

Ada User Journal Volume 43, Number 4, December 2022

ADA
USER
JOURNAL

Volume 43

Number 4

December 2022

Contents
Page

Editorial Policy for Ada User Journal 196

Editorial 197

Quarterly News Digest 198

Conference Calendar 213

Forthcoming Events 217

AEiC 2022 BoF Session

 J. P. Rosen. “Report on the ASIS BoF Session: The Future of ASIS and Vendor Independent Tools” 221

Proceedings of the “Workshop on Challenges and New Approaches for Dependable and

Cyber-physical Systems Engineering” of AEiC 2022

 W. John et al. “ANIARA Project - Automation of Network Edge Infrastructure and Applications
with Artificial Intelligence” 223

 A. Balador, S. Sinaei, M. Pettersson, I. Kaya. “DAIS Project - Distributed Artificial Intelligence
Systems: Objectives and Challenges” 227

 A. Bagnato, A. Cicchetti, L. Berardinelli, H. Bruneliere, R. Eramo. “AI-Augmented Model-Based
Capabilities in the AIDOaRt Project: Continuous Development of Cyber-physical Systems” 230

 A. Bagnato, J. Krasnod�bska. “MORPHEMIC - Optimization of the Deployment and Life-Cycle
Management of Data-Intensive Applications in the Cloud Computing Continuum” 235

 A. Imbruglia, D. Cancila, M. Settembre. “5G Communication and Security in Connected Vehicles” 240

 R. Sousa, E. Sabate, M. González-Hierro, A. Barros, C. Zubia, L. M. Pinho, E. Kartsakli.

“Managing Non-functional Requirements in an ELASTIC Edge-Cloud Continuum” 245

Proceedings of the “HILT’22 - Supporting a Rigorous Approach to Software Development

Workshop”

 C. Dross. “Containers for Specification in SPARK” 249

 S. Tucker Taft. “Rigorous Pattern Matching as a Language Feature” 255

 D. Larraz, C. Tinelli. “Finding Locally Smallest Cut Sets using Max-SMT” 261

 L. Humphrey. “Basic Formal Verification of a Waypoint Manager for Unmanned Air Vehicles
in SPARK” 269

Ada-Europe Associate Members (National Ada Organizations) 277
Ada-Europe Sponsors Inside Back Cover

196

Volume 43, Number 4, December 2022 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and December.

Copy Date: is the last day of the month

of publication.

Aims
Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics, such

as reliable software technologies, are

welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

� Refereed original articles on

technical matters concerning Ada

and related topics.

� Invited papers on Ada and the Ada

standardization process.

� Proceedings of workshops and

panels on topics relevant to the

Journal.

� Reprints of articles published

elsewhere that deserve a wider

audience.

� News and miscellany of interest to

the Ada community.

� Commentaries on matters relating

to Ada and software engineering.

� Announcements and reports of

conferences and workshops.

� Announcements regarding

standards concerning Ada.

� Reviews of publications in the field

of software engineering.

Further details on our approach to these

are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers
Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will be

relayed to the authors at the discretion

of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues
The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements
Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups to

find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be of

interest to them.

Reprinted Articles
While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it a

wider audience. This includes papers

published in North America that are not

easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries
We publish commentaries on Ada and

software engineering topics. These may

represent the views either of individuals

or of organisations. Such articles can be

of any length – inclusion is at the

discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports
We are happy to publicise and report on

events that may be of interest to our

readers.

Reviews
Inclusion of any review in the Journal is

at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to print

reviews submitted From: elsewhere at

the discretion of the Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be rapid.

Currently, accepted papers submitted

electronically are typically published 3-

6 months after submission. Items of

topical interest will normally appear in

the next edition. There is no limitation

on the length of papers, though a paper

longer than 10,000 words would be

regarded as exceptional.

 197

Ada User Journal Volume 43, Number 4, December 2022

Editorial

I would like to start this editorial by referring to the convergence between the Ada User Journal and the sister publication Ada

Letters, promoted by the existing collaboration between Ada-Europe and ACM SIGAda. This makes it easier to establish and

maintain a collaboration for sharing content between the two publications. The expected benefits are both for readers, who gain

access to richer content, and contributors, who reach a wider audience. We plan to continue this collaboration while moving

towards a possible unification of the two publications, such that all subscribers of the AUJ and the Ada Letters, typically

members of Ada-Europe or ACM SIGAda, will be receiving the same and a single publication at some (hopefully) near future.

Concerning the contents of this last issue of 2022, we include the proceedings of DeCPS 2022, the “Workshop on Challenges

and New Approaches for Dependable and Cyber-physical Systems Engineering” that took place with AEiC 2022, and the initial

part of the proceedings of “HILT 2022 - Supporting a Rigorous Approach to Software Development Workshop”, the seventh

in the HILT series of conferences and workshops focused on the use of High Integrity Language Technology. Overall, we

include 10 papers, covering the work being done in several projects in the CPS and IoT areas (ANIARA, DAIS, AIDOaRt,

MORPHEMIC, ELASTIC), providing insights on cybersecurity challenges when using 5G, addressing language-related topics

(how to use containers for specification in SPARK, and how to exploit pattern matching as a programming language feature),

and proposing approaches related to the application of formal methods for system development and verification. We hope the

reader will appreciate the quality of these technical contents.

I would like to add a note to highlight a short contribution by Jean-Pierre Rosen, reporting on the ASIS Birds-of-a-Feather

Session that took place in AEiC 2022, and to highlight the new process for commenting on the Ada language standard, which

is fully explained on page 219.

Finally, and as usual, we include the News Digest section prepared by its editor, Alejandro Mosteo, and the Calendar and Events

section prepared by Dirk Craeynest, which closes with a two-page announcement of AEiC 2023 to be held mid-June in Lisbon.

 Antonio Casimiro
Lisboa

December 2022
 Email: AUJ_Editor@Ada-Europe.org

198

Volume 43, Number 4, December 2022 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 198
Ada-related Events 198
Ada-related Resources 200
Ada-related Tools 201
References To Publications 205
Ada and Other Languages 205
Ada Practice 206

[Messages without Subject:/Newsgroups:
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor
Dear Reader,

Do not miss the upcoming Ada-Europe
2023 conference, for which an
announcement can be found in this issue
[1]. The conference will be celebrated, as
always, in mid-June and will take place
this year in lovely Lisbon.

I will also take this opportunity to
congratulate Fabien Chouteau on
receiving the 2022 ACM SIGAda Award
for Outstanding Ada Community
Contributions [2]. This award is entirely
deserved, and I look forward to seeing his
future initiatives to promote the Ada
language in the open source community.

Finally, with this issue, we are mostly
caught up and back on track with our
regular news schedule. Remember that the
last News Digest included only timely
announcements, as the issue devoted most
of its space to technical papers.

[1] “CfC 27th Ada-Europe Int. Conf.
Reliable Software Technologies”, in
Ada-related Events.

[2] “Winners of 2022 ACM SIGAda
Awards”, in Ada-related Events.

Sincerely,
Alejandro R. Mosteo.

Ada-related Events
ACM SIGAda HILT'22
Workshop on Supporting
Rigorous S/W Development
[Event in the past, for the record. —arm]

From: Tucker Taft
<tucker.taft@gmail.com>

Subject: Re: ACM SIGAda HILT'22
Workshop on Supporting Rigorous S/W
Development -- Oct 14, 2022

Date: Tue, 4 Oct 2022 13:59:44 -0700
Newsgroups: comp.lang.ada

There is now an online option for
attending the ACM SIGAda HILT'22
workshop featuring Niko Matsakis and
Rustan Leino.

Anyone registered for the workshop will
receive a link allowing use of Zoom
and/or the "Whova" app to attend the
workshop remotely. The organizers of the
associated conference (ASE'22) have
indicated that remote attendees may
register at the lowest attendee price
("Student Member"). So if you or a
colleague might be interested in
participating in the workshop remotely,
please register soon for the October 14th
workshop, at: https://conf.researchr.org/
attending/ase-2022/registration
and indicate "Student Member" as your
category of attendee.

[Original announcement omitted. —arm]

For more information see:
https://conf.researchr.org/track/
ase-2022/ase-2022-workshop-hilt-22

#formalmethods #softwareengineering
#ada #rust #spark #dafny #ACM #ASE

FOSDEM 2023: Call for
Devroom
From: Mockturtle

<framefritti@gmail.com>
Subject: FOSDEM 2023: call for devroom.

Deadline: 18/10
Date: Sun, 9 Oct 2022 10:11:14 -0700
Newsgroups: comp.lang.ada

Dear all,
I just discovered that on 29/9 FOSDEM
2023 published the Call for DevRoom.

The deadline for the proposal is 18/10.

https://fosdem.org/2023/news/
2022-09-29-call_for_devrooms/

From: Dirk Craeynest
<dirk.craeynest@gmail.com>

Date: Sun, 9 Oct 2022 23:17:28 -0700
> I just discovered that on 29/9 FOSDEM

2023 published the Call for DevRoom.

We've been working behind the scenes on
this already. Stay tuned for an
announcement with more details on the
AdaFOSDEM mailing list in the very near
future!

Fer and Dirk

Winners of 2022 ACM
SIGAda Awards
From: Tucker Taft

<tucker.taft@gmail.com>
Subject: ANN: Winners of 2022 ACM

SIGAda Awards
Date: Fri, 21 Oct 2022 11:54:27 -0700
Newsgroups: comp.lang.ada

ACM Special Interest Group on Ada
(SIGAda) is pleased to announce the
following SIGAda awards for 2022.

==========
Winner of the 2022 Robert Dewar Award
for Outstanding Ada Community
Contributions, for broad, lasting
contributions to Ada technology and
usage:

Fabien Chouteau

Fabien Chouteau has been the lead of
AdaCore's Ada Community outreach
activities for many years. He has been the
energy behind the "Make With Ada" and
"Crate of the Year" contests, and has
invigorated the Ada hobbyist market by
encouraging support of amateur Ada
champions, fostering the development of
the excellent Alire package manager for
Ada, and working to move all AdaCore
libraries from GPL to a more permissive
("Apache 2.0") license.

==========
Winner of the 2022 ACM SIGAda
Distinguished Service Award, for
exceptional contributions to SIGAda
activities and products:

Luis Miguel Pinho

Luis Miguel Pinho (PhD SMIEEE
SMACM) is a Professor and Researcher
in the Computer Engineering Department
of the Polytechnic of Porto - School of

Ada-related Events 199

Ada User Journal Volume 43, Number 4, December 2022

Engineering (ISEP), in Portugal. Miguel
is the current editor of Ada Letters and
serves as the SIGAda Secretary-
Treasurer. He was a member of the
Research Center in Real-Time and
Embedded Computing Systems, and
Executive Director of the Porto Research,
Technology & Innovation Center. He
served as General Chair and Program Co-
Chair of Ada-Europe 2006 and General
Co-Chair of ARCS 2015, was a Keynote
Speaker at RTCSA 2010 and Program
Co-Chair of Ada-Europe 2012, Ada-
Europe 2016 and RTNS 2016. He was
Editor-in-Chief of the Ada User Journal,
and is a member of the HiPEAC network
of excellence.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Wed, 26 Oct 2022 02:39:03 -0700

Thanks a lot Tuck,
I am honored to receive the ACM SigAda
award for my contribution to the Ada
community.

It's been a blast working towards the
broader adoption of Ada/SPARK,
improving the ecosystem, and seeing the
community evolve along the years. And
this is a good opportunity for me to thank
everyone who contributed to this effort,
and/or who believed in our vision for the
future of the Ada/SPARK community.

There is still a lot to do obviously, and I
think the biggest challenge is to show
those who have already seen Ada in the
past how the language and its ecosystem
have evolved. But we entered an exciting
time for Ada/SPARK, as more and more
people are questioning their choice of
programming languages.

In my opinion, the most important topics
for the future of Ada/SPARK are:

First, foster collaboration and welcome
newcomers. This is why Alire and its
ecosystem are game changing.

Second, spread awareness on the amazing
power of SPARK, and have it recognized
as the truly bleeding edge technology it is.

Third, use the technology to show what it
can do. Since my first "Make With Ada"
blog post in 2015, I have always been
convinced that the best way to advocate
for a technology is to use it. This is Make
With Ada means to me.

Happy hacking!

No Ada DevRoom in
FOSDEM 2023
From: Fernando Oleo Blanco

<irvise_ml@irvise.xyz>
Subject: No Ada DevRoom in FOSDEM

2023, alternative DevRooms and Ada-
Europe support

Date: Tue, 8 Nov 2022 12:41:17 +0100
Newsgroups: comp.lang.ada

Dear Ada community,

Our proposal for an Ada Developer Room
for FOSDEM 2023 has been declined. I
asked whether we could have a virtual
DevRoom just like in FOSDEM 2022, but
it seems unlikely. This means Ada will
(most likely) not take part in the new
edition of FOSDEM. We are saddened by
this decision, but the amount of proposals
was indeed very large: 88 DevRoom
proposals were submitted!

Nonetheless, we would like to encourage
Ada developers to submit presentations to
other DevRooms that may fit your
interests You can find the accepted
DevRooms in [1]. I think the rooms that
could be of interests to the Ada
community are "Confidential
Computing", "Embedded, Mobile and
Automotive", "FOSS Educational
Programming Languages", "Microkernel
and Component-based OS", "Open Source
Firmware, BMC and Bootloader" and
"Security". However, take a look at all the
proposals! Maybe you are writing some
RISC-V or networking software in Ada,
and there is a DevRoom just for it Please
keep the AdaFOSDEM mailing list [2]
informed about submissions and
definitely about accepted proposals: we'll
build a consolidated list of Ada-related
talks at FOSDEM 2023, as we did before
[3]. If you have any questions or issues,
we will gladly help you where we can.

We are also happy to announce that Ada-
Europe [4], after learning that there would
be no Ada DevRoom in FOSDEM, has
opened the possibility of adding a new
"DevRoom like" track in their 2023
conference [5]. The Ada-Europe
conference will take place in Lisbon
between the 13 and 16 of June, 2023. If
you are interested in this possibility,
please, contact Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> to let
him know.

Best regards,
The Ada FOSDEM team

[1] https://fosdem.org/2023/news/
2022-11-07-accepted-developer-rooms/

[2] http://listserv.cc.kuleuven.be/archives/
adafosdem.html

[3] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/21/
210206-fosdem.html

[4] http://www.ada-europe.org/

[5] http://www.ada-europe.org/
conference2023/cfp.html

Advent of Code 2022
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Advent of Code 2022
Date: Sun, 4 Dec 2022 03:50:09 -0800
Newsgroups: comp.lang.ada

In case you've missed it:
https://adventofcode.com/

There is even a chat room for Adaists
about it @ https://forum.ada-lang.io/

Enjoy!

Happy Birthday, Ada!
From: Jeffrey R.Carter

<spam.jrcarter.not@spam.acm.org.not>
Subject: Happy Birthday, Ada!
Date: Sat, 10 Dec 2022 11:35:20 +0100
Newsgroups: comp.lang.ada

Born this date in 1815/1980.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sat, 10 Dec 2022 03:31:23 -0800

Congratulation on Your Birthday,
Lady Ada

https://www.ada-deutschland.de/sites/
default/files/AdaTourCD/
AdaTourCD2004/Ada Magica/20.html

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sat, 17 Dec 2022 05:47:10 -0600

Also the 10th Anniversary of Ada 2012.

From: Adamagica
<christ-usch.grein@t-online.de>

Date: Sun, 18 Dec 2022 04:35:38 -0800
> Also the 10th Anniversary of Ada 2012.

- Randy.

I would have bet that this date would be
the release of ISO 2022. So it's going to
be 2023?

CfC 27th Ada-Europe Int.
Conf. Reliable Software
Technologies
From: Dirk Craeynest

<dirk@orka.cs.kuleuven.be>
Subject: CfC 27th Ada-Europe Int. Conf.

Reliable Software Technologies
Date: Tue, 20 Dec 2022 16:49:01 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[CfC is included in the Forthcoming
Events Section. —arm]

Post-Ada Workshop at Ada-
Europe 2023
From: Marius Amado-Alves

<amado.alves@gmail.com>
Subject: Post-Ada at Ada-Europe 2023

anyone?
Date: Wed, 21 Dec 2022 09:25:22 -0800
Newsgroups: comp.lang.ada

Would anyone be interested in co-
organizing or attending a Post-Ada
workshop at Ada-Europe 2023 (Lisbon,
13-16 June)?

Any thoughts appreciated.

200 Ada-related Resources

Volume 43, Number 4, December 2022 Ada User Journal

The "Post-Ada" concept has been debated
here in CLA. It encompasses lessons
learnt from the three decade long Ada
experiment, ideas for betterment of the
language, and creation of languages anew,
like Parasail and King.

One way to approach the 'problem' would
be to classify features of Ada as "keep,
kill, or to be improved," for example:

- loop statements: keep

- function expressions: keep

- cursors: kill

- attributes vs. operations (tick vs. dot):
kill

- inheritance: to be improved

- Unicode characters and strings: to be
improved

A general issue could be to compare or
harmonize this approach with the future
(?) revision of Ada via Ada Issues.
Personally I feel Ada (202X) is already
too big to grow anymore. I suspect
compiler maintainers would agree, and
hope they could participate (sponsor?)

Maybe a full-day workshop with the
structure:

1. plenary: presentations, debate coffee
break

2. creation of a list of topics, of some kind
of organization lunch

3. parallel sessions by subgroups of
participants, by topic

coffee break

4. plenary: subgroup reports, debate,
integration, conclusion, maybe plans for
the future

Please relay at will.

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 21 Dec 2022 18:08:18 +0000
> Would anyone be interested in co-

organizing or attending a Post-Ada
workshop at Ada-Europe 2023 (Lisbon,
13-16 June)?

> Any thoughts appreciated.

I probably won't be able to attend; my life
is pretty much being destroyed right now.

> The "Post-Ada" concept has been
debated here in CLA. It encompasses
lessons learnt from the three decade
long Ada experiment, ideas for
betterment of the language, and
creation of languages anew, like
Parasail and King.

Really? No love for my "mad" :)
ramblings?

https://github.com/Lucretia/orenda

> One way to approach the 'problem'
would be to classify features of Ada as
"keep, kill, or to be improved," for
example:

> - loop statements: keep

> - function expressions: keep

> - cursors: kill

> - attributes vs. operations (tick vs. dot):
kill

Wrong. Attributes are a really interesting
and useful part of Ada and the solution in
Orenda to getting addresses of objects,
aspects would enable setting them on
creation.

> - inheritance: to be improved

> - Unicode characters and strings: to be
improved

Should be the basis of all text.

> A general issue could be to compare or
harmonize this approach with the future
(?) revision of Ada via Ada Issues.
Personally I feel Ada (202X) is already
too big to grow anymore. I suspect
compiler maintainers would agree, and
hope they could participate (sponsor?)

Won't happen, I've mentioned it before
and was told it was not going to happen.

Ada-related Resources
[Delta counts are from November 13th to
February 12th. —arm]

Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: 12 Feb 2023 12:44 CET
To: Ada User Journal readership

Ada groups on various social media:

- Reddit: 8_291 (+91) members [1]

- LinkedIn: 3_418 (+19) members [2]

- Stack Overflow: 2_309 (+36)
 questions [3]

- Telegram: 159 (+6) users [4]

- Gitter: 151 (+11) people [5]

- Ada-lang.io: 101 (+51) users [6]

- Libera.Chat: 82 (+5) concurrent
 users [7]

- Twitter: 32 (-5) tweeters [8]
 49 (-36) unique tweets [8]

[1] http://www.reddit.com/r/ada/

[2] https://www.linkedin.com/groups/
114211/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://t.me/ada_lang

[5] https://gitter.im/ada-lang

[6] https://forum.ada-lang.io/u

[7] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[8] http://bit.ly/adalang-twitter

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: 12 Feb 2023 12:44 CET
To: Ada User Journal readership

Rosetta Code: 920 (+1) examples [1]
 39 (=) developers [2]

GitHub: 763* (=) developers [3]

Alire: 324 (+15) crates [4]

Sourceforge: 240 (+2) projects [5]

Open Hub: 214 (=) projects [6]

Codelabs: 54 (+1) repositories [7]

Bitbucket: 31 (=) repositories [8]

AdaForge: 0** (-8) repositories [9]

*This number is unreliable due to GitHub
search limitations.

**This site is currently unreachable.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://alire.ada.dev/crates.html

[5] https://sourceforge.net/directory/
language:ada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://git.codelabs.ch/?
a=project_index

[8] https://bitbucket.org/repo/all?
name=ada&language=ada

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: 12 Feb 2023 12:44 CET
To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 23 (+4) 0.60%
 (+0.12%) [1]

- PYPL Index: 17 (=) 0.94%
 (+0.13%) [2]

- IEEE Spectrum* (general): 35 (=)
 Score: 1.16 [3]

- IEEE Spectrum (jobs): 33 (=)
 Score: 0.79 [3]

Ada-related Tools 201

Ada User Journal Volume 43, Number 4, December 2022

- IEEE Spectrum (trending): 32 (=)
 Score: 3.95 [3]

*The Spectrum ranking has been
revamped, no longer using the same
categories and rating methodology. Thus,
historic trends are omitted for this issue
except for the default category.

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/
top-programming-languages/

XMPP Public Ada MUCs
From: Alastair Hogge <agh@riseup.net>
Subject: Re: XMPP public Ada MUCs
Date: Wed, 7 Dec 2022 09:02:20 -0000
Newsgroups: comp.lang.ada

Someone has created an Ada MUC
[multi-user chat] at
xmpp:ada@conference.magicbroccoli.de.
It is low traffic at the moment.

Interested participates can sign up for free
XMPP accounts at:

https://404.city/

https://magicbroccoli.de/register/

Some information on getting started with
XMPP:

https://xmpp.org/getting-started/

New Process for Submitting
Comments about the Ada
Language
From: Tucker Taft

<tucker.taft@gmail.com>
Subject: New process for submitting

comments about the Ada language
Date: Sun, 18 Dec 2022 16:54:55 -0800
Newsgroups: comp.lang.ada

[The announcement with the new
commenting process for the Ada language
standard appears in page 220 of this same
issue —arm]

Ada-related Tools
AdaStudio-2022 Release
01/10/2022 Free Edition
From: Leonid Dulman

<leonid.dulman@gmail.com>
Subject: Announce: AdaStudio-2022 release

01/10/2022 free edition
Date: Sat, 1 Oct 2022 00:19:44 -0700
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2022.

It’s based on Qt-6.4.0-everywhere
opensource (expanded with modules from
Qt-5.15: qtgraphicaleffects qtgamepad
qtx11extras qtwinextras), VTK-9.2.0,

FFMPEG-5.1.1, OpenCV-4.6.0, SDL2-
2.24.0, MDK-SDK(wang-bin)

Qt6ada version 6.4.0 open source and
qt6base.dll ,qt6ext.dll (win64),
libqt6base.so, libqt6txt.so(x86-64) built
with Microsoft Visual Studio 2022 x64
Windows, GCC amd64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux amd64
Debian 11.2

AdaStudio-2022 includes the following
modules: qt6ada, vtkada, qt6mdkada,
qt6cvada (face recognition, QRcode
detector, BARcode detection and others)
and voice recognizer.

Qt6Ada is built under GNU LGPLv3
license https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRl83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

WebPage is https://r3fowwcolhrz
ycn2yzlzzw-on.drv.tw/
AdaStudio/index.html

[Removed detailed file contents. —arm]

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.pdf"

The simple manual how to build Qt6Ada
application can be read in "How to use
Qt6ada.pdf"

HAC v.0.21
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: HAC v.0.21
Date: Sat, 1 Oct 2022 02:37:27 -0700
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a quick,
small, open-source Ada compiler,
covering a subset of the Ada language.

HAC is itself fully programmed in Ada.

Web site: http://hacadacompiler.sf.net/

From there, links to sources, and an
executable for Windows.

Source repositories:

#1 svn: https://sf.net/p/hacadacompiler/
code/HEAD/tree/trunk/

#2 git: https://github.com/zertovitch/hac

HAC is also available through Alire:
https://alire.ada.dev/

* Main improvements since v.0.2:

 - Added Virtual Machine Variables,
another means for exchanging data
between the HAC program and the
program hosting the VM.

 - SmallAda's tasking is working again in
its HAC reincarnation -- at least, for
some simple tasks.

 - HAL becomes HAT (HAC Ada
Toolbox), to avoid name collision with
HAL = "Hardware Abstraction Layer".

Enjoy!

LEA v.0.82
From: Gautier Write-Only Address

<gautier_niouzes@hotmail.com>
Subject: Ann: LEA v.0.82
Date: Sat, 1 Oct 2022 02:46:10 -0700
Newsgroups: comp.lang.ada

LEA is a Lightweight Editor for Ada

Web site: http://l-e-a.sf.net/

Source repository #1:
https://sf.net/p/l-e-a/code/HEAD/tree/

Source repository #2:
https://github.com/zertovitch/lea

Improvements:

 - more ready-to-use Ada code samples

 - improved Dark Side look

 - indentation lines

 - improvements in navigation
(find/replace, compilation errors)

 - embeds HAC v.0.21; details: see other
post...

Features:

 - multi-document

 - multiple undo's & redo's

 - multi-line edit, rectangular selections

 - color themes, easy to switch

 - duplication of lines and selections

 - syntax highlighting

 - parenthesis matching

 - bookmarks

Currently available on Windows.

Gtk or other implementations are
possible: the LEA_Common[.*] packages
are pure Ada, as well as HAC.

Enjoy!

VIM Bundle for Ada
From: Martin Krischik

<martin.krischik@gmail.com>
Subject: VIM bundle for Ada
Date: Tue, 11 Oct 2022 10:19:57 -0700
Newsgroups: comp.lang.ada

I have updated the VIM bundle for Ada.
If you are using VIM you should consider
updating:

https://github.com/krischik/vim-ada

202 Ada-related Tools

Volume 43, Number 4, December 2022 Ada User Journal

GCC 12.1.0 macOS Cross-
compiler to arm-eabi
From: Simon Wright

<simon@pushface.org>
Subject: Ann: GCC 12.1.0 macOS cross-

compiler to arm-eabi
Date: Sat, 15 Oct 2022 20:11:45 +0100
Newsgroups: comp.lang.ada

Find the above at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-arm-eabi.

Built on Intel, also runs on Apple silicon
under Rosetta.

Scroll down to the bottom of the page to
find the installation package.

VisualAda for Visual Studio
2022 Release 1.0.0
From: Alex Gamper

<alby.gamper@gmail.com>
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2022) release 1.0.0
Date: Sat, 15 Oct 2022 15:06:20 -0700
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.0.0 for Visual Studio
2022 has been released.

This is the initial release for Visual Studio
2022 and is a port of the existing
VisualAda version 1.3 for Visual Studio
2017/2019.

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda-2022

VIM Plugin Update
From: Martin Krischik

<martin.krischik@gmail.com>
Subject: Another update to the VIM plugin.
Date: Tue, 25 Oct 2022 09:42:06 -0700
Newsgroups: comp.lang.ada

Since GPS support was dropped for
macOS having proper Vim plugins for
Ada has become kind of important again.
I added Alire compiler support so a press
of <F7> will compile again.

It's actually two updated:

https://github.com/krischik/
vim-ada/releases/tag/v_5.1.0

https://github.com/krischik/
vim-ada/releases/tag/v_5.2.0

Have fun.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 26 Oct 2022 00:21:19 -0700

Thanks Martin,

I also recommend using neovim instead of
vim, because of the builtin LSP
(language-server protocol) support. We
can then independently install the Ada
language server from AdaCore
(https://github.com/AdaCore/ada_languag
e_server), and with a small configuration
step we now have full cross-references in
Ada...

The main difficulty is loading the proper
project file. I will likely write a small blog
post on the subject, though I could simply
post the config I have here if there's
interest.

From: Martin Krischik
<martin.krischik@gmail.com>

Date: Wed, 26 Oct 2022 07:45:36 -0700

Thanks for the heads up.

[...]

Nice, there is a macOS version. But I
notice no dependencies to any GUI
framework and when I did try it out there
was indeed no GUI support. I'm actually
using GVim — the Vim with the
graphical user interface and I'm not going
back to a Terminal based editor. Still
good to know the option exists.

Gnu Emacs Ada Mode 7.3.1
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Gnu Emacs Ada mode 7.3.1

released
Date: Wed, 26 Oct 2022 06:29:58 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.3.1 is now
available in GNU ELPA; the beta version
has been promoted to release.

ada-mode and wisi are now compatible
with recent GNAT versions. The grammar
is updated to the proposed Ada 2022
version.

Incremental parse is provided. It still has
some bugs, so it is not enabled by default.
To try it:
(setq-default wisi-incremental-parse-
enable t).

Incremental parse often gets confused; to
recover, use M-x wisi-reset-parser. That
does a full parse of the entire buffer,
which can be noticeably slow in large
buffers.

See the NEWS files in
~/.emacs.d/elpa/ada-mode-7.3.1
and wisi-4.0.0, or at
http://www.nongnu.org/
ada-mode/, for more details.

The required Ada code requires a manual
compile step, after the normal list-
packages installation ('install.sh' is new in
this release):

cd ~/.emacs.d/elpa/ada-mode-7.3.1
./build.sh
./install.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

Gnu Emacs Ada Mode 8.0
Beta
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Gnu Emacs Ada mode 8.0 beta

released.
Date: Mon, 07 Nov 2022 16:12:29 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 8.0 beta is now
available in GNU ELPA devel for beta
testing.

All Ada mode executables can now be
built with Alire (https://alire.ada.dev/);
this greatly simplifies that process.

gpr-query and gpr-mode are split out into
separate GNU ELPA packages. You must
install them separately (Emacs install-
package doesn't support "recommended
packages" like Debian does).

Ada mode can now be used with Eglot;
this is controlled by new variables:

ada-face-backend - one of wisi, eglot,
none
ada-xref-backend - one of GNAT,
gpr_query, eglot, none
ada-indent-backend - one of wisi, eglot,
none

The indent and face backends default to
wisi if the wisi parser is found in PATH,
to eglot if the Ada LSP server is found,
and none otherwise. The xref backend
also looks for the gpr_query executable in
PATH.

The current AdaCore language server (23)
support face but not indent. The current
version of eglot (19) does not support
face. So for now, eglot +
ada_language_server only provides xref.

The AdaCore language server
ada_language_server is installed with
GNATStudio (which ada-mode will find
by default), or can be built with Alire. If
you build it with Alire, either put it in
PATH, or set gnat-lsp-server-exec.

I have not tested ada-mode with lsp-
mode. You can set ada-*-backend to
'other to experiment with that, or tree-
sitter, or some other backend.

To access the beta version via Gnu ELPA,
add the devel archive to package-
archives:
(add-to-list 'package-archives (cons "gnu-
devel" "https://elpa.gnu.org/devel/"))

Then M-x list-packages; the beta release
shows as ada-mode version
8.0.3.0.20221106.55317, wisi version
similarly.

Ada-related Tools 203

Ada User Journal Volume 43, Number 4, December 2022

Please report success and issues to the
Emacs ada-mode mailing list
https://lists.nongnu.org/mailman/listinfo/a
da-mode-users.

The required Ada code requires a manual
compile step, after the normal list-
packages installation:

cd ~/.emacs.d/elpa/ada-mode-7.3beta*
./build.sh
./install.sh

If you have Alire installed, these scripts
use it. Otherwise, this requires AdaCore
gnatcoll packages which you may not
have installed; see ada-mode.info
Installation for help in installing them.

Artificial Intelligence
Libraries
From: Marius Amado-Alves

<amado.alves@gmail.com>
Subject: Re: Artificial Intelligence libraries

in ADA
Date: Thu, 10 Nov 2022 09:58:27 -0800
Newsgroups: comp.lang.ada

Resurrecting this 3-year old thread, see
what happens:-)

I too need AI and Machine Learning
libraries, and I am literally disgusted at
the perspective of having to use Python or
Go or C++ for this. Has anything come up
in the last 3 years? Maybe a binding to
TensorFlow?

I plan to use Carter's REM NN, and
maybe Kasakov's fuzzy_ml, for some
experiments, but at some point, I'll want,
like Bjorn Ludin, *recurrent*
architectures, probably LSTM (Long
Short* Term Memory), as I want to
segment and classify text.

(Jeff: can we somehow reengineer REM
NN towards recurrency? Maybe by
inserting recurrent layers?)

*Not a typo. The ML geniuses really say
"long short"...

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 10 Nov 2022 20:10:00 +0100
> (Jeff: can we somehow reenginer REM

NN towards recurrency? Maybe by
inserting recurrent layers?)

Probably best to discuss this off line. You
can contact me by e-mail.

From: Rod Kay <rodakay5@gmail.com>
Date: Fri, 11 Nov 2022 21:20:04 +1100
> Also, Rod Kay (charlie on irc) did

something re TF iirc.

 I generated a thin binding to the
TensorFlow C API via swig4ada around
mid June. The binding has not been tested
apart from a 'hello_TF' demo which
simply calls the 'TF_Version' function and
prints it.

I've been distracted by other projects since
but as chance would have it, I've recently
resumed work on swig4ada and TF will
definitely be one of the top priorities re
testing swig4ada.

I'll try to take another look at it this
weekend and to get the TF binding onto
github, if possible.

GCC 12.2.0 for macOS
(x86_64 and aarch64)
From: Simon Wright

<simon@pushface.org>
Subject: ANN: GCC 12.2.0 for macOS

(x86_64 and aarch64)
Date: Sun, 20 Nov 2022 19:02:46 +0000
Newsgroups: comp.lang.ada

Find GCC 12.2.0 & tools for Intel silicon
(will run on Apple silicon under Rosetta)
at https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.2.0-x86_64

Built on High Sierra with Python 3.9
(because Apple has withdrawn 2.7 in
Monterey).

Also, the same for Apple silicon, built on
Ventura but I’ve done my best to make
sure it’ll run on Monterey, at
https://github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.2.0-aarch64

I’ve marked both as pre-release, but I’m
especially interested (if anyone has some
time on their hands) in a check of the
aarch64 version on Monterey.

XNAdaLib and
GNATStudio 2022 Binaries
for macOS Monterey
From: Blady <p.p11@orange.fr>
Subject: [ANN] XNAdaLib and GNATStudio

2022 binaries for macOS Monterey.
Date: Sat, 26 Nov 2022 09:07:51 +0100
Newsgroups: comp.lang.ada

This is XNAdaLib 2022 built on macOS
12.6 Monterey for Native Quartz with
GNAT FSF 12.1
(github.com/simonjwright/
distributing-gcc/releases/tag/
gcc-12.1.0-x86_64) including:

- GTKAda 22.2
(www.adacore.com/gtkada) with GTK+
3.24.33 (www.gtk.org) complete,

- Glade 3.40.0 (glade.gnome.org),

- Florist mid-2022a
(github.com/Blady-Com/florist),

- AdaCurses 6.3 (patch 20221105)
(invisible-island.net/ncurses/
ncurses-Ada95.html),

- Gate3 0.5d
(sourceforge.net/projects/lorenz),

- Components 4.64
(www.dmitry-kazakov.de/ada/
components.htm),

- AICWL 3.25
(www.dmitry-kazakov.de/ada/
aicwl.htm),

- Zanyblue 1.4.0
(zanyblue.sourceforge.net),

- PragmARC mid-2022
(pragmada.x10hosting.com/
pragmarc.htm),

- UXStrings 0.4.0
(github.com/Blady-Com/
UXStrings) - NEW

- GNOGA 2.2 mid-2022
(www.gnoga.com),

- SparForte 2.5 (sparforte.com),

- HAC 0.21
(https://hacadacompiler.sourceforge.io)

Here is also GNATStudio 23.0wb as a
standalone app for macOS 12.

See readme for important details. There
could be some limitations that you might
meet. Feel free to report them on MacAda
list (http://hermes.gwu.edu/archives/gnat-
osx.html). Any help will be really
appreciated.

Both packages have been posted on
Source Forge:
https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2022-monterey

Simple Components v4.65
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple Components v4.65
Date: Sat, 26 Nov 2022 23:08:41 +0100
Newsgroups: comp.lang.ada

The library provides implementations of
smart pointers, directed graphs, sets,
maps, B-trees, stacks, tables, string
editing, unbounded arrays, expression
analyzers, lock-free data structures,
synchronization primitives (events, race
condition free pulse events, arrays of
events, reentrant mutexes, deadlock-free
arrays of mutexes), pseudo-random non-
repeating numbers, symmetric encoding
and decoding, IEEE 754 representations
support, streams, persistent storage,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes the previous version:

- Bug fix in HTTP server causing memory
leaks in accumulated bodies when
browser keeps connection on;

- Python bindings, backward
compatibility to lower versions of
Python 3, e.g. 3.8;

204 Ada-related Tools

Volume 43, Number 4, December 2022 Ada User Journal

- Julia and Python bindings for OSX
corrected.

Units of Measurement for
Ada v3.12
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Units of measurement for

Ada v3.12 (New SI prefixes)
Date: Sat, 26 Nov 2022 23:11:57 +0100
Newsgroups: comp.lang.ada

The library provides measurement unit
support for Ada.

http://www.dmitry-kazakov.de/ada/
units.htm

Changes to the previous version:

- Added four new SI prefixes adopted by
General Conference on Weights and
Measures (CGPM) in November 2022.

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 30 Nov 2022 07:44:13 -0800

This is a bit confusing. From

https://www.lne.fr/en/news/general-
conference-weights-and-measures-2022:

to express quantities of digital
information using orders of magnitude in
excess of 1024, has been adopted.

Thus, four new prefixes have been
introduced:

 ronna pour 1027

 ronto pour 10-27

 quetta pour 1030

 quecto pour 10-30

End quote.

Abbreviations?

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 30 Nov 2022 18:03:36 +0100
> ronna pour 1027

> ronto pour 10-27

> quetta pour 1030

> quecto pour 10-30

> End quote.

>

> Abbreviations?

q, r, R, Q

From: Adamagica <christ-usch.grein@t-
online.de>

Date: Wed, 30 Nov 2022 09:49:48 -0800
> I'm wondering when these prefixes will

turn up in https://physics.nist.gov/cuu/
Units/prefixes.html.

You can find them here:

https://www.bipm.org/en/
measurement-units/si-prefixes

The PragmAda Reusable
Components
From: Pragmada Software Engineering

<pragmada@
pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Thu, 1 Dec 2022 11:57:28 +0100
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL or BSD
3-Clause license at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to
receive notifications without using
Github's mechanism should contact me
directly.

GNAT 12 on FreeBSD
From: Alastair Hogge <agh@riseup.net>
Subject: GNAT-12 on FreeBSD
Date: Mon, 12 Dec 2022 05:17:53 -0000
Newsgroups: comp.lang.ada

Description: This is an Ada compiler,
from GCC-12.

Since Ada support must be built by an
Ada-capable compiler, only platforms for
which a bootstrap compiler is available
can build it.

It is based on release versions of the Free
Software Foundation's GNU Compiler
Collection. It uses the GCC Runtime
Library Exception, so the resulting
binaries have no licensing requirements.
Binaries produced by the AUX compiler
should be legally handled the same as
binaries produced by any FSF compiler.

It offers continuous improvements to the
Ada 2022 standard since GCC 11.

https://www.freshports.org/lang/gnat12/
https://cgit.freebsd.org/ports/tree/lang/
gnat12

laceOS: an Operating
System Tailored for Ada
Development
From: Rod Kay <rodakay5@gmail.com>
Subject: Ann: 'laceOS' ~ An operating

system tailored for Ada development.
Date: Sat, 17 Dec 2022 17:23:24 +1100
Newsgroups: comp.lang.ada

After spending many years installing
various operating systems and setting
them up for Ada development, I thought
I'd try to make a simple OS installer
which contains all the configuration and
packages I usually use.

I thought this might be useful to others,
perhaps lecturers/students, hobbyists,
newcomers to Ada or anyone wanting to
experiment with the latest Ada features.

The installer is very simple, asking a few
questions (several with defaults) and takes
about 10 minutes to do the installation.

Here is the Github link for anyone
interested ...

https://github.com/charlie5/laceOS

Feedback/critique/suggestions most
welcome.

Regards.

P.S. The installer is written in Ada. :)

Adare_Net v0.0.128
From: Daniel Norte De Moraes

<danielcheagle@tutanota.com>
Subject: ANN: Adare_Net v0.0.128
Date: Mon, 19 Dec 2022 20:08:53 -0000
Newsgroups: comp.lang.ada

Adare_Net new version v0.0.128:

Better code,

Added a adare_net.pdf manual,

Full client and server examples in udp and
tcp.

Adare_net from version v0.0.128
approaches its v.0.1.0 version!

Adare_Net is a small, portable and easy to
use Ada network lib. It supports ipv4 ipv6
udp and tcp, Socket Synchronous I/O
Multiplexing and can 'listen' with ipv6,
too.

https://github.com/danieagle/adare-net

SDLAda 2.5.5
From: Luke A. Guest

<laguest@archeia.com>
Subject: [COTY] SDLAda-2.5.5 submitted
Date: Sat, 31 Dec 2022 14:27:23 +0000
Newsgroups: comp.lang.ada

Just to inform people that SDLAda isn't
dead, yet, it's just dormant. I finally got
around my issues with Alire and
submitted the 2.5.5 crate.

https://github.com/AdaCore/
Ada-SPARK-Crate-Of-The-Year/
issues/22

Ada and Other Languages 205

Ada User Journal Volume 43, Number 4, December 2022

References to
Publications
NSA Guidance on Software
Memory Safety
From: Jerry <list_email@icloud.com>
Subject: NSA Releases Guidance on How to

Protect Against Software Memory Safety
Issues

Date: Thu, 10 Nov 2022 15:48:00 -0800
Newsgroups: comp.lang.ada

"Examples of memory safe languages
include C#, Go, Java®, Ruby™, Rust®,
and Swift®."

https://www.nsa.gov/Press-Room/
News-Highlights/Article/Article/
3215760/nsa-releases-guidance-on-how-
to-protect-against-software-memory-
safety-issues/

https://media.defense.gov/2022/Nov/10/
2003112742/-1/-1/0/CSI_SOFTWARE_
MEMORY_SAFETY.PDF

Didn't the U.S. government once sponsor
the development of a memory-safe
language? (eye-roll)

Ada and Other
Languages
MS Going to Rust (and
Linux Too)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: MS going to rust (and Linux too)
Date: Sat, 24 Sep 2022 09:52:34 +0200
Newsgroups: comp.lang.ada

Apparently, Microsoft does not want to
use C/C++ anymore:
https://www.zdnet.com/article/
programming-languages-its-time-to-stop-
using-c-and-c-for-new-projects-says-
microsoft-azure-cto
and going to Rust. No word about
glorious VBA and illustrious C#, though.
The best ever inventions of the computing
era deserve no mention... (:-))

Ah, GC does not sit well with them, who
might think? (:-))

BTW, it seems that the Linux kernel will
rust as well...

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 24 Sep 2022 09:50:33 +0100
> Apparently Microsoft does not want to

use C/C++ anymore:

Yeah, they're 20 years behind, I came to
that conclusion then.

Well, people and companies will follow
like sheep.

>No word about glorious VBA and
illustrious C#

They'll stay as they are but likely will
move to being implemented in rust.

[...]

> BTW, it seems that the Linux kernel
will rust as well...

There was conversation about using zig as
well a while ago.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 11:13:07 +0200
> They'll stay as they are but likely will

move to being implemented in rust.

I bet MS-Rust gets written in QBasic...
(:-))

> There was conversation about using zig
as well a while ago.

This one is from Linus himself.

Anyway, as expected, since computing
resources begin actively stagnating, damn,
even a used rusted (no pun intended (:-)) 3
years old HDD is twice more expensive
now, the SW industry slowly turns away
from well established practices of not
caring about performance, efficiency,
quality etc. I wonder, who will first dare
proclaim that Agile was trash... (:-))

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Sat, 24 Sep 2022 04:09:48 -0700

Sounds like "U.S. Department of Defense
going to Ada" :-) ...

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 24 Sep 2022 13:41:24 +0200
> I wonder, who will first dare proclaim

that [xyz] was trash... (:-))

Won't it be the presenter to use [xyz] in an
economically informed speech about a
new trendy replacement that is already a
thing.

Trash in systems obeys a universal law,
familiar to every consultant. That it piles
up, and while leading to stagnation, trash
also creates opportunities

- for oblivion,

- for cleaning out and

- for rebuilding.

A fresh start.

As a starting point, Rust has the fine
mechanisms that will facilitate turning the
language into a generator of consumable
goods, including itself. It is, therefore,
economically viable. By design, Rust
meets many a business demand, since it
doesn't stop at just technical ideas, of
which it inherits many.

Write a really good driver for Linux using
Ada 2012 and do not use capital letters in

the source text, at least where Linux
doesn't. Be silent about the language. Can
an Adaist do that, to save the language?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 14:31:38 +0200
> Write a really good driver for Linux

using Ada 2012 [...]

The song remains the same. No, Python
need not to have Linux drivers in order to
be hugely popular, like the Herpes virus
need not to be...

And it is not about Ada. It is about a
potentially turning point as the SW
developing process hits certain limits one
ignored before. Selling hot air is a very
respectable and profitable activity, but in
this case the reality begins showing its
ugly bigotry face. Though Ada could
provide some answers, it is not in the
game anyway. Nevertheless, things
become interesting...

From: Nasser M. Abbasi
<nma@12000.org>

Date: Sat, 24 Sep 2022 07:46:46 -0500
> BTW, it seems that Linux kernel will

rust as well...

This is a link that talks about using rust in
Linux kernel

"Linux embracing Rust will boost
robotics community"

"Linus Torvalds mentioned that the Rust
programming language would be used in
the upcoming Linux 6.1 kernel"

<https://www.therobotreport.com/
linux-embracing-rust-will-boost-robotics-
community/>

What I do not understand is, why not Ada
instead of Rust? I thought Ada was
designed for embedded low level
software.

Maybe it is just more verbose than rust,
and do not use {}.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 15:36:07 +0200
> What I do not understand is, why not

Ada instead of Rust?

Look at it this way. If Linus was not
aware 30 years ago that there were better
OSes than UNIX and better languages
than C, why should he suddenly do now?

> Maybe it is just more verbose than Rust,
and do not use {}.

It is never technical. You can try to
rationalize your preference afterwards,
but in reality, it is free will at play, even
in the case of choosing Ada.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sat, 24 Sep 2022 10:29:54 -0700

206 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

There is also a lot more emphasis on
performance in the Rust world than in the
Ada world. Part of this is due to
resources, but a lot has to do with how the
language itself is defined unfortunately.
People working on the Linux kernel are
definitely interested in performance (and
remember they are using any
programming language in a significantly
different fashion than other
programmers). People coming from C++
likely initially chose that language
because it was advertised as the most
performant.

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Sat, 24 Sep 2022 19:56:02 +0200
> why should he suddenly do now?

Why not? He is actually talking about
Rust, given C.

> It is never technical.

It needs to be technical to some extent.
Suggesting to write a kernel in Python
would encounter some technical
opposition.

> You can try to rationalize your
preference afterwards, but in reality, it
is free will at play, even in the case of
choosing Ada.

The point is that it's not free will. It seems
about choice and about what drives
choice. Some very old job descriptions
very sincerely include "manipulating
public opinion".

Think "Ada mandate"... Or better, don't,
just don't.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 24 Sep 2022 21:07:01 +0200
> Why not? He is actually talking about

Rust, given C.

He is just growing old... (:-))

> It needs to be technical to some extent.

To some very infinitesimal extent.
Actually my point was that the extent has
an obvious tendency to grow now. Which
is why we observe knee-jerk reactions
from some weaklings... (:-))

> Suggesting to write a kernel in Python
would encounter some technical
opposition.

Honestly? The next generation will fully
embrace Python as soon the last of the old
farts retire. Linux held way too long,
IMO... (:-))

> It seems about choice and about what
drives choice.

Huh, in the not so distant future I expect
drivers using HTTP to communicate
inside the kernel encoding data in JSON
and XML and written in JavaScript... I am
almost serious. This garbage triumphally

marches across embedded world right
now, so no smiley.

Ada Practice
Reexposing Generics Formal
Parameters
From: Emmanuel Briot

<briot.emmanuel@gmail.com>
Subject: Calling inherited primitive

operations in Ada
Date: Wed, 31 Aug 2022 01:15:38 -0700
Newsgroups: comp.lang.ada

[Although the original post is about
reusing inherited subprograms, the
conversation quickly veered into a
technical issue with generic formals,
which is raised in the first answer. —arm]

A small blog post that you might find
interesting:

https://deepbluecap.com/calling-inherited-
primitive-operations-in-ada/

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 31 Aug 2022 21:13:14 +0200

This same technique is used in generics to
work around another language design
"feature":

 generic
 type Foo is ...;
 package
 subtype Actual_Foo is Foo;

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 31 Aug 2022 23:56:26 -0700

To me, this is an orthogonal issue though
(which would be worth its own blog post
in fact). I can never remember (or perhaps
not even understand) the reason for this
limitation in Ada, which is a major pain
when dealing with generics indeed…

I like the "Actual_" prefix, which I
assume is some sort of convention in your
code.

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Thu, 1 Sep 2022 00:57:33 -0700

Is this about how according to some
mystifying rules generic formals are[n't]
visible from outside the generic?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Sep 2022 12:02:43 +0200

Right. I do not remember the rules, just
the fact that they are quite logical.
Unfortunately the logic of [it] is not very
helpful. (:-))

As for primitive operations the problems
are on many levels, from lacking
introspection to missing inheritance of

implementation by composition (AKA
hooking).

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 1 Sep 2022 13:59:29 +0200:
> Is this about how according to some

mystifying rules generic formals
are[n't] visible from outside the
generic?

This seems like a non-issue to me. Any
code that has visibility to a generic
instance knows the actuals used for that
instance. Can anyone provide real
examples where this is a problem?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Sep 2022 14:37:36 +0200
> This seems like a non-issue to me. Any

code that has visibility to a generic
instance knows the actuals used for that
instance.

That would make the code fragile. Should
be avoided as much as possible as a form
of aliasing. [...]

> Can anyone provide real examples
where this is a problem?

Defaulted formal package actual part:

 generic

 package Foo is new Bar (<>);
 package Baz is ...
 -- What were these actuals in Foo?

This is one of most useful features used to
reduce lists of formal parameters and
simplify instantiations.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 1 Sep 2022 07:10:03 -0700

I have seen quite a number of cases of
needing the subtype like Dmitry was
showing. In a small number of cases,
those were actual bugs in GNAT, but
most of the time the compiler was correct.
Mostly, you start to see the issue when
you have generic packages that have
formal generic packages.

Here is a quick example and the
corresponding compiler error message. In
Main, there is no way to see T. Of course,
I can use Integer_Signature directly, but
this is an issue.

If I rename Integer_Signature then I have
to change a lot of places in my code (The
aliasing that Dmitry was talking about)

with Signature;
generic
 with package Sign is new Signature (<>);
package Algo is
 procedure Compute (V : Sign.T) is null;
end Algo;

with Algo;
with Signature;

Ada Pract ice 207

Ada User Journal Volume 43, Number 4, December 2022

package Lib is
 package Integer_Signature is new
 Signature (Integer);
 package Integer_Algo is new Algo
 (Integer_Signature);
end Lib;

with Lib;
procedure Main is
 V : Lib.Integer_Algo.Sign.T;
 -- main.adb:3:24: "Sign" is not a visible
 -- entity of "Integer_Algo"
begin
 null;
end Main;

generic
 type T is private;
package Signature is
end Signature;

There are more interesting examples,
somehow this one doesn't seem that bad.
So here is another one:

 generic
 type T is private;
 package Gen is
 end Gen;

 with Gen;
 generic
 type T is private;
 with package Must_Match is new
 Gen (T);
 with package Need_Not_Match is new
 Gen (<>);
 package Gen2 is
 V1 : Must_Match.T; -- "T" is not a
 -- visible entity of "Must_Match"
 V2 : Need_Not_Match.T; -- instance of -
 -- same package,but this time T is visible
 end Gen2;

 with Gen, Gen2;
 procedure P2 is
 package G is new Gen (Integer);
 package G2 is new Gen2
 (Integer, G, G);
 begin
 null;
 end P2;

I dug out the explanation that Tucker Taft
once sent to the Ada-Comment mailing
list (2019-11-14):

<<<

10/2

{AI95-00317-01} The visible part of a
formal package includes the first list of
basic_declarative_items of the
package_specification. In addition, for
each actual parameter that is not required
to match, a copy of the declaration of the
corresponding formal parameter of the
template is included in the visible part of
the formal package. If the copied
declaration is for a formal type, copies of
the implicit declarations of the primitive
subprograms of the formal type are also

included in the visible part of the formal
package.

10.a/2

Ramification: {AI95-00317-01} If the
formal_package_actual_part is (<>), then
the declarations that occur immediately
within the generic_formal_part of the
template for the formal package are
visible outside the formal package, and
can be denoted by expanded names
outside the formal package.If only some
of the actual parameters are given by <>,
then the declaration corresponding to
those parameters (but not the others) are
made visible.

10.b/3

Reason: {AI05-0005-1} We always want
either the actuals or the formals of an
instance to be nameable from outside, but
never both. If both were nameable, one
would get some funny anomalies since
they denote the same entity, but, in the
case of types at least, they might have
different and inconsistent sets of primitive
operators due to predefined operator
“reemergence.” Formal derived types
exacerbate the difference. We want the
implicit declarations of the
generic_formal_part as well as the
explicit declarations, so we get operations
on the formal types.

>>>

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Thu, 1 Sep 2022 08:50:21 -0700
> I have seen quite a number of cases of

needing the subtype like Dmitry was
showing. In a small number of cases,
those were actual bugs in GNAT, but
most of the time the compiler was
correct.

> Mostly, you start to see the issue when
you have generic packages that have
formal generic packages.

This matches exactly my experience. I
don't have enough grasp of the details to
come up with a realistic short example,
but I did hit this issue pretty often in two
libs where I used signature packages quite
extensively:

https://github.com/mosteo/rxada

https://github.com/mosteo/iterators

Initially I was always under the
impression I was hitting GNAT bugs but
then it turned out there were rules about
it. A couple example places (you can see
the renamings at the top. I was adding
them "on demand" so to say):

https://github.com/mosteo/iterators/blob/
master/src/iterators-traits-containers.ads

https://github.com/mosteo/rxada/blob/
master/src/priv/rx-impl-transformers.ads

Thanks Emmanuel for the examples and
digging out Tucker's explanation.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 1 Sep 2022 18:03:19 +0200
> Mostly, you start to see the issue when

you have generic packages that have
formal generic packages.

None of these deal with the example I
responded to

generic
 type T is ...
package P is
 subtype Actual_T is T;

> Reason: {AI05-0005-1} We always
want either the actuals or the formals of
an instance to be nameable from
outside, but never both.

This is true in all these examples. I have
used Ada since 1984, and this has never
been a problem for me (as initially
presented, this would have existed in Ada
83). Of course, I generally avoid generic
formal packages. They seem to me to be a
work around for poor design, and I prefer
to correct the design.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 1 Sep 2022 11:54:00 -0700

I think I have a more interesting example.
This one is extracted from my attempted
traits containers, for which I had
published a blog post at AdaCore. My
enhanced fork of the library is at

https://github.com/briot/
ada-traits-containers

if someone wants to experiment with non-
trivial generics code (and containers are
of course a case where generics fully
make sense).

Here is the example:

generic
 type Element_Type is private;
 type Stored_Type is private;
package Elements is
end Elements;

with Elements;
generic
 type Element_Type is private;
package Definite_Elements is
 package Traits is new Elements
 (Element_Type, Stored_Type =>
 Element_Type);
end Definite_Elements;

with Definite_Elements;
generic
 type Key_Type is private;
package Maps is
 package Keys is new Definite_Elements
 (Key_Type);
 function "=" (L, R : Keys.
 Traits.Stored_Type) return Boolean
 -- "Stored_Type" is not a visible entity of
 -- "Traits"

208 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

 is (False);
end Maps;

This is not case where the actual is visible
unless I happen to know how
Definite_Element is implemented and that
it will use Element_Type for Stored_Type
(and this is not a knowledge I wish client
packages to have, the whole point of
Element and Definite_Element is to
basically hide how elements can be stored
in a container, and whether we need
memory allocation for instance).

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Thu, 1 Sep 2022 23:33:44 +0200
> [traits example]

As presented, this seems very over
complicated. Elements and
Definite_Elements add no value, and this
is just a complex way of writing

generic
 type Key is private;
package Maps is
 function "=" (L : in Key; R : in Key) return
 Boolean is (False);
end Maps;

One hopes that the actual library makes
better use of these packages than this
small example. [...]

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 1 Sep 2022 23:11:45 -0700
> Elements and Definite_Elements add no

value, and this is just a complex way of
writing

I did point you to the full repository if you
prefer an extensive, real-life code sample.
This was just an extract showing the gist
of the issue.

> One hopes that the actual library makes
better use of these packages than this
small example.

[...] These packages are mostly
implementation details. They are used to
build high-level packages similar to the
Ada containers, except with much better
code reuse, more efficient, and SPARK-
provable.

> Ada has excellent features for hiding,
but these are not among them.
Assuming

And that's exactly our point in this
discussion. Ada on the whole is very good
(we would not be using it otherwise), but
it does have a number of limitations
which are sometimes a pain, this being
one of them. Not acknowledging the
limitations when they exist is naive, all
languages have them.

[...]

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Fri, 2 Sep 2022 01:35:11 -0700

> this seems very over complicated.
Elements and Definite_Elements add
no value, and this is just a complex way
of writing

Going in a tangent, and I guess you know
perfectly well, but this is caused by the
painful duplication of code that Ada
pushes you to by not having a native way
to abstract storage of definite vs indefinite
types. So the provider of a generic library
very soon faces this conundrum about
duplicating most interfaces, if not
implementations, or resort to non-trivial
generics, or accept an unnecessary penalty
for definite types, or push to the client the
definite storage matter. There's simply no
satisfying solution here (that I know of).
The duplication of every standard
container to have both (in)definite
variants is a strong indictment.

I can understand the desire to have full
control of allocation and object sizes, but
that there's not a language way to work
around this duplication, with appropriate
restrictions to go with it, is... bothersome.
Not making a dig at the ARG, which I
understand is overstretched as it is.

There was a proposal circulating some
time ago that seemed promising, that I
can't quickly find. Something like

type Blah is record
 Dont_care_if_in_heap: new
 Whatever_Definiteness;
 -- Would apply to indefinite types or formals
end record;

I don't think it made into
https://github.com/AdaCore/
ada-spark-rfcs/ or https://github.com/
Ada-Rapporteur-Group/
User-Community-Input/issues or I can't
find it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Sep 2022 10:48:53 +0200
> I can understand the desire to have full

control of allocation and object sizes,
but that there's not a language way to
work around this duplication, with
appropriate restrictions to go with it,
is... bothersome. Not making a dig at
the ARG, which I understand is
overstretched as it is.

Containers should be implementable
without generics. Just saying.

> There was a proposal circulating some
time ago [...]

I would prefer constraint
propagation/management support + tuples
instead:

 type Blah (Parameters :
 Whatever_Definiteness'Constraints) is
 Sill_Care : Whatever_Definiteness
 (Parameters);
 end record;

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Fri, 2 Sep 2022 02:20:44 -0700
> Containers should be implementable

without generics. Just saying.

Are you now referring to current Ada or
to hypothetical features?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Sep 2022 11:55:11 +0200
> Are you now referring to current Ada or

to hypothetical features?

Hypothetical like all types having classes
and supertypes. E.g. when you instantiate
generic with a type you semantically
place the type in the implicit class of
formal types of the generic. You cannot
do that now without generics.
Furthermore, there is no way to describe
relationships between types like array
index and array, like range and discrete
type of its elements etc.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Fri, 2 Sep 2022 12:41:42 +0200
> [...]not having a native way to abstract

storage of definite vs indefinite types
[...]

The only indefinite data structure that is
needed seems to be holders. Any other
indefinite data structure can be
implemented as the equivalent definite
data structure of holders, so there need be
no duplication of implementations. That
one cannot use a single pkg for both does
result in duplication of the spec, but that
seems like less of an issue to me.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Sep 2022 13:04:34 +0200
> The only indefinite data structure that is

needed seems to be holders.

The language should support and
encourage design that does not rely on
memory pools.

In my view one of the major advantages
of Ada is that indefinite objects can be
handled without resorting to hidden or
explicit pointers to pools.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Fri, 2 Sep 2022 04:20:38 -0700
> I was not willing to spend more than

about 15 minutes trying to understand
this, so I may be missing something.

Fair enough. The library is really a set of
experiments, mostly successful, and I
think it might have been used for the
implementation of the current SPARK
containers in GNAT, though I am not
positive there. I did look at the
pragmARC components, and there you
indeed chose to have a large number of
similar-looking packages and code
duplication. I guess we'll have just to

Ada Pract ice 209

Ada User Journal Volume 43, Number 4, December 2022

agree to disagree on the design approach
there. But of course, users having choices
is what makes an ecosystem interesting.

What I was really going after are graphs
and their algorithms. In particular, I want
those algorithms to work on any graph
data structure provided it has a number of
primitive operations. In fact, the
algorithm could also work when the graph
is kind of implicit in the code, even if we
do not have an actual Graph object. And
for this, you need generics.

A similar approach is what Rust uses all
over the place with its traits, or what C++
Boost library uses for its graphs, too.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Sep 2022 19:01:28 -0500
>[...] painful duplication of code that Ada

pushes you to by not having a native
way to abstract storage of definite vs
indefinite types.

This is premature optimization at its
worst.

> [...]

There is no penalty in a code sharing
implementation like Janus/Ada: the
implementation of definite types is
essentially the same as you would write
by hand for an indefinite type. In most
cases, all one needs is an indefinite
generic.

(The plan for Janus/Ada was always to
use post-compilation optimization to
reduce the overhead of generics, but
admittedly, that part never got built. If I
had infinite time...)

Assuming otherwise is certainly
premature optimization.

> There's simply no satisfying solution
here [...]

The original expectation for the
containers was that there would be many
variants of each container, because the
needs for memory management, task
management, and persistence differ
between applications: there is no one-size
fits all solution.

But I agree on one point: the "basic"
container is unnecessary; one should
either use the indefinite or bounded
container (depending on your memory
management needs, either fully fixed or
fully heap-based)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Sep 2022 19:07:27 -0500
>These packages are mostly

implementation details [...]

(Wading in where I should probably not
tread... :-)

But they violate the #1 principle of the
Ada.Containers: ease of use. One

principle that we insisted on was that a
single instantiation was the maximum we
would use, because we did not want
people moving from arrays to containers
to have to replace one declaration with a
half page of magic incantations. (This is
the reason that there is no container
interface, for one consequence, and
certainly no signature packages.)

In general, people either understand and
like signature packages, or really do not
understand them and just use them when
insisted on. The standard containers in
Ada needed to be usable by the maximum
number of users, and insisting on bells
and whistles that many don't understand
does not help.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Sep 2022 19:12:25 -0500
> In my view one of the major advantages

of Ada is that indefinite objects can be
handled without resorting to hidden or
explicit pointers to pools.

But they're implemented with some sort
of hidden allocation. (GNAT uses a
"secondary stack", whatever that is, but
that is just a restricted form of pool).
Janus/Ada uses built-in pools with
cleanup for all such things to simplify the
interface (the code for allocations and
stand-alone objects is mostly shared, both
within the compiler and at runtime).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 3 Sep 2022 10:23:01 +0200
> But they're implemented with some sort

of hidden allocation. [...]

For a programmer that does not matter.
The problem with pools is locking, non-
determinism, issues with protected
actions. If [the] secondary or primary
stack is the program stack, nobody really
cares.

BTW, merely doing pool
tracing/bookkeeping becomes a sheer
nightmare if you cannot return a string
from a function.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sat, 3 Sep 2022 10:59:16 +0200
> One principle that we insisted on was

that a single instantiation was the
maximum we would use

Except for queues

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 6 Sep 2022 19:42:57 -0500
> Except for queues

Right, and one consequence of that is that
the queues aren't used much. (Not sure if
they would be used much in any case,
they're definitely a specialized need
compared to a map.)

From: Simon Wright
<simon@pushface.org>

Date: Sat, 03 Sep 2022 20:00:00 +0100
> One principle that we insisted on was

that a single instantiation was the
maximum

And this was one reason that I didn't put
up any arguments at Ada Europe 2002 for
the Ada 95 Booch Components to form a
basis for Ada.Containers - you'd need 3
instantiations, one after the other.

-- A company's Fleet holds a number of
-- Cars.
 with BC.Containers.Collections.Bounded;
 with Cars;
 package My_Fleet is

 use type Cars.Car;

 package Abstract_Car_Containers
 is new BC.Containers (Cars.Car);

 package Abstract_Car_Collections
 is new
 Abstract_Car_Containers.Collections;

 package Fleets
 is new
 Abstract_Car_Collections.Bounded
 (Maximum_Size => 30);

 The_Fleet : Fleets.Collection;

 end My_Fleet;

The other was a lack of consistency in the
implementation (Length? Size?).

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 4 Sep 2022 23:56:43 -0700
> for the Ada 95 Booch Components [...]

you'd need 3 instantiations

I definitely see the same issue. The way
my library is trying to workaround that is
as follows: Those instantiations are only
needed for people who want/need to
control every aspect of their containers,
for instance how elements are stored,
how/when memory is allocated, what is
the growth strategy for vectors, and so on.

Most users should not have to care about
that in practice. So we use code
generation at compile time to generate
high-level packages similar to the Ada
containers, with a limited set of formal
parameters (in src/generated, to be more
specific). We can generate
bounded/unbounded versions,
definite/indefinite versions, and any
combination of those.

One of the intentions of the library,
initially, had been the implementation of
the Ada containers and SPARK
containers in GNAT, as a way to share as
much code as possible between the two.

Randy Brukardt:

210 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

> Assuming otherwise is certainly
premature optimization.

I am quoting a bit out of context, though I
believe it is close enough. Designers of
containers must care about performance
from the get-go. Otherwise, people might
just as well use a list for everything and
just traverse the list all the time. We all
know this would be way too inefficient, of
course, which is why there are various
sorts of containers. Anyone who has
actually written performance-sensitive
code knows that memory allocations are
definitely something to watch out for, and
the library design should definitely take
that into account.

Jeff Carter:

> The only indefinite data structure that is
needed seems to be holders

Although it is certainly true that using
holders works, it is not applicable when
designing a containers library that intends
to be mostly compatible with Ada
containers. The latter have chosen, long
ago and before Holder was a thing, to
have definite and indefinite versions. The
main benefit to this approach is that users
still retrieve directly the type they are
interested in (e.g. String) rather than a
holder-to-string. I must admit I have very
limited experience with Holders, which I
have never used in production code (nor,
apparently, have my colleagues and ex-
colleagues).

Randy Brukardt:

> Ada *DOES* support default values for
formal parameters of generics

Hey, I just discovered that, thanks Randy
! For people who also did not know that:

 generic
 type Item_Count is range <> or use
 Natural;
 package Gen is

It is supported by GNAT's newer versions
(I don't know when it was implemented
though)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 5 Sep 2022 09:34:37 +0200
> Although it is certainly true that using

holders works, it is not applicable when
designing a containers library that
intends to be mostly compatible with
Ada containers.

Right. Holder requires finalization and
finalization means language prescribed
finalization lists which is highly
undesirable in many cases.

> The main benefit to this approach is that
users still retrieve directly the type they
are interested in (e.g. String) rather than
a holder-to-string.

And that the container designer has
control over the pool where the items get
actually allocated.

> I must admit I have very limited
experience with Holders, which I have
never used in production code (nor,
apparently, have my colleagues and ex-
colleagues).

I have been using the idea for a long time,
since Ada 95 before the standard library
had them. In my experience holders
multiply the number of container variants:

1. Definite elements

2. Indefinite elements

 +

3. Holder elements in the interface (and
maybe implementation)

The third gets a holder package as a
formal parameter or, alternatively, is a
child of a holder package (for
performance reasons). The container
interface has direct operations in terms of
the Element_Type as well as in terms of
the holder type.

Sometimes the holder variant is actually
the indefinite one that promotes holders
only in its interface.

P.S. In my opinion helper types/package
is an evil of far greater scale than any
premature optimization!

The programmers doing the latter at least
try to understand the code they write.

From: amo...@unizar.es
<amosteo@unizar.es>

Date: Mon, 5 Sep 2022 01:53:19 -0700
> This is premature optimization at its

worst.

Just because the language doesn't offer a
way to do it. Otherwise I wouldn't need to
care.

> There is no penalty in a code sharing
implementation like Janus/Ada

Well, that sounds neat for Janus/Ada, but
is a different issue to clients having to
wrap their indefinite types prior to
instantiation, and suffer the unwrapping
throughout the code.

> Assuming otherwise is certainly
premature optimization.

I'm of the opinion that it goes beyond just
premature optimization, in the terrain of
readability/maintainability by causing
boilerplate, and when generics
specializations do become necessary, by
causing code duplication.

[...]

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 5 Sep 2022 11:30:56 +0200
> Those instantiations are only needed for

people who want/need to control every
aspects of their containers [...] So we
use code generation at compile time to
generate high-level packages similar to
the Ada containers

This seems backwards. The user should
encounter the forms most likely to be
used first; if part of the packages are in a
subdirectory, those should be the ones
less likely for the typical user to use.

> The main benefit to this approach
[definite+indefinite containers] is that
users still retrieve directly the type they
are interested in (e.g. String) rather than
a holder-to-string.

Before Ada.Containers existed, I
commonly used definite data structures
from the PragmARCs with
Unbounded_String, which is partly a
specialized holder for String (and partly a
specialized Vector for
Positive/Character). Generalizing from
this led to implementing a Holder pkg.

When I said a holder is the only indefinite
pkg that is needed, I meant to imply that
other indefinite structures would be
implemented using the definite form +
holder.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 6 Sep 2022 19:51:44 -0500
> I am quoting a bit out of context

Definitely out of context. If you have
code which is truly performance sensitive,
then it cannot also be portable Ada code.
That's because of the wide variety of
implementation techniques, especially for
generics. (For Janus/Ada, if you have
critical performance needs, you have to
avoid the use of generics in those critical
paths -- sharing overhead is non-zero.)

I agree that the design of the containers
matters (which is why we made the sets of
operations for the various containers as
close as possible, so switching containers
is relatively easy). But the
indefinite/definite thing is premature
optimization - it makes little difference
for a Janus/Ada generic, at least in the
absence of the full-program optimizer
(that we never built). If your code isn't
intended to be portable Ada code, then
maybe it makes sense to worry about
such things. But the expectation was
always that containers would be useful in
cases where the performance is *not*
critical - one probably should use a
custom data structure for performance
critical things. (But most things aren't
really performance critical in reality.)

GNAT Speed Comparison
on Older Intel versus Apple
Silicon M1
From: Jerry <list_email@icloud.com>
Subject: GNAT Speed Comparison on Older

Intel versus Apple Silicon M1
Date: Tue, 8 Nov 2022 20:07:32 -0800
Newsgroups: comp.lang.ada

I use GNAT on a late 2008 MacBook Pro
with a 2.4 GHz Intel Core 2 Duo for

Ada Pract ice 211

Ada User Journal Volume 43, Number 4, December 2022

heavy numerical computing. It is not
uncommon for my programs to run
several minutes to several hours. Does
anyone have a feel for how much speed
increase I would see using GNAT on an
Apple Silicon M1 PowerBook Pro? My
main curiosity is single-core runs since
GNAT does not parallelize; I am aware
that I can run multiple programs
simultaneously on multiple cores.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Date: Wed, 9 Nov 2022 08:38:48 +0100

Hi Jerry,

taking the results from Geekbench: [1] for
your current MacBook and [2] for the M1
MacBook from 2021; the results show
that single core performance of the M1
MacBook Pro is about 6.4 times faster.

However, notice that it is running on
Aarch64 natively for the M1.
Nonetheless, you can run x86 programs
with little performance hit thanks to
Apple Rosetta.

Also, GNAT afaik, allows for parallel
computations using tasks. The multicore
performance gain between the two models
is about 24x.

These results are however just an average.
Maybe your program does not see such
improvements as it may bottleneck earlier
or it may see greater gains.

Regards,

[1] https://browser.geekbench.com/macs/
macbook-pro-early-2008

[2] https://browser.geekbench.com/v5/
cpu/18518008

From: Jerry <list_email@icloud.com>
Date: Wed, 9 Nov 2022 22:26:18 -0800
> Hi Jerry,

> taking the results from Geekbench:

That's a great site. Thanks. Clicking
around a bit I was able to find separate
comparisons for single-core floating point
and the speed-up is 5.2.

 > However, notice that it is running on
Aarch64 natively for the M1.

GNAT compiles to Aarch64 now, right?

> Nonetheless, you can run x86 programs
with little performance hit thanks to
Apple Rosetta.

"little performance hit" compared to Intel
code running on Rosetta versus Intel
silicon or compared to native ARM? And
I wonder how long until Apple takes
away Rosetta this time? Last time it was
two OS updates and then, poof, gone.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 13 Nov 2022 16:29:54 +0000
> GNAT compiles to Aarch64 now, right?

You can download an aarch64-apple-
darwin21 compiler for C, C++, Ada at
[1]. However, it won't compiler C (or, I
guess, C++) on Ventura - I'm working on
a GCC 12.2 version.

[1] https://github.com/simonjwright/
distributing-gcc/releases/tag/gcc-
12.1.0-aarch64-1

Variable Value If Exception
Is Raised
From: Nytpu <alex@nytpu.com>
Subject: Variable value if exception is

raised
Date: Sun, 20 Nov 2022 18:03:04 -0000
Newsgroups: comp.lang.ada

Hello everyone,

If an exception is *explicitly* raised
during a variable assignment, what
happens to the variable contents Are they
in an undefined ("abnormal") state, or are
the previous contents preserved?

For example:

``` 

with Ada.Text_IO; 
procedure Test is 
    function Always_Raises return Integer is 
    begin 
        raise Program_Error; 
        return 1; 
    end Always_Raises; 
     
    I : Integer := 0; 
begin 
    -- insert a nested handler, because the     
   -- ARM § 11.4 ¶ 3 *does* say that the    
   -- currently executing body is "abnormally 
   -- completed" (including finalizing  
   -- everything) before 
    -- entering the exception handler 
    begin 
        I := Always_Raises; 
    exception 
        when others => null; 
    end; 
    Ada.Text_IO.Put_Line(Integer'Image(I)); 
end; 

``` 

What, if anything, will be printed
(Disclaimer: I know the preexisting
variable value will be preserved in GNAT
specifically, but I'm asking if the standard
guarantees that's the case)

I read through the ARM 2012 § 11 and §
5.2, as well as skimming through
everything related to “assignment” and
“exceptions” in the ARM index; and
didn't see much relating to this. All I saw
is this:

> When an exception occurrence is raised
by the execution of a given construct,
the rest of the execution of that
construct is abandoned

— ARM 2012 § 11.4 ¶ 3

Which I guess implicitly protects variable
values since assigning to a variable is
performed after evaluating the right hand
side, but still not necessarily a clear
answer.

I did see in § 13.9.1 that language-defined
validity checks (e.g. bounds checks)
failing or calling `abort` in a task during
an assignment will cause the variable to
enter an "abnormal" (i.e. invalid) state,
but that doesn't cover user-raised
exceptions.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Sun, 20 Nov 2022 20:00:32 +0100

If the exception occurs during evaluation
of the RHS, as in your example, then the
language guarantees that the value of the
LHS is unchanged. The execution of the
assignment statement is abandoned before
the value of the LHS is changed.

If an exception is raised while adjusting a
controlled LHS, then the value of the LHS
has already been changed before the
exception is raised.

> -- insert a nested handler, because

> -- the ARM § 11.4 ¶ 3 *does*

> -- say that the currently executing

> -- body is "abnormally completed"

> -- (including finalizing everything)

> -- before entering the exception

> -- handler

This comment is false. Finalization does
not occur until the exception handler
finishes. Exception handlers would be
pretty useless otherwise.

String View of File
From: Jesper Quorning

<jesper.quorning@gmail.com>
Subject: String view of file
Date: Mon, 21 Nov 2022 00:30:00 -0800
Newsgroups: comp.lang.ada

Is it possible to write something like this
with Ada

```Ada 

package my_rw_file is new file 
  (name => "whatever", 
   mode => read_write, 
   implementation => standard  
   -- or portable or fast 
  ); 
package as_string is new xxx 
   (from => my_rw_file); 
-- parse (as_string); 
package data is new parse (as_string, 
format => markdown); -- or whatever 

``` 

Sorry, I’m new to Ada

From: G.B.
<bauhaus@notmyhomepage.invalid>

Date: Mon, 21 Nov 2022 14:01:01 +0100

212 Ada Pract ice

Volume 43, Number 4, December 2022 Ada User Journal

Do you mean, gobble up a file into a
string and then parse that? Yes, that's
possible in a number of ways.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 21 Nov 2022 14:48:47 +0100

[...]

If you want to read the arbitrary contents
of a file into a String, that's easily done:

with Ada.Directories;
package String_A_File is
 use type Ada.Directories.File_Size;

 function File_As_String (Name : in String)
 return String with
 Pre => Ada.Directories.Exists (Name)
 and then
 Ada.Directories.Size (Name) <=
 Ada.Directories.File_Size (Integer'Last),
 Post => File_As_String'Result'First = 1
 and
 File_As_String'Result'Last =
 Integer (Ada.Directories.Size (Name));
end String_A_File;

with Ada.Sequential_IO;

package body String_A_File is
 function File_As_String (Name : in String)
return String is
 subtype FAS is String (1 .. Integer
 (Ada.Directories.Size (Name)));

 package FAS_IO is new
Ada.Sequential_IO (Element_Type => FAS);
 File : FAS_IO.File_Type;
 Result : FAS;
 begin -- File_As_String
 FAS_IO.Open (File => File, Mode =>
 FAS_IO.In_File, Name => Name);
 FAS_IO.Read (File => File, Item =>
 Result;
 FAS_IO.Close (File => File);
 return Result;
 end File_As_String;
end String_A_File;

This presumes that Result will fit on the
stack. If that's likely to be a problem, then
you will need to use Unbounded_String
and read the file Character by Character.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Nov 2022 17:52:14 +0200

For the OP's benefit (Jeffrey of course
knows this): an alternative to
Unbounded_String is to allocate the
Result string on the heap, and return an
access to the heap string. With that
method, you can still read the entire string
with one call of FAS_IO.Read instead of
Character by Character.

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Mon, 21 Nov 2022 08:11:05 -0800

Use Ada.Sequential_IO (Character), load
to an Unbounded_String, save from a
String or Unbounded_String.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Date: Mon, 21 Nov 2022 17:42:56 +0100
> For the OP's benefit (Jeffrey of course

knows this)

I know it, and I deliberately reject it.
Having access types in a pkg spec is poor
design. Delegating the associated memory
management and all its opportunities for
error to the pkg client is very poor design.

If access types are used, they should be
hidden and encapsulated with their
memory management. This makes it
easier to get the memory management
correct. Since this is what using
Unbounded_String does for you, I think
it's better to use it than to expend extra
effort doing something similar.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Nov 2022 19:29:12 +0200
> I know it, and I deliberately reject it.

I agree in general, but there are design
trade-offs that depend on issues not made
clear in the original question, such as the
size of the file and the performance
requirements. So I thought that the OP
should know of the heap alternative, even
if it has some poorer properties too.

From: Qunying <zhu.qunying@gmail.com>
Date: Mon, 21 Nov 2022 09:29:49 -0800

If you are using GNAT with gnatcoll,
then you may try its mmap facility,
https://docs.adacore.com/gnatcoll-
docs/mmap.html

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 21 Nov 2022 13:43:39 -0800

You may be interested by this:

https://github.com/zertovitch/
zip-ada/blob/master/zip_lib/
zip_streams.ads#L148

It can be actually used out of the context
of Zip archives.

Ada 2022 in GNAT
From: Simon Belmont

<sbelmont700@gmail.com>
Subject: Ada 2022 in GNAT
Date: Thu, 8 Dec 2022 15:37:15 -0800
Newsgroups: comp.lang.ada

Has anyone seen (or willing to type up...)
any broad-strokes information about how
GNAT (et al) actually plans to implement
the parallelization features of Ada 2022?
Take advantage of GPUs or just stick to
CPU cores, or some kind of binding to
OpenMP, etc, on Linux vs Windows vs
Vworks, etc? I'm mostly just curious and
haven't seen any of that in-the-weeds type
information floating around, or at least
anything that isn't a few years old.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Fri, 9 Dec 2022 09:07:50 -0800
> In the past year or so, we have been

working hard assessing and
implementing most of these Ada 202x
changes (called AIs: Ada Issues in
ARG terms). The implementation work
and feedback from first users allowed
us to identify that a few of these
features would need additional time and
attention. This led us to make a difficult
decision - in order to allow for more
investigation and to avoid users to start
to rely on constructs that may need to
change or be replaced, we decided to
put on hold the implementation of some
of the changes in language. Of course,
we’re currently engaged with the ARG
to discuss these.

> The main set of features that AdaCore
and GNAT are putting on hold are
related to the support for parallel
constructs. While the overall vision is
an exciting and promising one, we
realized when looking at the state of the
art and gathering user requirements that
there were a lot more aspects to
consider on top of those currently
addressed by the AIs. Some of these are
related to GPGPU (General Purpose
GPU) support as well as their future
CPU counterparts, and include topics
such as control of memory transfer,
precise allocation of tasks and memory
on the hardware layout, target-aware
fine tuning options as well as various
other parametrization needs. These
capabilities happen to be fundamental
to obtain actual performance benefits
from parallel programming, and
providing them may require profound
changes in the language interface.
Consequently, we’re putting all parallel
AIs on hold, including support for the
Global and Nonblocking aspects
beyond the current support in SPARK.

See https://blog.adacore.com/
ada-202x-support-in-gnat

From: Simon Belmont
<sbelmont700@gmail.com>

Date: Sat, 10 Dec 2022 12:03:08 -0800
> See https://blog.adacore.com/ada-202x-

support-in-gnat

That post is over two years old, surely
that can't still be the state of things? I'm
not sure what it says when the big,
marquee item of the newest standard isn't
even actively being worked on in the big,
marquee compiler.

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 13 Dec 2022 04:10:43 -0800
> That post is over two years old, surely

that can't still be the state of things?

There has been progress on the Ada2022
support, but no change on that part.

 213

Ada User Journal Volume 43, Number 4, December 2022

Conference Calendar
Dirk Craeynest
Department of Computer Science, KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked � is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with � denote events with close relation to Ada.

The information in this section is extracted From: the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. In general the situation seems to improve

further, and only a few events are still planned to be held "virtually" or in "hybrid" mode. Where available, the status of events

is indicated with the following markers: "(v)" = event is held online, "(h)" = event is held in a hybrid form (i.e. partially online).

2023

January 16-18 18th International Conference on High Performance and Embedded Architecture and
Compilation (HiPEAC'2023), Toulouse, France. Topics include: software development for high

performance parallel systems; tools for compilation, evaluation, optimization of high performance

parallel systems (compiler support, tracing, and debugging for parallel architectures, ...); embedded real-

time systems, mixed criticality system support, dependable systems, ...; software support for embedded

architectures (tracing and real-time analysis of embedded applications, runtime software); etc.

� February 04-05 Free and Open source Software Developers' European Meeting (FOSDEM'2023), Brussels,

Belgium. FOSDEM 2023 is an international two-day event (Sat-Sun 4-5 Feb), held in Brussels, Belgium.

After our 11th Ada DevRoom in 2022 there won't be a new Ada DevRoom in 2023, but there will be a

stand during both days of the event with as theme "It's time to learn Ada!"

February 25-26 32nd ACM SIGPLAN International Conference on Compiler Construction (CC'2023), Montréal,

Québec, Canada. Co-located with CGO, PPoPP, and HPCA. Topics include: processing programs in the

most general sense (analyzing, transforming or executing input that describes how a system operates,

including traditional compiler construction as a special case); compilation and interpretation techniques

(program representation, analysis, and transformation; code generation, optimization, and synthesis; the

verification thereof); run-time techniques (memory management, virtual machines, and dynamic and

just-in-time compilation); programming tools (refactoring editors, checkers, verifiers, compilers,

debuggers, and profilers); techniques, ranging from programming languages to micro-architectural

support, for specific domains such as secure, parallel, distributed, embedded or mobile environments;

design and implementation of novel language constructs, programming models, and domain-specific

languages; etc.

Feb 25 – Mar 01 IEEE/ACM International Symposium on Code Generation and Optimization (CGO'2023),

Montreal, Canada. Topics include: code generation, translation, transformation, and optimization for

performance, energy, virtualization, portability, security, or reliability concerns, and architectural

support; static, dynamic, and hybrid analysis for performance, energy, memory locality, throughput or

latency, security, reliability, or functional debugging; efficient profiling and instrumentation techniques;

novel and efficient tools; compiler design, practice, and experience; compiler abstraction and

intermediate representations; vertical integration of language features, representations, optimizations,

and runtime support for parallelism; deployed dynamic/static compiler and runtime systems for general-

purpose, embedded system and Cloud/HPC platforms; compiler-support for vectorization, thread

extraction, task scheduling, speculation, transaction, memory management, data distribution, and

synchronization; etc.

March 06-10

(h)

25th International Symposium on Formal Methods (FM'2023), Lübeck, Germany. Topics include:

development and application of formal methods in a wide range of domains including trustworthy AI,

software, computer-based systems, systems-of-systems, cyber-physical systems, security, human-

computer interaction, manufacturing, sustainability, energy, transport, smart cities, healthcare and

biology; techniques, tools and experiences in interdisciplinary settings; experiences of applying formal

methods in industrial settings; design and validation of formal method tools; formal methods in practice

214 Conference Calendar

Volume 43, Number 4, December 2022 Ada User Journal

(industrial applications of formal methods, experience with formal methods in industry, tool usage

reports, experiments with challenge problems); tools for formal methods (advances in automated

verification, model checking, and testing with formal methods, tools integration, environments for

formal methods, and experimental validation of tools); formal methods in software and systems

engineering (development processes with formal methods, usage guidelines for formal methods, and

method integration); special FM 2023 session on "Formal methods meets AI" (focused on formal and

rigorous modelling and analysis techniques to ensuring safety, robustness etc. (trustworthiness) of AI-

based systems); etc.

March 13-17 20th IEEE International Conference on Software Architecture (ICSA'2023), L'Aquila, Italy. Topics

include: architecture evaluation and quality aspects of software architectures; model-driven engineering

for architecture; component-based software engineering; automatic extraction and generation of software

architecture descriptions; refactoring and evolving architecture design decisions and solutions;

architecture frameworks and architecture description languages; linking architecture to requirements

and/or implementation; architecture & continuous integration/delivery, and DevOps; training, soft skills,

coaching, mentoring, education, and certification of software architects; architecture for legacy systems

and systems integration; architecting families of products; roles and responsibilities for software

architects; etc.

� March 13-17 International Conference on the Art, Science, and Engineering of Programming

(Programming'2023), Tokyo, Japan.

March 21-24 30th IEEE International Conference on Software Analysis, Evolution, and Reengineering

(SANER'2023), Macao SAR, China. Topics include: theory and practice of recovering information from

existing software and systems; software tools for software evolution and maintenance; software analysis,

parsing, and fact extraction; software reverse engineering and reengineering; program comprehension;

software evolution analysis; software architecture recovery and reverse architecting; program

transformation and refactoring; mining software repositories and software analytics; software

reconstruction and migration; software maintenance and evolution; program repair; software release

engineering, continuous integration, and delivery; education related to all of the above topics; etc.

Mar 27 – Apr 02 38th ACM/SIGAPP Symposium on Applied Computing (SAC'2023), Tallinn, Estonia.

 Mar 27 – Apr 02 Embedded Systems Track (EMBS'2023). Topics include: the application of both

novel and well-known techniques to the embedded systems development.

 Mar 27 – Apr 02

(v)

17th Track on Dependable, Adaptive, and Secure Distributed Systems
(DADS'2023). Topics include: Dependable, Adaptive, and secure Distributed

Systems (DADS); modeling, design, and engineering of DADS; foundations and

formal methods for DADS; applications of DADS; etc.

April 05 Eelco Visser Commemorative Symposium, Delft, the Netherlands. Topics include: language

engineering, program transformation, language workbenches, declarative language specification, name

binding and scope graphs, type soundness and intrinsically-typed interpreters, language specification

testing, language implementation generation, domain-specific programming languages, DSLs for

software deployment, DSLs for web application development, tool-supported programming education.

April 15-19 14th ACM/SPEC International Conference on Performance Engineering (ICPE'2023), Coimbra,

Portugal. Deadline for submissions: January 7, 2023 (artifact track submission), January 15, 2023 (data

challenge, emerging research track, posters, demos), January 22, 2023 (tutorials).

April 16-20 16th IEEE International Conference on Software Testing, Verification and Validation (ICST'2023),

Dublin, Ireland. Topics include: manual testing practices and techniques, security testing, model-based

testing, test automation, static analysis and symbolic execution, formal verification and model checking,

software reliability, testability and design, testing and development processes, testing in specific domains

(such as embedded, concurrent, distributed, ..., and real-time systems), testing for cyber-physical

systems, testing/debugging tools, empirical studies, experience reports, etc.

April 17-20 28th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2023), Barcelona, Catalunya, Spain. Theme: "Human Values in RE".

April 22-27 26th European Joint Conferences on Theory and Practice of Software (ETAPS'2023), Paris, France.

Events include: ESOP (European Symposium on Programming), FASE (Fundamental Approaches to

Conference Calendar 215

Ada User Journal Volume 43, Number 4, December 2022

Software Engineering), FoSSaCS (Foundations of Software Science and Computation Structures),

TACAS (Tools and Algorithms for the Construction and Analysis of Systems). Deadline for

submissions: January 5, 2023 (ESOP, FASE, FoSSaCS artefact submissions), January 16, 2023

(Doctoral Dissertation Award nominations).

 April 26-27 29th International Symposium on Model Checking of Software (SPIN'2023).

Topics include: automated tool-based techniques to analyze and model software for

the purpose of verification and validation. Deadline for submissions: January 9, 2023

(abstracts), January 16, 2023 (papers).

April 24-28 26th Ibero-American Conference on Software Engineering (CIbSE'2023), Montevideo, Uruguay.

Topics include: formal methods applied to software engineering (SE), mining software repositories and

software analytics, model-driven SE, software architecture, software dependability, software ecosystems

and systems-of-systems, SE education and training, SE for emerging application domains (e.g., cyber-

physical systems, IoT, ...), SE in the industry, software maintenance and evolution, software processes,

software product lines, software quality and quality models, software reuse, software testing, technical

debt management, etc. Deadline for submissions: January 8, 2023 (abstracts), January 16, 2023 (papers),

February 6, 2023 (doctoral symposium, journal first).

May 09-12 16th Cyber-Physical Systems and Internet of Things Week (CPS-IoT Week'2023), San Antonio,

Texas, USA. Event includes: 5 top conferences, HSCC, ICCPS, IoTDI, IPSN, and RTAS, multiple

workshops, tutorials, and competitions.

 � May 09-12 29th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2023). Topics include: systems research related to embedded systems and time-

sensitive systems; original systems, applications, case studies, methodologies, and

algorithms that contribute to the state of practice in design, implementation,

verification, and validation of embedded systems or time-sensitive systems. Deadline

for submissions: February 10, 2023 (brief presentations).

May 14-20 45th International Conference on Software Engineering (ICSE'2023), Melbourne, Victoria,

Australia. Topics include: the full spectrum of Software Engineering. Deadline for submissions:

February 1, 2023 (TCSE award nominations).

 May 14-15 11th International Conference on Formal Methods in Software Engineering

(FormaliSE'2023). Topics include: approaches, methods and tools for verification and

validation; formal approaches to safety and security related issues; scalability of formal

method applications; integration of formal methods within the software development

lifecycle; model-based engineering approaches; correctness-by-construction

approaches for software and systems engineering; application of formal methods to

specific domains, e.g., autonomous, cyber-physical, intelligent, and IoT systems;

formal methods in a certification context; case studies developed/analyzed with formal

approaches; experience reports on the application of formal methods to real-world

problems; guidelines to use formal methods in practice; usability of formal methods;

etc. Deadline for submissions: January 9, 2023 (abstracts), January 16, 2023 (papers).

May 16-18 15th NASA Formal Methods Symposium (NFM'2023), Houston, Texas, USA. Topics include:

challenges and solutions for achieving assurance for critical systems, such as formal verification,

including theorem proving, model checking, and static analysis, advances in automated theorem

proving including SAT and SMT solving, use of formal methods in software and system testing,

techniques and algorithms for scaling formal methods (abstraction and symbolic methods,

compositional techniques, parallel and/or distributed techniques, ...), etc.

May 23-25 15th Software Quality Days (SWQD'2023), Munich, Germany. Topics include: all topics about

software and systems quality, such as improvement of software development methods and processes,

testing and quality assurance of software and software-intensive systems, project and risk management,

domain specific quality issues such as embedded, medical, automotive systems, novel trends in software

quality, etc.

� June 07-08 31st International Conference on Real-Time Networks and Systems (RTNS'2023), Dortmund,

Germany. Topics include: real-time applications design and evaluation (automotive, avionics, space,

railways, telecommunications, process control, ...), real-time aspects of emerging smart systems (cyber-

physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks

216 Conference Calendar

Volume 43, Number 4, December 2022 Ada User Journal

modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)

analysis, security, ...), software technologies for real-time systems (model-driven engineering,

programming languages, compilers, WCET-aware compilation and parallelization strategies,

middleware, Real-time Operating Systems (RTOS), ...), formal specification and verification, real-time

distributed systems, etc. Deadline for submissions: January 23, 2023 (abstracts 2nd round), January 25,

2023 (papers 2nd round).

� June 13-16 27th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2023), Lisbon, Portugal. Sponsored by Ada-Europe. In
cooperation with ACM SIGAda (pending), and the Ada Resource Association (ARA).
Deadline for submissions: January 16, 2023 (journal-track papers), February 27, 2023
(industrial track and work-in-progress papers, tutorials and workshop proposals).

July 17-21 Software Technologies: Applications and Foundations (STAF'2023), Leicester, UK. Topics include:

practical and foundational advances in software technology. Deadline for submissions: May 21, 2023

(workshop papers).

� July 17-21 37th European Conference on Object-Oriented Programming (ECOOP'2023), Seattle, USA.

September 17-22 Embedded Systems Week 2023 (ESWEEK'2023), Hamburg, Germany. Includes CASES'2023

(International Conference on Compilers, Architectures, and Synthesis for Embedded Systems),

CODES+ISSS'2023 (International Conference on Hardware/Software Codesign and System Synthesis),

EMSOFT'2023 (International Conference on Embedded Software). Deadline for submissions: March 16,

2023 (Journal track abstracts); March 20, 2023 (workshops, tutorials, education classes, and special

sessions proposals); March 23, 2023 (Journal track full papers); May 22, 2023 (Work-in-Progress track

papers).

September 19-22 42nd International Conference on Computer Safety, Reliability and Security (SafeComp'2023),

Toulouse, France. Topics include: development, assessment, operation and maintenance of safety-related

and safety-critical computer systems; safety/security risk assessment; model-based analysis, design, and

assessment; formal methods for verification, validation, and fault tolerance; validation and verification

methodologies and tools; methods for qualification, assurance and certification; compositional

verification and certification; cyber-physical threats and vulnerability analysis; safety guidelines,

standards and certification; safety and security interactions and tradeoffs; etc. Domains of application

include: railways, automotive, space, avionics, nuclear and process industries; autonomous systems,

advanced robotics; telecommunication and networks; critical infrastructures; medical devices and

healthcare; defense, emergency & rescue; logistics, industrial automation, off-shore technology; etc.

Deadline for submissions: February 5, 2023 (workshops), February 6, 2023 (abstracts), February 13,

2023 (full papers).

October 18-20

(h)

16th International Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS'2023), Marrakech, Morocco. Topics include: analysis of computer and communication

systems, where functional and extra-functional properties are inter-related; cross-fertilization between

various formal verification and evaluation approaches, methods and techniques, especially those

developed for concurrent and distributed hardware/software systems. Deadline for submissions: May 15,

2023.

� October 23-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2023), Lisbon, Portugal. Topics include: all aspects of software construction and

delivery, at the intersection of programming, languages, and software engineering.

 � Oct 23-27 Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2023). Topics include: all practical and theoretical

investigations of programming languages, systems and environments, targeting any

stage of software development, including requirements, modeling, prototyping,

design, implementation, generation, analysis, verification, testing, evaluation,

maintenance, and reuse of software systems; development of new tools, techniques,

principles, and evaluations. Deadline for submissions: April 14, 2023 (round 2).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Conference Chair
António Casimiro
casim@ciencias.ulisboa.pt
University of Lisbon, Portugal

Journal-track Chair
Elena Troubitsyna
elenatro@kth.se
KTH Royal Inst. of Technology, Sweden

Industrial-track Chairs
Alexandre Skrzyniarz
alexandre.skrzyniarz@fr.thalesgroup.com
Thales, France

Sara Royuela
sara.royuela@bsc.es
Barcelona Supercomputing Center, Spain

Work-In-Progress-track Chairs
Bjorn Andersson
baandersson@sei.cmu.edu
Carnegie Mellon University, USA

José Cecílio
jmcecilio@fc.ul.pt
University of Lisbon, Portugal

Tutorial and Education Chair
Luis Miguel Pinho
lmp@isep.ipp.pt
ISEP, Portugal

Workshop Chair
Frank Singhoff
singhoff@univ-brest.fr
University of Brest, France

Exhibition & Sponsorship Chair
Ahlan Marriott
ahlan@Ada-Switzerland.ch
White Elephant GmbH, Switzerland

Publicity Chair
Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be
Ada-Belgium & KU Leuven, Belgium

Webmaster
Hai Nam Tran
hai-nam.tran@univ-brest.fr
University of Brest, France

General Information

The 27th Ada-Europe International Conference on Reliable Software Technologies (AEiC
2023) will take place in Lisbon, Portugal. The conference schedule comprises a journal
track, an industrial track, a work-in-progress track, a vendor exhibition, parallel tutorials,
and satellite workshops.

� Journal-track submissions present research advances supported by solid
theoretical foundation and thorough evaluation.

� Industrial-track submissions highlight the practitioners' side of a challenging case
study or industrial project.

� Work-in-progress-track submissions illustrate a novel research idea that is still at
an initial stage, between conception and first prototype.

� Tutorial submissions guide attenders through a hands-on familiarization with
innovative developments or with useful features related to reliable software.

Schedule

Scope and Topics

The conference is a leading international forum for providers, practitioners, and
researchers in reliable software technologies. The conference presentations will illustrate
current work in the theory and practice of the design, development, and maintenance of
long-lived, high-quality software systems for a challenging variety of application domains.
The program will allow ample time for keynotes, Q&A sessions and discussions, and social
events. Participants include practitioners and researchers from industry, academia, and
government organizations active in the promotion and development of reliable software
technologies.

The topics of interest for the conference include but are not limited to:
� Formal and model-based engineering of critical systems
� Real-Time Systems
� High-Integrity Systems and Reliability
� Ada Language
� Applications in a variety of domain

More specific topics are described on the conference web page.

hhttp://www.ada--eeurope.org/conference20223

16 January 2023 Submission deadline for journal-track papers
27 February 2023 Submission deadline for industrial-track papers, work-in-progress

papers, tutorial and workshop proposals
20 March 2023 First round notification for journal-track papers, and notification

of acceptance for all other types of submissions
13-16 June 2023 Conference

CCall ffor JJoournal--ttrack SSuubmissions

Following a journal-first model, this edition of the conference again includes a journal track, which seeks original and high-quality papers that describe
mature research work on the conference topics. Accepted journal-track papers will be published in the "Reliable Software Technologies (AEiC2023)"
Special Issue of JSA -- the Journal of Systems Architecture (Scimago Q1 ranked, impact factor 5.936).

General information for submitting to the JSA can be found at the Journal of Systems Architecture website. The submission link will be available on the
conference web page. Contributions must be submitted by 116 January 2023. JSA has adopted the Virtual Special Issue model to speed up the publication
process, where Special Issue papers are published in regular issues, but marked as SI papers. Acceptance decisions are made on a rolling basis.
Therefore, authors are encouraged to submit papers early, and need not wait until the submission deadline. Authors who have successfully passed the
first round of review will be invited to present their work at the conference. Please note that the AEiC 2023 organization committee will waive the Open
Access fees for the first four accepted papers, which do not already enjoy OA from personalized bilateral agreements with the Publisher. Subsequent
papers will follow JSA regular publishing track. Prospective authors may direct all enquiries regarding this track to the corresponding chair, Elena
Troubitsyna (elenatro@kth.se).

Call for Industrial-track Submissions

The conference seeks industrial practitioner presentations that deliver insight on the challenges of developing reliable software. Especially welcome
kinds of submissions are listed on the conference web site. Given their applied nature, such contributions will be subject to a dedicated practitioner-
peer review process. Interested authors shall submit a one-to-two pages abstract, by 227 February 2023, via EasyChair at
https://easychair.org/my/conference?conf=aeic2023, selecting the “Industrial Track”. The format for submission is strictly in PDF, following the Ada
User Journal style. Templates are available at http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime-time technical program of the conference and will also be invited to expand their contributions into full-fledged articles for publication in the
Ada User Journal, which will form the proceedings of the industrial track of the Conference. Prospective authors may direct all enquiries regarding this
track to its chairs Alexandre Skrzyniarz (alexandre.skrzyniarz@fr.thalesgroup.com) and Sara Royuela (sara.royuela@bsc.es).

Call for Work-in-Progress-track Submissions

The work-in-progress track seeks two kinds of submissions: (a) ongoing research and (b) early-stage ideas. Ongoing research submissions are 4-page
papers describing research results that are not mature enough to be submitted to the journal track. Early-stage ideas are 1-page papers that pitch new
research directions that fall within the scope of the conference. Both kinds of submissions must be original and shall undergo anonymous peer review.
Submissions by recent MSc graduates and PhD students are especially sought. Authors shall submit their work by 227 February 2023, via EasyChair at
https://easychair.org/my/conference?conf=aeic2023, selecting the “Work in Progress Track”. The format for submission is strictly in PDF, following the
Ada User Journal style. Templates are available at http://www.ada-europe.org/auj/guide.

The abstract of the accepted contributions will be included in the conference booklet. The corresponding authors will get a presentation slot in the
prime-time technical program of the conference and will also be offered the opportunity to expand their contributions into 4-page articles for
publication in the Ada User Journal, which will form the proceedings of the WiP track of the Conference. Prospective authors may direct all enquiries
regarding this track to the corresponding chairs Bjorn Andersson (baandersson@sei.cmu.ed) and José Cecílio (jmcecilio@fc.ul.pt).

Call for Tutorials

The conference seeks tutorials in the form of educational seminars on themes falling within the conference scope, with an academic or practitioner
slant, including hands-on or practical elements. Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the
presentation, the proposed duration (half-day or full-day), the intended level of the contents (introductory, intermediate, or advanced), and a statement
motivating attendance. Tutorial proposals shall be submitted by e-mail to Tutorial and Education Chair, Luís Miguel Pinho (lmp@isep.ipp.pt), with
subject line: “[AEiC 2023: tutorial proposal]”. Tutorial proposals shall be submitted by 227 February 2023. The authors of accepted full-day tutorials will
receive a complimentary conference registration, halved for half-day tutorials. The Ada User Journal will offer space for the publication of summaries
of the accepted tutorials.

Call for Workshops

The conference welcomes satellite workshops centred on themes that fall within the conference scope. Proposals may be submitted for half- or full-
day events, to be scheduled at either end of the AEiC conference. Workshop organizers shall also commit to producing the proceedings of the event,
for publication in the Ada User Journal. Workshop proposals shall be submitted by e-mail to the Workshop Chair, Frank Singhoff (singhoff@univ-
brest.fr), with subject line: [AEiC 2023: workshop proposal]. Workshop proposals shall be submitted at any time but no later than the 227 February 2023.
Once submitted, each workshop proposal will be evaluated by the conference organizers as soon as possible.

Call for Exhibitors

The conference will include a vendor and technology exhibition. Interested providers should direct inquiries to the Exhibition & Sponsorship Chair.

Venue

The conference will take place at the Hotel Fénix Lisboa, near downtown Lisbon, Portugal. June is full of events in Lisbon, including the festivities in
honour of St. António (June 13 is the town holiday), with music, grilled sardines, and popular parties in Alfama and Bairro Alto neighbourhoods. There’s
plenty to see and visit in Lisbon, so plan in advance!

�

New process for
commen�ng on the Ada

Language Standard

The Ada Rapporteur Group (ARG) of Working Group 9 (ISO WG9), within ISO/IEC
JTC1 SC22, is responsible for maintaining and advancing the Interna�onal Ada
Programming Language Standard. In the past we have used an “ada-comment”
mailing list as the o�cial place to �le comments or sugges�ons about the
Standard. Over the past six months we have been moving to an online approach
using a website and a GitHub issue repository. The new process seems to be
working, so we ask all those with comments about the Ada Standard or the Ada
Reference Manual to visit the new ARG website:

h�ps://arg.adaic.org/�

and select the “Community Input” page. There you will �nd forms for �ling
comments, or for reques�ng the forma�on of a “language study group” to focus
on par�cular thorny topics associated with the language (an example might be
“distributed compu�ng” or “tree pa�ern matching”).

Rather than �lling out a form, you can head over to the ARG GitHub repository:

h�ps://github.com/Ada-Rapporteur-Group/User-Community-Input�

and select the GitHub “issue” tab to post your comments, or join a discussion
on issues already there.

We would also welcome “meta” comments if you have thoughts on how to
improve the ARG process itself.

220

Volume 43, Number 4, December 2022 Ada User Journal

Call for Contributions

Topics: Ada, Programming Languages, Software
Engineering Issues and Reliable Software
Technologies in general.

Contributions: Refereed Original Articles, Invited
Papers, Proceedings of workshops and panels and

News and Information on Ada and reliable software

technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

Ada User Journal

 221

Ada User Journal Volume 43, Number 4, December 2022

Report on the ASIS Birds-of-a-Feather Session:

The Future of ASIS and Vendor Independent Tools

J-P. Rosen
Adalog, 2 rue du Docteur Lombard, 92130 Issy-Les-Moulineaux, FRANCE; email: rosen@adalog.fr

Abstract
This paper reports on the informal BoF-session that
took place on the last day of the 26th International
Conference on Reliable Software Technologies (AEiC
2022) on June 17th in Ghent, Belgium.
This session gathered people interested in the Ada
Semantic Interface Specification (ASIS) to discuss the
current situation of the standard and its future.
Keywords: Ada, static analysis, ASIS.

1 Introduction
Ada is a complex language to compile and analyze; ASIS is

an international standard that alleviates the burden of writing

third-party program analysis tools by providing access to the

syntactic tree built by the compiler with an API for

traversing the tree, syntactic and semantic queries, etc.

Several tools and utilities have been designed that build on

ASIS.

The ASIS standard has not been updated beyond the Ada 95

version of the language. Some vendors support strictly the

standard, hence only Ada 95 technology. Others vendors

have implemented extensions for later versions of Ada. On

the whole, the long-term support of ASIS is uncertain.

This situation raises concerns for third-party tool developers

and users. The session aimed at gathering tool users, tool

writers, compiler vendors, and other interested parties into

an informal meeting to discuss the following topics:

� user expectations on existing and future program

analysis tools;

� opportunities for updating the ASIS standard;

� support for ASIS (by vendors or volunteers);

� viability of abandoning ASIS to migrate to different

libraries.

2 Presentation of ASIS
J-P. Rosen introduced the session by giving an overview

presentation of ASIS.

ASIS (Ada Semantic Interface Specification) [1] is an

international standard, first developed for Ada 83, then

updated to Ada 95. It was developed by an international

committee (the ASIS working group). The standard was not

evolved for subsequent updates of Ada, however

implementations, especially the AdaCore one, continued to

add support up to Ada 2012. AdaCore announced however

that their implementation would not be upgraded to support

Ada 2022.

ASIS is an API to explore and get information from the

decorated syntactic tree, as produced by the associated

compiler. This guarantees that a tool based on ASIS will see

the code exactly as the compiler sees it, including

implementation dependent elements allowed by the

standard, and elements defined in the System and Standard

packages. However, this implies that an ASIS

implementation is linked to a certain compiler. A tool based

on ASIS must provide specific executable versions for each

supported compiler.

Since ASIS operates on a tree resulting from a successful

compilation, it cannot handle incorrect or incomplete code.

For the same reason, it was a deliberate design decision to

not provide any operation that would modify, or even add

information, to the syntactic tree. It is purely oriented

towards analysing a program, with no way to modify it.

More information about ASIS can be found in [2]

3 Vendor Presentations
Vendors of ASIS solutions were invited before the

conference to present their offer.

AdaCore declined, having no representative available at that

time, and PTC did not attend the conference. However, a

participant stated that at PTC’s latest

webinar on Ada tools, PTC said they had a full ASIS

implementation of the standard (i.e. ASIS-95), and that they

would consider implementing ASIS for later versions of Ada

if a new ASIS standard were to become available.

4 User presentations
Adalog was the only participant who developed a full tool

with ASIS, AdaControl, probably the most demanding ASIS

application. Information about AdaControl can be found at

[3].

5 Discussion
There was some discussion about the official and practical

state of ASIS.

One issue was the confusion in earlier discussions in the

comp.lang.ada newsgroup, caused by a misunderstanding

about what it means that ISO holds the copyright on the

ASIS standard document. Some people there claimed that

222 The Future of ASIS and Vendor Independent Tools

Volume 43, Number 4, December 2022 Ada User Journal

due to the ISO copyright, no one can legally implement nor

even use ASIS without paying money to ISO [sic].

It was clarified that this obviously is not correct, which is

supported by the publicly available portions of the ASIS

standard document [4]. In fact, the standard explicitly allows

implementations and even extensions: see sections ‘1.1.3

Conformity with this International Standard’ and ‘1.1.4

Implementation permissions’.

Another issue was that although the current ASIS standard is

for Ada 95, AdaCore’s implementation has evolved and now

fully supports Ada 2012. As most of the Ada 2022 updates

are aspects, there is little new syntax. Therefore, to update

the ASIS standard for Ada 2022 would be relatively simple,

and include the following changes:

� build from experience, add obviously missing

semantic queries from the current ASIS standard;

� straighten semantics in some insufficiently or

incorrectly defined cases and remove some

implementation permissions to improve portability

of applications;

� update to Ada 2012, building upon existing

AdaCore extensions;

� update to Ada 2022.

Lobbying might be required to convince vendors to support

a new standard, but see above for PTC. AdaCore stated that

they were not interested to support ASIS any further,

therefore volunteers are needed to support ASIS in FSF

GNAT. Another possibility is to provide a vendor

independent implementation, like the former Gela ASIS [5],

or by making an ASIS layer on top of Libadalang [6], or via

the database approach presented at the conference by the

poster of Quentin Dauprat.

6 Actions
Since the discussion showed that there was clearly an interest

in continuing ASIS, each participant took some action:

� a participant said that they would speak to those in

their work environment about using AdaControl

and this could produce a demand for ASIS;

� a participant said they would also discuss with their

work colleagues with a view to using AdaControl;

they would also like to implement ASIS in the HAC

compiler [7] and will contact PTC to gauge their

interest in progressing ASIS;

� a participant suggested that ASIS could be supplied

via Alire by a community effort;

� a participant stated that they would raise this at

work;

� a participant said they are willing to coordinate the

effort with volunteers in an ASIS working group

and lead the possible development of a new ASIS

standard;

� a participant said they would implement some static

analysis in Libadalang and ASIS/AdaControl as a

comparison;

� a participant said they would contact Ada-

Switzerland members to gauge which ones were

making use of ASIS;

� A participant will undertake some further technical

development

7 Conclusion
The session showed that there was a clear interest in

pursuing ASIS, both from a user and from an industrial point

of view. However, this would make sense only with an

updated ASIS standard.

Volunteers have stepped forward to start such an effort.

After the meeting, a mailing list has been established to

coordinate among participants. All interested parties are

invited to send a mail to rosen@adalog.fr to be added to that

list.

References
[1] ISO/IEC 15291: Information technology —

Programming languages — Ada Semantic Interface

Specification (ASIS)

[1] J-P. Rosen, “ASIS vs. LibAdalang: A Comparative

Assesment”, Ada User Journal, Volume 42 numbers 3-

4, September - December 2021.

[2] https://adacontrol.fr/

[3] https://webstore.iec.ch/preview/info_isoiec15291%7Be

d1.0%7Den.pdf

[4] https://github.com/faelys/gela-asis

[5] https://github.com/AdaCore/langkit-query-

language/blob/master/user_manual/source/language_re

ference.rst

[6] https://hacadacompiler.sourceforge.io/

223

ANIARA Project - Automation of Network Edge

Infrastructure and Applications with Artificial

Intelligence

Wolfgang John, Ali Balador, Jalil Taghia, Andreas Johnsson, Johan Sjöberg
Ericsson, Stockholm, Sweden; email: {wolfgang.john, ali.balador, jalil.taghia, andreas.a.johnsson,
johan.sjoberg}@ericsson.com

Ian Marsh, Jonas Gustafsson
RISE Research Institute of Sweden, Stockholm, Sweden; email: {ian.marsh, jonas.gustafsson}@ri.se

Federico Tonini, Paolo Monti
Chalmers University, Sweden; email: {tonini, mpaolo}@chalmers.se

Pontus Sköldström
Qamcom AB, Sweden; email: {pontus.skoldstrom}@qamcom.com

Jim Dowling
Hopsworks AB, Sweden; email: jim@hopsworks.ai

Abstract

Emerging use-cases like smart manufacturing and smart
cities pose challenges in terms of latency, which can-
not be satisfied by traditional centralized infrastructure.
Edge networks, which bring computational capacity
closer to the users/clients, are a promising solution for
supporting these critical low latency services. Differ-
ent from traditional centralized networks, the edge is
distributed by nature and is usually equipped with lim-
ited compute capacity. This creates a complex network
to handle, subject to failures of different natures, that
requires novel solutions to work in practice. To re-
duce complexity, edge application technology enablers,
advanced infrastructure and application orchestration
techniques need to be in place where AI and ML are key
players.

1 Introduction
ANIARA project is based on two use case families addressing

smart manufacturing and smart cities. Figure 1 illustrates the

functional technologies for evolving 5G edge systems. The ap-

plication scenarios are drawn upon the synergies between 5G,

cloud computing and edge computing. Our studies include

elaborating detailed use case descriptions for verticals using

5G and the edge cloud. Concerning manufacturing, ANIARA

focuses on two main aspects [1]. These are: environmental

monitoring and control of the factory floor concerning proper-

ties such as air quality; temperature and power management

and operations monitoring and control such as robot cell con-

trol, logistics and safety. These use cases drive the high-level

system architecture requirements and serve as the basis for

technology-specific use cases such as private 5G, edge micro

datacenters and AI at the edge.

The remainder of this paper is organized to provide additional

details of the components in Figure 1. Section 2 provides

details about edge platform infrastructure and services that

have been developing in ANIARA, including lightweight

and portable execution environments and fast, dependable

feature stores. Apart from edge infrastructure, developing

edge AI enablers is also another important objective of the

ANIARA. Section 3 describes AI/ML methods designed and

developed within the project so far, including ML models

for life-cycle management, intelligent feature selection and

distributed learning in the edge considering privacy. ANIARA

also addresses management and orchestration including both

edge and cloud scenarios, to satisfy the specific needs of the

use cases, detailed in Section 4. Section 5 presents research

on smart power for building a large-scale 5G edge system,

shown in the lower portion of Figure 1. Section 6 provides

a comprehensive related work. Finally, Section 7 gives an

overview of works planned to be done in the future.

2 Edge platform components
2.1 Programmable, light containerisation
Lightweight and portable execution environments have been

identified as a crucial enabler for higher flexibility and dy-

namism of application deployment in a distributed network

[2, 3]. In ANIARA, we experiment with WebAssembly tech-

nologies to fill this gap. WebAssembly [4] is an open binary

instruction format for a stack-based virtual machine, designed

to support existing programming languages in a web browser

environment. As an example, Edgedancer, offers infrastruc-

ture support for portable, provider-independent, and secure

Ada User Jour na l Vo lume 43, Number 4, December 2022

224 ANIARA Pro jec t - Automat ion of Network Edge In f ras t ruc ture and Appl ica t ions wi th AI

Figure 1: Functional structure of the ANIARA project.

migration of edge services, it is a lightweight and generic

execution environment by utilising WebAssembly [5]. In the

browser, WebAssembly is generally faster than JavaScript due

to its more compact format and manual memory management.

The virtual machine is, however, not bound to browsers, but

can be used standalone on various platforms. A deployment

flow is where a high-level language such as C, C++, Rust,

Python and so on can be compiled to WebAssembly (using

clang) and executed on various hardware or software plat-

forms. Webassembly allows edge applications to execute

within a wide range of devices and operating systems. In

ANIARA, we wrote an application in Rust and executed it

on a WebAssembly runtime using a $30 microcontroller, to

prove the versatility and low footprint. The same application

was also written in Python that runs (on WebAssembly again)

in an ASCII terminal.

2.2 Fast, dependable, feature store
A production-grade AI solution for edge computing, known

as Feature stores, is a part of ANIARA. They act as a halfway

house between data scientists and data engineers, enabling

the same feature computation code to be used for model

training and inference. Feature stores also act as a centralized

repository of AI models and have been adapted to perform

in distributed scenarios for real-time data synchronization

between geographically distributed Edge locations.

The underlying database is called RonDB, evaluated us-

ing LATS, meaning low Latency, high Availability, high

Throughput, scalable Storage principles to list RonDB’s per-

formance:

• RonDB x3 times lower latency

• RonDB 1.1M reads/sec, REDIS 800k reads/sec

• RonDBs processed 200M reads in a 30 node cluster

3 AI for Edge Management
We divide AI for edge management into three main research

tracks: (i) ML model life-cycle management, (ii) Intelligent

feature selection, and (iii) Distributed learning in the edge.

The three tracks have been studied within a use case for

service performance prediction from edge statistics available

to an operator with the objective to automate parts of the edge

management process.

ML model life-cycle management: Ensuring high-

performing ML models that are continuously updated and

correctly deployed is critical for successful integration of ML

in the edge. Transfer learning [6, 7], which is one approach,

allows for structured incorporation of previously acquired

knowledge enabling timely and robust model adaptation, espe-

cially when data are scarce for reliable training of ML models.

In ANIARA, we studied concepts and methods for adapting

and selecting ML models for mitigating ML-model perfor-

mance degradation due to expected vertical and horizontal

scaling in the edge infrastructure and 5G system, with specific

focus on performance models for networked services [8,9,10].

Intelligent feature selection: A challenge for AI at the edge

is related to network overhead with respect to measurements

and monitoring, and feature selection for improved model per-

formance [11]. A key enabler for ML models is timely access

to reliable data, in terms of features, which require pervasive

measurement points throughout the network. However, exces-

sive monitoring is associated with network overhead. Using

domain knowledge provides hints to find a balance between

overhead reduction and identifying future ML requirements.

A review on techniques for unsupervised feature selection is

provided in [7] and authors in [12] show a comprehensive

review of online feature selection techniques. In ANIARA,

We implemented an unsupervised feature selection method

Volume 43, Number 4, December 2022 Ada User Jour na l

W. John et a l . 225

that uses a structured approach in incorporation of the do-

main knowledge acquired from domain experts or previous

learning experiences [13].

Distributed learning in the edge: Multi-domain service met-

ric prediction is a key component in the ANIARA framework.

It should enable privacy-preserving sharing of knowledge be-

tween operators, and low-overhead training of models within

an operator in terms of data sharing. The approach requires in-

network processing capabilities to enable federated learning.

The works in [14, 15] review federated learning methods in

mobile edge networks and edge computing, respectively. Our

work in ANIARA extends the scope of these works specif-

ically towards edge clouds for telecommunication industry.

We are working on a multi-domain service metric prediction

framework using federated learning, corresponding to a sce-

nario where several services are managed by a number of

operators in geographically distributed locations.

4 Edge-cloud orchestration
Slicing allows provisioning of multiple services over the same

infrastructure, where virtual or physical resources are inter-

connected to form end-to-end logical networks, also known

as slices [16]. Orchestrators run resource allocation algo-

rithms to select the most suitable set of resources to satisfy

the specific needs of the clients. In the edge cloud, compute

resources are located close to the users, allowing provision-

ing of low latency services and enabling 5G Ultra-Reliable

Low-Latency Communication slices. Allocating backup re-

sources requires protecting the slices against link or node

failures. Backup resources can be provided by means of a

dedicated protection scheme, where resources are dedicated

for each slice. Since backup resources are accessed only in

case of failures, shared protection schemes can be developed,

where backup resources are shared among different slices to

decrease the overall amount of required resources.

Resource allocation strategies for 5G networks and reliable

services have been investigated recently. In particular, dif-

ferent techniques for backup protection of optical network

resources, relying on both DP and SP schemes, have been

presented in [17, 18]. Works propose efficient DP and SP

algorithms for cloud and baseband resources in 5G access

and metro networks, see [19, 20]. Considering connectivity

and compute resources separately may lead to impractical

solutions, especially when resources are scarce. Our work

focuses on the dynamic slice provisioning where both type

of resources are jointly allocated. A whitepaper presents an

overview of the market and implementation trends, see [21].

In ANIARA, we developed a heuristic-based shared protec-

tion to encourage sharing of backup connectivity and cloud

resources. We also evaluated this against a dedicated pro-

tection scheme using a Python simulator, published in [22].

Results show that the shared approach reduces the blocking

probability by order of magnitude, and is especially beneficial

when in-node processing resources are scarce.

5 Edge-cloud power research
Installing thousands of edge data centers, primarily in cities

will require significant amounts of power, however many

power grids are already utilized close to 100%. To maintain

high availability, the edge-data centers need to be comple-

mented with alternative power sources and pro-active power

management systems. This requires tailored hardware solu-

tions integrated with the power grid and on-site power gener-

ation. Supporting active load balancing by going off-grid for

shorter periods of time. We are working on the design and

implementation of a series of micro-edge-data center demon-

strators for deployment at industrial sites. The first generation

consists of a double rack configuration including, cooling,

UPS-system with batteries, multiple power source inputs and

IT-hardware.

To build out a large-scale 5G edge system, smart power uti-

lization is required. One approach is to utilize the on-site UPS

installation to go off-grid during peak power periods. The

battery storage needs to be dimensioned to address this active

usage. Incentivizing the active participation from the edge

data centers in the load-balance activity is necessary. Moving

away from fixed to dynamic prices will permits battery charg-

ing during off-peaks and discharging during higher-priced

periods. Discharging implies less grid power. The value for

a power grid operator will be larger than that reflected by

the customer energy price, if the data center is placed in a

particularly energy-hungry section of the grid. Therefore, we

have initiated a dialog with a major power grid operator.

6 Future work
Going forward in the AI for edge field, we will study dis-

tributed learning under various sources of data and system

heterogeneity. The objective is to tackle concerns with data

privacy, resource heterogeneity among AI actors, challenges

in re-usability of previously learned ML models, and diffi-

culties in effective incorporation of domain knowledge. Ex-

periments with WebAssembly based runtimes to implement

code-once, execute anywhere approaches across the device-

edge-cloud continuum are ongoing. The idea is to support

offloading applications from the user equipment device to

the edge node. Future work for the Feature store is a Ku-

bernetes operator for RonDB and using it to store and serve

our WASM containers. Improving RonDB and implement-

ing an evaluation store, feature drift detection is planned.

Before a widespread edge data center can be used, we will

need to work on power integration aspects that means de-

ployment/installation of the physical hardware. Installation

at hard-to-reach places, requiring easy assembly on-site and

an autonomous operation with minimal on-site maintenance

is ongoing (a demo was shown at the mid-term review, April

2022). We will also investigate the potentials and limitations

of resource sharing in bare metal deployments of containers,

and enhanced scaling strategies to improve utilization.

Acknowledgements
This work was supported by EU Celtic Plus (ID C2019/3-2),

Vinnova (under the project ID 2020-00763), Bundesminis-

terium für Bildung und Forschung (under the name "AI-NET

ANIARA 16KIF1274K") and InnovateUK (under the project

ID 106197: ukANIARA) via the ANIARA project.

Ada User Jour na l Vo lume 43, Number 4, December 2022

226 ANIARA Pro jec t - Automat ion of Network Edge In f ras t ruc ture and Appl ica t ions wi th AI

References
[1] A. Y. Ding et al., “Roadmap for edge AI: A dagstuhl

perspective,” CoRR, vol. abs/2112.00616, 2021.

[2] G. Wikström et al., “6g – connecting a cyber-physical

world: A research outlook towards 2030,” Ericsson,
White paper, Feb. 2022.

[3] A. Sefidcon, W. John, M. Opsenica, and B. Skubic, “The

network compute fabric – advancing digital transfor-

mation with ever-present service continuity,” Ericsson
Technology Review, June 2021.

[4] A. Haas et al., “Bringing the web up to speed with

webassembly,” in Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI 2017, (New York, NY, USA),

p. 185–200, Association for Computing Machinery,

2017.

[5] M. Nieke, L. Almstedt, and R. Kapitza, “Edgedancer:

Secure mobile webassembly services on the edge,” in

Proceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking, EdgeSys ’21, (New

York, NY, USA), p. 13–18, Association for Computing

Machinery, 2021.

[6] K. R. Weiss, T. M. Khoshgoftaar, and D. Wang, “A

survey of transfer learning,” Journal of Big Data, vol. 3,

pp. 1–40, 2016.

[7] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F.

Martínez-Trinidad, “A review of unsupervised fea-

ture selection methods,” Artificial Intelligence Review,

vol. 53, pp. 907–948, 2019.

[8] M. E. F. G. Sanz and A. Johnsson, “Exploring ap-

proaches for heterogeneous transfer learning in edge

clouds,” in IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), 2022.

[9] H. Larsson, J. Taghia, F. Moradi, and A. Johnsson,

“Source selection in transfer learning for improved ser-

vice performance predictions,” in 2021 IFIP Networking
Conference and Workshops, 2021.

[10] F. Moradi, R. Stadler, and A. Johnsson, “Performance

prediction in dynamic clouds using transfer learning,”

2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), 2019.

[11] X. Wang, F. S. Samani, A. Johnsson, and R. Stadler,

“Online feature selection for low-overhead learning in

networked systems,” in 2021 17th International Con-
ference on Network and Service Management (CNSM),
pp. 527–529, IEEE, 2021.

[12] X. Hu, P. Zhou, P. Li, J. Wang, and X. Wu, “A sur-

vey on online feature selection with streaming features,”

Frontiers of Computer Science, vol. 12, pp. 479–493,

2016.

[13] J. Taghia, F. Moradi, H. Larsson, X. Lan, M. Ebrahimi,

and A. Johnsson, “Policy-induced unsupervised feature

selection: A networking case study,” in IEEE INFO-
COM 2022-IEEE Conference on Computer Communi-
cations, 2022.

[14] W. Y. B. L. et. al, “Federated learning in mobile edge

networks: A comprehensive survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 22, pp. 2031–2063,

2020.

[15] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey

of federated learning for edge computing: Research

problems and solutions,” High-Confidence Computing,

2021.

[16] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and

A. Hines, “5G network slicing using SDN and NFV:

A survey of taxonomy, architectures and future chal-

lenges,” Computer Networks, vol. 167, p. 106984, 2020.

[17] N. Shahriar, S. Taeb, S. R. Chowdhury, M. Zulfiqar,

M. Tornatore, R. Boutaba, J. Mitra, and M. Hemmati,

“Reliable slicing of 5G transport networks with band-

width squeezing and multi-path provisioning,” IEEE
Transactions on Network and Service Management,
vol. 17, no. 3, 2020.

[18] A. Marotta, D. Cassioli, M. Tornatore, Y. Hirota,

Y. Awaji, and B. Mukherjee, “Reliable slicing with iso-

lation in optical metro-aggregation networks,” in 2020
Optical Fiber Communications Conference and Exhibi-
tion (OFC), pp. 1–3, 2020.

[19] B. M. Khorsandi, F. Tonini, and C. Raffaelli, “Central-

ized vs. distributed algorithms for resilient 5G access

networks,” Photonic Network Communications, vol. 37,

pp. 376–387, Jun 2019.

[20] H. D. Chantre and N. L. Saldanha da Fonseca, “The

location problem for the provisioning of protected slices

in NFV-based MEC infrastructure,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 7,

pp. 1505–1514, 2020.

[21] T. L. F. Project, “State of the edge 2021: A market

and ecosystem report for edge computing,” whitepaper,

2021.

[22] E. Amato, F. Tonini, C. Raffaelli, and P. Monti, “A re-

source sharing method for reliable slice as a service pro-

visioning in 5G metro networks,” in 2021 International
Conference on Optical Network Design and Modeling
(ONDM), pp. 1–3, 2021.

Volume 43, Number 4, December 2022 Ada User Jour na l

227

DAIS Project - Distributed Artificial Intelligence

Systems: Objectives and Challenges

Ali Balador, Sima Sinaei
RISE Research Institute of Sweden, Vasteras, Sweden; email: {ali.balador, sima.sinaei}@ri.se

Mats Pettersson
Mobilvägen 10, 223 62 Lund, Sweden; email: Mats.Pettersson@sensative.com

İlhan Kaya
Organize Sanayi Bolgesi, 45030 Manisa, Turkey; email: ilhan.kaya@vestel.com.tr

Abstract

DAIS is a step forward in the area of artificial intel-
ligence and edge computing. DAIS intends to create
a complete framework for self-organizing, energy effi-
cient and private-by-design distributed AI. DAIS is a
European project with a consortium of 47 partners from
11 countries coordinated by RISE Research Institute of
Sweden.

Keywords: Edge Computing, Distributed AI, Federated
Learning, DAIS, KDT JU, EU project.

1 Introduction
In recent years, technological developments in consumer

electronics and industrial applications have been advancing

rapidly. More and smaller, networked devices are able to

collect and process data anywhere. This Internet of Things

(IoT) is a revolutionary change for many sectors like building,

automotive, digital industry, energy, healthcare, etc. As a

result, the amount of data being generated at the Edge level

has and will increase dramatically, resulting in higher net-

work bandwidth requirements. In the meantime, with the

emergence of novel applications, such as automated driving,

lower latency of the network is required.

The new paradigm of edge computing (EC) provides new solu-

tions by bringing resources closer to the user, keeps sensitive

& private data on device, and provides low latency, energy

efficiency, and scalability compared to cloud services while

reducing the network bandwidth. This in addition brings cost

savings. EC guarantees the quality of service when dealing

with a massive amount of data for cloud computing [1, 2].

At the same time, Artificial Intelligence (AI) applications

based on machine learning (especially deep learning algo-

rithms) are being fuelled by advances in models, processing

power, and big data. In Cisco annual report (2018-2023) [3],

they asked 83 organizations when all reported that they have

edge computing use cases where artificial intelligence, inter-

net of things and 5G had higher portions. The huge increase

of devices at the network edge drives the need for enterprises

to manage and analyze data from IoT endpoints. Shifting

traffic from the network core to the edge affects computing

and communications architectures. To have a successful edge

computing strategy, it is important to make sure the overall

infrastructure is efficient, manageable.

The developments of AI applications mostly require process-

ing of data in centralized cloud locations and hence cannot

be used for applications where milliseconds matter or for

safety-critical applications. For example, as the sensors and

cameras mounted on an autonomous vehicle generate about a

gigabyte of data per second, it is difficult, if not impossible to

upload this data and get instructions from the cloud in real-

time. Same situation is valid for face recognition applications,

where they have high temporal requirements for processing

either online or offline. Moreover, edge computing offers

security benefits due to wider data distribution at the edge

level. Reducing the distance data has to travel for processing

means decreasing the opportunities for trackers and hackers

to intercept it during transmission and preserves its privacy.

With more data remaining at the edges of the network, cen-

tral servers are also less likely to become targets for cyber

attacks. This has led to a growing interest in Federated Learn-

ing (FL), as a promising distributed learning paradigm that

allows multiple parties to jointly train a global ML model on

their combined data without any participants having to reveal

their data to a centralized server.

The concept of Federated Learning was developed by Google

researchers in 2016, as a promising solution for addressing the

issues of communication costs, data privacy, and legalization

[4, 5, 6]. This ensures the privacy of data during the training

process. An edge server or cloud server periodically gathers

the trained parameters to create and update a better and more

accurate model, which is sent back to the edge devices for

local training. Generally, there are three main steps in the FL

training process. 1) Central server shares an initial model. 2)

Participants train their local data with the initial model and

share the local model with the central server. 3) Central server

aggregates the local models and shares the global model with

participants.

Federated learning methods have been deployed in practice

by major companies [7, 8] and play a critical role in sup-

Ada User Jour na l Vo lume 43, Number 4, December 2022

228 DAIS Pro jec t - D is t r ibu ted Ar t i f i c ia l In te l l igence Systems: Object ives and Chal lenges

porting privacy-sensitive applications where training data are

distributed at the edge [9]. FL has several distinct advantages

over traditional centralized ML training:

• Training time is reduced. Multiple devices are used to

calculate gradients in parallel, which offers significant

speedups.

• Inference time is reduced. At the end of the day, each

device has its own local copy of the model, so it can

make predictions extremely quickly without relying on

slow queries to the cloud.

• Privacy is preserved. Uploading sensitive information

to the cloud presents a significant privacy risk for ap-

plications like healthcare devices. Privacy breaches in

these settings may be a matter of life and death. As

such, keeping data local helps preserve the privacy of

end-users.

• Collaborative learning using FL is easy and consumes

less power as the models are trained on edge devices.

The term implies that edge computing is a suitable en-

vironment for using FL. It is a technology that enables

the training of ML models on mobile edge networks.

Therefore, the communication costs, privacy, security,

and legalization issues could be alleviated by leveraging

FL in the EC paradigm.

2 DAIS Project Objectives
DAIS is a huge step forward in the area of artificial intelli-

gence and edge computing. DAIS aims at providing edge

computing architecture, including both hardware and soft-

ware for industrial applications. DAIS is a pan-European

effort spanning three years with a total budget of C33 million

and a consortium of 47 partners from 11 countries, shown in

Figure 1. Coordinated by Ali Balador from RISE, research

institute of Sweden, and with the support of Europe’s indus-

try, Europe’s leading Research Organizations, the European

Union via the KDT Joint Undertaking and the participating

national funding agencies, it is possible to bring together Eu-

ropean and International key players to the benefit of Europe’s

economy and society.

Figure 1: DAIS project consortium.

DAIS intends to create a complete framework for self-

organizing, energy efficient and private-by-design distributed

AI. The framework covers an end-to-end system consisting

of a variety of heterogeneous nodes ranging from simple IoT

nodes to high performance servers and cluster nodes. The

framework consists of a hardware framework and a software

framework enabling both traditional end-to-end services as

well as horizontal systems with multiple service providers

using common data, IoT and AI resources, shown in Fig-

ure 2. Multiple connected nodes using the DAIS framework

creates a complete DAIS System supporting both vertically

and horizontally distributed AI. The DAIS framework will

also support open standards to interact with other devices,

platforms, and services. In DAIS, we leverage on existing

hardware devices, refine them as well as develop new devices.

Figure 2: Complete DAIS ecosystem.

The DAIS SW framework includes a DAIS AI framework, a

DAIS security framework, and a DAIS communication frame-

work including SW components, tools, policies, interfaces,

and data-models enabling compatibility, privacy, and secure

data communication between products and services creating

a fully distributed AI system. The DAIS framework will al-

low for standardised data pipelines, sharing compute load

between nodes, model distribution as well as model learning

hierarchies such as federated learning. Furthermore, pro-

viding a standardised way of sharing, keeping track of, and

distributing model specific configurations, data and model

architectures in a secure manner. The framework is producer-,

generator-, vendor-and service-agnostic, hence allowing inter-

action between the different nodes in vertical and horizontal

way.

Within the project, we address many fundamental distributed

AI challenges in several value chains and across the technol-

ogy stack. Here, we will only present some examples. For

example, we will explore novel hardware architectures for

neuromorphic computing. The software framework will allow

the deployed AI algorithms to adapt to changes in the system’s

environment,e.g., by replacing machine learning models. We

will explore ways of developing models in nodes and close to

the sensor. The framework will allow data direction agnostic

pipeline construction hence enabling development of novel

data mining and -analysis solutions, upon which the AI can

act. We will also investigate anomaly detection techniques.

An orthogonal aspect is efficiency. In DAIS, we both ad-

dress energy and communication efficiency. We address these

challenges both on a hardware level and software level. For

example, we develop technologies for analysing data close to

the sensor so that raw data does not have to be communicated

Volume 43, Number 4, December 2022 Ada User Jour na l

A. Balador, S. S inae i , M. Pet tersson, I . Kaya 229

to other nodes. Thus, reducing energy consumption as less

data is communicated and communication is expensive in

terms of energy. As a side effect, privacy is improved as ex-

tracted, and more anonymous, features can be communicated

between nodes.

3 DAIS Application Domains
DAIS project covers three domains including digital industry

(e.g., condition monitoring for smart grids, AI-driven Auto-

mated Guided Vehicle (AGV), optimal regulation of turbines

in hydropower plants and frequency converter as a node for

edge computing), digital life (e.g., privacy preserving dis-

tributed personal TV recommendation system, smart lighting

solutions and edge AI in office environment) and transport and

smart mobility (e.g., fire monitoring and firefighting system

for drones, self-provisioning of Drone fleet for the transporta-

tion of goods).

These application domains cover a vast space of applications,

hence they aim to tackle a lot of challenges. These challenges

can be solved with a smart utilization of different software

and hardware components combining the power of artificial

intelligence (AI) with internet of things (IoT). One challenge

is that application of digital twins into different industrial

applications requires obtaining vast amount of real time data

from IoT devices usually within a time critical way and exam-

ine the data to optimize the system parameters and generate

smart actions to improve the energy efficiency, utilization and

maintenance of those systems.

For digital life applications, fragmentation and power require-

ments of the devices and user’s comfort and privacy when it

comes to processing of their data presents several confronta-

tions to the service providers.In a more traditional way where

the data is processed on the cloud systems could breach the

security and privacy and considered to be risky. So the solu-

tion in these contexts would be to deploy privacy by design

principles and move the components for artificial intelligence

models instead of the data, and process it where it is produced,

e.g. user’s devices.

Final application area in DAIS project is to leverage smart

edge AI principles to offer smarter ways for transport i.e

drones and fleets. One of the major challenges here is to

obtain a lot of data and to process it without any delay for self

provisioning, detecting and avoiding obstacles while trans-

porting goods, monitoring the accidents and fires. Freshness

of the data for these applications are vital as the dynamic

nature of the environment will impose several restrictions on

feasibility and usefulness of these edge AI methods.

References
[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge com-

puting: Vision and challenges,” IEEE Internet of Things
Journal, vol. 3, no. 5, pp. 637–646, 2016.

[2] A. Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker,

S. Dustdar, T. Hiessl, D. Kranzlmüller, M. Liyanage,

S. Magshudi, N. Mohan, J. Ott, J. S. Rellermeyer,

S. Schulte, H. Schulzrinne, G. Solmaz, S. Tarkoma,

B. Varghese, and L. C. Wolf, “Roadmap for edge AI: A

dagstuhl perspective,” CoRR, vol. abs/2112.00616, 2021.

[3] “Cisco Annual Internet Report

(2018–2023) White Paper.” https://
www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/
annual-internet-report/
white-paper-c11-741490.html, 2020. [Online;

accessed 19-February-2022].

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated

learning: Challenges, methods, and future directions,”

IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–

60, 2020.

[5] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Ben-

nis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode,

R. Cummings, et al., “Advances and open problems in

federated learning,” Foundations and Trends® in Ma-
chine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[6] P. M. Mammen, “Federated learning: Opportunities and

challenges,” arXiv preprint arXiv:2101.05428, 2021.

[7] H. G. Abreha, C. J. Bernardos, A. D. L. Oliva, L. Com-

inardi, and A. Azcorra, “Monitoring in fog computing:

state-of-the-art and research challenges,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 36,

no. 2, pp. 114–130, 2021.

[8] X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang,

“Two-layer federated learning with heterogeneous model

aggregation for 6g supported internet of vehicles,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 6,

pp. 5308–5317, 2021.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

nature, vol. 521, no. 7553, pp. 436–444, 2015.

Ada User Jour na l Vo lume 43, Number 4, December 2022

230

Volume 43, Number 4, December 2022 Ada User Journal

AI-Augmented Model-Based Capabilities in the

AIDOaRt Project: Continuous Development of

Cyber-physical Systems

Alessandra Bagnato
Softeam, Docaposte Groupe, France, Alessandra.bagnato@softeam.fr

Antonio Cicchetti
Mälardalen University, IDT, Sweden, antonio.cicchetti@mdu.se

Luca Berardinelli
Johannes Kepler University, Linz, Austria, luca.berardinelli@jku.at

Hugo Bruneliere
IMT Atlantique, LS2N (UMR CNRS 6004), hugo.bruneliere@imt-atlantique.fr

Romina Eramo
University of L’Aquila, Italy, romina.eramo@univaq.it

Abstract
 The paper presents the AIDOaRt project, a 3 years
long H2020-ECSEL European project involving 32
organizations, grouped in clusters from 7 different
countries, focusing on AI-augmented automation
supporting modeling, coding, testing, monitoring, and
continuous development in Cyber-Physical Systems
(CPS). To this end, the project proposes to combine
Model Driven Engineering principles and techniques
with AI-enhanced methods and tools for engineering
more trustable and reliable CPSs. This paper
introduces the AIDOaRt project, its overall objectives,
and used requirement engineering methodology. Based
on that, it also focuses on describing the current plan
regarding a set of tools intended to cover the model-
based capabilities requirements from the project.

Keywords: Model-Based Engineering, Cyber-Physical
Systems, Development Operations, Artificial
Intelligence.
1 Introduction
The AIDOaRt 1 project aims at supporting systems

engineering and continuous delivery activities, namely

requirements engineering, modeling, coding, testing,

deployment, and monitoring, with AI-augmented, automated

Model-Based Engineering (MBE) 2 and Development

Operations (DevOps). To achieve this goal, AIDOaRt

proposes a model-based framework architecture (cf. Figure

1) that specifies proper methods and tools to enable design

1 https://www.aidoart.eu

2 In�this�paper,�we�interchangeably�use�both�Model�Based�Engineering�
(MBE)�and�Model�Driven�Engineering�(MDE),�although�we�are�aware�that�

and run-time data collection, ingestion, and analysis to

provide tailored and efficient AI/ML solutions that will be

integrated and evaluated on concrete industrial case studies

involving various Cyber-Physical Systems (CPS). The

objective of the project, as shown in Figure 1, is to provide a

model-based framework to support the CPS development

process by introducing AI-augmented automation.

Enhancing the DevOps toolchain by employing AI and

Machine Learning (ML) techniques in multiple aspects of

the system development process (such as modeling, coding,

testing, and monitoring), supporting the monitoring of

runtime data (such as logs, events, and metrics), software

data, and traceability (Observe), analyzing both historical

and real-time data (Analyze) and the automation of

functionality (Automate).

2 The AIDOaRt Project
The project started on April 1, 2021, and involves 32

industrial and academic partners from different European

countries [1]. The AIDOaRt project consortium consists of

three different organization categories: Research Partners,

Industrial Use Case Partners, and Technology Provider

Partners. The industrial use case partners provide industrial

case studies. Each case study comes with a set of

requirements and a set of existing technologies and tools

offered to the other two types of partners as baseline

technologies. Both the technology providers and research

partners develop new technologies and tools to satisfy the

requirements specified by the industrial use case partners.

They use the baseline technologies offered by the industrial

use case partners and perform various research and

MDE�recalls�a�higher�automation�degree�(cf.�https://modeling-

languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/)

A. Bagnato, A. Cicchett i , L. Berardinel l i , H. Brunel iere, R. Eramo 231

Ada User Journal Volume 43, Number 4, December 2022

development tasks to develop new capabilities and

technologies, as potential exploitation assets. Finally, the

new capabilities/technologies developed by the technology

providers and research partners are evaluated and adopted by

the industrial use case providers. In this way, the industrial

use case providers benefit from the newly developed

AIDOaRt technologies and tools. Moreover, the technology

providers and research partners benefit by working on

important, industry-relevant research and development

problems and use case requirements. Industrial Use case

partners provide 15 industrial case studies capturing CPS of

varying complexity levels and in different application

domains, ranging from automotive to software and

communication systems. AIDOaRt Research and industrial

partners propose 50+ candidate solutions potentially relevant

to directly tackle the case study requirements, or generally

fit within the framework of AIDOaRt, to fulfil typical data-

centric, AI-augmented, or model-based engineering

requirements. These solutions also vary in their offered

services, the consumed or produced input/output data, and

the technical constraints (data requirements, supported

platforms and deployment procedures).

3 Project Requirements
The nature of our AIDOaRt project, in terms of number of

partners and variety in requirements and proposed solutions,

requires the adoption of a complete methodology to

gradually define the architecture and to incrementally

collect, refine and clarify the requirements, and map them to

candidate solutions [2]. Industrial use case partners have

identified in these case studies a quite varied list of 128

functional and data requirements that are satisfied by the

project available tools. The requirements largely differ in

terms of abstraction levels, broadness, and coverage and they

cover the five key SE/DevOps activities (Requirements

Engineering, Modeling, Coding, Testing and Monitoring) as

well as different desired capabilities. As a concrete example

from the project, Figure 2 shows the AIDOaRt Core Tool Set

component and use case requirements related to the Model-

based capabilities [3]. This component supports the loading,

navigation, querying, transformation, tracing/federation and

then the saving of the required models and metamodels for

example, Volvo requires the “development of standard data

classification, reusable definition, representation, usage

(VCE_R07)” as well as to “customize standards-based

modeling frameworks (e.g. UAF, SysML, UML) and

metamodels to develop system, software, data architecture

models (VCE_R05)”. The adopted agile methodology [4]

allows us to integrate newly reported updates on

requirements and solutions descriptions from all partners in

a flexible, simple, and traceable fashion.

Figure 2 Model-Based Capabilities Traceability Diagram

4 Some Project Tools

This section provides the description of tools developed by

IMT Atlantique (IMTA), SOFTEAM, Johannes Kepler

University Linz (JKU) , University of L’Aquila (UNIVAQ),

Mälardalen University (MDU), and that will be extended and

used in the context of the overall AIDOaRt approach to

respond to the model-based capabilities requirements.

Figure 1 Overview of the AIDOaRt approach

232 AI-Augmented Model-Based Capabi l i t ies in the AIDOaRt Project

Volume 43, Number 4, December 2022 Ada User Journal

4.1 EMF Views and ATL
EMF Views3 is an Eclipse-based solution that brings the

concept of database views to the modeling world. It allows

creating model views that focus on only one part of a model,

or views that combine several models together (and that

potentially conform to different metamodels). Model views

can be navigated and queried as regular models, and they can

be used as inputs to model transformations (notably

transformations specified in ATL).

ATL (ATL Transformation Language)4 is an Eclipse-based

model-to-model transformation language and toolkit. In the

field of Model-Driven Engineering (MDE), ATL provides

ways to produce a set of target models from a set of source

models. Complementary to EMF Views and ATL, NeoEMF5

is a model persistence solution designed to store models in

several kinds of NoSQL datastores. It is fully compatible

with Eclipse/EMF, thus making it easy to integrate into

(EMF-based) modeling applications.

In the context of AIDOaRt, the plan is to reuse and extend

EMF Views to support the development of various news

features of the tool as well as their application within

different AIDOaRt use cases or scenarios. Thus, we already

plan new contributions to EMF Views itself (e.g., in terms of

extensions to the tool, realized as Eclipse plugins).

Concerning ATL, the plan is to reuse it as is to support the

development of various features for other tools / components

/ use cases. Thus, we do not plan any new contribution to

ATL itself. No new contributions are also currently planned

concerning NeoEMF. In general, all the refinements and

extensions developed in the context of AIDOaRt will be

made completely available as open-source Eclipse plugins

under the terms of the Eclipse Public License v2.0 (EPL 2.0).

They may also be made available under the following open-

source Secondary Licenses when the conditions for such

availability set forth in the Eclipse Public License, v. 2.0 are

satisfied: GNU General Public License, version 3.

4.2 Modelio and Modelio Constellation
Modelio 6 is an open-source modeling environment

supporting industry standards like UML and BPMN.

Modelio proposes extension modules and can be used as a

platform for building new Model-Driven Engineering

(MDE) features such as model analysis through querying,

code generation and reverse engineering of Java and C++.

Modelio Constellation, commercialized as "Modelio SaaS"7,

by Softeam, Docaposte, is a cloud-based requirements,

systems modeling and project governance tool that offers

simplified, concurrent, and collaborative access for large

teams to the models in the Modelio environment. Modelio

SaaS models the case studies requirements, solutions

descriptions and implementation roadmaps, and the

3 https://www.atlanmod.org/emfviews/
4 https://www.eclipse.org/atl/
5 https://neoemf.atlanmod.org/
6 www.modelio.org
7 https://www.modeliosoft.com/fr/solutions/modelio-saas.html
8 www.automationml.org

architecture specifications. A shared and distributed

repository holds and synchronizes the various model

fragments and artifacts. This repository represents a single

source of truth for all the partners and a “live” model

continuously updated by each partner throughout the whole

project lifetime. Fragments and particular views of these

model artifacts are automatically exported into human-

readable documents and serve as the basis of the various

project deliverables.

In AIDOaRt, Modelio will be enriched with extensions to

facilitate System Architects efforts while defining

requirements and system modeling, adding non-functional

properties modelling, and advanced analysis techniques

based on AI for inference on standards (e.g. UML, SysML).

4.3 AutomationML MOMoT, MDE4JSON and
DevOpsML��
AutomationML8 (AML) is a modeling language based on

CAEX the Computer Aided Engineering Exchange (CAEX)

IEC standard9. CAEX is a neutral data format that allows

storage of hierarchical object information. AutomationML

was originally devised to support the engineering of cyber

physical production systems (CPPS) by combining physical

topology with 3D geometrical kinematics, and PLC software

logic. CAEX and AML standards are developed in the

XSD/XML technical space. JKU, as a member of the AML

consortium, together with 54 other industrial and academic

partners and, during the years, is developing MDE

framework around AML and CAEX, to make them fully

integrable with other standards (e.g., SysML) and more in

general, to bridge it with the Eclipse Modeling Framework

(EMF) tand related technologies. In AIDOaRt, we plan to

adopt an AML modeling workbench10, to satisfy modeling

requirements (e.g., VCE05 and VCE07 stated in the previous

section), promoting the adoption of AML/CAEX standards

in AIDOaRt model-driven engineering processes.

MOMoT is a search-based model transformation tool that

allows the optimization of in-place model transformation

orchestration to solve engineering problems. Based on

Eclipse EMF, in MOMOT the problem and solution domains

are defined by the same Ecore-based metamodel.

Consequently, both concrete problem and solution(s) are

conforming problem and solution instance models.

MOMOT relies on Henshin, a graph-based model

transformation framework to generate solution instance

models that optimize given objectives and while satisfying

given constraints, specified in Java or OCL. Currently,

MOMOT adopts MOEA11 as a base meta-heuristic search

framework. Currently, we are working on extending

MOMOT with reinforcement learning techniques.

MDE4JSON (a.k.a. JsonSchemaDSL) is one of the first

results of the AIDOaRt project [4]. The approach allows

9 https://en.wikipedia.org/wiki/CAEX
10 https://github.com/amlModeling/caex-workbench/
11 http://www.moeaframework.org/

A. Bagnato, A. Cicchett i , L. Berardinel l i , H. Brunel iere, R. Eramo 233

Ada User Journal Volume 43, Number 4, December 2022

the integration of arbitrary JSON-based artifacts in a fully-

fledged MDE process. reusing the native JSON concrete

syntax/textual notation and generating Xtext-based editors.

In AIDOaRt, it can be used both by UC and solution

providers that manipulate JSON documents as shown for

Keptn in continuous delivery scenarios [5].

DevOpsML is an EMF-based conceptual framework in its

inception phase, developed in the context of the Lowcomote

project12 for modeling and integrating models representing

DevOps process(es) and platform(s). In AIDOaRt,

DevOpsML can be used to create a simplified architectural

model for AIDOaRt solutions or its overall framework.

4.4 Flexible + Blended modeling
MDU has collaborated with several companies with the

common objective of introducing more formal ways of

modeling, to move from descriptive to prescriptive uses of

models (e.g., to enable continuous MBD). A tool has been

developed to enable the bidirectional mapping from

descriptive to prescriptive architecture modeling support by

considering Draw.IO diagrams and a domain-specific

language (DSL) defined through an xText-like grammar. In

turn, the DSL enables analysis about the

correctness/completeness of the architectural specifications.

The plan for AIDOaRt is to use the realized mapping and the

lessons learned from that experience to introduce

prescriptive modeling in other use cases. Indeed, we

consider the existence of these forms of modeling as a

precondition for enabling the AI-augmented interplay of

DevOps and MDE. �

4.5 JTL and TWIMO
JTL13 (Janus Transformation Language) is an EMF/Eclipse

based model-driven framework specifically tailored to

support model synchronization and traceability. JTL allows

to specify and execute model transformations in both

forward and backward direction. It is specifically tailored to

support non-bijective transformation (non-determinism).

Also, JTL allows model synchronization and change

propagation by means of bidirectional model transformation.

Finally, JTL can automatically generate traceability relations

between different models (e.g., runtime and design models)

by exploiting bidirectional model transformations and

automated reasoning techniques (answer set programming).

Such traceability models can be used as inputs to any other

EMF-based modeling and analysis tool (e.g., e.g., for model

transformations, code generation, model analysis, etc.).

In AIDOaRt, the plan is to reuse and extend JTL to support

the development of news features of the tool to contribute to

the model-based core set capabilities as well as their

application within different AIDOaRt use cases or scenarios.

TWIMO (digital TWin for MOdeling and analysis) is a

framework that exploits MDE principles to drive AI/ML

augmentation. It offers advanced modeling and AI/ML

analysis and validation capabilities, in particular: (i)

extending standard domain system language to offer

12 www.lowcomote.eu

advanced modeling and validation capabilities in the

automotive domain, (ii) defining a domain-specific language

for the specification of human driver behavior in the

automotive domain, to offer advanced modeling and ML

analysis capabilities. (iii) providing ML-based analysis and

prediction capability on the human driver behavior in the

automotive domain.�

In AIDOaRt, the plan is to adapt and improve its

methodologies and technologies with the scope to integrate

them in the DevOps practices. UNIVAQ is interested to

acquire AI/ML techniques to specifically improve pattern

detection and correlation to support the designer more

widely in the continuous improvement of software through

the exploration of the effects of automated refactoring

actions. In this respect, gathering feedback from the

application of such technologies to real life complex CPSs

may represent a compelling source of improvement.

UNIVAQ aims to improve its data correlation techniques by

exploiting AI/ML for the automated association of design

and runtime information.

Conclusions
The paper describes the AIDOaRt approach to maximize the

benefit of the project results by applying the developed

technologies and tools on the project industrial case studies

and by discovering more opportunities in the industry where

the project results can be applied. A selection of the tools

that will be extended and used in the context of the overall

AIDOaRt approach to respond to the model-base capabilities

requirements is also presented including some first analysis

of the expected improvements after the first year of the

project. As the work in the project progresses, discussions

and in-depth negotiations are taking place between case

study providers and solution providers. This is leading to

precise and concrete use case and data requirements, and

better choices and selections of candidate solutions.

Acknowledgements

Special thanks to all AIDOaRt consortium members. The

AIDOaRt project has received funding from the ECSEL

Joint Undertaking (JU) under grant agreement No

101007350. The JU receives support from the European

Union’s Horizon 2020 research and innovation programme

and Sweden, Austria, Czech Republic, Finland, France,

Italy, and Spain.

References

[1] H. Bruneliere et al., “AIDOaRt AI-augmented

Automation for DevOps, a Model-based Framework for

Continuous Development in Cyber-Physical Systems”,

Microprocessors and Microsystems: Embedded
Hardware Design, Elsevier, 2022, 94, pp.104672. doi:

10.1016/j.micpro.2022.104672.

[2] A. Sadovykh et al, “Applying Model-based

Requirements Engineering in Three Large European

Collaborative Projects: An Experience Report”, 29th
IEEE International Requirements Engineering

13 http://jtl.univaq.it/

234 AI-Augmented Model-Based Capabi l i t ies in the AIDOaRt Project

Volume 43, Number 4, December 2022 Ada User Journal

Conference, Sep 2021, Notre Dame, South Bend,

United States. doi: 10.1109/RE51729.2021.00040.

[3] “AIDOaRt deliverable D3.2 - AIDOaRt Core

Infrastructure and Framework - Initial Version”. URL:

https://www.aidoart.eu/download/18.7d39d59b181260

bc66b1233f/1654680145439/D3.2.pdf

[4] B.Said et al, “Towards AIDOaRt Objectives via Joint

Model-based Architectural Effort”, Proc. of RCIS-

WS&RP 2022 RCIS 2022, CEUR-WS.org, online ceur-

ws.org/Vol-3144/RP-paper14.pdf

[5] A. Colantoni et al., "Leveraging Model-Driven

Technologies for JSON Artefacts: The Shipyard Case

Study," 2021 ACM/IEEE 24th International Conference
on Model Driven Engineering Languages and Systems
(MODELS), 2021, pp. 250-260, doi:

10.1109/MODELS50736.2021.00033.

 235

Ada User Journal Volume 43, Number 4, December 2022

MORPHEMIC - Optimization of the Deployment

and Life-Cycle Management of Data-Intensive

Applications in the Cloud Computing Continuum

Alessandra Bagnato
Softeam, Softeam Software, Docaposte Groupe, 3 avenue du Centre 78280 Guyancourt.; Tel: +33 1 30 12 18 58;
e-mail: Alessandra.bagnato@softeam.fr

Józefina Krasnod�bska
7bulls.com Sp. z o.o., ul. Aleja Szucha 8, 00-582 Warsaw, Poland; e-mail: jkrasnodebska@7bulls.com

Abstract
In their Cloud strategy companies are choosing more
and more multi-cloud computing giving them the
opportunity to distribute its assets, redundancies,
software, applications, and anything it deems worthy
not only on one Cloud-hosting environment, but rather
across several. The model of using multiple Cloud
services to host the business’s functions and features
has a list of advantages that can provide security,
flexibility, cost-effectiveness and more to increase
business’s efficiency and ensure it stays up and running
24 hours a day. The paper presents the MORPHEMIC
H2020 project and its unique way of adapting and
optimising Cloud computing applications. The
Morphemic project covers several features from
modelling cross-cloud applications, continuous and
autonomous optimization and deployment and
providing access to several cloud capabilities for data
intensive applications. The outcome of the project will
be implemented in the form of an open-source platform
covering all the data intensive applications deployment
phases starting from modelling, through profiling,
optimization, runtime reconfiguration and monitoring.
Keywords: Cloud services, Cloud computing, model-driven
engineering, multi-cloud platform.

1 Introduction

While organisations are using multiple clouds, this does not

necessarily mean that individual applications can be

deployed across different clouds and most commonly

applications are siloed on the different clouds. Furthermore,

while multi-cloud is becoming the preferred solution few

organisations are taking advantage of multi-cloud

management tools which become fundamental for cost-

1 https://www.ics.forth.gr/
2 https://www.uio.no/
3 https://www.unipi.gr/unipi/en/
4 https://www.iccs.gr/
5 https://www.softeamgroup.fr
6 https://www.iconcfd.com

effective management of cloud resources, governance and

security. New modelling techniques and mechanisms are

needed to compose and coordinate resources across

heterogeneous Clouds and computational infrastructure

allowing for multivariate deployment of applications. The

MORPHEMIC project [1] described in this paper, aims at

optimising the deployment and life-cycle management of

data-intensive applications in the Cloud computing

continuum. With the MORPHEMIC approach the initial

deployment of Cloud application components is performed

and then proactively scaled according to the incoming

workload and the defined service level objectives on

forecasted metrics about usage and workload level. The

project is an extension of MELODIC multi-cloud platform

developed in the H2020 project[2] and it introduces two

novel concepts to it: “polymorphing architecture” that will

allow for dynamic adaptation of the architecture of

application to the current workload and “proactive

adaptation «that will allow the reconfiguring of the

application based forecasted metrics about usage and

workload level.

2 The MORPHEMIC Project
Funded by the European Union Horizon 2020 research and

innovation programme, the project MORPHEMIC began in

January 2020 for a period of 36 months. The project involves

12 partners from 7 countries belonging to both the academic

and the industrial world.

On the academic side, it includes FORTH1, UiO2, UPRC3,

ICCS4.

From the industrial side, it includes Softeam5, ICON6, IS-

Wireless 7 , CHUV 8 , InAccel 9 , Activeon 10 , 7bulls 11 ,

Engineering12.

7 https://www.is-wireless.com/
8 https://www.chuv.ch/fr
9 https://inaccel.com/
10 https://www.activeeon.com/fr
11 https://www.7bulls.com/en
12 https://www.eng.it/en/

236 MORPHEMIC

Volume 43, Number 4, December 2022 Ada User Journal

The MORPHEMIC open-source platform [11] provides to

its users the optimization of the deployment and life-cycle

management of data-intensive applications in the Cloud

computing continuum. Specifically, MORPHEMIC

undertakes the initial deployment of Cloud application

components, it proactively scales them or even changes the

deployment model morph, according to the incoming

workload and the defined service level objectives.

If we consider an application composed by different

components (services), MORPHEMIC optimises the

deployment of each service by defining which deployment

environment (Cloud, Fog) and which application form (e.g.,

container, virtual machine, serverless) to apply maximising

the business benefit provided by the application and

optimising the usage of the deployment resources.

Furthermore, MORPHEMIC aims at keeping the benefits

constantly high by predicting the future context and

proactively modifying the deployment model and the

application form.

With its innovative features, MORPHEMIC aims at

extending the MELODIC multi-cloud platform developed in

the H2020 project MELODIC [2]. Through the

MORPHEMIC project, the goal is to simplify Cloud

application modelling and continuously optimise and morph

the deployment model to take advantage of beneficial Cloud

capabilities. This ensures that adaptation can be done

effectively and seamlessly for the users of the application.

The main pillars being extended in the MORPHEMIC are:

� Polymorphing architecture: Ability to run and

deploy a component, depending on its requirements

and workload, in different technical forms (i.e., in a

Virtual Machine (VM), in a container, as a big data

job, or as serverless components, etc.) and different

environments. This maximises the utility of the

application deployment and the satisfaction of the

user as the benefits provided by each of the

deployment environments for the application are

maximised.

� Proactive adaptation: better deployment,

automation and orchestration of Big Data and

Cloud applications in the Cloud. Forecast of future

resource needs and deployment configurations to

ensure that adaptation can be done effectively and

seamlessly for the users of the application. Quick

and proactive re-deployment is ensured to maintain

a high optimization level.

� Flexible and resilient monitoring: through a

dedicated event management system which actively

follows, aggregates and processes application and

infrastructure level metrics across the Cloud

computing continuum while it can cope with node

failures or network issues by self-healing its

monitoring modules.

The outcome of the project will be implemented in the form

of the complete solution, starting from modelling, through

profiling, optimization, runtime reconfiguration and

monitoring.

Figure 1 presents the MORPHEMIC optimization flow

using MELODIC [2] as the real-time application manager.

The result of executing this flow is a deployed and

continuously optimized application configuration. Their

detailed description can be found in the deliverable D4.1[6].

The flow contains 4 main parts that can be mapped to the

autonomic computing MAPE-K loop:

� Profiling - is the pre-processing step as it handles

the preparation of the CAMEL model, the utility

function creation based on the information in the

model, and the application profiling used for the

polymorphic adaptation.

� Reasoning - is the core process of the platform. It

includes both Analysis and Planning from the

MAPE-K loop finding the best deployment

configuration within the given operational

constraints and considering the application’s

execution context for the desired reconfiguration

time point. The history of execution contexts

represents the knowledge required for the

reasoning.

� Executing - deals with the adaptation and

orchestration of the deployment model to be

deployed across the chosen Cloud providers.

� Monitoring - is responsible for gathering data used

in autonomous optimization.

Figure 1: Overview of MORPHEMIC architecture

The following elements are appearing in Figure 1 and are

part of the solution:

� Utility Function Creator used for creation of the

utility function in a user-friendly way,

� CAMEL Designer used for the creation of the

CAMEL model,

� Profiler responsible for constructing and

maintaining the profile of an application,

� Architecture Optimizer responsible for optimizing

the application architecture,

A. Bagnato, J . Krasnod�bska 237

Ada User Journal Volume 43, Number 4, December 2022

� Constraint Programming (CP) Generator which

converts the CAMEL application model to a CP

problem,

� Metasolver which triggers the reconfiguration

when any the constraints of the CP problem is

violated, and selects the appropriate Solver,

� Solvers which can solve the CP problem,

� Utility Generator that calculates the utility of the

proposed CP solution candidate,

� Adapter responsible for orchestrating the

deployment of the application,

� ProActive Scheduler that deploys and reconfigures

the application to the Cloud providers using

Scheduling Abstraction Layer (SAL) as an

abstraction layer,

� Resource Manager which is a sub-component of

ProActive Scheduler responsible for deployment

and configuration of the infrastructure resources

exploited by the applications,

� Hardware Accelerator that deploys to hardware

accelerated Cloud computing resources.

� The Event Management Services (EMS) is used for

distributed event processing and

� collection of metric values,

� Forecasting module forecasts metric values into the

EMS infrastructure,

� Persistent storage is responsible for storing real and

forecasted metric values, and

� Performance module is responsible for maintaining

a performance model for an application and Cloud

resources.

3 The MORPHEMIC CAMEL Models

The deployment and polymorphic adaptation of cross-cloud

applications in the MORPHEMIC project is based on Cloud

Application Modelling and Execution Language (CAMEL).

CAMEL [12] is a multi-domain-specific language (DSL)

[13] allowing users to specify multiple aspects/domains

related to multi-/cross-cloud applications, such as the

domains of deployment, requirement, metric, scalability,

security, organisation, and execution.

Furthermore, CAMEL will be extended within the

MORPHEMIC project to cover the polymorphic modelling

concepts that allow applications to have several possible

deployment configurations.

The CAMEL Modelling task is performed by CAMEL

Designer [3] tool which is a module for Modelio Open-

Source modelling tool [4]. Modelio is an extensible tool and

modules are the means of defining, implementing, and

deploying extensions for Modelio. They can be seen as the

equivalent of extensions for Firefox. They are used to extend

and adapt Modelio Modeller by providing additional

functionalities and services that meet specific needs. The

defined CAMEL model can be exported from the Modelio

modeling tool and then uploaded and used by the

MORPHEMIC platform.

Figure 2 shows the Modelio CAMEL Designer Interface and

an example of a CAMEL Security Model for Application

and Interface Security [10], including the AIS_04 Security

Control where “Policies and procedures shall be established

and maintained in support of data security to include

(confidentiality, integrity and availability) across multiple

system interfaces, jurisdictions and business functions to

prevent improper disclosure, alteration, or destruction.".

MORPHEMIC will improve the security and reliability of

cloud applications by using the security features of candidate

infrastructures as one of the decision parameters to select the

most appropriate deployment environments. More details on

MORPHEMIC Security and design implementation can be

found at [17].

The management of the execution task of applications

deployment and the polymorphic adaptation is implemented

by the Web User Interface Client [7] which includes

managing heterogeneous resources such as cloud offers and

material accelerators, managing CAMEL Models,

optimising, deploying and monitoring the Cross-Cloud

Application [5].

Figure 2: CAMEL Security Model

4 The MORPHEMIC Case Studies

MORPHEMIC project relies on three Use Case studies to

validate its solution of continuous optimising and

polymorphing cloud-based applications.

The Use Cases cover the following areas of industry:

medical research, telecommunication, and fluid mechanics'

research. They highlight how MORPHEMIC considers new

needs that technology and real-world applications nowadays

should meet. Specifically, they need on one hand more and

more resources, and, on the other hand, to support different

models, such as Edge and Fog, besides the Cloud.[8]

These use case studies are provided by different

stakeholders:

� ICON (ICON Technology & Process Consulting

Limited) operates in the high-tech field of

238 MORPHEMIC

Volume 43, Number 4, December 2022 Ada User Journal

Computational Fluid Dynamics (CFD) and

provides blue-chip multi-sector engineering

companies, their suppliers, and consultants with the

ability to predict fluid flow using 3D computer

simulation; [14]

� Centre Hospitalier Universitaire Vaudois (CHUV):

Lausanne university hospital is one of the five

Swiss university hospitals. Through its

collaboration with the Faculty of Biology and

Medicine of the University of Lausanne, CHUV

plays a key role in the areas of medical care, bio-

Prototype medical research and education; [15]

� IS-Wireless is an SME based in Poland with

expertise in developing algorithms, protocols and

tools for 4G and 5G mobile networks. [16]

Design of the use cases scenarios, including their

description, the scenario requirements and targets, the

infrastructures and platforms that will be utilised and the

description on how MORPHEMIC will handle each

individual use case within the project is described at [9].

5 MORPHEMIC Features for data-
intensive applications
The project addresses the described case studies but also any

type of data intensive application offering a complete set of

Cloud computing services and an optimal usage of ICT

resources thanks to the automatic management and

deployment of applications and their proactive adaptation in

time.

Data Intensive Cloud applications performance and usability

are maximised by the deployment in the best environment,

and application up time is improved due to predictive

analysis of the application’s future state.

Data intensive application are offered a selection of cloud

providers with potential cost saving and vendor lock

avoidance due to predictive analysis of the application’s

future state.

Seamless Cloud Acceleration is also provided-

MORPHEMIC allows the easy deployment and utilisation of

hardware accelerators (i.e., FPGAs) in the Cloud. That way,

users can speed up their applications using the available

accelerators and reduce the total cost of operations (COTS)

by using more cost-efficient platforms.

Moreover, thanks to usage of the security features of

candidate infrastructures as one of the decision parameters,

cloud data intensive applications using MORPHEMIC can

select the most appropriate deployment environments

improving reliability and security.

Conclusions
Nowadays, Cloud application modelling languages do not

supply the polymorphic application components and do not

provide polymorphic infrastructure models. Therefore,

MORPHEMIC goes beyond the state-of-the-art to introduce

automatic DevOps capabilities for the efficient application

life-cycle management in the dynamic Cloud computing

continuum. Such capabilities are going to increase the

satisfaction of Cloud end-users as they avert from vendor

lock-in, reduce Cloud costs and give the opportunity to

exploit the full potential of available Edge devices and

constantly maintain the required application (QoS).

Polymorphic and Proactive Modelling, Planning and

Adaptation, basis of the MORPHEMIC platform, respond to

these requests. The project aims to achieve great added value

and innovation in polymorphic adaptation which is the

ability of MORPHEMIC Platform to optimise and adapt the

deployment configuration of cross-cloud applications by its

components underneath. Moreover, it aims to achieve a great

user experience with this product to allow users to fully

benefit from this innovative concept, user evaluation is

expected in the next twelve months and will be detailed in

the Final Evaluation Deliverable due at the end of the

project.

References
[1] MORPHEMIC website: Available at:

www.morphemic.cloud (Accessed: 22-04-2022)

[2] G. Horn and P. Skrzypek, "MELODIC: Utility Based

Cross Cloud Deployment Optimisation", 2018 32nd

International Conference on Advanced Information

Networking and Applications Workshops (WAINA),

Doi: 10.1109/WAINA.2018.00112.

[3] Modelio Camel Designer, Available at:

github.com/Modelio-R-D/CamelDesigner (Accessed:

22-04-2022)

[4] Modelio website: Available at: www.modelio.org

(Accessed: 22-04-2022)

[5] A.Moussaoui, A.Bagnato, E.Brosse J. Krasnod�bska

and P. Skrzypek, “The MORPHEMIC Project and its

Unified User Interface”, Proc. of RCIS-WS&RP 2022
RCIS 2022 Workshops and Research Projects Track,

Spain, May 2022, CEUR-WS.org, online:

ceur-ws.org/Vol-3144/RP-paper13.pdf

[6] D4.1 Architecture of pre-processor and proactive

reconfiguration, Available at:

https://www.morphemic.cloud/deliverables/ (Accessed:

22-04-2022)

[7] D5.1 User Interfaces Specification, Available at:

https://www.morphemic.cloud/deliverables/ (Accessed:

22-04-2022)

[8] D6.1 Industrial requirements analysis,

https://www.morphemic.cloud/deliverables/ (Accessed:

22-04-2022)

[9] D6.3 Use cases definition and preparation, Available at:

https://www.morphemic.cloud/deliverables/ (Accessed:

22-04-2022)

[10] CAMEL Security Model Example, Available at:

https://bitbucket.7bulls.eu/projects/MEL/repos/camel/b

rowse/camel/examples/security.camel?at=refs%2Fhead

s%2Fcamel_2.5 (Accessed: 22-04-2022)

A. Bagnato, J . Krasnod�bska 239

Ada User Journal Volume 43, Number 4, December 2022

[11] Morphemic Platform on OW2 GitLab, Available at:

https://gitlab.ow2.org/melodic/morphemic-

preprocessor (Accessed: 22-04-2022)

[12] CAMEL DSL Documentation, Available at: http://camel-

dsl.org/documentation/ (Accessed: 22-04-2022)

[13] Modelio Open Source, Available at:

https://github.com/ModelioOpenSource/Modelio

(Accessed: 22-04-2022)

[14] Computational Fluid Dynamics simulation Background

and challenges, Available at:

https://www.morphemic.cloud/computational-fluid-

dynamics-simulation/(Accessed: 22-04-2022)

[15] e-BrainScience Background and challenges, Available

at: https://www.morphemic.cloud/e-brainscience/

(Accessed: 22-04-2022)

[16] 5G Cloud-RAN Background and challenges, Available

at: https://www.morphemic.cloud/virtualized-base-

station/ (Accessed: 22-04-2022)

[17] D4.2 Security design and implementation

https://www.morphemic.cloud/deliverables/ (Accessed:

22-04-2022)

240

Volume 43, Number 4, December 2022 Ada User Journal

5G Communication and Security in Connected

Vehicles

Antonio Imbruglia
STMicroelectronics, Stradale Primosole 50, 95121, Catania, Italy; email:antonio.imbruglia@st.com

Daniela Cancila
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France; email: daniela.cancila@cea.fr

Marina Settembre
Fondazione Ugo Bordoni, Viale del Policlinico 147, 00161, Roma, Italy; email:msettembre@fub.it

Abstract
The widespread diffusion of Cyber-Physical Systems
and their capability to interact with the physical world
depend also on the availability of 5G network. The
exponential development of intelligent and
interconnected IoT and autonomous systems,
combined with the development of 5G networks,
presents new challenges from a cyber-security
perspective. The paper, without claiming to be
exhaustive, offers insights and reflections on the very
broad topic that integrates innovative devices, 5G and
cybersecurity by illustrating the main European
directions indicated by both the Strategic Research and
Innovation Agenda for Electronic Component and
Systems (ECS-SRIA) and the evolution of 5G network
standards. Some of the afore-mentioned issues will be
reanalysed through use cases based on Vehicles to X
(V2X) scenario, where connectivity, safety and
cybersecurity play a key interworking.
Keywords: ECS-SRIA, 5G, Cybersecurity, Safety, V2X

1 Introduction
The exponential development of IoT systems, electric

embedded devices and cyber-physical systems (CPS), with

stronger intelligence and interconnection requirements,

takes advantage of the development of 5G networks. In spite

of new emerging application scenarios, new thorny issues in

cyber-security should be considered due to an increased

attack surface and evolving threat landscape. These systems

are going to operate in a more dynamic and open

environment respect to traditional systems, with increasing

needs to exchange information with other systems. Consider

electric and autonomous vehicles, where the connection with

both other vehicles and the environment (e.g. infrastructure,

roads, traffic lights pedestrians) can improve road safety,

reduce environmental impact, and provide a new driving

experience. However, if susceptible to cyber-attacks, these

systems could have catastrophic consequence. Moreover, in

traditional systems, specialized operators manage the

system. For example, in the railway application domain, a

team of experts manages the system (including train

maintenance). In this new scenario, the actors involved in the

management can be more heterogenous, belonging to

different organizations and not always so specialized to

recognize the nominal or degraded behavior of the system,

following for example a cyber-attack.

The paper, without claiming to be exhaustive, offers insights

and reflections on the very broad topic that integrates

innovative devices, 5G and cybersecurity by illustrating the

main European directions indicated by both the Strategic

Research and Innovation Agenda for Electronic Component

and Systems (ECS-SRIA), [1] and some insights into the

evolution of 5G network standards. For the sake of

concreteness, some considerations will be reanalyzed in

Vehicles to X (V2X) case studies.

2 ECS-SRIA
The Strategic Research and Innovation Agenda for

Electronic Component and Systems (ECS-SRIA) aims at

describing the “Major Challenges, and the necessary

Research & Development & Innovation efforts to tackle

them, in micro- and nanoelectronics for smart systems

integration all the way up to embedded and cyber physical

systems, and System of Systems” [1].

ECS-SRIA is developed by three industrial associations:

AENEAS [2], Inside Industry Association [3] and EPOSS

[4], with the support of a European team of experts in the

discipline coming from European industries, Research and

Technology Organizations and Academics in Europe.

 ECS-SRIA is based on three main areas (see Figure 1):

� Key application areas, such as Mobility, (Green

colour)

� Fundamental Technologies, such as Embedded

software and Beyond, (Blue colour)

� Cross-Sectional technologies, such as

cybersecurity, safety, connectivity, (purple colour).

Some of the main ECS-SRIA objectives address:

� To boost industrial competitiveness through

interdisciplinary technology innovations [1]

A. Imbrugl ia, D. Canci la, M. Settembre 241

Ada User Journal Volume 43, Number 4, December 2022

� To ensure EU digital autonomy through secure,

safe and reliable ECS supporting key European

application domains [1]

� To establish and strengthen sustainable and

resilient ECS value chains supporting the Green

Deal [1].

The following sections discuss some insights related to the

chapters of the ECS SRIA in which the authors are more

active.

3.1 The Cyber-Security and Privacy Challenge
The new generation of CPS are closed to the non-expert

human via societal applications. For example, CPS may be

customized to individual, including an embedded

combination of heterogeneous subsystems of different

quality, artificial Intelligence (AI) and connectivity

functionality. In this context, ECS-SRIA identifies the

cyber-attacks risks and the potential leakage of sensitive

data, highlighting a research direction towards a “robust root

of trust system, with unique identification enabling security

without interruption from the hardware level right up to the

applications, including AI involved in the accomplishment

of the system’s mission in dynamic unknown environments”

[1]. A particular emphasis is placed on trustworthiness and

the hardware security of such systems. Many organizations

in Europe, including the IC and Digital System Division, at

CEA LIST, and STMicroelectronics, are working in this

direction.

The challenge also highlights the need to achieve a common

recognized certification scheme under the composition of

modular trusted hardware and trusted software. Electric and

autonomous vehicles, for example, include several

heterogeneous sensors, actuators and embedded devices,

that can change or updated over time. Evolution of

certification dealing with system changing in some parts

over time is a challenge both in terms of cost and security,

and, hence, competitiveness.

Ensuring privacy is another relevant theme in the challenge.

This focus includes not only privacy-by-design approach,

but also of quantum-safe cryptography modules everywhere

in the system.

Finally, the challenge addresses "ensuring both security and

safety" properties. In the case of autonomous vehicle,

enhanced connectivity can be useful for driving safety, but,

if susceptible to cyber security attacks, may have

catastrophic consequences. Ensuring both safety and

security requirements has been also capital during the Covid-

19 pandemic. Then, in order to achieve a greater level of

trustworthiness, it is necessary to properly manage safety

and cyber-security issues in the same system.

3.2 The Connectivity Challenge
The main ECS SRIA challenges to ensure European

leadership in terms of connectivity technologies as well as

associated hardware technology supporting the development

of connectivity solutions can be summarized as follows:

� Strengthening the EU connectivity technology

portfolio to maintain leadership, secure sovereignty

and offer an independent supply chain.

� Investigate innovative connectivity technology (new

spectrum or medium) and new approaches to

improving existing connectivity technology to

maintain the EU’s long-term leadership

� Autonomous interoperability translation for

communication protocol, data encoding, compression,

security and information semantics.

� Architectures and reference implementations of

interoperable, secure, scalable, smart and evolvable

IoT and SoS connectivity

� Network virtualisation enabling run-time engineering,

deployment and management of edge and cloud

network architectures

Finally, secure communication and control by powerful

computation system applying AI are fundamental.

4. Innovation Aspects in the 3GPP 5G
Standard Evolution
The innovative aspects of 5G networks are not only

evolutionary in nature, basically characterized by

performance improvements (e.g. capacity, mobility

management, connection density, spectral efficiency,

latency, energy efficiency), but also present many

revolutionary elements (e.g., network softwerization and

programmability, network slicing, cloud native approach,

more flexible and expanded use of frequencies, artificial

intelligence, new approach to cybersecurity). 5G can be

considered as a multiplicity of dedicated, flexible, and

intelligent networks open to new actors to connect anything

and to dynamically serve different verticals, exploiting the

concept of slicing. In such a complex scenario the

standardization, regulatory and institutional bodies, vendors,

and operators should face many challenges to ensure

security, safety, privacy, net neutrality and transparency for

all users [6]. The third-generation partnership project, 3GPP

[6], which is the reference standard for mobile

communications, identifies three phases in 5G evolution [7].

During phase 1, the first set of 5G specifications on the new

radio have been completed both for non-standalone

solutions, when the new radio interacts with an existing

4G/LTE core network, and for the standalone solution, when

Figure 1. ECS-SRIA 2022 structure [1]

242 5G Communicat ion and Secur i ty in Connected Vehic les

Volume 43, Number 4, December 2022 Ada User Journal

the new radio interconnects within a 5G core network. The

new radio truly represents a step forward from previous

generations of radios both in terms of flexibility, throughput,

latency, and reliability to meet even mission critical service

requirements, exploiting a frequency spectrum that expands

from low frequencies below 1 GHz to mmWave, flexible

subcarrier spacing up-to 400MHz Channel bandwidths for a

single-component (CC) carrier, 3D beamforming for

improvement of spectral efficiency, dynamic time-division

duplexing (TDD). New radio plays an important role in the

autonomous driving application scenario that we will

consider in the Section 4. In Phase 2, 3GPP introduced the

new concept of Service Base Architecture (SBA) for the 5G

core network (Release 16) [8], aiming at providing

unprecedented flexibility agility respect to the traditional

architecture. In Phase 3, Release 17 and beyond, new 5G

enhancements are considered both on the radio part (e.g.,

MIMO, positioning, side-link) and on the core network and

slicing, extending it to the access part [9]. New security

features have been introduced compared to previous

generations, such as a stronger cryptographic algorithm for

256-bit encryption, better air interface security, user privacy

protection and enhanced roaming security, but SBA is a

completely new concept and leads to completely new

security challenges. The SBA is composed of services. Each

Network Function (NF) can be regarded as a service [6]. In

the upper green part of the Figure 2 are represented the NFs

of the control plane, while the lower part represents the user

plane and access networks. It is out of the scope of the

present paper entering into details of each network function,

(a detailed description can be found in [9]), but for

improving the understanding the NFs are, schematically and

not rigorously, grouped by functionality.

Figure 2. SBA architecture view, [6]

NFs are self-contained, independent and can be connected to

a service bus, using common Internet protocol, [10-12].

Each NF is a software running on virtual machines or

containers efficiently deployed as a Virtual Network

Function (VNF) by exploiting cloud computing. NFV and

SDN allow the implementation and automation of

customized services on a fully programmable platform.

Several NFs can be combined to form a logical block, named

slice, addressing a specific purpose, with specific QoS and

latency features. 3GPP has already standardized some

specific slices as massive Machine Type (mMTC), enhanced

Mobile Broadband (eMBB), Ultra Reliable Low Latency

(URLLC) and Vehicle-to-X (V2X) communications, but

many others can be defined as well. It is undoubtable that the

integration of network slicing, NFs, NFV, SDN allows a

powerful, flexible, fast, and dynamic service deployment,

but its management is complex, and the security should be

properly addressed,[6]. 5G threat landscape is complex and

continuously evolving, [12]. Potential source of attacks

(threat actors) could come from end devices, untrusted

networks, roaming networks, internet application service

providers or insider attack. These attacks constitute different

threats to network assets, that can be schematically

categorized as loss of availability, confidentiality, integrity,

and control [13].

4.1 V2X scenario: communication, safety, and
security issues
The automotive industry is at the center of a real revolution.

5G with its low latency, higher bandwidth and great

flexibility can provide many previously unachievable

features to automotive sector. In recent years vehicles have

been equipped with an increasing number of electronic

Advanced Driver Assistance Systems (ADAS) developed to

increase the level of safety and driving comfort, exploiting

four types of sensors: radar, lidar, camera and ultrasonic

shortrange sensors, [14]. However, these sensors have

limitations. They are unable to see a pedestrian around the

corner or to alert drivers to hazards or slowdowns before

they meet on the road: they do not communicate. To

complement ADAS systems there are systems called

Vehicle to X (V2X) overcoming intrinsic limitation of

ADAS systems and, hence, providing features of 360°

vision, Non-Light of Sight view, extended range, and the

ability to communicate between vehicles, [15]. There are

basically two types of communication for connected

vehicles. Dedicated short-range communication (DRSC) is

the first standard of V2X technology, based on the IEEE

802.11p standard and operating at 5.9 GHz. It provides the

ability for vehicles to communicate with other vehicles and

infrastructure around them, exchanging basic safety

messages to prevent collisions, but it is not a system for long

range communications (about 300 m). Subsequently, 3GPP

has introduced the cellular V2X (C-V2X) starting with

Release 14, which in turn was based on Release 12 related

to Device to Device (D2D) communications. 3GPP specifies

four types of C-V2X communication: Vehicle to Vehicle

(V2V), Vehicle to Infrastructure (V2I), Vehicle to Network

(V2N), and Vehicle to Pedestrians (V2P). The 3GPP's C-

V2X standard supports two complementary communication

methods: a cellular network-based communication, that uses

the air LTE Uu interface and uses the cellular

communication bands for long-range transmissions to

connect to the network and thus to services; and a direct or

side-link that uses the PC5 interface for short-range (less

than 1 km) V2V and V2I communications. 3GPP Release 14

defines the foundations of C-V2X communication for basic

security message exchange. New features are added in

Release 15, but a real step forward is possible with

Release16 with the use of 5G New Radio. 5G NR V2X

provides lower latency, ultra-reliable communication, and

high data rate useful for addressing challenging autonomous

driving requirements (e.g. high throughput sensor sharing,

A. Imbrugl ia, D. Canci la, M. Settembre 243

Ada User Journal Volume 43, Number 4, December 2022

intent/trajectory sharing, real time local updates to build

detailed maps and share them, coordinated driving etc.),

[15]. In the connected vehicles scenario some critical

challenges and possible C-V2X solutions are:

� high relative speed of two vehicles driving in opposite

directions causes a Doppler shift and frequency offset. C-

V2X provides an improved signal design an additional

reference signal symbols for better channel estimation.

� high vehicle density can lead to radio resource

congestion. C-V2X can adopt algorithms that detect

available resources, selecting the least congested ones.

� Loss of out-of-coverage synchronization. C-V2X is

inherently a synchronous system using GNSS.

An application scenario for connected vehicles with

challenging requirements on the radio component is

platooning, where the lead vehicle of a convoy relays

information to the vehicles behind it. Platooning offers many

advantages for long-distance travel since vehicles can drive

at a constant speed with a short distance in between, reduced

air resistance and, hence, a reduction in fuel consumption

and CO2 emissions. Moreover, platooning improves safety

by, reducing response times and minimizing the risk or, at

least, the impact of accidents. ETSI (European TLC

Standards Institute) define, the requirements in terms of end-

to-end latency, reliability, and data rate, for enhanced V2X

scenarios, (e.g. platooning, as driving with high or full

automation, remote driving, sharing large amounts of sensor

data). It results that 5G NR V2X represents the most suitable

solution for Advanced Safety Automated Driving scenarios,

as reported in [15], but the increased connectivity and

automation expose them to several cyber threats. [17]. ITU-

T Recommendation X.1372 provides security guidelines for

different V2X scenarios, some depicted in Figure 3, [18].

Specifically, ITU-T Recommendation X.1372 identifies

cybersecurity threats, security requirements to mitigate these

threats and describes possible implementations of secure

V2X communications. Security issues deal with: i)

identification, authenticity to authorize access to services

and information, ii) message integrity to ensure that

information is accurate and reliable, iii) availability of

services and information, iv) confidentiality & privacy of

users, their data and their actions from eavesdropping and

exploitation and v) non-repudiation and accountability of the

source of information. In the case of identification,

authenticity, and integrity the main threats to be considered

are message manipulation by an attacker providing false

information, credential manipulation allowing access to

information without authorization, manipulation of sensor

data and information, causing traffic congestion, accidents

etc., and interception of message and malicious reply in

place of the authorized user. In the case of availability, the

main threats consist of i) jamming and distributed denial of

service (DDoS) attacks caused malicious service requests

congesting the channel capacity and so impacting the

reliability or availability of C-V2X services, ii) timing attack

aiming at delaying the delivery of a safety message to other

vehicles and iii) hacking of sensors providing incorrect

values determining transient or permanent faults. For

confidentiality and privacy issues, the main threats are due

to eavesdropping of V2V, V2I, V2P, and V2D messages or

leaking of personally identifiable information as identity,

position, actions, trajectories of a user of the V2X service.

Finally, for non-repudiation case main threats may occur if

an attacker manipulates the certification database or accesses

the private key to a certificate without authorization. The

analysis of possible mitigations to the above-mentioned

threats for C- V2X is out of the scope of the present paper.

Conclusions
In this paper, without claiming to be exhaustive, some

insights from the ECS-SRIA and the evolution on 5G

networks have been discussed focusing mainly on

connectivity, cybersecurity, and safety issues. The cellular-

V2X scenario has been analysed as a relevant use case where

connectivity, safety and security have a key interwork.

Acknowledgment
This paper has been originated from a lecture the authors

gave in the framework of the course 0921SIC10, organized

by AMES Society - AEIT (Italian Association of Electrical,

Electronics, Automation, Information and Communication

Technology). The authors wish to thank AMES -AEIT for

supporting this activity.

References
[1] ECS-SRIA. Electronic Components and Systems -

Strategic Research and Innovation Agenda, 2022.

[2] https://aeneas-office.org/

[3] Home | Inside (inside-association.eu)

[4] EPoSS (smart-systems-integration.org)

[5] M. Settembre, "A 5G Core Network Challenge:

Combining Flexibility and Security", 2021 AEIT

International Annual Conference 2021, pp. 1-6.

[6] https://www.3gpp.org/

[7] https://www.3gpp.org/release-16

[8] https://www.3gpp.org/release-17

[9] 3GPP TS 23.501, “System architecture for the 5G

System (5GS)”, version 17.4.0, March 23, 2022.

[10] NGMN Alliance, “Service Based Architecture in 5G”,

(Final deliverable (approved-P Public), January 2018.

Figure 3. V2X communication scenarios, [18]

244 5G Communicat ion and Secur i ty in Connected Vehic les

Volume 43, Number 4, December 2022 Ada User Journal

[11] D. Borsatti, L. Spinacci, C. Grasselli, M. Settembre, W.

Cerroni, F. Callegati, “A Network Slicing Architecture

for Mission Critical Communications”, IEEE WiMob

2020 Workshop on ICT Systems for PPRR, Oct. 2020.

[12] ENISA Report “Threat Landscape for 5G Networks”,

update December 2020.

[13] ENISA Report - Security in 5G Specifications, Feb.

2021.

[14] M. Duncan, A. Imbruglia, S. Gligerini, "The way

forward and opportunities towards autonomous driving,

AEIT, March, pp. 50-55, 2019.

[15] NGMN Alliance, "V2X: white paper ", 2019.

[16] 3GPP TS 22.186 version 15.3.0 Release 15.

[17] ENISA Report "ENISA good practices for security of

smart cars", November 2019.

[18] Recomm. ITU-T X.1372 "Security guidelines for

vehicle-to-everything (V2X) communication", March

2020.

 245

Ada User Journal Volume 43, Number 4, December 2022

Managing Non-functional Requirements in an

ELASTIC Edge-Cloud Continuum

Rita Sousa, Luis Miguel Pinho, António Barros
ISEP, Polytechnic Institute of Porto, Portugal

Marco Gonzalez-Hierro, Cristina Zubia
Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain

Eudald Sabate, Elli Kartsakli
Barcelona Supercomputing Center (BSC), Spain

Abstract
The ELASTIC European project addresses the
emergence of extreme-scale analytics, providing a
software architecture with a new elasticity concept,
intended to support smart cyber-physical systems with
performance requirements from extreme-scale
analytics workloads. One of the main challenges being
tackled by ELASTIC is the necessity to simultaneously
fulfil the non-functional properties inherited from
smart systems, such as real-time, energy efficiency,
communication quality or security. This paper presents
how the ELASTIC architecture monitors and manages
such non-functional requirements, working in close
collaboration with the component responsible for the
orchestration of elasticity.
Keywords: Non-functional requirements, elasticity,
compute continuum.

1 Introduction
Smart Cyber-Physical Systems (CPS) are require processing

a vast amount (in volume and variety) of data from

distributed, heterogenous, sources. Generally, data streams

from sensing the physical system enable decision-making

tasks, both control loops at the edge, and optimization

applications in the cloud. Examples of these smart systems

can be found in several domains, such as railway,

automotive, smart factories, etc. Notwithstanding the

importance of the functional requirements of such systems,

non-functional properties, such as real-time, energy-

efficiency, communication quality and security, need also to

be considered and appropriately managed, for the correct

functioning of applications [1].

The ELASTIC project1 addressed the challenge of extreme-

scale analytics, with a new software architecture that

incorporates the concept of elasticity (matching the amount

of resources allocated to a service with the amount of

resources it actually requires, avoiding over- or under-

provisioning), enabling smart systems to satisfy the

performance requirements of extreme-scale analytics

1 “A Software Architecture for Extreme-Scale Big Data Analytics in Fog

Computing Ecosystems”, http://www.elastic-project.eu

workloads. The vision of ELASTIC is that by extending the

elasticity concept across the compute continuum in a fog

computing environment and combining it with the usage of

advanced hardware architectures at the edge side, the

capabilities of the extreme-scale analytics can significantly

get increased integrating both responsive data-in-motion and

latent data-at-rest analytics into a single solution.

In order to fulfil the non-functional properties inherited from

smart systems, it is necessary that the ELASTIC architecture

includes mechanisms which allow monitoring and

adaptation of allocated computing resources to applications,

triggering configuration changes upon detection of non-

functional requirements violations.

This paper provides a brief overview of the features

implemented in the ELASTIC software architecture to

perform such management. This paper is structured as

follows: the next section provides a summary of the overall

software architecture. The specific components to deal with

non-functional requirements are presented in Section 3, and

briefly evaluated in section 4.

2 Overview of the ELASTIC Software
Architecture
One of the main objectives of the ELASTIC software

architecture [2] is to manage the interplay of applications and

data flows, to provide the required elasticity. Figure 1

presents a simplified view of this software architecture.

The Distributed Data Analytics Platform provides support to

different analytic applications (online and offline) in edge

and cloud environments. Hence, the applications based on

real-time values are typically executed in the edge, while

offline analysis , which are based on edge's historical values,

run in the cloud. COMPSs [3], an open-source framework

developed by Barcelona Supercomputing Center (BSC) is

responsible for the deployment and scheduling of workflows

in the edge-cloud compute continuum, guaranteeing the

required performance. DataClay [4] is an open-source

distributed data store also developed by BSC, that provides,

among various functionalities, Edge-to-Cloud data storage.

246 Managing Non-funct ional Requirements in an ELASTIC Edge-Cloud Continuun

Volume 43, Number 4, December 2022 Ada User Journal

DataClay is used for storing both application data and

internal data for the software architecture management itself.

The Fog Computing Platform is the layer responsible for

abstracting the computing resources across the compute

continuum, including cloud-based CaaS technologies for

resource auto-scaling, IoT cyber-secure communication and

network protocols and the underlying highly parallel and

energy-efficiency embedded platforms.

Nuvla [5] is both an online open-source platform (Nuvla.io)

and an edge platform software (NuvlaBox) developed at

SixSq, to transparently manage applications across the

compute continuum, providing edge computing as a service.

KonnecktBox [6] is an industry-oriented digitization

platform, from Ikerlan, built over EdgeXFoundry [7].

The NFR tool is the main purpose of this paper and is

presented next.

3 Managing Non-Functional
Requirements
The NFR (Non-Functional Requirements) tool is the

component which monitors the behaviour of the system and

recommends and informs COMPSs of required changes to

the system configuration, when detecting specific

requirement violations. This real-time monitoring tool is

distributed across different edge nodes, monitoring several

system properties such as the CPU usage, the energy

consumption, the quality of the communications link among

the edge devices and between the edge devices and the cloud,

and the devices’ security [7].

The integration of the tool with COMPSs, is provided

through dataClay. The NFR tool reads the system

information from dataClay and updates the intended

configuration of the system also through the same

component.

Figure 2 provides the architecture of the NFR tool. The tool

is conceptually constituted by (i) probes, which are

applications or system tools of the fog platforms that provide

monitoring data, (ii) per property NFR monitor and resource

managers, which detect requirements violations, and (iii) a

Global Resource Manager (GRM), which proposes changes

to the system configuration.

The probes are in charge of interfacing with the underlying

platform to collect the required information, which will be

published through the Data Router and will be used to detect

NFR violations. The NFR Monitor and resource managers

are per-property specific components, which, based on the

information from the probes, and the application

information, determines if some requirement is not being

met. There are four NFR Monitors: time monitor, energy

monitor, communication quality monitor and security

monitor.

Figure 2. General view of the NFR tool

Figure 1. ELASTIC Software Architecture

R. Sousa et a l 247

Ada User Journal Volume 43, Number 4, December 2022

The GRM is the component that makes recommendations on

the allocation of resources to applications; in ELASTIC, the

resources are the computing units of system nodes, and the

role of the GRM is to recommend any change to the mapping

of application workers in the nodes, to guarantee non-

function requirements accomplishment within a holistic

approach, that is, considering simultaneously all non-

functional properties. As decisions are global to system

nodes, the GRM is single for a “cluster”, a set of nodes

working together. An example, from ELASTIC smart city

scenarios is a crossing between vehicles and a tram line, with

both local nodes (city cameras, traffic lights), as well as

nodes in the tram and in the cloud.

The GRM is not in charge of the actual change (this is the

responsibility of the COMPSs orchestrator), but solely to

update the configuration information in dataClay, which is

what the orchestrator reads.

3.1 Time Monitoring
In order to deal with the real-time requirements of

applications, it is necessary to monitor different timing

properties in all nodes of the ELASTIC system. This ranges

monitoring actual CPU utilization and execution time of

applications, to detection of deadline violations or memory

accesses 2. The current implementation [9] focuses on the

former, fundamental for soft real-time requirements, with the

latter being foreseen for hard real-time requirements.

In this implementation, CPU monitoring is obtained using

the capabilities of the NuvlaBox platform [5], which

provides information on the current load in the nodes,

managing workers as Docker containers. This monitoring

allows ELASTIC to dynamically adjust the system resources

to which the application is mapped, depending on the actual

load of the system.

3.2 Energy Monitoring
The energy requirements in the ELASTIC architecture

mainly concern the need to monitor the energy consumption

of the system nodes, to enable allocation strategies and run-

time mechanisms that consider energy information (so that

power consumption can be optimized over the complete

continuum).

Therefore, the implementation of the energy property

focuses on monitoring the energy consumption of each node

individually, which may trigger application configuration

changes. As with the time dimension, the information is

obtained from NuvlaBox.

Time utilization and energy consumption are managed in an

integrated form in the current implementation of ELASTIC,

since these are two properties that interrelate. Therefore,

they share the same resource manager.

3.3 Communication Quality Monitoring
The ELASTIC software architecture must be capable of

tracking the communication QoS for every link between

2 Memory accesses can be used to provide information on contention

accessing shared memory, providing a more accurate timing analysis for

hard real-time applications.

each pair of nodes in the system. For this purpose, several

metrics are monitored, e.g. roundtrip time (RTT), packet loss

rate (PLR), etc. This information is obtained from the

Telemetry Daemon of the fog platform KonnektBox.

Such attributes are compared to the corresponding

thresholds, which are predefined regarding the specific type

of application. In case of any threshold violation, a message

is sent to the GRM, which assists COMPSs in order to make

the final scheduling decisions. Additionally, the values of

data throughput for all communication links are written to

dataClay to enable COMPSs to take into consideration

additional system metrics. A communication cost function is

updated for all workers in the node, helping the GRM to

prioritize the applications to reconfigure.

3.4 Security Monitoring
Verifying applications correctly comply with security

mechanisms and do not contain vulnerabilities is essential.

To guard against security threats, ELASTIC continuously

monitors the systems and applications deployed, incorporate

security upgrades to software and deploy updates to existing

configurations.

The security monitoring is performed by using Wazuh [10],

a free and open source host-based intrusion detection system

(HIDS). Security requirements differ with other non-

functional requirements in the sense that end devices must

not initiate the connection to the NFR tool itself. This fact

would imply a security risk, as a hypothetical “infected”

device could lie about its security status. This detail makes it

better to follow a different approach, a central monitor node

that controls the security parameters for the rest of the nodes.

At the device end, a set of distributed agents feed the

centralized tool with the corresponding security audit results.

A benefit of this approach is that input files are transferred

to the target system and after the scan finishes result files are

transferred back. No temporary data remains on the remote

machine.

This allows to determine if a node is found to be secure, or

if a threat is detected. This information is stored in the

dataClay configuration, and a notification is sent to the

global resource manager to remove from this node

applications which should always execute in a secure

environment.

3.5 Global Resource Management
The Global Resource Manager (GRM) is the component

which takes into consideration the information from the

other NFR components, with the following

responsibilities/functionalities:

� Listens to all NFR Monitors for violation

notifications.

� Uses simple heuristics to define possible violations

treatment.

248 Managing Non-funct ional Requirements in an ELASTIC Edge-Cloud Continuun

Volume 43, Number 4, December 2022 Ada User Journal

� Writes suggestions/recommendations for handling

violations on dataClay, assisting COMPSs in the

configuration of applications.

Specifically, the GRM maintains a list of all Elastic System

Nodes sorted by the highest resources availability to receive

tasks, hereafter called List of Sorted Nodes (LSN). This

reordering will happen periodically so that the list is always

up to date, and thus the GRM suggestions will be faster.

When violations start to be detected in a node, the GRM will

gradually reduce the computation load in the node, by

reducing the computation units which are provided by

COMPSs to the applications with lower priority and lower

load. Eventually, if needed, COMPSs is informed that an

application must be removed from the node and started in a

new node (from the LSN). Security is a special case, since

when a node is detected not to be secure, it overrides any

other decision, as applications that requires security must

immediately be moved to a new node (also from the LSN).

The current implementation provides a reactive behaviour,

as a simple, and fast solution. It already provides stable

workflows, but real usage will eventually introduce higher

dynamics, which can potentially lead the reactive approach

to create instability in the operation of the system. Therefore,

effort is also placed in the development of a more complex

approach [9].

4 Evaluation
The functionalities provided by the Non-Functional

requirements components were evaluated in both

laboratorial prototypes, as well as partly in the final

demonstrator of the project.

The performed evaluation allowed to identify that the

performed work allowed to fulfil the greatest majority of the

ELASTIC requirements, as initially put forward in [1]. The

NFR tool components are able to, together with the

orchestrator, manage the non-functional properties of the

applications, providing these with the required computing

resources, meeting performance needs, and guaranteeing

non-functional requirements [11].

The advances and results of the work, as well as of the full

ELSATIC project, can be seen in the project final event

workshop at [12].

5 Conclusions
The ELASTIC software architecture implements an

elasticity concept, which enables the support to performance

requirements of extreme-scale analytics workloads in an

edge-cloud computing continuum. An important aspect of

the architecture is how it manages the fulfilment of non-

functional properties of the system (real-time, energy

efficiency, communication quality and security). This paper

briefly describes the architecture and current implementation

of the ELASTIC software architecture components which

are dedicated to the management of non-functional

requirements.

Acknowledgements
This work has been financially supported by the European

commission through the ELASTIC project (H2020 grant

agreement 825473).

References
[1] L. Nogueira, A. Barros, C. Zubia, D. Faura, D. Gracia

Pérez, L. M. Pinho, “Non-functional Requirements in

the ELASTIC Architecture”. Proceedings of the

Workshop on Challenges and New Approaches for

Dependable and Cyber-Physical Systems Engineering

2019. Ada User Journal. 2020, Vol 41(1), pp. 51-56.

[2] M. A. Serrano, C. A. Marín, A. Queralt, C. Cordeiro, M.

Gonzalez, L. M. Pinho, and E. Quiñones, An Elastic

Software Architecture for Extreme-Scale Big Data

Analytics in E. Curry et al. (eds.), Technologies and

Applications for Big Data Value, 2022,

https://doi.org/10.1007/978-3-030-78307-5_5.

[3] F. Lordan et al., “ServiceSs: An Interoperable

Programming Framework for the Cloud,” J. Grid

Comput., vol. 12, pp. 67–91, 2013, doi:

10.1007/s10723-013-9272-5.

[4] J. Martí, A. Queralt, D. Gasull, A. Barceló, J. José

Costa, and T. Cortes, “Dataclay: A distributed data store

for effective inter-player data sharing,” J. Syst. Softw.,

vol. 131, pp. 129–145, 2017, doi:

10.1016/j.jss.2017.05.080.

[5] SixSq, “Edge and Container Management Software”,

https://sixsq.com/products-and-

services/nuvla/overview (accessed June 2022).

[6] Ikerlan, Ikerlan KonneKt, https://www.ikerlan.es/
en/ikerlankonnekt (accessed April, 2022).

[7] EdgeXFoundry, The Preferred Edge IoT Plug and Play

Ecosystem – Enabled Open Software Platform,

https://www.edgexfoundry.org/ (accessed June 2022).

[8] J. Fanjul, X. Perez, R. Sousa, A. Barros, E. Kartsakli,

“D4.3 Non-functional components”, ELASTIC project

(H2020 grant agreement 825473), October 2021.

[9] R. Sousa, L. Nogueira, F. Rodrigues, L. M. Pinho,

“Global Resource Management in the ELASTIC

Architecture”, 5th IEEE International Conference on

Industrial Cyber-Physical Systems (ICPS 2022).

[10] Wazuh, The Open Source Security Platform,

https://wazuh.com/ (accessed June 2022).

[11] R. Sousa, A. Barros, L.M. Pinho, M. Gonzalez, E.

Sabate, Elli Kartsakli, D. Faura, M. C. Zubia, “D4.4

Evaluation of non-functional components”, ELASTIC

project (H2020 grant agreement 825473), May 2022.

[12] ELASTIC Final Dissemination Event, May 31, 2022,

https://www.youtube.com/watch?v=CpNv9VGRlEI,

(accessed June 2022)..

249

Containers for Specification in SPARK

Claire Dross
AdaCore, 46 rue d’Amsterdam, 75009 Paris, France ; email: dross@adacore.com

Abstract

The SPARK tool analyzes Ada programs statically. It
can be used to verify both that a program is free from
runtime exceptions and that it conforms to a specifica-
tion expressed through contracts. To facilitate dynamic
analysis, Ada contracts are regular expressions which
can be evaluated at execution. As a result, the anno-
tation language of the SPARK tool is restricted to exe-
cutable constructs. In this context, high-level concepts
necessary for specification by contracts need to be sup-
plied as libraries. For example, the latest version of
the Ada language introduces unbounded integers and
rational numbers to the standard library. In this arti-
cle, we present the functional containers library which
provides collections suitable for use in specification.
We explain how they can be used to specify and verify
complex programs through concrete examples that have
been developed over many years.

Keywords: containers, specification, program verifica-
tion.

1 Introduction
With software taking on increasingly large roles in critical em-

bedded systems, it has become critical to verify software in an

efficient way. This leads more and more industrial software

companies to deploy formal verification techniques [1, 2].

The SPARK tool [3] performs static analysis of Ada pro-

grams. It can be used to verify that a program is free from

runtime exceptions, including but not limited to division by

zero, buffer overflows, null pointer dereferences, etc. High-

level functional properties can also be verified by the tool.

These properties need to be expressed as contracts - pre and

postconditions, type invariants, etc.

The SPARK tool performs deductive analysis: It takes as its

input an Ada program, annotated with contracts, and gener-

ates from it logical formulas, called verification conditions.

These verification conditions are then given to automated

solvers. If all the conditions are verified, then the Ada pro-

gram correctly implements its contracts. Deductive analysis

works modularly on a per-subprogram basis1, using the sub-

program’s contract to summarize its behavior while analyzing

callers. As a result, it is necessary for the user to manu-

ally annotate her subprograms with contracts for the tool to

work. For both the analysis and the annotation process to

remain tractable, some features of Ada have to be restricted;

1In Ada, subprogram is a generic term meaning a function or a procedure.

the SPARK toolset rejects Ada programs including these fea-

tures as being non-conformant. In particular, SPARK does

not support side-effects in expressions (but they can occur

in statements) nor aliasing (when modifying one object can

change the value of another object).

Since 2012, contracts are part of the Ada language. They

are mostly used for dynamic analysis and can be verified at

runtime. Therefore, they have the same semantics as regular

Ada expressions. In the SPARK tool, we keep the executable

semantics of contracts. It makes it easier for developers to

write the contracts, both because they do not have to learn a

new language, and because the contracts can be tested and

debugged like normal code. However, it has the side-effect of

restricting the annotation language to executable constructs.

To alleviate this limitation, high-level concepts necessary to

write certain specifications can be added as libraries. Un-

bounded integers and rational numbers have been introduced

recently into the Ada runtime. They can be used to avoid

overflows in contracts, or to reason about the rounding error

in floating point computations [4].

Another concept which is commonly used in specification

is a collection: set, sequence, map etc. Collections used for

specification are different from their counterparts used during

development. They are more of a mathematical concept, and

less concerned about efficiency. In this article, we present

the functional containers library which was introduced for

this purpose in 2016. We explain how it can be used to en-

hance the specification and verification of complex programs

through concrete examples that have been developed through

the years.

2 The Formal and Functional Containers
The standard library of Ada provides implementations of

commonly-used standard containers: vectors, doubly-linked

lists, as well as sets and maps, both ordered and hashed.

These containers come in various flavors: bounded to avoid

dynamic allocations on embedded systems, indefinite to hold

elements of variable sizes etc. To allow for efficient access,

these containers implement a notion of iterators, named cur-
sors. Cursors are basically pointers giving direct access to

an element in the container. They provide an easy way to

iterate over all the elements of a container. While cursors are

desirable in terms of usability, they are unfortunately not com-

patible with the restrictions imposed on input to the SPARK

tool. Indeed, each cursor involves an alias of the container it

belongs to, as modifying the container might cause the cur-

sor to become invalid or designate a different element, and

SPARK does not support aliases.

Ada User Jour na l Vo lume 43, Number 4, December 2022

250 Conta iners for Spec i f ica t ion in SPARK

To alleviate this issue, SPARK-compatible versions of the

standard containers [5] have been implemented. They are

called formal containers and are designed to be as close to

the standard containers as possible. They provide cursors like

the Ada containers, but these cursors are nothing more than

indexes in an array constituting the underlying memory of

the container. As a result, the formal container API is slightly

different from the standard one, as the container needs to be

passed along with the cursor to determine its validity or access

the corresponding element, as can be seen in Figure 1. Note

that the formal containers are not themselves verified using

SPARK, but they are compatible with its restrictions and their

primitives have been annotated with contracts allowing user

code to be analyzed.

function Element
(Position : Cursor) return Element_Type;

-- Function to access an element in a standard map
function Element

(Container : Map;
Position : Cursor) return Element_Type

with Pre ⇒ Has_Element (Container, Position),
Post ⇒ ...;

-- Function to access an element in a formal map

Figure 1: The Element function is used to access an element
in a standard or a formal map. As the cursors no longer hold
a reference to a container in the formal container library, the
Element function takes the container as an additional parame-
ter. It is annotated with a pre and a postcondition that can be
used to verify user code.

At the beginning, we attempted to use the formal containers

in high-level specifications, but we quickly found out that

it was not tractable. Indeed, these containers are onerous

for verification, as they pull with them numerous secondary

considerations, like the order of iteration, or the validity and

position of cursors. A new library of containers, named func-
tional containers, was introduced to alleviate this issue. They

are designed to be light-weight in terms of specifications.

They only offer a small number of functional operations, with

as few constraints as possible. They are unbounded, might

contain any kind of elements (even with variable sizes) and

can be used easily (no need to provide a hash or compare

function for sets and maps in particular).

The functional containers library provides sets, maps, and

sequences. Their API consists of functions creating new con-

tainers, as opposed to procedures modifying existing ones.

Even if they are mostly used for specifications, these con-

tainers are executable. To remain reasonably efficient, their

implementation involves several levels of sharing. Quantifica-

tion over these containers is possible, but iteration only makes

sense for sequences that define a relevant order on their ele-

ments. Figure 2 shows a part of the API of functional maps.

They only offer three properties, a function Has_Key to check

whether a key has an association in the map, a function Get

to retrieve this association, and a function Length returning

the number of keys with an association in the map. Other

primitives are specified in terms of these properties, like the

"≤" operator which returns true when all associations in a

map are also included in the other.

function Length (M : Map) return Big_Natural;
function Has_Key

(M : Map;
K : Key_Type) return Boolean;

function Get
(M : Map;
K : Key_Type) return Element_Type

with
Pre ⇒ Has_Key (M, K);

function "≤" (M1, M2 : Map) return Boolean with
Post ⇒ "≤"’Result =

(for all K of M1 ⇒ Has_Key (M2, K)
and then Element (M1, K) = Element (M2, K))

Figure 2: Part of the API of functional maps. The functions
Length, Has_Key, and Get are the only basic properties of a
functional map. All other primitives, like "≤" here, are specified
in terms of these properties.

There is no special handling for these containers in the verifi-

cation tool. The container type and its primitives are treated

as an abstract type with uninterpreted functions. The only

information known about the type and its primitives are those

coming from the Ada contracts in the functional container

API.

3 Specifying Data-Structures
When the functional containers were designed, the first objec-

tive was to specify the formal containers library. Indeed histor-

ically, the formal containers were axiomatized in WhyML, the

input language of the Why3 tool used as part of the SPARK

backend [6]. This required special handling so the formal con-

tainers were recognized specifically and linked to the correct

WhyML module. This mechanism had the advantage of mak-

ing it possible to use the rich specification features offered

by WhyML (abstract logic functions, unrestricted quantifiers,

axioms etc.) most of which cannot be mirrored in SPARK

as they are not executable. However, the maintenance cost

was prohibitive, as the mechanism had to be kept up-to-date

through successive updates of both SPARK and WhyML.

Replacing this special handling by regular SPARK contracts

without degrading the provability was a challenge. We de-

cided to go for model functions, returning functional contain-

ers. A model function is a ghost function, meaning it can only

be used in specifications. It takes as a parameter a concrete

object and returns its model: another object, generally sim-

pler to reason with. The operations on the concrete object are

then described in terms of their effects on the abstract model.

In Figure 3, the model of a ring buffer is a sequence giving

the elements of the buffer in the order in which they will be

retrieved. Using this model, its primitive operations can be

specified in a straightforward way.

As the formal containers are relatively complex, we decided to

use several model functions for their specification. Each for-

mal container provides a main model function called Model

which returns a functional container giving a high-level view

of the data-structure. We use sequences for vectors and

doubly-linked lists, and functional sets and maps for ordered

and hashed sets and maps respectively. Unfortunately, this

Volume 43, Number 4, December 2022 Ada User Jour na l

C. Dross 251

function Model (R : Ring_Buffer) return Sequence
with Ghost;

procedure Enqueue
(R : in out Ring_Buffer;
E : Integer)

with
Pre ⇒ not Is_Full (R),
Post ⇒ Model (R) = Add (Model (R)’Old, E);
-- The new model of R is its old model with E
-- added at the end.

procedure Dequeue
(R : in out Ring_Buffer;
E : out Integer)

with
Pre ⇒ not Is_Empty (R),
Post ⇒ Model (R) = Remove (Model (R)’Old, 0)

and then E = Get (Model (R)’Old, 0);
-- The new model of R is its old model without
-- the first element. E is set to the first
-- element of the old model of R.

Figure 3: The model of a ring buffer is a functional sequence
of elements in the order in which they were added to the buffer.
The Dequeue and Enqueue functions are defined in terms of
their effect on the model of their parameter.

high-level model is not enough to verify subprograms using

cursors to iterate over a formal container. Indeed, it does not

represent the cursors, nor the order in which the elements

occur during an iteration over a set or a map. To alleviate

this issue, one or two additional model functions are defined

for each container. The Positions function returns a func-

tional map which associates the cursors that are valid in a

container to an integer standing for their position in the con-

tainer. For sets and maps, the Elements or Keys function

returns a sequence of elements or keys to model their order

in the container. Note that this order is defined both for the

hashed and ordered containers, as both define an order of

iteration on their elements.

This layered approach allows users of the formal containers

library to choose the level of granularity they need. As an

example, the procedure Set_All_To_Zero sets the elements

associated with each key in a map to 0. Its postcondition is

given in Figure 4. It only uses the high-level model of the

map, as it does not care about the cursors or order of iteration

in the container. However, these considerations are necessary

when verifying its implementation. The loop invariant in

Figure 5 is one of the annotations used to verify the loop

setting each element to 0 in its body. It uses the Positions

function to get the position of the current cursor, and then

the Keys function to state that the elements associated with

all the keys occurring before this position have already been

replaced.

4 Verifying Data-Structures
As explained in the previous section, the functional containers

can be used as models to annotate subprograms dealing with

complex data-structures. Even though it was not done for

the formal containers library, it is possible to use SPARK to

verify these annotations. For the verification to be possible,

procedure Set_All_To_Zero (M : in out Map) with
Post ⇒

(for all K of Model (M)’Old ⇒
Has_Key (Model (M), K))

and then
(for all K of M ⇒

Has_Key (Model (M)’Old, K)
and then Get (Model (M), K) = 0);

Figure 4: The postcondition of the procedure
Set_All_To_Zero. It states that the keys of M are pre-
served by the call and that every key in the map is associated
to 0 after the call. This can be expressed using only the Model
function. The order of iteration and the validity of cursors is not
relevant here.

pragma Loop_Invariant
(for all P in 1 .. Get (Positions (M), Cu) - 1 ⇒

Get (Model (M), Get (Keys (M), P)) = 0);

Figure 5: A loop invariant used to verify the procedure
Set_All_To_Zero. It uses the Positions map to query
the position of the current cursor Cu and the Keys sequence to
retrieve the keys situated before this position in the map.

it is necessary to describe precisely the link between the

underlying data-structure and its model in the postcondition of

the model function. In Figure 6, the function Valid_Model

links the value of a ring buffer implemented as an array with a

first index and length field to the value of the sequence which

models it. It can be used in the postcondition of Model, so

the contracts in Figure 3 can be verified.

This method was used successfully in case-studies of various

sizes through the years. The first use of the functional contain-

ers to verify a SPARK program was developed to showcase

the capability in 2016 [7]. It features a simple allocator inside

a memory array modeled using a set of allocated cells and

a sequence for the free list. A substantially more complex

example is the proof of the insertion inside a red-black tree

encoded inside a memory array [8]. The complexity of the

specification is handled by building the concrete structure

incrementally, starting from binary trees, to search trees, to

finally implement and verify the insertion in a red-black tree.

More recent examples use functional containers to model

pointer-based data-structures, which have been supported by

the SPARK tool only for the last couple of years [9]. To

support this new use-case, the functional containers library

had to be updated. Indeed, sequences are bounded by the

machine integer type used to index them, and functional sets

and maps used to have a theoretical bound on their cardinality

due to the machine integer type used for their Length func-

tion. The restriction on sets and maps was lifted earlier this

year by replacing the return type of their Length functions

by unbounded integers, and a new type of sequence indexed

by unbounded integers was introduced in the library.

On complex data-structures, it is possible to use several levels

of models to perform a proof by refinement. Basically, a

lower-level model, close to the concrete data-structure, will

be used to annotate and verify the basic operations. Then, one

Ada User Jour na l Vo lume 43, Number 4, December 2022

252 Conta iners for Spec i f ica t ion in SPARK

type Ring_Buffer is record
Content : Content_Array := (0 .. Max - 1 ⇒ 0);
First : Positive range 0 .. Max - 1 := 0;
Length : Natural range 0 .. Max := 0;

end record;

function Valid_Model
(R : Ring_Buffer;
M : Sequence) return Boolean

is
(Length (M) = R.Length
and then

(for all I in 0 .. R.Length - 1 ⇒
R.Content ((R.First + I) mod Max) =
Get (M, I)))

with Ghost;

function Model
(R : Ring_Buffer) return Sequence

with
Ghost,
Post ⇒ Valid_Model (R, Model’Result);

Figure 6: The function Valid_Model links the element of the
ring buffer to their corresponding value in the model sequence.
It is used as a postcondition of the Model function. It makes it
possible to verify the implementation of Enqueue and Dequeue
procedures presented in Figure 3.

or several higher-level models might be introduced to further

abstract away the operations. As an example, we are currently

working on using SPARK to verify the implementation of

the bounded formal hashed sets. As schematized in Figure 7,

these sets are implemented inside an array. A hash function

is used to choose a bucket for each element of the set. Each

bucket is the head of a list implemented through a Next

field in the memory array. For the verification to remain

tractable, we have introduced two levels of models. The

lower-level model keeps a memory array, but only to store

the values, as represented in Figure 8. The buckets contain

functional sequences that store the corresponding allocated

indexes. The notion of buckets disappears completely in the

higher level model, see Figure 9. It simply represents the set

as the memory for values and a big sequence, containing the

allocated indexes in the order in which they will be traversed

when iterating over the set. The final objective is to be able

to verify the specification written in terms of the three model

functions Model, Elements, and Positions presented in

Section 2.

5 Going Further
Modeling the content of other data-structures is by far the

most common use-case for functional containers in our experi-

ence. However, more exotic use-cases also exist. In particular,

the container might model a state which is not actually present

in the program, but represents a concept used in the specifi-

cation only. It makes it possible to address properties which

are not generally in the domain of SPARK. In this section, we

focus on two such use cases.

The SPARK tool enforces an ownership policy to ensure

non-aliasing when dealing with pointers. As a result, the

builtin support for pointers does not allow verifying programs

Figure 7: Concrete implementation of a formal hashed set. The
content of the set is stored in a bounded memory array. Each
cell of this array contains both a value and a Next field, used to
represent linked lists in the memory. The array of buckets holds
the heads of the lists associated to each hashed value. The cells
which are not allocated yet are linked together in the same way,
and their head is stored separately.

Figure 8: Low level model of a formal hashed set. The values
contained in the set are still stored in a bounded array. The
linked structure however has been removed from the memory.
Instead, each bucket now uses a functional sequence to store
the indexes of the corresponding values in the order of iteration.
The free list is also represented as a sequence.

that rely on aliasing. In particular, data-structures involving

sharing or cycles - doubly-linked lists, direct acyclic graphs

etc. - cannot be handled by the SPARK tool. To work around

this restriction, it is possible to hide the pointers and model

them as indexes in a memory map. The implementation

still uses pointers though, so the map does not represent any

actual structure in the code. It makes it possible to reason

about pointers with aliasing by annotating explicitly which

pointers can be aliases of each other. Using a single memory

object standing for all allocated data makes both annotation

and verification more difficult however, so the built-in support

of pointers stays more efficient when it applies.

Figure 10 shows the contracts provided for the Allocate

procedure. It allocates a memory region, initialized with the

provided value, and returns a pointer to this memory region.

Its contract expresses that it modifies a global ghost object

called Memory. This object is the functional map standing for

the model of the actual program heap. In the postcondition of

Allocate, it is necessary to describe its effect on the whole

abstract memory map. We use two universally quantified

formulas to state that P is the only newly allocated cell, and

that the values designated by other pointers are preserved. For

comparison, the procedure Allocate in Figure 11 uses the

built-in support for pointers in SPARK. It is not considered to

read or modify any global state as allocated cells are treated

as parts of the pointer that owns them, so its contract is far

simpler.

As another example, functional sequences can be used to

model a restricted form of temporal logic. Here, a history

Volume 43, Number 4, December 2022 Ada User Jour na l

C. Dross 253

Figure 9: High-level model of a formal hashed set. The memory
array of values remains the same as in the low level model. The
buckets and the free list are not represented anymore. Instead,
we use a single functional sequence containing all the allocated
indexes in the order of iteration.

type Pointer is private;
procedure Allocate

(O : Object; P : out Pointer)
with

Global ⇒ (In_Out ⇒ Memory),
-- P is a valid pointer in Memory designating
-- the value O.
Post ⇒ Has_Key (Memory, Address (P))
and then Get (Memory, Address (P)) = O
-- Every pointer previously valid in Memory
-- remains valid and keeps designating the
-- same value.
and then (for all K of Memory’Old ⇒

Has_Key (Memory, K)
and then Get (Memory, K) =

Get (Memory’Old, K))
-- P is the only address allocated by the call
and then (for all K of Memory ⇒

Has_Key (Memory’Old, K)
or else K = Address (P));

Figure 10: The function Allocate allocates a new memory
region for its input object O. After the call, its parameter P is
a pointer to this newly allocated region. The fact that P is a
pointer is hidden from the SPARK tool using privacy. The effect
on the program heap is modeled through a ghost Memory map.

is represented as a ghost sequence of events, where events

would be for example a call to a particular subprogram or

the reception of a message. Each time an event occurs, it is

added at the end of the sequence. Using the ghost sequence,

it is then possible to express properties over the order in

which the events occurred. The SPARK tool can be used to

verify that these properties are maintained through the pro-

gram. The snippet in Figure 12 is extracted from the code of

OpenUxAS, a framework developed by Air Force Research

Labs for mission-level autonomy for teams of cooperating

unmanned vehicles [10]. This framework is implemented

as several services communicating through message passing.

In this example, the history records the emission and recep-

tion of messages. The function No_Route_Request_Lost

uses the history to express that all received messages of kind

Route_Request have been handled: they are either in the

set of pending requests or a response has been sent. As can be

seen in the contract of Handle_Route_Request, this prop-

erty is stated both in preconditions and in postconditions of

subprograms handling messages in the service. It allows the

SPARK tool to verify that it is an invariant maintained by the

service.

type Builtin_Pointer is access Object;
procedure Allocate

(O : Object;
P : out Builtin_Pointer)

with
-- P is not null and designates the value O
Post ⇒ P �= null and then P.all = O;

Figure 11: The function Allocate allocates a new memory
region for its input object O. After the call, its parameter P is a
pointer to this newly allocated region. As built-in pointers are
handled through ownership by the SPARK tool, the part of the
program heap designated by P is treated as a part of P for the
verification. Therefore, there is no need to model the memory in
the contracts of Allocate.

6 Related Work
Collections are generally considered to be useful when writ-

ing program specifications. As a result, most verification

tools support some kind of specification-oriented collections

in their input language. For example, the standard library of

the Why3 language used as a backend of SPARK provides

polymorphic lists implemented as abstract data types, as well

as polymorphic sets and multisets, specified through an ax-

iomatization [11]. Dafny, a verification language developed

at Microsoft Research and currently used to verify protocols

at Amazon Web Services also provides collections such as

sequences and sets with comprehensions [12].

Satisfiability Modulo Theory (SMT) solvers are generally

used as a backend of program verifiers. As a consequence,

significant research effort has been invested in coming up with

efficient decision procedures for collections in these solvers.

For example, a decision procedure for a theory of sets has

been supported by the CVC4 solver [13] since 2016, and the

last version of the prover, cvc5, also supports sequences that

can be used to model arrays and vectors [14].

Using simple collections as ghost models of complex data-

structures is a widely used technique in proof of programs.

As an example, the specification of the Eiffel-Base2 general-

purpose containers library verified by Polikarpova et al. uses

collections coming from the Mathematical Model Library

(MML) : sequences as models of linked lists, maps for hash

tables, etc. These collections benefit from custom support in

the underlying solver AutoProof [15]. This technique was

used successfully to verify numerous data-structures in Why3,

such as hashed tables or AVL trees [16]. Blanchard et al. also

resorted to using ghost arrays as a model of their lists for their

verification of the linked list module of the Contiki OS with

the WP plugin of Frama-C [17].

7 Conclusion
Functional containers are used to represent collections in

the specification of SPARK programs. They offer a simple,

high-level representation of a container, that is both easy to

understand for a reader and easy to reason with for the solvers.

They are executable, so it is possible to test the specification,

or even to use them in actual code.

Through the years, they have been used to annotate or verify

various kinds of containers, from the formal container library

Ada User Jour na l Vo lume 43, Number 4, December 2022

254 Conta iners for Spec i f ica t ion in SPARK

function No_Route_Request_Lost
(Pending_Routes : Set) return Boolean

is
(for all E of History ⇒

(if E.Kind = Receive_Route_Request then
Contains (Pending_Requests, E.Id)

or else Route_Response_Sent (E.Id)));

procedure Handle_Route_Request
(Data : Route_Aggregator_Configuration_Data;
Mailbox : in out Route_Aggregator_Mailbox;
State : in out Route_Aggregator_State;
Request : Route_Request)

with
Pre ⇒ ...

-- History invariants
and then No_Route_Request_Lost

(State.Pending_Routes)
and then ...,

Post ⇒ ...
-- The request has been added to the history
and then History’Old < History
and then

Get (History, Last (History)’Old + 1).Kind
= Receive_Route_Request

and then
Get (History, Last (History)’Old + 1).Id =
Request.Request_ID

-- History invariants
and then No_Route_Request_Lost

(State.Pending_Routes)
and then ...;

Figure 12: Extract of the OpenUxAS code base. The function
No_Route_Request_Lost uses the History sequence to ex-
press a safety invariant of the service: Every Route_Request
received by the service is either pending or a response has been
sent. The procedure Handle_Route_Request performs the
treatment when a Route_Request is received. It stores the
event in the history. Its contract states that it maintains the
No_Route_Request_Lost invariant.

of SPARK (which are specified with functional containers

but not proved) to ownership based recursive data-structures.

Proof by refinement, though not natively supported in SPARK,

can be achieved using these containers by creating several

layers of models.

Going further, functional containers provide a way to de-

scribe state which only exists in the specification. It makes it

possible to model properties which are not generally in the do-

main of SPARK, like some restricted form of temporal logic,

through a history, or aliasing and simple memory separation.

References
[1] J. Backes, P. Bolignano, B. Cook, A. Gacek, K. S.

Luckow, N. Rungta, M. Schaef, C. Schlesinger,

R. Tanash, C. Varming, et al., “One-click formal meth-

ods,” IEEE Software, vol. 36, no. 6, pp. 61–65, 2019.

[2] P. W. O’Hearn, “Continuous reasoning: Scaling the

impact of formal methods,” in Proceedings of the 33rd
annual ACM/IEEE symposium on logic in computer
science, pp. 13–25, 2018.

[3] J. Barnes, SPARK: The Proven Approach to High In-
tegrity Software. Altran Praxis, 2012.

[4] C. Dross and J. Kanig, “Making proofs of floating-point

programs accessible to regular developers,” in Software
Verification, pp. 7–24, Springer, 2021.

[5] C. Dross, J.-C. Filliâtre, and Y. Moy, “Correct code

containing containers,” in International Conference on
Tests and Proofs, pp. 102–118, Springer, 2011.

[6] J.-C. Filliâtre and A. Paskevich, “Why3—where pro-

grams meet provers,” in European symposium on pro-
gramming, pp. 125–128, Springer, 2013.

[7] C. Dross and Y. Moy, “Abstract software specifications

and automatic proof of refinement,” in International
Conference on Reliability, Safety, and Security of Rail-
way Systems, pp. 215–230, Springer, 2016.

[8] C. Dross and Y. Moy, “Auto-active proof of red-black

trees in spark,” in NASA Formal Methods Symposium,

pp. 68–83, Springer, 2017.

[9] C. Dross and J. Kanig, “Recursive data structures in

spark,” in International Conference on Computer Aided
Verification, pp. 178–189, Springer, 2020.

[10] M. A. Aiello, C. Dross, P. Rogers, L. Humphrey, and

J. Hamil, “Practical application of spark to openuxas,” in

International Symposium on Formal Methods, pp. 751–

761, Springer, 2019.

[11] T. W. D. Team, “Why3 documentation,” Apr. 2022.

[12] R. L. Ford and K. R. M. Leino, “Dafny reference man-

ual,” 2017.

[13] K. Bansal, A. Reynolds, C. Barrett, and C. Tinelli, “A

new decision procedure for finite sets and cardinality

constraints in smt,” in International Joint Conference
on Automated Reasoning, pp. 82–98, Springer, 2016.

[14] Y. Sheng, A. Nötzli, A. Reynolds, Y. Zohar, D. Dill,

W. Grieskamp, J. Park, S. Qadeer, C. Barrett, and

C. Tinelli, “Reasoning about vectors using an smt theory

of sequences,” arXiv preprint arXiv:2205.08095, 2022.

[15] N. Polikarpova, J. Tschannen, and C. A. Furia, “A fully

verified container library,” in International Symposium
on Formal Methods, pp. 414–434, Springer, 2015.

[16] M. Clochard, “Automatically verified implementation

of data structures based on avl trees,” in Working Con-
ference on Verified Software: Theories, Tools, and Ex-
periments, pp. 167–180, Springer, 2014.

[17] A. Blanchard, N. Kosmatov, and F. Loulergue, “Ghosts

for lists: a critical module of contiki verified in frama-

c,” in NASA Formal Methods Symposium, pp. 37–53,

Springer, 2018.

Volume 43, Number 4, December 2022 Ada User Jour na l

 255

Ada User Journal Volume 43, Number 4, December 2022

Rigorous Pattern Matching as a Language Feature

S. Tucker Taft
AdaCore, Lexington, MA, USA; email:taft@adacore.com

Abstract
Structural pattern-matching as a language feature has
become more common in programming languages over
the past decade. This paper will consider more
generally the challenge of adding pattern matching as
a programming language feature, from the points of
view of language design, rigorous static error
detection, and effectiveness. In this context, a pattern
matching language feature can be seen as providing a
more rigorous approach to handling the complex
conditionals that arise in processing highly structured
input.
Keywords: Pattern matching, language design, static
error detection, rigorous software development.

1 Introduction
Many programming languages now include a pattern-

matching feature, often introduced with the keyword match,

e.g. OCaml [1], Python [2], Haskell [3] (Haskell doesn't

require any keyword -- every function is considered a pattern

match). These are not primarily focused on string pattern

matching, but more on structure pattern matching, where the

matching starts from an object of some structured type, and

the individual patterns select particular structural patterns for

specified actions.

These pattern matching features can be seen as a

generalization of the case or switch statement available in

most third-generation programming languages. But they

typically include the ability to associate an identifier with

some or all of the pattern, which is then usable inside the

handler for the given pattern, knowing that that identifier

refers to some part of the original object that satisfies the

given part of the pattern.

One of the great benefits of a pattern matching language

feature is that it can be used to implement logic that

otherwise might require a long if/elsif/elsif/…/else chain.

The pattern-matching equivalent to such a chain will

generally be easier to read, understand, and maintain.

Furthermore, it is possible to impose additional rules on

pattern matching (including when it is something as simple

as a conventional switch/case construct) that will foster

more rigorous software development processes, and thereby

allow more complete program verification at compile time.

Here are the three most important such properties:

1. Complete/Exhaustive -- Every possibility is covered by

some pattern.

This is easily accomplished if the programmer includes

a final catch-all pattern (e.g. others/default option), but

it may be valuable in some cases for the programmer to

omit such a catch-all and have the compiler complain

unless the other more specific patterns provided cover

all interesting cases.

2. Unambiguous -- There should be no two patterns where

a given object could match both, unless the pattern that

comes lexically second covers a strict superset of

objects of the earlier pattern. The later, superset pattern

is analogous to the others/default branch of a case or

switch statement, which in many languages is required

to come after all more specific patterns.

3. Nonredundant -- There are no patterns which are

redundant/useless, in that no object will reach that

pattern, since it is fully covered by earlier patterns.

This would be analogous to an others/default branch of

a case/switch statement that is never reached, and could

be considered misleading. Violating this property might

be treated more as deserving a warning rather than an

error, at least for a true catch-all pattern. For a pattern

that is not a true catch-all but which is being used as a

fall-back pattern for one or more earlier more specific

patterns, if this fall-back is never reachable, then it

might well be considered a redundancy error.

This paper will consider more generally the challenge of

adding pattern matching as a programming language feature,

but will focus on the additional rigor provided by the

guarantees inherent in the enforcement of the three

“desirable properties” identified above.

2 Syntax and Semantics
A pattern matching language construct is generally

introduced with the reserved word match, though some

languages (e.g. Java [6]) are choosing to extend an existing

switch/case construct rather than introducing a wholly new

pattern matching construct. In some languages (e.g. Haskell

[3]), and in some contexts (e.g. the if let construct in Rust

[7]), no special keyword is used – pattern matching is an

implicit part of the syntax. In all cases, a pattern is specified

using a particular set of pattern components, generally

allowing wildcard (irrefutable) components, and generally

allowing the ability to bind a new identifier to some or all of

the matched pattern. After the pattern, some action is

specified, typically using the normal expression or statement

syntax of the language, with the environment augmented

with any bindings that have been made to parts of the

matched pattern. Patterns typically allow multiple

alternatives, separated by ‘|’ or other analogous character,

with the same identifiers (if any) required to be bound in

each alternative.

256 Rigorous Pattern Matching as a Language Feature

Volume 43, Number 4, December 2022 Ada User Journal

Languages vary in terms of how rich is the pattern

sublanguage, but for a language that has the notion of

variants or multiple constructors for the same type, the

pattern sublanguage certainly supports matching against the

particular variant or constructor represented by the object

being examined. Some languages support matching against

subranges of scalar types, and some support matching

against arrays, vectors, or arbitrary structures [1,2,3,6,7].

Historically, pattern matching has been associated with

textual strings, usually making use of regular expressions as

the basis for the matching, with AWK being an example of

a language where such pattern matching drives the program

logic [8]. In general-purpose programming languages,

particularly functional programming languages such as

Haskell, more emphasis has been placed on matching against

structured data types, with the use of regular expressions, if

any, typically limited to array/vector-type structures.

As indicated above, one of the main advantages of including

pattern matching as a language feature is that it can help

reduce the number of long, potentially confusing, and

difficult to verify if/elsif/…/else chains. One criterion for

evaluating a pattern matching feature is therefore its ability

to replace such long if/elsif chains with a clearer and more

rigorously checked pattern matching construct. We will use

code samples in this paper to evaluate the effectiveness of

pattern matching features in accomplishing this goal.

2.1 Pattern Matching against Abstract Data
Types
In many languages, pattern matching is limited to matching

against the visible properties of data types, such as their

value if an integer, their visible components (and run-time

type identification, if any) if a record, struct, or class, and the

specific components of an array or map. Typically any

properties that require invoking a query function of some

sort are not available for direct matching, and must be

handled with an additional boolean condition on the match

(e.g. OCaml [1]). Alas, this approach can defeat some of the

rigor provided by pattern matching, by re-introducing some

of the problems of if/elsif chains, where the success of an

earlier condition can hide a more appropriate match that

might occur later. We therefore investigate approaches that

allow uses of query functions for abstract properties, directly

within patterns.

2.2 Proposed Pattern Matching Syntax
In this paper we suggest the following basic syntax for

pattern matching, generalizing on the case construct of

Pascal or Ada [9], and incorporating capabilities from

languages like OCaml [1] and Python [2].

case_construct ::=
 case expression {, expression} is
 when pattern {, pattern} =>
 seq_of_statements
 {when pattern {, pattern} =>
 seq_of_statements}
 [when others =>
 seq_of_statements]
 end case;

pattern ::=
 simple_pattern {| simple_pattern}

simple_pattern ::=
 [identifier :] unlabeled_pattern
 | <identifier>

unlabeled_pattern ::=
 <>
 | static_expression
 | static_range
 | subtype_mark
 | property_pattern
 | sequence_pattern
 | map_pattern

property_pattern ::=
 ([pattern with]
 property => pattern{,
 property => pattern} [,
 others => pattern])

sequence_pattern ::=
 [pattern [*|+]{,
 pattern [*|+]} [, others => pattern]]

map_pattern ::=
 [key_expression => pattern {,
 key_expression => pattern } [,
 others => pattern]]

property ::=
 component_name
 | function_name
 | function_name
 (seq_of_actual_parameters)
 | abs
 | mod expression
 | rem expression
In the above BNF, expression, seq_of_statements,

range, and subtype_mark are presumed to be already

defined for the base language. If there are multiple

expressions in the initial part of the case construct, then

there should be the same number of patterns in each arm

of the case construct. A when others is allowed as the final

arm, which acts as a catch-all matching any set of input

values.

Within a pattern, the <> notation is used for a wildcard

(irrefutable) pattern. If an identifier is specified either using

the identifier : syntax or the <identifier> syntax, a

new variable is introduced that is visible in the

corresponding seq_of_statements, denoting the part of

the input expression that the identified part of the pattern

matches. If a pattern includes a set of simple_patterns

separated by | then the pattern matches if any of the

simple_patterns match.

Matching against a subtype_mark can be used when the

expression being matched is polymorphic (“class-wide”

in Ada parlance), or when the subtype_mark incorporates

some constraint or predicate relative to its type (though the

nature of these constraints or predicates would be limited to

what could have been expressed with one or more

unlabeled_patterns).

T. Taft 257

Ada User Journal Volume 43, Number 4, December 2022

The property_pattern is used for types with named

components, or types for which abstract properties are of

interest. The optional pattern with part allows a pattern for

the value as a whole to be given in addition to patterns for

each of the properties or components. The optional final

others => pattern specifies a pattern that applies to any

visible components not mentioned previously. Unless the

pattern is <>, all such components must be of the same type.

An example of a property_pattern, representing a

pattern matching a binary expression with operator plus and

right operand zero, would be:

 (Binary with Operator => Plus,
 Left => <L>, Right => 0)

In the seq_of_statements associated with such a pattern,

the variable L would denote the left operand subtree of this

binary expression. Note that Operator, Left, and Right

could be component names or function names. If function

names, they would be expected to denote functions with a

single argument of (sub)type Binary.

In addition to a component or single-parameter function

name, a property can be a function with multiple

parameters, the first of which must be of the type being

matched (and which is then omitted from the

seq_of_actual_parameters). In addition, there are

three operators that are allowed as properties, the unary abs,

and the binary mod and rem operators, where the expression

given to the binary operators is the divisor. Mod and rem are

operators that return the remainder after truncating toward

negative infinity, and toward zero, respectively. These

operators are interesting because they reduce the variability

of the input to a simpler range, which can be useful for

pattern matching. For example, to match only even numbers

that are of the form 3K + 1, in the range 0 .. 100, the

following pattern could be used:

 Val:(0 .. 100 with mod 2 => 0, mod 3 => 1)
In the seq_of_statements associated with this pattern,

the variable Val would be bound to the value matching the

pattern.

The sequence_pattern is used for arrays and array-like

structures such as vectors, and provides rudimentary support

for regular expressions over sequences of values. Each

pattern matches some number of components. A suffix of *

means that the pattern can match zero or more sequential

components. A suffix of + means the pattern can match one

or more sequential components. An optional final others =>

pattern indicates there might be further components, all of

which must match the given pattern. An example of this

form, corresponding to a sequence of characters matching

the C hex integer syntax, would be:

 [’0’, ’x’ | ’X’, others =>
 ’0’..’9’ | ’a’ .. ’f’ | ’A’ .. ’F’]

The map_pattern is used for a map-like structure, where

the result of retrieving the element from the map with each

specified key matches the specified pattern. An optional final

others => pattern in the pattern means there are allowed

to be additional elements in the map, all expected to match

the specified pattern. An example of a map_pattern,

corresponding to a retrieval of the optimization level from a

command-line argument map, could be:

 [”-O” => Optim_Level:0 .. 3, others => <>]
In the seq_of_statements associated with this pattern,

the variable Optim_Level would denote the value retrieved

from the argument map, using the key ”-O”. The argument

map may contain other elements, having any value.

2.3 Red-Black Tree Balancing Example
One frequent example of the power of pattern matching is

for balancing a red-black tree, suggested by Chris Okasaki

in [14]. This example can be represented using the proposed

property_pattern, as follows:

In the above example, there are four (top-level)

property_patterns in the ‘|’ combination pattern for the

first alternative of the case construct, each of which matches

a different (unbalanced) tree structure and binds the

variables A, B, C, X, and Y, which are then used in the

associated return statement to build a balanced subtree. The

second alternative is a fall back, where we use an irrefutable

pattern that binds the input as the variable X, and just returns

that input value.

case T is
 when (Node with Color => Black,
 Left => (Node with Color => Red,
 Left => (Node with Color => Red, Left => <A>, Value => <X>, Right =>),
 Value => <Y>, Right => <C>),
 Value => <Z>, Right => <D>)
 | (Node with Color => Black,
 Left => (Node with Color => Red, Left => <A>, Value => <X>,
 Right => (Node with Color => Red, Left => , Value => <Y>, Right => <C>)),
 Value => <Z>, Right => <D>)
 | (Node with Color => Black, Left => <A>, Value => <X>,
 Right => (Node with Color => Red,
 Left => (Node with Color => Red, Left => , Value => <Y>, Right => <C>),
 Value => <Z>, Right => <D>))
 | (Node with Color => Black, Left => <A>, Value => <X>,
 Right => (Node with Color => Red, Left => , Value => <Y>,
 Right => (Node with Color => Red, Left => <C>, Value => <Z>, Right => <D>)))
 => return New_Node (Red, New_Node (Black, A, X, B), Y, New_Node (Black, C, Z, D));
when <X> => return X;
end case;

258 Rigorous Pattern Matching as a Language Feature

Volume 43, Number 4, December 2022 Ada User Journal

3 Rigorous Error Detection
Languages with a pattern matching construct differ in how

they handle the three desirable properties identified above,

namely being exhaustive, unambiguous, and nonredundant.

In some languages, leaving some inputs unhandled simply

means a default action occurs, such as a null statement (e.g.

C’s switch statement). In others, a run-time error is signaled,

and possibly a warning at compile time (e.g. OCaml [1]).

And still others make it a compile time error if the set of

patterns is not exhaustive (e.g. Java [6]).

Languages differ even more in how they deal with

potentially ambiguous patterns. In several languages, the

first match is used, even if there exists a “better” match later

(e.g. Java[6]). In part this is because the pattern sublanguage

does not fully define what it means for patterns to be

ambiguous, particularly in the presence of additional

conditions (or “guards” as Java[6] calls them). Some

languages require that if a pattern clearly matches a superset

of the values matched by another pattern occurring later, the

second pattern is flagged at compile-time as being

unreachable. But if the two patterns overlap, but neither

“dominates” the other, then no error is signaled, and the

textual order determines which pattern matches. So such

languages are enforcing the Nonredundant property, but not

the Unambiguous property. If switching from long

if/elsif/.../else chains to pattern matching is going to add

rigor to the software development process, then the

Unambiguous property is an important one to enforce.

3.1 Related Work on Pattern Error Detection
There has been some work on determining how to identify

ambiguity (and exhaustiveness) given particular pattern

sublanguages. One widely cited paper by L. Maranget [4]

about OCaml, describes several methods to provide useful

warnings, adopting a matrix representation for a set of

patterns. In another earlier paper, related to Standard ML and

Haskell, M. Pettersson recognizes that pattern matching can

be formulated as a finite automaton, though his emphasis is

more on efficient code generation than on the quality of the

warning messages provided, and the starting point is again a

matrix representation for a set of patterns. A more recent

paper by M. Fahnrich and J. Boyland focuses on defining a

pattern sublanguage that supports full compile-time

checking [13]. The actual algorithms used to provide pattern-

matching-related warnings for most languages supporting

pattern matching are not described in the literature, as far as

we could determine.

3.2 General Automata Approach to Error
Detection
Because of our emphasis on the rigor provided by pattern

matching, presuming the three desirable properties are

enforced, and because of the open-ended nature of our

property-based patterns, we have investigated the systematic

use of finite automata for pattern-matching error detection,

without first translating to a matrix representation.

Fundamentally we see a pattern matching construct as a

machine for classifying a tree of values into one of several

buckets. The matching process can quite directly be

represented as a non-deterministic finite automaton (NFA),

which can then be translated into a deterministic finite

automaton (DFA) using the standard Rabin-Scott powerset

construction approach [11]. If appropriate, the DFA can be

further minimized using Hopcroft’s algorithm [12].

For our purposes, it turns out that the straightforward process

for converting an NFA to a DFA can directly provide the

information needed to enforce the three “desirable”

properties. This process proceeds as follows:

1. If there is no others alternative, add one with action

"Error -- nonexhaustive coverage".

2. Construct the NFA directly from the patterns, with a

separate end state for each distinct case alternative

(seq_of_statements).

3. Construct the DFA from the NFA, making no

preferences so that at each (merged) end-state you have

the set of case alternatives that match the corresponding

input.

4. Look at the end-states which include more than one case

alternative:

a. if all states that have alternative A also

have a later alternative B, then this implies

that B is a superset of A, and we can safely

remove B from all such states (others is

by definition a superset of all non-others

alternatives);

b. after removing all superset alternatives

from such combined states, if we have any

states with multiple alternatives, we have

improper ambiguity.

5. If there is still a state that identifies the others

alternative, the construct is nonexhaustive, if this

alternative was inserted by step 1 above as an error

action.

6. If there is an alternative (other than the others

alternative) that has no end state, then that is a redundant

alternative.

Here is an example of applying the above process, using a

simple pattern match against two integers X and Y,

presuming:

 X, Y: Integer range 1 .. 3;

 ...
 case X, Y is
 when 2, 2 => A;
 when 1..2, 2..3 => B;
 when 2..3, 1..2 => C;
 end case;

The six-step process described above, proceeds as follows

for this example:

1. Add a when others => E; (error) alternative because

there is no explicit others alternative.

T. Taft 259

Ada User Journal Volume 43, Number 4, December 2022

2. Construct the NFA:

3. Convert the NFA to a DFA:

4. Remove the superset alternatives from the ambiguous

states, using superset relationships E >= {A,B,C} and

{B,C} >= A, to produce this winnowed set of end states:

� No ambiguous end-states left, so construct is

unambiguous

5. We have some inputs that reach (E), so since there was

no explicit others in the original construct, the construct

violates the exhaustiveness property.

6. Every non-others alternative has at least one end state,

so construct is not redundant.

In the above case construct example, if we omit the A

alternative, then we would end up with the end-state for X,Y

inputs of [2,2] being (B,C), which would indicate unresolved

ambiguity.

4 Replacing if/elsif/elsif/.../else chains
As indicated above, one of the goals of adding support for

pattern matching is to enable a more rigorous approach to

handling complex conditionals. Here is a snippet of a real

subprogram, produced by selecting lines with if, elsif, or else

on them, to illustrate typical complex conditional logic:

If we try to replace this with an equivalent pattern matching

construct, we quickly notice that the various Boolean

predicates such as Is_Add_To_Constant and

Is_Subtract_Of_Constant do not work well with an attempt

to provide an unambiguous, exhaustive set of patterns,

because the semantic relationship between these predicates

is not clear. If one is True, is the other necessarily False?

What we really want are query functions that produce an

enumeration of mutually-exclusive possibilities, such as one

that returns the particular operator that is present, coupled

with a query function that indicates whether one of the

parameters is a compile-time-known constant, or is rather a

dynamic value. If we presume such new query functions, we

arrive at an equivalent set of patterns that can more likely be

analyzed for ambiguity and exhaustiveness:

The claim we would make is that the process of transforming

the logic to pattern matching, including defining new query

functions, produces a more understandable and maintainable

result.

5 Conclusions and Future Work
With compile-time checking of desirable properties, pattern

matching can provide a more rigorous approach to complex

conditional logic. Pattern matching simplifies understanding

and maintenance because the individual patterns can be more

independent, meaning patterns can be understood

individually, and patterns can be added or removed without

significantly disturbing the interpretation of the other

patterns.

Compile-time checking for desirable properties can be

implemented by using the results of converting an NFA for

the pattern matching construct into a DFA, and then

if Is_Add_To_Constant (Val1)
elsif Is_Subtract_Of_Constant (Val1)
elsif Is_Multiply_By_Constant (Val1)
 if VN_Equal (Second_Operand (Val1), Val2)
 elsif Is_Multiply_By_Constant (Val2)
 if ...
 elsif VN_Equal (...)
elsif Is_Subtract (Val1)
 if VN_Equal (Val2, Second_Operand (Val1))
 elsif Is_Subtract (Val2)
 if ...
 elsif VN_Equal (...)
 elsif Is_Add (Val2)
 if ...

 case Val1, Val2 is
 when (Op => Add, Has_Const => True), <> => ...
 when (Op => Subtract, Has_Const => True), <> =>...
 when (Op => Multiply, Has_Const => True),
 (VN_Equal (Second(Val1)) => True) => ...
 when (Op => Multiply, Has_Const => True),
 (Op => Multiply, Has_Const => True) => ...
 when (Op => Subtract, Has_Const => False),
 (VN_Equal (Second(Val1)) => True) => ...
 when (Op => Subtract, Has_Const => False),
 (Op => Subtract) => ...
 when (Op => Subtract, Has_Const => False),
 (Op => Add) => ...
 end case;

260 Rigorous Pattern Matching as a Language Feature

Volume 43, Number 4, December 2022 Ada User Journal

the pattern matching construct into a DFA, and then

winnowing the states by removing superset states, leaving a

DFA where any ambiguities, redundancies, or non-

exhaustiveness are simple to identify.

The ultimate goal is to replace complex conditionals using

if/elsif/.../else chains with pattern matching constructs.

When performing simple experiments with existing code, it

becomes clear that such a transformation may require a new

set of query functions to expose the exhaustiveness of the

alternatives in a pattern match.

In the near future, we plan to formalize this proposal as a

possible generalization of the Ada programming language

case construct [9]. A prototype implementation of the

compile-time checks is now underway, and will be finalized

as part of implementing support for this feature.

Acknowledgments
This work originated with a Pattern Matching language

study group within AdaCore, including colleagues Raphaël

Amiard, Claire Dross, Stephen Baird, Romain Béguet, and

Boris Yakobowski.

References
[1] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy

and J. Vouillon, Chapter 9, The OCaml Language,

Section 6, Patterns, The OCaml Manual, https://ocaml.org

/manual /patterns.html, retrieved 25-Feb-2022, 2021.

[2] Python Software Foundation, 8.6 The Match Statement,

The Python Language Reference,
https://docs.python.org/3/reference/compound_stmts.html#th

e-match-statement, retrieved 25-Feb-2022.

[3] Simon Marlow (ed.), 3.17 Pattern Matching, Haskell
2010 Language Report, https: //www.haskell.org

/onlinereport /haskell2010 /haskellch3.html, retrieved 25-

Feb-2022.

[4] L. Maranget, Warnings for pattern matching. Journal of
Functional Programming, 17(3), 387-421, 2007.

doi:10.1017/S0956796807006223,

http://moscova.inria.fr/~maranget/papers/warn/index.html,

retrieved 7-Jul-22.

[5] L. Fabrice e Fessant and L. Maranget, Optimizing

Pattern Matching. ACM SIGPLAN Notices. 36.

10.1145/507635.507641, 2001.

[6] G. Bearman, JEP 427: Pattern Matching for switch

(Third Preview), OpenJDK, https://openjdk.org/jeps/427,

retrieved 7-Jul-22.

[7] S. Klabnik, C. Nichols, et al, All the places patterns can

be used, The Rust Programming Language, 2022.
https://doc.rust-lang.org/book/ch18-01-all-the-places-for-

patterns.html, retrieved 7-Jul-22.

[8] M. Brennan, Regular Expressions, The GNU AWK
User’s Guide, 2014. https://www.gnu.org/software/

gawk/manual/html_node/Regexp.html, retrieved 7-Jul-22.

[9] T. Taft, R. Duff, et al, 5.4 Case Statements, Ada
Reference Manual, 2002, http://www.ada-

auth.org/standards/2xrm/html/RM-5-4.html, retrieved 8-Jul-

22.

[10] M. Pettersson, A Term Pattern-Match Compiler

Inspired by Finite Automata Theory. In Workshop on
Compiler Construction. Springer-Verlag, Lecture Notes

in Computer Science 641, 1992.

[11] M. O. Rabin and D. Scott, Finite automata and their

decision problems. IBM Journal of Research and
Development. 3 (2): 114–125, 1959.

doi:10.1147/rd.32.0114. ISSN 0018-8646.

[12] J. E. Hopcroft, An n logn algorithm for minimizing the

states in a finite automaton, In: Kohavi, Z. (ed.) The
Theory of Machines and Computations, pp. 189–196.

Academic Press, 1971.

[13] M. Fahndrich and J. Boyland, Staticallly Checkable

Pattern Abstractions. Proceedings of the International
Conference on Functional Programming (ICFP '97) |

June 1997. https://www.researchgate.net/publication/

236160052_Staticallly_Checkable_Pattern_Abstractions,

retrieved 11-Jul-2022

[14] C. Okasaki, Red–black trees in a functional setting,

Journal of Functional Programming. 9 (4): 471–477,

1992. doi:10.1017/S0956796899003494. ISSN 1469-

7653.

261

Finding Locally Smallest Cut Sets using Max-SMT

Daniel Larraz, Cesare Tinelli
The University of Iowa, USA; email: {daniel-larraz, cesare-tinelli}@uiowa.edu

Abstract

Model-based development (MBD) is increasingly being
used for system-level development of safety-critical sys-
tems. This approach allows safety engineers to leverage
the system model created during the MBD process to
assess the system’s resilience to component failure. In
particular, one fundamental activity is the identifica-
tion of minimal cut sets (MCSs), i.e, minimal sets of
faults that lead to the violation of a safety requirement.
Although the construction of a formal system model en-
ables safety engineers to automate the generation of
MCSs, this is usually a computationally expensive task
for complex enough systems. We present a method that
leverages Max-SMT solvers to efficiently obtain a small
set of faults based on a local optimization of the cut set
cardinality. Initial experimental results show the effec-
tiveness of the method in generating cut sets that are
close or equal to globally optimal solutions (smallest
cut sets) while providing an answer 5.6 times faster on
average than the standard method to find a smallest cut
set.

Keywords: Safety Analysis, Minimal Cut Set, SMT-based
Model Checking, Max-SMT.

1 Introduction
Safety analysis is a crucial and well established activity in

the design of critical systems that is often mandated by cer-

tification regulations. It aims at proving that a given sys-

tem operates within some level of safety in the presence of

faults. Traditionally, safety analysis has been performed man-

ually based on informal design models, making the analysis

highly subjective and dependent on the skill of the practi-

tioner. However, in recent years there has been a growing

interest in Model-based Safety Analysis (MBSA) [1]. This is

an approach in which the design and safety engineers share a

common system model created using a Model-based develop-

ment (MBD) process. In MBD, the development is centered

around a formal specification, or model, of the system. This

model can then be subject to various kinds of rigorous analysis

and synthesis such as completeness and consistency analysis,

model checking, test case generation, etc. MBSA uses the

system model to assess the system’s resilience to component

failure, and construct safety analysis artifacts such as minimal

cut sets and fault trees.

In this context, a minimal cut set (MCS) is a minimal set of

faults, a.k.a basic events, that lead to the violation of a safety

requirement or some other failure, the so called top level event

(TLE). These sets of faults, or fault configurations, can be

arranged in a fault tree, a tree making use of logical gates

to depict the logical interrelationships linking such events

with the TLE. Finding cut sets is important to assess the

fault tolerance level of a system design, and investigate how

failures propagate through the system.

In this paper, we focus on the safety analysis of behavioral

models of infinite-state reactive systems. In this setting, safety

requirements are (LTL) regular safety properties of the in-

tended system model, which can always be recast as invariant

properties. A system model consists of a nominal model,

which specifies the behavior of the system in the absence

of faults, and a set of faulty behaviors, which augment the

nominal behavior whenever their corresponding faults are

present. Thus, we consider the problem of (dis)proving safety

properties in the presence of faults, and computing minimal

cut sets, if any, for the violation of a safety property.

Typically, system models can be faithfully encoded as log-

ical formulas. For such systems the problem above can be

addressed with logic-based model checking techniques, such

as k-induction [2] and IC3 [3], that capitalize on the power

of solvers for satisfiability modulo theories (SMT). When

these model checking techniques disprove a safety property

under failure conditions, they also produce a counterexample

demonstrating how faults lead to a failure. These counterex-

amples can be used to reason about the evolution of faults

over time, and extract a fault configuration, although a non-

necessarily minimal one.

We work under the monotonicity assumption, commonly

adopted in safety analysis, that additional faults cannot pre-

vent the violation of an already violated safety property. Un-

der this assumption, a minimal cut set for a property is prefer-

able to a super-set of it, since the latter will still cause the

property to fail. Moreover, smaller MCSs are preferable over

larger ones, since, in practical cases, the smaller a MCS the

greater the probability that the safety property can be violated.

This leads to the standard practice, in particular for complex

systems, of computing only MCSs up to a maximum cardinal-

ity. However, that may still be computationally expensive and

therefore its application may be pushed only to late phases of

the development process. As a consequence, to help safety en-

gineers with early detection of design issues it is fundamental

to be able to resort to more efficient methods for computing

small cut sets.

The key observation of this work is that ensuring minimality

or minimal cardinality with respect to all fault configurations

and counterexamples that lead to the violation of a safety

Ada User Jour na l Vo lume 43, Number 4, December 2022

262 Find ing Loca l ly Smal les t Cut Sets us ing Max-SMT

property is not always required for the early detection of

problems in a system design. By definition, a safety property

is one that fails to hold if and only if it is violated by a finite
counterexample, i.e., a finite execution of the system. For this

reason, it is often sufficient to compute a cut set with minimal

cardinality over all counterexamples of a given length n. This

often results in a small cut set that is close or equal to a

globally optimal solution (a smallest MCS) and, as such, is

enough to point to flaws in the system design.

To illustrate this point and the other concepts introduced so

far, we will use a simple example of an aircraft controller

derived from previous work [4]. The example is introduced

in Section 3, but first, in the next section, we give a brief

description of the notions and notations that will be used

throughout the paper. The rest of the paper is organized as

follows. Section 4 describes how to encode faulty behaviors

into a nominal system. Section 5 presents the base method

to compute a (not necessarily minimal) cut set using a faulty

model. Section 6 describes how to compute a cut set with min-

imal cardinality. Section 7 presents the method we propose to

obtain efficiently a small cut set based on a local optimization

of the cut set cardinality. Experimental results comparing

both approaches are reported in Section 8. Section 9 presents

related work, and Section 10 concludes with a discussion of

further research.

2 Preliminaries
2.1 SAT, Max-SAT, and Max-SMT
Let P be a finite set of propositional variables. If p ∈ P
then p and ¬p are literals. A clause is a disjunction of literals.

A propositional formula (in conjunctive normal form) is a

conjunction of clauses. The problem of propositional satisfia-
bility (or SAT) consists in determining whether or not a given

formula is satisfiable, or has a model: an assignment of truth

values to its variables that makes it true.

A generalization of SAT is the satisfiability modulo theories
(SMT) problem [5], which consists in deciding the satisfia-

bility of a given (typically) quantifier-free first-order formula

with respect to a background theory T . In this setting, a model

(which we may also refer to as a solution) is an assignment of

values from the theory to the formula’s variables that satisfies

the formula and interprets function and predicate symbols

consistently with the axioms of T . Here we will consider the

theories of linear real/integer arithmetic (LRA/LIA), where

literals are linear inequalities over real and integer variables,

respectively.

Another generalization of SAT is the Max-SAT problem [5]

which considers formulas in conjunctive normal form where

each conjunct or clause is labeled as a hard or a soft con-

straints and each soft constraint is assigned a positive weight.

The problem consists in finding an assignment of truth values

for the formula’s variable that satisfies all the hard constraints

and maximizes the sum of the weights of the satisfied soft

constraints, or dually, that minimizes the sum of the weights

of the soft constraints it falsifies.

Max-SMT [6] is the natural extension of the Max-SAT prob-

lem to SMT where formulas can contain variables over addi-

tional data types other than the Booleans, and so the sought

maximizing assignments are over such variables as well.

In general, if F is a formula and x is a tuple of variables,

we write F [x] to indicate that the elements of x are free in

F . If then t is a tuple of terms of the same type as x, we

denote by F [t] the formula obtained from F by simultane-

ously replacing every occurrence of a variable from x by the

corresponding term in t.

2.2 Transition Systems, Invariants, and LTL speci-
fications

We represent a system model as a state transition systems

S = 〈s, I[s], T [s, s′]〉 where s is a vector of typed state

variables, I is the initial state predicate over the variables s,

and T is a two-state transition predicate over the variables

s and s′ where s′ is a renamed version of s denoting the

next state. We will use 〈I, T 〉 to refer to transition system S
when the vector of state variables s is clear from the context

or not important. We will assume without loss of generality

that T has the structure of a top-level conjunction, that is,

T [s, s′] = T1[s, s
′]∧ · · · ∧ Tn[s, s

′] for some n ≥ 1. Notice

that this is the norm in specification languages, like Lustre [7],

where the modeled system is expressed as the synchronous

product of several subcomponents, each of which is in turn

formalized as the conjunction of one or more constraints. The

conjunctive formulation is also common in languages that

express the transition relation as a set of guarded transitions.

By a slight abuse of notation, we will then identify T with the

set {T1, . . . , Tn} of its top-level conjuncts.

A state property P [s] for a system S = 〈s, I[s], T [s, s′]〉,
expressed as a predicate over the variables s, is invariant for
S if it holds in every reachable state of S.

We use standard notions and notation from Linear Temporal

Logic (LTL) to formalize temporal properties of transition

systems.

2.3 Bounded Model Checking
Bounded Model Checking (BMC) [8] is a method involving

checking potential executions of a system model in an incre-

mental fashion against the negation of a state property by en-

coding them as propositional satisfiability formulas. Although

BMC was originally developed for propositional encodings

of finite-state systems, the technique has been successfully

extended and applied to SMT encodings of (in)finite-state

systems. Given a transition system S = 〈s, I[s], T [s, s′]〉, a

state property P , and a bound k, BMC unrolls the system k
times to produce a SMT formula ϕk such that ϕk is satisfiable

iff P has a counterexample of length k or less:

ϕk = I[s0] ∧
k∨

i=0

i−1∧
j=0

(T [sj , sj+1] ∧ ¬P [si])

where s0, . . . , sk are each a fresh renaming of s. Formula ϕk

is given to an SMT solver to be checked for satisfiability. If it

is satisfiable, then the SMT solver will provide an assignment

that satisfies ϕk. With this assignment, the counterexample is

constructed using the values extracted from variables si. If

ϕk is unsatisfiable, that means no state is reachable in k steps

or less such that the state violates property P .

Volume 43, Number 4, December 2022 Ada User Jour na l

D. Larraz , C. T ine l l i 263

����������

	�
����

����

���
�������

���
�

���
�

���
�

�����

�
���

���

��

���

	�

Figure 1: Diagram of the System Model

We will use BMC_Encoding(I , T , P , k) to denote a call to a

function that returns the formula ϕk given as input a transition

system S = 〈I, T 〉, a state property P , and a bound k.

3 Motivating Example
Suppose we want to design a component for an airplane that

controls the pitch motion of the aircraft, and suppose one of

the system safety requirements is that the aircraft should not

ascend beyond a certain altitude. The controller must read

the current altitude of the aircraft from a sensor, and modify

the next position of the aircraft’s nose accordingly. Moreover,

we want the system to be fault-tolerant to sensor failures.

One way to improve system fault-tolerance is to introduce

some redundancy. In particular, we can equip the system

with three different altimeters so the controller receives three

independent altitude values. Then the controller, with the

help of a dedicated component, a triplex voter, takes the

average of the two altitude values that are closest to each other

— as they are more likely to be close to the actual altitude.

Following a model-based design, we model an abstraction of

the system’s environment to which the aircraft’s controller

will react. We also model the fact that the system relies on

a possibly imperfect reading of the current altitude by an

altimeter sensor to decide the next pitch value. Finally, we

provide a specification for the controller’s behavior so that it

satisfies the system requirement of interest.

A diagram of our model is shown in Figure 1. The main com-

ponent, represented by the outermost rectangle, is an observer
component that represents the full system consisting in this

case of just three subcomponents, for simplicity: one com-

ponent modeling the controller, one modeling a triplex voter,

and another one modeling the environment. The observer

has three inputs: alt1, alt2, and alt3, representing the altitude

values from each altimeter, and an output alt, representing the

actual current altitude of the aircraft, which we are modeling

as a product of the environment in response to the pitch value

generated by the controller.

The system model makes a series of assumptions on the al-

titude values provided by the sensors and on a number of

symbolic numeric constants (TH, UB and ERR) which act in

effect as model parameters. Constant TH represents a thresh-

old of the altitude value, constant UB models an upper bound

on the change in altitude from one execution step to the next,

and constant ERR is a bound on the sensor measurement error

(more details below). The first assumption, C1, establishes

that constants TH and UB are positive, and constant ERR is

non-negative. The three next assumptions, S1, S2, and S3
account for the fact that, while the altitude value produced by

each altimeter is not 100% accurate in actual settings, its error

is bounded by a constant (ERR). That is, the system assumes

the satisfaction of LTL formulas Si ≡ (alt−alti ≤ ERR)
for 1 ≤ i ≤ 3. Under those assumptions, the system must

satisfy the LTL property R1 ≡ (alt ≤ TH), that formal-

izes the requirement that aircraft maintain its altitude below a

certain threshold TH at all times.

Let M = min(|alt1 − alt2|, |alt1 − alt3|, |alt2 − alt3|). As

explained above, triplex voter takes the sensor values and

computes an estimated altitude for the controller satisfying

the following specification:

s_alt =

⎧⎪⎨
⎪⎩
(alt1 + alt2)/2, if M = |alt1 − alt2|
(alt1 + alt3)/2, if M = |alt1 − alt3|
(alt2 + alt3)/2, if M = |alt2 − alt3|

We abstract the dynamics of the Controller and the Envi-
ronment by omitting details that are not relevant for the

satisfaction of the safety requirement R1. In the Controller’s
case, we model the guarantee that the controller will produce

a negative pitch value whenever the sensor altitude indicates

that the aircraft is getting too close to the threshold value TH,

by which we mean that the difference between the current

altitude and TH is smaller than UB + ERR:

L1 ≡ (s_alt > LIMIT ⇒ pitch < 0)

with LIMIT = TH − (UB + ERR).

If alt represents the actual altitude of the aircraft, the Envi-
ronment satisfies the following specification:

• E1 ≡ alt = 0

• E2 ≡ (alt ≥ 0)

• E3 ≡ (pitch < 0 ⇒ alt ≤ alt)

• E4 ≡ (pitch < 0 ⇒ alt ≥ alt − UB)

• E5 ≡ (pitch > 0 ⇒ alt ≥ alt)

• E6 ≡ (pitch > 0 ⇒ alt ≤ alt + UB)

• E7 ≡ (pitch = 0 ⇒ alt = alt)

The specification captures salient constraints on the physics

of our model by specifying that a positive pitch value (which

has the effect of raising the nose of the aircraft and lowering

its tail) makes the aircraft ascend, a negative value makes

it descend, and a zero value keeps it at the same altitude.

The specification also states that the actual altitude starts at

Ada User Jour na l Vo lume 43, Number 4, December 2022

264 Find ing Loca l ly Smal les t Cut Sets us ing Max-SMT

zero, is always non-negative, and does not change by more

than a constant value (UB) in one sampling frame, where a

sampling frame is identified with one execution step of the

synchronous model (one global clock tick) for simplicity. The

latter constraint on the altitude change rate captures physical

limitations on the speed of the aircraft.

A model checker can easily prove that safety requirement

R1 is satisfied by the system model. This provides evidence

that the system satisfies the safety requirement in the absence

of faults. However, this result is not enough to determine

whether the introduced redundancy mechanism makes the

system more fault tolerant. To check this, we can consider

different faulty behaviors, that is, different ways of injecting

faults into the sensors. For this example, we will consider

a very general faulty model where any of the sensors can

fail and provide a value that does not satisfy assumptions

Si at some step. This way, if one of the altimeters fails, in

the sense that it produces an altitude reading with an error

greater than the maximum expected error, the other two values

should allow the system to compensate for that error. To

confirm this, we can compute a smallest cut set and verify

the cardinality of the cut set is two, i.e., at least two of the

assumptions Si must fail to hold to trigger the TLE. Perhaps

surprisingly though, if we compute a smallest cut set using

an algorithm like the one we will present in next section, we

see that there exists a smallest cut set of cardinality one that

consists of only one of the assumptions Si. That is, a single

sensor failure is enough to lead the system to the violation of

safety requirement R1. Put differently, property R1 requires

all three sensors to behave according to their specification

despite the use of a triplex voter.

As we will see in next section, computing a smallest cut set

usually requires finding a series of smaller cut sets and coun-

terexamples associated with it and eventually proving there

is no counterexample of any length with a smaller cut set

than the last cut set found so far. However, to spot a flaw

like the one described above sometimes it is enough to find a

counterexample and a cut set without imposing restrictions on

the cardinality of the cut set, and then, look for a counterex-

ample of the same length that minimizes the number of cut set

elements. Unlike first approach, which performs global opti-
mization, the second approach considerably narrows down the

search space by considering only counterexamples of a fixed

length, determined by the first counterexample found. When

applied to our example, this local optimization approach can

find the same cut set of cardinality one as the first approach

but it can compute it much more efficiently, as we will see in

next section.

After reviewing the model in light of the existence of a cut set

of size one, however computed, a designer may conclude that

to benefit from the triplex voter it is necessary to decrease the

safety limit value LIMIT in the controller’s contract. In partic-

ular, it is enough to decrease it by doubling the error bound

value: LIMIT = TH − (UB + 2 ∗ ERR). After this change,

both approaches to compute cut sets return one of cardinality

two, consisting of two of the assumptions Si. In this case

though, only the global optimization approach provides the

guarantee that no smaller cut set exists.

As shown for our example, however, the local approach we

propose, because of its lower computational cost, enables

users to check for and discover design issues early in the

modeling process. This difference in performance can be in-

creasingly significant as the scale of analyzed systems grows.

We present later initial experimental evidence suggesting that

the advantages of our approach extend beyond the example

given here.

4 Encoding Faulty Behavior
Faulty behavior in a system is specified as an extension of

its nominal model. Starting from a nominal model S =
〈s, I[s], T [s, s′]〉 with T = {T1, . . . , Tn}, the system de-

signer identifies m disjoint non-empty subsets F 1, . . . ,Fm

of T corresponding to m possible faults the system can suffer

from so that every model component Tj in F i is affected

when fault i occurs. To simplify the exposition, we assume

here that each fault affects different parts of the system. Also

for simplicity, we assume that faults do not effect the behavior

of the system in its initial state(s).1

Now, for all faults i = 1, . . . ,m, the designer provides an

alternative, faulty behavior specification T̂j of every model
component Tj in F i. This faulty behavior is enabled by
a Boolean flag fi that represents the occurrence of fault i.
Let T � collect the components of T affected by none of
the modeled faults, that is, T � = T \ (F 1 ∪ · · · ∪ Fm).
Then, the faulty model is given by transition system S� =
〈z, I[z], T �[z, z′]〉, where the vector of typed variables z
extends s with the fresh Boolean constants f1, . . . , fm and
the transition predicate is defined by

T �[z, z′] = T � ∪ {Tj ∨ (fi ∧ ̂Tj) | 1 ≤ i ≤ m, Tj ∈ F i }

For convenience and generality, the system S� is defined

so that the presence of a fault i in a system execution (cor-

responding to the flag fi having value true) may or may not

trigger the faulty behavior in the affected components at any

particular step of the execution. Note that, in effect, we can

obtain the nominal model S from S� by conjoining the con-

straints ¬f1, . . . , ¬fm to the initial state predicate.

5 Computing a cut set and a counterexam-
ple

Consider again a transition system S = 〈s, I[s], T [s, s′]〉
with faulty behavior specifications F 1, . . . ,Fm ⊆ T enabled

by faults f = 〈f1, . . . , fm〉, respectively. Given a state prop-

erty P expected to be invariant for S, we can look for a cut set

and a counterexample that leads the system to the violation of

P by checking whether P is also invariant for the extended

system S� defined as in the previous section. If we can dis-

prove P , the constant values assigned to f in any trace that

leads S� to the violation of P determines a cut set, namely,

the set of all fi’s that are true. Such cut set describes a fault

configuration that jeopardizes the invariance of P . On the

other hand, if we prove P invariant, we can conclude that the

system is robust to all faults as far as P is concerned.

1An extension to the case in which a component’s behavior may be

affected initially and possibly by more than one fault can be done with a

slightly more complex formalization.

Volume 43, Number 4, December 2022 Ada User Jour na l

D. Larraz , C. T ine l l i 265

Algorithm 1
ComputeGlobalCutSet(〈s, I, T 〉, 〈fi,F i〉1≤i≤m, P)

1: T � := T \ (F 1 ∪ · · · ∪ Fm)

2: T ◦ := {Tj ∨ (fi ∧ T̂j) | 1 ≤ i ≤ m, Tj ∈ F i }
3: T � := T ◦ ∪ T �

4: t := m; res := unknown; θ := ∅; f := 〈f1, . . . , fm〉
5: do
6: I� := I ∧ AtMostK(f , t)
7: res, θ′ := Verify(s, I�, T �, P)

8: if res = unsafe then
9: t := t− 1; θ := θ′ � Store last counterexample

10: end if
11: while t ≥ 0 ∧ res = unsafe

12: if t < m then � Unsafe with t+ 1 faults

13: if t < 0 then
14: return 〈∅, θ, true〉 � Nominal system itself

unsafe

15: else
16: C := ExtractCutSet(θ, f)

17: is_a_smallest_sol := (res = safe)
18: return 〈C, θ, is_a_smallest_sol〉
19: end if
20: else
21: if res = unknown then
22: return Unknown
23: else
24: return NoSolution
25: end if
26: end if

In this work, we assume we have access to a black-box pro-

cedure Verify to perform these invariance checks. From a

theoretical standpoint, Verify is an oracle since the invariance

problem is undecidable in the infinite-state case. In practice,

however, SMT-based model checking techniques, such as

k-induction and IC3, yields incomplete versions of Verify
that often provide a sound answer in reasonable time. In

our concrete implementation, we make the verification check

terminating by imposing a time limit and extending the type

of the returned result with an additional value (unknown) to

account for the timeout being reached.

6 Computing a globally smallest cut set
Building on top of the basic ideas described in the previous

section, we can compute a smallest cut set and an associated

counterexample, or determine that no such cut set exists, using

Algorithm 1. The procedure can return Unknown due to the

undecidability of the underlying model checking problem.

It can also return a cut set that does not necessarily have

minimal cardinality, which is indicated by a flag.

The key idea of the algorithm is to add to the initial state pred-

icate I a cardinality constraint AtMostK(f , k) over the fault

flags f that restricts possible solutions to fault configurations

with at most k (present) faults. Lines 5-11 use this reduction

to find an MCS of minimal cardinality. If none exists, or the

first call to Verify returned unknown, the condition in line 12

is false, and the algorithm returns the corresponding result in

each case in lines 21-25. Specifically, if the first call to Verify

Algorithm 2
ComputeLocalCutSet(〈s, I, T 〉, 〈fi,F i〉1≤i≤m, P)

1: Let T � be as in Algorithm 1

2: res, θ := Verify(s, I , T �, P)

3: if res = unknown then
4: return Unknown
5: else
6: if res = safe then
7: return NoSolution
8: else
9: k := length(θ);

10: ϕk := BMC_Encoding(I , T �, P , k)

11: SmtAssertHard(ϕk)

12: for i := 1 to m do
13: SmtAssertSoft(¬fi, 1)

14: end for
15: SmtCheckSat()
16: θ′ := GetCounterexample()

17: C := ExtractCutSet(θ′, f)

18: return 〈C, θ′〉
19: end if
20: end if

reaches the time limit without determining the invariance of

property P under the faulty conditions, the algorithm returns

Unknown at line 22. If the first call to Verify returns safe,

i.e., proves that P is invariant under faulty conditions, the

algorithm returns there is no cut set solution (at line 24).

If the nominal system S itself does not satisfy P , condition in

line 14 is true, and the unique MCS is the empty set. Other-

wise, a cut set is extracted at line 16 from θ, which is the last

error trace found in the do-while loop. This is done simply by

collecting all the flags fi that are assigned value true by the

error trace. Before returning the cut set and the counterexam-

ple in line 18, the procedure determines whether the cut set

has minimal cardinality by checking if the last call to Verify
returned safe (line 17).

7 Computing a locally smallest cut set
Algorithm 1 from Section 6 ensures that the cut set returned at

line 18 has minimal cardinality provided that none of the calls

to Verify return unknown. But it does that at the cost of having

to solve multiple model checking problems, and having to

prove the input property invariant for the provided system

in the last call to Verify, which is often a harder problem to

solve than disproving the satisfaction of a property.

In this section we describe an alternative method which does

not ensure global optimality but can nonetheless find a small

cut set with cardinality close or equal to a globally optimal

solution while needing to call Verify only once.

In addition to Verify, the procedure implementing this method

and described in Algorithm 2, relies on an external, off-the-

self Max-SMT solver. It starts by checking whether cut sets

exist at all by solving the model checking problem described

in Section 5. If the call to Verify reaches the time limit without

determining the invariance of property P under the faulty

conditions, the algorithm returns Unknown at line 4. If the

Ada User Jour na l Vo lume 43, Number 4, December 2022

266 Find ing Loca l ly Smal les t Cut Sets us ing Max-SMT

Figure 2: Comparison between local and global optimization

call to Verify returns safe, i.e., proves that P is invariant

under faulty conditions, the algorithm returns there is no cut

set solution (at line 7). Otherwise, we know there exists a cut

set. With k being the length of the counterexample θ returned

by Verify, the procedure builds a Max-SMT problem to find

the smallest cut set among all cut sets with an associated

counterexample of length exactly k (at lines 9-18).2

The main idea is to first create a standard Bounded Model

Checking encoding (as described in Section 2.3) with the

faulty model and invariance property P for a bound k equal

to the length of θ. The resulting formula is asserted as a

hard constraint to the Max-SMT solver (at line 11). The

optimization problem for the Max-SMT solver consists in

minimizing the number of active faults needed to violate

property P . This is done by asserting to the solver one soft

constraint per fault flag fi, all with weight 1, stating that

the flag is false (¬fi at lines 12-14). Note that Max-SMT

problem so obtained, checked at line 15, is guaranteed to

have a solution since the counterexample to P invariance

found by the call to Verify is a solution to this problem as

well. By the optimality of the solution θ′ returned by the

Max-SMT solver (at 16), the cut set C computed at line 17

is guaranteed to have smallest cardinality among all cut sets

associated to counterexamples of length k, the length of the

original counterexample. The procedure returns both the cut

set and its associated counterexample, similarly to the global

optimization one but without any claims about the cut set’s

global optimality.

8 Experimental Evaluation
The main premise of this work is that the approach for com-

puting small cut sets based on local optimization, as described

in Section 7, is more efficient in practice than the computa-

tion providing global guarantees as described in Section 6.

Moreover, the solutions computed by the local optimization

approach have a cardinality equal or close to the optimal one.

To test our hypothesis, we implemented both approaches in

our model checker KIND 2 [9], and compared their perfor-

mance on a fairly large set of benchmarks. Because of the

2Alternatively, we could consider cut sets with associated counterexample

of length at most k, like in the standard formulation of BMC. However,

typical implementations of Verify based on k-induction and IC3 usually

provide counterexamples whose length is already minimal or close to it most

of the time.

practical difficulty of finding publicly available models read-

able by KIND 2 and specifically designed with fault tolerance

in mind, we retooled a previous set of safety benchmarks

to the purposes of our evaluation. Each benchmark in the

starting set, largely based on one introduced by Kahsai and

Tinelli [10]3 consists of a multi-component model with a sin-

gle invariance property. We selected benchmarks from the

starting set by running KIND 2 on a cluster with ten Intel(R)

Xeon(R) E3-1240, 3.4GHz, 4 cores, 16 GB memory machines.

We kept the benchmarks for which KIND 2 was able to prove

the property valid with a 5 minute timeout, which yielded

486 instances. Then, we considered the problem of proving

each property under the possibility of each model component

failing to provide outputs consistent with its low-level speci-

fication. More specifically, we modeled the faulty behavior

simply by allowing the failing component to return any value

at all among those allowed by its output type.4

We ran KIND 2 on the selected problems using each approach

with 15 minute timeout. Figure 2 shows that the local opti-

mization approach significantly out-performs the global opti-

mization one, providing an answer 5.6 times faster on average.

Analyzing the individual responses to each problem, we found

that both approaches were able to detect the absence of cut

sets for 5 of the problems, and the local approach was able to

find a cut set with optimal cardinality in 434 out of the 436

cases where both approaches found a cut set. In the two cases

where the local approach returned a suboptimal solution, it

was off just by one with respect to the size of the optimal

solution.

These results should be taken with a grain a salt due to the

synthetic nature of the benchmarks, a majority of which had

highly fault-intolerant systems. In the majority of cases, the

globally optimal cut sets had cardinality one and in the rest it

had cardinality two. More seriously perhaps, in most of the

benchmarks almost any one of the considered faults would

lead, by itself, to the violation of the property, making it

easy for our local optimization method to stumble into a

globally optimal solution. Although more experiments are

needed, we find that our evaluation provides nevertheless

encouraging preliminary evidence of the usefulness of the

local optimization method.

9 Related Work
The use of Bounded Model Checking to find a cut set and an

associated counterexample was first proposed by Abdulla et

al. [11]. The focus of that work, however, is not on computing

a single cut set but all MCSs. To prevent the generation of

non-minimal solutions, the paper proposes the computation of

cuts sets of increasing cardinality. This approach has also the

advantage of generating smaller MCSs before larger MCSs.

Thus, one can generate a single smallest MCS just stopping

after the first optimal solution is generated. The search for

a single smallest MCS is very similar to the one performed

by the method presented in Section 6, the main difference

being the direction of the search. The technique of Abdulla

et al. progressively tries all numbers of faults from 0 to m

3Available at https://github.com/kind2-mc/kind2-benchmarks.
4That is, we did not consider the possibility of an ill-typed result.

Volume 43, Number 4, December 2022 Ada User Jour na l

D. Larraz , C. T ine l l i 267

(forward enumeration), whereas our algorithm tries values

from m to 0 (backward enumeration). The rationale of our

strategy is to minimize the number of solved problems for

which the property is valid, which is often a harder problem

to solve than disproving the satisfaction of a property, espe-

cially when the length of the generated counterexamples is

not very long. As we describe in other work [4, 9], KIND 2

implements the approach above using backward enumeration

to compute all MCSs, (and a single globally smallest MCS).

Unlike the encoding of faulty models presented in this paper,

the actual implementation in KIND 2 only supports faulty

behavioral specifications equivalent to true. More specifically,

KIND 2 allows the user to choose a set of model elements

(assumptions and guarantees, node calls, equations in node

bodies, . . .) of its input language, an extension of the dataflow

Lustre language [7], and KIND 2 will compute minimal sets

of those elements whose violation leads the system to an un-

safe state. However, this is not really a limitation since the

more general case presented in this work can reduced to the

more specific case supported by KIND 2: once a faulty model

is built following the encoding described in Section 4, the

user just have to specify assumptions stating that fi should be

false, and choose those assumptions as the model elements.

Another algorithm for computing all MCSs is described by

Bozzano et al. [12]. It too forces the algorithm to proceed

by layers of increasing cardinality. Thus, it may also be used

to compute a globally smallest cut set. The method relies on

a IC3-based routine for parameter synthesis to compute all

the solutions in each layer. Therefore, instead of relying on a

black-box Verify procedure to solve multiple ordinary model

checking queries, they use a specialized algorithm. The main

advantage in that case is that the information learnt to block

a particular counterexample can be reused when considering

new ones.

A different approach to computing all MCSs is the method pre-

sented by Stewart et al. [13]. It exploits the duality between

the set of Minimal Inductive Validity Cores (MIVCs) [14],

minimal sets of model elements that are sufficient to prove

a property, and the set of Minimal Cut Sets for the same

property and computes the latter from the former. This is

convenient when the goal is to compute all MCSs since one

can use an offline algorithm for enumerating all MIVCs [15],

which may offer better overall performance than computing

one MIVC at a time. The downside of this solution is that,

unlike the techniques described earlier, it cannot be used to

compute a single MCS for a property without paying the cost

of computing all of them.

10 Conclusion
We presented a method that leverages behavioral modeling

and Max-SMT solvers to obtain efficiently a small set of

faults that lead to the violation of safety requirements. The

method computes a cut set with minimal cardinality over all

counterexamples of a given length by reducing the problem

into an optimization problem over an SMT formula. Initial

experimental results are very encouraging in terms of the

effectiveness of the method in generating cut sets that are

close or equal to globally optimal solutions, and the speed up

achieved compared to the standard method for computing a

(globally) smallest cut set.

As future work, we want to investigate further the effective-

ness of the proposed technique by applying the method to a

broader set of benchmarks, and evaluating its performance

in determining not only the tolerance of a system against

faults, but also its resilience to cyber-attacks. We also want

to explore the possibilities of setting different weights for the

soft constraints in the Max-SMT problem, which leads to a

natural way of establishing preference between difference

solutions beyond the cardinality of the cut sets. Specifically,

in Algorithm 2, the soft constraints stating that a particular

fault should not occur all have weight 1. One can imagine

assigning a higher weight to a subset of the soft constraints to

give preference to solutions that do not include faults in the

subset.

References
[1] A. Joshi, S. Miller, M. Whalen, and M. Heimdahl, “A

proposal for model-based safety analysis,” in 24th Digi-
tal Avionics Systems Conference, vol. 2, pp. 13 pp. Vol.

2–, 2005.

[2] M. Sheeran, S. Singh, and G. Stålmarck, “Checking

safety properties using induction and a sat-solver,” in

Formal Methods in Computer-Aided Design, Third In-
ternational Conference, FMCAD 2000, Austin, Texas,
USA, November 1-3, 2000, Proceedings (W. A. H. Jr.

and S. D. Johnson, eds.), vol. 1954 of Lecture Notes in
Computer Science, pp. 108–125, Springer, 2000.

[3] A. R. Bradley, “Sat-based model checking without un-

rolling,” in Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI
2011, Austin, TX, USA, January 23-25, 2011. Proceed-
ings (R. Jhala and D. A. Schmidt, eds.), vol. 6538 of

Lecture Notes in Computer Science, pp. 70–87, Springer,

2011.

[4] D. Larraz, M. Laurent, and C. Tinelli, “Merit and

blame assignment with kind 2,” in Formal Methods for
Industrial Critical Systems - 26th International Con-
ference, FMICS 2021, Paris, France, August 24-26,
2021, Proceedings (A. Lluch-Lafuente and A. Mavri-

dou, eds.), vol. 12863 of Lecture Notes in Computer
Science, pp. 212–220, Springer, 2021.

[5] A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds.,

Handbook of Satisfiability - Second Edition, vol. 336

of Frontiers in Artificial Intelligence and Applications.

IOS Press, 2021.

[6] R. Nieuwenhuis and A. Oliveras, “On SAT modulo

theories and optimization problems,” in Theory and
Applications of Satisfiability Testing - SAT 2006, 9th
International Conference, Seattle, WA, USA, August
12-15, 2006, Proceedings (A. Biere and C. P. Gomes,

eds.), vol. 4121 of Lecture Notes in Computer Science,

pp. 156–169, Springer, 2006.

Ada User Jour na l Vo lume 43, Number 4, December 2022

268 Find ing Loca l ly Smal les t Cut Sets us ing Max-SMT

[7] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming

and verifying real-time systems by means of the syn-

chronous data-flow language LUSTRE,” IEEE Trans.
Software Eng., vol. 18, no. 9, pp. 785–793, 1992.

[8] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Sym-

bolic model checking without bdds,” in Tools and Al-
gorithms for Construction and Analysis of Systems, 5th
International Conference, TACAS ’99, Held as Part of
the European Joint Conferences on the Theory and Prac-
tice of Software, ETAPS’99, Amsterdam, The Nether-
lands, March 22-28, 1999, Proceedings (R. Cleaveland,

ed.), vol. 1579 of Lecture Notes in Computer Science,

pp. 193–207, Springer, 1999.

[9] D. Larraz, M. Laurent, and C. Tinelli, “Merit and blame

assignment with kind 2,” CoRR, vol. abs/2105.06575,

2021.

[10] T. Kahsai and C. Tinelli, “Pkind: A parallel k-induction

based model checker,” in Proceedings 10th Int’l Work-
shop on Parallel and Distributed Methods in verifiCa-
tion, PDMC 2011, vol. 72 of EPTCS, pp. 55–62, 2011.

[11] P. A. Abdulla, J. Deneux, G. Stålmarck, H. Ågren,

and O. Åkerlund, “Designing safe, reliable systems

using scade,” in Leveraging Applications of Formal
Methods, First International Symposium, ISoLA 2004,
Paphos, Cyprus, October 30 - November 2, 2004, Re-
vised Selected Papers (T. Margaria and B. Steffen, eds.),

vol. 4313 of Lecture Notes in Computer Science, pp. 115–

129, Springer, 2004.

[12] M. Bozzano, A. Cimatti, A. Griggio, and C. Mattarei,

“Efficient anytime techniques for model-based safety

analysis,” in Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part I (D. Kroening and

C. S. Pasareanu, eds.), vol. 9206 of Lecture Notes in
Computer Science, pp. 603–621, Springer, 2015.

[13] D. Stewart, M. W. Whalen, M. P. E. Heimdahl, J. Liu,

and D. D. Cofer, “Composition of fault forests,” in

Computer Safety, Reliability, and Security - 40th In-
ternational Conference, SAFECOMP 2021, York, UK,
September 8-10, 2021, Proceedings (I. Habli, M. Su-

jan, and F. Bitsch, eds.), vol. 12852 of Lecture Notes in
Computer Science, pp. 258–275, Springer, 2021.

[14] E. Ghassabani, A. Gacek, and M. W. Whalen, “Effi-

cient generation of inductive validity cores for safety

properties,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016 (T. Zimmermann, J. Cleland-Huang, and

Z. Su, eds.), pp. 314–325, ACM, 2016.

[15] E. Ghassabani, M. W. Whalen, and A. Gacek, “Efficient

generation of all minimal inductive validity cores,” in

2017 Formal Methods in Computer Aided Design, FM-
CAD 2017, Vienna, Austria, October 2-6, 2017 (D. Stew-

art and G. Weissenbacher, eds.), pp. 31–38, IEEE, 2017.

Volume 43, Number 4, December 2022 Ada User Jour na l

269

Basic Formal Verification of a Waypoint Manager

for Unmanned Air Vehicles in SPARK

Laura Humphrey
Air Force Research Laboratory, Control Science Center of Excellence, Ohio, USA; email: laura.humphrey@us.af.mil

Abstract

As software becomes more complex, it becomes more
difficult to verify its correctness. This poses a partic-
ular problem for autonomous systems, since they are
software-intensive and will also require strong evidence
of correctness in order to be allowed to operate in the
real world. One way to help address this problem is
through the use of formal methods, i.e. mathematically-
based tools for software and hardware verification. In
this paper, we perform formal program verification on a
service in OpenUxAS, a free and open source software
framework for mission-level, multi-vehicle autonomy.
More specifically, we apply the SPARK language and
verification toolset to a service that sanity-checks and
segments long sequences of vehicle waypoints to prove
that it is free of runtime errors.

Keywords: Formal methods, program verification, un-
manned air vehicles, SPARK.

1 Introduction
As software becomes more complex, it becomes more diffi-

cult to verify its correctness. In particular, concerns have been

raised about how to better verify increasingly autonomous

systems [1]. In order for autonomous systems to operate in

the real world, there will need to be strong evidence that they

meet their requirements, especially those related to safety.

However, given the huge number of behaviors they can ex-

hibit, the proportion of behaviors that can feasibly be covered

by testing is relatively low [2]. A possible solution for certain

aspects of this problem lies in the use of formal methods,

i.e. mathematically-based tools and approaches for software

and hardware design and verification. Toward this end, we

explore the application of the SPARK language and formal

verification toolset to part of OpenUxAS, a software frame-

work for mission-level, multi-vehicle autonomy. In particular,

we verify that the “Waypoint Plan Manager” service, which

sanity-checks and segments long sequences of waypoints so

that they can be safely sent to an autopilot, is free of run-

time errors. Section 2 provides background on SPARK and

OpenUxAS. Section 3 gives details on the Waypoint Plan

Manager, including its role in the system, how it and other

services written in a mix of Ada and SPARK are structured,

the implementation of its core logic in SPARK, and SPARK

verification results. Section 4 concludes the paper.

2 Background
2.1 SPARK
SPARK is both a programming language and associated

toolset for formal program verification [3]. As a language,

SPARK is based on Ada [4]. Ada is a statically-typed, im-

perative, object-oriented language with a strong type system

whose design philosophy is intended to encourage reliability,

maintainability, and efficiency. These characteristics are in-

herited by SPARK, which both removes some features from

Ada that make verification difficult and adds a small number

of features that facilitate verification. Several good resources

are available for learning SPARK and Ada [3, 4, 5].

In terms of program verification, SPARK performs two forms

of sound static analysis on source code. The first is flow

analysis, which checks for initialization of variables and com-

pliance with user-specified data flow contracts. The second

is proof, which checks for both functional correctness, i.e.

compliance with user-specified behavioral contracts, and the

absence of runtime errors. Some colloquial terms are used

to describe the different levels to which one can use SPARK

to verify a program [6], namely “stone,” “bronze,” “silver,”

“gold,” and “platinum.” Stone level is achieved when code is

accepted by SPARK, since the SPARK language has stricter

legality rules than Ada. Bronze is achieved when flow analy-

sis returns with no error. Silver is achieved when proof shows

that the code cannot produce runtime errors. Gold is achieved

when proof shows that the code satisfies user-defined con-

tracts that partially describe the desired behavior of the code.

Platinum is achieved when proof shows that the code satisfies

user-defined contracts that completely describe the desired

behavior of the code.

At a high level, SPARK performs verification by translating

SPARK programs, including checks and contracts to be veri-

fied, to the Why3 platform for deductive program verification

[7]. Why3 then uses a weakest-precondition calculus to gener-

ate verification conditions (VCs), i.e. logical formulas whose

validity would imply soundness of the code with respect to

its checks and contracts. Why3 then uses multiple provers,

including satisfiability modulo theory (SMT) solvers CVC4,

Alt-Ergo, and Z3, to attempt to prove the validity of the VCs.

Though SPARK aims to fully automate verification through

this process, it is often necessary for the user to provide addi-

tional annotations in the code, e.g. assertions, loop invariants,

and type invariants, to create additional VCs that help guide

the provers toward a proof of the original checks and contracts

to be verified.

Ada User Jour na l Vo lume 43, Number 4, December 2022

270 For mal Ver i f i ca t ion of a Waypoin t Manager

2.2 OpenUxAS
OpenUxAS is a publicly released version of the Unmanned

Systems Autonomy Services (UxAS) [8] that is available free

and open-source on GitHub [9]. It is a software framework

for mission-level autonomy for teams of unmanned vehicles,

with the “x” indicating support for different types of vehicles,

including air, ground, and sea surface vehicles. It has been

used as an academic platform for building new autonomy ca-

pabilities [10, 11], performing studies on human-automation

interaction [12, 13], and as a case study for new verification

approaches [14, 15, 16, 17]. While OpenUxAS has support

for different types of vehicles, its primary emphasis is on un-

manned air vehicles (UAVs) carrying out intelligence, surveil-

lance, and reconnaissance (ISR) missions. This paper will

therefore focus on its application to UAVs.

Missions in OpenUxAS consist of sequences of tasks1, i.e.

different types of vehicle behaviors, with optional constraints

on the order in which tasks can be assigned and which ve-

hicles they can be assigned to. For example, OpenUxAS

provides services for planning and executing point, line, and

area searches. Each type of task has optional parameters that

constrain how the task can be performed, and each instantia-

tion of a task can have different parameter values. Parameters

vary by task type but generally include things like standoff

distance from an entity of interest, the angle at which to ap-

proach the entity, search patterns to be used, and desired

ground sample distance (i.e. resolution of obtained imagery

measured in meters per pixel, which is affected by altitude,

sensor gimbal angle, and sensor zoom level). [18] provides

detailed descriptions of some common types of tasks and their

parameters.

Note that OpenUxAS assumes each vehicle has an autopilot

that can follow waypoints and a gimbal that can steer the

sensor. A plan for an individual task is then essentially a

sequence of waypoint and sensor steering commands (though

some tasks generate commands “on-the-fly” during execu-

tion). A plan for an individual vehicle’s mission is then a

sequence of task plans, with waypoint-based paths that honor

operating region constraints connecting the end and start of

subsequent tasks. A mission plan for a team of vehicles is

then a set of mission plans, one per vehicle, that jointly accom-

plish a collection of tasks while honoring possible constraints

on task ordering and vehicle assignment, usually while op-

timizing some performance metric such as vehicle distance

traveled. For path planning, OpenUxAS computes kinemati-

cally feasible waypoint-based paths using path planners that

generally model vehicles as Dubins vehicles, i.e. vehicles

whose maximum turn rate depends on minimum turn radius

and current speed.

As an example, Figure 1 shows a plan for an instantiation of a

UAV point search task. The UAV is depicted as a triangle and

its sensor footprint as projected onto the ground as a trapezoid.

The UAV starts at position and heading ν̄e. Based on the

UAV’s altitude and its sensor zoom level and gimbal angle,

the distances to the trailing and leading edges of its sensor

1With the meaning of “task” as commonly used in robotics, not the Ada

“Task” keyword.

ν̄e

νs

νe

pdt

s

χc = 0◦

χc +
χr

2χc − χr

2

dt

dl

-500

0

500

0 1000 2000 3000

p
os
it
io
n
n
or
th

(m
)

position east (m)

Figure 1: A point search task in OpenUxAS. From [18].

footprint are dt and dl, respectively. The point to be surveilled

is p. For optional task parameters, a range of acceptable

approach angles χc± χr

2 (measured clockwise from the north)

and a standoff distance s have been specified. Given these

parameter values, a kinematically feasible path is planned

that has the vehicle approach p from the position and heading

indicated by νs. (If no standoff distance had been specified,

dl would have been used instead.) The task ends when the

trailing edge of the sensor footprint has passed point p, i.e.

when the vehicle is distance dt from the point. Planning in

OpenUxAS generally attempts to minimize vehicle distance

traveled, so approach angle χc − χr

2 is chosen in this case.

OpenUxAS can work in either a centralized mode in which

a single instance controls multiple vehicles, e.g. through

a multi-vehicle ground control station, or in a decentral-

ized mode in which each vehicle runs its own instance of

OpenUxAS. Decentralized mode is more robust to commu-

nications loss. When vehicles are able to communicate and

share information about their state, decentralized planning

algorithms optimize the assignment of tasks comprising a

mission across eligible vehicles; when vehicles cannot share

state information, tasks are simply duplicated across eligible

vehicles. Note that a few specialized tasks are designed to

handle intermittent or infrequent communication directly, e.g.

[16].

2.3 OpenUxAS Implementation
OpenUxAS as currently written in C++ is implemented as

a service-oriented architecture, with services running in sep-

arate threads. ZeroMQ [19] provides the communication

transport layer between services, with most services connect-

ing to each other using a publish/subscribe pattern. A TCP/IP

bridge service allows OpenUxAS to communicate with other

systems and applications, e.g. simulators and ground control

stations. Zyre [20], an open-source framework for proximity-

based peer-to-peer applications built on ZeroMQ, is used to

send and receive messages between vehicles in decentral-

ized mode. Instances of OpenUxAS and services within

OpenUxAS communicate by sending and receiving messages

whose types and fields are defined by Message Data Model

(MDMs) expressed in XML. These MDMs conform to the

standard of the Lightweight Message Communication Proto-

col (LMCP), which specifies rules for message data structure

and serialization. In LMCP, message fields have types that

Volume 43, Number 4, December 2022 Ada User Jour na l

L. Humphrey 271

include enumerations, primitives (byte, bool, int32, uint32,

int64, real32, real64), other messages, and arrays of any of

these. Messages can also inherit from other messages in an

object-oriented manner. The tool LmcpGen [21] generates

libraries for representing, manipulating, serializing, and dese-

rializing messages defined in a set of MDMs in several target

languages, including C/C++, Python, Java, C#, and Ada. The

main MDM or message set used by OpenUxAS is called the

Common Mission Automation Services Interface (CMASI)

[22], which allows it to interact with the OpenAMASE simu-

lation environment [23, 24]. CMASI includes messages for

vehicle configuration and state information, operating region

constraints, task configuration, requests for mission planning,

mission plans as sequences of waypoints and sensor steering

commands, etc. Internally, OpenUxAS uses some additional

message sets to coordinate between services.

OpenUxAS is designed to be extensible and configurable. The

main executable takes as a command line option the name

of an XML configuration file that specifies which services

should be loaded and how they should be configured. It uses

a “Service Manager” to start up each service specified in

the file and pass it its configuration parameters. This makes

it relatively easy to add new services. That being said, in

its standard configuration, there are a core set of services

that work together to plan and execute multi-vehicle mis-

sions. OpenUxAS receives external messages about vehicle

configurations, current vehicle states, tasks to perform, and

operating region constraints (keep-in and keep-out zones).

It also receives AutomationRequest messages from external

sources or sometimes internal services that result in mission

plans being generated. These requests express which tasks

should be performed, with optional constraints on the order

in which they can be assigned and which vehicles are eligible

to perform them. An “Automation Request Validator” (ARV)

service checks whether a request is valid, i.e. the request

only references entities and tasks that have been previously

injected into the system through the appropriate messages.

It also ensures that only one request is processed by the sys-

tem at a time, queueing up new requests if planning for a

current request is still in progress. The ARV passes valid

AutomationRequest messages to the rest of the system as

UniqueAutomationRequest messages. For each task listed in

the request, an “Assignment Tree Branch and Bound” (ATBB)

service sends requests for a set of task options, i.e. a set of

valid plans for each eligible vehicle with estimated costs in

terms of the distance the vehicle would have to travel from

the start to the end of the task plan. To compute these, ser-

vices for each type of task send batch path planning requests

to a “Route Aggregator” (RA) service, which in turn makes

requests to one or more path planning routines. Once the

ATBB has received options for all tasks in a UniqueAutoma-
tionRequest, it computes the paths and corresponding costs

required to travel between task options, and given constraints

on task assignment ordering specified in the request, it uses

a branch and bound algorithm to optimize the assignment

of tasks to eligible vehicles. The result is ultimately an Au-
tomationResponse that includes an array of MissionCommand
messages, one per vehicle. Each MissionCommand contains

an array of Waypoint messages containing both waypoint and

associated sensor steering commands. This array of Waypoint
messages includes all the commands required for the vehicle

to complete its assigned sequence of tasks, i.e. its mission.

Each vehicle has a “Waypoint Plan Manager” service that

processes MissionCommand messages and sends potentially

modified MissionCommand messages that have been sanity

checked and broken down into segments short enough for an

autopilot, as discussed in the next section.

OpenUxAS was originally written in C++. However, since

ZeroMQ and LmcpGen support Ada, individual OpenUxAS

services can be re-implemented in a mix of Ada and SPARK

and run with other services still written in C++. To date,

a few services have been re-implemened in Ada, and their

core logic has been re-implemented and formally verified to

different levels in SPARK. [17] describes the first iteration of

a SPARK/Ada implementation of the ARV verified to the gold

level, which has since been updated on the GitHub repository.

The repository also has SPARK/Ada implementations of the

RA verified to the gold level, the ATBB verified to the silver

level (with ongoing efforts to verify it to the gold level), and

the WPM verified to the silver level (as described in this

paper).

3 The OpenUxAS Waypoint Plan Manager
As mentioned in the previous section, OpenUxAS includes

a “Waypoint Plan Manager” (WPM) service that processes

waypoint and associated sensor steering commands from an

array of Waypoint messages stored within a MissionCommand
so that they can be sent to an autopilot. There are two reasons

that this processing is needed. The first is that most autopilots

have a limit on the number of waypoints they can accept at a

time. Whereas a MissionCommand might contain a sequence

of hundreds or even thousands of waypoints, an autopilot

might only accept a few dozen at a time. The second is that

some sanity checking and safety constraints should also be

applied. The WPM performs both of these functions.

Let us briefly summarize the behavior of the WPM. It

receives MissionCommand messages. Field MissionCom-
mand.WaypointList is an array of Waypoint messages that

each include 1) the waypoint’s ID number and 2) the ID num-

ber of the next waypoint to visit (among other information

such as waypoint location and altitude, associated sensor steer-

ing commands, and travel speed). Conceptually, this array of

Waypoint messages encodes a linked list of waypoints. Field

MissionCommand.FirstWaypoint is the ID of the first way-

point that the vehicle should visit. Part of the WPM’s job is

to decompose the list of waypoints from a MissionCommand
into smaller lists of waypoints that are short enough to send

to an autopilot. We refer to these smaller lists of waypoints as

“segments,” and they are also encoded as MissionCommand
messages. To ensure a smooth vehicle trajectory, segments

should overlap by some service-configurable number of way-

points, with a minimum overlap of two. As a safety feature,

the last waypoint in the segment should refer to itself as the

next waypoint to visit. If OpenUxAS crashes or experiences

degraded performance, this causes the vehicle to loiter at the

last point in the segment. If OpenUxAS operates normally,

segments are updated when the vehicle reaches the point of

Ada User Jour na l Vo lume 43, Number 4, December 2022

272 For mal Ver i f i ca t ion of a Waypoin t Manager

overlap, and the waypoints in the original MissionCommand
are followed as expected.

Unfortunately, the construction of segments is not quite as

straightforward as it seems. First, the waypoints in array Mis-
sionCommand.WaypointList are not guaranteed to be ordered

according to ID and next ID. Second, while each waypoint

ID is supposed to be unique, there is no easy mechanism for

enforcing this, so there may be waypoints with duplicate IDs.

Third, there is no guarantee that the list contains a waypoint

whose ID matches MissionCommand.FirstWaypoint. Fourth,

there can be cycles in the list. In such a case, the WPM

should command the vehicle to repeat the route specified by

the cycle until the WPM receives a new MissionCommand.

Fifth, segments should not just include the first waypoint and

all subsequent waypoints, they should also include the first

waypoint’s predecessor. This is because a waypoint preceding

the first helps set the path the vehicle should follow. Given

two waypoints, the autopilot attempts to minimize crosstrack

error of the vehicle along the path between them; given only

the one, the autopilot attempts to fly directly to it.

Given that the WPM is the interface between OpenUxAS and

a vehicle’s autopilot, it should be verified to a high level of

assurance. Currently, the C++ version has only been lightly

tested, and it does not address all of the previous concerns.

For instance, it assumes that waypoints are ordered according

to ID and next ID, that waypoint IDs are unique, and that there

are no cycles in the list (a separate flag is used to request a

cycle over the whole list, neglecting the possibility of a cycle

within the list itself). This motivates the re-implementation

and formal verification of portions of the WPM in SPARK.

3.1 The Structure of OpenUxAS Services in Ada
and SPARK

Past efforts have developed a basic framework for imple-

menting OpenUxAS services in SPARK/Ada [17]. Since

OpenUxAS is designed to be able to coordinate with other

instances of OpenUxAS for decentralized mission planning,

this framework is essentially a partial re-implementation of

OpenUxAS in SPARK/Ada that is able to work with the re-

maining portions of the C++ version by exchanging LMCP

messages over ZeroMQ.

Large portions of the SPARK/Ada version of OpenUxAS are

written in Ada. These portions handle things like service cre-

ation and initialization, sending and receiving messages over

ZeroMQ, and extraction of data from LMCP messages, since

the Ada libraries generated by LmcpGen include types that

are not SPARK-compatible, mainly Ada.Containers.Vectors
and access types that do not necessarily follow an ownership

policy. Certain portions of the system that do complex ma-

nipulation of data, i.e. logic processing that embodies key

OpenUxAS behaviors, are implemented in SPARK so that

formal verification can be performed.

The SPARK/Ada version is structured as follows. The

main executable is analogous to the C++ “Service Man-

ager.” Given the name of an XML configuration file as

a command line argument, it starts up the services spec-

ified in the file and passes to each one its corresponding

configuration information. Each service inherits from an

abstract tagged type Service_Base defined in Ada pack-

age UxAS.Comms.LMCP_Net_Client.Service, which declares

functions and procedures for initializing and configuring ser-

vices. By convention, each service is structured into three

packages:

1. <ServiceName>_Communication – Provides basic

subprograms to process and send LMCP messages

in SPARK-compatible formats. Uses package

LMCP_Messages, which defines SPARK-compatible

types for each LMCP message using Functional_Vectors
in place of Vectors and without access types. Uses pack-

age LMCP_Message_Conversions, which provides sub-

programs to convert between Ada and SPARK LMCP

message types. Defines a type <ServiceName>_Mailbox
that stores ZeroMQ configuration information for the

service. Uses types and subprograms in package

UxAS.Comms.LMCP_Object_Message_Sender_Pipes to

define subprograms to send SPARK LMCP message

types.

2. UxAS.Comms.LMCP_Net_Client.Service.<Name> –

Defines a private tagged type <ServiceName>_Service
that implements the abstract tagged type Ser-
vice_Base. Overrides associated functions and

procedures as appropriate. Uses packages <Ser-
viceName>_Communication and <ServiceName>.

Private fields of <ServiceName>_Service include

Mailbox : <ServiceName>_Mailbox, Config :
<ServiceName>_Configuration_Data, and State : <Ser-
viceName>_State. The type definition for field Mailbox
is from package <ServiceName>_Communication and

the type definitions for fields State and Config are from

package <ServiceName>. Fields Config and State hold

SPARK-compatible data that are processed by portions

of the service written in SPARK. Config is a record

that stores service data that tend to be state invariant,

while State is a record that stores service data that are

manipulated by the service during processing. Defines

a procedure Process_Received_LMCP_Message that

performs service-specific handling of LMCP messages.

3. <ServiceName> – Contains SPARK subprograms and

associated data structures used by the previous pack-

age. These tend to be called within the procedure

Process_Received_LMCP_Message to update the State
when key messages are received. Occasionally they are

called when other events occur, e.g. an internal timer

triggers. Encompasses core behavior/logic of the ser-

vice.

3.2 Implementation of the Waypoint Plan Manager
in Ada and SPARK

Let us now consider the WPM service specifically. There is

one instance of the WPM per vehicle. Its parameters, whose

values are set by the configuration file passed to OpenUxAS,

include:

• VehicleID – The ID of this WPM’s vehicle.

• NumberWaypointsOverlap – The number of overlapping

waypoints between segments (≥ 2).

Volume 43, Number 4, December 2022 Ada User Jour na l

L. Humphrey 273

• NumberWaypointsToServe – The maximum number of

waypoints in a segment (> NumberWaypointsOverlap).

Each WPM subscribes to MissionCommand, AutomationRe-
sponse, and AirVehicleState messages. Following the conven-

tion of other services, the WPM’s implementation of proce-

dure Process_Received_LMCP_Message calls other subpro-

grams to handle specific types of messages. For an AirVehi-
cleState message, it calls a simple Ada procedure that checks

whether it corresponds to the WPM’s vehicle, and if so, it up-

dates the WPM’s State to record whether the vehicle is headed

for the first waypoint of the next segment. It also uses the

AirVehicleState timestamp to update an internal timer used to

enforce a minimum time between the broadcast of subsequent

segments. If the WPM receives a MissionCommand, it calls a

simple Ada procedure that checks whether it corresponds to

the WPM’s vehicle, and if it receives an AutomationResponse,

it calls a simple Ada procedure that checks whether it contains

a MissionCommand corresponding to the WPM’s vehicle. If

so, both procedures call a more complex SPARK procedure

Handle_MissionCommand with a SPARK-compatible Mis-
sionCommand message that updates the WPM’s State. Fi-

nally, Process_Received_LMCP_Message checks whether a

new segment needs to be sent as a MissionCommand based on

the internal timer and the WPM’s State, in particular whether

a new MissionCommand has been received or the vehicle is

now headed toward the ID of the first waypoint of the next

segment. If so, it calls a SPARK procedure Produce_Segment,
which computes the segment, sends the MissionCommand,

and updates the WPM’s State.

Listing 1: Waypoint_Plan_Manager package specification.

with ...

package Waypoint_Plan_Manager with SPARK_Mode is

Max : constant Ada.Containers .Count_Type := 2000;

subtype Pos64 is Int64 range 1 .. Int64 ’Last ;

subtype Nat64 is Int64 range 0 .. Int64 ’Last ;

function Pos64_Hash (X : Pos64) return Ada.Containers .

Hash_Type is (Ada.Containers .Hash_Type’Mod (X));

package Pos64_WP_Maps is new Ada.Containers.

Formal_Hashed_Maps (Pos64, Waypoint, Pos64_Hash);

type Pos64_WP_Map is new Pos64_WP_Maps.

Map (Max, Pos64_WP_Maps.Default_Modulus (Max));

package Pos64_Nat64_Maps is new Ada.Containers.

Formal_Hashed_Maps (Pos64, Nat64, Pos64_Hash);

type Pos64_Nat64_Map is new Pos64_Nat64_Maps.

Map (Max, Pos64_Nat64_Maps.Default_Modulus (Max));

package Pos64_Vectors is new Ada.Containers.

Formal_Vectors (Positive , Pos64);

type Pos64_Vector is new Pos64_Vectors.Vector (Max + 1);

type Waypoint_Plan_Manager_Configuration_Data is record
NumberWaypointOverlap : UInt32 := 2;

NumberWaypointsToServe : Common.UInt32 :=

Common.UInt32 (Max);

...

end record;

type Waypoint_Plan_Manager_State is record

MC : MissionCommand;

Id_To_Waypoint : Pos64_WP_Map;

Id_To_Next_Id : Pos64_Nat64_Map;

New_Command : Boolean;

Next_Segment_Id : Nat64 := 0;

Next_First_Id : Nat64 := 0;

Prefix : Pos64_Vector;

Cycle : Pos64_Vector;

Segment : Pos64_Vector;

Headed_To_First_Id : Boolean := False ;

end record;

procedure Handle_MissionCommand

(State : in out Waypoint_Plan_Manager_State;

MC : MissionCommand)

with Pre =>

Length (MC.WaypointList) <= Max and then
MC.FirstWaypoint > 0;

procedure Produce_Segment

(State : in out Waypoint_Plan_Manager_State;

Config : Waypoint_Plan_Manager_Configuration_Data;

Mailbox : in out Waypoint_Plan_Manager_Mailbox)

with Pre =>

State . Next_First_Id > 0

and then State .Next_Segment_Id > 0

and then Config.NumberWaypointsOverlap >= 2

and then Config.NumberWaypointsOverlap <=

UInt32 (Max) − 1

and then Config.NumberWaypointsToServe >

Config.NumberWaypointsOverlap

and then Config.NumberWaypointsToServe <=

UInt32 (Max);

end Waypoint_Plan_Manager;

The SPARK package Waypoint_Plan_Manager is shown in

Listing 1. Constant Max defines the capacity of containers

used to store waypoint information based on the maximum an-

ticipated length of MissionCommand.WaypointList. Subtypes

Pos64 and Nat64 define positive and natural ranges of 64-bit

integers, since waypoint ID numbers should be positive, with

“0” only used as a next ID to indicate there is no next waypoint.

Formal_Hashed_Maps and Formal_Ordered_Vectors are used

to define containers for holding waypoint information. Type

Waypoint_Plan_Manager_Configuration_Data holds WPM

configuration data. Type Waypoint_Plan_Manager_State in-

cludes the following fields:

• MC – The most recent SPARK-compatible MissionCom-
mand.

• Id_To_Waypoint – A map from waypoint IDs to corre-

sponding SPARK-compatible Waypoint messages taken

from MC.

• Id_To_Next_Id – A map from waypoint IDs to corre-

sponding next waypoint IDs taken from MC.

• New_Command – A Boolean indicating whether a new

MissionCommand was just received.

• Next_Segment_Id – A 64-bit natural indicating the first

waypoint ID of the next segment (0 indicates no more

segments).

• Next_First_Id – A 64-bit natural indicating the First-
Waypoint ID of the next segment (0 indicates no more

segments).

Ada User Jour na l Vo lume 43, Number 4, December 2022

274 For mal Ver i f i ca t ion of a Waypoin t Manager

• Prefix – An ordered list of waypoint IDs from

MC.WaypointList based on MC.FirstWaypoint that do

not contain a cycle but potentially precede one.

• Cycle – An ordered list of waypoint IDs from

MC.WaypointList based on MC.FirstWaypoint that form

a cycle after a potential prefix.

• Segment – An ordered list of waypoint IDs that form the

current segment.

• Headed_To_First_ID – A Boolean indicating whether

the vehicle is currently flying to the waypoint with ID

Next_First_Id.

The procedure Handle_MissionCommand, whose body is

shown in Listing 2, has as its parameters the WPM’s State
and MC, a SPARK-compatible MissionCommand. It up-

dates State based on the contents of MC, using helper proce-

dure Extract_MissionCommand_Maps (not shown) to com-

pute maps State.Id_To_Waypoint and State.Id_To_Next_Id.

This helper procedure simply iterates over all elements of

MC.WaypointList from first index to last index, ignoring el-

ements with duplicate or 0-valued waypoint IDs. The pro-

cedure Handle_MissionCommand then attempts to build a

linked-list representation of ordered waypoint IDs in local

vector Id_List, starting from First_Id := MC.FirstWaypoint.
It starts with a duplicate map Ids := State.Id_To_Next_Id. It

then searches this map for First_Id and its successor, then its

predecessor, then further successors, removing elements from

Ids as it goes. When no more successors can be found or a

cycle is detected, it computes State.Prefix and State.Cycle and

returns. Various return points are annoted with comments in

Listing 2.

Listing 2: Handle_MissionCommand body.

procedure Handle_MissionCommand

(State : in out Waypoint_Plan_Manager_State;

MC : MissionCommand)

is
First_Id : Pos64 := MC.FirstWaypoint;

Id_List : Pos64_Vector;

Ids : Pos64_Nat64_Map;

function Successor (M : Pos64_Nat64_Map; K : Pos64)

return Nat64 renames Element;

begin

State .MC := MC;

Extract_MissionCommand_Maps (State, MC);

State .New_Command := True;

State .Next_Segment_Id := First_Id ;

State . Next_First_Id := First_Id ;

Clear (State . Prefix);

Clear (State .Cycle);

Ids := State . Id_To_Next_Id;

−− Look for First_Id .
if Contains (Ids , First_Id) then

if Successor (Ids , First_Id) = 0

or else not
Contains (Ids , Pos64 (Successor (Ids , First_Id)))

or else Successor (Ids , First_Id) = First_Id

then
−− First_Id has no successors . Return.
Append (State . Prefix , First_Id);

return;

else

−− First_Id has a successor . Continue.
Append (Id_List , First_Id);

Append (Id_List , Successor (Ids , First_Id));

Delete (Ids , First_Id);

end if ;

else
−− First_Id not found. Return with no segment.
State .Next_Segment_Id := 0;

State . Next_First_Id := 0;

return;

end if ;

pragma Assert (not Is_Empty (Id_List));

pragma Assert (Length (Id_List) = 2);

−− Look for a predecessor to First_Id .
−− We already checked that it does not point to itself .
for Id of Ids loop

if Successor (Ids , Id) = First_Element (Id_List) then
if Last_Element (Id_List) = Id then

−− First_Id cycles with its precedessor . Return.
State .Next_Segment_Id := Id;

Reverse_Elements (Id_List);

State .Cycle := Id_List ;

return;

else
−− First_Id has a precessor . Continue.
State .Next_Segment_Id := Id;

Prepend (Id_List , Id);

Delete (Ids , Id);

exit ;

end if ;

end if ;

pragma Loop_Invariant (not Is_Empty (Id_List));

pragma Loop_Invariant (Length (Id_List) <= 3);

pragma Loop_Invariant (Length (Ids) <= Max − 1);

end loop;

−− Search for successors until done.
while Length (Ids) > 0 loop

if Contains (Ids , Last_Element (Id_List)) then
if Successor (Ids , Last_Element (Id_List)) = 0

or else not Contains (State . Id_To_Next_Id,

Pos64(Successor (Ids , Last_Element (Id_List))))

or else Successor (Ids , Last_Element (Id_List)) =

Last_Element (Id_List)

then
−− Candidate successor is 0, unknown, or points
−− to itself . Return with a prefix only .
State . Prefix := Id_List ;

return;

elsif Contains (Id_List ,

Successor (Ids , Last_Element (Id_List)))

then
−− Found a cycle . Compute prefix & cycle . Return.
declare

Index : Pos64_Vectors.Extended_Index;

Next_Id : Pos64 :=

Successor (Ids , Last_Element (Id_List));

begin
Index := Find_Index (Id_List , Next_Id);

for I in First_Index (Id_List) .. Index−1 loop
Append (State . Prefix , Element (Id_List , I));

pragma Loop_Invariant

(Integer (Length (State . Prefix)) =

I − First_Index (Id_List) + 1);

end loop;

for I in Index .. Last_Index (Id_List) loop
Append (State .Cycle, Element (Id_List , I));

pragma Loop_Invariant

(Integer (Length (State .Cycle)) =

I − Index + 1);

end loop;

return;

Volume 43, Number 4, December 2022 Ada User Jour na l

L. Humphrey 275

end;

else
−− Found a successor that ’s not a cycle .
declare

Id : Pos64 := Last_Element (Id_List);

begin
Append (Id_List , Successor (Ids , Id));

Delete (Ids , Id);

end;

end if ;

else
−− Can’t find a successor . Return a prefix .
State . Prefix := Id_List ;

return;

end if ;

pragma Loop_Invariant (not Is_Empty (Id_List));

pragma Loop_Invariant

(Length (Id_List) <= Max − Length (Ids) + 1);

end loop;

−− No more successors. Return a prefix .
State . Prefix := Id_List ;

end Handle_MissionCommand;

The last SPARK subprogram used by the WPM is Pro-
duce_Segment. It generates the next segment based on the

current WPM State by updating State.Segment and send-

ing it as a MissionCommand, modifying the last waypoint

to point to itself. It also updates State.New_Command,

State.Next_Segment_Id, and State.Next_First_Id to prepare

for the next segment. The body for this procedure is shown

in Listing 3.

Listing 3: Produce_Segment body.

procedure Produce_Segment

(State : in out Waypoint_Plan_Manager_State;

Config : Waypoint_Plan_Manager_Configuration_Data;

Mailbox : in out Waypoint_Plan_Manager_Mailbox)

is
Id : constant Pos64 := State .Next_Segment_Id;

First_Id : constant Pos64 := State . Next_First_Id ;

Prefix : constant Pos64_Vector := State . Prefix ;

Cycle : constant Pos64_Vector := State .Cycle;

Len : constant Positive :=

Positive (Config.NumberWaypointsToServe);

Overlap : constant Positive :=

Positive (Config.NumberWaypointsOverlap);

I : Natural := 1;

C : Pos64_Vectors.Extended_Index;

In_Prefix : Boolean;

begin

State .New_Command := False;

State .Next_Segment_Id := 0;

State . Next_First_Id := 0;

Clear (State .Segment);

C := Find_Index (Prefix , Id);

In_Prefix :=

(if C /= Pos64_Vectors.No_Index then True else False);

while C in First_Index (Prefix) .. Last_Index (Prefix)

and then I <= Len

loop
pragma Loop_Invariant

(Natural (Length (State .Segment)) < I);

Append (State .Segment, Element (Prefix , C));

C := Iter_Next (Prefix , C);

I := I + 1;

end loop;

C:= (if In_Prefix then First_Index (Cycle) else
Find_Index (Cycle, Id));

while C in First_Index (Cycle) .. Last_Index (Cycle)

and then I <= Len

loop
pragma Loop_Invariant

(Natural (Length (State .Segment)) < I);

Append (State .Segment, Element (Cycle, C));

C := Iter_Next (Cycle, C);

if not Iter_Has_Element (Cycle, C) then
C := First_Index (Cycle);

end if ;

I := I + 1;

end loop;

if Integer (Length (State .Segment)) > Overlap then
State .Next_Segment_Id :=

Element (State .Segment,

Last_Index (State .Segment) − Overlap + 1);

State . Next_First_Id :=

Element (State .Segment,

Last_Index (State .Segment) − Overlap + 2);

end if ;

declare
MC_Out : MissionCommand := State.MC;

WP_List : WP_Seq;

Id : Pos64;

WP : Waypoint;

begin
MC_Out.FirstWaypoint := First_Id ;

for I in First_Index (State .Segment) ..

Last_Index (State .Segment)

loop
Id := Element (State .Segment, I);

if Contains (State . Id_To_Waypoint, Id) then
WP := Element (State . Id_To_Waypoint, Id);

if I = Last_Index (State .Segment) then
WP.NextWaypoint := WP.Number;

...

end if ;

WP_List := Add (WP_List, WP);

end if ;

pragma Loop_Invariant

(Integer (Length (WP_List)) <=

I − First_Index (State .Segment) + 1);

end loop;

MC_Out.WaypointList := WP_List;

sendBroadcastMessage (Mailbox, MC_Out);

end;

end Produce_Segment;

3.3 Verification of the Waypoint Plan Manager in
SPARK

Verification of the WPM in SPARK at the silver level, i.e.

absence of runtime errors, is relatively straightforward. Pre-

conditions are needed for Handle_MissionCommand to en-

sure that the length of MC.WaypointList is less than or equal

to Max (i.e. the capacity of containers used in the WPM’s

State) and that MC.FirstWaypoint is positive. Preconditions

are needed for Produce_Segment to ensure that the next seg-

ment’s commanded first waypoint ID and starting ID are

positive, that the number of waypoints to overlap per segment

is at least 2, and that the maximum number of waypoints to

serve is greater than the overlap and at most Max.

Ada User Jour na l Vo lume 43, Number 4, December 2022

276 For mal Ver i f i ca t ion of a Waypoin t Manager

A few assertions and loop invariants are needed to establish

that the sizes of all containers stay within their maximum

bounds. Loop invariants are needed in loops that copy con-

tent from one container to another, including the body of

Extract_MissionCommand_Maps (not shown). Assertions

are needed in Handle_MissionCommand after the logic block

that searches for First_Id to assert that Id_List has exactly 2

elements at that point.

It was generally easy to determine what assertions and loop

invariants were needed, though it was somewhat challenging

to figure out which were needed to bring the maximum size

of type Pos64_Vector down to its actual maximum of Max +
1. In Handle_Mission_Command, Id_List is of this type, and

the number of elements appended to it depends on the size of

map Ids, so the two loop invariants relating the length of Ids
to Max and Id_List were needed for this.

There is at least one improvement that could be made.

At the end of Produce_Segment, where the list of way-

point ID numbers in State.Segment is used to retrieve

Waypoint messages from State.Id_To_Waypoint, we must

check that the corresponding waypoint ID exists in the

keys of State.Id_To_Waypoint. This should not be neces-

sary since all the IDs in State.Segment should be keys in

State.Id_To_Waypoint, but the provers are not able to deduce

this without additional assertions. If we attempted to prove

gold-level properties of this service, such assertions would

likely be naturally added, and this check could be removed.

Listing 4 shows relevant results from SPARK analysis. The

code proves from a clean state in less than a minute on a

standard laptop at level 2 (fast, all provers).

To give an idea of size, gnatmetric reports the body

and spec of Waypoint_Plan_Manager have 248 code

lines, 25 of which are preconditions, assertions, and

loop invariants needed for SPARK verification. The

whole service, which additionally includes packages

UxAS.Comms.LMCP_Net_Client.Service.Waypoint_Plan_
Management and Waypoint_Plan_Manager_Communication,

has 629 code lines. The whole OpenUxAS project in

SPARK/Ada has 12332 code lines.

Listing 4: SPARK analysis results.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SPARK Analysis results Total Flow Provers

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Data Dependencies 3 3 .

Flow Dependencies . . .

Initialization 10 10 .

Non−Aliasing . . .

Run−time Checks 89 . 89 (CVC4 94%,

Trivial 6%)

Assertions 26 . 26 (CVC4)

Functional Contracts 66 . 66 (CVC4 96%,

Trivial 4%)

LSP Verification . . .

Termination . . .

Concurrency . . .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 194 13 (7%) 181 (93%)

4 Conclusions
This paper describes implementation and formal verification

of a service in the OpenUxAS mission-level multi-vehicle

autonomy software framework in SPARK. Included is a frame-

work for implementing services in SPARK/Ada that can in-

teract with services in C++ over ZeroMQ using the LMCP

message standard, a pattern that could be used in other multi-

language message passing architectures. The WPM service

presented in this paper is responsible for sanity checking lists

of waypoint commands and segmenting them into shorter lists

that can be sent to an autopilot. Currently, it is formally veri-

fied to be free of runtime errors. In the future, we would like

to add contracts to relevant subprograms in the form of pre-

and postconditions and verify them to the gold level. This

will likely require adding a significant number of annotations

to the code to guide the underlying provers toward a proof of

the desired postconditions, far more than were needed in this

effort to prove the absence of runtime errors.

Acknowledgments
Thanks to Pat Rogers, Joffrey Huguet, M. Anthony Aiello,

and Claire Dross at AdaCore, who developed the core

SPARK/Ada framework used to enable this work, and to

Ben Hocking and Jonathan Rowanhill at Dependable Com-

puting, who shared some code snippets for a simpler version

of the WPM. Thanks to AFOSR, who funded this work under

contract #20RQCOR096.

DISTRIBUTION STATEMENT A: Approved for public re-

lease. Distribution is unlimited. Case #AFRL-2022-2722.

References
[1] W. Dahm, “Report on technology horizons: A vision

for Air Force science & technology during 2010–2030,”

Tech. Rep. AF/ST-TR-10-01-PR, United States Air

Force, 2010.

[2] N. Kalra and S. M. Paddock, “Driving to safety: How

many miles of driving would it take to demonstrate au-

tonomous vehicle reliability?,” Transportation Research
Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.

[3] J. W. McCormick and P. C. Chapin, Building high in-
tegrity applications with SPARK. Cambridge University

Press, 2015.

[4] J. Barnes, Programming in Ada 2012. Cambridge Uni-

versity Press, 2014.

[5] AdaCore, “LEARN.ADACORE.COM,” 2022.

https://learn.adacore.com.

[6] Y. Moy, “Climbing the software assurance ladder – prac-

tical formal verification for reliable software,” Elec-
tronic Communications of the EASST, vol. 76, 2019.

[7] J.-C. Filliâtre and A. Paskevich, “Why3 – where pro-

grams meet provers,” in European Symposium on Pro-
gramming (ESOP), pp. 125–128, Springer, 2013.

[8] S. Rasmussen, D. Kingston, and L. Humphrey, “A brief

introduction to Unmanned Systems Autonomy Services

(UxAS),” in International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 257–268, IEEE, 2018.

Volume 43, Number 4, December 2022 Ada User Jour na l

L. Humphrey 277

[9] AFRL/RQQ, “OpenUxAS,” 2017.

https://github.com/afrl-rq/OpenUxAS.

[10] L. V. Nguyen, B. Hoxha, T. T. Johnson, and G. Fainekos,

“Mission planning for multiple vehicles with tempo-

ral specifications using UxAS,” IFAC-PapersOnLine,

vol. 51, no. 16, pp. 67–72, 2018.

[11] T. Elliott, M. Alshiekh, L. R. Humphrey, L. Pike, and

U. Topcu, “Salty – a domain specific language for

GR (1) specifications and designs,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 4545–4551, IEEE, 2019.

[12] J. Wei, M. L. Bolton, and L. Humphrey, “The level of

measurement of trust in automation,” Theoretical Issues
in Ergonomics Science, vol. 22, no. 3, pp. 274–295,

2020.

[13] M. L. Bolton, E. Biltekoff, and L. Humphrey, “The level

of measurement of subjective situation awareness and

its dimensions in the situation awareness rating tech-

nique (SART),” IEEE Transactions on Human-Machine
Systems, 2021.

[14] C. E. Tuncali, B. Hoxha, G. Ding, G. Fainekos, and

S. Sankaranarayanan, “Experience report: Application

of falsification methods on the UxAS system,” in NASA
Formal Methods Symposium, pp. 452–459, Springer,

2018.

[15] J. A. Davis, L. R. Humphrey, and D. B. Kingston,

“When human intuition fails: Using formal methods

to find an error in the ‘proof’ of a multi-agent proto-

col,” in International Conference on Computer Aided
Verification (CAV), pp. 366–375, Springer, 2019.

[16] D. Greve, J. Davis, and L. Humphrey, “A mechanized

proof of bounded convergence time for the Distributed

Perimeter Surveillance System (DPSS) Algorithm A,”

in 17th ACL2 Workshop (R. Sumners and C. Chau, eds.),

Electronic Proceedings in Theoretical Computer Sci-

ence (EPTCS) 359, pp. 33–47, 2022.

[17] M. A. Aiello, C. Dross, P. Rogers, L. Humphrey,

and J. Hamil, “Practical application of SPARK to

OpenUxAS,” in International Symposium on Formal
Methods, pp. 751–761, Springer, 2019.

[18] D. Kingston, S. Rasmussen, and L. Humphrey, “Auto-

mated UAV tasks for search and surveillance,” in In-
ternational Conference on Control Applications (CCA),
IEEE, 2016.

[19] P. Hintjens, ZeroMQ. O’Reilly Media Inc., 2013.

[20] iMatix Corporation, “Zyre,” 2015.

https://github.com/zeromq/zyre.

[21] AFRL/RQQ, “LmcpGen,” 2017. https://github.com/afrl-

rq/LmcpGen.

[22] M. Duquette, “The common mission automation ser-

vices interface,” in Infotech@Aerospace, p. 1542, AIAA,

2011.

[23] Z. Basnight, S. Rasmussen, A. Starr, M. Duquette, and

K. Kalyanam, “Simulating cooperative control algo-

rithms using MATLAB, Simulink, and AMASE,” in

AIAA Modeling and Simulation Technologies Confer-
ence, p. 8359, AIAA, 2012.

[24] AFRL/RQQ, “OpenAMASE,” 2017.

https://github.com/afrl-rq/OpenAMASE.

Ada User Jour na l Vo lume 43, Number 4, December 2022

278

Volume 43, Number 4, December 2022 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard

Ada-Deutschland
Dr. Hubert B. Keller CEO

ci-tec GmbH

Beuthener Str. 16

76139 Karlsruhe

Germany

+491712075269

Email: h.keller@ci-tec.de
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain
attn. Julio Medina

Facultad de Ciencias

Universidad de Cantabria

Avda. de los Castros s/n

39005 Santander

Spain

Phone: +34-942-201477

Email: julio.medina@unican.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch
www.white-elephant.ch

Ada-Europe Sponsors

27 Rue Rasson
B-1030 Brussels

Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

1090 Rue René Descartes
13100 Aix en Provence

France
Contact: Patricia Langle

patricia.langle@systerel.fr
www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki

Finland
Contact: Niklas Holsti

niklas.holsti@tidorum.fi
www.tidorum.fi

3271 Valley Centre Drive,Suite 300
San Diego, CA 92069

USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

Enterprise House
Baloo Avenue, Bangor

North Down BT19 7QT
Northern Ireland, UK

enquiries@sysada.co.uk
sysada.co.uk

Corso Sempione 68
20154 Milano

Italy
Contact: Massimo Bombino

massimo.bombino@vector.com
www.vector.com

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

46 Rue d’Amsterdam
F-75009 Paris

France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

