

Ada User Journal Volume 44, Number 3, September 2023

ADA
USER
JOURNAL

Volume 44

Number 3

September 2023

Contents
Page

Editorial Policy for Ada User Journal 170

Editorial 171

Quarterly News Digest 172

Conference Calendar 194

Forthcoming Events 202

Articles from the AEiC 2023 Work-in-Progress Session

 G. Jäger, G. Licht, N. Seyffer, S. Reitmann

“VR-Based Teleoperation of Autonomous Vehicles for Operation Recovery” 204

 B. Badjie, J. Cecílio, A. Casimiro

“Denoising Autoencoder-Based Defensive Distillation as an Adversarial Robustness

Algorithm Against Data Poisoning Attacks” 209

 D. Brown, G. Hawe

 “Exploring Trade-Offs in Explainable AI” 214

 D. C. Schmidt, J. Spencer-Smith, Q. Fu, J. White

 “Cataloging Prompt Patterns to Enhance the Discipline of Prompt Engineering” 220

 E. Sisinni, A. Flammini, M. Gaffurini, P.Ferrari

“Exploiting Container-Based Microservices for Reliable Smart Mobility Applications” 228

 H. Silva, T. Carvalho, L. M. Pinho

“A Real-Time Parallel Programming Approach for Rust” 232

 B. Djika Mezatio, G. Kouamou, F. Singhoff, A. Plantec

“A POSIX/RTEMS Monitoring Tool and a Benchmark to Detect Real-Time Scheduling

Anomalies” 237

Articles from the AEiC 2023 Industrial Track

 V. J. Expósito Jiménez, B. Winkler, J. M. Castella Triginer, H. Scharke, H. Schneider,

E. Brenner, G. Macher

“Safety of the Intended Functionality Concept Integration into a Validation Tool Suite” 244

Ada-Europe Associate Members (National Ada Organizations) 248

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

172

Volume 44, Number 3, September 2023 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 172
Ada-related Events 172
Ada-related Resources 172
Ada-related Tools 174
Ada and Operating Systems 175
Ada Practice 176

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

Thanks to the efforts of a few Ada
enthusiasts, it is now possible to peruse
on-line the complete High Order
Language Phase 1 reports for the original
four candidate languages, of which Ada
would eventually emerge. During this
phase, language proposals addressed the
IRONMAN requirements without
providing a prototype implementation.
Find the link on [1]; from my initial
cursory read, there is plenty of good stuff
in there!

If you are an Ada and macOS user and
have still not been affected by the
problem reported on [2], you probably
want to be aware of it, although,
hopefully, Apple will have fixed it by the
time you read this digest.

Finally, on the practical side, I want to
highlight the emerging consensus that
when using `Text_IO` to read files, you
should rely on the End_Error exception
rather than on the End_Of_File
subprogram. This is a rather
unconventional conclusion, in which the
exception becomes the ordinary; find the
rationale in [3].

Sincerely,
Alejandro R. Mosteo.

[1] “Common HOL Phase 1 Reports”, in
Ada-related Resources.

[2] “MacOS: Best Not Upgrade to
Xcode/CLT 15.0”, in Ada and
Operating Systems.

[3] “Get Character and Trailing New
Lines”, in Ada Practice.

Ada-related Events

October Ada Monthly
Meetup 2023

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: Re: Ada Monthly Meetup 2023
Date: Wed, 13 Sep 2023 21:30:10 +0200
Newsgroups: comp.lang.ada

I would like to announce the October Ada
Monthly Meetup which will be taking
place on the 7th of October at 13:00 UTC
time (15:00 CET). As always, the meetup
will take place over at Jitsi. Hopefully this
time I will not have the same amount of
technical issues…

If someone would like to propose a talk or
a topic, feel free to do so! I will be talking
about FOSDEM, but only for a couple of
minutes, since the dates have already been
announced (the same as every year, first
weekend of February).

Here are the connection details from
previous posts: The meetup will take
place over at Jitsi, a conferencing
software that runs on any modern
browser. The link is [1]. The room name
is “AdaMonthlyMeetup” and in case it
asks for a password, it will be set to
“AdaRules”. I do not want to set up a
password, but in case it is needed, it will
be the one above without the quotes. The
room name is generally not needed as the
link should take you directly there, but I
want to write it down just in case
someone needs it.

[1] https://meet.jit.si/AdaMonthlyMeetup

From: Rod Kay <rodakay5@gmail.com>
Date: Sat, 23 Sep 2023 20:06:51 +1000

I might give a small talk on swig4ada, if
that would be of interest.

If it's possible to request talks, I'd love to
see an overview of 'Pragmarc' and 'Simple
Components' by Jeffrey and Dmitry.

I used the neural net component of
Pragmarc many years ago but have not
kept up with Pragmarc’s development.

Also, I've been meaning to look into
Simple Components for quite a while.

CfC 28th Ada-Europe Int.
Conf. Reliable Software
Technologies

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC 28th Ada-Europe Int. Conf.
Reliable Software Technologies

Date: Tue, 26 Sep 2023 12:06:18 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[CfP is included in the Forthcoming
Events Section —arm]

Ada-related Resources

[Delta counts are from July 28th to
October 10th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: 10 Oct 2023 18:22 CET
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_422 (+51) members [1]

- LinkedIn: 3_454 (+6) members [2]

- Stack Overflow: 2_365 (+20)
 questions [3]

- Gitter: 229 (-1) people [4]

- Telegram: 158 (-1) users [5]

- Ada-lang.io: 146 (+13) users [6]

- Libera.Chat: 72 (-1) concurrent users [7]

[1] http://www.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://app.gitter.im/#/room/
#ada-lang_Lobby:gitter.im

[5] https://t.me/ada_lang

[6] https://forum.ada-lang.io/u

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

mailto:amosteo@unizar.es
https://forum.ada-lang.io/u

Ada-re lated Resources 173

Ada User Journal Volume 44, Number 3, September 2023

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: 10 Oct 2023 18:25 CET
To: Ada User Journal readership

GitHub: 1000* (+13) developers [1]

Rosetta Code: 940 (-1) examples [2]

 38 (-3) developers [3]

Alire: 370 (+7) crates [4]

Sourceforge: 247 (+4) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 57 (=) repositories [7]

Bitbucket: 37 (+6) repositories [8]

* This number is an unreliable lower
bound due to GitHub search limitations.

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] https://rosettacode.org/wiki/
Category:Ada

[3] https://rosettacode.org/wiki/
Category:Ada_User

[4] https://alire.ada.dev/crates.html

[5] https://sourceforge.net/directory/
language:ada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] https://bitbucket.org/repo/all?
name=ada&language=ada

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: 28 Jul 2023 14:53 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 23 (=) 0.77% (=) [1]

- PYPL Index: 16 (=) 1.04% (-0.02%) [2]

- Stack Overflow Survey: 42 (=)
0.77% (=) [3]

- IEEE Spectrum (general): 36 (-1) Score:
0.0107 (new) [4]

- IEEE Spectrum (jobs): 29 (+4) Score:
0.0173 (new) [4]

- IEEE Spectrum (trending): 30 (+2)
Score: 0.0122 (new) [4]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://survey.stackoverflow.co/2023/

[4] https://spectrum.ieee.org/top-
programming-languages/

IRC Is Still Alive

From: Luke A. Guest
<laguest@archeia.com>

Subject: Reminder that the IRC is still alive
Date: Wed, 16 Aug 2023 19:05:10 +0100
Newsgroups: comp.lang.ada

About twice a year we try to advertise the
#ada channel on the Libera IRC network.
The channel continues to be active and
friendly. These days it averages about 63
users at a time, large enough to support
lively and informative discussions but
small enough so it's not a madhouse. The
user numbers did suffer on the move
when Freenode imploded.

Topics range all over the map, from
building the latest GNAT to writing an
OS in Ada to daily Ada programming
issues to how to use PolyORB to use the
Distributed Systems Annex. The stated
topic is discussing Ada in the context of
free and open-source software, but
commercial users are equally welcome.

So fire up your favorite IRC client and
come join us! The network is homed at
irc.Libera.chat, but has servers all over
the world. Visit www.Libera.chat on the
web for details. Hope to see you soon!

Common HOL Phase 1
Reports

From: Luke A. Guest
<laguest@archeia.com>

Subject: Common HOL Phase 1 Reports
Date: Wed, 30 Aug 2023 14:48:48 +0100
Newsgroups: comp.lang.ada

[This post refers to the Common High-
Order Language program, started in 1975,
of which Ada would be the outcome.
DTIC stands for Defense Technical
Information Center. —arm]

Edward Fish has managed to get the
DTIC to scan in the other language's
reports.

This has been a combined effort between
a few of us on IRC to try to get the other
two languages, blue and yellow released
so we can see what could've happened.

This report contains all 4 language
reports.

https://apps.dtic.mil/sti/trecms/pdf/
ADB950587.pdf

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 30 Aug 2023 21:20:28 +0100

Now we have all 5 reference docs out in
the open, yes 5. I want to ask the people
who were there at the time, were there
any analyses of the Tartan language?

Design: https://apps.dtic.mil/sti/citations/
ADA062815

From: Stéphane Rivière
<stef@genesix.org>

Date: Thu, 31 Aug 2023 06:32:50 +0200

Fascinating (C) Spock.

Big up for this work!

US Government Looking
into Memory Safe
Programming

From: Ajdude <aj@ianozi.com>
Subject: US Government looking into

memory safe programming
Date: Sun, 24 Sep 2023 22:28:56 -0000
Newsgroups: comp.lang.ada

The US Government is requesting
information on adoption of memory safe
programming languages and open-source
software security. They’re currently
taking comments until October 9th. I
think this is a good opportunity to help
bring Ada back into the spotlight.

https://www.federalregister.gov/
documents/2023/08/10/2023-17239/
request-for-information-on-open-source-
software-security-areas-of-long-term-
focus-and-prioritization

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 25 Sep 2023 08:52:33 +0100

History is repeating itself. How long
before they relax the requirements and
idiots say "we can use C again, yay!"?

From: Stéphane Rivière
<stef@genesix.org>

Date: Mon, 25 Sep 2023 11:59:57 +0200

> History is repeating itself.

+1

> How long before they relax the
requirements and idiots say "we can use
C again, yay!"?

By the time they discover Rust?

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 25 Sep 2023 12:38:54 +0200

> By the time they discover Rust?

Or when they realize that there is only one
Rust compiler, and therefore that a single
compiler virus could ruin the whole
defense system.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Mon, 25 Sep 2023 17:55:08 +0200

> Or when they realize that there is only
one Rust compiler, and therefore that a
single compiler virus could ruin the
whole defense system.

Maybe, given the emphasis on tools,
verification and best practices, they might
consider sub-languages, or profiles, of
several existing languages.

174 Ada-re lated Tools

Volume 44, Number 3, September 2023 Ada User Journal

It's not like memory-safety cannot be
made available in languages other than
Rust, I should think? Though, it seems to
me that Rust has so much better market-
aware development strategies than any
other language since C, outside
Microsoft's or Apple's areas of sales.

Also, I understand that Linux kernel
development is steered towards Rust and
LLVM. So, they have decided not to go
back to the 80s, just pick some good bits
and move on, possibly producing grust or
crust while at it.

In order to pick well from Ada and the
concepts embodied in it, imagine what
parts of Ada should be thrown out,
ignoring commercial enterprises living off
legacy business? What changes to Ada are
a good fit while aiming at memory safety,
verification support, or light weight and
safe parallel execution?

As you can see in [1], there is a
suggestion to make money available to
refactoring efforts.

[1] https://www.federalregister.gov/
d/2023-17239/p-37

From: Luke A. Guest
<laguest@archeia.com>

Date: Mon, 25 Sep 2023 17:21:57 +0100

> What changes to Ada are a good fit
while aiming at memory safety,
verification support, or light weight and
safe parallel execution?

I started thinking about that here
https://github.com/Lucretia/orenda.

From: Stéphane Rivière
<stef@genesix.org>

Date: Tue, 26 Sep 2023 08:55:11 +0200

> Or when they realize that there is only
one Rust compiler, and therefore that a
single compiler virus could ruin the
whole defense system.

Good point!

Still some doubts about their ability to
reason that far ;)

From: Kevin Chadwick
<kc-usenet@chadwicks.me.uk>

Date: Tue, 26 Sep 2023 11:23:24 -0000

>Still some doubts about their ability to
reason that far ;)

Whilst I have in the past refused to use
lattice semiconductor hardware due to a
CDN preventing secure compiler
verification, whilst apparently none or
few noticed.

I assume you mean trojaned compiler
code inserted upstream to disable
protections or ignore unsafe code?

Or do you mean utf-8 library code
substitution aimed at a particular
compiler?

Ada Advocacy Opportunity

From: Shark8
<onewingedshark@gmail.com>

Subject: Ada Advocacy Opportunity
Date: Wed, 27 Sep 2023 22:07:14 -0700
Newsgroups: comp.lang.ada

The federal government has issued an RFI
(Request For Information) on the topic of
increasing software security. 10-page max
(excluding cover-page and appendix, if
any).

Request for Information on Open-Source
Software Security: Areas of Long-Term
Focus and Prioritization

https://www.federalregister.gov/
documents/2023/08/10/2023-17239/
request-for-information-on-open-source-
software-security-areas-of-long-term-
focus-and-prioritization

Ada-related Tools

SPARK Reusable
Components

From: Pragmada Software Engineering
<pragmada@
pragmada.x10hosting.com>

Subject: [Ann] SparkRC
Date: Tue, 1 Aug 2023 10:58:34 +0200
Newsgroups: comp.lang.ada

Those using SPARK may find this useful:

https://github.com/jrcarter/SparkRC

[From the website: SPARK Reusable
Components – A few useful components
to complement the
Ada.Containers.Formal_* components,
primarily to learn about proofs and
functional correctness: queues, stacks, an
O(logN)-searchable ordered structure, (...)
maps. These can be fully proven to
correctly implement their contracts and to
be free of run-time errors. –arm]

Ada Binding to WolfSSL

From: Joakim Strandberg
<joakimds@kth.se>

Subject: Announcing Ada binding to the
wolfSSL library

Date: Thu, 3 Aug 2023 14:02:56 -0700
Newsgroups: comp.lang.ada

On the WolfSSL blog I saw the following
announcement today:

Today we are happy to announce the
availability of an Ada/SPARK binding
that enables Ada applications to use post-
quantum TLS 1.3 encryption through the
WolfSSL embedded SSL/TLS library.

It opens the door to obtaining FIPS 140-3
and DO-178C certifications for Ada and
Spark applications that use TLS for their
encrypted communications and also
makes them quantum-safe.

Check out the Ada/SPARK binding on
GitHub here: https://github.com/wolfSSL/
wolfssl/tree/master/wrapper/Ada

The Ada port is suitable for anything from
IoT, embedded systems to Desktop and
Cloud systems.

Contact us at facts@wolfssl.com, or call
us at +1 425 245 8247 with any questions,
comments, or suggestions.

URL to blog post:
https://www.wolfssl.com/announcing-
ada-binding-to-the-wolfssl-library/

LibAWS for Debian 12

From: philip...@gmail.com
<philip.munts@gmail.com>

Subject: libaws for Debian 12 (Bookworm)
Date: Tue, 8 Aug 2023 09:55:53 -0700
Newsgroups: comp.lang.ada

Debian 12 no longer includes system
packages for the AdaCore Ada Web
Server Library. (Debian 11 had libaws20-
dev et al).

I have managed to build AWS v23.0.0 for
Debian 12 and published it in the nascent
Munts Technologies Debian 12 Package
Repository, available at:

http://repo.munts.com/debian12

The goop to build libaws*.deb is stored
at: https://github.com/pmunts/
libsimpleio/tree/master/libaws

SweetAda on NEORV32

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda on NEORV32
Date: Thu, 10 Aug 2023 06:03:18 -0700
Newsgroups: comp.lang.ada

I’ve created a NEORV32 target platform
in SweetAda (https://github.com/gabriele-
galeotti).

NEORV32
(https://github.com/stnolting/neorv32) is a
popular RISC-V SoC implementation in
VHDL, suited for FPGAs.

The setup so far is blatantly primitive and
runs under simulation by means of
GHDL, outputting a welcome message
inside the simulated UART console and
continuously output the value of the
mtime timer.

So far I have no FPGA hardware (besides
the time) ready to create a real
implementation, so if someone is using
NEORV32 on real hardware, and is
willing to test, it will be very interesting
to know about a OK/KO flag feedback.
The current setup needs only UART
clocking parameters in the CTRL register,
which I suppose it depends on the actual
clock configuration. In the meantime I
will continue to develop things inside the
simulated GHDL environment.

Ada and Operat ing Systems 175

Ada User Journal Volume 44, Number 3, September 2023

WinRT v3

From: Alexg <agamper@bigpond.net.au>
Subject: [Ann] WinRt - version 3
Date: Sat, 26 Aug 2023 22:18:29 -0700
Newsgroups: comp.lang.ada

Dear Ada community

I have created a new git repo for the Ada
binding to WinRT (now version 3).

This version is a cleaner implementation
than the previous version and includes the
following changes:

1) Wide strings are mapped to HStrings.

2) Async operations and actions are
handled automatically.

3) code files now contain code at the
Namespace level.

Git repo is located here
https://github.com/Alex-Gamper/
Ada-WinRt3

GNAT Studio 24.0 for
MacOS Ventura.

From: Blady <p.p11@orange.fr>
Subject: [ANN] GNAT Studio 24.0 for

macOS Ventura.
Date: Wed, 6 Sep 2023 13:17:51 +0200
Newsgroups: comp.lang.ada

Here is a very preliminary version of
GNAT Studio 24.0wa as a standalone app
for macOS 13:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2023-ventura

See readme for details.

Limitation: Ada Language Server has
some latencies and doesn't respond when
parsing source code with more 2000 lines.
It may be due to some compilation
options I missed.

There could be some other limitations that
you might meet. Feel free to report them
on MacAda list (http://hermes.gwu.edu/
archives/gnat-osx.html).

Any help will be really appreciated to fix
these limitations.

Simple Components v4.68

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.68
Date: Sat, 30 Sep 2023 18:58:05 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,

deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
persistent storage, multiple connections
server/client designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes (30 September 2023) to the
version 4.67:

- Boolean types handling was added to the
Python bindings;

- Python library search path for OSX
fixed.

Ada and Operating
Systems

Ada Support on Arch Linux

From: Rod Kay <rodakay5@gmail.com>
Subject: Ada Support on Archlinux
Date: Mon, 10 Jul 2023 04:22:50 +1000
Newsgroups: comp.lang.ada

Unfortunately, the attempt to have
gprbuild and xmlada added into the
official Archlinux package repositories
has not been successful. Nonetheless,
thanks to those who voted for these
packages. The gist of the problem from
Arch's Trusted Users (who manage
adding new packages into the official
repos) was "I don't use Ada, so I won't
sponsor it.".

Given this situation, I've created a custom
repository for the (50 odd) Arch Ada
packages, currently served by a Linode.
Details (and the current package list) can
be found here ...

https://wiki.archlinux.org/title/Ada

If anyone has any suggestions for
additional Ada projects to add to the
package list, please let me know.

MacOS: Best Not Upgrade
to Xcode/CLT 15.0

From: Simon Wright
<simon@pushface.org>

Subject: macOS: best not upgrade to
Xcode/CLT 15.0

Date: Wed, 20 Sep 2023 10:35:29 +0100
Newsgroups: comp.lang.ada

If you accept the Xcode/Command Line
Tools upgrade to 15.0, you’ll get crashes
in the linker (`ld`). If you can’t resist the
upgrade, gnatmake or gprbuild with `-
largs -Wl,-ld_classic`.

You probably won’t be offered the
upgrade unless you’re already running
Ventura.

MacOS Ventura 13.6 Update
Problem

From: Moi <findlaybill@blueyonder.co.uk>
Subject: macOS Ventura 13.6 update

problem
Date: Fri, 22 Sep 2023 21:02:17 +0100
Newsgroups: comp.lang.ada

Installing the macOS Ventura 13.6
security update clobbers GNAT.
Specifically, the link stage fails:

> -macosx_version_min has been renamed

to -macos_version_min

> 0 0x104de0f43 __assert_rtn + 64

> 1 0x104ce2f43

ld::AtomPlacement::findAtom(unsigned char,

unsigned long long,

ld::AtomPlacement::AtomLoc const*&, long

long&) const + 1411

> 2 0x104cff431

ld::InputFiles::SliceParser::parseObjectFile(m

ach_o::Header const*) const + 19745

> 3 0x104d0fb71

ld::InputFiles::parseAllFiles(void (ld::AtomFile

const*)

block_pointer)::$_7::operator()(unsigned

long, ld::FileInfo const&) const + 657

> 4 0x7ff80b631066

_dispatch_client_callout2 + 8

> 5 0x7ff80b642e09

_dispatch_apply_invoke + 213

> 6 0x7ff80b631033

_dispatch_client_callout + 8

> 7 0x7ff80b6410f6

_dispatch_root_queue_drain + 683

> 8 0x7ff80b641768

_dispatch_worker_thread2 + 170

> 9 0x7ff80b7cec0f _pthread_wqthread +

257

> ld: Assertion failed: (resultIndex <

sectData.atoms.size()), function findAtom, file

Relocations.cpp, line 1336.

> collect2: error: ld returned 1 exit status

> gnatmake: *** link failed.

Simon's "magic formula", '-largs -Wl,-
ld_classic' restores sanity. I guess the
CLTs were updated without asking
permission. 8-(

From: Simon Wright
<simon@pushface.org>

Date: Sat, 23 Sep 2023 12:16:03 +0100

I managed to avoid this this morning (I've
been resisting the attempted upgrade to
CLT 15.0) by looking to see what was
proposed, seeing that there were 2
upgrades (Ventura & CLT), and
unchecking the CLT.

Iain Sandoe recommends [1] re-installing
14.3 (you should be able to download it
from the developer.apple.com website,
although you do need an apple ID to do
that)

[1] https://github.com/iains/
gcc-12-branch/issues/
22#issuecomment-1730213294

176 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

From: Leo Brewin
<leo.brewin@monash.edu>

Date: Sun, 24 Sep 2023 08:37:04 +1000

Hmm, this is odd. I'm having no
problems. I'm running mac OS Ventura
13.6 (with the security update), CLT 15.0
and GNAT based on GCC 13.1.

From: Moi <findlaybill@blueyonder.co.uk>
Date: Sun, 24 Sep 2023 01:47:57 +0100

> Hmm, this is odd. I'm having no
problems.

Ah! I'm still on GNAT 12.2.0.

I should have added that, although the
link phase works, it produces this
message, which is new:

> -macosx_version_min has been renamed

to -macos_version_min

And Free Pascal Compiler version 3.2.2
[2021/05/16] for x86_64 also complains,
thus;

> ld: warning: -multiply_defined is obsolete

But again, the linking succeeds.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Sep 2023 12:55:56 +0100

> Hmm, this is odd. I'm having no
problems. I'm running mac OS Ventura
13.6 (with the security update)

I was under the impression that 13.6
was a security update!

Investigation so far shows that linking
against the static Ada runtime (the
default, -bargs -static) crashes, against the
shared runtime (-bargs -shared) is OK.

With 12.2.0, 13.1.0, 14.0.0.

It occurs to me that it might be _any_
static library? ... later

From: Simon Wright
<simon@pushface.org>

Date: Sun, 24 Sep 2023 16:38:36 +0100

> It occurs to me that it might be _any_
static library? ... later

Yes, so it is. Damn.

GNAT Linking and MacOS

From: Moi <findlaybill@blueyonder.co.uk>
Subject: GNAT linking and macOS
Date: Wed, 27 Sep 2023 20:30:17 +0100
Newsgroups: comp.lang.ada

I installed 14.0, Sonoma, on my M1 Mac
last night.

The good news:

Using GNAT 12.2.0, it all just works, *so
long as* I REMOVE '-largs -Wl,-
ld_classic' from the linker options!

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 14:32:47 +0100

> Using GNAT 12.2.0, it all just works,
so long as I REMOVE '-largs -Wl,-
ld_classic' from the linker options!

Likewise, but that didn't work for me.

It turns out there's an environment
variable DEFAULT_LINKER, which
with the 15.0 CLT would be set to

export DEFAULT_LINKER=/Library/

Developer/CommandLineTools/usr/bin/

ld-classic

(the Xcode equivalent is much longer &
more inscrutable)

I haven't tried this.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 22:00:29 +0100

> Likewise, but that didn't work for me.

You can't reinstall the 14.3 CLT under
Sonoma (it's "too old"). I reinstalled from
a Time Machine backup, but if you don't
have that set up I'd recommend taking a
copy of /Library/Developer/
CommandLineTools before updating to
15.0.

> It turns out there's an environment
variable DEFAULT_LINKER [...]

> I haven't tried this.

This affects building the compiler, not
using it.

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Fri, 29 Sep 2023 19:30:27 -0700

[...] Are there any other workarounds to
solve the inability to link? This does not
only adversely affect Ada, but everything
that uses a linker, BTW.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 30 Sep 2023 14:55:09 +0100

> Are there any other workarounds to
solve the inability to link?

I have some evidence that the issue only
arises with static libraries. Not much help.

We're hoping that the 15.1 release of
Command Line Tools fixes this. In the
meantime,

(1) using gnatmake, or gprbuild without
changing the GPR:

 $ gnatmake foo.adb -largs -Wl,-ld_classic

or

 $ gprbuild -P foo -largs -Wl,-ld_classic

(2) modifying the GPR by adding a new
package Linker:

 package Linker is

 for Default_Switches ("ada") use

 ("-Wl,-ld_classic");

 end Linker;

(3) if you already have a package Linker,
modify it as above.

Ada Practice

Text vs Binary File
Identification

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Subject: Using "pure" (?) Ada, how to
determine whether a file is a "text" file,
not a binary?

Date: Sat, 1 Jul 2023 10:15:25 -0700
Newsgroups: comp.lang.ada

Another very beginner question here...

Using "pure" (?) Ada, how to determine
whether a file is a "text" file, not a binary?

Kind of like using the UNIX/Linux "file"
command, but doesn't have to be
comprehensive (yet). Something like the
Perl "-T" feature.

On the other hand, if there already exists
an Ada implementation of the UNIX
"file" command as a library, could you
point me to that?

As a side question, how does one read
"binary" files in Ada?

A UNIX/Linux use case for the previous
sentence is the concatenation of two (or
more) "binary" files that were created
using the UNIX/Linux "split" command.

So I'd be interested in emulating the
UNIX "cat" command for "binary" files.

These are just personal experiments for
learning how to do all kinds of Ada I/O...

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 1 Jul 2023 22:39:27 +0200

> Using "pure" (?) Ada, how to determine
whether a file is a "text" file, not a
binary?

That depends on the definition of a text
file. Under Unix and Windows, all files
are sequences of bytes, and so may be
considered sequences of Characters, and
so text files.

If you can define what distinguishes text
files from binary files, then it should be
fairly easy to write Ada to distinguish
them.

For example, if a text file is one in which
all the characters, except line terminators,
are graphic characters, then it should be
clear how to determine whether a file
meets that definition of a text file.

> As a side question, how does one read
"binary" files in Ada?

Ada has Direct_IO, Sequential_IO, and
Stream_IO for reading binary files. Which
you would use and how to use it depends
on what's in the file and what you need to
do with it.

Ada Pract ice 177

Ada User Journal Volume 44, Number 3, September 2023

Memoization in Ada

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Subject: memoization in Ada? Hash ADT?
Date: Fri, 21 Jul 2023 20:50:04 -0700
Newsgroups: comp.lang.ada

I'm working on the Rosetta Code task:

"Stirling numbers of the second kind"

I have a working recursive solution
written in Ada but I'd like to memoize it
to cut down on the redundant and
duplicative calls (similar to a recursive
solution to calculating the Fibonacci
sequence).

So I think I need a hash ADT (which I've
used in Perl) but I've never used in Ada.

So I want to preserve the calculation of
the Stirling2 for each N and K so I can do
a lookup. If this were based on a single
unsigned integer, an array would suffice.
Maybe a 2d array would suffice?

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Fri, 21 Jul 2023 22:30:44 -0700

I solved the specific problem using a 2d
array for caching. This is not
memoization, per se, but this works very
well. The recursive calls are now very fast
as there is a maximum of one calculation
per recursive call.

So, any resources on how to write Ada
programs that take advantage of
memoization?

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 24 Jul 2023 14:18:25 -0700

> So, any resources on how to write Ada
programs that take advantage of
memoization?

Look here https://forum.ada-lang.io/ for
discussions about Advent of Code
puzzles. Some solutions use (and need,
for completing in a reasonable time)
memoization.

You find with HAC
(https://hacadacompiler.sourceforge.io/) a
set of solutions (search "memoiz*" or
"cache"), mostly compiling with the HAC
subset.

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Tue, 25 Jul 2023 21:38:02 -0700

Thanks for the pointer to the forum.

Regarding HAC, isn't that Windows-
only? I'm on a Mac (M1 chip). I'll look
again at HAC.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 26 Jul 2023 08:50:01 +0100

> Regarding HAC, isn't that Windows-
only? I'm on a Mac (M1 chip). I'll look
again at HAC.

It worked well enough for me to find a
failing test case (now fixed!)

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 26 Jul 2023 14:36:15 -0700

> Regarding HAC, isn't that Windows-
only?

Not at all :-)

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Wed, 26 Jul 2023 15:18:51 -0700

> > Regarding HAC, isn't that Windows-
only?

> Not at all :-)

Downloaded and ran demo. Will
experiment further as time permits. Nice!

Rosetta Proper Divisors
Fails to Compile

From: Kenneth Wolcott
kennethwolcott@gmail.com

Subject: Rosetta Code task Proper divisors
fails to compile

Date: Tue, 25 Jul 2023 21:49:49 -0700
Newsgroups: comp.lang.ada

Trying to understand (and use) a Rosetta
Code task (Proper divisors)...
https://rosettacode.org/wiki/
Proper_divisors#Ada

it fails to compile

gnatmake -vh ./proper_divisors.adb

GNATMAKE 13.1.0

Copyright (C) 1992-2023, Free Software

Foundation, Inc.

"proper_divisors.ali" being checked ...

 -> "proper_divisors.ali" missing.

gcc -c -I./ -I- ./proper_divisors.adb

generic_divisors.ads:11:08: error: (Ada 2005)

cannot copy object of a limited type (RM-

2005 6.5(5.5/2))

generic_divisors.ads:11:08: error: return by

reference not permitted in Ada 2005

End of compilation

gnatmake: "./proper_divisors.adb"

compilation error

Why does this work for the submitter of
the Rosetta Code task and not for me?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 26 Jul 2023 10:36:12 +0200

For some reason your gnatmake seems to
be defaulting to -gnat05 mode. This code
has an expression function, which is Ada
12, so try adding -gnat12 to the command.

You also should not need to put "./" in
front of the file name, though I don't see
how that would make a difference.

From: Kenneth Wolcott
<kennethwolcott@gmail.com>

Date: Wed, 26 Jul 2023 11:30:12 -0700

Thank you for your suggestion. Doesn't
seem to have any effect.

(*SIGH*)

gnatmake -vh -gnat2012 proper_divisors.adb

GNATMAKE 13.1.0

Copyright (C) 1992-2023, Free Software

Foundation, Inc.

"proper_divisors.ali" being checked ...

-> "proper_divisors.ali" missing.

gcc -c -gnat2012 proper_divisors.adb

generic_divisors.ads:11:08: error: (Ada 2005)

cannot copy object of a limited type (RM-

2005 6.5(5.5/2))

generic_divisors.ads:11:08: error: return by

reference not permitted in Ada 2005

End of compilation

gnatmake: "proper_divisors.adb" compilation

error

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Wed, 26 Jul 2023 21:57:37 +0200

> Thank you for your suggestion. Doesn't
seem to have any effect.

Interesting. I get the same results with
GNAT 12.

Looking more closely at the code, I think
the error, while its msg is misleading, is
correct. A function that returns a limited
type can only return an aggregate, a
function call, or an object declared by an
extended return statement. The generic
formal object None is none of these.

Changing the generic parameter to a
function

 with function None return Result_Type;

makes the code correct. You need to
change the definition of Empty in
Proper_Divisors

 function Empty return Pos_Arr is

 (1 .. 0 => <>);

and create a function to supply for the 2nd
instantiation

 function None return Natural is (0);<

 ...

 package Divisor_Count is new

 Generic_Divisors (Result_Type => Natural,

 None => None,

 One => Cnt, Add => "+");

and then it compiles and runs.

Another possibility is to make
Result_Type simply private, though that
is slightly less general. That may be how
the OP got the code to compile and run. It
might be that limited was added later
because the OP saw that it could be, and
never tested the change.

mailto:kennethwolcott@gmail.com

178 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

Using 'Image with Alire

From: Seth Workman
<saworkman1@gmail.com>

Subject: Using 'Image with Alire
Date: Sun, 6 Aug 2023 14:17:40 -0700
Newsgroups: comp.lang.ada

I have only started learning about Ada
recently and have discovered the 'Image
attribute that can be used on all types
starting in Ada 2022.

I am using Alire and added the following
to include the `-gnat2022` switch.

``` 
    for Default_Switches ("Ada") use  
    Learning_Config.Ada_Compiler_Switches  

    & ("-gnat2022"); 

``` 

The Alire documentation warns about
switches ~"In general, this should be
avoided to preserve consistency in the
ecosystem"

Is this the correct way about adding this
switch or is there a way to use a toolchain
that already has it by default?

From: Simon Wright
<simon@pushface.org>

Date: Sun, 06 Aug 2023 22:58:12 +0100

> Is this the correct way about adding this
switch or is there a way to use a
toolchain that already has it by default?

This works fine, but in your alire.toml
you could say

[build-switches]

"*".ada_version = "ada2022"

or

[build-switches]

"*".ada_version = ["-gnat2022"]

See "Release Information" (near the end)
and "Build Profiles and Switches" in the
documentation.

From: Seth Workman
<saworkman1@gmail.com>

Date: Sun, 6 Aug 2023 15:17:07 -0700

I see now, I think using
"*".ada_version = "ada2022"
is better for this case.

Parallel Loops in GNAT

From: Jerry <list_email@icloud.com>
Subject: Parallel loops in GNAT?
Date: Fri, 11 Aug 2023 17:44:38 -0700
Newsgroups: comp.lang.ada

Does GNAT such as Simon's GCC 13.1.0
for macOS aarch64 allow parallel loops
and blocks?

From: Simon Wright
<simon@pushface.org>

Date: Sun, 13 Aug 2023 11:39:59 +0100

No, sorry, that's one of the advanced
features that AdaCore aren't working on
yet.

https://blog.adacore.com/
ada-202x-support-in-gnat

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 13 Aug 2023 14:44:02 +0200

ISO/IEC 8652:2023 is the first Ada
standard to be approved without a
working implementation. Probably a bad
sign.

From: Jerry <list_email@icloud.com>
Date: Sun, 13 Aug 2023 15:03:20 -0700

> https://blog.adacore.com/ada-202x-
support-in-gnat

Thanks, Simon. I saw that blog post but
since it's nearly three years old, I was
hopeful. My O(N^4) radar simulations
will have to remain slow. :-(

Unifont Statically Compiled
and Stack Size

From: Micah Waddoups
<micah.waddoups@gmail.com>

Subject: Unifont static compiled and stack
size...

Date: Sun, 13 Aug 2023 09:16:27 -0700
Newsgroups: comp.lang.ada

I tried to compile the Unifont hex file,
converted with a script into variable Ada
code, but it went on forever, gradually
blowing up my memory. I used an .ads
file and aimed for a static build, but I
suspect I would have hit the stack size
limit for executables if I succeeded

My request for insight is:

(A) How do you recommend I compile
the Unifont into a form that is usable
within my Ada program. (I am thinking
compiling C and importing, since C is so
basic it might just work, but even better
would be Assembly and I don't know how
to import a large data variable compiled
in Assembly or if I can even compile that
much data using Assembly... It should
work, but the compiler might complain
and I still have to figure out the importing
part.)

(B) Do you think this has a chance of
succeeding if I compile the font as a
shared library? That doesn't affect initial
stack limits, right?

Just to be clear, I am trying to import
values 0 .. 16#FFFFF#, way beyond the
two byte limit that so many libraries are
functionally bound by in one bottle neck
or another. I want to support something
similar to 'kmscon', but with some
shortcuts since I don't want to redo
everything that others have done well. I
just want to finish my library to a point of
usefulness and focus on other projects. I
felt compelled to create this library
because every other library I looked at
was broken in some way and even the
most common font systems fail to support
Unicode's full character range, making

much of it useless. I figured I could create
the exact effects that I am trying to with
Unifont both in graphical Windows of
various OSs, and on the Linux terminal if
I rewrite enough of the low level code that
I don't have to rely on the less complete
existing libraries. Admittedly, I have too
little time to work on it, and am so far
behind other people's wonderful work that
I will certainly have many holes and
omitted functionality that should
eventually be added later. My goal is to
both make my programming projects
possible and free certain features from too
restricted licensing.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 14 Aug 2023 11:07:14 +0300

> My request for insight is: (A) How do
you recommend I compile the Unifont
into a form that is usable within my
Ada program.

Could you show a little of the script-
generated Ada code, just for us to
understand the approach you have taken
to represent the Unifont file?

While waiting for that, it may help the
compiler if you disable the more
advanced compiler optimizations, because
some of them are super-linear in
complexity and probably (but depending
on the exact form of the Ada code) do not
help for this case, anyway.

> (I am thinking compiling C [...] but
even better would be Assembly [...]

I'm not familiar with the structure of the
Unifont file, but if it is something like a
table with rows and columns, it should be
rather easy to translate it into a list of
assembly-language constant-data
definitions.

Assemblers are typically linear in
complexity and should be able to handle
large data definitions, assuming there is
not a myriad of assembler labels that
make references between different parts
of the data structure.

Exporting a data object from assembly to
Ada is simple and does not depend on the
size of the object (but I admit I don't
know how this is done for dynamically
linked libraries). The only part that needs
thought is how to define the Ada type of
the object, but if the Unifont file is a row-
column table, in other words a list of
"row" records, that should be straight-
forward too.

So I think the assembly-language solution
is highly likely to work; its drawback, of
course, is non-portability. But the
constant-data definitions of most
assembly languages are very similar to
each other, so the assembler-generating
script should be easy to port to different
assembly languages.

Ada Pract ice 179

Ada User Journal Volume 44, Number 3, September 2023

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Aug 2023 10:31:43 +0200

> I'm not familiar with the structure of the
Unifont file [...]

A comparable case. I have XPM to Ada
translator (for having built-in images in
GTK). It simply creates packages with
declarations of initialized arrays. No stack
issues.

Doing something like that for bitmap
fonts is just as simple. The only minor
issue is creating an index map: code point
to the bitmap image name (array),
because a flat array would blow out.

P.S. I always wanted static functions in
Ada for the purpose of all static
initializations of objects like maps etc.

From: Kevin Chadwick
<kc-usenet@chadwicks.me.uk>

Date: Mon, 14 Aug 2023 09:25:07 -0000

> a flat array would blow out.

What does blow out mean in this context?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Aug 2023 11:39:45 +0200

> What does blow out mean in this
context?

If you tried:

 type Font_Type is array (Code_Point) of

 Bitmap_Ptr;

The range of code points is
0..16#10FFFF#. E.g. when I implemented
Ada.Strings.Maps for Unicode, I could
not use such arrays either as the native
ASCII implementation does.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 14 Aug 2023 12:06:35 +0200

> I tried to compile the Unifont hex file,
converted with a script into variable
Ada code, but it went on forever,
gradually blowing up my memory. I
used an .ads file and aimed for a static
build, but I suspect I would have hit the
stack size limit for executables if I
succeeded

As I understand it, the file in question is
for code points 0 .. 16#FFFF#, with a
maximum of 32 bytes per code point. A
straightforward representation of this is

package Unifont is

 type Byte is mod 2 ** 8 with Size => 8;

 type Line is array (1 .. 2) of Byte

 with Size => 16;

 type Bitmap is array (1 .. 16) of Line

 with Size => 256;

 function Width_8 (Map : in Bitmap)

 return Boolean is

 (for all L of Map => L (2) = 0);

 type Code_Point is mod 16#FFFF# + 1;

 type Font_Map is array (Code_Point)

 of Bitmap with Size => 2 ** 24;

Font : constant Font_Map :=

 (others => (others => (others => 0)));

end Unifont;

Font will occupy 2 MB.

We can test this with

with Ada.Text_IO;

with Unifont;

procedure Unifont_Test is

 -- Empty

begin -- Unifont_Test

 Ada.Text_IO.Put_Line (Item =>

 Unifont.Font (0) (1) (1)'Image);

end Unifont_Test;

and see what happens:

$ gnatmake -m -j0 -gnat12 -gnatan -gnato2 -

O2 -fstack-check unifont_test.adb

x86_64-linux-gnu-gcc-12 -c -gnat12 -gnatan -

gnato2 -O2 -fstack-check

unifont_test.adb

x86_64-linux-gnu-gcc-12 -c -gnat12 -gnatan -

gnato2 -O2 -fstack-check unifont.ads

x86_64-linux-gnu-gnatbind-12 -x

unifont_test.ali

x86_64-linux-gnu-gnatlink-12 unifont_test.ali

-O2 -fstack-check

$./unifont_test

0

so this representation seems to be
workable. It should be trivial to write a
program to read the file and produce the
real array aggregate for Font.

From: Micah Waddoups
<micah.waddoups@gmail.com>

Date: Mon, 14 Aug 2023 08:10:01 -0700

Jeff, you missed a digit - it's five F's
16#FFFFF# because that is as high as
Unifont goes in my copy of the hex file.
[...]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 14 Aug 2023 17:59:16 +0200

> Jeff, you missed a digit - it's five F's
16#FFFFF#

You're right. Sorry for misreading that.
But increasing Code_Point to include
16#F_FFFF# still works for me.

Unicode defines code points up to
16#10_FFFF#, but perhaps those over
16#F_FFFF# are unused. Increasing
Code_Point to include 16#10_FFFF# still
works for me. That's 34 MB. It won't fit
on the stack, but luckily library-level
constants aren't allocated on the stack.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Aug 2023 18:02:58 +0200

What are you going to do with this?

1. This is not a font usable in a GUI
framework.

2. This is not a drawable in-memory
image for a GUI framework either.
Provided, you wanted to render
obtained images manually. These

images must be in a format supported
by the corresponding engine.

E.g. GTK uses Pixbuf representation for
drawable in-memory images. Which is

 type Pixbuf_Image is array

 (Natural range 0..N*M-1) of GUChar;

 pragma Convention (C, Pixbuf_Image);

containing 4 channels RGB + alpha, row-
wise.

And, no, normally you cannot draw in an
arbitrary OS window.

If you are so keen to use GNU Unifont,
why do not you install it from its available
formats like TrueType and be done with
that? What is wrong with other fixed-size
fonts?

Why do you want to render glyphs
manually instead of using existing OS
facilities and GUI libraries? You cannot
get around these libraries without
rewriting device drivers and who knows
what else making the code highly non-
portable.

From: Micah Waddoups
<micah.waddoups@gmail.com>

Date: Mon, 14 Aug 2023 21:48:03 -0700

> What are you going to do with this?

Dmitry, of course, you are correct. This
was an attempt to take an image of the
font source. [...]

The rendering is done with a small cache
of per-need rendered Glyphs - each
rendered glyph is at least eight times
larger before any styling or
transformation. Rendering all the glyphs
at once takes up more memory than is
needed and presupposes the destination
format. So, in reality, more processor
work is being done by doing it in stages,
but less is being done in each stage, so
there is more room for other processing at
each stage. This is just the raw bitmap
font that I want in the program without
having to process and read the hex file
every time it loads (that would be a very
inefficient design).

In the first rendering, the glyphs that are
actually used are rendered into a cache
with only Alpha values. This is essentially
gray-scale and is the value-map used for
any transformations, glyph combining,
and plotting on a per-line image plot map
(which is another abstraction by line and
index/column of just the first..last pixel
boundaries). The plot map can very
quickly be changed for insertions,
deletions, changing text direction or flow,
etc. and only at the final rendering of the
View-able area is the Alpha transformed
into full color (4-byte with alpha) to be
sent to the GL, framebuffer, GTK, or
other pixel-map handling system. Much
like modern rendering systems, a lot of
calculations happen behind the scenes at
each key-press, only it is my attempt to
combine it all into one library and scale it

180 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

into a project that can be plugged into
whatever graphics system is being used.
It is probably slower in response to input
than GTK or any native text handling
system because effects, layers of glyph-
combinations, markups (squiggle line,
underline, etc), and colorization all go
into the font rendering before it hits the
graphics buffer, but it feels to me more
correct and avoids having to add post-
rendering effects as a later stage as much
as possible. Markups are done late, just
before rotation (if any), but that is just as
it must be, since they are effectively a
rendered element of a different size than
the individual glyphs they markup, yet
still done before the rendered map is
turned over to the graphics system.

The reason people rely on device drivers,
native widgets, and less-portable
combinations of libraries is that they
incorporate the features and functionality
desired into them, including how to
handle input. I am attempting to take the
lowest level of input (key-presses, clicks,
touch, etc.) like a video game might, and
outputting an image already rendered for
display, thus replacing the normally
convenient functionality provided by
other systems. I am *not* trying to
replace actual device drivers or rely on a
particular operating system's device
access scheme. That is why I am
considering other well established
libraries supporting GL or maybe SDL.
Not all programs render text and input
with the convenient systems, so this is
nothing new. Also, since this scheme still
tracks each character by line and index,
even if I am only able to support text-
mode terminal interface in one situation,
that will only prevent using the full
Unicode range of glyphs and
combinations, not disable my ability to
send/receive any given text with the
display.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Tue, 15 Aug 2023 10:40:45 +0200

> P.S. I always wanted static functions in
Ada for the purpose of all static
initializations of objects like maps etc.

If data form the equivalent of a static Ada
array, thus a mapping from an index type
to a value type, could you approximate
the static initialization of maps using
expression functions?

Simplifying example:

package sttc is

 type Key is range 1 .. 7;

 type Value is new Character;

 type Cursor is private;

 function lookup (K: Key) return Cursor;

 function element (C: Cursor) return Value;

private

 type Cursor is new Key;

end sttc;

package body sttc is

 function lookup (K: Key) return Cursor is

 (Cursor (K));

 function element (C: Cursor) return Value

 is

 (case C is

 when 1 => 'M',

 when 2 => 'M',

 when 3 => 'X',

 when 4 => 'X',

 when 5 => 'I',

 when 6 => 'I',

 when 7 => 'I'

);

end sttc;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 16 Aug 2023 08:17:50 +0200

> could you approximate the static
initialization of maps using expression
functions?

In general case no. Initialization cannot be
decomposed into functions. E.g. when it
requires global [yet static] data, many
places to set etc.

P.S. Expression functions are evil. I
wonder why there is no expression gotos
and labels? If you sell your soul to the
devil, get the whole package! (:-))

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 17 Aug 2023 22:04:18 -0500

> P.S. Expression functions are evil. I
wonder why there is no expression
gotos and labels? If you sell your soul
to the devil, get the whole package! (:-
))

Ada only allows expressions to be
evaluated at elaboration time (outside of
generic instantiations), and expressions
have a well-defined and simple control
flow (even accounting for conditional
expressions and quantified expressions,
both of which implicitly appear in
aggregates even in Ada 83 - allowing
programmers to write them explicitly
makes the code more readable than the
horrible work-arounds commonly used
pre-Ada 2012). Gotos and labels have
arbitrary control flow, which can be much
harder to analyze. (Janus/Ada converts the
majority of code into an expression form
for optimization - essentially most id
statements become if expressions, and so
on. It simply punts when the control flow
is too complex to convert, so the
unrestricted use of gotos effectively
prevents most optimization as well as
static analysis.)

If it was up to me, I would have left out
declare expressions and quantified
expressions, so the capabilities of
expression functions would have been
much more limited. But it seems valuable
to be able to abstract an expression
without changing the semantics (as
requiring a separate body does).

GCC Support for Ada 2022

From: philip...@gmail.com
<philip.munts@gmail.com>

Subject: Which GCC releases have how
much support for Ada 2022?

Date: Mon, 14 Aug 2023 13:30:06 -0700
Newsgroups: comp.lang.ada

I am interested in cross-compilers for
Linux boards such as the Raspberry Pi. I
have successfully built cross-compilers
for GNAT/GCC 12.3.1 on Debian 12
using the latest Arm GNU manifest and
Linaro ABE, and Debian 12 has system
packages for GNAT/GCC 12.2.0, native
and cross, as well.

It isn't clear to me from the GCC release
notes how complete the support for Ada
2022 is in GNAT/GCC 12.2.0 or 12.3.1.
Is there a document or table somewhere
that keeps track of that? And how does
GCC 12 compare with GCC 13 WRT Ada
2022?

From: Micah Waddoups
<micah.waddoups@gmail.com>

Date: Tue, 15 Aug 2023 14:12:18 -0700

[...] You may be able to find most of what
you are looking for with the link in his
answer:
https://blog.adacore.com/
ada-202x-support-in-gnat

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Mon, 21 Aug 2023 13:04:30 -0700

> And how does GCC 12 compare with
GCC 13 WRT Ada 2022?

This post could be helpful:
https://forum.ada-lang.io/t/
gcc-13-1-released/374/3

In https://learn.adacore.com/courses/
whats-new-in-ada-2022/index.html course
there are GCC versions per feature.
Unfortunately the feature list is not
complete.

Parameterised 'Image
Attributes

From: Rod Kay <rodakay5@gmail.com>
Subject: Parameterised 'Image Attributes
Date: Fri, 18 Aug 2023 17:18:29 +1000
Newsgroups: comp.lang.ada

There has been some recent discussion on
#ada irc regarding formatted output.

Would it be possible/desirable to allow
the 'Image attribute to have formatting
parameters ? Something along the lines of
...

 put_Line (some_Integer'Image

 (Width => 5, Padding => '0'));

... and similar 'Image attribute parameters
for other types.

Ada Pract ice 181

Ada User Journal Volume 44, Number 3, September 2023

If the parameters have defaults, then there
should not be any backwards
compatibility issues (I think).

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 18 Aug 2023 09:25:44 +0100

I wanted them for ages, but there was a
conversation ages ago where someone on
here said attributes were for "debugging
only," yet that's not what the ARM says.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Fri, 18 Aug 2023 11:53:44 -0700

TeleSoft's compiler (which I worked on)
had 'Extended_Image and
'Extended_Value attributes that worked
like that. I found them quite useful --
especially as an easy way to drop the
leading space on Integer'Image.

One small problem was that we had
different parameters for integer and
enumeration types, which introduced an
ambiguity for discrete formal types.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 19 Aug 2023 11:14:34 +0200

I wanted them for ages, but [...] someone
on here said attributes were for
"debugging only,"

The intent of the 'Image attribute is to
have a quick representation, mainly for
debugging purposes. If you want nice
formatted output, use the Put procedure
on String from Text_IO.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Aug 2023 12:03:09 +0200

> The intent of the 'Image attribute is [...]
mainly for debugging purposes.

It seems that for the vast majority of Ada
users this intent was wrong...

> If you want nice formatted output, use
the Put procedure on String from
Text_IO.

Put does not supersede 'Image. Put is I/O.
'Image is pure string formatting. Put is
generic and requires instantiation of some
package with some difficult-to-guess
name. 'Image is built-in [statically]
dispatching and generated automatically
by the compiler.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 19 Aug 2023 13:56:14 +0200

> It seems that for the vast majority of
Ada users this intent was wrong...

The vast majority of Ada users ignore a
number of useful features provided by the
language, and keep asking for
improvements that are already there...

> Put does not supersede 'Image. [...]

Yes, Put has nothing to do with 'Image.
Yes, Put requires instantiation. So what?
Ada is more verbose, in favor of stricter
typing. Ease of reading over ease of

writing has always been a major design
principle of Ada - although I confess it
had a bad effect on its popularity, people
want to write fast and ignore long term
maintenance issues.

If you want formatting on an integer type
(with or without IO), you instantiate
Integer_IO. I don't find it hard to guess
the name... Maybe you had something
else in mind?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Aug 2023 15:01:36 +0200

> The vast majority of Ada users ignore a
number of useful features [...]

Or these features are not that useful?
Language users and designers have often
different perspectives...

> Yes, put requires instantiation. So what?
Ada is more verbose, in favor of stricter
typing.

I don't see how instantiation is stricter
typing. In fact instantiation introduces
overloading (static ad-hoc polymorphism)
which was always frowned upon at as less
type safe than overriding.

> Ease of reading over ease of writing has
always been a major design principle of
Ada

I don't buy this either. It is

 Put (X) vs. X'Image

equally readable and writable. If you refer
to the instantiation noise or with/use
clauses you would require to put
somewhere far above in the package, that
is not ease of reading. That is just
meaningless noise.

> I don't find it hard to guess the name...
Maybe you had something else in
mind?

Yes, all other types that might require
formatting. I doubt anybody, but a
language lawyer could name the package
appropriate for formatting a fixed-point
type without looking into the RM. Which
is absolutely unneeded as 'Image would
be perfectly OK if it had the necessary
parameters. All that generic text I/O
packages are unnecessary as the stream
I/O case perfectly illustrates. Ada 95 did
stream I/O if not right, but far better
making 'Read, 'Write etc attributes
overridable. The problem of generic mess
solved. We do not have and do not need
any generics for stream I/O. Good
riddance.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 19 Aug 2023 17:27:25 +0200

> The intent of the 'Image attribute is to
have a quick representation, mainly for
debugging purposes.

There is a common problem across many
types and problem domains of having a

function that returns a string of an
appropriate length representing a value of
the type with desired formatting.
Common examples include numeric
values, dates, and times. The resulting
string is usually combined with other
information into a message that may be
stored in memory for a while, though it is
rare for it not to be output eventually. As
an example, the message may be put on a
protected queue for later output by a
logging task.

Ada 83 tended not to include anything
that the developer could implement; there
was no math library or image functions
for dates or times. The 'Image attribute
was provided, but is unsuited for most
such uses.

The use of the Text_IO generic sub-pkg
Put procedures that output to strings is not
convenient because they are procedures,
not functions.

Later versions of Ada included more
support for such needs, but not for
numeric values.

The obvious solution is to have a library
containing appropriate functions, which
can be built around the Put procedures
while still being functions. Such functions
would need to be generic, unlike attribute
functions which are automatically
available for all types.

The conflict between this common need
and the minimal functionality provided by
'Image results in such requests. It seems
desirable for the language to provide such
functions, and extending the 'Image
functions seems like a reasonable way for
it to do so, regardless of the original
intentions for the attribute.

One library with such functions is the
PragmAda Reusable Components
(https://github.com/jrcarter/PragmARC).
The package PragmARC.Images
(https://github.com/jrcarter/PragmARC/bl
ob/Ada-12/pragmarc-images.ads)
provides such functions for integer and
floating-point types. Function
PragmARC.Images.Image is an
instantiation for Standard.Integer.

PragmARC.Date_Handler
(https://github.com/jrcarter/PragmARC/
blob/Ada-12/pragmarc-date_handler.ads)
provides image functions for dates and
times; although the language now
provides a function for a date-time image,
Date_Handler continues to be useful as it
provides for customized formats rather
than the single format provided by
Ada.Calendar.Formatting. Many users
also find the semantics of the latter's time-
zone parameter to be confusing.

ISO/IEC 8652:2023 provides a date-time
image function the returns the image for
the local time zone, but as there are no
compilers* for this version of the
language, I don't consider that relevant.

182 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

(*A compiler for a version of the
language implements the entire core
language of that version of the ARM.)

From: Moi <findlaybill@blueyonder.co.uk>
Date: Sat, 19 Aug 2023 17:49:41 +0100

> The intent of the 'Image attribute is to
have a quick representation, mainly for
debugging purposes.

My code uses 'Image heavily, because it is
usually the neatest and the clearest way to
format many strings that mingle words
and numbers.

I sometimes have to pass the result of
'Image to a function that implements the
kind of functionality people are asking
for, and it would be even neater and
clearer if I could get that with parameters
to 'Image itself.

None of that output has anything to do
with debugging.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sun, 20 Aug 2023 02:25:20 -0500

The profile of the Image attribute is:

 X'Image

where X is an object of any type (or value
of most types). And the old, unnecessary
form was:

 S'Image(X)

where S and X are of any type.

If one tries to add parameters to this, one
gives up this nice form for a mis-mash of
profiles for various classes of types.
Moreover, the result no longer composes
in the obvious way (necessary to have
Image for records and arrays).

Additionally, one ends up with a magic
mechanism that only the compiler can
use. That *never* is a good idea.
Especially as there now is a way to allow
Image to support user-defined types. It
would seem necessary to also support
user-defined formatting parameters (else
one has magic only applicable to a
handful of language defined types).

Attributes do not allow named parameters
outside a few special cases, and *never*
allow reordering of parameters. Does that
need to change, too?

Float input/output in particular is very
large, especially when all of the
formatting options are included. Do you
really want to drag that into *every* Ada
program, whether it uses it or not??

'Image is convenient for integer and
enumeration output, and one can format
them in the rare case where that is
necessary. But it is useless for float output
-- manual reformatting the output of
'Image would round the results
incorrectly.

Ada has few built-in facilities because its
primary purpose is to support the

development of proper ADTs. Ease of
writing is not a goal at all, and in most
cases, the extra text is valuable to
compilers and tools (even if it is not so
valuable to human readers). If it was up to
me, I would eliminate most of the
shortcuts from Ada and require
everything to be written out. (IDEs
could/should do most of that for you
anyway, so the extra text is not adding
much effort.)

Ergo, I hope this idea is dead-on-arrival. I
certainly won't be involved in it, that's for
sure.
From: G.B.

<bauhaus@notmyhomepage.invalid>
Date: Sun, 20 Aug 2023 09:53:11 +0200

> The conflict between this common need
and the minimal functionality provided
by 'Image results in such requests.

So, also

- See how other languages address
formats (good bits, bad bits).

- Consider use cases.

- I/O is the program(mer)'s raison d'être.
Can we easily Put something into a
stream without the help of a suitable
library?

Could there be a language defined type F
whose purpose is to support the
description of formats? Objects of type F
would "configure" what 'Image does
when computing a representation of a
date, a number, ...

 My_Length'Image (Arg => diameter,

 Format => ___);

Some use cases:

- I18n of number formats (cf ARM F.3),
CHF 1'234'000.–

- Handle ubiquitous ISO formats of date-
time (as mentioned below; also cf. ARM
9.6.1)

- reporting,

- integrate own output with output of
other system components (a site-wide
monitoring system searches outputs,
say)

- fill in templates when these do not
support formatting

- 'Input an object of type F at run-time, so
that program's use of 'Image can be
changed according to customer's local
expectations.

- support the formalized exchange of
"numerical" data in heterogeneous
systems, using text streams.

These use cases are about the O of I/O.
By symmetry, it would be nice to have
implementations of Ada that support the I
part of this kind of I/O, I think, with work
to be split between implementers and
programmers.

 My_Length'Value (Arg => diameter,

 Format => ___);

Or perhaps multimethods that take a
stream and a format when they need to
write a value?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 20 Aug 2023 11:27:47 +0200

> Could there be a language defined type
F whose purpose is to support the
description of formats?

Not without multiple dispatch support and
classes:

 Type x Format [x Target]

Otherwise you get an untyped mess as in
C:

 printf ("%s", 123);

In the case of 'Image the dispatch is hard-
wired. The compiler generates it
according to one of built-in classes like
'integer type'. So yes it would be no
problem to add parameters specific to
each of the classes as well as common
parameters like padding or alignment
inside a field. But it will never ever
happen.

You seem suggesting a class-wide
parameter type instead:

 type Format_Type is tagged record

 Width: Natural:= 0;

 Alignment: Alignment_Type:= Left;

 Padding: Character:= ' ';

 end record;

 type Integer_Format is new Format_Type

 with record

 Plus_Sign : Boolean := False;

 Base : Base_Type := 10;

 end record;

 X'Image (Format => Format_Type'Class)

This still requires a change that will be
outright rejected on highest philosophical
grounds. (:-))

However with a Format_Type you do not
need 'Image. You can simply use a binary
operation, e.g.

 function "/" (Value : Integer; Format :

 Integer_Format) return String;

So would do

 Put_Line ("X=" & X / (Width=>10,

 Padding=>'0', Alignment=>Right));

instead of

 Put_Line ("X=" & X'Image (Width=>10,

 Padding=>'0', Alignment=>Right));

Of course it must be generic, which kills
all fun.

Ergo

1. Compiler magic is necessary because
the language type system is too weak to
express things like formatting.

2. No proposal however useful and
reasonable will survive ARG because
of #1.

3. Use a library that does the stuff. E.g.

Ada Pract ice 183

Ada User Journal Volume 44, Number 3, September 2023

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#Integer_Edit

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 20 Aug 2023 11:43:01 +0200

> Additionally, one ends up with a magic
mechanism that only the compiler can
use. That *never* is a good idea.

A better idea would be to improve the
language to remove need in magic, but
that is *never* a good idea either! (:-))

> Attributes do not allow named
parameters outside a few special cases,
and *never* allow reordering of
parameters. Does that need to change,
too?

Elementary! Attribute is just an
alternative syntactic form of a subroutine
call. There is no reason why attribute
should be limited to look like FORTRAN
IV! (:-))

> 'Image is [...] useless for float output
[...]

Which is why Float 'Image must have
parameters!

> Ada has few built-in facilities because
it's primary purpose is to support the
development of proper ADTs. Ease of
writing is not a goal at all [...]

How is this related to the attribute 'Image
lacking necessary parameters? Why is a
generic function having such parameters
OK, while 'Image with same parameters is
not?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Aug 2023 18:11:19 -0500

Your #3 is the point of course. If a
reasonable library can be written, you
should use that. After all, the Ada
philosophy is that it is suspicious to use
any built-in types. Why then should it be
less suspicious to use other things that are
built-in??

The best approach for Ada going forward
is to add things that make it easier to build
good libraries (as in user-defined literals).
And minimize magic.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Aug 2023 18:34:55 -0500

> A better idea would be to improve the
language to remove need in magic, but
that is *never* a good idea either! (:-))

No, I generally agree with this. We
probably disagree on what would
constitute an improvement, however. ;-)

> Elementary! Attribute is just an
alternative syntactic form of a
subroutine call. There is no reason why
attribute should be limited to look like
FORTRAN IV! (:-))

That turns out to be a bad idea. The
reason people love attributes so much is

that they don't have to worry about
visibility -- they're always visible. That is
not and cannot be true for subprograms.

For example, the reason that we don't
allow user-defined attributes is that they
would compromise portability. Since
they're always visible, they could
hide/make illegal attributes that are used
in units (like generic units) that don't
know anything about the additions.
Moreover, not all attributes can be
described as subprograms given Ada's
current rules (reduction attributes have a
type parameter; some of the annex 13
attributes have "any type" parameters,
etc.)

It certainly would be a very bad thing for
Janus/Ada, which would have to have its
resolution and subprogram definition
mechanisms redesigned. (All
subprograms are materialized in the
Janus/Ada symboltable, in particular for
visibility management reasons, and that
would not be possible for attributes.
Resolution only works on materialized
subprogram definitions.)

> Which is why Float 'Image must have
parameters!

Which is why one shouldn't use
Float'Image! ;-)

> Why generic function having such
parameters is OK, while 'Image with
same parameters is not?

It's perfectly OK to overload functions
however one wants, because you can keep
anything that is problem from being
considered by avoiding "use" (and
"with").

'Image is not appropriate for an attribute
in the first place; attributes are supposed
to be simple compile-time defined
properties of a type. String conversion is
not that.

My preference for making Ada easier to
use for this sort of thing is to allow class-
wide elementary types. Then one could
have non-generic subprograms that
operate on all integer and float types.
(Fixed and enumerations would still
require generics, although I suspect most
people would simply convert fixed to
float for output rather than worrying about
an instantiation.) That would make a
library simple to use, and few people
would think that something built-in is
needed.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Aug 2023 18:37:43 -0500

> Of course it must be generic, which
kills all fun.

As noted in my other message,
resurrecting the Ada 95 idea allowing
class-wide types for elementary types
would eliminate (or at least greatly
reduce) this problem. I think that would

be a more productive way to address this
problem than hacking around with 'Image
some more. (We've already proven that it
is not a good way to define anything user-
defined, thus the rather complex way to
define such 'Image attributes.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 22 Aug 2023 09:38:38 +0200

> [...] allowing class-wide types for
elementary types would eliminate (or at
least greatly reduce) this problem.

Yes, but that would be a huge change.

> I think that would be a more productive
way to address this problem than
hacking around with 'Image some
more.

One does not exclude another. If you
allowed classes then there would be no
reason not to have attributes [as] official
primitive operations. E.g. an "imaginable"
interface would provide "'Image" and the
standard Integer would inherit from
"imaginable"...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 22 Aug 2023 10:13:47 +0200

> [...] not all attributes can be described as
subprograms given Ada's current rules
[...]

It is a primitive subprogram of some
built-in class. The magic is not in the
attribute, it is the class description. For
magical classes overriding a primitive
operation could look like

for <member-type>'<primitive-operation-
name> use <subroutine-name>;

[...]

The problem is that whatever intention
Ada designers had for attributes they also
gave them the property of being a
primitive operation where no user-defined
class [is] allowed. This power steamrolls
any "good" intentions.

Nobody loves the syntax T'Image (X) or
X'Image! Give programmers X.Image and
[<path-of-package-names-nobody-
remembers>].Image (X) and they will
forget about the attribute.

[...]

> Fixed and enumerations would still
require generics

It would be interesting to play with the
ways of constructing enumeration and
fixed point classes. Both have static
parameters, e.g. list of names in the case
of enumeration. There might be a way to
achieve static polymorphism without
going full generic but also without turning
the language into a C++ templates mess!

> That would make a library simple to
use, and few people would think that
something built-in is needed.

184 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

Absolutely. Ideally, everything must go
into libraries.

From: Stephen Davies
<joviangm@gmail.com>

Date: Wed, 23 Aug 2023 03:20:07 -0700

> Nobody loves the syntax T'Image (X) or
X'Image!

I have no issue with the 'Image syntax.

Perhaps the formatting parameters could
be restricted to T'Image(X) and not
available for X'Image? Or, maybe the
language should just add 'Trim_Image
and 'Trim_Width and leave the advanced
formatting to a library.

Actually, I think it might also be nice if
Float'Trim_Image(X) returned a string
that only used exponential notation for
very large or very small values (which
seems to be the default behaviour in
Python). Different names would then be
needed (Tidy_Image and Tidy_Width?).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 23 Aug 2023 18:16:10 +0200

> it might also be nice if
Float'Trim_Image(X) returned a string
that only used exponential notation for
very large or very small values

To use the shortest representation for the
given precision unless specified
otherwise:

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#6

Ada 'Image attributes have "typographic
quality" in plain contradiction to the claim
being for debugging purposes. That is
why the plus sign is always represented
by a space and why floating-point
representation is always selected even for
exact zero and the way the exponent part
is formatted. The typographic idea is to
have *same looking* output. Note, even if
the output is mathematically incorrect as
in the case of floating-point numbers.
'Image considers precision and accuracy
same, which is *always* wrong when
dealing with floating-point numbers.

> Different names would then be needed
(Tidy_Image and Tidy_Width?).

It takes several parameters to control the
behavior in a reasonable way.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 28 Aug 2023 20:58:13 +0300

> There is no good reason why attributes
should not have the same parameter
syntax as subprograms and entry calls.

Yes in principle, but it is understandable
that making this happen now could impact
both the language definition and various
implementations in non-trivial ways.

> Neither there is one why 'Image must be
a non-overridable attribute.

In Ada 2022, 'Image is defined to call the
new attribute 'Put_Image, which can be
specified (ie. overridden) by the
programmer for any type.

See http://www.ada-auth.org/standards/
22rm/html/RM-4-10.html.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 28 Aug 2023 21:08:10 +0200

> it is understandable that making this
happen now could impact both the
language definition and various
implementations

Compared to the useless and damaging
sediments the language collects with each
new release? (:-))

> See http://www.ada-auth.org/standards/
22rm/html/RM-4-10.html.

Ah, thanks. I vaguely remembered that
there was yet another ugly hack that does
not really solve anything significant, but
could not find it.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 6 Sep 2023 20:04:00 -0500

>Neither there is one why 'Image must be
a non-overridable attribute

There actually is a good reason for this.
Attributes have global visibility. So if you
allowed overriding of attributes, then a
with added or removed in a remote part of
a program could silently change the
behavior of code that has no knowledge
of the change. That would be bad for
"programming in the large". Note that
Ada 95 was proven to have no such cases,
and we've tried very hard to avoid them.

One could imagine adding rather severe
restrictions to overriding of attributes to
eliminate this problem (for instance, only
allowing it for primitive operations of the
type), but that would eliminate all real
value of the feature (you can always use a
primitive function and "use all" to get the
same effect without any new features).

For 'Image specifically, the design of the
attribute doesn't work well for
composition (for Image for composite
types), which is why Ada 2022 has a
separate attribute that can be overridden
similar to a stream attribute.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 7 Sep 2023 11:01:58 +0200

> [...] That would be bad for
"programming in the large". [...]

Ah, but 'Image is for debugging only! (:-))

> One could imagine adding rather severe
restrictions to overriding of attributes to
eliminate this problem [...]

It must be a new type:

 type My_Integer is new Integer;

 for My_Integer'Image use Foo;

From: Rod Kay <rodakay5@gmail.com>
Date: Sat, 23 Sep 2023 20:00:26 +1000

I've been using 'Gnat.formatted_Output'
which I've found quite useful.
Unfortunately, it seems to be a little
buggy with its formatting.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Mon, 25 Sep 2023 22:47:17 -0700

You can take a look at VSS's
Virtual_String_Templates and Formatters,
see
https://github.com/AdaCore/VSS/blob/
master/source/text/
vss-strings-templates.ads

https://github.com/AdaCore/VSS/blob/
master/source/text/
vss-strings-formatters.ads

and an example of its use

https://github.com/AdaCore/gnatdoc/blob/
3e94448ac57270caf4b4502f208f78e1d51
da2b2/source
/gnatdoc-messages.adb#L130

UNAS by TRW

From: Chris Sparks
<mrada442@gmail.com>

Subject: UNAS by TRW
Date: Tue, 22 Aug 2023 05:58:37 -0700
Newsgroups: comp.lang.ada

[In the following: Universal Network
Architecture Services (UNAS) is a
product from the American TRW Inc.
corporation. –arm]

Does anyone know how to get the
complete UNAS package from TRW? I
use it at work and I see it has an open
usage clause in the source headers. Since I
am not allowed to download it from my
work, maybe I can find a source
elsewhere to get it?

Also are there any tutorials out there on
how to use it? I am in the process of
upgrading the Ada (83 to 05) in my
current project and I am getting stuck on
the plethora of calls being made by
UNAS for which I don't even know how
to set it up so it can run happily.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Thu, 24 Aug 2023 22:24:59 +0200

> maybe I can find a source elsewhere to
get it?

Doubtful.

> Also are there any tutorials out there on
how to use it?

"Out there", definitely not. In a few closed
places that still use UNAS, perhaps but
doubtful. In the one place that I know still
uses UNAS, no.

> I am in the process of upgrading the
Ada (83 to 05) in my current project
[...]

https://github.com/AdaCore/VSS/blob/master/source/text/vss-strings-templates.ads
https://github.com/AdaCore/VSS/blob/master/source/text/vss-strings-templates.ads
https://github.com/AdaCore/VSS/blob/master/source/text/vss-strings-templates.ads
https://github.com/AdaCore/gnatdoc/blob/3e94448ac57270caf4b4502f208f78e1d51da2b2/source
https://github.com/AdaCore/gnatdoc/blob/3e94448ac57270caf4b4502f208f78e1d51da2b2/source
https://github.com/AdaCore/gnatdoc/blob/3e94448ac57270caf4b4502f208f78e1d51da2b2/source

Ada Pract ice 185

Ada User Journal Volume 44, Number 3, September 2023

Do I divine correctly that "your current
project" is not "at work" If so I would
suggest you consider PolyORB as a
replacement*. UNAS is long dead,
unmaintained and unmaintainable, mostly
because it is proprietary software without
anyone getting a license for it other than
in their current application. Also, apart
from a couple of people I know, nobody
understands UNAS anymore. The
company that made it has abandoned it,
perhaps even gone bankrupt, so UNAS is
mostly technical debt. Sorry for the bad
"news".

* Modern multi-core computers with lots
of memory might even make it feasible to
avoid distributing the software over
multiple computers in the first place.
Maybe a monolithic application would do
the job just fine, nowadays.

From: Chris Sparks
<mrada442@gmail.com>

Date: Thu, 24 Aug 2023 16:36:00 -0700

I suspected as much. If I could only find
something that would show me how to
install it and be operational so I can finish
my upgrade project. Going to a new
software is something that would bring on
risk, unless I could narrow down what
exactly the UNAS is being used for. This
effort I am working on is for the contract I
am working on.

What would really help is documentation.
Installation, operation so that I can tell
that it is working.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Fri, 25 Aug 2023 04:13:54 +0200

> What would really help is
documentation. Installation, operation
so that I can tell that it is working.

If your customer has UNAS, they
probably have documentation, or what
passes as documentation.

BTW, UNAS is a framework for
distributed applications i.e. multiple
programs doing remote procedure calls
and message passing over the network.

From: Chris Sparks
<mrada442@gmail.com>

Date: Fri, 25 Aug 2023 17:41:09 -0700

Unfortunately they don't have any
documentation as it was set up very long
ago.

If I had it on my home PC I would have
more time to look at it.

Project Euler 26

From: Csyh (Qaq) <schen309@asu.edu>
Subject: project euler 26
Date: Mon, 4 Sep 2023 02:19:51 -0700
Newsgroups: comp.lang.ada

I am new to Ada, I know is there a good
way to start this program? Thanks

https://projecteuler.net/problem=26

[The problem is: Find the value of
d<1000 for which 1/d contains the longest
recurring cycle in its decimal fraction
part. –arm]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 4 Sep 2023 14:06:13 +0300

First invent/discover the method
(algorithm) for solving the problem,
without thinking about the programming
language.

I don't think any language has built-in
features that would lead to a direct
solution, although some functional
language with lazy evaluation could come
close, because such languages can
manipulate unbounded (potentially
infinite) sequences of values. Such
sequences can be handled in Ada, too, but
with more effort -- they are not "built in"
to Ada.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 4 Sep 2023 14:39:17 +0200

Infinite division does not require big
numbers, which Ada 22 has, but I i would
not use them anyway because the
performance would be abysmal.

BTW, Ada is perfect for numeric
algorithms no need to resort to functional
mess... (:-))

The problem itself requires as you said
mathematical analysis, because a naive
method of comparing a partial division
result with itself is obviously wrong. E.g.
let you have 0.12341234... you could not
conclude that the period is (1234) because
it could actually be (123412345).
From: Ben Bacarisse

<ben.usenet@bsb.me.uk>
Date: Mon, 04 Sep 2023 17:01:04 +0100

> BTW, Ada is perfect for numeric
algorithms no need to resort to
functional mess... (:-))

Perfect? That's a bold claim!

Mind you, I don't think this problem is
really a numerical one in that sense. It
needs some simple integer arithmetic but
then every language is perfect for that sort
of arithmetic.

Using a functional mess (Haskell) a
simple, native solution (i.e. using no
modules) is only 9 lines long.

I don't want to start a language war. Ada
is just more 'wordy' by deliberate design
so a simple Ada solution is inevitably
going to be longer in terms of lines.
Rather my purpose in posting is to steer
the OP away from thinking of this as a
numerical problem in the classical sense.
It really isn't.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 4 Sep 2023 21:20:56 +0200

[...]

> Using a functional mess (Haskell) a
simple, native solution (i.e. using no
modules) is only 9 lines long.

Apart from the fundamental inconsistency
of functional paradigm: computing is
about transition of states and nothing else;
the imperative languages express
solutions, i.e. an algorithm. Functional,
and in general, declarative languages
express puzzles.

They remind me of math examination
tasks on studying a function. Here is a
definition. Go figure out the properties
and behavior...

Or, if you want, functional is like a chess
composition: white to move and
checkmate in 4 moves. Challenging, but
Ada is about playing chess.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Mon, 04 Sep 2023 21:18:16 +0100

> Apart from the fundamental
inconsistency of functional paradigm
[...]

Rather than try to unpick that paragraph
I'll just say that they can, none the less,
give simple solutions to this sort of
programming problem.

From: Francesc Rocher
<francesc.rocher@gmail.com>

Date: Thu, 7 Sep 2023 00:31:09 -0700

> I am new to Ada, I know is there a good
way to start this program?

Please take a look at my Euler tools
repository,
https://github.com/rocher/euler_tools (not
the best math lib you'll find, I know).

I used this library tools to solve problem
26 here: https://github.com/rocher/alice-
project_euler-rocher

Let me know what you think.

Equivalence between Named
Anonymous Access

From: Blady <p.p11@orange.fr>
Subject: Equivalence between named access

and anonymous access.
Date: Wed, 6 Sep 2023 16:37:08 +0200
Newsgroups: comp.lang.ada

I'm wondering about named access and
anonymous access. In the following Ada
code, are the writing of parameter P1 type
of procedures PA and PB equivalent?

 package C1 is

 type Inst is tagged null record;

 type Class is access all Inst'Class;

 end C1;

186 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

with C1;

 package C2 is

 type Inst is tagged null record;

 type Class is access all Inst'Class;

 procedure PA (Self : Inst;

 P1 : C1.Class); -- named access

 procedure PB (Self : Inst; P1 : access

 C1.Inst'Class); -- anonymous access

 end C2;

Same with:

 function FA (Self : Inst) return C1.Class;

 -- named access

 function FB (Self : Inst) return access

 C1.Inst'Class; -- anonymous access

Are FA and FB writing equivalent?

If not, why?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 6 Sep 2023 17:54:42 +0200

They are not equivalent from the access
checks point of view:

 declare

 Y : C2.Inst;

 X : aliased C1.Inst;

 begin

 C2.PA (Y, X'Access);

 -- Non-local pointer error

 C2.PB (Y, X'Access); -- Fine

 end;

Furthermore, tagged anonymous access is
controlling (dispatches) when not class-
wide.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Wed, 6 Sep 2023 13:55:02 -0700

> In the following Ada code, are the
writing of parameter P1 type of
procedures PA and PB equivalent?

They are not equivalent because the
anonymous access opens more
possibilities (example below), but you are
certainly aware of that.

So I guess you have another question in
mind...

with C1, C2;

procedure test is

 x2 : C2.Inst;

 type My_Reference_1 is access all

 C1.Inst'Class;

 r1 : My_Reference_1;

begin

 x2.PB (r1);

 x2.PA (r1);

 -- ^ expected type "Class" defined at

 -- c1.ads:3 found type "My_Reference_1"

 -- defined at line 6

end;

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 7 Sep 2023 02:20:02 +0200

> I'm wondering about named access and
anonymous access.

The rules for using access-to-object types
are:

1. Don't use access types

2. If you think you should use access
types, see rule 1.

3. If you still think you should use access
types, don't use anonymous access
types

4. If you still think you should use
anonymous access types, don't develop
software

The semantics of named access types are
well defined and easily understood. The
semantics of anonymous access types are
defined in ARM 3.10.2, of which the
AARM says
"Subclause 3.10.2, home of the
accessibility rules, is informally known as
the 'Heart of Darkness' amongst the
maintainers of Ada. Woe unto all who
enter here (well, at least unto anyone that
needs to understand any of these rules)."

The ARG freely admits that no one
understands 3.10.2, which means that
what you get when you use anonymous
access types is whatever the compiler
writer thinks it says. This may differ
between compilers and between different
versions of the same compiler, and from
what you think it says.

So no sane person uses them.

From: Blady <p.p11@orange.fr>
Date: Thu, 7 Sep 2023 18:06:15 +0200

Thanks Dmitry, also Gautier and Jeff for
your previous answers.

Well, I was questioning myself about the
choice between named access and
anonymous access in the old Ada port of
Java library, for instance:

 type Typ;

 type Ref is access all Typ'Class;

 type Typ(LayoutManager2_I :

 Java.Awt.LayoutManager2.Ref;

 Serializable_I : Java.Io.Serializable.Ref)

 is new Java.Lang.Object.Typ

 with null record;

 -- Constructor Declarations --

 function New_BorderLayout

 (This : Ref := null) return Ref;

 function New_BorderLayout

 (P1_Int : Java.Int;

 P2_Int : Java.Int;

 This : Ref := null) return Ref;

 -- Method Declarations --

 procedure AddLayoutComponent

 (This : access Typ;

 P1_Component : access

 Standard.Java.Awt.

 Component.Typ'Class;

 P2_Object : access

 Standard.Java.Lang.

 Object.Typ'Class);

 function GetLayoutComponent

 (This : access Typ;

 P1_Object : access

 Standard.Java.Lang.

 Object.Typ'Class)

 return access Java.Awt.Component.

 Typ'Class;

Why choose named access for
New_BorderLayout and anonymous
access for AddLayoutComponent or
GetLayoutComponent for the type of
parameters P1_xxx and the return type?

Why not all named or all anonymous?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 7 Sep 2023 18:18:11 +0200

> Why choosing named access for
New_BorderLayout and anonymous
access for AddLayoutComponent

It's very poor design to have access types
in the visible part of a non-private pkg
spec.

From: Blady <p.p11@orange.fr>
Date: Thu, 7 Sep 2023 21:10:12 +0200

> It's very poor design to have access
types in the visible part of a non-private
pkg spec.

I got your point :-)

But, in this specific case, I was wondering
why not writing all with named access or
all with anonymous access?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 7 Sep 2023 22:23:37 +0200

> Well, I was questioning myself about
the choice between named access and
anonymous access in the old Ada port
of Java library [...]

Contravariance is unsafe. I gather that
Typ is tagged. If you ever derive from it,
it will "inherit" the broken construction
function, because the function is class-
wide. The safe choice here is anonymous
access. The compiler will require to
override the construction function. That is
for the return value. The case for the
argument depends. Again anonymous
access type is handier but if you going to
copy/store references, then named types
are better.

> Why not all named or all anonymous?

My rough rule is like this:

Do not expose access types if you can.

If you successfully hide them either
completely or by declaring them private,
then named they go.

If you expose access types, then
anonymous access is usually a better
choice because it is easier to use,
especially when access is merely to work
around language limitations on
argument/result passing (unconstrained
object, access rules nightmare) AKA

Ada Pract ice 187

Ada User Journal Volume 44, Number 3, September 2023

closures. Then it is much safer in a
hierarchy of types and it is more use-
clause friendly.

Is Gnoga Dead?

From: Reinert <reinkor@gmail.com>
Subject: Is gnoga dead?
Date: Sat, 9 Sep 2023 02:02:46 -0700
Newsgroups: comp.lang.ada

I asked google bard:
"Is gnoga currently maintained?"

And it answered:

"No, Gnoga (Ada) is also no longer
maintained. It was a fork of the original
Gnoga project that was created in 2012.
The last commit to the GitHub repository
was in 2016.

Gnoga (Ada) was an attempt to improve
the performance and scalability of Gnoga.
It used a different statistical approach to
NLG and was implemented in Ada.

There are a number of other NLG engines
available, such as GPT-3 and LaMDA,
which are more powerful and up-to-date
than Gnoga (Ada)."

Is this correct?

From: Blady <p.p11@orange.fr>
Date: Sat, 9 Sep 2023 11:53:36 +0200

Do you mean this one:
https://sourceforge.net/projects/gnoga?

If so, the answer is yes [it is maintained
–arm].

Could you please provide the link where
you found the above quoted text?

From: Reinert <reinkor@gmail.com>
Date: Sat, 9 Sep 2023 04:47:41 -0700

I just logged into my google account and
asked "bard"
(https://bard.google.com/?hl=en).

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 9 Sep 2023 13:59:00 +0200

> I asked google bard:

> [...]

 > Is this correct?

The presence of the word "also" in the
first sentence should be enough to tell you
that this is nonsense.

If you are asking about an "NLG engine"
named gnoga, then maybe this is correct.
If you are asking about the Ada web-
application framework Gnoga that Blady
maintains, then it's not correct.

From: Reinert <reinkor@gmail.com>
Date: Sat, 9 Sep 2023 09:46:26 -0700

Good to hear.

Yes, did mean the Ada web-application
framework.

From: Stéphane Rivière
<stef@genesix.org>

Date: Sat, 9 Sep 2023 19:55:56 +0200

Gnoga is not dead, being maintained by
Pascal, Gautier and other individuals and
companies.

Expect a pleasant surprise (imho) before
the end of the year (with full web demos).
v22 manual abstract:

1 About v22 framework
1.1 Ready to use in production
v22 is a general purpose, KISS oriented,
modular Ada framework for GNU/Linux
Debian/Ubuntu service, console and web
programs.

v22 is composed of many packages in
charge of UTF-8 strings, program and OS
functions, HTTP(s)/WS(s) web
framework, integrated cURL, console
handling and text files, advanced network,
MySQL and SQLite high level binding,
logging and configuration files handling.

Although based on the v20 library, the
v22 framework represents a major step
forward in the following areas:

- UTF-8 compatibility;

- Simplified string processing (only one
UTF-8 String type is used);

- Internationalization;

- New and extended database API;

- Extended database access to MySQL, in
addition to SQLite, with schema on-the-
fly update at table, index, and column
level;

- Improved concurrent access and
performance for SQLite;

- New LGPLv3 licensing instead of
GPLv3;

- New FSF GNAT GCC Linux ready-to-
use development environment for v22
(not tied anymore to GPLv2 license);

- And much more.

1.2 Cooperative and open

v22's native dependencies are Gnoga,
Simple_Components, UXStrings and
Zanyblue.

v22 is both a high-level framework and an
extension to the lower level components
cited above. v22 has been designed to:

- Use unmodified components;

- Not "reinvent the wheel". Component
functions are to be used first;

- Offer higher-level functions or functions
that do not exist in the components.

.../...

In short:

- UXStrings is used throughout v22. The
v22.Uxs package extends UXStrings
functionality. The v22.Sql package
extends the functionality of
Gnoga.Server.Database. The v22.Gui

graphics framework is based on
Gnoga.Gui;

- v22's architecture allows it to be open to
additional packages, depending on the
software development required.

From: Reinert <reinkor@gmail.com>
Date: Sat, 9 Sep 2023 23:51:12 -0700

Sounds like I can somehow trust that
gnoga will be around for many years to
come.

So my special issue: I work on making
my (cancer) cellular behavior analysis
program (https://korsnesbiocomputing.no)
as a "cloud service". It's all programmed
in Ada using GLOBE_3D. I am
considering using guacamole apache. It's
intensive about handling images. So what
are the arguments for and against using
guacamole (as compared to for example
guacamole apache)?

From: Stéphane Rivière
<stef@genesix.org>

Date: Mon, 11 Sep 2023 09:52:45 +0200

> Sounds like I can somehow trust that
gnoga will be around many years to
come.

I think so.

> So my special issue: I work on making
my (cancer) cellular behavior analysis
program
(https://korsnesbiocomputing.no) as a
"cloud service".

Very interesting indeed.

> [...] So what are the arguments for and
against using guacamole (as compared
to for example guacamole apache)?

No idea. My first concerns could be
scaling.

From: Reinert <reinkor@gmail.com>
Date: Mon, 11 Sep 2023 23:00:45 -0700

Did mean *gnoga* (as compared to,
for example, guacamole apache) :-)

From: Stéphane Rivière
<stef@genesix.org>

Date: Tue, 12 Sep 2023 09:16:52 +0200

> Did mean *gnoga* (as compared to
for example guacamole apache) :-)

No, sorry, I was thinking more of
Guacamole. Not really fond of a remote
desktop vs a true Web app... But maybe
I'm wrong...

Aggregate with Derived
Types

From: Blady <p.p11@orange.fr>
Subject: Aggregate with derived types.
Date: Thu, 14 Sep 2023 16:02:39 +0200
Newsgroups: comp.lang.ada

I want to extend a container type like
Vectors, I've written:

 type My_Float_List2 is new

 My_Float_Lists.Vector with null record;

188 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

But the initialization gives an error line 6:

 1. with Ada.Containers.Vectors;

 2. with Ada.Text_IO;

 3. procedure

 test_20230914_derived_agg is

 4. package My_Float_Lists is new

 Ada.Containers.Vectors (Positive, Float);

 5. subtype My_Float_List1 is

 My_Float_Lists.Vector;

 6. type My_Float_List2 is new

 My_Float_Lists.Vector with null record;

 7. ML1 : My_Float_List1 := [-3.1, -6.7,

 3.3, -3.14, 0.0];

 8. ML2 : My_Float_List2 := ([-3.1, -6.7,

 3.3, -3.14, 0.0] with null record); |

 >>> error: no unique type for this

 aggregate

 9. begin

 10. Ada.Text_IO.Put_Line

 (ML1.Element (3)'Image);

 11. Ada.Text_IO.Put_Line

 (ML2.Element (3)'Image);

 12. end test_20230914_derived_agg;

The RM says:

4.3.2 Extension Aggregates

1 [An extension_aggregate specifies a
value for a type that is a record extension
by specifying a value or subtype for an
ancestor of the type, followed by
associations for any components not
determined by the ancestor_part.]

Language Design Principles

1.a The model underlying this syntax is
that a record extension can also be viewed
as a regular record type with an ancestor
"prefix".

The record_component_association_list
corresponds to exactly what would be
needed if there were no ancestor/prefix
type. The ancestor_part determines the
value of the ancestor/prefix.

Syntax
2 extension_aggregate ::=
(ancestor_part with
record_component_association_list)
3 ancestor_part ::= expression |
subtype_mark

It is not so clear for me what a unique
type could be? Any clue?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 14 Sep 2023 17:31:47 +0200

IIUC, you have to qualify the value:

 (My_Float_List1'[-3.1, -6.7, 3.3, -3.14, 0.0]

 with null record)

or

 (My_Float_Lists.Vector'[-3.1, -6.7, 3.3,

 -3.14, 0.0] with null record)

(not tested)

From: Blady <p.p11@orange.fr>
Date: Thu, 14 Sep 2023 22:00:19 +0200

Thanks Jeff, both proposals are compiled
ok by GNAT.

I wonder why the float list aggregate isn't
inferred by the compiler and need some
help with a qualification.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 14 Sep 2023 23:37:47 +0200

I'm not sure. But can't you simply write

 ML2 : My_Float_List2 := [-3.1, -6.7, 3.3,

 -3.14, 0.0];

? I presume that My_Float_List2 inherits
its aggregate definition from
My_Float_List1.

From: Blady <p.p11@orange.fr>
Date: Fri, 15 Sep 2023 09:27:57 +0200

Unfortunately not directly:

 10. ML2c : My_Float_List2 := [-3.1, -6.7,

 3.3, -3.14, 0.0]; |

 >>> error: type of aggregate has private

 ancestor "Vector"

 >>> error: must use extension aggregate

Shouldn't it inherit them?

Indeed you have it if you defined a private
extension with explicit aspects:

 package PA is

 type My_Float_List3 is new

 My_Float_Lists.Vector with private

 with

 Constant_Indexing =>

 Constant_Reference,

 Variable_Indexing => Reference,

 Default_Iterator => Iterate,

 Iterator_Element => Float,

 Aggregate =>

 (Empty => Empty,

 Add_Unnamed => Append,

 New_Indexed => New_Vector,

 Assign_Indexed =>

 Replace_Element);

 function Constant_Reference

 (Container : aliased My_Float_List3;

 Index : Positive) return

 My_Float_Lists.

 Constant_Reference_Type is

 (My_Float_Lists.Constant_Reference

 (My_Float_Lists.Vector

 (Container), Index));

 function Reference (Container : aliased

 in out My_Float_List3;

 Index : Positive) return

 My_Float_Lists.Reference_Type is

 (My_Float_Lists.Reference

 (My_Float_Lists.Vector (Container),

 Index));

 private

 type My_Float_List3 is new

 My_Float_Lists.Vector with

 null record;

 end PA;

 ML3 : PA.My_Float_List3 := [-3.1, -6.7,

 3.3, -3.14, 0.0];

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 16 Sep 2023 01:39:57 -0500

> I wonder why the float list aggregate
isn't inferred by the compiler and need
some help with a qualification.

The language rule is that the ancestor_part
of an extension aggregate is expected to
be of "any tagged type" (see 4.3.2(4/2)).
An aggregate needs to have a single
specific type, and "any tagged type" is not
that.

The reason that the ancestor is "any
tagged type" is that the type of the
ancestor determines the extension
components needed along with other
legality rules. One could imagine a
language where all of these things are
decided simultaneously, but people
worried that the complexity would make
it difficult/impossible to implement. So
aggregates are essentially black boxes
whose type has to be determinable from
the outside, and similar rules exist for
parts inside the aggregate.

Project Euler 29

From: Csyh (Qaq) <schen309@asu.edu>
Subject: project euler 29
Date: Fri, 15 Sep 2023 02:03:16 -0700
Newsgroups: comp.lang.ada

Now this time, I am facing trouble for
problem #29.

[How many *distinct* terms are in the
sequence (for a in 2 .. 100 => (for b in 2 ..
100 => a**b))? –arm]

As I know integer type is for 32 bits. but
for this problem as me to find out the 2 **
100 and even 100 ** 100.

I used Python to get the answer correctly
in 5 minutes.

context = []

for a in range(2,101):

 for b in range(2,101):

 context.append(a**b)

len(list(set(context)))

I know the algorithm is easy, but I am
pretty interested in how to calculate a
large [?] like it. And thanks for the help
from problem 26, your discussions come
to me every working hour.

For this problem I want to know how to
know is there an easy way to store a large
number like 100 ** 100, and how do you
make a similar function like "set(context)"
to delete the duplicate value in a vector.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 15 Sep 2023 11:50:42 +0200

> for this problem I want to know how to
know is there an easy way to store a
large number like 100 ** 100, and how
do U make a similar function like
"set(context)" to delete the duplicated
value in a vector.

You will need an unbounded-integer pkg.
If you want to write portable code in a
standard language, then you can write
Ada 12 using a library such as
PragmARC.Unbounded_Numbers.
Integers

Ada Pract ice 189

Ada User Journal Volume 44, Number 3, September 2023

(https://github.com/jrcarter/
PragmARC/blob/Ada-12/
pragmarc-unbounded_numbers-
integers.ads). This will compile with both
GNAT and ObjectAda.

If you want to write non-portable code in
a non-standard, Ada-like language, then
you can use the GNAT language, which is
mostly Ada 12 with some Ada 23
features, one of which is the Ada-23
standard package Ada.Numerics.
Big_Numbers.Big_Integers
(http://www.ada-auth.org/
standards/22aarm/html/AA-A-5-6.html).
This can only be compiled with GNAT.
Note that, unlike PragmARC.
Unbounded_Numbers.Integers, GNAT's
implementation of Ada.Numerics.
Big_Numbers.Big_Integers is not truly
unbounded. I don't know if it will hold
101 ** 101 without modification.

You can store the results directly in a set
from the standard library to avoid
duplicate values. If I understand your
Python (probably not), you would want to
output the result of Length for the
resulting set.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Fri, 15 Sep 2023 16:42:38 +0100

> I know the algorithm is easy [...]

Most of the Project Euler problems have
solutions that are not always the obvious
one (though sometimes the obvious one is
the best). You can, of course, just use a
big number type (or write your own!) but
this problem can be solved without having
to use any large numbers at all.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 15 Sep 2023 18:34:21 +0200

> As I know integer type is for 32 bits [...]

I missed this the first time.

No, you don't know that Integer is 32 bits.
ARM 3.5.4 (21)
[http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-3-5-4.html]
requires "In an implementation, the range
of Integer shall include the range
–2**15+1 .. +2**15–1."

There are compilers for which Integer is
less than 32 bits, so assuming otherwise is
not portable. I know a lot of people don't
care about portability, but I've also seen
projects that spent large sums porting
code that they thought didn't have to be
portable. The cost of writing portable
code is usually much smaller than the cost
of porting non-portable code.

Of course, you can always declare your
own integer type with whatever range is
appropriate for your problem, though the
compiler doesn't always have to accept it.
I don't know of any compiler that doesn't
accept 32-bit integer declarations, nor any
targeting 64-bit platforms that doesn't

accept 64-bit integers. But you're unlikely
to find a compiler that will accept
range 2 .. 101 ** 101

In King (https://github.com/jrcarter/King)
the compiler must accept all integer type
declarations.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Fri, 15 Sep 2023 11:04:27 -0700

> I don't know if it will hold 101 ** 101
without modification.

It only has to hold 100 ** 100. The
Python code in the parent uses the
expression `range(2,101)`. Python's
range() function yields a range that
includes the first bound and excludes the
second bound.

From: Francesc Rocher
<francesc.rocher@gmail.com>

Date: Sat, 16 Sep 2023 03:07:06 -0700

Please take a look at this solution:

https://github.com/rocher/
alice-project_euler-rocher/blob/
main/src/0001-0100/
p0029_distinct_powers.adb

It's not using any big numbers library.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 17 Sep 2023 15:54:12 -0700

> Also, do you have a different approach
to solve this 29th problem?

I see two natural approaches: 1) use
bignums--it didn't occur to me to not use
them until this discussion. 2) Notice that
a**b == c**d exactly when the two sides
have the same prime factorization, and the
factors of a**b are just the factors of a
repeated b times, so you can count up the
distinct tuples of factors.

Method #2 is efficient (since a,b,c,d are
all < 100) and doesn't use bignums, but it
is a fair amount of code to write unless
you have convenient libraries at hand for
factorization and can easily count sets of
distinct tuples. I guess there are fancier
approaches possible too, that avoid
searching 100**2 combinations, but
100**2 is just 10000 which is small.

Certainly both are easier to do if your
language or libraries has convenient
features for dealing with variable sized
objects like bignums, or sets of tuples.
The bignum approach is less efficient but
it is much easier to code. The Python
expression

len(set(a**b for a in range(2,101) for b in

range(2,101)))

takes around 25 msec to compute on my
old slow laptop.

I will look at your Ada solution!

From: Paul Rubin
<no.email@nospam.invalid>

Date: Sun, 17 Sep 2023 17:09:38 -0700

>> Also, do you have a different approach
to solve this 29th problem?

> Yes, but it's not in Ada. I implemented
an equality test for a^b == c^d.

Oh interesting, based on a comment in
Francesc's code, I think I see a method to
do it without the auxiliary array, at a
small increase in runtime cost. Basically
given a and b, you can find their prime
factors and easily enumerate the
combinations x,y with a**b==x**y and 1
<= x,y <= 100. You can label each
"equivalence class" by the (a,b) with the
smallest possible a.

So you just loop through 1 <= a,b <= 100
and count only the a,b pairs where a is the
smallest a for its equivalence class. I
might see if I can code this, which should
also let me describe it more concisely.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>

Date: Mon, 18 Sep 2023 01:16:19 +0100

> So you just loop through 1 <= a,b <=
100 and count only the a,b pairs where
a is the smallest a for its equivalence
class.

This is likely to be fast which is why I
wanted to compile Francesc's to try it out.
Mind you, a naive a^b == c^d test gives
pretty good performance for the kind of
range requested.

Get Character and Trailing
New Lines

From: Blady <p.p11@orange.fr>
Subject: Weird behavior of Get character

with trailing new lines.
Date: Fri, 22 Sep 2023 21:30:15 +0200
Newsgroups: comp.lang.ada

I'm reading a text file with Get character
from Text_IO with a while loop
controlled by End_Of_File.

% cat test_20230922_get_char.adb

with Ada.Text_IO; use Ada.Text_IO;

procedure test_20230922_get_char is

 procedure Get is

 F : File_Type;

 Ch : Character;

 begin

 Open (F, In_File,

 "test_20230922_get_char.adb");

 while not End_Of_File(F) loop

 Get (F, Ch);

 Put (Ch);

 end loop;

 Close (F);

 Put_Line ("File read with get.");

 end;

begin

Get;

end;

All will be well, unfortunately not!

Despite the End_Of_File, I got an
END_ERROR exception when there are

190 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

several trailing new lines at the end of the
text:

[...] Execution of

../bin/test_20230922_get_char terminated by

unhandled exception

raised ADA.IO_EXCEPTIONS.END_ERROR

: a-textio.adb:517

The code is compiled with GNAT, does it
comply with the standard?

A.10.7 Input-Output of Characters and
Strings

For an item of type Character the
following procedures are provided:

 procedure Get(File : in File_Type;

 Item : out Character);

 procedure Get(Item : out Character);

After skipping any line terminators and
any page terminators, reads the next
character from the specified input file and
returns the value of this character in the
out parameter Item. The exception
End_Error is propagated if an attempt is
made to skip a file terminator.

This seems to be the case, then how to
avoid the exception?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 22 Sep 2023 22:52:21 +0300

In Text_IO, a line terminator is not an
ordinary character, so you must handle it
separately, for example like this:

 while not End_Of_File(F) loop

 if End_Of_Line(F) then

 New_Line;

 Skip_Line(F);

 else

 Get (F, Ch);

 Put (Ch);

 end if;

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 22 Sep 2023 22:05:55 +0200

As you have quoted, Get (Character)
skips line terminators. End_Of_File
returns True if there is a single line
terminator before the file terminator, but
False if there are multiple line terminators
before the file terminator. So you either
have to explicitly skip line terminators, or
handle End_Error.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 23 Sep 2023 09:02:37 +0200

And this works only if the input file is
"well formed", i.e. if it has line
terminators as the compiler expects them
to be (f.e., you will be in trouble if the last
line has no LF). That's why I never check
End_Of_File, but handle the End_Error
exception. It always works.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 23 Sep 2023 11:39:25 +0300

Hm. The code I suggested, which handles
line terminators separately, does work
without raising End_Error even if the last
line has no line terminator, at least in the
context of the OP's program.

> That's why I never check End_Of_File,
but handle the End_Error exception. It
always works.

True, but it may not be convenient for the
overall logic of the program that reads the
file. That program often wants to do
something with the contents, after reading
the whole file, and having to enter that
part of the program through an exception
does complicate the code a little.

On the other hand, past posts on this issue
say that using End_Error instead of the
End_Of_File function is faster, probably
because the Text_IO code that
implements Get cannot know that the
program has already checked for
End_Of_File, so Get has to check for that
case anyway, redundantly.

My usual method for reading text files is
to use Text_IO.Get_Line, and (I admit)
usually with End_Error termination.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 23 Sep 2023 11:25:05 +0200

> [...] having to enter that part of the
program through an exception does
complicate the code a little.

It rather simplifies the code. You exit the
loop and do whatever is necessary there.

Testing for the file end is unreliable and
non-portable. Many types of files simply
do not support that test. In other cases the
test is not file immutable with the side
effects that can change the program logic.

It is well advised to never ever use it.

From: Blady <p.p11@orange.fr>
Date: Mon, 25 Sep 2023 21:55:56 +0200

Thanks all for your helpful answers.It
actually helps.

Especially, I was not aware of the
particular behavior of End_Of_File with a
single line terminator before the file
terminator.

In my case, I prefer to reserve exceptions
for exceptional situations :-) so I've taken
the code from Niklas' example.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Sep 2023 00:53:53 -0500

> And this works only if the input file is
"well formed"

Agreed. And if the file might contain a
page terminator, things get even worse
because you would have to mess around
with End_of_Page in order to avoid
hitting a combination that still will raise
End_Error. It's not worth the mental
energy to avoid it, especially in a program

that will be used by others. (I've
sometimes used the simplest possible way
to writing a "quick&dirty" program for
my own use; for such programs I skip the
error handling as I figure I can figure out
what I did wrong by looking at the
exception raised. But that's often a bad
idea even in that case as such programs
have a tendency to get reused years later
and then the intended usage often isn't
clear.)

'Valid Attribute and Input
Operations

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Subject: Valid attribute and input
operations

Date: Sat, 23 Sep 2023 13:22:09 -0700
Newsgroups: comp.lang.ada

I am in the middle of a heated debate with
Richard Riehle on LinkedIn, where we
cannot get to terms with regard to the
exact semantics of X'Valid in the context
of input operations performed by standard
Get procedure.

In short, consider the following example:

with Ada.Text_IO;

with Ada.Integer_Text_IO;

procedure Is_Valid_Test is

 X : Integer range 0..200;

begin

 Ada.Text_IO.Put("Get an Integer: ");

 Ada.Integer_Text_IO.Get(X);

 if X'Valid then

 Ada.Text_IO.Put_Line

 ("The Input is Valid ");

 else

 Ada.Text_IO.Put_Line

 ("The Input is not Valid ");

 end if;

end Is_Valid_Test;

When the input is 500, what should be the
behavior of this program?

There are two interpretations:

1. Get is an input operation and can create
invalid representations (as stated in
13.9.2, p.7). Then, the X'Valid test that
follows Get(X) can be used to safely
recognize whether the value is in the
range or not. The program should print
the second string (from the else
branch), but should not raise any
exceptions for this input (500).

2. Get is not an input operation in the
meaning referred to in 13.9.2/7, or is an
input, but only for type Integer (and it
cannot create invalid integer
representations on typical computers
anyway). The X variable is an actual
parameter that has a subtype that is
different from the formal parameter and
is subject to conversions when the Get
subprogram exits normally
(6.4.1/17,17a). This conversion should
raise Constraint_Error for this input
(500).

Ada Pract ice 191

Ada User Journal Volume 44, Number 3, September 2023

I have checked the above program on
several on-line compilers, all of them
behave according to interpretation 2
above.

Richard claims to get behavior 1 on his
compiler.

What is your take on this? Any language
lawyers?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 23 Sep 2023 23:48:49 +0200

> What is your take on this? Any
language lawyers?

The important thing is the definition of
Ada.Text_IO.Integer_IO.Get [ARM
A.10.8(7-10)]:

"... skips any leading blanks, line
terminators, or page terminators, then
reads a plus sign if present or (for a
signed type only) a minus sign if present,
then reads the longest possible sequence
of characters matching the syntax of a
numeric literal without a point. ...

"Returns, in the parameter Item, the value
of type Num that corresponds to the
sequence input.

"The exception Data_Error is propagated
if the sequence of characters read does not
form a legal integer literal or if the value
obtained is not of the subtype Num."

So a call to Get can only return a valid
value of type Num (Integer for your case)
or raise Data_Error.

If Get is reading "500" then that certainly
represents a valid value of type Integer,
and Get should copy that back to the
actual parameter.

If you are using Ada (a language with
run-time checks), then a check should be
made that the value is in the range of the
actual parameter's subtype, here Integer
range 0 .. 200. That should fail and
Constraint_Error should be raised.

However, if you are not using Ada
because that check has been suppressed,
then the actual parameter will be left with
the invalid value 500 and
Constraint_Error will not be raised.

If I build your program with checks
enabled, I get Constraint_Error. If I build
it with checks suppressed, I get the not-
valid message (GNAT 12.3).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 26 Sep 2023 01:13:53 -0500

I believe Jeffrey's analysis is correct.

Note that there are some special cases for
validity that are intended to make it easier
to write code like that you have. But they
only make sense for base subtypes (and
the type you have is not that). Moreover,
they are not foolproof -- execution is not
erroneous in these cases, but they still are

a bounded error, and it is always correct
for a bounded error to be detected and
raise Program_Error.

This can happen in practice, too. For
instance, for Janus/Ada, enumeration
types with specified representations
operate internally on the position
numbers, and thus reading an enumeration
variable will convert the representation to
a position number with a table lookup. If
the lookup fails, Program_Error is raised,
and that happens before the value ever
can be assigned to a named variable (and
thus before any possible test of validity). I
believe that we identified other similar
cases back in the day. Probably one of
them is the signalling NaN. Some bit
patterns for float values represent
signalling NaNs, which trap instantly if
read. That's at the hardware level on most
processors, so the only hope is to handle
the resulting exception. It's too late by the
time you get to 'Valid.

Moral: to make truly bulletproof code,
you have to handle exceptions AND use
'Valid. You probably can skip the
exceptions if everything is typed with
integer basetypes, but if any other kinds
of types are involved, they are necessary.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Tue, 26 Sep 2023 10:22:14 +0300

> ... for Janus/Ada, enumeration types
with specified representations operate
internally on the position numbers

Hm, that's interesting. Is that also the
representation for record components of
such an enumerated type?

For example, if I have:

 type Command is (Off, On) with Size

 => 4;

 for Command use (Off => 2, On => 5);

 type Two_Commands is record

 C1, C2: Command;

 end record

 with Pack, Size => 8;

 TwoC : Two_Commands :=

 (C1 => On, C2 => Off);

will the record components (in memory)
have the values C1 = 1 and C2 = 0
(position numbers) or C1 = 5, C2 = 2
(specified representation)?

if they are represented by position
numbers in the record, many if not most
of my embedded Ada programs would fail
if compiled with Janus/Ada, because the
record values stored in I/O control
registers or accessed via DMA would be
wrong.

Damn, I thought those programs were not
so compiler-dependent :-(

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 27 Sep 2023 22:27:41 -0500

No, the specified representation is always
used when storing to memory (with the
single exception of loop parameters,
which cannot have address clauses or
other representation specifications). I
think even enum parameters are written in
the representation. However, any time an
enumeration value is read into a register it
is converted to a position number.
Usually, such values are used in indexing,
comparing, or an attribute like 'Pos or
'Succ, all of which are defined to work on
position numbers. But if you simply
assign the value out again, it will get
converted both ways. We do have an
optimization to remove pairs of
TOREP/DEREP, but not the reverse since
Program_Error is a possibility from
DEREP. (Well, unless unsafe
optimizations are on, but I don't
recommend using those for the obvious
reasons.)

Should Light Runtimes Get
More Consideration?

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Subject: Should light runtimes get more
consideration?

Date: Tue, 26 Sep 2023 11:44:02 -0000
Newsgroups: comp.lang.ada

I created the issue below a little while
ago. Today I wonder whether Ada 2022s
'Image attribute on records use of
Unbounded strings is for good reason. Is
it an oversight that Bounded String would
work with the new light runtime or String
with all runtimes including the older zero
footprint runtimes?

Perhaps it was decided that a light
runtime would not use this feature? And I
can certainly avoid it. However I use a
light runtime with 100s of kilobytes or
RAM and many gigabytes of flash.

Ada is a much nicer language than Rust
which uses unsafe all over for embedded
but one thing that is interesting is that I
believe all Rust code can be run easily on
any target. Should Ada aspire to that?

On the other hand, micros are becoming
multiprocessors bringing more demand
for tasking (protected types are not
compatible with a light runtime) but
personally I believe multi chip single core
designs are far better than multicore and
not only due to the impossibility of side
channel attacks like Spectre.

https://github.com/
Ada-Rapporteur-Group/
User-Community-Input/issues/67

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 27 Sep 2023 22:48:16 -0500

As noted on the ARG Github, you
confused the Unbounded version of
Text_Buffers with an unbounded string
(completely unrelated things), and

192 Ada Pract ice

Volume 44, Number 3, September 2023 Ada User Journal

moreover, failed to notice that the
language provides multiple ways to use a
Bounded Text_Buffer instead. So the
language addresses this particular
concern.

I don't know if GNAT implements all of
those ways (in particular, the restriction
Max_Image_Length), but that is hardly
the fault of the language!

For anyone else interested in this
particular discussion, I recommend
reading and following up on the ARG
Githib issue rather than here
(https://github.com/Ada-Rapporteur-
Group/User-Community-Input/issues/67).

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Thu, 28 Sep 2023 09:46:23 -0000

> Bounded Text_Buffer instead. So the
language addresses this particular
concern.

> I don't know if GNAT implements all of
those ways [...]

I see. I guess the error message could
suggest those options, too. Perhaps after
the 2022 GNAT support work is
completed.

That buffer support is pretty neat but my
main concern, which GNAT may (it may
not) address more than the current
language by providing a cortex runtime, is
that such demanding runtimes are brilliant
but I am not sure if even Ravenscar is
scalable to so many microchips such as
Rust is trying to support. That isn't a huge
issue but barriers to entry like having to
work out your own exception replacement
might be turning users away. Which is
unfortunate when Ada is the best
language out there by a significant margin
for embedded development or frankly any
protocol or hardware register use.

Of course others will rightly argue Ada is
the best due to many of the more complex
runtime features but that doesn't help with
the issue of ease of adoption on an
unsupported microchip that I have raised
above.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 14:25:18 +0100

When I started on Cortex GNAT RTS [1],
a large part of the motivation (aside from
the fun element) was that AdaCore's bare-
board RTSs were GPL'd (they still are).
Not that I cared about that, but other
people did.

I took the approach of AdaCore's SFP
(small footprint) profile, now renamed to
light tasking, which implemented
Ravenscar tasking but not exception
propagation or finalization.

The tasking part wasn't too hard, though I
think exception handling and finalization
might have made things more difficult.

Basing the tasking on FreeRTOS saved a
lot of grief (there are a couple of areas
when the resulting semantic isn't _quite_
Ada's).

I did some work on finalization, not
merged.

Exception handling, without finalization,
seemed a daunting prospect, specially
since the last project I worked on before
retirement regarded an unhandled
exception as requiring a reboot (and
ditching any missiles in flight).

The current implementation has about 17
files (1 .h, 1 .s, 9 .ads, 4 .adb) to
customise to the chip (setting up interrupt
vectors, the clock, and memory). There
are about 200 Ada sources that are
common.

AdaCore currently has 68 RTS packages
in the Alire gnat_arm_elf toolchain. 18 of
these are 'embedded' packages (full Ada,
but with Jorvik tasking). I'd be surprised
if they had a higher proportion of chip
dependency than my efforts. Most if not
all of the exception handling will be chip-
independent. I'm not sure how many of
the 90 or so Ada sources in the STM32F4
gnarl/ directory are actually chip-
dependent, I get the impression it's not
high.

So, unless you're going to use some target
that AdaCore haven't released support for,
your best bet must be to either use or at
worst start from the available RTS
packages.

[1] https://github.com/simonjwright/
cortex-gnat-rts

From: Drpi <314@drpi.fr>
Date: Thu, 28 Sep 2023 19:51:57 +0200

> I'm not sure how many of the 90 or so
Ada sources in the STM32F4 gnarl/
directory are actually chip-dependent, I
get the impression it's not high.

Right, not high.

I've created 2 of them based on one of the
AdaCore RTS. I can't say it has been easy
since you first have to understand how it
works (and things change at each new
release). One important point is that some
critical parameters are hard coded in the
source code. Like the core frequency. You
MUST use a fixed clock frequency to get
correct time management (delays, ...).
This is why in their last version, you run a
script to generate part of the RTS source
code (frequency and other parameters are
injected in the source code). When you
change the core frequency you have to
regenerate the RTS binary.

I created the RTS to evaluate the potential
use of Ada on embedded targets. I have
never used them except for testing. The
main reason is that AdaCore RTS are
made for specific use (avionics, spatial...).
The code using these RTS must be
provable (or as provable as possible). This

induces big limitations. Tasking is very
limited. For example you can't use
timeouts. Never. They propose a
workaround but it is complex and not
equivalent to a real timeout management.
I'd like to have a full Ada RTS for
embedded targets, like on desktop. I don't
need to certify/prove my
hardware/software. Some people say
micro-controllers are too limited for this.
That's true for some of them. I use micro-
controllers with megabytes of FLASH
memory and hundreds of kilobytes of
RAM. Is this not enough?

From: Simon Wright
<simon@pushface.org>

Date: Thu, 28 Sep 2023 21:53:14 +0100

> I'd like to have a full Ada RTS for
embedded targets, like on desktop.

Have you considered using something
like a Raspberry Pi?

From: Drpi <314@drpi.fr>
Date: Thu, 28 Sep 2023 23:18:15 +0200

> Have you considered using something
like a Raspberry Pi?

A RaspberryPi is a computer (based on a
microprocessor with an OS), not a
microcontroller. It consumes a lot of
electrical power. The OS (linux) is not
real time. It uses a lot of board space. The
processor is a proprietary black box...

From: Chris Townley
<news@cct-net.co.uk>

Date: Fri, 29 Sep 2023 00:51:11 +0100

> A RaspberryPi is a computer [...]

Plenty use the Raspberry Pi as a
microcontroller.

From: Kevin Chadwick <kc-
usenet@chadwicks.me.uk>

Date: Fri, 29 Sep 2023 09:59:37 -0000

>Plenty use the Raspberry Pi as a
microcontroller.

I think Simons point was that ARM/Linux
has a working full runtime. I guess bare
Raspberry Pi would not and I guess it
would be a rather large module or board
or single board computer depending on
the model.

WRT energy use. I use a low power run
feature on the STM32L4 which means the
system clock speed can change at any
time. That seems to be incompatible with
any runtime that I have seen except the
minimal light-cortex-m4 one. I assume
working with clocks is more scalable than
working with runtimes but I do not know
for sure.

From: Chris Townley
<news@cct-net.co.uk>

Date: Fri, 29 Sep 2023 11:42:08 +0100

> I think Simons point was that
Arm/Linux has a working full runtime.
[...]

Ada Pract ice 193

Ada User Journal Volume 44, Number 3, September 2023

Agreed, but in addition to the mainline Pis
there is the Zero, and the Pico, which has
a 'RP2040' made by Raspberry Pi and is a
dual-core ARM Cortex M0+ processor,
with a flexible clock running up to
133MHz.

From: Drpi <314@drpi.fr>
Date: Fri, 29 Sep 2023 15:42:17 +0200

> WRT energy use. I use a low power run
feature on the STM32L4 which means

the system clock speed can change at
any time. [...]

The fact that the clock speed is hard
coded is a design choice. It simplifies the
time management. It makes the runtime
more "hard real time" compliant since
there are less computations to be done at
execution.

From: Drpi <314@drpi.fr>
Date: Fri, 29 Sep 2023 15:44:31 +0200

> [...] which has a 'RP2040' made by
Raspberry Pi and is a dual-core ARM
Cortex M0+ processor, with a flexible
clock running up to 133MHz

A runtime for the RP2040 already exists.
It is based on the AdaCore ARM runtimes
so it has the same limitations.

