet of things); etc.

October 24-27 21st International Symposium on Automated Technology for Verification and Analysis
(ATVA'2023), Singapore. Topics include: theoretical and practical aspects of automated analysis,
synthesis, and verification of hardware and software systems; program analysis and software verification;
analytical techniques for safety, security, and dependability; testing and runtime analysis based on
verification technology; analysis and verification of parallel and concurrent systems; analysis and
verification of deep learning systems; verification in industrial practice; applications and case studies; etc.

November 06-10 21st International Conference on Software Engineering and Formal Methods (SEFM'2023),
Eindhoven, the Netherlands. Topics include: software development methods (formal modelling,
specification, and design; software evolution, maintenance, re-engineering, and reuse), design principles
(programming languages; abstraction and refinement; ...), software testing, validation, and verification,
security and safety (security, privacy, and trust; safety-critical, fault-tolerant, and secure systems; software
certification), applications and technology transfer (real-time, hybrid, and cyber-physical systems;
intelligent systems and machine learning; education; ...), case studies, best practices, and experience
reports.

November 13-15 18th International Conference on integrated Formal Methods (iFM'2023), Leiden, the Netherlands.
Topics include: recent research advances in the development of integrated approaches to formal modelling
and analysis; all aspects of the design of integrated techniques, including language design, verification
and validation, automated tool support and the use of such techniques in software engineering practice.

Nov 14 VerifyThis Collaborative Long-Term Challenge. Topics include: demonstrate practical
value of formal methods, evaluate current tools on specifying and verifying requirements
of realistic software systems, exchange on the state-of-the-art and future directions.

Nov 13-17 (h) 18th International Conference on Software Engineering Advances (ICSEA'2023), Valencia, Spain.
Topics include: trends and achievements; advances in fundamentals for software development; advanced
mechanisms for software development; advanced design tools for developing software; software
performance; software security, privacy, safeness; advances in software testing; specialized software
advanced applications; open source software; agile and Lean approaches in software engineering;
software deployment and maintenance; software engineering techniques, metrics, and formalisms;
software economics, adoption, and education; etc.

November 26-29 21st Asian Symposium on Programming Languages and Systems (APLAS'2023), Taipei, Taiwan.
Topics include: programming paradigms and styles; methods and tools to specify and reason about
programs and languages (programming techniques, domain-specific languages, proof assistants, type
systems, static and dynamic program analysis, language-based security, model checking, testing, ...);
programming language foundations; methods and tools for implementation (compilers, virtual machines,
refactoring, intermediate languages, run-time environments, garbage collection and memory
management, build systems, ...); concurrency and distribution (parallel programming, distributed
computing, verification and testing of concurrent and distributed systems, ...); applications and emerging
topics (programming languages and PL methods in education, security, privacy, artificial intelligence and
machine learning, ...; case studies in program analysis and verification). Deadline for early registration:
October 25, 2023.

December 03-09 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE'2023), San Francisco, California, USA. Deadline for submissions:
October 20, 2023 (student travel support applications).

Conference Calendar 197

Ada User Journa l Volume 44, Number 3, September 2023

December 04-07 30th Asia-Pacific Software Engineering Conference (APSEC'2023), Seoul, South Korea. Topics
include: requirements and design (component-based software engineering; software architecture,
modeling, and design; middleware, frameworks, and APIs; software product-line engineering; ...); testing
and analysis (testing, verification, and validation; program analysis; program repairs; ...); formal aspects
of software engineering (formal methods, model-driven and domain-specific engineering); software
comprehension and traceability; dependability, safety, and reliability; software maintenance and evolution
(refactoring, reverse engineering, software reuse, debugging and fault localization, ...); software
repository mining; etc.

December 04-08 20th International Colloquium on Theoretical Aspects of Computing (ICTAC'2023), Lima, Peru.
Topics include: semantics of programming languages; theories of concurrency; theories of distributed
computing; models of objects and components; timed, hybrid, embedded, and cyber-physical systems;
security; static analysis; software verification; software testing; model checking and theorem proving;
applications and experiences; etc.

December 05-08 43rd IEEE Real-Time Systems Symposium (RTSS'2023), Taipei, Taiwan.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2024

January 15-16 25th International Conference on Verification, Model Checking, and Abstract Interpretation

(VMCAI'2024), London, UK. Co-located with POPL'2024. Topics include: program verification, model
checking, abstract interpretation, static analysis, type systems, program certification, detection of bugs
and security vulnerabilities, hybrid and cyber-physical systems, concurrent and distributed systems,
analysis of numerical properties, analysis of smart contracts, etc., case studies on all of the above topics.

 January 17-19 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2024), London,
UK. Topics include: fundamental principles and important innovations in the design, definition, analysis,
transformation, implementation, and verification of programming languages, programming systems, and
programming abstractions. Deadline for submissions: October 15, 2023 (tutorials).

Jan 15-16 International Conference on Certified Programs and Proofs (CPP'2024). Topics
include: new languages and tools for certified programming; program analysis, program
verification, and program synthesis; program logics, type systems, and semantics for
certified code; verification of correctness and security properties; etc.

January 17-19 19th International Conference on High Performance and Embedded Architecture and Compilation
(HiPEAC'2024), Munich, Germany. Topics include: computer architecture, programming models,
compilers and operating systems for general-purpose, embedded and cyber-physical systems. Areas
include safety-critical dependencies, cybersecurity, energy efficiency and machine learning.

February 07-09 18th International Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS'2019), Bern, Switzerland. Topics include: variability across the software lifecycle, test and
verification of variable systems, evolution of variability-intensive systems, runtime variability, variability
mining, reverse-engineering of variability, economic aspects of variability, variability and quality
requirements, industrial development of variable systems, experience reports from managing variability
in practice, etc. Deadline for submissions: October 10, 2023 (abstracts), November 17, 2023 (papers),
October 27, 2023 (New and Controversial Ideas Track papers).

March 02-06 IEEE/ACM International Symposium on Code Generation and Optimization (CGO'2024),
Edinburgh, UK.

March 12-15 31st IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER'2024), Rovaniemi, Finland. Topics include: software tools for software evolution and
maintenance; software analysis, parsing, and fact extraction; software reverse engineering and
reengineering; program comprehension; software evolution analysis; software architecture recovery and
reverse architecting; program transformation and refactoring; mining software repositories and software
analytics; software reconstruction and migration; software maintenance and evolution; program repair;
software release engineering, continuous integration and delivery; education related to all of the above
topics; etc. Deadline for submissions: October 13, 2023 (research abstracts), October 29, 2023 (research

198 Conference Calendar

Volume 44, Number 3, September 2023 Ada User Journa l

papers), November 6, 2023 (registered reports), November 10, 2023 (Reproducibility Studies and
Negative Results (RENE) abstracts), November 17, 2023 (RENE papers), November 13, 2023 (industrial
abstracts, short papers and posters abstracts, Early Research Achievement (ERA) abstracts), November
20, 2023 (industrial papers, short papers and posters papers, ERA papers, tool demo papers), January 14,
2024 (Journal First papers).

March 20-22 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP'2024), Dublin, Ireland. Topics include: embedded parallel systems, dependability, survivability,
programming languages, compilers, middleware, runtime, and systems software, performance prediction
and analysis, simulation and modelling of parallel/distributed systems, etc.

April 06-11 27th European Joint Conferences on Theory and Practice of Software (ETAPS'2024), Luxembourg
City, Luxembourg. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for
submissions: October 12, 2023 (papers), November 9, 2023 (TACAS artifact submissions), January 4,
2024 (ESOP, FASE, FoSSaCS artifact submissions).

April 08-11 30th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2024), Winterthur, Switzerland. Theme: "Out of the Lab, into the Wild!" Deadline for
submissions: October 27, 2023 (workshops), November 10, 2023 (research papers), February 9, 2024
(workshop submissions, education and training track, posters, tools, doctoral symposium).

April 08-12 36th ACM Symposium on Applied Computing (SAC'2024), Avila, Spain.

 Apr 08-12 Track on Programming Languages (PL'2024). Topics include: technical ideas and
experiences relating to implementation and application of programming languages, such as
compiling techniques, domain-specific languages, garbage collection, language design and
implementation, languages for modeling, model-driven development, new programming
language ideas and concepts, practical experiences with programming languages, program
analysis and verification, etc. Deadline for submissions: October 13, 2019 (regular papers,
SRC research abstracts).

Apr 08-12 Software Verification and Testing Track (SVT'2024). Topics include: new results in
formal verification and testing, technologies to improve the usability of formal methods in
software engineering, applications of mechanical verification to large scale software, model
checking, correct by construction development, model-based testing, software testing,
static and dynamic analysis, abstract interpretation, analysis methods for dependable
systems, software certification and proof carrying code, fault diagnosis and debugging,
verification and validation of large scale software systems, real world applications and case
studies applying software testing and verification, etc.

April 14-20 46th International Conference on Software Engineering (ICSE'2024), Lisbon, Portugal. Deadline for
submissions: October 30, 2023 (TCSE award nominations).

April 14-15 12th International Conference on Formal Methods in Software Engineering
(FormaliSE'2024). Topics include: approaches, methods, and tools for verification and
validation; formal approaches to safety and security related issues; scalability of formal
method applications; integration of formal methods within the software development
lifecycle; model-based engineering approaches; correctness-by-construction approaches
for software and systems engineering; application of formal methods to specific domains
(such as, autonomous, cyber-physical, intelligent, and IoT systems); formal methods for
certification; guidelines to use formal methods in practice; usability of formal methods; etc.
Deadline for submissions: December 1, 2023 (abstracts), December 8, 2023 (papers).

April 24-25 16th Software Quality Days (SWQD'2024), Vienna, Austria. Theme: "Software Quality as a Foundation
for Security". Topics include: all topics related to software and systems quality, such as methods and tools
for constructive and analytical quality assurance; testing of software and software-intensive systems;
process improvement for development and testing; automation in quality assurance and testing; domain
specific quality issues such as embedded, medical, automotive systems; continuous integration,
deployment, and delivery; project and risk management; secure coding, software engineering and system
design; detection and prevention of vulnerabilities and security threats; etc. Deadline for submissions:
November 17, 2023.

Conference Calendar 199

Ada User Journa l Volume 44, Number 3, September 2023

May 07-11 15th ACM/SPEC International Conference on Performance Engineering (ICPE'2024), London, UK.
Deadline for submissions: October 13, 2023 (workshops), October 20, 2023 (SPEC Kaivalya Dixit
Distinguished Dissertation award nominations), October 27, 2023 (research track abstracts), November
03, 2023 (research track papers, industry track papers), January 12, 2024 (artifacts), January 26, 2024
(emerging research track, posters, demos, tutorials), February 9, 2024 (data challenge).

May 13-16 17th Cyber-Physical Systems and Internet of Things Week (CPS-IoT Week'2024), Hong Kong. Event
includes: 5 top conferences, HSCC, ICCPS, IoTDI, IPSN, and RTAS, as well as poster and demo sessions,
workshops, tutorials, competitions, industrial exhibitions, and PhD forums. Deadline for submissions:
October 13, 2023 (papers), November 7, 2023 (workshops, tutorials, competition proposals).

 May 13-16 29th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS'2024). Topics include: time-sensitive applications; real-time and embedded
operating systems; application profiling, WCET analysis, compilers, tools, benchmarks and
case studies; modelling languages, modelling methods, model learning, model validation
and calibration; scheduling and resource allocation; verification and validation
methodologies; etc. Deadline for submissions: October 31, 2023 (papers).

May 13-16 15th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'2024).
Topics include: safety and resilience for CPS; software platforms and systems for CPS;
specification languages and requirements; design, optimization, and synthesis; testing,
verification, certification; security, trust, and privacy in CPS; tools, testbeds,
demonstrations and deployments; etc. Deadline for submissions: October 24, 2023
(abstracts), October 31, 2023 (papers).

May 27-31 38th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2024), San
Francisco, California, USA. Topics include: applications to solve problems using parallel and distributed
computing concepts; programming models, compilers, and runtime systems (ranging from the design of
parallel programming models and paradigms to languages and compilers supporting these models and
paradigms, to runtime and middleware solutions); system software; existing and emerging architectures;
experiments and performance-oriented studies in the practice of parallel and distributed computing; etc.
Deadline for submissions: October 5, 2023 (papers).

May 27-31 17th IEEE International Conference on Software Testing, Verification and Validation (ICST'2024),
Toronto, Canada. Topics include: manual testing practices and techniques, security testing, model-based
testing, test automation, static analysis and symbolic execution, formal verification and model checking,
software reliability, testability and design, testing and development processes, testing in specific domains
(such as embedded/cyber-physical systems, concurrent, distributed, ..., and real-time systems),
testing/debugging tools, empirical studies, experience reports, etc. Deadline for submissions: October 18,
2023 (abstracts), October 25, 2023 (papers).

June 04-06 16th NASA Formal Methods Symposium (NFM'2024), Moffett Field, California, USA. Topics include:
identifying challenges and providing solutions towards achieving assurance for critical systems; formal
techniques for software and system assurance for applications in space, aviation, robotics, and other
NASA-relevant safety-critical systems. Deadline for submissions: December 1, 2023 (abstracts),
December 8, 2023 (papers).

June 10-12 21st International Conference on Software and Systems Reuse (ICSR'2024), Limassol, Cyprus.
Theme: "Sustainable Software Reuse". Topics include: new and innovative research results and industrial
experience reports dealing with all aspects of software reuse within the context of the modern software
development landscape, such as technical aspects of reuse (model-driven development, variability
management and software product lines, domain-specific languages, new language abstractions for
software reuse, software composition and modularization, technical debt and software reuse, ...), software
reuse in industry and in emerging domains (reuse success stories, reuse failures and lessons learned, reuse
obstacles and success factors, return on investment studies, ...). Deadline for submissions: January 22,
2024 (abstracts), January 29, 2024 (full papers).

 June 11-12 12th European Congress on Embedded Real Time Systems (ERTS'2024), Toulouse, France. Topics
include: all aspects of critical embedded real-time systems, such as model-based system and safety
engineering, product line engineering, programming languages, verification methods, software
development frameworks, dependability, safety, cyber security, quality of service, fault tolerance,
maintainability, certification, etc. Deadline for submissions: October 15, 2023 (regular abstracts, short
papers), April 3, 2024 (regular papers), May 5, 2024 (final short and regular papers).

200 Conference Calendar

Volume 44, Number 3, September 2023 Ada User Journa l

 June 11-14 28th Ada-Europe International Conference on Reliable Software
Technologies (AEiC'2024), Barcelona, Spain. Organized by Ada-Europe and Barcelona
Supercomputing Center. In cooperation with the Ada Resource Association (ARA), ACM
SIGAda, ACM SIGBED, and ACM SIGPLAN. Deadline for submissions: January 15, 2024
(journal-track papers), February 26, 2024 (industrial track and work-in-progress papers,
tutorial and workshop proposals). #AEiC2024 #AdaEurope #AdaProgramming

 September 16-20 38th European Conference on Object-Oriented Programming (ECOOP'2024), Vienna, Austria.
Topics include: programming languages, software development, systems and applications.

 October 20-25 ACM Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH'2024), Pasadena, California, USA.

 Oct 20-25 Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2024). Topics include: all practical and theoretical investigations of
programming languages, systems and environments, targeting any stage of software
development, including requirements, modelling, prototyping, design, implementation,
generation, analysis, verification, testing, evaluation, maintenance, and reuse of software
systems; development of new tools, techniques, principles, and evaluations. Deadline for
submissions: October 20, 2023 (round 1), April 5, 2024 (round 2).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Conference Chair
Sara Royuela
sara.royuela@bsc.es
Barcelona Supercomputing Center, Spain

Journal track Chairs
Bjorn Andersson
baandersson@sei.cmu.edu
Carnegie Mellon University, USA

Luis Miguel Pinho
lmp@isep.ipp.pt
ISEP & INESC TEC, Portugal

Industrial track Chairs
Luciana Provenzano
luciana.provenzano@mdu.se
Mälardalen University, Sweden

Michael Pressler
Michael.Pressler@de.bosch.com
Robert Bosch GmbH, Germany

Work-In Progress-track Chairs
Alejandro R. Mosteo
amosteo@unizar.es
CUD Zaragoza, Spain

Ruben Martins
rubenm@andrew.cmu.edu
Carnegie Mellon University, USA

Tutorial Chair
Maria A. Serrano
maria.serrano@nearbycomputing.com
NearbyComputing, Spain

Workshop Chair
Sergio Saez
ssaez@disca.upv.es
Universitat Politècnica de València, Spain

Exhibition & Sponsorship Chair
Ahlan Marriott
ahlan@Ada-Switzerland.ch
White Elephant GmbH, Switzerland

Publicity Chair
Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be
Ada-Belgium & KU Leuven, Belgium

Webmaster
Hai Nam Tran
hai-nam.tran@univ-brest.fr
University of Brest, France

Local Chair
Nuria Sirvent
nuria.sirvent@bsc.es
Barcelona Supercomputing Center, Spain

The 28th Ada-Europe International Conference on Reliable Software Technologies
(AEiC 2024) will take place in Barcelona, Spain.

AEiC is a leading international forum for providers, practitioners, and researchers in
reliable software technologies. The conference presentations will illustrate current work
in the theory and practice of the design, development, and maintenance of long-lived,
high-quality software systems for a challenging variety of application domains. The
program will include keynotes, Q&A sessions, and social events where practitioners and
researchers from industry, academia, and government organizations active in the
promotion and development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

 Formal and model-based engineering of critical systems

 High-Integrity Systems and Reliability

 AI for High-Integrity Systems Engineering

 Real-Time Systems

 Ada Language

 Applications in relevant domains

The conference comprises different tracks and co-located events:

 Journal track papers present research advances supported by solid theoretical
foundation and thorough evaluation.

 Industrial track contributions highlight industrial open challenges and/or the
practitioners' side of a relevant case study or industrial project.

 Work-in-progress track papers illustrate novel research ideas that are still at an
initial stage, between conception and first prototype.

 Tutorials guide attenders through a hands-on familiarization with innovative
developments or with useful features related to reliable software.

 Workshops provide discussion forums on themes related to the conference topics.

 Vendors presentations and exhibitions allow for companies to showcase their
latest products.

Important Dates

15 January 2024 Deadline for submission of journal-track papers

26 February 2024 Deadline for submission of industrial-track papers, work-in-
progress papers, tutorials, and workshop proposals

22 March 2024 First round notification for journal-track papers, and notification
of acceptance for all other types of submissions

11-14 June 2024 Conference

Call for journal track submissions

Following a journal‐first model, this edition of the conference includes a journal track, which seeks original and high‐quality papers that describe mature
research work on the conference topics. Accepted journal‐track papers will be published in a Special Issue of Elsevier JSA – the Journal of Systems
Architecture (Q1 ranked, CiteScore 8.5, impact factor 4.5). Accordingly, the conference is listed as “Journal Published” in the latest update of the CORE
Conference Ranking released in August 2023. Contributions must be submitted by 15 January 2024. Submissions should be made online at
https://www.editorialmanager.com/jsa/, selecting the "Ada‐Europe AEiC 2024" option (submission page open from 15 November 2023) as article type
of the paper. General information for submitting to the JSA can be found at the Journal of Systems Architecture website.

JSA has adopted the Virtual Special Issue model to speed up the publication process, where Special Issue papers are published in regular issues, but
marked as SI papers. Acceptance decisions are made on a rolling basis. Therefore, authors are encouraged to submit papers early, and need not wait
until the submission deadline. Authors who have successfully passed the first round of review will be invited to present their work at the conference.
The abstract of the accepted contributions will be included in the conference booklet.

The Ada‐Europe organization will waive the Open Access fees for the first four accepted papers (whose authors do not already enjoy Open Access
agreements). Subsequent papers will follow JSA regular publishing track. Prospective authors may direct all enquiries regarding this track to the
corresponding chairs, Bjorn Andersson (baandersson@sei.cmu.edu) and Luis Miguel Pinho (lmp@isep.ipp.pt).

Call for industrial track submissions

The conference seeks industrial practitioner presentations that deliver insight on the challenges of developing reliable software. Especially welcome
kinds of submissions are listed on the conference web site. Given their applied nature, such contributions will be subject to a dedicated practitioner‐
peer review process. Interested authors shall submit a one‐to‐two pages abstract, by 26 February 2024, via EasyChair at
https://easychair.org/my/conference?conf=aeic2024, selecting the “Industrial Track”. The format for submission is strictly in PDF, following the Ada
User Journal style. Templates are available at http://www.ada‐europe.org/auj/guide.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime‐time technical program of the conference and will also be invited to expand their contributions into full‐fledged articles for publication in the
Ada User Journal, which will form the proceedings of the industrial track of the Conference. Prospective authors may direct all enquiries regarding this
track to its chairs Luciana Provenzano (luciana.provenzano@mdu.se) and Michael Pressler (Michael.Pressler@de.bosch.com).

Call for work‐in‐progress track submissions

The work‐in‐progress track seeks two kinds of submissions: (a) ongoing research and (b) early‐stage ideas. Ongoing research submissions are 4‐page
papers describing research results that are not mature enough to be submitted to the journal track. Early‐stage ideas are 1‐page papers that pitch new
research directions that fall within the scope of the conference. Both kinds of submissions must be original and shall undergo anonymous peer review.
Submissions by recent MSc graduates and PhD students are especially sought. Authors shall submit their work by 26 February 2024, via EasyChair at
https://easychair.org/my/conference?conf=aeic2024, selecting the “Work in Progress Track”. The format for submission is strictly in PDF, following the
Ada User Journal style. Templates are available at http://www.ada‐europe.org/auj/guide.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime‐time technical program of the conference and will also be offered the opportunity to expand their contributions into 4‐page articles for
publication in the Ada User Journal, which will form the proceedings of the WiP track of the Conference. Prospective authors may direct all enquiries
regarding this track to the corresponding chairs Alejandro R. Mosteo (amosteo@unizar.es) and Ruben Martins (rubenm@andrew.cmu.edu).

Call for tutorials

The conference seeks tutorials in the form of educational seminars on themes falling within the conference scope, with an academic for practitioner
slant, including hands‐on or practical elements. Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the
presentation, the proposed duration (half‐day or full‐day), the intended level of the contents (introductory, intermediate, or advanced), and a statement
motivating attendance. Tutorial proposals shall be submitted at any time but no later than the 26 February 2024 to the respective chair Maria A. Serrano
(maria.serrano@nearbycomputing.com), with subject line: “[AEiC 2024: tutorial proposal]”. Once submitted, each workshop proposal will be evaluated
by the conference organizers as soon as possible. The authors of accepted full‐day tutorials will receive a complimentary conference registration, halved
for half‐day tutorials. The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for workshops

The conference welcomes satellite workshops centred on themes that fall within the conference scope. Proposals may be submitted for half‐ or full‐
day events, to be scheduled at either end of the AEiC conference. Workshop organizers shall also commit to producing the proceedings of the event,
for publication in the Ada User Journal. Workshop proposals shall be submitted at any time but no later than the 26 February 2024 to the respective
chair Sergio Saez (ssaez@disca.upv.es), with subject line: “[AEiC 2024: workshop proposal]”. Once submitted, each workshop proposal will be evaluated
by the conference organizers as soon as possible.

Call for exhibitors and sponsors

The conference will include a vendor and technology exhibition with the option of a 20 minutes presentation as part of the conference program.
Interested providers should direct inquiries to the Exhibition & Sponsorship Chair Ahlan Marriot (ahlan@ada‐switzerland.ch).

Venue

The conference will take place in Barcelona, Spain. Barcelona is a major cultural, economic, and financial centre, known for its architecture, culture,
and Mediterranean atmosphere, a hub for technology and innovation. There’s plenty to see and visit in Barcelona, so plan in advance!

Organized by:

In cooperation with:

 203

Ada User Journa l Volume 44, Number 3, September 2023

Call for Contributions

Topics: Ada, Programming Languages, Software
Engineering Issues and Reliable Software
Technologies in general.

Contributions: Refereed Original Articles, Invited
Papers, Proceedings of workshops and panels, and
News and Information on Ada and reliable software
technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

204

VR-Based Teleoperation of Autonomous Vehicles
for Operation Recovery

Georg Jäger, Gero Licht, Norman Seyffer, Stefan Reitmann
Freiberg University of Mining & Technology, Institute for Computer Science, Akademiestraße 6, 09599 Freiberg,
Germany; email: {georg.jaeger, gero.licht, norman.seyffer, stefan.reitmann}@informatik.tu-freiberg.de

Abstract

While research will enable the deployment of au-
tonomous systems in harsh and inaccessible environ-
ments, their operation may be interrupted due to un-
foreseen situations. A possibility to recover operation
nonetheless is to employ teleoperation. However, what
requirements and criteria need to be fulfilled by such a
system when deployed in safety-critical operation sce-
narios? How can a timely and safe operation recov-
ery be ensured? The present work aims to report our
progress in developing a research platform for address-
ing these and similar questions.

1 Introduction
Autonomous systems’ potential to alleviate people from man-
ual and repetitive tasks has fueled their development. Use
cases span from environmental monitoring to individualized
delivery systems and beyond.

For such deployments, however, safety of these systems be-
comes a mandatory prerequisite. Several standards and norms
exist, e.g. based on the IEC 61511 [5]. Their overarching
idea is to provide guarantees at design time that the system
will be safe at run time.

However, providing such guarantees becomes increasingly
difficult. Firstly, because of the system’s complexity, which
is (secondly) increasing due to the open operation environ-
ments that render the task of defining a system’s Operational
Design Domain (ODD) with sufficient coverage challenging
as well [8]. The latter entails that the system under design
will be faced with unforeseen situations at run time. In these
cases, the system is commonly brought into a predetermined
fail-safe state (if applicable) and interrupted in its mission
execution.

But how long can a system remain in its fail-safe state? This is
use-case dependent. For instance, for an autonomous delivery
system operating on sidewalks, it is assumed that stopping its
movement in case of a failure is safe. Contrarily, this assump-
tion does not hold in case the failure occurs while the system
is crossing a road. There, stopping the movement can be
considered safe only for a limited period. Operation recovery
is therefore mandatory to maintain the system’s safety. As we
presume, however, that an unforeseen situation occurred, we
consequently need to assume that the system will not be able

Human Operator

HMI System Control

PlantSensors

Control
Signals

Sensor
Signals

Figure 1: General Structure of a Teleoperation Scenario for a
Single Autonomous System.

to recover on its own. A possible option to recover operation
nonetheless is to teleoperate the system remotely. This places
the human operator and the corresponding teleoperation sys-
tem in the center of the overall system’s safety argumentation.
Therefore, a central question is: what requirements do tele-
operation systems need to fulfill to be allowed as a safety
functionality in autonomous systems?

To analyze this question, the next section will briefly review
the state of the art in teleoperation systems and current discus-
sions on appropriate Human Machine Interface (HMI) solu-
tions. Section 3 will present the system currently under design
along with two use cases we are focusing on - Autonomous
Surface Vehicles (ASVs) (robotic boats) for environmental
monitoring and medium-sized Autonomous Ground Vehi-
cles (AGVs) for urban scenarios, in this case, delivery systems.
As the latter is a work-in-progress, we point out research
opportunities related to the use cases in section 4 before we
conclude the article.

2 State of the Art on Teleoperation Systems
Teleoperation systems are a long-standing field of research
that has led to a rich literature that we want to briefly present
in this section.

The general architecture of teleoperation systems is shown
in Figure 1. It consists of three main components: a human
operator presented with an HMI, a bidirectional data connec-
tion, and the remotely controlled system with its sensors and
separate control architecture.

Commonly, a remotely located human operator is presented
with the current state of the controlled system as perceived by
its sensors through an HMI. It allows the operator to determine
appropriate control commands sent to and executed by the
controlled system.

For this loop to be successful, the HMI has to enable the opera-
tor to correctly understand and assess the state and context of

Volume 44, Number 3, September 2023 Ada User Jour na l

G. Jäger, G. L icht , N. Seyf fer, S. Rei tmann 205

the remote system. To that end, existing concepts leverage the
visual focus of operators and present them with video streams
of onboard cameras, e.g. as in [2]. However, to support a
better sense of orientation and scale those streams can be
processed to present enriched views as deployed by Schimpe
et al. [11].

Next to the data, the presentation itself is central to enable
the operator to safely control the remote system. For that,
Hosseini and Lienkamp [4] propose using Head-Mounted
Displays (HMDs) to enhance situation awareness and task
performance. Lager and Topp [7] confirm that users work-
ing with VR-GUIs perform better in detecting collision or
grounding situations of surface vehicles than users working
with conventional GUIs or even 3D-GUIs. The users rated
the VR-GUI to be the easiest tool to use and at the same time
the best expert tool.

As before, the visual focus of human perception is exploited
by allowing operators to use their natural behavior (e.g. turn-
ing their head) to create an immersive experience increasing
situational awareness. For that, the style with which the infor-
mation is presented has to be designed carefully, especially
for such VR-based systems. Inappropriate design can increase
the risk of motion sickness of the operator. It emerges from
disagreeing sensational stimuli and can cause, for instance,
disorientation and nausea [1].

A source of such disagreeing sensational stimuli, other than
the HMD, can be delays and limited bandwidth of the trans-
mission link. Although not using HMD, the authors of [10]
show that operators are capable of navigating successfully
with low-resolution data but are challenged when presented
with delayed data. In their use case of operating a quadro-
tor, they identified 442ms of delay as the break-even point
for reducing the resolution and switching to simplifying data
abstractions.

The importance of delays was underlined in [11] and [2]
where low-level control signals (steering angle and velocity)
are sent to a passenger vehicle. Measuring delays of about
100-120 ms, it was deemed sufficient to maneuver the car at
low to intermediate speeds of no more than 35 kmh−1. While
this latency was satisfactory for the most part, [2] encountered
delays peaking at >500ms during their test drives on a 3G
Network. The authors conclude that such delays are accept-
able for rural roads but not for crowded areas of challenging
terrains where they become a threat to the system’s safety.

In the endeavor of identifying the set of relevant hazards
for teleoperation systems in automotive scenarios, [3] con-
sider not only the human operator or the delays of the data
transmission, but also consider the controlled system itself.
However, these are focused on automotive systems and there-
fore do not consider the contextual situations of, for instance,
environmental monitoring systems or autonomous delivery
systems.

Thus, while a rich set of approaches and analyses regarding
the performance of teleoperation systems exists, only a few
works address the challenges of safety argumentation.

Figure 2: Clearpath Kingfisher ASV with 360° Camera.

3 VR-based Teleoperation for Operation
Recovery

To enable analyzing safety challenges and argumentations
on conceptual and practical abstraction levels, we are cur-
rently developing a VR-based teleoperation system. We will
firstly introduce the state of the current prototype in the next
subsection before we elaborate on the planned future work.

3.1 Teleoperation for Robotic Boats
The prototype presented here is developed for robotic boats -
in particular for a Clearpath Kingfisher (cf. Figure 2). It was
used within the ESF project RoboBoatAssist (2022) for the
assistance of robotic boats.

The boats were designed to autonomously monitor and record
water parameters such as bathymetry data [9]. However, due
to critical situations occurring within the shore area, manual
control is necessary. For that, a Virtual Reality (VR)-based
assistance system using HMD was developed. The central
source of information is a video stream produced by a 360◦

camera (Theta Z1) mounted on the boat, cf. Figure 2. Using
Robot Operating System (ROS) and the GStreamer framework,
the images are streamed from the boat to the operator using a
HMD. It is a standalone solution working without a separate
computer in between. The Z1 produces spherical videos in
4K (3840 x 1920, 29.97 FPS), which can be streamed to
the Unity1 game engine with a delay toffset = tHMD −
tcaptured < 0.1 s via 2.4GHz WiFi network.

The operator wearing the HMD is located within a virtual envi-
ronment showing the video stream mapped to a sphere around
his virtual position in the Unity scene (see fig. 3). It allows
exporting applications for HMDs in general and enables using
the HTC Focus 3 in this case. This specific model has inside-
out tracking making it applicable for outdoor environments
as no additional equipment or setup is required for tracking
the operator’s movement.

For connecting Unity to the ROS network, the Transmission
Control Protocol (TCP) endpoint and connector packages de-
veloped by Unity Technologies2, 3 are employed. As this

1https://unity.com/
2https://github.com/Unity-Technologies/

ROS-TCP-Connector
3https://github.com/Unity-Technologies/

ROS-TCP-Endpoint

Ada User Jour na l Vo lume 44, Number 3, September 2023

206 VR-Based Teleoperat ion of Autonomous Vehic les for Operat ion Recover y

Figure 3: Combining image and spatial data: the operator is
placed in the middle (0, 0, 0) of the virtual scene using a virtual,
VR-based camera (orange). Sensor data is visualized within the
scene using a sky sphere (360◦ image as texture) and a particle
system (point cloud from a rotating LiDAR).

Figure 4: The research platform Clearpath Husky extended to
support the use case of autonomous delivery systems.

means that the VR system itself is not a ROS node but commu-
nicates using generic TCP connections, adapting it to different
releases (ROS version 1 or 2) is straightforward and planned
for future work.

3.2 Teleoperation for Autonomous Delivery Sys-
tems

Within the research project RoboTraces4, we plan to extend
our prototypical VR-based teleoperation system to land-based
AGVs, specifically the Clearpath Husky. For that, we focus on
the use case of autonomous delivery systems deployed in open
environments where defining the ODD becomes challenging
and requiring human control in unforeseen situations.

Simultaneously, the scenarios in which a human operator is re-
quired to take over control of the autonomous system increase
in complexity and thereby challenge situational awareness.
To mitigate the effects, we are planning to integrate additional
sensory information in the virtual environment presented to
the operator.

In a first step, the available spatial data will be exploited.
The system features four ZED2i stereo cameras covering a
360◦ view around the system while producing not only RGB
but also depth information. Moreover, two solid-state Light

4This research was partially founded by German Ministry for Digital and
Transport under the grant no. 19F1117B

Detection and Ranging (LiDAR) mounted in the front and back
provide additional spatial data. In both cases, particle systems
can be used for visualization in the Unity application, cf.
Figure 3).

In a second step, near-field ultra-sonic distance sensors will be
used to give feedback about obstacles becoming dangerously
close to the system. The view will be colored red indicating
that immediate actions are needed to prevent a collision.

Finally, in a third step, processed and abstracted data is to
be presented. It is planned to simplify the presentation of
detected obstacles and their categories to not only support the
operator in understanding the system’s environment, but also
the system’s perception of the same.

4 Research Opportunities
The planned extensions and the presented use cases shall
enable researching requirements to be allocated to such a tele-
operation system when used in safety-critical scenarios, such
as operation recovery. The corresponding research opportu-
nities can be associated with the operator and its HMI, the
transmission of data, and the system under control. We will
briefly discuss these opportunities in the next subsections.

4.1 Human Operator
Since teleoperation will act as a fallback option for operation
recovery, one central aspect to ensure the system’s safety is
the human operator - which therefore raises safety-related
questions. In [3] and related work, for instance, different
hazards associated with the operator are identified. They
can be categorized into (in-)appropriate training, mental and
physical well-being, and situational awareness.

Since the chain of argumentation for safety encompasses the
human operator, training is essential to reduce risks related to
inappropriate control actions. Similarly, mental and physical
well-being needs to be supported by the HMI where motion
sickness (cf. Section 2) becomes significant when using HMDs.

Most central for the operator to determine safe control ac-
tions, however, is its situational awareness. Its provision
by an employed teleoperation system turns therefore into a
safety question. From that line of thought, we identified the
following, non-exhaustive list of research questions:

• Is there a set of functionalities to guarantee situational
awareness in teleoperation systems?

• How should non-visual information about the remotely
controlled system and its surroundings be displayed?

• Do we need an environmental model of the remote sys-
tem within the HMI?

With respect to safety, determining a minimal set of func-
tionalities to be provided by teleoperation systems to enable
situational awareness by trained operators could serve as a
baseline.

Supposedly, this set of functionalities is use-case dependent
- with increasing complexity of the same, the teleoperation
system may be obligated to provide a better presentation
of information. With our VR-based approach, visual and
spatial information can be displayed intuitively to the operator.

Volume 44, Number 3, September 2023 Ada User Jour na l

G. Jäger, G. L icht , N. Seyf fer, S. Rei tmann 207

However, other relevant parameters (e.g. wind strength and
direction for ASVs or unsafe distances of obstacles for AGVs)
need to be displayed as well.

Moreover, depending on the situation, the operator could
be supported in interpreting the displayed information by
highlighting them appropriately. For that, having an environ-
mental model of the remote system within the HMI could form
a basis.
4.2 Transmission of Data
Next to the HMI of the operator, its connectivity and data
transmission from/to the remotely controlled system has to be
taken into consideration. Here security becomes a central con-
cern. Since the operator will control the system remotely, the
system has to have a constant digital connection. This connec-
tion, however, exposes an attack surface such that adversaries
may intrude and threaten to (i) take over control of the con-
trolled system to perform malicious (and therefore unsafe)
control actions, (ii) compromise the integrity of transmitted
data, which reduces or nullifies the situational awareness of
the operator, (iii) or to compromise confidentiality such that
private data as obtained by RGB cameras is accessible by
unauthorized personal.

Although these challenges are common to the field of security,
solutions to them require taking the safety of the system
into account. For instance, employed encryption can not
introduce delays ([10]), incomplete data transmissions or
connection loss. All of these may also be introduced by
general connectivity issues:

• How to ensure integrity, confidentiality, and availabil-
ity with respect to the cybersecurity of the teleoperated
system while not impacting the system’s performance
negatively?

• How to handle incomplete data transmission?

• How to ensure safety in case of connection loss?

A loss in either of the three security attributes can have severe
consequences - not only but also with respect to safety. Next
to the actual threat of a cyberattacker compromising any of
the attributes, implementing a solution to the problem likely
requires overhead in processing and data transmission. This
may result in increased processing power consumption and
reduces energy efficiency.

Moreover, data transmission can also fail because the net-
work becomes unavailable. From the operator’s perspective,
however, deciding on an appropriate control action is most
central, leaving the decision on how to handle incomplete data
transmission to the system. Here, one has to take situational
awareness of the operator into account again: is it favorable
to either fully apply a control signal or not at all and thus
introducing transactional behavior to prevent divergence be-
tween the operator’s perception of the remote situation and its
reality? Or could it be possible to detect partially transmitted
data to provide corresponding feedback to the operator?

If delays and incomplete data transmission increase, the worst-
case scenario may occur: connection loss during a teleopera-
tion session. In this case, the operator can not interact with
the system anymore - thus transferring the responsibility of
safety back to the autonomous system.

4.3 Capabilities of the Remote System
While the challenge of connection loss originates in the trans-
mission link between the teleoperated system and the human
operator, addressing it involves the system itself. Since the
autonomous system is forced back to maintain its safety au-
tonomously, the question arises:

• Which levels of autonomy does the remotely controlled
system need to maintain?

As the teleoperation system itself is a fallback option for au-
tonomous behavior already, a connection loss could result in
a complete system failure. Considering that an operator could
have connected to the system before, the situation could have
improved and thus may allow the robot to obtain a fail-safe
state at least. For that, however, it needs to be discussed which
autonomous functionalities to enable (automatically or specif-
ically by the operator) once a connection was established.
Then, in case of a connection loss, maintaining the system’s
safety through a reduced set of autonomous functionalities
could be possible - and is therefore opening another research
opportunity.

5 Conclusions
In this article, we present the work in progress to implement-
ing a VR-based teleoperation system for operation recovery
of autonomous systems. We focus on the use cases of ASVs
(robotic boats) and AGVs (autonomous delivery systems).

While the current system allows visualizing video streams
of an onboard camera through an HMD, the system is to be
extended for presenting spatial and abstracted data as well.

With this platform, we aim at researching questions con-
cerning the safety of teleoperated systems. An initial list
of questions is presented in the previous section but needs
to be extended and supported by a structured analysis. In
that endeavor, we aim for applying the System-Theoretic Pro-
cess Analysiss (STPAs). STPA differs from traditional hazard
analysis techniques such as Fault Tree Analysis (FTA) and
Failure Mode and Effect Analysis (FMEA) as it does not as-
sume random component failures to be the origin of a chain
of events eventually leading to a system failure. In contrast,
STPA considers system failures as a consequence of inappro-
priate and/or unsafe control actions and asks for reasons that
might have caused them. Thus, it considers the system and its
components as control systems interacting with their environ-
ment and with each other. The resulting perspective allows to
identify hazards in complex software systems and is therefore
well suited for the analysis of teleoperation systems [6].

Appendix
The following abbreviations are used in this manuscript:

AGV Autonomous Ground Vehicle 204
ASV Autonomous Surface Vehicle 204
FTA Fault Tree Analysis 207
FMEA Failure Mode and Effect Analysis 207
LiDAR Light Detection and Ranging 206
ODD Operational Design Domain 204
HMD Head-Mounted Display 205
HMI Human Machine Interface 204
ROS Robot Operating System 205

Ada User Jour na l Vo lume 44, Number 3, September 2023

208 VR-Based Teleoperat ion of Autonomous Vehic les for Operat ion Recover y

STPA System-Theoretic Process Analysis 207
TCP Transmission Control Protocol 205
VR Virtual Reality 205

References
[1] Eunhee Chang, Hyun Taek Kim, and Byounghyun

Yoo. “Virtual Reality Sickness: A Review of Causes
and Measurements”. In: International Journal of Hu-
man–Computer Interaction (2020).

[2] Sebastian Gnatzig et al. “A System Design for Teleop-
erated Road Vehicles”. In: International Conference
on Informatics in Control, Automation and Robotics.
2013. URL: https://api.semanticscholar.
org/CorpusID:46122663.

[3] Simon Hoffmann and Dr. Frank Diermeyer. Systems-
Theoretic Safety Assessment of Teleoperated Road Ve-
hicles. 2021. URL: https://arxiv.org/abs/
2104.06795.

[4] Amin Hosseini and Markus Lienkamp. “Enhancing
telepresence during the teleoperation of road vehicles
using HMD-based mixed reality”. In: 2016 IEEE Intel-
ligent Vehicles Symposium (IV). 2016, pp. 1366–1373.
DOI: 10.1109/IVS.2016.7535568.

[5] International Electrotechnical Commission. Functional
safety - Safety instrumented systems for the process

industry sector. Standard. Geneva, CH: International
Electrotechnical Commission, 2020.

[6] Takuto Ishimatsu et al. “Hazard analysis of complex
spacecraft using systems-theoretic process analysis”.
In: Journal of spacecraft and rockets 51.2 (2014),
pp. 509–522.

[7] Mårten Lager and Elin A. Topp. “Remote Supervi-
sion of an Autonomous Surface Vehicle using Virtual
Reality”. In: IFAC-PapersOnLine (2019). 10th IFAC
Symposium on Intelligent Autonomous Vehicles IAV
2019. ISSN: 2405-8963.

[8] Alexander Poddey et al. “On the validation of complex
systems operating in open contexts”. In: arXiv preprint
arXiv:1902.10517 (2019).

[9] Sebastian Pose et al. “AI-Prepared Autonomous Fresh-
water Monitoring and Sea Ground Detection by an
Autonomous Surface Vehicle”. In: Remote Sensing
(2023).

[10] Maik Riestock et al. “User study on remotely con-
trolled uavs with focus on interfaces and data link qual-
ity”. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2017.

[11] Andreas Schimpe et al. “Open Source Software for
Teleoperated Driving”. In: 2022 International Confer-
ence on Connected Vehicle and Expo (ICCVE). 2022,
pp. 1–6. DOI: 10 . 1109 / ICCVE52871 . 2022 .
9742859.

Volume 44, Number 3, September 2023 Ada User Jour na l

209

Denoising Autoencoder-Based Defensive
Distillation as an Adversarial Robustness
Algorithm Against Data Poisoning Attacks

Bakary Badjie, José Cecílio, António Casimiro
LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade Lisboa, Lisboa; email: {bbadjie,
jmcecilio, casim}@ciencias.ulisboa.pt

Abstract

Deep neural networks (DNNs) have demonstrated
promising performances in handling complex real-world
scenarios, surpassing human intelligence. Despite their
exciting performances, DNNs are not robust against
adversarial attacks. They are specifically vulnerable to
data poisoning attacks where attackers meddle with the
initial training data, despite the multiple defensive meth-
ods available, such as defensive distillation. However,
defensive distillation has shown promising results in ro-
bustifying image classification deep learning (DL) mod-
els against adversarial attacks at the inference level, but
they remain vulnerable to data poisoning attacks. This
work incorporates a data denoising and reconstruction
framework with a defensive distillation methodology
to defend against such attacks. We leverage a denois-
ing autoencoder (DAE) to develop a data reconstruc-
tion and filtering pipeline with a well-designed recon-
struction threshold. We added carefully created adver-
sarial examples to the initial training data to assess
the proposed method’s performance. Our experimen-
tal findings demonstrate that the proposed methodology
significantly reduced the vulnerability of the defensive
distillation framework to a data poison attack.

Keywords: Deep Neural Network, Denoising Autoen-
coder, Defensive Distillation, Adversarial attacks and
Robustness, Data Poisoning

1 Introduction
The necessity of DNNs′ resilience against adversarial at-
tacks has shown a growing concern as their use in real-world
safety-critical systems has increased exponentially. Adversar-
ial attacks [1] are attempts to trick DNNs by making subtle
alterations to the input data x. The alterations are usually
designed to be imperceptible to humans but can detrimentally
impact the DNN ′s ability to make accurate decisions. Sev-
eral defense strategies have been proposed to overcome this
problem, including defensive distillation, which has success-
fully defended DNNs from input perturbations ϵ in run-time
settings [2]. Nevertheless, one of the drawbacks of the de-
fensive distillation framework is that it remains susceptible
to data poisoning attacks, in which adversaries aim to impair

the model’s performance by either maliciously altering the
existing training data or inserting erroneous data entries into
it. These harmful data entries could be carefully crafted to be
close to the model’s decision boundary, bypassing the counter-
measures offered by defensive distillation. This study presents
a novel method for robustifying a distilled network against
data poisoning attacks by integrating a denoising autoencoder
(DAE) [3] in the defensive distillation pipeline. Defensive dis-
tillation involves training two DNNs, the instructor model
and the student model, such that the knowledge of the former
is transferred into the latter, making it robust to adversarial
examples and previously unseen input [1, 4]. A DAE is a
type of DNN trained in an unsupervised setting to learn a
latent representation of input data x, enabling it to reconstruct
distorted data back to its original form. In the training phase,
it is exposed to a perturbed version of x and learns to recon-
struct it while filtering out noise. The aim is minimizing the
reconstruction loss between the x and reconstructed input xr

as much as possible [3].

This paper is motivated by the fact that the instructor model is
not immune to data poisoning adversarial attacks. However,
the student model has more latitude to reject variations in
the input space X because it leverages the "distilled" ver-
sion of the training data, where training data is labeled with
the soft labels or probability vector F (X) obtained by the
increase in the softmax temperature parameter T of the in-
structor model [2]. Thus, minimizing the instructor model’s
susceptibility to data poisoning attacks is pivotal for develop-
ing a reliable and robust distilled DNN . To achieve this, we
designed a DAE to remove noise and reconstruct poisonous
samples within the training dataset. The defensive distillation
method already offers a strong resilience foundation in the
test phase; combined with a DAE, the resilience against data
poisoning adversarial attacks is significantly strengthened in
the training phase. Moreover, our strategy considers several
adversarial attack aspects, such as the attacker’s access to
the training data and trial-and-error techniques to access the
model gradient, making it a more effective defense mecha-
nism against such attacks.

We used the fast gradient sign method (FGSM) [5] and the
iterative-fast gradient sign method (I-FGSM) [6] to evalu-
ate the effectiveness of the proposed algorithm. We used

Ada User Jour na l Vo lume 44, Number 3, September 2023

210 Denois ing Autoencoder-Based Defens ive Dis t i l la t ion

these adversarial examples generation algorithms to perturb a
proportion of the training data.

The results in Figure 2 show that the proposed approach
enables the detection and reconstruction of the majority of
poisonous inputs in the training data and significantly im-
proves the robustness of the instructor network against data
poisoning attacks. The perturbations used by the FGSM and
I − FGSM algorithms are so small that the resulting poi-
sonous data within the training set is imperceptible to humans.
The proposed approach offers a more potent protection mech-
anism against adversarial poisoning attacks by combining
defensive distillation with a DAE. This enables the distil-
lation algorithm to significantly mask or lower the gradient
around the training data and widen the search space that at-
tackers need to explore in order to craft adversarial examples
in the input space X . The proposed approach significantly
reduces the limitations and susceptibility of the defensive
distillation algorithm to data poisoning attacks.

Knowledge distillation was first proposed in [4]. The author
aimed to lower the computational resources required to deploy
large-scale DNNs on resource-constrained devices such as
smartphones. Therefore, they extrapolate the probability vec-
tor or class knowledge produced by the instructor network and
use it to train small networks, reducing the network’s scalabil-
ity without compromising accuracy and allowing deployment
on resource-constrained devices.

Statistically and experimentally, Papernot et al. [2] further
explore this idea as a preventive measure against adversarial
inputs. Using class knowledge from the instructor network
and distilling it to the student network, the authors minimize
the amplitude of the student network’s gradients that attack-
ers required access to generate adversarial examples in the
input space X . The authors do not necessarily transfer knowl-
edge from large-scale networks to smaller ones; they instead
use two networks of the same architecture. Moreover, they
demonstrate that models developed via defensive distillation
are less susceptible to adversarial inputs in runtime settings.
Additionally, according to Goldblum et al., [7], while effec-
tive neural networks (NN) may be developed by transferring
information from the teacher model to the student model,
they may still be exposed to strong adversarial attacks in run-
time scenarios. To address this limitation, they developed
an Adversarially Robust Distillation (ARD), which involves
creating small NNs and distilling their robustness in a larger
network. The authors say this strategy performs better than
the conventional defensive distillation benchmark. Previous
works where the defensive distillation technique was lever-
aged include [8, 9, 10]. Although these strategies successfully
prevent evasion attacks (run-time attacks), none of the pre-
vious authors have considered addressing adversarial poison
attacks in the context of knowledge distillation. The end goal
of this paper is motivated by this limitation, which makes the
defensive distillation algorithm vulnerable to data poisoning
attacks. As a result, we used the DAE as a filter in the knowl-
edge distillation pipeline. Yue et al. [11] demonstrated that
DAEs are highly helpful in spotting and reconstructing con-
taminated images in the training data manifold. They apply

this approach to identify and mitigate adversarial poison at-
tacks in the federated learning setting. Other works in which
DAE is used as a filter against poison data include [12, 13].

2 Mitigation of adversarial poison attacks
2.1 Defensive Distillation
As mentioned in the previous section, the technique used
in defensive distillation involves training two DNNs that
are similar in structure; the instructor network Fϕ1 and the
student network Fϕ2. In this work, a standard NN training
procedure is used to train Fϕ1 using the original dataset, with
an increase in the softmax temperature T to 5 degrees.

The softmax layer normalizes an output vector or logits Z(X)
of Fϕ1 final hidden layer into a probability vector F (X) more
closely aligned with the data manifold’s uniform statistical
distribution. This assigns a probability value to each class of
the dataset for each input x. A specific neuron in the softmax
layer that corresponds to a class indexed by i ∈ 0..N − 1,
where (N = numberofclasses) calculates element i of the
probability vector given by;

F (X) =

[
eZi

(X)
T∑N−1

l=0 eZl
(X)
T

]
i∈0..N−1

(1)

The F (X) is used as a label for the inputs in the training data
to train Fϕ2 with the same temperature value as used in Fϕ2.
T is usually reset to its default value of 1 during testing so that
the distilled network can produce more discrete output. This
also discourages overly confidence in the distilled network’s
output and improves its generalization to new inputs.

The motivation for knowledge distillation stems from the fact
that the semantic characteristics of the data that Fϕ1 learn
are encoded in both its class probability vectors and learned
weight parameters. In addition to only transferring a sam-
ple’s correct class, extrapolating class knowledge from these
vectors and utilizing it to label inputs in the training data for
training Fϕ2 with the same or different architecture will sup-
plement it with extra information about each class. Another
advantage of using the class probability vector as a label to
train Fϕ2 is that it multiplies its features that must be altered
to create a successful attack. Attackers would need to modify
many features in the input space X to be able to drive network
Fϕ2 into incorrect predictions, making it considerably more
challenging to construct adversarial inputs. Also, it reduces
variations in X and masks or lessens the model’s gradient,
which an attacker is required to exploit in order to find ad-
versarial examples around x. However, it is worth noting
that standard defensive distillation is still vulnerable to data
poison attacks, which motivates us to incorporate it with an
DAE, and the distilled network mostly losses precision.

2.2 Denoising Autoencoder
The goal of the DAE is to learn a compressed representation
of x, correct any abnormalities in the data, and reconstruct it
back to its original, undistorted state with the help of the latent
vector h. The design comprises an encoder network fe and a
decoder network fd, represented as a composition of i− th

encoding layer f (i)
e and decoding layer f (i)

d , respectively. The

Volume 44, Number 3, September 2023 Ada User Jour na l

B. Badj ie et a l . 211

first layer of fe receives the erroneous form of data x∗ from
the input space X and translates it to a lower-dimensional
latent vector h(i). The subsequent layer maps h(i) from the
previous layer to generate more compressed latent features.
This process continues until the last layer, which represents
the final lower-dimensional latent representation of the input
h. Conversely, the last layer of fd takes in h and maps it to
the next layer in a backward pass direction until the first layer,
which maps the reconstructed features to the original input
space, producing the reconstructed output image xr.

During training, the DAE learns to minimize the reconstruc-
tion error between the initial unperturbed input data x and
output reconstructed data xr. This is accomplished by the
network’s ability to learn the mapping function resilient to
adversarial perturbation ϵ and rebuild the x∗ to their origi-
nal form without compromising the most significant intrinsic
statistical properties of xr. The latent representation of the
i− th layer can be expressed as;

h(i) = f (i)
e (h(i−1)) ∧ h(0) = x (2)

where;

h(i) = latent representation at the i− th encoder layer.
i = the layer index of the encoder
f
(i)
e = composition of individual encoder functions

While the final lower-dimensional latent representation of the
input is expressed as;

h = fe1(fe1(fei(xi))) (3)

where;

h = latent representation vector
fe1(fe1(fei = first decoder layer, second up to the last layer.
x = input of the encoder

The reconstructed output at each i− th layer is expressed as;

x(i)
r = f

(i)
d (x(i−1)

r) (4)

where;

x
(i)
r = the reconstructed output at the i− th decoder layer

f
(i)
e = composition of individual decoder functions

The final reconstructed output of the decoder network is com-
puted as;

xr = fdi(fd2(fd1(hi))) (5)

where;

h = latent representation vector
fdi(fe2(fe3 = last decoder layer, up to the first layer.
x = input of the encoder

2.3 Adversarial Attacks and Robustness
Adversarial attacks are types of malicious data modification
that seek to deceive ML models in their decision-making [1].
A wide range of ML-based applications are susceptible to
adversarial attacks. In contrast, adversarial robustness de-
scribes the model’s capacity to maintain its expected perfor-
mance in the presence of malicious interruptions or adver-
sarial attacks [14]. A model is deemed resilient if it cor-
rectly classifies x ∈ X within or outside a range of per-
turbation sets defined in X . Robustness is a crucial char-
acteristic for ML models since it guarantees their depend-
ability in real-world applications where the x may be noisy
or purposefully altered to cause misclassification [15]. In
our experiment, we used the following parameters to gen-
erate adversarial perturbations for FGSM and IFGSM ;
epsilonfgsm = 0.01, epsilonifgsm = 0.01, alpha =
0.01, numiterations = 10. The epsilon ϵ determines the
magnitude of the perturbation needed to trigger the model’s
sensitivity to changes in the image’s pixel values. The alpha
α parameter controls the step size of the perturbations in each
iteration of the IFGSM attack. numiterations = 10 indi-
cates that the IFGSM will be applied at every 10 iteration.

3 Autoencoder-based Defensive Distillation
Approach

Following the methodology used in [10], the student model
in our study is built to be uncertain about its prediction when
a new input xn is statistically different from the training set
(i.e., discouraging overconfidence in its classification). We
used the Kullback–Leibler (KL) divergence [16] to quantify
the statistical differences between the xn and the ground
truth. If their statistical difference is more significant than
the P − value, the network becomes uncertain about its pre-
diction and returns a null value. This ambiguity is evaluated
during "dropout inference," a technique in which the entire
network is used for prediction while turning off the dropout
layer. This approach allowed the model to offer uncertainty
estimates for the predictions and estimate Bayesian inference.
Analyzing the instructor model’s predictions yields the uncer-
tainty measurements needed to train the student model.

As done in [2], the F (X) generated by the teacher model is
not always sufficient to reduce the gradient surrounding the
training data and handle variation in X , which would prevent
sophisticated attacks from successfully compromising the stu-
dent model. Relying only on the probability vector will make
the student model classify inputs based on traditional softmax
probability estimation without considering the uncertainty of
its prediction.

While developing the DAE model, we used the "OPTUNA
library," a Pytorch-based hyperparameter optimization toolkit,
to select the appropriate hyperparameters. The OPTUNA
uses clever methods like Bayesian optimization (BO) to
search the hyperparameter dimension effectively. With a
few trials, it selects the best set of hyperparameters suitable to
improve the model’s performance. We generate adversarial in-
puts from a portion of the Germany Traffic Sign Recognition
Benchmark (GTSRB) dataset while the remaining portion is
used as clean data. Mean squared error (MSE) loss is used to

Ada User Jour na l Vo lume 44, Number 3, September 2023

212 Denois ing Autoencoder-Based Defens ive Dis t i l la t ion

evaluate the reconstruction error between X and x, where the
goal is to minimize the statistical difference between the x∗

and x. Furthermore, we use the random weight initialization
strategy to avoid issues with vanishing or exploding gradients
and promote quicker and more efficient convergence during
training. In the training phase, both X and x∗ are fed to the
DAE as inputs to enable it to learn the statistical correlations
between them and also to learn the noisy pattern in the in-
put. During backpropagation, the loss function is minimized
while the weights are updated using a stochastic gradient
descent (SGD) optimization algorithm. The effectiveness
of the trained DAE is evaluated on a different test dataset
containing both clean and distorted images. A specified re-
construction threshold is set, which serves as a yardstick or
decision line to verify the integrity of each data point after
reconstruction. The images whose reconstruction error is
above the threshold are termed adversarial inputs and are
subsequently discarded before reaching the teacher model.

4 Results
Many works in the literature that use DAE randomly se-
lect the reconstruction threshold, which can lead to incon-
sistencies in the evaluation process and introduce additional
constraints in interpreting the level of similarity between the
input and reconstructed image, making it difficult to under-
stand the behavior of the network. There is also a risk of
selecting a sub-optimal threshold value that does not optimize
the network’s performance.

To avoid this scenario, in this work, an initial reconstruction
threshold of 0.015 was chosen randomly at the beginning
of the DAE network’s training process. This made updat-
ing the reconstruction threshold to 0.003 easier during the
evaluation phase. We used the ”inferthreshold” function
as a decision threshold to update the initial threshold. The
”inferthreshold” function calculates the values inferred
from the percentage of instances identified as adversarial
in the evaluation dataset. This function is to be found in the
”alibi− detect” outlier/adversarial detection library. Figures
1 and 2 show how the DAE network performed on the evalu-
ation datasets, which comprised instances of only adversarial
inputs and a combination of both adversarial and clean inputs,
respectively.

Upon reconstruction, images with reconstruction errors
greater than the updated threshold value (0.003) are labeled
as adversarial inputs since the DAE network cannot restore
them to their original state. Reconstructed-clean images are
those with reconstruction errors below the updated threshold
value. The identified adversarial inputs are subsequently elim-
inated before passing the dataset to the instructor model in
the distillation stage. As shown in Figure 2, the green dot-
ted circles indicate the reconstructed clean images, whereas
the red dotted ones represent the adversarial images that the
DAE network could not reconstruct. According to our exper-
imental results, the average reconstruction error produced by
the DAE network using the evaluation dataset was 0.008190,
indicating that our designed DAE network functioned sat-
isfactorily. Figure 3 shows the average reconstruction and
validation loss at each epoch.

Figure 1: Illustration of the DAE’s performance on only adver-
sarial inputs during reconstruction

Figure 2: Illustration of the DAE’s performance on the evalua-
tion dataset during reconstruction.

The result also demonstrates that IFGSM devises more ro-
bust adversarial examples than FGSM because the latter
only takes into account the gradient of the loss function with
respect to the target x ∈ X only once and then makes a single
step along the path of the gradient around x to create an ad-
versarial example, whereas the former takes into account the
gradient of the loss function with respect to the target x ∈ X
at every iteration and keeps updating the perturbation in X in
the direction of the gradient’s sign around the target x ∈ X
which results in generating more robust adversarial examples.

The reconstructed images are sent to the instructor model,
trained with a softmax temperature of T = 5. This pro-
duces soft labels to annotate the new dataset, which we then
use to train the student model (distilled network). The in-
structor model’s total accuracy throughout training is 99.89%,
with an average loss of 0.11%. The student model also per-
formed well by correctly classifying adversarial inputs in the
test dataset with an accuracy rate of 76.09%. Although this
precision might not be particularly excellent in other attack
scenarios, the design is incredibly robust to IFGSM and
FGSM adversarial attacks.

5 Conclusion
The use of a DAE network in combination with defensive
distillation has proven to be an effective method in enhancing

Volume 44, Number 3, September 2023 Ada User Jour na l

B. Badj ie et a l . 213

Figure 3: Illustration of the DAE’s performance on the evalua-
tion dataset during reconstruction.

the robustness of a distilled network against both poisoning
and evasion adversarial attacks. It was also shown that the
"alibi-detect" library helped the DAE network detect and get
rid of adversarial inputs in the training dataset. By updating
the reconstruction threshold during the evaluation phase, the
DAE network was able to accurately identify inputs as either
adversarial or clean. The use of IFGSM resulted generating
in stronger adversarial examples than FGSM, highlighting
the importance of considering the gradient of the loss func-
tion with respect to the x ∈ X at every iteration. The student
model, trained with soft labels produced by the teacher model,
demonstrated excellent robustness against adversarial attacks.
Based on the results, the proposed approach could be a valu-
able addition to the arsenal of techniques available to improve
the reliability in ML-driven systems.

6 Acknowledgments
This work was supported by the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 957197 (VEDLIoT
project).

References
[1] Y. Chen, M. Zhang, J. Li, and X. Kuang, “Adversarial

attacks and defenses in image classification: A practical
perspective,” in 2022 7th International Conference on
Image, Vision and Computing (ICIVC), pp. 424–430,
IEEE, 2022.

[2] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations
against deep neural networks,” in 2016 IEEE symposium
on security and privacy (SP), pp. 582–597, IEEE, 2016.

[3] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,”
arXiv preprint arXiv:2003.05991, 2020.

[4] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” stat, vol. 1050, p. 9,
2015.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014.

[6] A. Kurakin, I. Goodfellow, and S. Bengio, “Ad-
versarial machine learning at scale,” arXiv preprint
arXiv:1611.01236, 2016.

[7] M. Goldblum, L. Fowl, S. Feizi, and T. Goldstein, “Ad-
versarially robust distillation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34,
pp. 3996–4003, 2020.

[8] M. Kuzlu, F. O. Catak, U. Cali, E. Catak, and O. Guler,
“Adversarial security mitigations of mmwave beamform-
ing prediction models using defensive distillation and
adversarial retraining,” International Journal of Infor-
mation Security, pp. 1–14, 2022.

[9] E.-C. Chen and C.-R. Lee, “Ltd: Low temperature dis-
tillation for robust adversarial training,” arXiv preprint
arXiv:2111.02331, 2021.

[10] N. Papernot and P. McDaniel, “Extending defensive
distillation,” arXiv preprint arXiv:1705.05264, 2017.

[11] C. Yue, X. Zhu, Z. Liu, X. He, Z. Zhang, and W. Zhao,
“A denoising autoencoder approach for poisoning attack
detection in federated learning,” IEEE Access, vol. 9,
pp. 43027–43036, 2021.

[12] A. Kascenas, N. Pugeault, and A. Q. O’Neil, “Denois-
ing autoencoders for unsupervised anomaly detection
in brain mri,” in International Conference on Medi-
cal Imaging with Deep Learning, pp. 653–664, PMLR,
2022.

[13] M. Tripathi, “Facial image denoising using autoen-
coder and unet,” Heritage and Sustainable Development,
vol. 3, no. 2, p. 89, 2021.

[14] Y. Deng, X. Zheng, T. Zhang, C. Chen, G. Lou, and
M. Kim, “An analysis of adversarial attacks and de-
fenses on autonomous driving models,” in 2020 IEEE
international conference on pervasive computing and
communications (PerCom), pp. 1–10, IEEE, 2020.

[15] F. Wang, C. Zhang, P. Xu, and W. Ruan, “Deep learning
and its adversarial robustness: A brief introduction,”
in HANDBOOK ON COMPUTER LEARNING AND
INTELLIGENCE: Volume 2: Deep Learning, Intelligent
Control and Evolutionary Computation, pp. 547–584,
World Scientific, 2022.

[16] F. Raiber and O. Kurland, “Kullback-leibler divergence
revisited,” in Proceedings of the ACM SIGIR Interna-
tional Conference on Theory of Information Retrieval,
pp. 117–124, 2017.

Ada User Jour na l Vo lume 44, Number 3, September 2023

214

Volume 44, Number 3, September 2023 Ada User Journa l

Exploring Trade-offs in Explainable AI
Dene Brown, Glenn Hawe
Ulster University, 2-24 York Street, Belfast BT15 1AP; email: dene.brown@sysada.co.uk, gi.hawe@ulster.ac.uk

Abstract

Machine Learning (ML) models are increasingly used
in systems that involve physical human interaction or
decision-making systems that impact human health and
safety. Ensuring that these systems are safe and
reliable is an important topic of current AI research.

For many ML models it is unclear how a prediction
(output) is arrived at from the provided features
(input). Critical systems cannot blindly trust the
predictions of such “black box” models, but instead
need additional reassurance via insight into the
model’s reasoning. A range of methods exist within the
field of Explainable AI (XAI) to make the reasoning of
black box ML models more understandable and
transparent.

The explanations provided by XAI methods may be
evaluated in a number of (competing) ways. In this
paper, we investigate the trade-off between selected
metrics for an XAI method called UnRAvEL, which is
similar to the popular LIME approach. Our results
show that by weighting the terms within the acquisition
function used in UnRAvEL, different trade-offs can be
achieved.

Keywords—Machine Learning, Explainable AI,
Gaussian Process, LIME, UnRAvEL.

1 Introduction

There is increasing demand for machine learning (ML)
models to be used within critical systems. One of the issues
holding this back is the understanding of the decision
making, and the proof of reliability of these models. Current
high performing ML models are commonly complex black
box models. With these models it is difficult to understand
how the outputs of these are achieved, and the importance of
each feature in determining the output.

Figure 1 shows a typical model, which takes as input a vector
X of input features (x1, x2, …, xn) and generates a prediction
f(X) that depends on X. But as we have little or no insight
into the reasoning of each prediction, the model is described
as being “black box”.

Figure 1. A typical black box model with opaque reasoning

Explainable AI (XAI) is a discipline that is attempting to
provide insight into the reasoning of black box models [1].
One common XAI approach is to identify the contribution of
each feature in the determination of a model’s prediction.

One of main XAI approaches is LIME (Local Interpretable
Model-agnostic Explanations) [2]. In the original LIME
paper there is a simple experiment to demonstrate why XAI
is needed.

Figure 2. An image from the LIME [2] paper. The left image
is the image presented as test data for the model, it is of a
husky with a background of snow. The image on the right

shows the areas of the image identified by LIME that were the
most important in the prediction

In the experiment, Figure 2, a model is built to distinguish
between images of wolves and images of huskies. The model
is built, and it achieves a good performance. However, it has
been deliberately trained to be a flawed model. All the
training images of wolves presented to the model at training
have snow in the background, and all images of huskies do
not have snow. The model is then presented with the test
images, and all test images with snow in the background are
predicted to be a wolf, and those with no snow in the
background are predicted to be a husky, regardless of which
species the image contains.

This experiment demonstrates why XAI is needed if ML
models are going to be accepted as being reliable. Even if a
model scores well in testing we are not certain it will be
reliable ‘in the field’, as it may rely on dubious reasoning
which the test data failed to expose.

The central idea behind LIME is to provide an interpretation
for the prediction of a point via a local “explainer” model
constructed around the point. Explainer models are easier to
interpret and provide relative scores for the importance of
input features in the determination of the output.

There have been numerous extensions to LIME [3][4][5]
attempting to improve the explanations provided through
better sampling points for the explainer model. One such
extension is UnRAvEL (Uncertainty driven Robust Active
Learning Based Locally Faithful Explanations) [6] which

D. Brown, G. Hawe 215

Ada User Journa l Volume 44, Number 3, September 2023

uses a novel Gaussian-Process based acquisition function
called FUR (Faithful Uncertainty Reduction) to select points
for the explainer model.

In early XAI work there was an emphasis for explainable
models to provide feature importance scores to potential
users and domain experts. This is intended to give the experts
confidence that the black box model is making predictions
for the right reasons, and to persuade them to trust the model
outcomes.

Expanding the subjective concepts of confidence and trust to
that of reliability will be a challenging task. One potential
route is in the use of recognised metrics to give objective
performance measurements of explainable models. A recent
review [7] of XAI metrics has identified 12 metrics that
consistently appear in papers on XAI. In the review they are
given the name the “Co-12” properties (because the
properties all have names beginning with “co”).

In this paper we aim to demonstrate that we can use
UnRAvEL to generate a set of explanations that represent a
trade-off in specific Co-12 properties. In particular, we
propose that by weighting the two terms within the FUR
acquisition function used within UnRAvEL, different points
will be sampled for the explainer model and thus different
explanations provided. By controlling the weights, we can
control (and ultimately optimize) the trade-off in Co-12
properties for an explanation.

The remainder of this paper is structured as follows. In
Section 2 we introduce LIME and UnRAvEL. In Section 3
we summarize the Co-12 properties used to evaluate
explanations. In Section 4 we present our methodology for
generating different explanations using UnRAvEL. In
Section 5 we present the results of our experiments and in
Section 6 we summarize our findings.

2 Local Explainable Models

LIME
Figure 1 showed a black box model with its prediction f(X)
being a function of the input features. LIME uses a local
linear model to determine the importance of the input
features. The prediction function f(X) for a linear model is
given in Equation 1.

𝒇(𝑿) = 𝒘𝟎 + 𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐 + ⋯ + 𝒘𝒏𝒙𝒏

 Equation 1

In a linear model each input feature is multiplied by a weight
to calculate the prediction. This is a simple model to
interpret, as the magnitude of a feature’s weight determines
its importance in the prediction. LIME uses linear models to
locally interpret single points.

Figure 3 shows a 2-D feature space with features x1 and x2.
A black box model in this feature space makes a prediction
of either pink or blue. It appears to be complex model whose
output is not easily interpretable.

The principle behind LIME is to focus on a single point,
which is identified by the black square in Figure 3. In Figure
4 we zoom in on this point and create additional points

around the point being explained. These points are generated
from perturbations of the original point, and their predictions
are given by the points being input to the black box model.

Using these additional points and their predictions a linear
model is created to model behaviour around the point.

From Equation 1 we can see that the larger the weight for a
feature the greater effect it has on the outcome. Therefore,
weights in the local linear model give the importances of the
features in the locality.

Figure 5 shows the predictions and feature importances for
two points from the diabetes dataset use in this project. The
feature importances were generated by a LIME model to
explain those points. The importance corresponds to the
weights of the linear model. Weights in a linear model can
be positive (orange) or negative (blue).

UnRAvEL

UnRAvEL uses a Gaussian Process [8] to create a local
interpretable model. Figure 6, Figure 7 and Figure 8 show
the Gaussian Process (GP) modelling a 1-D Forrester
function over a number if iterations. The Original function

Figure 3. Two-Dimensional feature space with
complex model prediction

Figure 4. LIME creates new sample points
around the point being explained

216 Explor ing Trade-offs in Expla inab le AI

Volume 44, Number 3, September 2023 Ada User Journa l

is the blue line, the GP model is the red line, the orange lines
represent the uncertainty in the GP prediction. In these
figures the GP only models the function in the range 0.1 to
0.7, it does not select points outside this range.

Gaussian Processes use an iterative approach to create
models, they select a new point to add to the model at each
iteration. As points are added to the model its predictions
become more accurate and the uncertainties diminish. We
reach a point where adding more points does not
significantly improve the model.

Figure 6 is the first iteration when only a single point, the
dataset point being explained, has been added to the model.
Figure 7 is when five addition points have been selected, and
Figure 8 is the final iteration, when the model is complete.

A Gaussian Process is significantly more complex than
linear models, but we can obtain feature importances from
the model, which is essential in XAI.

Each iteration of a Gaussian Process model uses an
acquisition function to select the next point for the model,
UnRAvEL uses a novel acquisition function called FUR.

The choice of acquisition function significantly affects the
performance of the GP model, and investigating UnRAvEL
and Gaussian Process models was the route the project took
rather than considering LIME. The main part of the project
involved reconfiguring the FUR acquisition function to
improve model performance.

Figure 5. Predictions and feature importances for two instances of the diabetes dataset

Figure 8. Gaussian Process modelling a 1-D
Forrester function at final iteration

Figure 6. Gaussian Process modelling a 1-D
Forrester function at first iteration

Figure 7. Gaussian Process modelling a 1-D
Forrester function at 6th iteration

D. Brown, G. Hawe 217

Ada User Journa l Volume 44, Number 3, September 2023

3 Quantifying XAI Performance

Table 1. Model Properties used to Access Performance

Property Description

Correctness Measures how faithfully the explainer
model replicates the behaviour of the
black box model. E.g. are the same
features as important to both models?

Output-
Completeness

This property looks at output of the
explainer model compared to the black
box model and measures the accuracy
of the explainer model predictions.

Reasoning-
Completeness

Measures how much the black box and
explainer models are in step with their
reasoning. E.g. do changes to input
features have the same effect on the
predictions of both models?

Consistency The measures the consistency of
explainer models when modelling the
same feature space with each being
based on different black box models.

Continuity The measures the resilience of explainer
models to perturbations of the features.

Jaccard
Similarity

Measures the consistency of feature
importance across all points in feature
space.

Calibration Calibration is a measure of well a
model makes it predictions. It gauges
how overconfident or under confident a
model is performing.

The paper from Meike Nauta et al [7] is a detailed and far-
reaching literature review of the current methods used to
assess the performance of XAI models. The paper identifies
twelve properties (referred to as the Co-12 properties) of
XAI models that appear repeatedly in the reviewed papers.
The paper looks to define common methods that are used
across the reviewed set of papers that can be used determine
these properties.

Five Co-12 properties have been chosen for this project, ones
that can be objectively determined and can provide a
measure of model performance. These are described in Table
1. There are two additional important metrics calculated that
are not Co-12 properties. These are Jaccard score and
calibration.

4 Methodology

FUR and FUR_W

In the UnRAvEL process when a data point is selected for
explaining a Gaussian process model is created around that
point. Addition points are incrementally added to the
Gaussian process model, and the selection of these points is
determined by the FUR acquisition function.

In the process the first point added to the GP is the point that
is being explained. To determine the next and subsequent
points the FUR [6] acquisition function is used. Acquisition
functions use the values of the feature space, X = (x1, x2, …,
xn), as input. A search is made in the feature space around
the point to determine the point that has the maximum value
of FUR. This point is added to the model for the next
iteration. The selection of the next point can be written:

𝑋௫௧ = arg max(𝑇ଵ + 𝑇ଶ)

 Equation 2

Where:

𝑇ଵ = ‖𝑋 − 𝑋 − 𝜎ത𝜖 log (𝑛)⁄ ‖ଶ

𝑇ଶ = 𝜎(𝑋)

 X0 is the original point.

 𝜎ത is the mean of the standard deviation in the training
data.

 n is the iteration number.

 ϵ is a noise factor to move the selected point away from
X0. Dividing this noise factor by log(n) reduces this
noise as the iterations progress, this brings selected
values closer to X0.

 𝜎(𝑋) is the uncertainty in the model prediction at
point X.

Figure 9 shows the values of terms T1 and T2 along with their
combined value in FUR (right axis) in a feature space 0 ≤ x
≤ 1, where the ‘model’ is the 1-D Forrester function (left
axis).

The two terms T1 and T2 in the FUR acquisition function
have different aims. T1 is intended to make the selected
points be located around the vicinity of the original point,
initially from a wide range, but this range is reduced during
later iterations, by dividing by log(n).

T2 selects points where the uncertainty of the Gaussian
process is greatest, with the aim of reducing this uncertainty.

Figure 9. 1-D Forrester Function showing the terms T1, T2

from the FUR acquisition function

218 Explor ing Trade-offs in Expla inab le AI

Volume 44, Number 3, September 2023 Ada User Journa l

This project is to investigate these competing terms in the
FUR acquisition function by introducing weights for each of
the terms. We create a new acquisition function FUR_W, a
weighted version of FUR. This is defined in Equation 3
below, where w is a weight between 0 and 1:

𝑋௫௧ = arg max(−𝑤𝑇ଵ + (1 − 𝑤)𝑇ଶ)

 Equation 3

Running Experiments
To investigate the effects of weighting the terms in FUR_W
several datasets were used in each experiment.

Each dataset was used to train two black box models, a
neural-network and random forest. Explainer models were
then created to model and explain test points from the
dataset.

A number UnRAvEL explainer models were generated for
each black box model. Each explainer model was generated
using a different weight value in its FUR_W functions. The
weights used were 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95). The effect on the terms T1 and T2 in the FUR_W
acquisition function can be seen in Figure 10 where T2 is
dominant, and Figure 11 where T1 is dominant.

The performance of the explainer models was then measured
using the selected properties in Table 1.

5 Results

One very noticeable property of the UnRAvEL explainer
models is how accurate they are in their outcome predictions
(the Output-Completeness property). Their predictions
match closely the black box predictions, as shown in Figure
12. From this graph it appears the explainer model
predictions are indistinguishable from those of the black box
models.

A possible reason for this is that and there could be of over
training in the explainer models. This is good when the
explainer models are making predictions, but it could mean
other properties of the explainer model will not score as well.

Figure 10. FUR_W acquisition function for weights of 0.1 for
T1 and, 0.9 for T2. The dataset is synthetic regression data.

Figure 11. FUR_W acquisition function for weights of 0.8 for
T1 and, 0.2 for T2. The dataset is synthetic regression data.

Figure 12. Comparison of predicted outcomes from black box
model and explainer model for synthetic regression dataset.

Figure 13 shows the measurement of the Consistency metric
for all datasets. This measures how well the predictions of
two explainer models are correlated when they are trained on
different types of black box models trained using the same
dataset.

Other than the diabetes dataset there is high correlation
between models, particularly for higher weight values. This
indicates that the explainer models are modelling the dataset
well at the individual points.

Unfortunately, many of the results resemble the graph in
Figure 14. They show no clear patterns for the Co-12
properties as a result of varying the weights in the FUR_R
function.

6 Conclusion

The models rate very highly in replicating the predictions of
the black box models but less so on other metrics. As
previously stated, the closeness in replicating black box
model predictions may be a sign of overtraining the
explainer model, the uncertainty values associated with the
predictions are also very small (around 1e-5), which also
indicates overtraining.

D. Brown, G. Hawe 219

Ada User Journa l Volume 44, Number 3, September 2023

Figure 13. Consistency metric for all datasets.

Figure 14. Correlation metric for all datasets

It would be interesting to reduce the number of points that
are used to train the model to see if the other metrics could
be improved upon without too great a loss of accuracy.

No results contain any clear patterns of behaviour that can
be attributed to the settings of the weights. Drawing
conclusions from the results on the effect of changing the
weight of the terms in FUR_W is difficult.

Despite this apparent lack of success there have been
benefits to the project. Looking at the Co-12 properties and
how to implement their determination has been challenging.
This work by itself could be the basis for future research, in
developing better algorithms to calculate the Co-12
properties.

References
[1] T. Speith, “A Review of Taxonomies of Explainable

Artificial Intelligence (XAI) Methods”, FAccT '22:
2022 ACM Conference on Fairness, Accountability, and
Transparency, pp. 2239-2250, 2022.

[2] M. T. Ribeiro, S. Singh, C. Guestrin, “Why Should I
Trust You?": Explaining the Predictions of Any
Classifier”, Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining, pp. 1135-1144, 2016.

[3] X. Zhao, X. Huang, V. Robu, D. Flynn, “Baylime:
Bayesian local interpretable model-agnostic
explanations”, in Uncertainty in artificial intelligence,
pp. 887-896, PMLR, 2021.

[4] M. R. Zafar, N. M. Khan, “DLIME: a deterministic local
interpretable model-agnostic explanations approach for
computer-aided diagnosis systems”, arXiv:1906.10263,
2019.

[5] M. Shankaranarayana, D. Runje, “ALIME:
Autoencoder based approach for local interpretability”,
in IDEAL, Springer, 454–463, 2019.

[6] A. Saini, R. Prasad, “Select Wisely and Explain: Active
Learning and Probabilistic Local Post-hoc
Explainability”, AIES '22: Proceedings of the 2022
AAAI/ACM Conference on AI, Ethics, and Society, pp.
599-608, 2022.

[7] M. I. Nauta et al., “From Anecdotal Evidence to
Quantitative Evaluation Methods: A Systematic Review
on Evaluating Explainable AI”, ACM Computing
Surveys 55 (13) Article 295, pp. 1-42, 2023.

[8] C. E. Rasmussen, C. K. I. Williams, “Gaussian
Processes for Machine Learning”, The MIT Press, 2006.
ISBN 0-262-18253-X

220

Towards a Catalog of Prompt Patterns to Enhance
the Discipline of Prompt Engineering

Douglas C. Schmidt, Jesse Spencer-Smith, Quchen Fu, and Jules White
Dept. of Computer Science, Vanderbilt University; email: {douglas.c.schmidt, jesse.spencer-smith, quchen.fu,
jules.white}@vanderbilt.edu

Abstract

The rapid advent of Large Language Models (LLMs),
such as ChatGPT and Claude, is revolutionizing various
fields, from education and healthcare to the engineer-
ing of reliable software systems. These LLMs operate
through "prompts," which are natural language inputs
that users employ to query and leverage the models’
capabilities. Given the novelty of LLMs, the understand-
ing of how to effectively use prompts remains largely
anecdotal, based on isolated use cases. This fragmented
approach limits the reliability and utility of LLMs, espe-
cially when they are applied in mission-critical software
environments. To harness the full potential of LLMs
in such crucial contexts, therefore, we need a system-
atic, disciplined approach to "prompt engineering" that
guides interactions with and evaluations of these LLMs.

This paper provides several contributions to research
on LLMs for reliable software systems. First, it pro-
vides a holistic perspective on the emerging discipline
of prompt engineering. Second, it discusses the impor-
tance of codifying "prompt patterns" to provide a sound
foundation for prompt engineering. Third, it provides
examples of prompt patterns that improve human inter-
action with LLMs in the context of software engineering,
as well as other domains. We conclude by summarizing
ways in which prompt patterns play an essential role in
providing the foundation for prompt engineering.

1 Introduction
Large language models (LLMs) [1, 2] with conversational
interfaces, such as ChatGPT [3], are generating and reasoning
about art, music, essays and computer programs. Startups
using LLMs are attracting significant funding [4] and existing
software is being enhanced using LLMs. The rapid uptake of
these tools underscores the transformational—and disruptive—
impact LLMs are having on society, research, and education.
However, little disciplined knowledge about chat-adapted
LLMs, their capabilities, and their limitations exist.

LLMs provide new computational models with unique pro-
gramming and interaction paradigms and greatly expanded
capabilities. Anyone with an Internet connection and web
browser can instantly access vast intelligent computational
abilities, such as explaining complex topics; reasoning about

diverse data sets; designing, implementing, and testing com-
puter software; and simulating complex systems. LLMs are
programmed through prompts, which are natural language
instructions provided to the LLM [5], such as asking it to an-
swer a question or write an essay. These common examples of
prompts, however, do not reveal the much more sophisticated
computational abilities LLMs possess.

Harnessing the potential of LLMs in productive and ethi-
cal ways requires a systematic focus on prompt engineering,
which is an emerging discipline that studies interactions with—
and programming of—emerging LLM computational systems
to solve complex problems via natural language interfaces.
We contend that an essential component of this discipline are
Prompt Patterns [6], which are similar to software patterns [7],
but focus on capturing reusable solutions to problems faced
when interacting with LLMs. Such patterns elevate the study
of LLM interactions from individual ad hoc examples, to
a more reliable and repeatable engineering discipline that
formalizes and codifies fundamental prompt structures, their
capabilities, and their ramifications.

This paper presents portions of our ongoing efforts to codify
a catalog of domain-independent patterns to show the need
for more research on prompt patterns and prompt engineer-
ing. We present these patterns in the context of engineering
software-reliant systems, but they are applicable in many
other domains.

The remainder of this paper is organized as follows: Section 2
gives an overview of the emerging discipline of prompt engi-
neering; Section 3 describes portions of a catalog of prompt
patterns that we are codifying; and Section 4 presents con-
cluding remarks and lessons learned from our work on prompt
patterns for prompt engineering thus far.

2 Towards a Discipline of Prompt Engi-
neering

This section gives an overview of prompt engineering, focus-
ing on its definition, value for both computer science (CS) and
non-CS professionals, and the need for a holistic approach.
For CS professionals we emphasize prompt engineering’s role
in enhancing AI interactions and accelerating prototyping,
whereas for non-CS professionals it serves as a gateway to
computational problem-solving without requiring traditional
programming skills. Lastly, we advocate for considering the
same type of quality attributes for prompt engineering as we
do for software engineering.

Volume 44, Number 3, September 2023 Ada User Jour na l

D. C. Schmidt , J. Spencer-Smi th , Q. Fu, J. Whi te 221

2.1 What is Prompt Engineering?
Prompt engineering is the science and art of designing, format-
ting, and optimizing conversational prompts to better guide
the discourse with AI or machine learning models. It involves
crafting of stimuli or instructions to evoke specific responses
from AI systems. With the increased use of AI platforms that
respond to user queries, establishing a discipline of prompt
engineering has become increasingly important.

The scope of prompt engineering encompasses a wide range
of domains, including AI chatbots, AI customer service
agents, voice-first applications, and other AI interaction inter-
faces. It plays a crucial role in tuning the model performance,
enhancing the quality of interaction, and achieving user satis-
faction. It spans both understanding the technical capabilities
of AI models and the nuances of human communication.

Users of AI models need to understand the strength and weak-
nesses of AI models they interact with and should hone their
creative capability to formulate prompts that evoke the de-
sired response. Prompt engineering thus provides a bridge
between the increasingly sophistication of AI models and the
need for human-like interactions that appeal to users.

2.2 The Value of Prompt Engineering for Com-
puter Science (CS) Professionals

For CS professionals, prompt engineering offers advantages
that extend beyond the basics of code generation and code
summarization. Programmers are generally proficient in
coding and well-versed in the syntax and semantics of con-
ventional programming languages, such as Java, C/C++, or
Python. However, prompt engineering introduces a new
paradigm that enables rapid prototyping and concept test-
ing without the need to write code manually. It thus serves
as a complementary tool that can expedite iterative and incre-
mental development processes, enabling software engineers
to rapidly sketch out algorithms, models, or systems using
natural language. This capability accelerates the transition
from idea to implementation, thereby saving time and effort.

Prompt engineering can also enhance software quality and
coding practices, e.g., by serving as a ’first-pass filter’ to
evaluate the feasibility of algorithms or system architectures
before delving into implementation details. Articulating com-
plex computational problems in natural language can enable
developers to identify potential pitfalls or inefficiencies more
rapidly. Emphasizing clarity in initial stages of the software
development life-cycle allows a broader range of stakeholders
(including architects, systems engineers, produce managers,
and end-users) to create more robust, efficient, and maintain-
able software-reliant systems over the life-cycle by avoiding
costly mistakes and architectural flaws that are cumbersome
and costly to rectify later.

Prompt engineering can be an effective tool for collabora-
tive work within the CS community. Prompts can be col-
lected into libraries of "prompt templates", thereby simpli-
fying the sharing of algorithms, ideas, and problem-solving
approaches without needing to understand the detailed intri-
cacies of software repositories. Since prompts are often more
easily understood and modified by a range of (non-developer)
stakeholders, they facilitate more inclusive and interactive

development environments. For example, team members can
propose modifications, tune parameters, or even reimplement
subsystems without the steep learning curve often associated
with understanding lower-level programs.

Prompt engineering also benefits educators and mentors
within the field of computer science. Educators can use it to
introduce complex computational concepts to students in a
more intuitive and accessible manner. Similarly, it can enable
more advanced students or junior developers to transition
from conceptual understanding to practical application. By
offering a natural language-based approach to problem articu-
lation and solution, prompt engineering acts as an educational
accelerator, easing the path from theory to practice.

2.3 The Value of Prompt Engineering for Non-CS
Professionals

Prompt engineering can be viewed as a form of "program-
ming" via natural language, which helps to democratize
the application of computational problem-solving across a
range of disciplines and professions. When used effectively,
this approach can bypass conventional barriers set by the
need to learn conventional programming languages, such
as Java, C/C++, or Python. Mastering these structured pro-
gramming language traditionally involved understanding their
syntax and semantics, which can incur a daunting and time-
consuming learning curve for non-CS professionals.

Moreover, the primary interest professionals in fields like
chemistry, biology, physics, the social sciences, and the hu-
manities often lies not in becoming programming experts, but
rather in leveraging computational resources to advance their
research or solve domain-specific problems. In such contexts,
prompt engineering helps to shift the focus from mastering
coding to mastering problem-solving. Using natural language
as the medium reduces barriers to entry, thereby allowing
a broader audience to employ computational tools in their
respective domains more effectively.

The potential impact of shifting from conventional program-
ming to problem-solving with LLMs is significant. Computa-
tion today is often limited to those with specialized training
in CS or programming. With prompt engineering, however,
experts in diverse fields ranging from analysis of ancient doc-
uments to radiology can harness the power of computational
methods to drive innovation and discovery. In particular, they
can articulate complex problems using familiar terminology
and get computational assistance without the learning curve
associated with conventional programming.

Prompt engineering is particularly relevant in interdisciplinary
work, where insights from multiple fields are crucial. In
these contexts, it serves as a bridge that facilitates a more
holistic approach to problem-solving, unifying various areas
of expertise under the umbrella of computational capability.

2.4 Towards a Holistic View of Prompt Engineering
The notion that prompt engineering is merely a passing
trend [8], soon to be eclipsed by increasingly sophisticated
LLMs, is a simplistic and short-sighted perspective. This
view reduces prompt engineering to a set of "tricks" designed
to navigate the current limitations of LLMs. However, this

Ada User Jour na l Vo lume 44, Number 3, September 2023

222 Towards a Disc ip l ine of Prompt Engineer ing

view overlooks the inherent complexities and nuances of nat-
ural language, which necessitates a systematic approach to
interaction. Unlike traditional programming languages, nat-
ural language lacks rigorously defined semantics, requiring
a disciplined method like prompt engineering to ensure the
effective use of LLMs in software-reliant systems.

Far from being a stopgap measure, prompt engineering should
be integrated holistically into all phases of the software de-
velopment life-cycle. In traditional software development,
professionals address a broad range of considerations beyond
just coding, including requirements specification, configura-
tion management, testing, and version control. In much the
same way, the discipline of prompt engineering must also
address these considerations, especially in mission-critical
systems where failure is not an option.

A focus on quality attributes across the life-cycle is essential
for the broader application of LLMs in robust, long-lived
software-reliant systems. Current uses of LLMs are often
localized and tactical, not integrated into systems intended to
endure for decades. As LLMs evolve, prompts that were once
reliable may no longer function as intended. The same dili-
gence applied to traditional software engineering—centered
on maintainability, reliability, and compatibility—must there-
fore be applied to the domain of prompt engineering.

Failing to adopt a comprehensive view of prompt engineering
risks limiting the application of LLMs to trivial or short-term
projects. To unlock the full potential of these advanced mod-
els in shaping future software-reliant systems, therefore, a
focus on quality attributes and a holistic methodology are not
just advantageous, they are essential. This dependency under-
scores the need for a more mature and systematic discipline
of prompt engineering that goes beyond mere prompt crafting
and becomes an integral part of modern software engineering
in the age of LLMs.

3 Towards a Catalog of Prompt Patterns
This section builds upon and briefly summarizes our prior
work on prompt patterns [6]. Prompt patterns use a similar
format to classic software patterns, with slight modifications
to match the context of output generation with LLMs.

Organizing a catalog of prompt patterns into easily digestible
categories helps users interact with and program LLMs more
effectively. Table 1 outlines the classification of the patterns
we implemented and tested with ChatGPT discussed in this
paper. As shown in this table, there are four categories of

Table 1: Classifying Prompt Patterns

Pattern Category Prompt Pattern
Software Requirements Requirements Elicitation

Facilitator
Unambiguous Require-
ments Interpreter

Interaction Game Play
Prompt Improvement Question Refinement
Error Identification Reflection

prompt patterns in the classification framework presented

in this paper: Software Requirements, Interaction, Prompt
Improvement, and Error Identification. The Software Require-
ments patterns are a specialized subset, as discussed next.
3.1 Patterns as an Abstraction for Derivation of

New Patterns
A benefit of patterns is that they can serve as an abstraction
for specialization and adaptation to different domains. In
prior work [6] we codified the Flipped Interaction pattern,
which directs the LLM to ask the user questions until it obtains
enough information to achieve a particular goal. The structure
of this pattern is as follows:

Contextual Statements
I would like you to ask me questions to achieve X
You should ask questions until this condition is met or
to achieve this goal (alternatively, forever)
(Optional) ask me the questions one at a time, two at a
time, etc.

The Flipped Interaction pattern forms a broader abstraction
that can be tailored and specialized to address different aspects
of requirements gathering in software engineering, thereby
leading to the creation of other, more context-specific pat-
terns. Software engineering requirements’ needs often call
for such specialized patterns, which extend the parent pattern
by integrating new attributes and focusing on specific tasks,
such as requirements elicitation, requirements ambiguity res-
olution, requirements discrepancy analysis, and requirements
traceability. Similar to how a super class in object-oriented
programming can be inherited and specialized to cover dif-
ferent uses-cases, prompt patterns can act as abstractions for
derivations of new prompt patterns. In this case, Flipped
Interaction acts as a super pattern for flipped interactions
focusing on requirements elicitation and management.

Sections 3.2 and 3.3 introduce patterns derived from the
Flipped Interaction pattern that address more specific ar-
eas within requirements elicitation and management, thereby
transforming the interaction’s goal to achieve more specificity.
Section 3.2 describes the Requirements Elicitation Facili-
tator pattern, which refines requirements through focused
interaction, and Section 3.3 describes the Unambiguous Re-
quirements Interpreter pattern, which reduces ambiguity in
requirements through targeted questioning.
3.2 Requirements Elicitation Facilitator
3.2.1 Intent & Context
The Requirements Elicitation Facilitator pattern enables an
LLM to cooperatively ask questions or propose scenarios,
which motivate users to bring forward their implicit require-
ment expectations. The objective is to get sufficient insight
into the subjective nature of their requirements and fill up
possible communication gaps. This pattern is particularly
beneficial when dealing with broad context applications.

In a context whereby many details are implicit or merely
touched upon, using the Requirements Elicitation Facilitator
pattern will guide an LLM into a systematic dialogue with
the users, thereby aiding in the step-wise refinement of the
requirements. The discussion focuses on ensuring clarity of
notions, resolving contradictions if any, and communicating
the intended functionalities/schema.

Volume 44, Number 3, September 2023 Ada User Jour na l

D. C. Schmidt , J. Spencer-Smi th , Q. Fu, J. Whi te 223

3.2.2 Motivation
The process of requirements elicitation is often tedious and
time-consuming and filled with uncertainties. The process
involves, among many other things, capturing a description of
what the system should do, the desired behavior in different
states, and operational constraints. This process is iterative,
requiring involvement from different stakeholders and signifi-
cant conversation to ensure that all parties are fully expressing
their needs and vision for the system. Language model-driven
approaches can facilitate this process by helping to direct the
questioning and discussion to gather, analyze, and validate
the requirements, thereby saving effort and time. This process
is one of the most critical stages in software development,
since it forms the basis on which the proposed system is built.

3.2.3 Structure & Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
I am creating the requirements for a software system Y
using requirement format Z.
(Optionally) I am working on requirements for aspect Q
of the system.
Ask me questions to help generate requirements for the
system.
After each question, 1) based on my answer, generate
the requirement in format Z and then 2) ask me the next
question.
Keep asking me questions until stop condition V.
Ask me the first question.

3.2.4 Example Implementation
Examples of prompts that use the Requirements Elicitation
Facilitator pattern might include:

“I am creating the requirements for a web applica-
tion that allows users to share ChatGPT prompts
using user stories as the format. Ask me questions
to help generate requirements for the system. After
each question, 1) based on my answer, generate the
requirement as a user story and then 2) ask me the
next question. Keep asking me questions until I tell
you to stop. Ask me the first question.“

“I am creating the requirements for a web applica-
tion to help users refine their ChatGPT prompts by
suggesting improved versions. Ask me questions
to help generate requirements for the system. After
each question, 1) based on my answer, generate the
requirement as a user story and then 2) ask me the
next question. Keep asking me questions until you
have enough information to generate a skeleton of
the application in Python with Django. Ask me the
first question.“

3.2.5 Discussion
The Requirements Elicitation Facilitator pattern can be
viewed as a specialized derivation of the Flipped Interaction
pattern where the interaction’s goal is specifically to refine
the understanding of system requirements. This derived pat-
tern employs additional attributes to the LLM’s interrogation

by focusing on vital aspects of requirements elicitation such
as defining the system functionalities, clearing notions, and
resolving contradictions. It prescribes a strategic interaction
leading to clearer and finely-tuned requirements.

An important aspect of this pattern is defining the ’stop condi-
tion’ clearly. In situations where the limitations or contexts
are not explicitly mentioned, an LLM may take a ’shot in the
dark’ approach and may prompt you with questions that may
or may not be relevant, rendering the interaction less effective.
In the second example above, the stop condition explicitly
focuses on generating a skeleton application, which can aid
the LLM in directing questioning. Another possibility is to
include a summary of the requirements captured to help avoid
asking duplicate questions.

However, providing more control over the questions and feed-
back can create a more interactive and engaging experience
for users who are looking for a more robust and compre-
hensive requirements elicitation. It can help bridge the gap
between high-level visions and concrete requirements, clari-
fying misconceptions and better aligning all stakeholders.

3.3 Unambiguous Requirements Interpreter
3.3.1 Intent & Context
The Unambiguous Requirements Interpreter pattern provides
an LLM with a subset of requirements that will fit within its
context window and instructs it to ask specific questions to
users about ambiguous requirements and help them rephrase
these requirements in a more explicit and clear way. This pat-
tern encourages users to clarify any potential misunderstand-
ing related to the requirements, hence reducing ambiguity
related issues. The pattern should be applied in an interactive
session where all participants in a team see the questions that
are asked and feedback generated by the LLM.

3.3.2 Motivation
A key challenge in software projects is that ambiguous re-
quirements can lead to the development of software with
different functionality than was desired by the stakeholders.
Ambiguity can lead to miscommunication and invalid assump-
tions, which commonly creates delays, cost overruns, and
software project failures. Clear requirements are even more
important for geographically distributed teams that may not
have enough face-to-face discussion to have a shared mental
picture of the project goals.

LLMs can help offer a potential solution to this by clarifying
any ambiguous requirements using systematized questioning
and solution-based dialogue, particularly when used jointly
be teams in a discussion. A well-defined prompt pattern
can aid in identifying potentially ambiguous requirements
and extracting the implicit assumptions behind an ambiguous
requirement, reducing the chance of misunderstanding and
helping reduce misinterpretation.

3.3.3 Structure & Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Ada User Jour na l Vo lume 44, Number 3, September 2023

224 Towards a Disc ip l ine of Prompt Engineer ing

Contextual Statements
A subset of the requirements for my system, each
phrased using format X, is below.
Requirements...
First, list two requirements that are potentially contradic-
tory based on their current wording and list them.
Next, explain why these two requirements might be con-
tradictory based on the current wording.
Then, ask me about the intent of the two requirements
until you have enough information to propose a refined
version of each requirement that eliminates potential
ambiguity and conflict.

3.3.4 Example Implementation
An example of a prompt that uses this pattern:

“A subset of the requirements for my system, each
phrased as user stories, is below.
———— <list of user stories> ————
First, list two requirements that are potentially con-
tradictory based on their current wording and list
them. Next, explain why these two requirements
might be contradictory based on the current word-
ing. Then, ask me about the intent of the two re-
quirements until you have enough information to
propose a refined version of each requirement that
eliminates potential ambiguity and conflict. ”

3.3.5 Discussion
The Unambiguous Requirements Interpreter pattern can also
be viewed as a specialized derivation of the Flipped Inter-
action pattern where the goal is to reduce ambiguity in the
requirements present. This pattern represents another effec-
tive example of how we borrow the fundamental construct of
the Flipped Interaction pattern to target a more specific goal.
As before, additional attributes are introduced to the line of
questioning to explicitly target ambiguous requirements and
make them more explicit and clear.

One crucial aspect of this pattern is having stakeholders go
through the questioning together until the ambiguity is elim-
inated. The most important part is to have the LLM direct
team-based discussion around the requirements. The lan-
guage model should continuously ask the team relevant ques-
tions until it receives explicit answers that cannot be inter-
preted differently by different stakeholders.

Although this approach can effectively deal with ambiguous
requirements in many situations, there are scenarios where
it might struggle. For instance, when dealing with complex
technical requirements, the language model may not be able
to ask pertinent questions due to the lack of intrinsic knowl-
edge. Thus, while this pattern can provide significant benefits,
care must be taken to ensure that it is suitable for the partic-
ular domain and provided with sufficient context to provide
relevant questioning.
3.4 The Game Play Pattern
3.4.1 Intent and Context
The Game Play pattern creates a "game" centered around a
specific topic, where the LLM guides the game play. This
pattern is particularly effective when the rules of the game
are relatively limited in scope, but the content for the game is

wider in scope. Users can specify a limited set of rules and
the LLM can then automate generation of bodies of content
for game play.

3.4.2 Motivation
You want an LLM to generate scenarios or questions involving
specific topic(s) and require users to apply problem solving
or other skills to accomplish a task related to the scenario.
Generating all game content manually is too time consuming,
however, so you would like the LLM to apply its knowledge
of the topic to guide the generation of content.

3.4.3 Structure and Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
Create a game for me around X
One or more fundamental rules of the game

The first statement, instructs the LLM to create a game and
provides the important scoping of the game to a topic area.
This pattern allows users to create games by describing the
rules of the game, without having to determine the content
of the game. The more specific the topic, typically the more
novel and interesting the game play.

The second statement introduces the game rules to the LLM,
which must fit within the capabilities of the LLM. Textual
games that rely on input and output text sequences work best.
A key attribute of this pattern is that the input text can be
rich and expressive, which can lead to interesting interfaces
for the game. For example, users might express actions in
the game as scripts dictating a sequence of complex actions,
such as “get a listing of all network activity and check it for
anomalies”, which go beyond the scope of multiple choice
or short answer inputs. Each rule should be provided as a
separate statement regarding some aspect of the game.

3.4.4 Example Implementation
A sample cybersecurity game prompt is shown below:

“We will play a cybersecurity game where you pre-
tend to be a Linux terminal for a computer compro-
mised by an attacker. When I type in a command,
you will output the corresponding text the Linux
terminal would produce. I will use commands to try
and figure out how the system was compromised.
The attack should have done one or more of the
following things: (1) launched new processes, (2)
changed files, (3) opened new ports to receive com-
munication, (4) created new outbound connections,
(5) changed passwords, (6) created new user ac-
counts, or (7) read and stolen information. To start
the game, print a scenario of what happened that
led to my investigation and make the description
have clues I can use to get started.”

This cybersecurity game prompt combines a number of pat-
terns, including Game Play and Persona. The Linux terminal
persona that is chosen for the game has been discussed in
many Internet posts [9]. This game further customizes the dis-
cussed Linux persona to act as a Linux terminal of a computer
compromised by a cyberattack. ChatGPT responds to Linux

Volume 44, Number 3, September 2023 Ada User Jour na l

D. C. Schmidt , J. Spencer-Smi th , Q. Fu, J. Whi te 225

commands with appropriate terminal outputs and synthesizes
a faux file system that has clues to a cyberattack.

Sample output from this game with ChatGPT-4 after typing in
“ls -alt”, the Linux command to generate a list of files in the
current directory is shown below (some columns have been
removed to enhance formatting):

total 56
5 user 4096 Feb 16 14:31 .

43 user 4096 Feb 16 14:30 ..
1 user 18881 Feb 16 14:31 .bash_history
1 user 1178 Aug 15 2022 .bashrc
1 user 220 Aug 15 2022 .bash_logout
3 user 4096 Feb 16 14:25 .gnupg
1 user 4041 Feb 15 17:52 README.md
2 user 4096 Feb 1 11:35 project

When the user then typed the command “cat .bash_history”,
to display the contents of the log file showing the commands
run by the user, ChatGPT responded with:

cd /var/www/html
sudo rm -rf *
sudo wget https://example.com/backdoor.php
sudo chmod 777 backdoor.php
exit
ls -alt
ps -ef
netstat -tulnp

In the output above, ChatGPT generated a faux log file with
realistic commands for deleting the data being served by the
web server in /var/www/html and replacing the content
with a backdoor into the system.

3.4.5 Discussion
This pattern can be combined with the Persona, Infinite Gener-
ation, and Visualization Generator patterns [6]. For example,
the cybersecurity game uses the Persona pattern so the LLM
can masquerade as a Linux terminal. For a network secu-
rity game, the Visualization Generator can be employed to
visualize the network topology and traffic flows.

3.5 The Reflection Pattern
3.5.1 Intent and Context
The Reflection pattern asks an LLM to explain the rationale
behind given answers to the user automatically. This pattern
allows users to better assess the output’s validity, as well as
inform users how an LLM arrived at a particular answer. It
can also clarify any points of confusion, uncover underlying
assumptions, and reveal gaps in knowledge or understanding.

3.5.2 Motivation
LLMs can (and often do) make mistakes. Moreover, users
may not understand why an LLM produces particular output
and how to adapt their prompt to solve a problem with the
output. By asking LLM to explain the rationale of its answers
automatically, however, users can gain a better understanding
of how the LLM processes the input, what assumptions it
makes, and what data it draws upon.

LLMs may sometime provide incomplete, incorrect, or am-
biguous answers. Reflection is an aid to help address these

shortcomings and ensure the information provided by LLM is
as accurate. This pattern also helps users debug their prompts
and determine why they are not getting results that meet ex-
pectations. The Reflection pattern is particularly effective for
exploring topics that (1) can be confused with other topics
or (2) may have nuanced interpretations, so it is essential to
know the precise interpretation used by an LLM.

3.5.3 Structure and Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
Whenever you generate an answer
Explain the reasoning and assumptions of your answer
(Optional) ...so that I can improve my question

The first statement is requesting that, after generating an an-
swer, the LLM should explain the reasoning and assumptions
behind the answer. This statement helps the user understand
how the LLM arrived at the answer and can help build trust
in the model’s responses. The prompt includes the statement
that the purpose of the explanation is for the user to refine
their question. This additional statement gives the LLM the
context needed to better tailor its explanations to the specific
purpose of assisting the user produce follow-on questions.

3.5.4 Example Implementation
This example tailors the prompt to the domain of providing
answers related to code:

"When you answer, explain the reasoning and as-
sumptions of your software framework selections
using specific examples or evidence with associ-
ated code samples to support your answer of why a
framework is the best selection for the task. More-
over, address any potential ambiguities or limita-
tions in your answer, in order to provide a more
complete and accurate response."

The pattern is further customized to instruct the LLM that it
should justify its selection of software frameworks, but not
necessarily other aspects of the answer. In addition, the user
dictates that code samples should be used to help explain the
motivation for selecting the specific software framework.

3.5.5 Discussion
The Reflection pattern may be ineffective for users who do
not understand the topic area being discussed. For example, a
highly technical question by a non-technical user may result
in a complex rationale for an answer the user cannot fathom.
As with other prompt patterns, the output may include errors
or inaccurate assumptions included in the explanation of the
rationale that the user may not be able to spot. This pattern
can be combined with the Fact Check List [6] to help address
this issue.

3.6 The Question Refinement Pattern
3.6.1 Intent and Context
The Question Refinement pattern engages the LLM in the
prompt engineering process to ensure an LLM always sug-
gests potentially better or more refined questions users could
ask instead of their original question. By applying this pat-
tern, the LLM can aid users in finding the right questions to

Ada User Jour na l Vo lume 44, Number 3, September 2023

226 Towards a Disc ip l ine of Prompt Engineer ing

ask to arrive at accurate answers. In addition, an LLM may
help users find the information or achieve their goal in fewer
interactions than if users employed conventional "trial and
error" prompting.

3.6.2 Motivation
If user asks questions, they may not be experts in the domain
and may not know the best way to phrase the question or
be aware of additional information helpful in phrasing the
question. LLMs will often state limitations on the answer
they provide or request additional information to help them
produce a more accurate answer. An LLM may also state
assumptions it made in providing the answer. The motivation
is that this additional information or set of assumptions could
be used to generate a better prompt. Rather than requiring
the user to digest and rephrase their prompt with the addi-
tional information, the LLM can directly refine the prompt to
incorporate the additional information.

3.6.3 Structure and Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
Within scope X, suggest a better version of the question
to use instead
(Optional) prompt me if I would like to use the better
version instead

The first contextual statement in the prompt asks the LLM
to suggest a better version of a question within a specific
scope. This scoping ensure that (1) not all questions are auto-
matically reworded or (2) they are refined with a given goal.
The second contextual statement is meant for automation and
allows users to apply the refined question without copy/past-
ing or manually enter it. This prompt can be further refined
by combining it with the Reflection pattern discussed above,
which allows the LLM to explain why it believes the refined
question is an improvement.

3.6.4 Example Implementation
“From now on, whenever I ask a question about a
software artifact’s security, suggest a better version
of the question to use that incorporates information
specific to security risks in the language or frame-
work that I am using instead and ask me if I would
like to use your question instead.”

In the context of the example above, the LLM will use the
Question Refinement pattern to improve security-related ques-
tions by asking for or using specific details about the software
artifact and the language or framework used to build it. For
instance, if a developer of a Python web application with
FastAPI asks ChatGPT “How do I handle user authentication
in my web application?”, the LLM will refine the question
by taking into account that the web application is written
in Python with FastAPI. The LLM then provides a revised
question that is more specific to the language and framework,
such as “What are the best practices for handling user au-
thentication securely in a FastAPI web application to mitigate
common security risks, such as cross-site scripting (XSS),
cross-site request forgery (CSRF), and session hijacking?”

The additional detail in the revised question is likely to not
only make the user aware of issues they need to consider,
but lead to a better answer from the LLM. For software engi-
neering tasks, this pattern could also incorporate information
regarding potential bugs, modularity, or other code quality
considerations. Another approach would be to refine ques-
tions so the generated code cleanly separates concerns or
minimizes use of external libraries, such as:

Whenever I ask a question about how to write some
code, suggest a better version of my question that
asks how to write the code in a way that minimizes
my dependencies on external libraries.

3.6.5 Discussion
The Question Refinement pattern helps bridge the gap be-
tween the user’s knowledge and the LLM’s understanding,
thereby yielding more efficient and accurate interactions. One
risk of this pattern is its tendency to rapidly narrow the ques-
tioning by the user into a specific area that guides the user
down a more limited path of inquiry than necessary. Such
narrowing may cause users to miss important "bigger picture"
information. One solution is to provide additional scope to
the pattern prompt, such as “do not scope my questions to
specific programming languages or frameworks.”

Combining the Question Refinement pattern with other pat-
terns also helps overcome arbitrary narrowing or limited tar-
geting of refined questions. In particular, combining this
pattern with the Cognitive Verifier pattern [10] enables an
LLM to produce a series of follow-up questions that refine
the original question. For example, in the following prompt
the Question Refinement and Cognitive Verifier patterns are
applied to ensure better questions are posed to the LLM:

“From now on, whenever I ask a question, ask four
additional questions that would help you produce
a better version of my original question. Then,
use my answers to suggest a better version of my
original question.”

As with many prompt patterns that allow an LLM to generate
new questions using its knowledge, the LLM may introduce
unfamiliar terms or concepts to the user. One way to address
this issue is to include a statement that the LLM should ex-
plain any unfamiliar terms it introduces into the question. A
further enhancement of this idea is to combine the Question
Refinement pattern with the Persona pattern so the LLM flags
terms and generates definitions that assume a particular level
of knowledge, such as this example:

“From now on, whenever I ask a question, ask four
additional questions that would help you produce
a better version of my original question. Then,
use my answers to suggest a better version of my
original question. After the follow-up questions,
temporarily act as a user with no knowledge of
AWS and define any terms that I need to know to
accurately answer the questions.”

LLMs can produce factual inaccuracies, just like humans. A
risk of this pattern is that inaccuracies are introduced into
refined questions. This risk may be mitigated, however, by

Volume 44, Number 3, September 2023 Ada User Jour na l

D. C. Schmidt , J. Spencer-Smi th , Q. Fu, J. Whi te 227

combining the Fact Check List pattern [6] to enable users to
identify possible inaccuracies and the Reflection pattern to
explain the reasoning behind question refinement.

4 Concluding Remarks
Prompt engineering is an emerging discipline that shifts the
emphasis from programming with conventional structured
languages (such as Python, Java, and C++) to problem-solving
using natural language to interact with AI models, such as
large language models (LLMs) like ChatGPT-4 and Claude.
In this context, "programming" tasks are expressed as prompts
that guide the behavior of AI models, thereby encouraging the
exploration of creative and innovative strategies over applying
traditional programming methods and tools.

Our work applying LLMs in engineering software-reliant
systems has yielded the following lessons learned:

• It is essential to move beyond ad hoc prompt practices
– Current discussions of LLM prompts and prompt engi-
neering are based largely on individual ad hoc use cases,
i.e., i.e. the same basic prompt examples are replicated
in different variations and evaluated as if they are new
ideas, such as these examples [11] replicating the Per-
sona Pattern outlined in our prior work. The limitations
with the current state-of-the-practice are thus akin to
discussing the specifics of individual software programs
without identifying key design and architectural patterns
these systems are based on.

• Codifying prompt patterns provides a sound foun-
dation for prompt engineering - The focus on prompt
patterns elevates the study of LLMs to view them more
appropriately as a new computer architecture with an in-
struction set based on natural language. Prompt patterns
define the instruction set, where as individual prompt
examples are one-off programs. By documenting the
instruction set for this radically new computing architec-
ture via patterns we can reason about LLM technologies
more effectively and teach others to tap into these capa-
bilities more effectively.

• Importance of archetypal solutions – Prompt patterns
provide foundational elements for prompt engineering
by serving as proven solutions to recurrent problems
and accelerating problem-solving across various stages
of the software life-cycle. Moreover, these patterns fa-
cilitate knowledge transfer among collaborative teams,
enriching the discipline of prompt engineering.

• Prompt patterns can enhance reuse of effective LLM
interactions – The process of deriving specialized pat-
terns from the Flipped Interaction pattern mirrors the
abstraction process in object-oriented programming. Just
as specialized subclasses with distinct attributes can be
derived from a superclass and create more specific sub-
classes we utilize the more general Flipped Interaction
pattern and tailor it to suit our specific needs, adding
attributes that target specific objectives in the context of
requirements elicitation and management. Such usage of
abstraction enhances the reusability and effectiveness of
LLM prompts, highlighting the usefulness of the concept
of patterns in the domain of LLMs.

This shift towards prompt patterns not only refines the effec-
tiveness of LLMs but also ensures that they can be harnessed
more reliably and ethically to develop and assure software-
reliant systems. The prompt patterns presented in this paper
were refined and tested using ChatGPT-3.5 and ChatGPT-4.

References
[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,

S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
A. Bosselut, E. Brunskill, et al., “On the opportunities
and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[2] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang,
C. Ji, Q. Yan, L. He, et al., “A comprehensive survey on
pretrained foundation models: A history from bert to
chatgpt,” arXiv preprint arXiv:2302.09419, 2023.

[3] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su,
B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, et al., “A
multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[4] Jeremy Kahn, “A wave of A.I. experts left Google,
DeepMind, and Meta—and the race is on to build a
new, more useful generation of digital assistant.”
https://fortune.com/2022/07/05/
a-i-digital-assistants-adept-eye-on-ai.
[Online; accessed 19-Oct-2023].

[5] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and
G. Neubig, “Pre-train, prompt, and predict: A
systematic survey of prompting methods in natural
language processing,” ACM Computing Surveys,
vol. 55, no. 9, pp. 1–35, 2023.

[6] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea,
H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C.
Schmidt, “A prompt pattern catalog to enhance prompt
engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

[7] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and
J. Vlissides, Design patterns: elements of reusable
object-oriented software. Pearson Deutschland GmbH,
1995.

[8] Oguz A. Acar, “AI Prompt Engineering Isn’t the
Future.” https://hbr.org/2023/06/
ai-prompt-engineering-isnt-the-future.
[Online; accessed 19-Oct-2023].

[9] S. Owen, “Building a virtual machine inside a javascript
library.” https://www.engraved.blog/
building-a-virtual-machine-inside/,
2022. Accessed: 2023-02-20.

[10] S. Wang, H. Scells, B. Koopman, and G. Zuccon, “Can
chatgpt write a good boolean query for systematic
review literature search?,” arXiv preprint
arXiv:2302.03495, 2023.

[11] F. K. Akın, “Awesome ChatGPT Prompts.” https://
github.com/f/awesome-chatgpt-prompts,
accessed 2023. GitHub repository.

Ada User Jour na l Vo lume 44, Number 3, September 2023

228

Volume 44, Number 3, September 2023 Ada User Journa l

Exploiting Container-Based Microservices for
Reliable Smart Mobility Applications
E. Sisinni, A.Flammini, M. Gaffurini, P.Ferrari
Dep. of Information Engineering, University of Brescia, Brescia, Italy, email: paolo.ferrari@unibs.it

Abstract

Smart mobility is emerging, addressing heterogeneous
scenarios with high impact on technology
infrastructures, solutions, and people. Safety and
availability are mandatory, forcing the design of new
reliable services for localization, health monitoring of
the user, maintenance of vehicle, and protection of the
environment. This paper proposes a container-based
microservice approach to the edge computing in IoT
smart mobility scenarios. Since smart mobility
backends must manage a large heterogeneity of
applications, the proposed approach is promising with
respect to the classical solutions (based on “monolithic
hardware+software” devices), from the point of view
of flexibility, upgradability, security, scalability, and
reliability. A demo use case, based on industry-grade
hardware and Docker, has been realized and multiple
implementations of the same services have been
executed in parallel, showing strong independence
between them. Moreover, average delays of less than
10 ms are obtained, confirming the usability in several
smart mobility (and smart city) applications.

Keywords: smart mobility, light mobility, Docker,
cloud computing, edge computing, performance
evaluation.

1 Introduction

A smart city is a city that manages resources intelligently; it
aims to become economically sustainable and energy self-
sufficient, and it is attentive to the quality of life and the
needs of its citizens [1]. A smart city embodies the concept
of smart mobility [2], a term that includes technology,
mobility infrastructures (parking lots, charging networks,
signage, vehicles), mobility solutions (including new
mobility models) and people. Smart mobility’s objective is
to offer a seamless mobility experience, which is safe,
flexible, integrated, reliable, secure, on demand, and
affordable. Urban mobility can be innovated integrating
public transport, better infrastructure and vehicle sharing.
Smart mobility also means green, whether it’s electric cars
or cycle paths. The goal of introducing smart mobility in our
cities is to reduce traffic, decrease pollution, create
intelligent and seamless flows, allow anyone to safely access
and use various vehicles available, and strengthen
economies of scale to promote mobility for everyone.

Sustainable mobility [3], as defined in the European strategy
on sustainable development approved in 2006 by the

European Council, allows to drastically reduce emissions by
achieving the highest possible level of sustainability at
global level. By 2050, it is expected to reach a solid and
effective green transition, the achievement of carbon
neutrality and a digital transformation for an efficient and
inclusive mobility service. The promotion of innovative
sustainable mobility with new lightweight solutions, new
propulsion systems, hydrogen and electric fuels is also
envisioned. Last, safer mobility system with digital products
is needed, with intelligent management, monitoring and
predictive maintenance, in order to reduce fatal accidents.
An integrated mobility environment includes vehicles for
frail and reduced autonomy people, such as motorized
wheelchairs. These vehicles can be used to support
movement both on city routes and in hospital environments.

Applications for mobility require services to carry out
various types of control activities such as : (i) Vehicle
monitoring: e.g., fall detection, predictive maintenance, state
of charge; (ii) Environmental/infrastructure monitoring: e.g.,
obstacle detection, analysis of main environmental
parameters such as air quality; (iii) User monitoring: e.g.,
posture monitoring, analysis of specific physiological
signals, like heart-rate, breath rate and many more and
position; (iv) Business Intelligence for the charging, storing
and management of energy in the mobility environment.

It is expected that each light vehicle is equipped by
computing units (edge devices) capable of: (i) locally
executing algorithms; (ii) connecting to cloud solutions. It
follows that it is important to have a reliable and versatile
software architecture; applications need to be modified for
adding services over time, or for handling different types of
data. In addition to the software management aspect, the
system at the user side must guarantee its own security.

Smart mobility for light vehicle is different from automotive,
where many platforms exist and are almost mandatory to be
used (e.g. AUTOSAR). As any fast growing sector, there is
a plurality of manufacturers, a high fragmentation of the use
case scenarios, and a lack of uniform approach.

In order to quickly respond to these needs, this work in
progress paper proposes a container-based approach to smart
mobility, in which services and microservices fit into easily
manageable, standalone, containers. The light virtualization
offered by the proposed approach immediately allows: (i)
parallel development of microservices by different software
providers (using different programming languages- e.g. C,
Java, Python, Ada); (ii) parallel management by multiple
vehicle managers; (iii) parallel execution by edge devices.

E. Sis inn i, A.F lammini , M. Gaf fur in i, P.Ferrar i 229

Ada User Journa l Volume 44, Number 3, September 2023

As a consequence, the availability and the reliability of the
entire smart mobility application is greatly improved. Last,
the risks of failure are mitigated thanks to parallel and
redundant execution of tasks and management actions.

In this paper, the proposed approach is introduced and some
preliminary performance evaluation is carried out. In details,
a demo prototype based on industry-grade hardware and
Docker has been realized. Multiple implementations of the
same services have been executed in parallel, and the delay
introduced by different containers has been measured.

2 State of art of container-based systems

With edge computing [4][5] we refer to the process, analysis
and storage of data closest to the place of generation, in order
to allow rapid analysis and responses, almost in real-time. In
recent years, some companies have consolidated operations
by centralizing data storage and processing in the cloud.
However, the need for new use cases enabled by billions of
distributed devices, such as advanced traffic control systems
for smart cities, has made this model unsustainable. Since
the implementation variety of these solutions is a relevant
problem, process isolation is not the only target and other
open challenges, like manageability and deployability, are
also relevant. Accordingly, this research proposes a
container-based approach. Container-based systems [6] are
a type of computing infrastructure that allows applications to
run in isolation and portability within a computing facility.
Containers are like small ”boxes” that enclose the
application and all its dependencies (such as libraries,
runtimes, source code, etc.), making them self-sufficient and
independent of the execution environment.

Figure 1. a) Monolithic approach: the same software is
running on all the vehicles, on the same hardware

b) Container-based approach: subset of microservices are
running on different platforms for different applications.

In Figure 1(a) we find the classic approach based on putting
the monolithic application inside each computing device.
Through containers, you can divide your monolithic
application into many microservices, each independent of
the other. The main disadvantages of monolithic architecture
include:

 Reduced development speed: a large, monolithic
application makes development complex and slow.

 Scalability: scaling of individual components is costly.

 Reliability: errors in one module could affect the
availability of the entire application.

 Deployment: a minor change to a monolithic
application requires a new complete deployment.

Containerized applications offer several advantages over
monolithic applications, such as:

 More resilient to failure: a failure in one container will
not affect the others.

 Greater scalability: different components can be scaled
independently to meet changing resource
requirements.

 Easier to deploy and update: containers can be
deployed and updated independently, rather than
having to deploy/update the entire application at once.

 Easier to manage/handle: different runtime may exist
for different components of an application.

 More reliable: multiple instances of the same
microservice on a single device.

These microservices can be collected within a repository, a
centralized location where all the microservices that make
up an application are stored and managed. This is a kind of
“library” of microservices that can be reused across different
applications. Many container-based approaches using
Docker are found in the literature [7]-[9]. Containers can run
software written in any language including, for instance, C,
JavaScript, Python and Ada [10].

3 Proposed architecture for light mobility

In the context of light mobility, container-based system
could be used to facilitate the distribution and management
of environmentally friendly transport systems such as
electric bicycles or shared scooters [11].

In Figure 1(b) it is possible to observe an application
example of the proposes approach. By dividing the
monolithic application into multiple independent
microservices via Docker, they can be deployed only where
needed. Still referring to Figure 1(b), the container may
consist of several microservices, in which case their creation
and management is implemented via Docker Compose. We
can highlight the example of a bicycle, where only user
monitoring and vehicle monitoring have been implemented
against, for example, the wheelchair for frail people where
all possible monitoring services have been introduced. For
the orchestration of multi-node containers, Kubernetes
platform can be used also for complex applications.

The proposed approach is divided into two steps: 1) the
description of the containerisation architecture applied to the
field of light mobility in a smart city environment, where
object, service and people are connected; 2) the optimization
of the hardware platform to run containerized microservices
in the light mobility vehicles.

3.1 Step 1: architecture design and test
The architecture must take into account the requirements and
constraints of the smart mobility application. It must be able
to interface with users and guarantee their security. It will
contain services dedicated to analysing the person’s health,

230

Volume 44, Number 3, September 2023 Ada User Journa l

analysing the external environment, communicating with the
outside world, managing sensors and actuators.

Given the many functions the system must handle, it is
important to define how:

 services are implemented and how they process the
data. (Database in the device to exchange information
with the services, the type of data, and its structure);

 services communicate with sensors/actuators, (define
the privileges and capabilities of the service);

 services communicate with each other, thus which and
how many networks are needed for the backend to
function properly;

 services communicate with servers or other nodes.

Regarding the latter item, the communication system to
implement for the studied architecture must be investigated.
Consideration will be given to 5G networks and/or less
expensive solutions such as LPWANs, with a focus on
LoRaWAN networks. Interesting solutions could be
networks implemented by drones. Hybrid systems could also
be developed [12]-[14]. It is important to ensure continuity
of service and a prompt system response in case of incidents,
the user can never be isolated. 5G and LoRaWAN modules
will be implemented within the edge device and gateways
will be placed in transit areas. Both are wireless
communication technologies, but used for different purposes
and operating at different frequencies. LoRaWAN is a low-
power, wide-area network protocol designed for devices that
need to operate for long periods of time on small batteries
and can be used for both indoor and outdoor communications
[15]. LoRaWAN operates in the sub-gigahertz frequency
band and uses a chirp spread spectrum modulation technique
to achieve long range communication at low data rates. 5G,
on the other hand, is the fifth generation of mobile
telecommunications technology. It is designed to provide
higher data rates, lower latency, and greater capacity than
previous generations of cellular networks. 5G operates in
both the sub-6 GHz and millimeter wave frequency bands
and supports data rates of up to several gigabits per second.

Once the service has been defined, the first phase of
development focuses on defining the Docker images. The
images will be the starting point for the construction of the
Docker containers. The construction of the images will then
comprise several steps, each one reducing the size of the base
image to make the Docker image as light as possible.

During the architecture design, the main goal is to access the
feasibility of implementing the proposed architecture; we are
not interested in having hardware dedicated to running
containers. However, if and when low-cost, low-power
dedicated hardware will be available, they could be used as
well. This is also where we see one of the main advantages
of containers: they are an isolated and portable execution
unit, allowing developers to create and test them on one
platform and then move them to another platform. Since
non-dedicated hardware often has size, weight and power
constraints, it could not be the best environment for running
development and testing. One possible workflow is to

develop and test containers in the cloud (or on powerful
servers) and, then, to deploy them to the edge devices
verifying the final performance requirements.

Last, the test phase will enable improvements to be made to
the designed system to be identified. This phase can initially
be carried out in a test environment, laptop for laboratory test
and industrial-grade hardware for field test. Metrics such as
latency, number of lost packets, number of faults occurring,
consumption, and percentage of important event (e.g.,
person falls) detected will be defined in order to evaluate the
developed architecture.

 3.2 Step 2: architecture optimization
The second step is focused on finding suitable hardware and
Operating system (e.g. balenaOS, PikeOS) for running
Docker containers on all light vehicles. The goal is to use
hardware that has low energy consumption, which is crucial
in order not to significantly limit the vehicle’s autonomy,
and low cost, as it is intended for urban mobility. Starting
from the architecture tested in the first step, the
characteristics on which the choice will be based are:

 Power consumption: with a limited energy source, it is
needed to consume as little power as possible, which
means low-power processors, power saving modes,
and efficient power management techniques.

 Size and weight: the device must be small and portable,
(compact and lightweight). The device must not be
bulky and must not restrict the usability of the vehicle.

 Cost: the final device must be placed on all light
vehicle so they must be inexpensive.

 I/O and Real-time: Devices must have multiple
interface options to connect sensors, actuators, and 5G
or LoRaWAN modules. Real-time behaviour is crucial
for detect accidents/falls and make emergency calls.

The ultimate goal is to identify, among the various choices,
which is the best hardware platform for each light vehicle.
It’s not necessary to find a single piece of hardware.
Different vehicles of different categories that can be used for
longer or shorter distances, may have different batteries and
consumption, and need more or less control. The same
parameters introduced in step 1 can be used to rank the
options. Due to the multiple platforms and multiple metrics,
a performance matrix is expected. Smart mobility vehicle
manufacturers could use the matrix to make decisions about
what to be implemented on real vehicles.

4 Experimental results

In this paper, the first experimental results related to the step
1 of the proposed approach are presented. In particular, it is
reported a reference methodology for measuring the time
related performance metrics of container running on
industrial-grade hardware.

The experiments have been designed using the Siemens
Industrial Edge platform to coordinate a Siemens IPC227, an
Industrial Edge Device (IED). The system is managed by the
Siemens Industrial Edge Management (IEM) software, that

E. Sis inn i, A.F lammini , M. Gaf fur in i, P.Ferrar i 231

Ada User Journa l Volume 44, Number 3, September 2023

can download to the IED the containerized applications,
called Industrial Edge Apps (Apps), which are available in
the IEM App’s repository.

In the experiments, three Apps (containers) have been
created to implement the same service using three different
programming languages (Python, JavaScript, NodeRed)
with their different runtime environments. The Apps are
subscribed to the same topic in the same MQTT broker.
When a new message is available, the Apps perform in
parallel the same processing on the received data and, then,
they publish the result on another topic in the (same) MQTT
broker. The MQTT broker and the Apps communicate
through a private LAN, so the latency is mainly due to the
software processing time.

The results are shown in Figure 2. The measurement
campaign last for one week, taking about 4000 samples. It is
clearly visible that the estimate of the probability density
function is very similar in all the considered Apps.
Moreover, their average values (in the order of 6 ms) are also
very close to each other.

Figure 2. Estimate of the App Delay probability density
function using three containers implementing the same service

and running in parallel on the same hardware.

5 Conclusions

In the proposed preliminary use case, the experiment proves
that today available industrial platforms (including
management) are already suitable for smart mobility, since
delay and latency are in the order of few milliseconds.
Moreover, the first results confirm that it is possible to
deploy redundant algorithms inside containers running in
parallel, in the same machine, obtaining similar delays. It has
been also demonstrated that the same service can be written
in different languages, but the App delay is still similar.
Future activities will be: the use of languages specifically
oriented to code reliability, the use of different hardware
platforms and, last, the optimization of the architecture for
the deployment on real smart mobility scenarios.

Fundings

This work has been partially supported by the MOST
project, PNRR MUR – M4C2 - CN00000023 Sustainable
Mobility Center, CUP D83C22000690001, Spoke 5, Light
Vehicle and Active Mobility”

References

[1] F. Cugurullo et al., “The transition to autonomous cars,
the redesign of cities and the future of urban
sustainability”, Urban Geography, 42 (6), pp. 833 –
859, 2021.

[2] J. Zawieska, J. Pieriegud, “Smart city as a tool for
sustainable mobility and transport decarbonisation”,
Transport policy, 63, 39-50, 2018.

[3] A. Thombre, A. Agarwal, “A paradigm shift in urban
mobility: Policy insights from travel before and after
COVID-19 to seize the opportunity”, Transport Policy,
110, pp. 335 – 353, 2021.

[4] W. Shi, S. Dustdar, “The promise of edge
computing”, Computer, 49(5), 78-81, 2016.

[5] P. Ferrari et al., “Performance evaluation of full-cloud
and edge-cloud architectures for Industrial IoT anomaly
detection based on deep learning”, IEEE Metrology for
Industry 4.0 and IoT, Naples, Italy, 2019, pp. 420-425,
2019.

[6] B. I. Ismail et al., “Evaluation of docker as edge
computing platform”, IEEE Conference on Open
Systems (ICOS) (pp. 130-135), 2015.

[7] R. Mahmud, A. N. Toosi, “Con-Pi: A Distributed
Container-Based Edge and Fog Computing
Framework”, IEEE Internet of Things Journal, 9 (6), pp.
4125 – 4138, 2022.

[8] A. Catalfamo et al., “MuoviMe: Secure Access to
Sustainable Mobility Services in Smart City”. in 2021
IEEE Symposium on Computers and Communications
(ISCC) (pp. 1-5), 2021.

[9] V. Divya, R. L. Sri, “Docker-based intelligent fall
detection using edge-fog cloud infrastructure”, IEEE
Internet of Things Journal, 8(10), 8133-8144, 2020.

[10] AdaCore, GNAT Pro with Docker. Available online at:
https://blog.adacore.com/how-to-gnat-pro-with-docker.

[11] C. A. S. Machado et al, “An overview of shared
mobility”, Sustainability, 10(12), 4342. 2018.

[12] E. Sisinni et al., “Assessing a Methodology for
Evaluating the Latency of IPv6 with SCHC
Compression in LoRaWAN Deployments”, Sensors,
vol. 23, no. 5. MDPI AG, p. 2407, Feb. 22, 2023

[13] L. Beltramelli et al., “Energy Efficiency of Slotted
LoRaWAN Communication With Out-of-Band
Synchronization”, IEEE Trans. on Instrumentation and
Measurement, vol. 70, pp. 1-11, 2021.

[14] Y. Wu et al., “Searching for internet-of-things
Resources: Requirements and outlook”, 5G-Enabled
Internet of Things, pp. 325-337, CRC Press, 2019.

[15] M. Rizzi et al., “Synchronization Uncertainty Versus
Power Efficiency in LoRaWAN Networks”, in IEEE
Transactions on Instrumentation and Measurement,
vol. 68, no. 4, pp. 1101-11, 2019.

0%

5%

10%

15%

20%

25%

30%

35%

0 2 4 6 8 10 12 14

Fr
eq

ue
nc

y

App Delay (ms)

NodeRed

Node.js

Python

232

A Real-Time Parallel Programming Approach for
Rust

Tiago Carvalho, Hugo Silva, Luís Miguel Pinho
Instituto Superior de Engenharia do Porto, Porto, Portugal; email: tdc@isep.ipp.pt, hsilva2000@gmail.com,
lmp@isep.ipp.pt

Abstract

The development of real-time systems is one of the areas
with the highest relevance in computer science, and the
number of critical systems has increased significantly.
These systems considers several applications running
concurrently, and inside each of those applications code
might be parallelized to improve their performance and
control the priority of each parallelizable task. Sev-
eral efforts have been done in different programming
languages to provide real-time systems with parallel
programming models, whether by code extensions or
annotations, or with specific features in the actual lan-
guage core.

Rust is a recent programming language that have quickly
grown in potential and already with a large community,
being continuously formed. The language is a good can-
didate in terms of both real-time systems and parallel
programming. However, there is a lack of work that
joins these two important concepts in an efficient and
reliable way.

In this work we aim to design and provide a framework
for real-time parallel systems. We conduct a study over
the existing work in other programming languages and
aim to bring their advantages and useful programming
models into the Rust programming language, in the
format of a real-time parallel programming library.

Keywords: Real-time Systems, Parallel Programming,
Rust.

1 Introduction
Real-time systems research is a challenging field of with many
use cases, from the automotive industry to robotics and inter-
net of things. These systems differ from the rest because of
the importance placed on time-related non-functional require-
ments such as deadline and time frame. A real-time system
is considered flawless if respects the expected accuracy and
time restrictions placed on its output [1].

The development of real-time systems reached a ceiling when
considering the programmability in a single core approach [2].
Multi-processors chips have been the most common solution
for increasing the computational and processing power of the
system. This brings a challenge for the software side of this
solution as sequential programming does not automatically

escalate well with multi-processor systems, thus not making
full use of its potential. The expansion of real-time systems
to fields with close human-machine interactions also made
this problem harder, bringing another constrain as the time
requirements are even more critical [3, 4].

The real-time parallel programming paradigm is a known area
of research and many efforts have been done in languages
strongly related to real-time system, such as in C/C++ (e.g.
via OpenMP pragma annotations) [5] or Ada, a language
that inherently provides a real-time parallel programming
model. Nevertheless, the programmability of parallel real-
time systems is still a topic of research and development [3,4].

Rust [6] is a novel programming language providing several
advantages, specially in memory safety concerns. Its memory
ownership model provides significant safety feature normally
inexistent in many programming languages (e.g. C/C++).
This is an important issue when taking into consideration
critical systems, making Rust a very plausible languages for
these systems [7].

While there are existing works in Rust for real-time systems
and for parallel programming, the state of art lacks an ap-
proach that takes advantage of both concepts.

In this work we aim to study and provide a framework for
parallel programming for real-time systems. The framework
is expected to provide the programmer with the control of
parallel regions supporting the mapping and priority schedul-
ing of threads. The framework will be deployed in the same
fashion as expected in Rust, i.e. as an API module of Rust.
This paper presents the first steps at providing the proposed
framework. We perform an analysis over the requirements
for a real-time parallel programming systems, a selection of a
RUST parallel programming library to be used as the base of
work, and provide the expected parallel programming model
for real-time systems.

The paper is structured as follows. Section 2 presents and
discusses the existing real-time parallel programming ap-
proaches, ending with a set of insights on what it is important
in the design of these models. Section 3 analyses a set of
known parallel programming modules of RUST, discussing
their features and plausibility for a real-time system, and fin-
ishing with a selection of one of those modules. Section 4
designs the new approach based on the gathered insights, and
how it will be applied in the selected module, providing a

Volume 44, Number 3, September 2023 Ada User Jour na l

T. Car va lho, H. S i lva , L . M. Pinho 233

Figure 1: Vertical stack of mapping and scheduling parallel
computation (adapted from [12])

few examples do show the programmability of the approach.
Section 5 draws the final conclusions regarding the proposed
approach.

2 Parallel Programming for Real-Time
Systems

In order to address the specific requirements of real-time
systems, programming models and paradigms usually provide
a set of abstractions which intend to capture the real-time
model [3], such as the notion of time, specification of real-
time tasks and scheduling properties, communication and
synchronization between tasks and the mapping and control
of computation in the underlying system.

To support these requirements there are basically two different
approaches:

• Use a sequential programming language with the concur-
rency and real-time requirements being met by libraries
and operating system calls: this is one of the most com-
mon approaches, using the C [8] language and real-time
operating systems, eventually with the POSIX real-time
support [9].

• Use of a language with support for concurrency and real-
time as language first-class entities, such as Ada [10] or
Real-Time Java [11].

When moving from a concurrent model to both concurrency
and parallelism, programming real-time systems needs to con-
sider not only the issues listed above, but also the fact that the
sequential code in the concurrent activities may be executed
in parallel. It is necessary to combine in the programming
model the capabilities to define the inherent concurrent tasks
of the application, and the potential parallelism in the tasks’
algorithms.

Moreover, mechanisms should be provided to control the
mapping of the parallel computation to the scheduling entities.
Although this may seem to be an issue of the runtime and

operating system, when the parallel and concurrent entities are
specified at the programming model, mechanisms are required
to also specify how the underlying runtime and operating
system should manage mapping and scheduling (an integrated
vertical stack as noted in Figure 1) [12]. This could be using
library and calls to the underlying runtime, or, preferably,
directly supported at the programming model level.

The programmability of parallel real-time systems is still
a topic of research and development. Although a few ap-
proaches exist, there is no complete model (and, even less,
stable products). From existing work, we highlight the fol-
lowing two solutions:

• The use of a subset of OpenMP [13], based on its tasking
model.

• The Ada 2022 [10] parallel programming model inte-
grated with the real-time features of the Ada language.

OpenMP [13] is the standardized API for shared-memory
parallel programming, being one of the most used models for
high performance computing. Its value has been increasing
such as its use is increasing in embedded systems as well as
in applications used for critical computing systems like video
processing in autonomous driving. OpenMP already enables
the use of real-time models, but it still lacks the support for
real-time scheduling properties such as deadlines or worst-
case execution time. A proposal by Serrano et al. [5] has
recently been made to define an OpenMP profile for critical
real-time systems. It already covers a lot of groundwork, with
further research possible and encouraged, particularly on the
specification of real-time properties and how to support the
integration of multiple parallel real-time activities in the same
application.

Ada [10] is a high-level programming language designed
for safety-critical and real-time systems. This language was
originally created for the use of the United States Department
of Defence(Defense, 1983), thus having a wide application
domain. Its features include built-in support for concurrency
and tasking, modular programming, and others. Therefore,
having this support already implemented, the study of parallel
programming with Ada has been a topic of development for a
long time.

Although based on a similar fine-grained parallel model for
real-time systems, these two approaches come from two dif-
ferent communities, and from opposing directions, which
reflects in the main design differences and availability of
mechanisms integrating parallelism and real-time. OpenMP
comes from the high-performance community, supporting
a very complete and complex parallel programming model.
On the other hand, Ada is a technology mostly developed
by the critical and real-time systems communities, providing
extensive and complex support for programming real-time
systems.

Integrating real-time and parallelism implies (i) in OpenMP
adding real-time to a parallel model, whilst (ii) in Ada adding
a parallel model to a concurrent and real-time language.

Apart these two approaches, very little work exists in the
integration of real-time and parallelism in other technologies.

Ada User Jour na l Vo lume 44, Number 3, September 2023

234 A Real -T ime Para l le l Programming Approach for Rust

Table 1: Some of the most used Rust libraries for concurrency
and parallel programming.

crate current version all-time downloads
parking_lot v0.12.1 116M
tokio v1.26.0 88M
rayon v1.7.0 49M
concurrent-queue v2.1.0 19M
crossbeam v0.8.2 19M
threadpool v1.8.1 18M

Maia et al. [14] provided an initial proposal to combine the
Java fork/join model with the Real-Time Specification for
Java, while Schmid et al. [15] did a preliminary analysis
of real-time execution in the Embedded Multicore Building
Blocks [16], Intel Threading Building Blocks [17] and High
Performance ParalleX [18] frameworks. Nevertheless, to the
best of the author’s knowledge, these works have not been
continued.

3 Parallel Programming in Rust
Currently, Rust does not provide any parallel programming
with control over thread scheduling policies. Polevoy’s
thread_priority Rust library [19] is an example of a
library able to control thread schedule policies and thread
priority. However, this is done over the standard rust library
for creation and control of threads.

Rust provides a set of basic mechanisms which enable build-
ing concurrent and parallel applications. However, the control
of multiple threads, their affinity, synchronization - and sev-
eral other thread-based functionalities - can be very hard and
error prone to program with only the standard library. The
use of parallel programming libraries is usually advised, as
many of these libraries provide more ease on programming
and control a pool of working threads. In our work, we in-
tend to provide such thread control at the level of a Parallel
Programming library in Rust.

For Rust, there are several libraries for concurrency/parallel
programming. Table 1 provides information about some of
the most used libraries. This information was extracted from
Rust’s main library repository, more specifically crates.
io, showing the usage results to the moment this paper was
written.

parking_lot is a library proving more efficient reimple-
mentations of the stand standard synchronization primitives,
making this library the best replacement when the standard
library is to be considered. tokio is a platform to develop
asynchronous non-blocking input/output applications in an
event-driven approach.

rayon is a library for simple work-stealing parallelism mech-
anisms in Rust, providing parallel iterators, a thread pool and
scoping mechanisms. concurrent-queue provides con-
current multi-producer and multi-consumer queues.

crossbeam provides more advanced concurrency mech-
anisms for scoped threads, multi-producer multi-consumer
channels, thread-safe queues and work-stealing double ended

1 fn some_task() {...}
2
3 fn main(){
4 let task_params = RT_Thread::FixedPriority {
5 priority: 255,
6 period: None,
7 };
8 let task_sched = RT_Thread::SchedulingParameters {
9 class: RT_Thread::SchedulingClass::FIFO,

10 core: None,
11 params: task_params
12 };
13 thread::spawn(some_task, task_sched);
14 }

Figure 2: Example of a thread being spawn with
a SCHED_FIFO scheduling class.

queues. And finally, threadpool library provides a pool
of predefined number of threads ready to run a certain number
of jobs.

Between these, and many other libraries, we highlight the
use of libraries such as the threadpool library. The main
reasons for this goes to its simplicity in the parallel program-
ming model, providing the of a thread pool able to execute
closures, a similar approach to the logic of OpenMP tasks [],
and to the version stability and maturity of the library.

4 Real-Time Parallel Programming for
Rust

The proposed approach to integrate real-time parallel pro-
gramming in Rust is to follow a similar approach as presented
in Figure 1. As presented in the previous section, Rust already
provides a significant number of packages for parallelism.
By integrating in some of these packages the capability to
(transparently) use the underlying operating systems real-time
capabilities, real-time parallel programming can be easily in-
tegrated.

The approach aims for a high-level, yet customizable, abstrac-
tion framework in which it is possible to select a scheduling
algorithm provided by the target operating system. Figure 2
shows an example of spawning a thread that will execute a
given task (line 13) as convention of the std::thread stan-
dard library, extended with an extra argument: the scheduling
algorithm and corresponding properties. In this example, we
are using the SCHED_FIFO scheduling class of POSIX, spec-
ifying the priority of this task and without a period (lines 4
to 7). The scheduling algorithm and corresponding parame-
ters are specified as a SchedulingParameters instance,
where we specify the scheduling class, the target core, and
the parameters of the class (lines 8 to 12). Although simple,
this example provides the first steps on providing real-time
thread scheduling.

Figure 3 considers the use of the SCHED_DEADLINE
scheduling class of POSIX. This class expects three es-
sential parameters (defined in lines 4 to 8): the usual
runtime of the task, the period to trigger the task, and
the deadline in which the task must be executed. The

Volume 44, Number 3, September 2023 Ada User Jour na l

T. Car va lho, H. S i lva , L . M. Pinho 235

1 fn some_task() {...}
2
3 fn main(){
4 let task_params = RT_Thread::ConstantBandwithServer {
5 runtime: Duration::from_millis(2),
6 period: Duration::from_millis(50),
7 deadline: Duration::from_millis(10)
8 };
9 let task_sched = RT_Thread::SchedulingParameters {

10 class: RT_Thread::SchedulingClass::CBS,
11 core: 0,
12 params: task_params
13 };
14 thread::spawn(some_task, task_sched);
15 }

Figure 3: Example of a thread with SCHED_DEADLINE, spawn
in a specific core.

SchedulingParameters instance uses these parameters,
the corresponding SCHED_DEADLINE class, and it speci-
fies that this thread has to be executed in core 0. The spawn of
the thread is done similar to the previous example, in which
we specify the task and the scheduling parameters.

Figure 4 shows a simple example to create a ThreadPool
with threads using the SCHED_DEADLINE scheduling class.
The example shows two example for the expected extensions
to the threadpool library, which expects an extra argu-
ment providing the task scheduling policy and parameters.

The example shows the spawn of a thread that uses the
SCHED_DEADLINE scheduling class for the parent thread
(lines 3 to 15). Then, inside this task, two thread pools are
built. The first thread pool is built by simply inheriting the
scheduling parameters of the parent task (line 18), which in
this case is the use of SCHED_DEADLINE class with the
parameters specified in lines 3 to 7.

The second approach is fully customized, in which we specify
the scheduling parameters for each thread in the pool. Each
thread has to be assign their scheduling parameters, as de-
picted in the previous examples. It is still possible to inherit
the parameters from the parent thread by using a method
that retrieves the current parameters (line 21 to 24). Lines
25 to 34 show two examples with distinct scheduling pa-
rameters, one using fixed priority, and another one with the
SCHED_DEADLINE class.

After specifying the parameters and building the ThreadPool
with those parameters, the ThreadPool can be used to execute
tasks. A task can now be executed by specifying not only the
task itself but, optionally, the thread in which it should be
executed, as exemplified in line 39.

5 Conclusions
This paper presented a first proposal of extensions to the Rust
programming language, in the form of a library, for real-time
parallel programming. This approach intends to bring real-
time functionalities to a parallel programming library of Rust,
a feature not yet present in any of the existing parallel pro-
gramming libraries. The approach allows the specification

1 fn main(){
2
3 let task_params = RT_Thread::ConstantBandwitdhServer {
4 runtime: Duration::from_millis(2),
5 period: Duration::from_millis(50),
6 deadline: Duration::from_millis(10),
7 };
8
9 let task_sched = RT_Thread::SchedulingParameters {

10 class: RT_Thread::SchedulingClass::CBS,
11 params: task_params
12 };
13
14
15 RT_Thread::create_periodic_task(task_sched, body: move | {
16 let n_workers = 4;
17
18 let pool = ThreadPool::new_inherited(n_workers);
19
20 let params = vec![];
21 let param_0 : RT_Thread::get_current_sched_params();
22 param_0.core = 0;
23
24 params.push(param_0); // inherit parameters for core zero
25 params.push(SchedulingParameters { //fixed priority in core 1
26 class: SchedulingClass::FIFO,
27 core: 1,
28 params: FixedPriority {priority: 255}
29 });
30 params.push(SchedulingParameters { //CBS on core 2
31 class: SchedulingClass::CBS,
32 core: 2,
33 params: ...
34 });
35 // ...
36
37 let pool = ThreadPool::new_rt(n_workers, params);
38 ...
39 pool.execute(num_thread, some_task); //in specific thread
40 });
41 }

Figure 4: Example of a threadpool with specific scheduling
algorithms per thread.

of parallel regions ale to execute real-time systems. We ex-
emplify this use in a selected library, to be extended with
scheduling policies capabilities. The next steps of this work
includes finalizing and validating the approach with bench-
marks commonly used in real-time systems validation.

6 Acknowledgments
This research has been co-funded by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 871669, in the context of the AMPERE project.

References
[1] P. T. Ward, Structured development for real-time sys-

tems: Vol. I: Introduction and tools. Pearson Education,
1986.

[2] M. D. Hill and M. R. Marty, “Amdahl’s law in the mul-
ticore era,” Computer, vol. 41, no. 7, pp. 33–38, 2008.

[3] A. Burns and A. J. Wellings, Real-time systems and
programming languages: Ada 95, real-time Java, and
real-time POSIX. Pearson Education, 2001.

Ada User Jour na l Vo lume 44, Number 3, September 2023

236 A Real -T ime Para l le l Programming Approach for Rust

[4] L. M. Pinho, V. Nélis, P. M. Yomsi, E. Quiñones,
M. Bertogna, P. Burgio, A. Marongiu, C. Scordino,
P. Gai, M. Ramponi, et al., “P-socrates: A parallel
software framework for time-critical many-core sys-
tems,” Microprocessors and Microsystems, vol. 39,
no. 8, pp. 1190–1203, 2015.

[5] M. A. Serrano, S. Royuela, and E. Quiñones, “Towards
an openmp specification for critical real-time systems,”
in Evolving OpenMP for Evolving Architectures: 14th
International Workshop on OpenMP, IWOMP 2018,
Barcelona, Spain, September 26–28, 2018, Proceedings
14, pp. 143–159, Springer, 2018.

[6] N. D. Matsakis and F. S. Klock, “The rust language,”
ACM SIGAda Ada Letters, vol. 34, no. 3, pp. 103–104,
2014.

[7] S. Klabnik and C. Nichols, The Rust programming lan-
guage. No Starch Press, 2023.

[8] B. W. Kernighan and D. M. Ritchie, “The c program-
ming language,” 2002.

[9] D. Lewine, POSIX programmers guide. " O’Reilly Me-
dia, Inc.", 1991.

[10] A. Burns and A. Wellings, Concurrent and real-time pro-
gramming in Ada. Cambridge University Press, 2007.

[11] P. Dibble, Real-time Java platform programming. Pren-
tice Hall Professional, 2002.

[12] L. M. Pinho, E. Quinones, M. Bertogna, A. Marongiu,
V. Nelis, P. Gai, and J. Sancho, High-Performance and

Time-Predictable Embedded Computing. Wharton, TX,
USA: River Publishers, 2018.

[13] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan,
and J. McDonald, Parallel programming in OpenMP.
Morgan kaufmann, 2001.

[14] C. Maia, L. Nogueira, and L. M. Pinho, “Combining rtsj
with fork/join: a priority-based model,” in Proceedings
of the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems, pp. 82–86, 2011.

[15] M. Schmid, F. Fritz, and J. Mottok, “Parallel program-
ming in real-time systems,” in ARCS Workshop 2019;
32nd International Conference on Architecture of Com-
puting Systems, pp. 1–7, VDE, 2019.

[16] Siemens AG, “Embedded multicore building blocks.”
URL: https://embb.io/. Accessed: 06-03-2023.

[17] C. Pheatt, “Intel® threading building blocks,” Journal of
Computing Sciences in Colleges, vol. 23, no. 4, pp. 298–
298, 2008.

[18] H. Kaiser, P. Diehl, A. S. Lemoine, B. A. Lelbach,
P. Amini, A. Berge, J. Biddiscombe, S. R. Brandt,
N. Gupta, T. Heller, et al., “Hpx-the c++ standard li-
brary for parallelism and concurrency,” Journal of Open
Source Software, vol. 5, no. 53, p. 2352, 2020.

[19] V. Polevoy, “thread-priority v0.13.1.” URL:
https://crates.io/crates/thread-priority. Accessed:
06-03-2023.

Volume 44, Number 3, September 2023 Ada User Jour na l

237

A POSIX/RTEMS Monitoring Tool and a
Benchmark to Detect Real-Time Scheduling
Anomalies

Blandine Djika+*, Georges Kouamou*, Frank Singhoff+, Alain Plantec+
*University of Yaounde 1, Cameroon
+Lab-STICC UMR CNRS 6285, University of Brest, France
email: blandine.djika@univ-brest.fr, georges.kouamou@gmail.com, frank.singhoff@univ-brest.fr,
alain.plantec@univ-brest.fr

Abstract

This article deals with scheduling anomalies in real-
time systems. We present MONANO, a POSIX user-level
library allowing applications to dynamically detect a
pre-identified set of real-time scheduling anomalies.

The MONANO library is based on the modelling of ar-
chitecture and runtime constraints. MONANO monitors
during the runtime the timing behavior of the applica-
tion and deduces properties needed to identify schedul-
ing anomalies.

We present also a benchmark to evaluate our approach.
The benchmark is composed of several programs imple-
menting the most frequent real-time scheduling anoma-
lies.

Keywords: Real-Time Scheduling Anomalies, Real-Time
System, RTEMS, Cheddar.

1 Introduction
This article focuses on scheduling anomalies in real-time
systems. In real-time systems, tasks may have deadlines
to meet. As defined by Luis Almeida in [1], a scheduling
anomaly refers to a counter-intuitive phenomenon in which
increasing the system resources or relaxing the application
constraints can lead to missed deadline. While deadline can
be verified at software design time, scheduling anomalies may
arise at runtime depending on the dynamic behavior of the
application.

[Problem Statement] In a previous work [2], we have pro-
posed a model of scheduling anomalies composed of software
architecture and runtime constraints. Architecture constraints,
called static constraints, can be verified prior to execution.
However, even after their verification, scheduling anomalies
may occur at execution time and deadlines can be actually
missed. We called dynamic constraints the conditions that
may raise scheduling anomalies at runtime. To actually de-
tect and properly handle scheduling anomalies, we have to
monitor such dynamic constraints.

[Contribution of this article] In this article, we propose
MONANO, a user-level monitoring library which can be used
by an application to check dynamic constraints. This library
is POSIX compliant. We are experimenting it on the RTEMS
operating systems.

In case of an arising scheduling anomaly, MONANO signals
the anomaly and allows the application to run specific actions
to recover the anomaly. Specific actions can be any operation
allowing the application to adapt itself as mixed-criticality
theory promotes it [3]. We also provide MONANO with a
benchmark implementing most of the real-time scheduling
anomalies identified in the literature. We are using this bench-
mark to validate MONANO. The benchmark may also be
used in any research activities related to real-time scheduling
anomalies.

The remainder of this article presents background about
scheduling anomalies in section 2. MONANO and its com-
panion benchmark are introduced in section 3. Related works
and the conclusion are finally presented respectively in sec-
tion 4 and 5.

2 Background
In this section, we first present with an example what a
scheduling anomaly is. Then, we introduce the overall ap-
proach we previously proposed in [2].
2.1 Scheduling anomalies
As defined in [1], a scheduling anomaly refers to a counter-
intuitive phenomenon in which increasing the system re-
sources or relaxing the application constraints can make the
application unschedulable.

Let us illustrate a scheduling anomaly with an example
from [4]. This example is composed of three periodic tasks
scheduled with a non-preemptive fixed-priority scheduler.
Each task τi is defined by a 5-tuples with its release time
ri(τi), its WCET (Worst Case Execution Time) Ci(τi), its
deadline Di(τi), its period Ti(τi) and its fixed priority πi(τi).
Following this notation, the tasks of figure 1 have the parame-
ters given in Table 1 :

Figure 1 presents two schedules of such task set: (a) when the
tasks are executed during all their WCET, i.e. each task has

Ada User Jour na l Vo lume 44, Number 3, September 2023

238 A Moni tor ing Tool and a Benchmark to Detect Real -T ime Schedul ing Anomal ies

Figure 1: Anomaly when reducing task execution time

Tasks ri(τi) Ci(τi) Di(τi) Ti(τi) πi(τi)
τ1 0 1 3 3 1
τ2 0 2 6 6 2
τ3 0 4 12 12 3

Table 1: Task parameters

an execution time equal to its WCET, (b) when the execution
times of the task are shortest than their WCET, which is the
usual case when running such application. All task deadlines
are met in figure 1 (a) while a deadline of τ1 is missed in
figure 1 (b). In figure 1 (b), we can notice that at time 1, τ2
runs during 1 unit of time while its WCET is about 2 units
of time. This real execution time shortest than its WCET,
implies that τ3 executes immediatly after τ2 at time 2 and
cannot be interrupted since the system is a non-preemptive
one. Then, when τ1 is released at time 3, although it is a
higher priority task, it has to wait for τ3 completion at time 6
before starting to work. This finally leads to a missed deadline
for τ1.

Scheduling anomalies were identified and classified by the
community in seven types according to how they may occur.
Table 2 summarizes them.

Num Types
1 Reducing the task execution time [5,6,7,8,9,10,11]
2 Changing task priorities [5]
3 Weakening task precedence constraints [5, 6]
4 Increasing processor speed [10]
5 Delaying the execution of the tasks [10]
6 Increasing task period [12, 13, 14]
7 Increasing the number of processors of the execu-

tion platform [5]

Table 2: Types of scheduling anomalies

2.2 Modeling scheduling anomalies
Each above scheduling anomalies arises under specific condi-
tions. Such conditions can be modeled as constraints related
to the architecture of the real-time system and its behavior at
runtime.

In [2], we proposed to model scheduling anomalies according
to two types of complementary constraints: static constraints
and dynamic constraints. Static constraints are only related

to the architecture design specification. They can be verified
prior to execution. We have identified 9 static constraints
related to the execution platform and 8 related to the task
models. Dynamic constraints are related to particular events
that actually raise scheduling anomalies. The verification of
such dynamic constraints can only be done at runtime. We
have identified the dynamic constraints of each scheduling
anomaly described in table 2.

2.3 Proposed anomaly analysis

Figure 2: Analysis approach

As shown in figure 2, we propose in [2] a two-step analysis
process to detect scheduling anomalies:

1. First, at design time, static constraints are verified with
Cheddar [15]. When static constraints hold, it means
that scheduling anomalies may occur when dynamic
constraints hold at runtime.

2. Second, at runtime, to assess scheduling anomaly, a
second analysis is required to check dynamic constraints.
In the sequel, we describe MONANO, a monitoring user-
level library to verify such dynamic constraints.

3 MONANO monitoring service design
and its companion benchmark

This section presents MONANO, a user-level library written
in C. Currently, it is implemented on top of RTEMS (Figure 3)
but the library is POSIX compliant, then it could be used on
many POSIX real-time operating systems. To verify MO-
NANO, we implemented a benchmark based on ROSACE to
raise scheduling anomalies identified in the literature. This
benchmark is also briefly described in the sequel.

Volume 44, Number 3, September 2023 Ada User Jour na l

B. Dj ika et a l . 239

Figure 3: MONANO user-level POSIX library

3.1 In a nutshell
MONANO provides services to create and monitor periodic
threads.

MONANO requires application code instrumentation : pro-
grammers have to call MONANO services in their programs
to monitor the timing behavior of their threads.

MONANO relies on POSIX to create threads, to sched-
ule threads, to implement periodic releases and to monitor
threads.

MONANO maintains a static as well as a dynamic view of
each monitored thread. MONANO API requires applications
to specify the static view of the threads before starting them.

The detection of scheduling anomalies relies on an oracle
capable of evaluating the dynamic constraints at runtime. To
detect scheduling anomalies during runtime, the oracle checks
if dynamic constraints hold for each thread. Dynamic con-
straints are expressed on runtime events that are either moni-
tored by MONANO or pointed out by the application itself.
The monitoring is stopped when the threads are completed.

As described in [2], runtime events that may occur during
a thread lifetime and that are part of dynamic constraints
leading to scheduling anomalies are priority, precedence or
period changes, departure or completion of thread periodic
job, or processor speed change.

Regarding scheduling anomaly detection, the interaction be-
tween the application and MONANO relies on a specific
callback. During its initialization, the application may regis-
ter a callback that is called by MONANO when an anomaly is
detected. The anomaly type together with the involved thread
are passed as the callback arguments.

This callback is generated by an oracle integrated into MO-
NANO implementing dynamic constraints leading to schedul-
ing anomalies.

3.2 Application Programming Interface
Figure 4 shows a diagram that depicts the main API ele-
ments. The library is composed of two parts: the MO-
NANO manager and views of the application threads. A
thread view consists in a pthread_monano_t associated with
a pthread_monano_attr_t struct type instance.

pthread_monano_attr_t stores, for each thread, a set of at-
tributes that are classic static task parameters in real-time
scheduling theory. Parameters maintained for each thread are

Figure 4: MONANO design

1 #include "monano.h"
2
3 struct pthread_monano_t my_monano;
4 struct pthread_monano_attr_t my_attr;
5 pthread_monano_id_t id;
6
7 void * my_callback(int anomaly_number,

pthread_monano_id_t tid) {
8 printf ("Anomaly %d is detected in thread number

%d\n", anomaly_number, tid);
9 exit (0) ;

10 }
11
12 void * a_periodic_thread(void * arg) {
13 pthread_monano_signal_departure_time(& my_monano, id);
14 /* Run its periodic program */
15 ...
16 pthread_monano_signal_end_time(& my_monano, id);
17 return NULL;
18 }
19
20 void * POSIX_Init(void * argument) {
21 struct timespec period, wcet, ...;
22 int priority = ...;
23
24 pthread_monano_attr_setperiod(& my_attr, period);
25 pthread_monano_attr_setwcet(& my_attr, wcet);
26 pthread_monano_attr_setpriority(& my_attr, priority) ;
27 pthread_monano_register_anomaly_callback(& my_monano,

my_callback);
28
29 pthread_monano_periodic_thread_create(& my_monano, &

my_attr, a_periodic_thread, & id, NULL);
30 return NULL;
31 }

Figure 5: MONANO program example

Ada User Jour na l Vo lume 44, Number 3, September 2023

240 A Moni tor ing Tool and a Benchmark to Detect Real -T ime Schedul ing Anomal ies

namely, the wcet, the deadline, the period which are set as
POSIX timespec structs. The priority is also set as an inte-
ger. MONANO also maintains dynamic parameters of each
thread such as the last release time and the last completion
time of the thread. Notice that MONANO is only currently
supporting periodic threads.

The MONANO manager is in charge of creating threads and
of detecting scheduling anomalies. The manager provides
2 functions to respectively create threads and register the
callback C function that is called when a scheduling anomaly
occurs.

Functions allowing the application to send events to MO-
NANO are named pthread_monano_signal in the figure 4.

3.3 MONANO program example
Figure 5 shows a MONANO example program. Lines
24 to 26 setup the static parameters of the MONANO
thread to create and line 27 registers the callback that is
run when a scheduling anomaly occurs. In this example,
the function my_callback is called in case of a schedul-
ing anomaly. After such initialization steps, the program
creates the MONANO periodic threads and starts to run.
If an anomaly occurs, then the callback my_callback is
called and the RTEMS application is stopped with the exit
function. Notice that the code of the thread notifies two
events to MONANO: when the thread starts to run (with the
pthread_monano_signal_departure_time function) and when
it completes (with the pthread_monano_signal_end_time
function).

3.4 Benchmark to investigate scheduling anomalies
in real-time systems

The first goal of the benchmark is to enforce situations in
which scheduling anomalies arise. The second goal is to
serve as an extensible example to verify the correctness and
the usability of MONANO itself.

In the literature, there is today no benchmark gathering pro-
grams that raise the more frequent known scheduling anoma-
lies for real-time systems. In this section, we present the
MONANO benchmark that contributes to fulfill such a need.

As explained previously, detecting scheduling anomalies re-
quires verifying if both static and dynamic constraints hold
for a given application. The different services implemented
in MONANO intend to verify them.

Scheduling anomalies may arise both in uniprocessor and
multiprocessor architectures. Several scenarios can lead to a
type of scheduling anomaly. We have 19 scenarios for the 7
types of scheduling anomalies identified in both uniprocessor
and multiprocessor systems. However in this article, we only
focus on uniprocessor systems and then, the benchmark only
handles the 5 anomalies occuring in uniprocessor systems.
The 5 uniprocessor anomalies occur in 9 scenarios. Each
scenario is implemented by a program in the benchmark.

The current MONANO benchmark only implements the dy-
namic constraints (DC) related to one of the 5 uniprocessor
anomalies:

• constraint D1 becomes true when MONANO detects
that the thread execution time is reduced (see scheduling
anomaly 1 in Table 2).

• constraint D2 becomes true when MONANO detects that
a thread has changed its current priority (see scheduling
anomaly 2 in Table 2).

• constraint D3 becomes true when MONANO detects
that a thread dependency was not met (see scheduling
anomaly 3 in Table 2).

• constraint D4 becomes true when MONANO detects
that the processor speed has changed (see scheduling
anomaly 4 in Table 2).

• and the constraint D5 becomes true when MONANO
detects that a thread execution is delayed (see scheduling
anomaly 5 in Table 2).

To implement the MONANO benchmark, we adapted
ROSACE, an open-source avionic control command soft-
ware developed by [16] in C. First, ROSACE was adapted
to run on RTEMS with the POSIX API. Second, we imple-
mented 9 different versions of ROSACE corresponding to the
9 uniprocessor scheduling anomaly scenarios. Each of these 9
programs is a ROSACE program modified to comply with the
static and the dynamic constraints of the related scheduling
anomaly.

Table 3 summarizes, for the 9 programs their static constraints
and their dynamic constraints that the program implements.

DC Programs Static constraints

D1

P1 Threads may have precedence con-
straints

P2 Non-preemptive scheduling
P3 Deadline Monotonic scheduling

Threads may access shared resources
P4 EDF scheduling

Threads are asynchronously released
Threads may be suspended

D2 P5 Threads are independent
D3 P6 Threads may have precedence con-

straints

D4 P7 Threads are asynchronously released
Threads may access shared resources

P8 Deadline Monotonic scheduling
Threads are asynchronously released
Threads may access shared resources

D5 P9 Threads may access shared resources
Threads may be suspended

Table 3: Static and dynamic constraints of each program of the
benchmark

We have implemented the 9 programs on a uniprocessor pre-
emptif fixed priority scheduling RTEMS target. One may
notice that some of the programs of Table 3 require a dif-
ferent scheduling policy (e.g. program P4 requires a EDF
scheduling). Furthermore, ROSACE is implemented by a set
of threads that communicate by flow of data. One may notice

Volume 44, Number 3, September 2023 Ada User Jour na l

B. Dj ika et a l . 241

also that in Table 3 some of the programs are not compliant
with this ROSACE implementation (.e.g program P9 uses
shared resources to thread communications).

To experiment all types of scheduling anomalies on the same
RTEMS/POSIX operating system and with the same appli-
cation baseline (ROSACE), we have implemented in the 9
programs specific mechanisms to enforce all static constraints.
For example, with programs 4 and 9, scheduling anomalies
will occur when threads are suspended while the original
ROSACE program does not suspend any thread. To imple-
ment suspended threads and to actually raise the correspond-
ing scheduling anomalies, threads of programs 4 and 9 are
blocked on a counting POSIX semaphore. Table 4 gives a
short description of what we have implemented to make static
constraints compliant with ROSACE and RTEMS.

Constraints Implementation
Precedence con-
straints

Communication implemented with a
counting semaphore initialized to 0.

Deadline mono-
tonic scheduling

Priority assignment with
setschedparam according to the
deadline

Shared resources Implemented by POSIX mutexes
Non-preemptive
scheduling

Non-preemptive scheduling enforced
with a mutex shared by all threads

Threads asyn-
chronously
released

Release times are delayed with
nanosleep

Suspended
threads

Threads are suspended with nanosleep

Table 4: Implementation of the static constraints on POSIX/u-
niprocessor RTEMS

The static and the dynamic constraints rely on various data
that are either given at application startup by the program-
mer or measured by MONAO during execution or computed
at runtime by MONANO. Table 5 gives for each scheduling
anomaly data that are either monitored by MONANO or either
computed by MONANO. Let consider S = {τ1, ..., τn}, a set
of n periodic threads as defined in section 2.1 and monitored
by MONANO. Table 5 presents each data continuously up-
dated by MONANO during runtime and if they are computed
or measured :

• start_time(τi) and end_time(τi) are respectively the
start time and the end time of each job of τi.

• execution_time(τi) is the real execution time of a each
job of τi.

• blocking_time(τi) is the computed blocking time of τi
on the shared resources.

• preemption_time(τi) is the amount of time τi is pre-
empted by threads with a higher priority level.

• suspending_time(τi) is the amount of time τi has de-
cided to suspend itself.

• priority(τi) is the current priority of τi.

• dependencies_list stores the real execution order of the
threads that are constrained by thread precedencies.

• processor_speed is the current processor speed.

DC Measured data Computed data
D1 start_time(τi),

end_time(τi)
execution_time(τi),
blocking_time(τi),
preemption_time(τi)

D2 priority(τi)
D3 Threads execu-

tion order in
dependencies_list

Missed precedency con-
straints

D4 Current processor
speed

D5 start_time(τi),
end_time(τi)

suspending_time(τi)

Table 5: Metrics monitored on POSIX/uniprocessor RTEMS by
MONANO

4 Related work
Previous research on scheduling anomalies has mostly fo-
cused on identifying and presenting different types of schedul-
ing anomalies in both uniprocessor and multiprocessor sys-
tems [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

However, detecting anomalies also requires to detect events
occuring when scheduling anomalies are raised. Many works
have investigated how to monitor events in real-time sys-
tems and some of them could be applied to detect scheduling
anomalies.

First, monitoring tools devoted to stream-based systems were
developed by the community. For example, Copilot [17, 18]
monitors systems by regularly capturing values (called sam-
ples) of variables of the system. The overall values of a given
variable constitute a data stream on which verifications can
be applied. As Copilot, RTLola [19, 20] also operates on data
streams and monitors them. However, in the case of RTLola,
the software components charged to monitor are generated
from a specification written in a formal language. Stream-
LAB [21] is another framework example using RTLola for
monitoring purposes.

R2U2(Realizable, Responsive, Unobtrusive Unit) [22, 23]
is focusing on the monitoring of security properties for Un-
manned Aerial Systems (UAS) built on FPGA. The objective
is to detect security attacks.

Hili [24] proposed a model-based approach to monitor real-
time systems during their runtime. The approach provides a
means to integrate and configure various monitors.

Yibing [25] identifies variations between predicted behavior
and monitored behavior. The method is using a digital twin.

Finally, Reinier [26] proposed MuSADET, a tool that looks
for timing anomalies in event traces for real-time systems.
The framework classifies anomalies with metrics between
event arrivals.

Ada User Jour na l Vo lume 44, Number 3, September 2023

242 A Moni tor ing Tool and a Benchmark to Detect Real -T ime Schedul ing Anomal ies

As seen above, many authors have carried out technics for
monitoring real-time systems during their execution, but with-
out, most of the time, focusing specifically on the detection
of scheduling anomalies.

In the contrary, we propose in this article a monitoring tool
specifically devoted to detecting scheduling anomalies of a
real-time system during runtime.

5 Conclusion
This article focuses on scheduling anomalies in real-time sys-
tems. The context in which an anomaly may occur have been
studied and presented in [2]. In [2], a model of scheduling
anomalies composed of software architecture and runtime
constraints has been proposed. From this model, we proposed
in this article a monitoring tool called MONANO which is
able to detect runtime constraints leading to real-time schedul-
ing anomalies. We are experimenting MONANO in Ched-
dar [15]. MONANO comes with a benchmark prototyped in
RTEMS. We are currently running experiments to evaluate
MONANO performance and intrusivity.

To fully evaluate MONANO, the ability to handle false posi-
tive and false negative anomalies is necessary to avoid inap-
propriate callback invocations. For now, false positive and
false negative anomalies are not taken into account. A false
positive result would occurs if an analysis gives an invalid
positive result (an anomaly is detected whereas it should not
be detected), and a false negative result would occurs if an
analysis gives a invalid negative result (an anomaly is not
detected whereas it should be detected). In the current state of
our work, we are not able to provide such an analysis. In our
future work, we plan to experiment with more use cases to
improve dynamic anomaly analysis to include false positive
and false negative detection.

For this article, we focused on uniprocessor systems. We
also expect to improve the MONANO tool by integrating the
detection of scheduling anomalies in multiprocessor systems.

Finally, another future work would be to investigate how MO-
NANO could be used to monitor other real-time properties.

6 Artefact
MONANO and its companion benchmark are available
at http://beru.univ-brest.fr/svn/CHEDDAR/
trunk/src/framework/scheduling_anomalies

References
[1] L. Almeida, P. Pedreiras, and R. Marau, “Traffic schedul-

ing anomalies in temporal partitions,” in From Model-
Driven Design to Resource Management for Distributed
Embedded Systems: IFIP TC 10 Working Conference
on Distributed and Parallel Embedded Systems (DIPES
2006), October 11–13, 2006, Braga, Portugal, pp. 95–
104, Springer, 2006.

[2] B. Djika, F. Singhoff, A. Plantec, and G. E. Kouamou,
“Work-in-progress: Models and tools to detect real-time
scheduling anomalies,” in 2021 IEEE Real-Time Sys-
tems Symposium (RTSS), pp. 540–543, IEEE, 2021.

[3] A. Burns and R. Davis, “Mixed criticality systems-a
review,” Department of Computer Science, University
of York, Tech. Rep, pp. 1–69, 2013.

[4] G. Phavorin, P. Richard, J. Goossens, T. Chapeaux, and
C. Maiza, “Scheduling with preemption delays: anoma-
lies and issues,” in Proceedings of the 23rd Interna-
tional Conference on Real Time and Networks Systems,
pp. 109–118, 2015.

[5] R. Graham, “Bounds on the performance of schedul-
ing algorithms,” Computer and job scheduling theory,
pp. 165–227, 1976.

[6] M. Richard, P. Richard, E. Grolleau, and F. Cottet,
“Contraintes de précédences et ordonnancement mono-
processeur,” in Proc. Real Time and Embedded Systems
(RTS 2002), pp. 121–138, 2002.

[7] S. Pailler, Analyse hors ligne d’ordonnançabilité
d’applications temps réels comportant des tâches condi-
tionnelles et sporadiques. PhD thesis, Poitiers, 2006.

[8] R. Ha and J. W. Liu, “Validating timing constraints in
multiprocessor and distributed real-time systems,” in
14th international conference on distributed computing
systems, pp. 162–171, IEEE, 1994.

[9] F. Ridouard, P. Richard, F. Cottet, and K. Traore, “Some
results on scheduling tasks with self-suspensions,” Jour-
nal of Embedded Computing, vol. 2, no. 3-4, pp. 301–
312, 2006.

[10] G. C. Buttazzo, Hard real-time computing systems: pre-
dictable scheduling algorithms and applications, vol. 24.
Springer Science & Business Media, 2011.

[11] P. Richard, “On the complexity of scheduling real-time
tasks with self-suspensions on one processor,” in 15th
Euromicro Conference on Real-Time Systems, 2003. Pro-
ceedings., pp. 187–194, IEEE, 2003.

[12] J. Goossens, “Introduction à l’ordonnancement temps
réel multiprocesseur,” in École d’été" Temps réel", 2007.

[13] B. Andersson and J. Jonsson, “Preemptive multiproces-
sor scheduling anomalies,” in Proceedings 16th Interna-
tional Parallel and Distributed Processing Symposium,
pp. 8–pp, IEEE, 2002.

[14] B. Andersson, “Static-priority scheduling on multipro-
cessors.,” 2004.

[15] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Ched-
dar: a flexible real time scheduling framework,” in Pro-
ceedings of the 2004 annual ACM SIGAda international
conference on Ada: The engineering of correct and reli-
able software for real-time & distributed systems using
Ada and related technologies, pp. 1–8, 2004.

[16] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and
P. Siron, “The rosace case study: From simulink spec-
ification to multi/many-core execution,” in 2014 IEEE
19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pp. 309–318, IEEE, 2014.

Volume 44, Number 3, September 2023 Ada User Jour na l

http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src/framework/scheduling_anomalies
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src/framework/scheduling_anomalies

B. Dj ika et a l . 243

[17] I. Perez, F. Dedden, and A. Goodloe, “Copilot 3,” tech.
rep., 2020.

[18] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot:
A hard real-time runtime monitor,” in International Con-
ference on Runtime Verification, pp. 345–359, Springer,
2010.

[19] P. Faymonville, B. Finkbeiner, M. Schwenger, and
H. Torfah, “Real-time stream-based monitoring,” arXiv
preprint arXiv:1711.03829, 2017.

[20] J. Baumeister, B. Finkbeiner, S. Gumhold, and
M. Schledjewski, “Real-time visualization of stream-
based monitoring data,” in International Conference on
Runtime Verification, pp. 325–335, Springer, 2022.

[21] P. Faymonville, B. Finkbeiner, M. Schledjewski,
M. Schwenger, M. Stenger, L. Tentrup, and H. Torfah,
“Streamlab: stream-based monitoring of cyber-physical
systems,” in International Conference on Computer
Aided Verification, pp. 421–431, Springer, 2019.

[22] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “Run-
time analysis with r2u2: a tool exhibition report,” in

Runtime Verification: 16th International Conference,
RV 2016, Madrid, Spain, September 23–30, 2016, Pro-
ceedings 7, pp. 504–509, Springer, 2016.

[23] P. Moosbrugger, K. Y. Rozier, and J. Schumann, “R2u2:
monitoring and diagnosis of security threats for un-
manned aerial systems,” Formal Methods in System
Design, vol. 51, pp. 31–61, 2017.

[24] N. Hili, M. Bagherzadeh, K. Jahed, and J. Dingel,
“A model-based architecture for interactive run-time
monitoring,” Software and Systems Modeling, vol. 19,
pp. 959–981, 2020.

[25] Y. Li, Z. Tao, L. Wang, B. Du, J. Guo, and S. Pang,
“Digital twin-based job shop anomaly detection and dy-
namic scheduling,” Robotics and Computer-Integrated
Manufacturing, vol. 79, p. 102443, 2023.

[26] R. Torres Labrada, “Multi-signal anomaly detection for
real-time embedded systems,” Master’s thesis, Univer-
sity of Waterloo, 2020.

Ada User Jour na l Vo lume 44, Number 3, September 2023

244

Safety of the Intended Functionality Concept
Integration into a Validation Tool Suite

Víctor J. Expósito Jiménez , Bernhard Winkler, Joaquim M. Castella Triginer
Virtual Vehicle Research GmbH, Inffeldgasse 21A, 8010, Graz, Austria; Tel: +43 316 873
9001; email: {victor.expositojimenez,bernhard.winkler,joaquim.castellatriginer}@v2c2.at

Heiko Scharke, Hannes Schneider
AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria; Tel: +43 316 787 0; email: {heiko.scharke,
hannes.schneider}@avl.com

Eugen Brenner, Georg Macher
Graz University of Technology, Rechbauerstraße 12, 8010, Graz, Austria; Tel: +43 316 873 6401; email: {brenner,
georg.macher}@tugraz.at

Abstract

Nowadays, the increasing complexity of Advanced
Driver Assistance Systems (ADAS) and Automated
Driving (AD) means that the industry must move
towards a scenario-based approach to validation rather
than relying on established technology-based methods.
This new focus also requires the validation process to
take into account Safety of the Intended Functionality
(SOTIF), as many scenarios may trigger hazardous
vehicle behaviour. Thus, this work demonstrates how
the integration of the SOTIF process within an existing
validation tool suite can be achieved. The necessary
adaptations are explained with accompanying examples
to aid comprehension of the approach.

Keywords: SOTIF, Safety of the Intended Functionality,
Scenario Validation, ADAS/ADS

1 Introduction
Scenario validation plays a significant role in the entire
vehicle validation process as an increasing number of features
and safety systems rely on sensors. Unlike functional
safety [1] or cybersecurity [2], which covers failures and
malfunctions, and external attacks respectively, the Safety of
the Intended Functionality (SOTIF) standard [3] focuses on
the technical shortcomings and human misuses that may result
in hazardous behaviour at vehicle level. Its focus is to increase
the identification of hazardous scenarios to be validated as
well as to minimise the area in which unknown hazardous
scenarios could appear. Figure 1 shows the cause-and-
effect model in which is depicted how a potential triggering
condition could result in a hazardous behaviour at the end
of the process. According to the ISO21448, a triggering
condition is a “specific condition of a scenario that serves
as an initiator for a subsequent system reaction contributing
to either a hazardous behaviour or an inability to prevent
or detect and mitigate a reasonably foreseeable indirect
misuse. The concept of ’triggering’ includes the possibility

that there can be multiple conditions that can gradually
happen, leading to hazardous behaviour or the inability
to prevent or detect and mitigate a reasonably foreseeable
misuse. The term “potential triggering condition” can be
used when the ability to initiate a corresponding reaction
is not yet established”. Another concise definition is given
in [4], where a triggering condition is defined as “an external
condition (relative to ego-vehicle) in a scenario that triggers
one or multiple functional insufficiencies and further results in
hazardous behaviour. They are system-dependent was well”.
The SOTIF standard also defines a performance insufficiency
as a “limitation of the technical capability contributing to
a hazardous behaviour or inability to prevent or detect
and mitigate reasonably foreseeable indirect misuse when
activated by one or more triggering conditions. Examples
of performance insufficiencies could be the limitation of
the actuation or the perception range of the sensor used
detect objects. Consequently, a functional insufficiency is
defined as an insufficiency of specification or performance
insufficiency. Finally, the definition of hazard is adapted from
the given in the ISO26262, “potential source of harm caused
by malfunctioning behaviour of the item”. SOTIF standard
replaces the word "malfunctioning" by "hazardous" and the
phrase "of the item" by "at the vehicle level" in comparison
with the given by the ISO26262 to adapt the definition to the
scope of the standard. For clarification, the insufficiencies of
specification are out of the scope of the related project to this
work, therefore, a functional insufficiency is considered the
same as a functional insufficiency in this work as is shown
in the box of the project scope in Figure 1. The inclusion
of a triggering condition could start a reaction in the system
that could activate a functional insufficiency and could finally
result in a hazardous behaviour. A hazardous behaviour is
defined based on the result of the Key Performance Indicators
(KPIs) or Safety Performance Indicators (SPIs). These
metrics are used to discern if the result of the tests is within
a defined tolerable value or, on the other hand, is outside the
tolerable windows and is set as a hazardous behaviour. A KPI

Volume 44, Number 3, September 2023 Ada User Jour na l

https://orcid.org/0000-0001-5350-9458
https://orcid.org/0000-0001-9215-3300

V. J. Expós i to J iménez et a l . 245

Figure 1: Cause-and-effect model from ISO21448

is a metric that is used for measure a specific parameter of the
system. In a similar way, a SPI defines a metric but focused
on the safety domain such as the Minimum Safe Distance
Violation (MSDV) or the Time-to-Collision (TTC) [5]

The Operational Design Domain (ODD) is a crucial concept
in the scenario validation process. While it is defined in
the SOTIF standard, the definition provided in the UL4600
standard [6] outlines more precisely what an ODD constitutes
from our perspective. As per this standard, an ODD
refers to "the set of environments and situations the item
is intended to operate within. This includes not only direct
environmental conditions and geographic restrictions, but
also a characterization of the set of objects, events, and
other conditions that will occur within that environment".
The scenario development for the ODDs utilises the widely
accepted methodology of The 6-Layer Scenario Model [2] [7].
This model splits the definition of each scenario into six layers,
each concentrating on the context of the scenario. The layers
and their definitions are:

• Layer 1 – Road network and traffic guidance objects:
e.g. road markings, and traffic signs and traffic lights.

• Layer 2 – Roadside structures: e.g. buildings, vegetation,
streets lamps, and advertising boards.

• Layer 3 – Temporary modifications of L1 and L2:
e.g. roadwork signs, temporary markings, and covered
markings.

• Layer 4 – Dynamic Objects: e.g. vehicles (moving and
non-moving), pedestrians (moving and non-moving),
trailers, and animals.

• Layer 5 – Environmental Conditions: e.g. illumination,
precipitation, and road weather.

• Layer 6 – Digital information: e.g. state of traffic lights,
switchable traffics signs, and V2X messages.

In this context, attempts have been made to define a taxonomy
that can describe most scenarios in the most detailed manner.
For example, the one from the British Standards Institution [8]
or the taxonomy from the Society of Automotive Engineers
(SAE) [9] are widely recognized. Additionally, Annex B of
the SOTIF standard also addresses this matter.

Once the main concepts have been outlined, the following
section describes the integration process into the validation
tool. Finally, section 3 provides a summary of all the work
presented in this publication and establishes the direction for
future research.

2 SOTIF Concept Integration Process
The integration has been implemented within the AVL
SCENIUSTM [10] tool suite that is developed with the
scenario-based validation approach in mind. The complete
validation process is covered, from scenario design to scenario
management, test case generation, test allocation, and result
reporting. The suite is based on three main tools modules.
First, the scenario designer allows the user to handle all
aspects of the scenario including the parametrisation. It fully
supports ASAM OpenScenario [11] and OpenDrive [12]. All
scenarios are immediately verified for standard conformity
as well as by the enhanced data and logic checks. Then,
the user could manage all stored scenarios in the scenario
data manager. All the elements relevant for the sufficient
description of scenarios such as road content, traffic content,
and other environmental data are managed and stored in a
central database. Finally, the test case generator provides
the user the possibility of defining test orders in a simulation
or transfer to another different execution environment. The
implemented smart testing algorithms enable the automatic
reduction of the vast amount of test cases and parameter
variations. In addition to the main benefits provided by the
tool suite such as time-cost saving, efficiency, fast integration
and traceability; the inclusion of the SOTIF concept extends
and improves the identification and validation of both
unknown and known hazardous scenarios of a ADAS/AD
function to obtain a more precise safety argumentation.

An ontology is used to describe the scenarios that will be
used for testing. ASAM OpenXOntology [13] is used as
a reference, but modifications are included to better fit the
requirements of the tool chain. Internally, the ontology and
its relationships are defined by using four kind of entities:

• Node: A node is the entity in which the hierarchy of the
ontology is built. It can be a child of another node, or
a parent for Enums or Params. Examples of nodes are
the ambient or weather conditions of the scenario, which
are the parents of scenario parameters such as rain or
illumination parameter.

• Enum: Defines a list of values that are related to each
other. For example, an enum is the snowfall condition,
which is defined by three different levels of severity:
heavy snow, light snow, and moderate snow.

• Value: Defines an entity that is an abstraction of a
phenomenon, but it is not yet modelled. In this case,
the phenomenon already exits in the system but has not
yet been parametrised. As example, this type of entity
are the one previously mentioned: heavy snow, light
snow, and moderate snow.

• Param: Defines an entity that can be quantified. Each
one is associated with an unit to be measured. For
example, scenario illuminance, which is associated with
lux units.

The integration of the SOTIF concept requires the addition
of a new node in the system, which is the parent of all
triggering conditions defined in the validation tool. The
next integration step is to linking the triggering conditions

Ada User Jour na l Vo lume 44, Number 3, September 2023

246 SOTIF concept through a Val idat ion Tool Su i te

Figure 2: Updated cause-and-effect model including the scenarios constraints

Figure 3: Definition of a scenario constraint

with the existing defined ontology to be able to parametrise
each triggering condition and include them into the test
scenario. Therefore, an intermediate block has to be
added to the cause-and-effect model, which is shown in
Figure 2. In this new approach, a scenario constraint block
is added, which connects the triggering conditions with the
performance insufficiencies. By using this approach, we are
able to define each triggering conditions as a combination
of one or many scenario constraints. Following the scenario
constraint parametrisation shown in Figure 4(a), a scenario
constraint is a node entity that is linked to a Param and a
new entity called Constraint Type, which sets the type of
constraint such as a maximum or a minimum value. The
Param entity is associated to the existing ontology of the
system. For example, a heavy snow condition is defined
as a visibility limitation up to 500 meters according to BSI
PAS 1883 standard [8]. This scenario constraints is defined
in Figure 4(b), where relationship and value is given in the
Node entity that, in turn, is associated to the Param from the
ontology (visibility) and the type of constraint (MAX). The
complete hierarchy and relationship tree of the system for this
specific triggering condition is given in Figure 4.

The SOTIF concept is designed with scalability in mind due to
the test scenario shall increase the complexity of the triggering
conditions and their parametrization. The Figure 5 shows
the triggering condition Heavy Snow during Night-time as
an example of this increasing complexity. These types of
triggering conditions are treated as the combination of two
independent triggering conditions: Heavy Snow + Night-time.
In contrast to the previous example, the weather condition
Heavy Snow is more finely parametrised. In this context,

not only is the impact in the visibility is considered, but
also the effect on the scenario illumination and the asphalt
friction. Following the standards again, the illuminance in
a heavy snow scenario can be parametrised from 1 lux to
2000 lux. Additionally, a reduction factor of 0.8 is applied
on the asphalt friction in this potential triggering condition.
However, this particular triggering condition occurs during
night-time, therefore, the illuminance condition due to night-
time is also applied (illuminance less than 1 lux according
to the standards). Therefore, there are two illuminance
constraints in this triggering condition parametrization. In this
situation, the most limiting conditions is applied. It means
that in this definition, the illuminance parametrised in night-
time overrides the value of the illuminance parametrised in
the heavy snow condition.

Finally, when one or more potential triggering conditions are
selected in the scenario for testing, the scenario constraints
(e.g., limited visibility, reduced friction...) associated to
each potential triggering condition are also included in the
generated test cases. The resulting metrics of the matrix test
cases show the impact of the selected potential triggering
conditions on the function, which are compared with the
nominal performance of the function (i.e., no potential
triggering conditions included) to determine them not longer
as potential but triggering conditions for the function, and to
identify the thresholds at which they are relevant to impact
and effect on the function output.

3 Conclusions and future work
In this publication, the integration of a SOTIF concept has
been explained, where some adaptations and parametrisation
of the scenario constraints have to be done in order to integrate
triggering conditions into an existing scenario ontology. As a
first step, an extensive list of potential triggering conditions
has been investigated based on current state-of-the-art and
available standards. They are then parametrised by using an
existing system ontology, which is used to model the scenarios
and defining the needed entities and relationship to be able
to link the triggering conditions, scenario constraints, and the
existing ontology.

As a future task, we will define the triggering conditions that
cannot be parametrised using existing standards. Furthermore,
we are researching a methodology that will allow us to
capture the majority of potential triggering conditions from
the perception side based on the performance insufficiencies
due to the infinite number of triggering conditions in the real
world, which are not possible to cover manually.

4 Acknowledgement
The publication was written at Virtual Vehicle Research
GmbH in Graz, Austria. The authors would like to
acknowledge the financial support within the COMET K2

Volume 44, Number 3, September 2023 Ada User Jour na l

V. J. Expós i to J iménez et a l . 247

Figure 4: Heavy Snow triggering condition in SCENIUS tool suite

Figure 5: Extended Triggering Condition: "Heavy Snow
during Night-time"

Competence Centers for Excellent Technologies from the
Austrian Federal Ministry for Climate Action (BMK), the
Austrian Federal Ministry for Labour and Economy (BMAW),
the Province of Styria (Dept. 12) and the Styrian Business
Promotion Agency (SFG). The Austrian Research Promotion
Agency (FFG) has been authorised for the programme
management. They would furthermore like to express their
thanks to their supporting industrial project partner, namely
AVL List GmbH.

References
[1] “ISO26262: Road vehicles — Functional safety,”

standard, International Organization for Standardization,
Geneva, CH, 2018.

[2] “Taxonomy and Definitions for Terms Related to
Driving Automation Systems for On-Road Motor
Vehicles,” standard, SAE International, 2021.

[3] “ISO 21448:2022 Road vehicles — Safety of
the intended functionality,” standard, International
Organization for Standardization, Geneva, CH, 2022.

[4] Z. Zhu, R. Philipp, C. Hungar, and F. Howar,
“Systematization and identification of triggering
conditions: A preliminary step for efficient testing of
autonomous vehicles,” in 2022 IEEE Intelligent Vehicles
Symposium (IV), pp. 798–805, 2022.

[5] J. Vaicenavicius, T. Wiklund, A. Grigaite,
A. Kalkauskas, I. Vysniauskas, and S. D. Keen,
“Self-driving car safety quantification via component-
level analysis,” SAE International Journal of Connected
and Automated Vehicles, vol. 4, pp. 35–45, mar 2021.

[6] “Ul4600 standard for safety: Evaluation of autonomous
products,” standard, International Organization for
Standardization, 2021.

[7] M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto,
M. Schuldes, H. Weber, N. Wagener, C. Neurohr, M. H.
Bollmann, F. Körtke, J. Hiller, M. Hoss, J. Bock, and
L. Eckstein, “6-layer model for a structured description
and categorization of urban traffic and environment,”
IEEE Access, vol. 9, pp. 59131–59147, 2021.

[8] “BSI PAS 1883:2020-Operational design domain
(ODD) taxonomy for an automated driving system
(ADS). Specification,” standard, The British Standards
Institution, 2020.

[9] “AVSC Best Practice for Describing an Operational
Design Domain: Conceptual Framework and Lexicon,”
standard, SAE International, 2020.

[10] AVL List GmbH, “AVL SCENIUS.” https:
//www.avl.com/en/testing-solutions/
automated-and-connected-mobility-
testing/avl-scenius, 2023. Accessed:
2023-09-17.

[11] “ASAM OpenScenario,” standard, ASAM e. V., 2022.

[12] “ASAM OpenDrive,” standard, ASAM e. V., 2022.

[13] “ASAM OpenXOntology,” standard, ASAM e. V., 2022.

Ada User Jour na l Vo lume 44, Number 3, September 2023

https://www.avl.com/en/testing-solutions/automated-and-connected-mobility-testing/avl-scenius
https://www.avl.com/en/testing-solutions/automated-and-connected-mobility-testing/avl-scenius
https://www.avl.com/en/testing-solutions/automated-and-connected-mobility-testing/avl-scenius
https://www.avl.com/en/testing-solutions/automated-and-connected-mobility-testing/avl-scenius

248

Volume 44, Number 3, September 2023 Ada User Journa l

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO
ci-tec GmbH
Beuthener Str. 16
76139 Karlsruhe
Germany
+491712075269
Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

46 Rue d’Amsterdam
F-75009 Paris

France
sales@adacore.com
www.adacore.com

506 Royal Road
La Caverne, Vacoas 73310

Republic of Mauritius
Contact: David Sauvage

david.sauvage@adalabs.com

Enterprise House
Baloo Avenue, Bangor

North Down BT19 7QT
Northern Ireland, UK

enquiries@sysada.co.uk
sysada.co.uk

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

	monano.pdf
	Introduction
	Background
	Scheduling anomalies
	Modeling scheduling anomalies
	Proposed anomaly analysis

	MONANO monitoring service design and its companion benchmark
	In a nutshell
	Application Programming Interface
	MONANO program example
	Benchmark to investigate scheduling anomalies in real-time systems

	Related work
	Conclusion
	Artefact

	sotif_scenius_pub_v07.pdf
	Introduction
	SOTIF Concept Integration Process
	Conclusions and future work
	Acknowledgement

