
��������	
�	��
�������

����	�����
�	���	���	������
����
���	�����
�	���	���	������
����
�
��
	�����������
	���������

�������
�
��
������	����	������
 ���������	
����
�
!����������	�"����

#����
�	 �����
�����
�������	

�������	�
����	

��������������	����
���

�����������	��	���	$%&�	'('()��*����	��	#
��
���������	��
	���
��������	���	���������
	��

���������	��������	��
	����������
�����
	���������
�����
�

���	�������	��
��������	������
�� �����
�����	
������

�	�	��������
!	���
�� ����
�
"�����
����#
�"������$
�
��

��++��
�����	��

�"�
�%
����&�	����	���������������'��

%�	,�����
�-)����
�	.
��

/01
/02
''3
'1'

'12

'2/

'22

'4/

'41

��

5���
6����
�

��

5���
6����
� 7�����	3/

���
��	3
�����
��	'('(

Editor in Chief
António Casimiro University of Lisbon, Portugal

AUJ_Editor@Ada-Europe.org

Ada-Europe Board
Tullio Vardanega (President) Italy
University of Padua

Dirk Craeynest (Vice-President) Belgium
Ada-Belgium & KU Leuven

Dene Brown (General Secretary) United Kingdom
SysAda Limited

Ahlan Marriott (Treasurer) Switzerland
White Elephant GmbH

Luís Miguel Pinho (Ada User Journal) Portugal
Polytechnic Institute of Porto

António Casimiro (Ada User Journal) Portugal
University of Lisbon

Ada-Europe General Secretary
Dene Brown Tel: +44 2891 520 560
SysAda Limited Email: Secretary@Ada-Europe.org
Signal Business Center URL: www.ada-europe.org
2 Innotec Drive
BT19 7PD Bangor
Northern Ireland, UK

Information on Subscriptions and Advertisements
Ada User Journal (ISSN 1381-6551) is published in one volume of four issues. The Journal is provided free of
charge to members of Ada-Europe. Library subscription details can be obtained direct from the Ada-Europe General
Secretary (contact details above). Claims for missing issues will be honoured free of charge, if made within three
months of the publication date for the issues. Mail order, subscription information and enquiries to the Ada-Europe
General Secretary.

For details of advertisement rates please contact the Ada-Europe General Secretary (contact details above).

Ada User Journal Editorial Board
Luís Miguel Pinho Polytechnic Institute of Porto, Portugal
Associate Editor lmp@isep.ipp.pt

Jorge Real Universitat Politècnica de València, Spain
Deputy Editor jorge@disca.upv.es

Patricia López Martínez Universidad de Cantabria, Spain
Assistant Editor lopezpa@unican.es

Kristoffer N. Gregertsen SINTEF, Norway
Assistant Editor kristoffer.gregertsen@sintef.no

Dirk Craeynest KU Leuven, Belgium
Events Editor Dirk.Craeynest@cs.kuleuven.be

Alejandro R. Mosteo Centro Universitario de la Defensa, Zaragoza, Spain
News Editor amosteo@unizar.es

Ada User Journal Volume 41, Number 4, December 2020

ADA
USER
JOURNAL

Volume 41

Number 4

December 2020

Contents
Page

Editorial Policy for Ada User Journal 192

Editorial 193

Quarterly News Digest 195

Conference Calendar 224

Forthcoming Events 232

Special Contribution

 P. Rogers

“From Ada to Platinum SPARK: A Case Study” 235

Proceedings of the "HILT 2020 Workshop on Safe Languages and Technologies for Structured

and Efficient Parallel and Distributed/Cloud Computing"

 T. Taft

“A Layered Mapping of Ada 202X to OpenMP” 251

 J. Verschelde

“Parallel Software to Offset the Cost of Higher Precision” 255

Puzzle

 J. Barnes

“Shrinking Squares and Colourful Cubes” 261

In memoriam: William Bail 263

Ada-Europe Associate Members (National Ada Organizations) 264

Ada-Europe Sponsors Inside Back Cover

192

Volume 41, Number 4, December 2020 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and

December. Copy date is the last day of

the month of publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics,

such as reliable software technologies,

are welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

Refereed original articles on technical

matters concerning Ada and related

topics.

Invited papers on Ada and the Ada

standardization process.

Proceedings of workshops and panels

on topics relevant to the Journal.

Reprints of articles published

elsewhere that deserve a wider

audience.

News and miscellany of interest to the

Ada community.

Commentaries on matters relating to

Ada and software engineering.

Announcements and reports of

conferences and workshops.

Announcements regarding standards

concerning Ada.

Reviews of publications in the field of

software engineering.

Further details on our approach to

these are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will

be relayed to the authors at the

discretion of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups

to find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be

of interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it

a wider audience. This includes papers

published in North America that are

not easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These

may represent the views either of

individuals or of organisations. Such

articles can be of any length –

inclusion is at the discretion of the

Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report

on events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal

is at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to

print reviews submitted from

elsewhere at the discretion of the

Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be

rapid. Currently, accepted papers

submitted electronically are typically

published 3-6 months after submission.

Items of topical interest will normally

appear in the next edition. There is no

limitation on the length of papers,

though a paper longer than 10,000

words would be regarded as

exceptional.

 193

Ada User Journal Volume 41, Number 4, December 2020

Editorial

This is the last issue of 2020, a year during which we had to work and live in a very different manner, facing several

challenges no one would have expected one year ago. The preparation of the Ada User Journal was significantly affected

throughout the year and is now getting back to normal. The journal is again being printed and past issues will be steadily

arriving to our subscribers during the next few months. Nevertheless, this issue is still being made available on a digital form

prior to being printed and sent out, in a few weeks from now.

Concerning the contents of this issue, we firstly provide a special contribution prepared by Pat Rogers, from AdaCore, which

illustrates how to program in SPARK to reach a Platinum level implementation, starting from basic Ada. The article

considers a sequential, bounded stack abstract data type as a case study, to show the evolution of the code through the several

levels of software assurance.

Then we start the publication of the Proceedings of the HILT 2020 Workshop on Safe Languages and Technologies for

Structured and Efficient Parallel and Distributed/Cloud Computing, including two papers in this issue. The first one, entitled

“A Layered Mapping of Ada 202X to OpenMP”, is authored by S. Tucker Taft (also from AdaCore). The paper describes

some lightweight parallelism features to be included in Ada 202X, somehow making use of OpenMP lightweight thread

scheduling capabilities. The second paper, by Jan Verschelde from the University of Illinois at Chicago, USA, is entitled

“Parallel Software to Offset the Cost of Higher Precision”. The author explains how to exploit parallelism to compensate for

the extra cost of multiple precision representations and operations, which are necessary to reach sufficiently precise solutions

for some scientific problems. The presented algorithms have been developed using the Ada language.

The Quarterly News Digest and the Calendar sections, respectively prepared by Alejandro R. Mosteo and Dirk Craeynest, are

included as usual. It is worth noticing that the 25th Ada-Europe International Conference on Reliable Software Technologies

(AEiC 2021), is planned to take place online, from the 7th to the 11th of June 2021. The preparations are on-going to make

this event a memorable one, despite taking place as a virtual-only event. All the news can be obtained on http://www.ada-

europe.org/conference2021.

We are happy to bring you another interesting puzzle prepared by John Barnes, this time about “Shrinking Squares and

Colourful Cubes”. The solution for the nested squares puzzle that we included in the previous issue is also provided.

Last but not the least, we sadly inform that William (Bill) Bail passed away suddenly at his home on December 7, 2020. Bill

Bail was actively participating in Ada-Europe conferences for many years, namely by giving tutorials on several topics,

always very appreciated by the attendees. The issue closes with an In Memoriam to Bill, written by Dirk Craeynest, in

representation of the Ada-Europe Board.

 Antonio Casimiro

Lisboa

December 2020

 Email: AUJ_Editor@Ada-Europe.org

mailto:AUJ_Editor@Ada-Europe.org

194

Volume 41, Number 4, December 2020 Ada User Journal

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-

related activities and the future development of the

Ada programming language.

Membership benefits include receiving the quarterly

Ada User Journal and a substantial discount when

registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

 195

Ada User Journal Volume 41, Number 4, December 2020

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 195
Ada-related Events 195
Ada and Education 196
Ada-related Resources 196
Ada-related Tools 197
Ada-related Products 199
Ada and Operating Systems 200
Ada and Other Languages 201
Ada Practice 202
Obituary 221

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

Preface by the News
Editor

Dear Reader,

As I write these lines I have the FOSDEM
livestream on my second monitor. This
brings me to the first topic that I want to
highlight in this issue: sadly, during last
quarter we knew [1] of the passing of
fellow Adaist Vinzent “Jellix” Höfler. I
“devirtualized” him precisely at
FOSDEM’20, where he cracked a joke
during my demo that was producing lots
of “No C sources found in this project”
warnings. To this, he had to say (filtered
by my memory): “I don’t see the
problem.”

As for regular discussions, this time
around I selected a few interesting and
sometimes amusing heated debates. We
have a couple of technical rabbit holes,
about the finer details of protected actions
syntax (that started from an innocent-
looking question about logging [2]) and
properties of real-time clocks and
durations [3]. Did you know that
Duration’Range can legally be as short as
a day? I am a bit ashamed to admit I did
not. Also, an often-seen observation about
array indexing syntax from an Ada
newcomer led to many strongly-held
opinions on the merits (or lack thereof) of
some aspects of Ada syntax [4] that led us

as far as when Ada prototypes had
parentheses for subprograms without
arguments.

To conclude, during this period also took
place the Advent of Code, a scored
competition in which a programming
puzzle a day is presented for you to solve
in your favorite language. A few members
of c.l.a. took the bait and this led to some
interesting exchanges of ideas around the
solutions in a large number of threads
which I have strived to summarize for you
[5].

Sincerely,
Alejandro R. Mosteo.

[1] “Tragic News about Vinzent Hoefler”,
in Obituary.

[2] “Logging and Protected Actions”, in
Ada Practice.

[3] “Starting time of Real-time Clock”, in
Ada Practice.

[4] “Ada Syntax Questions”, in Ada
Practice.

[5] “Advent of Code” and “Advent of
Code Thread Compilation”, in Ada
Practice.

Ada-related Events

ACM HILT 2020 at
SPLASH 2020

[Event already in the past, for the record.
—arm]

From: Richard Wai
<ric.wai88@gmail.com>

Subject: ACM HILT 2020 (High Integrity
Language Technologies) at SPLASH
2020 - Nov 16 & 17

Date: Sun, 1 Nov 2020 19:56:24 -0800
Newsgroups: comp.lang.ada

Hey everyone, just a reminder that the 6th
HILT workshop this year is on Nov 16 &
17, and is part of the larger SPLASH
2020 conference (2020.spashcon.org).
Unsurprisingly, this year's workshop will
be fully virtual.

HILT 2020 focuses on the growing
importance of large-scale, highly parallel,
distributed and/or cloud applications.

For Ada specifically, we have talks on:

- A layered mapping of Ada 202X parallel
constructs to OpenMP (Tucker Taft),

- Experience integrating FAA's NextGen
ERAM (mostly Ada) with SWIM
(Mixed languages) (Brian Kleinke,
Leidos)

- A highly parallel multiple double
precision polynomial solver framework
in Ada (PHC Pack - Prof. Jan
Verschelde of UoI at Chicago)

- A cloud-native/HPC-centric
hyperscaling framework for Ada, and a
supporting Ada-specific exokernel OS
(Yours truly)

Please check out the workshop's website
(https://2020.splashcon.org/home/
hilt-2020) if you are interested in
attending.

CfC 25th Ada-Europe Conf.
on Reliable Software
Technologies

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC 25th Ada-Europe Conf. on
Reliable Software Technologies

Date: Sun, 6 Dec 2020 11:39:55 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

[CfC is included in the Forthcoming
Events Section —arm]

Ada-Europe 2021
Conference - Extended 14
January Deadline

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada-Europe 2021 Conference -
EXTENDED 14 January deadline

Date: Thu, 31 Dec 2020 15:54:46 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

The Ada-Europe 2021 Conference
organizers decided to provide more time
for authors to prepare their contributions.
The deadline for most submissions is
extended to Thursday 14 January 2020.
2 weeks remain!

[CfC is included in the Forthcoming
Events Section —arm]

mailto:amosteo@unizar.es

196 Ada-related Resources

Volume 41, Number 4, December 2020 Ada User Journal

Happy Birthday, Lady Ada

From: AdaMagica
<christ-usch.grein@t-online.de>

Subject: Happy birthday, Lady Ada
Date: Wed, 9 Dec 2020 19:00:53 -0800
Newsgroups: comp.lang.ada

Primeval times when Babbage dwelt:

not were bit nor byte

nor operating system,

not hardware below

nor above software,

abyss abundant,

but computer nowhere.

And lo, there was Ada,

and Ada separated the numbers

and split them,

in Zero and One did she split them.

Continuation see:
https://www.ada-deutschland.de/sites/
default/files/AdaTourCD/AdaTourCD
2004/Ada%20Magica/20.html

From: Simon Wright
<simon@pushface.org>

Date: Thu, 10 Dec 2020 10:08:56 +0000

> in Zero and One did she split them.

The Analytical Engine was a decimal
machine

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Thu, 10 Dec 2020 02:52:06 -0800

> The Analytical Engine was a decimal
machine

That's OK.

I know Babbage's engine came before
Zuse, C++ came after Ada.

But an ode need not be historically
correct. Would you claim Edda is
historically correct?

Ár var alda, þat er Ymir bygði,
Vara sandr né sær né svalar unnir;
iorð fannz æva né upphiminn,
gap var ginnunga, enn gras hvergi.

Translate this and it will give about the
same as the first verse above.

Ada and Education

Strategies for Teaching Ada

[Cont. from “Strategies for Teaching
Ada” in AUJ 41-2, June 2020 —arm]

From: Norman Worth
<nworth@comcastnospam.net>

Subject: Re: Beginning Ada Programming,
by Andrew T. Shvets (2020)

Date: Mon, 2 Nov 2020 14:14:03 -0700
Newsgroups: comp.lang.ada

>> There's nothing wrong with using
integer to start off and then moving
onto defined types.

> Yes there is! (see my paper at the last
Ada-Europe). The first message when
you teach Ada is that it is all about
defining proper types. You have to start
by fighting bad habits from other
languages.

One of the most difficult things for
programmers to graft these days is the
concept and proper use of types, which is
key to Ada. Ada makes this even more
complicated with the very useful
attributes of private and limited types.
Unless a text clearly conveys the use of
types and illustrates it throughout, it is
useless for teaching people Ada. Since
this is a foreign concept to most current
programmers, illustrations and good
exercises are needed, too.

Compare this text to Barnes, which most
of us use as a quick reference.

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 12 Nov 2020 13:24:57 -0800

> So I can't learn Ada from docs online?

You can. But the best Ada resources are
books and the Language Reference.

(The Language Reference is dry, but very
readable compared to some of the other
standards I've come across.)

Also, the compiler itself is typically very
good because of generally high-quality
error messages.

From: Chris Townley
<news@cct-net.co.uk>

Date: Thu, 12 Nov 2020 22:31:59 +0000

> Also, the compiler itself is typically
very good because of generally high-
quality error messages.

Although the errors can be very confusing
sometimes, if you make a big mistake…

Ada-related Resources

[Delta counts are from Nov 2nd to Feb
2nd. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Tue, 02 Feb 2021 17:31:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 3_078 (+53) members [1]

- Reddit: 5_233 (+513) members [2]

- Stack Overflow:1_973 (+49)
 questions [3]

- Freenode: 85 (-5) users [4]

- Gitter: 66 (+2) people [5]

- Telegram: 108 (+18) users [6]

- Twitter: 60 (-7) tweeters [7]
 95 (+3) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 02 Nov 2020 18:41:21 +0100
To: Ada User Journal readership

Rosetta Code: 761 (+14) examples [1]
 37 (=) developers [2]

GitHub: 755 (+26) developers [3]

Sourceforge: 278 (+2) projects [4]

Open Hub: 212 (=) projects [5]

Alire: 146 (+16) crates [6]

Bitbucket: 88 (-2) repositories [7]

Codelabs: 52 (=) repositories [8]

AdaForge: 8 (=) repositories [9]

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
q=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

Ada-related Tools 197

Ada User Journal Volume 41, Number 4, December 2020

[Positive ranking changes mean to go up
in the ranking. The IEEE ranking has
published its 2020 edition. —arm]

- TIOBE Index: 32 (+7) 0.4%
(+0.05%) [1]

- PYPL Index: 19 (=) 0.65% (+0.3%)[2]

- IEEE Spectrum (general): 39 43 (+4)
Score: 32.8 24.8 [3]

- IEEE Spectrum (embedded): 12 13 (+1)
Score: 32.8 24.8 [3]

[1] https://www.tiobe.com/tiobe-index/

[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2020

Ada-related Tools

Zip-Ada v.57

From: gautier_niouzes@hotmail.com
Subject: Ann: Zip-Ada v.57
Date: Fri, 2 Oct 2020 09:57:42 -0700
Newsgroups: comp.lang.ada

New in v.57 [rev. 799]:

 - UnZip: fixed bad decoding case for the
Shrink (LZW) format, on some data
compressed only by PKZIP up to v.1.10,
release date 1990-03-15.

 - Zip.Create: added
Zip_Entry_Stream_Type for doing
output streaming into Zip archives.

 - Zip.Compress: Preselection method
detects Audacity files (.aup, .au) and
compresses them better.

Zip-Ada is a pure Ada library for dealing
with the Zip compressed archive file
format. It supplies:

 - compression with the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW), Deflate and LZMA

 - decompression for the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW), Implode, Deflate,
Deflate64, BZip2 and LZMA

 - encryption and decryption (portable Zip
2.0 encryption scheme)

 - unconditional portability - within limits
of compiler's provided integer types and
target architecture capacity

 - input archive to decompress can be any
kind of indexed data stream

 - output archive to build can be any kind
of indexed data stream

 - input data to compress can be any kind
of data stream

 - output data to extract can be any kind of
data stream

 - cross format compatibility with the
most various tools and file formats
based on the Zip format: 7-zip, Info-
Zip's Zip, WinZip, PKZip, Java's JARs,

OpenDocument files, MS Office 2007+,
Google Chrome extensions, Mozilla
extensions, E-Pub documents and many
others

 - task safety: this library can be used ad
libitum in parallel processing

 - endian-neutral I/O

Main site & contact info:

 http://unzip-ada.sf.net

Project site & subversion repository:

 https://sf.net/projects/unzip-ada/

GitHub clone with git repository:

 https://github.com/zertovitch/zip-ada

GNAT CE 2020, arm-eabi,
for macOS

From: Simon Wright
<simon@pushface.org>

Subject: GNAT CE 2020, arm-eabi, for
macOS

Date: Tue, 06 Oct 2020 16:59:05 +0100
Newsgroups: comp.lang.ada

There were few downloads of this from
the AdaCore site, so they've not produced
a 2020 edition. This is my attempt at that
missing edition!

At https://sourceforge.net/projects/
gnuada/files/GNAT_GPL%20Mac%20
OS%20X/2020-arm-eabi-darwin-bin/

Simple Components v4.51

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.51

Date: Sun, 18 Oct 2020 08:43:41 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Memory leak fixed in the package
Generic_Unbounded_Ptr_Array;

- Bug fix in data selector initialization (in
the package
GNAT.Sockets.Connection_State_Mach
ine);

- An exception-free variant of Put was
added to the Generic_Indefinite_FIFO
package;

- ModBus TCP/IP implementation bug fix
(the package
GNAT.Sockets.Connection_State_Mach
ine.MODBUS_Client);

- Code modified to work around GCC
10.0.1 optimization bug.

Simple Components v4.53

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple components v4.53
Date: Sun, 13 Dec 2020 10:02:03 +0100
Newsgroups: comp.lang.ada

[...]

Changes to the previous version:

 - Get_Reader_Timeout,
Set_Reader_Timeout, Wait_For_Tasks
were added to the package
GNAT.Sockets.Server.Blocking;

 - JSON parser fixed to accept empty
objects {} and empty array [];

 - OpenSSL bindings were extended;

 - The procedure Next_Unbiased was
added to the package
Generic_Random_Sequence.

Ahven 2.8

From: Tero Koskinen
<tero.koskinen@iki.fi>

Subject: ANN: Ahven 2.8
Date: Sun, 18 Oct 2020 21:47:38 +0300
Newsgroups: comp.lang.ada

Ahven version 2.8 is now available from
https://www.ahven-framework.com/

Direct links to tar.gz and zip packages:

* https://www.ahven-framework.com/
releases/ahven-2.8.tar.gz

* https://www.ahven-
framework.com/releases/ahven-2.8.zip

Ahven is a simple unit test library (or a
framework) for Ada programming
language. It is loosely modelled after
JUnit and some ideas are taken from
AUnit. Ahven is free software distributed
under permissive ISC license and should
work with any Ada 95, 2005, or 2012
compiler.

Version 2.8 is a minor maintenance
release. The changes are:

* Source code repository of Ahven is now
hosted at

 Sourcehut:
https://hg.sr.ht/~tkoskine/ahven

* Improvements to Janus/Ada build
scripts

* Improvements to GNAT build scripts

* Minor documentation updates

198 Ada-related Tools

Volume 41, Number 4, December 2020 Ada User Journal

HAC v.0.076

From: gautier_niouzes@hotmail.com
Subject: Ann: HAC v.0.076
Date: Sat, 24 Oct 2020 00:38:57 -0700
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is a small,
quick, open-source Ada compiler,
covering a subset of the Ada language.

You find below the changes since the last
post about HAC in this forum.

Links to the project and contact (tracing
;-)) addresses are available from the blog
posts cited below.

0.071 Discrete type range is stored in type
definition; "subtype T1 is T2;"

0.072 Subtype_Indication (e.g. "for B in
Boolean loop", "array (States) of Prob")

https://gautiersblog.blogspot.com/2020/
06/hac-v0072-subtype-indication.html

0.073 The VM can be aborted via the
Feedback procedure

0.074 Types: Time and Duration

0.075 Added Ada.Calendar-like functions

https://gautiersblog.blogspot.com/2020/
10/hac-v0075-time-functions-goodies-
for.html

0.076 Added Ada.Directories-like
subprograms

https://gautiersblog.blogspot.com/2020/
10/hac-v0076-adadirectories-like.html

XNAdaLib 2020 Binaries for
macOS Catalina

From: Blady <p.p11@orange.fr>
Subject: [ANN] XNAdaLib 2020 binaries for

macOS Catalina including GTKAda and
more.

Date: Sun, 25 Oct 2020 10:11:49 +0100
Newsgroups: comp.lang.ada

This is XNAdaLib 2020 built on macOS
10.15 Catalina for Native Quartz with
GNAT Community 2020 including:

- GTKAda 20.2
(www.adacore.com/gtkada) with GTK+
3.24.20 (www.gtk.org) complete,

- Glade 3.22.1 (glade.gnome.org),

- GnatColl 20.2
(github.com/AdaCore/gnatcoll),

- Florist mid-2020a (github.com/Blady-
Com/florist),

- AdaCurses 6.2 (invisible-island.net/
ncurses/ncurses-Ada95.html),

- Gate3 0.5c
(sourceforge.net/projects/lorenz),

- Components 4.50 (www.dmitry-
kazakov.de/ada/components.htm),

- AICWL 3.24 (www.dmitry-
kazakov.de/ada/aicwl.htm),

- Zanyblue 1.4.0
(zanyblue.sourceforge.net),

- PragmARC mid-2020
(pragmada.x10hosting.com/pragmarc.
htm),

- GNOGA 1.6-beta (www.gnoga.com),

- SparForte 2.3.1 (sparforte.com),

- Alire 0.6.1 (alire.ada.dev), NEW

and as side libraries:

- Template Parser 20.2,

- gtksourceview 3.24.4,

- GNUTLS 3.6.14,

- GMP 6.1.2,

- make 4.2.1,

- Python 2.7.17.

XNAdaLib binaries have been post on
Source Forge:

https://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2020-catalina

Report preferably all comments to
MacAda.org mailing list:

http://macada.org/macada/Contacts.html

See list archive:

https://hermes.gwu.edu/archives/
gnat-osx.html

From: Simon Wright
<simon@pushface.org>

Date: Sun, 25 Oct 2020 09:39:41 +0000

Great stuff, just a couple of comments -

> - Python 2.7.17.

Not maintained since 1 Jan. There are
excellent downloads of 3 (currently 3.9)
at python.org.

> Report preferably all comments to
MacAda.org mailing list:

> http://macada.org/macada/
Contacts.html

Gives a (Korean?) 404.

You can subscribe at
https://hermes.gwu.edu/cgi-bin/
wa?A0=GNAT-OSX

RFC UXStrings Package.

From: Blady <p.p11@orange.fr>
Subject: RFC UXStrings package.
Date: Wed, 11 Nov 2020 21:18:17 +0100
Newsgroups: comp.lang.ada

UXStrings is now a standalone library
available on Github.

https://github.com/Blady-Com/UXStrings

Comments on specifications are welcome.

A first implementation POC is provided.
UTF-8 encoding is chosen for internal
representation. The Strings_Edit library is
used for UTF-8 encoding management.

http://www.dmitry-kazakov.de/ada/
strings_edit.htm

This implementation which is only to
demonstrate the possible usages of
UXString has many limitations as for
instance there is no memory deallocation.
Only a few API are implemented.

A test program is also provided with some
features working.

See readme for full details.

https://github.com/Blady-Com/
UXStrings/blob/master/readme.md

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Fri, 27 Nov 2020 00:38:56 -0800

There are few more options to forget
about encodings and related issues:

New AdaCore's VSS
https://github.com/AdaCore/VSS

Old Matreshka's League
http://forge.ada-ru.org/matreshka

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 27 Nov 2020 11:05:08 +0000
> There are few more options to forget

about encodings and related issues:

My very basic utf-8 string -
https://github.com/Lucretia/uca

Ada-12 Version of
PragmARC

From: PragmAda Software Engineering
<pragmada@pragmada.x10hosting.com>
Subject: [Ann] Ada-12 Version of the

PragmAda Reusable Components
Date: Sun, 1 Nov 2020 19:20:42 +0100
Newsgroups: comp.lang.ada

Now that there are 2 (count 'em!) Ada-12
compilers*, an Ada-12 version of the
PragmARCs is available at
https://github.com/jrcarter/PragmARC

In addition to making use of Ada-12
features, this version has a restructured
package hierarchy and is released under
the 3-clause BSD license.

These have only been compiled with the
GNAT compiler. Feedback from those
with access to the other compiler would
be welcome.

*Defined as a compiler that implements
the entire Ada-12 core language.

SweetAda 0.1g

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Subject: SweetAda 0.1g released
Date: Sun, 15 Nov 2020 13:16:55 -0800
Newsgroups: comp.lang.ada

I've just released SweetAda 0.1g.

Ada-related Products 199

Ada User Journal Volume 41, Number 4, December 2020

This is a maintenance release, and
introduces new toolchains based on
Binutils 2.35, GCC 10.2.0 and GDB 10.1.

Along with new tools, the basic support
libraries, e.g., GMP, MPFR, MPC, and all
auxiliary libraries were used at the highest
stable version during the builds.

Sorry for a significant delay in releasing,
but it is very time-consuming to keep
everything in-sync, especially when
toolchains change. Neither I had the time
to complete the manual, I'll try to do that
in the near future.

SweetAda itself gets few changes:

- due to a deeper Ada code analysis, the
new compiler front-end showed possible
superfluous aspects; they are removed
and warnings made silent

- slightly better menu scripts

- echo_log() and echo_log_error()
functions in Bash scripts are now
renamed as log_print() and
log_print_error()

- minor changes and typos here and there

Of course, LibGCC and RTS packages
are synchronized with new toolchains, so
download them as well.

I am working on Insight too, hopefully
packages will be available ASAP, but it is
still at 20200417 timestamp. Please note
that if you install Insight, it will overwrite
the standard GDB executable, and you're
stuck at 9.1. GPRbuild remains at
20200417 timestamp as well.

I discovered a mismatch in QEMU for
Linux 20200817 targeted for ARM, AVR,
AArch64, x86 and M68k CPUs, where
executables end up being objects for an
OS X platform, because of bad naming.
This is now corrected. Sorry for that,
please re-download the following
packages:

qemu-aarch64-20200817L.tar.xz

qemu-arm-20200817L.tar.xz

qemu-avr-20200817L.tar.xz

qemu-i386-20200817L.tar.xz

qemu-m68k-20200817L.tar.xz

Furthermore, QEMU for Windows
packages lack libffi-6.dll. This is now
corrected. Please re-download

qemu-<every_cpu>-20200817W.zip (or
place a libffi-6.dll library taken from a
random MinGW64 package, along the
QEMU executable).

Find everything at
https://www.sweetada.org.

By the way, the connection to SweetAda
website is now completely secure. Many
thanks to the Certbot team.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Mon, 16 Nov 2020 12:51:39 -0800

I suggest that an announcement like this
should include, at or near the top of the
article, a brief description of what
SweetAda is.

From the web site:

SweetAda is a lightweight development
framework whose purpose is the
implementation of Ada-based software
systems.

[...]

AdaStudio-2021 Release
01/01/2021 Free Edition

From: Leonid Dulman
<leonid.dulman@gmail.com>

Subject: Announce : AdaStudio-2021
release 01/01/2021 free edition

Date: Wed, 30 Dec 2020 00:51:09 -0800
Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2021.

In the new AdaStudio release it was
added Qt6Ada support for new
framework Qt-6.0.0.

I added some packages from Qt-5.15.0
open source (qtcharts qtconnectivity
qtgraphicaleffects qtimageformats
qttexttospeech qtlocation qtlottie
qtmultimedia qtsensors qtserialbus
qtserialport qtwebchannel)

Qt6ada version 6.0.0 open source and
qt6base.dll, qt6ext.dll (win64),
libqt6base.so, libqt6txt.so(x86-64) built
with Microsoft Visual Studio 2019
x64bin Windows, gcc x86-64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux x86-64
Debian 10.0

I built Qt6 binaries for win64 and x86-64
and include them into AdaStudio-2021
(qt6ada directory)

Known problems:

1) for quick3d and quickcontrols2 plugins
I have got unresolved entry points
ml_registr_types_QtQuick3D(), so some
examples do not work properly.

2) in Linux multimedia plugins do not
built properly and services do not work
(qtavada works fine)

3) webengine does not work and it is not
added to qt6ada

Qt 6 is a new long time project and I hope
to solve these problems in the next
release.

Qt6Ada is built under а GNU GPLv3
license: https://www.gnu.org/licenses/
lgpl-3.0.html.

Qt6Ada and VTKAda for Windows,
Linux (Unix) is available from

https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio

web page or Google drive

https://drive.google.com/folderview?
id=0B2QuZLoe-
yiPbmNQRl83M1dTRVE&usp=sharing
(google drive. It can be mounted as virtual
drive or directory or viewed with Web
Browser)

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.docx"

The latest hacker attacks will force many
companies to reconsider technologies
based on scripting languages such as
Python, Ruby, Perl, JavaScript and others,
in which it is much easier to replace code
than in translated modules. Therefore,
interest in a language such as Ada should
greatly increase.

If you have any problems or questions, let
me know.

Ada-related Products

Adalog's "Back to Quality"
Program

From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] Adalog's "Back to Quality"

program
Date: Sat, 24 Oct 2020 09:03:33 +0200
Newsgroups: comp.lang.ada

Adalog annonces the "Back to quality"
program.

Thanks to our experience and advanced
tools, we offer technical assistance to
relieve your technical dept by fixing non-
conformities to your coding standard that
you never have time to fix by yourself.

For more details, see:
https://adalog.fr/en/btq_program.html
or write to info@adalog.fr

State Preserving Fault
Tolerance for Ada
Applications

From: Thomas Wetmore
<tom.wetmore@gmail.com>

Subject: State Preserving Fault Tolerance
for Ada Applications

Date: Wed, 9 Dec 2020 13:37:51 -0800
Newsgroups: comp.lang.ada

Our small startup has developed a new
software fault tolerant (FT) architecture,
implemented as an SDK and library, that
we are currently adapting for use with
Ada and SPARK. It will enable
developers to create true state preserving,
fault tolerant Ada applications by either
developing new or modifying existing
code. The architecture provides additional
levels of availability and security by
providing resilience against both

200 Ada and Operat ing Systems

Volume 41, Number 4, December 2020 Ada User Journal

 hardware failures and software anomalies
(attacks). The port will enable Ada users
to create FT Ada applications that can be
adapted for most COTS h/w - s/w
platforms. Such applications can even be
run on heterogeneous, geographically
distributed configurations - using bare
metal, virtual machines, or containers.

Note that this new application-based FT
software technology was created by our
veteran computer design engineers who
have developed multiple generations of
fault tolerant systems currently in world-
wide use. The Ada implementation of the
technology is being created by a veteran
Ada expert who has been developing with
Ada since its inception.

We are looking for users with whom we
can collaborate to 1) provide needs input,
2) assist with QC & real-world use case
testing, and/or 3) create prototypes and/or
proofs of concept. Please let me know if
you are interested in learning more and
we will be glad to share additional
information.

Ada and Operating
Systems

Developing on a Mac

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Developing on a Mac
Date: Wed, 14 Oct 2020 09:39:58 -0700
Newsgroups: comp.lang.ada

I searched but could not find it. How to
develop Ada programs on a Mac today
(Catalina)? GNAT CE 2020 for Mac has
no GPS anymore. Must one use Xcode?
How to make Xcode Ada-aware and
integrate it with GNAT? Some other Ada-
aware IDE for Mac?

From: Simon Wright
<simon@pushface.org>

Date: Wed, 14 Oct 2020 20:02:59 +0100

> How to develop Ada programs on a
Mac today (Catalina)? GNAT CE 2020
for Mac has no GPS anymore.

If you want GPS the best bet is probably
to use the GPS from GNAT CE 2019 with
the new compiler. Have CE 2020 bin first
on your PATH, then explicitly call up
gps: I just used /opt/gnat-ce-2019/bin/gps.

There is a port of GNAT Studio to
Catalina[1], but ISTR it's not all working
100%?

> Must one use Xcode? How to make
Xcode Ada-aware and integrate it with
GNAT?

Last time I heard, Xcode is proprietary
and closed, and no one has ever reported
extending it for Ada. But of course I
haven't been looking.

> Some other Ada-aware IDE for Mac?

Emacs[2], with ada-mode[3]].

[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GPL%20Mac%20
OS%20X/2020-catalina/GNATStudio-
20.2-a.dmg/download

[2] https://emacsformacosx.com

[3] https://www.nongnu.org/ada-mode/
ada-mode.html

From: Simon Wright
<simon@pushface.org>

Date: Thu, 15 Oct 2020 10:35:39 +0100

> How to develop Ada programs on a
Mac today (Catalina)?

[...]

> Some other Ada-aware IDE for Mac?

Just announced:

https://github.com/thindil/vim-ada/
releases/tag/v10.0

https://github.com/thindil/Ada-Bundle

From: Jerry <list_email@icloud.com>
Date: Thu, 15 Oct 2020 16:41:40 -0700

> How to develop Ada programs on a
Mac today (Catalina)?

Some of the following is kind of vague
but I hope it is useful. Many listers will
know much more.

One time a long time ago someone (on
this list?) made Xcode work with Ada. It
was fantastic. Even a debugger IIRC. But
apparently Apple likes to change the
underpinnings and after some time Xcode
ceased to work with Ada. (There also is or
was a FPC Pascal way with Xcode that
was even more capable but I haven't
checked into that for a long time.)

There also used to be Carbon bindings to
Ada, possibly made by the same person.
(The words "Blady" and "Pascal" come to
mind for this person.) They were on the
macada.org web site which doesn't seem
to do much these days, as well as being
linked from AdaPower. Of course the
Carbon API has been long-deprecated but
I'm sure it is still used. (How does
Microsoft keep Word et al working on
Macs?)

It's not a full IDE in some opinions but
Visual Studio Code runs on Macs, even
my now-ancient 2008 PowerBook and
macOS 10.11.6. There is an Ada plug-in
but make sure you get the right one. I
think this plug-in might be supported by
AdaCore. And there's something about an
Ada Language Server. I don't really
understand all of this. I've tried to get this
running but the instructions are minimal
so it is taking more effort than it should.
(Why are installation instructions so
frequently written assuming that you
already know how to install stuff?)

IntelliJ IDEA CE also has an Ada plug-in.

I guess Eclipse has an Ada plug-in as
well. I think AdaCore supports this but
I'm not sure if the Mac version is well-
supported.

None of the above except Xcode is a
native Mac app so you'll have to deal with
a certain amount of cross-platform-
turdism. I would happily pay hundreds of
$US for a native Mac Ada IDE but that
will never happen. The previously-
mentioned Xcode hack was close enough,
though.

There are lots of text editors that aren't too
bad. I have used Textmate with its Ada
plug-in (bundle) which I've modified for
my own purposes for many years. Not an
IDE but it does have the capability to link
from parsed error reports back to your
code. Textmate was a leader in this area
and its bundle architecture has been used
by several other editors.

Sorry if this is all a little sketchy.

Now for something OT. If you are doing
technical work in Ada and want to store
or examine or plot results, I have made
Igor Pro (wavemetrics.com) work with
Ada. This is a fantastic arrangement. It's
almost as nimble as working in a
notebook (think Jupyter or Jupyter Lab)
but you get the awesomeness of Igor Pro
to plot, post-process, and document.

From: Blady <p.p11@orange.fr>
Date: Fri, 16 Oct 2020 22:21:30 +0200

> There also used to be Carbon bindings
to Ada, possibly made by the same
person.

If I remember well, the Carbon bindings
were provided by James E. Hopper from a
Pascal to Ada translation with p2ada of
Apple Carbon API in Pascal. Though
Carbon may still work, Apple wasn't
maintaining the Pascal API, but only the
C API.

Thus Ada Carbon Bindings weren't used
anymore as far as I know. I provided
some Xcode support to Ada but after, as
you said, Xcode was no more
customizable.

You'll find here some historical material:

https://blady.pagesperso-orange.fr/
alpha.html

Ada on QNX

From: DrPi <314@drpi.fr>
Subject: Ada on QNX
Date: Thu, 10 Dec 2020 08:50:53 +0100
Newsgroups: comp.lang.ada

Anyone has cross-compiled Ada for QNX
SDP 6.6.0 (ARM target)?

From: Quentin Ochem
<qochem@gmail.com>

Date: Thu, 10 Dec 2020 08:03:48 -0800

Hi Nicolas,

Ada and Other Languages 201

Ada User Journal Volume 41, Number 4, December 2020

FWIW, there's an AdaCore port that has
been done specifically targeting
QNX/ARM. If you want to discuss, feel
free to drop me an e-mail
(ochem@adacore.com).

From: DrPi <314@drpi.fr>
Date: Fri, 11 Dec 2020 10:49:57 +0100

Yes, I know. I've been in contact with
someone from Adacore about 2 years ago.
But the port is for QNX SDP 7.0.0 and
later only.

It seems that there is provision for a QNX
compilation in FSF GNAT. Not sure of
that and not tried to go this way yet.

Read/Write Access to UNIX
Character Devices

From: philip.munts@gmail.com
Subject: Read/write access to Unix

character devices
Date: Sun, 20 Dec 2020 20:59:28 -0800
Newsgroups: comp.lang.ada

Lately I have been working with Unix
(really Linux, FreeBSD, and OpenBSD)
character devices (these happen to be
USB raw HID devices, but the problem is
more general than that). The way these
work is that each hardware device has a
character device node file in /dev/, like
/dev/hidraw1. You open the file for both
read and write access. Then you can send
a command to the device by writing a
binary blob and get a response by
subsequently reading a binary blob. For
what I am doing, it is important not to
block on reads forever if there is no
response forthcoming, so I need at least
read timeouts.

So far, I have been binding the C library
functions open(), close(), read(), write(),
and poll() with pragma Import. That
works, but I have wondered if there is
some way of accomplishing the same
thing more portably. The packages
GNAT.Sockets and
GNAT.Serial_Communicatons can be
viewed as special case solutions, but I
would like a general solution.

What I would really like is
Ada.Sequential_IO with InOut_File and a
timeout mechanism, perhaps like the
select() wrapper in GNAT.Sockets.

So far I haven't found anything in the
Ada. or GNAT. that supports InOut_File
semantics (other than Direct_IO) let alone
timeouts. Does anybody have any
suggestions?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:23:08 -0600

I would use Stream_IO for this, but you'd
need help from your implementer to get
timeouts/nonblocking I/O. If they have
them, they'd be some sort of Form
parameter (that's what the typically
ignored Form parameter is for).

Stream_IO is a lot more flexible that
Sequential_IO and Direct_IO. (Some
implementations implement those older
Ada 83 packages in terms of Stream_IO.)

Ada and Other
Languages

Importing Python Library
into Ada

From: Roger Mc
<rogermcm2@gmail.com>

Subject: Import Python library into an Ada
package?

Date: Thu, 3 Dec 2020 23:36:13 -0800
Newsgroups: comp.lang.ada

Is it possible to import a Python library,
such as graphviz, into an Ada package?
So far I have only been able to find
information on exporting Ada to Python.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 4 Dec 2020 11:23:21 +0100

I am not sure what you mean. Python is
not a compiled language, so formally
speaking a Python library is not a library
and you cannot import it in the sense of
linking it to your application and calling
subprograms from it using certain calling
conventions.

If you rather meant whether you could
execute a Python script from Ada while
passing parameters to it and taking results
from, yes you can. If that script were a
part of some Python module, yes you can
load it and once loaded call (interpret)
functions from the module.

P.S. Before you proceed, Python is a huge
mess and interfacing it is a pain in the ...
So you should consider if Graphviz is
worth the effort. If you find a GTK or Qt
library that is doing approximately the
same, that would be a wiser choice, IMO.

From: Roger Mc
<rogermcm2@gmail.com>

Date: Fri, 4 Dec 2020 03:37:53 -0800

Many thanks for your prompt response
and comments Dmitry; they are well
appreciated with some of the contents
somewhat expected.

I think that I misused the term " Python
library"; I think "Python module" is what
I should have used.

In this context, in Python, is a module a
script? I'll investigate this.

[...]

The project that I am embarking on is to
use Ada for an on-line course in machine
learning that uses Python as its teaching
platform. The importing that I was
contemplating concerns special machine
learning Python modules used in the
course.

Of course, the alternative is for me to
translate the Python modules into Ada
which is something I've done in the past;
generally, in my opinion, yielding much
better and more readable code. Again,
thanks for your very helpful comments
which, hopefully, have focused my mind
on the way ahead.

Regarding your comment that "Python is
a huge mess" and my own opinion of
Python; I am mortified that Python seems
to have become the standard language for
teaching computer programming and,
particularly, that it seems to be the choice
of leading university computer science
courses. It seems that the old well-
established rules of quality computer
program design have been completely
abandoned by these institutions.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 4 Dec 2020 15:22:46 +0200

> Is it possible to import a Python library,
such as graphviz, into an Ada package?

If you mean the Graphviz tool-set,
https://en.wikipedia.org/wiki/Graphviz,
that seems to be written in C and to be
open source. You should be able to call
Graphviz functions from Ada in the same
way as one calls any C code from Ada.
The Python module you refer to is
probably just a binding from Python to
the C code in Graphviz.

If you want to use Graphviz just to draw
automatically laid-out graphs, there is
another way, that I have used: make the
Ada program write out the graph
definition as a text file in the "dot"
language, and then invoke the "dot"
program from Graphviz to lay out and
draw the graph into some graphical
format. However, it may be troublesome
to make this method work interactively --
I was satisfied with non-interactive post-
processing of the "dot" file generated by
my Ada program.

From: gautier_niouzes@hotmail.com
Date: Fri, 4 Dec 2020 05:41:08 -0800

As a side note, there is a cool utility called
DePlo (https://sites.google.com/site/
depplot/ , sources here :
https://launchpad.net/deplo) that creates a
dependency graph of Ada units from the
.ali files that GNAT produces when
building a project.

This graph is in Graphviz's DOT format.

And indeed, graphviz is not specific to
Python. The sources are in C, and the
Web site mentions bindings to: guile, perl,
python, ruby, C#, tcl .

From: Simon Wright
<simon@pushface.org>

Date: Fri, 04 Dec 2020 13:55:15 +0000

> Regarding your comment that "Python
is a huge mess" and my own opinion of
Python; [...]

202 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

I'd certainly agree that interfacing to
Python from Ada is a huge mess
(specifically, unsupported hand
management of garbage collection, as you
have to do if invoking Python objects).

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 4 Dec 2020 19:32:58 +0100

> If you want to use Graphviz just to draw
automatically laid-out graphs [...]

And if you really just want to draw graphs
- and can use another tool - gnuplot can
be controlled by spawning it and sending
commands on stdin via pipes.

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Fri, 4 Dec 2020 22:12:11 +0100

> Is it possible to import a Python library,
such as graphviz, into an Ada package?

gnatcoll.python + a lot of binding work

From: Roger Mc
<rogermcm2@gmail.com>

Date: Fri, 4 Dec 2020 13:19:10 -0800

> gnatcoll.python + a lot of binding work

I have been trying to figure out how to
use gnatcoll.python. Unfortunately it
doesn't seem to provide any supporting
documentation.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 5 Dec 2020 00:17:12 +0100

> Unfortunately it doesn't seem to provide
any supporting documentation.

What about this:
https://docs.adacore.com/
gnatcoll-docs/scripting.html

I have a rudimentary Python bindings
independent of GNATColl, which I use to
run Python scripts from Ada. They were
designed to load Python dynamically, I
did not want to make the application
dependent on Python installed. If you
want, you can use them as a template.
There is no documentation, but the code
using them. But as I said, better not... (:-))

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 5 Dec 2020 10:38:10 +0100

> I would really appreciate seeing your
"rudimentary Python bindings ".

Download sources of this:

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm

The project is large. Only these packages
are related to Python:

1. Py is the bindings

2. Py.Load_Python_Library is an OS-
dependent part for loading Python
dynamically from a DLL (Linux or
Windows)

3. Py.ELV_MAX_Cube is an
implementation of a Python module in
Ada. I.e. calling Ada from Python.

4. MAX_Control_Page contains a task
that periodically runs a Python script.
I.e. calling Python from Ada.

Ada Practice

Logging and Protected
Actions

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: Re: is there a version of unix
written in Ada

Date: Thu, 1 Oct 2020 11:28:10 +0200
Newsgroups: comp.lang.ada

[...] BTW, I still do not know how to
design an Ada-conform tracing/logging
facility such that you could trace/log from
anywhere, protected action included, and
without knowing statically which
protected object is involved.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 1 Oct 2020 11:59:58 +0200

> BTW, I still do not know how to design
an Ada-conform tracing/logging facility
such that you could trace/log from
anywhere [...]

Did you have a look at package Debug?

(https://www.adalog.fr/en/components
#Debug)

It features, among others, a trace routine
which is guaranteed to not be potentially
blocking.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Oct 2020 12:21:46 +0200

> It features, among others, a trace routine
which is guaranteed to not be
potentially blocking.

It calls a protected operation on a
different protected object, yes, this is non-
blocking, and I considered the same, but
is this legal? Maybe I am wrong, but I
have an impression that walking away to
another object is not OK. Or is that
limited to protected entries only?

Another issue is having two different
calls: Trace and protected Trace. If one is
used instead of another, you have a
ticking bomb in the production code. I
remember that there was a GNAT pragma
to catch it, but it was a run-time check, so
it just replaced one type of explosive with
another.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 1 Oct 2020 14:38:27 +0300

> It calls a protected operation on a
different protected object, yes, this is
non-blocking [...], but is this legal?

Yes.

If the program is using ceiling-priority-
based protection, the priority of the
calling object must be less or equal to the
priority of the called object.

> Or is that limited to protected entries
only?

An entry call is potentially blocking and
therefore not allowed in a protected
operation.

> Another issue is having two different
calls: Trace and protected Trace. If one
is used instead of another, you have a
ticking bomb in the production code.

I assume that is a "feature" of the
referenced Debug package, not of the
basic method it uses to implement a
logging facility.

I haven't looked at the Debug package,
but I would have suggested a logging
facility that consists of:

1. A FIFO queue of log entries
implemented in a protected object of
highest priority. The object has a
procedure "Write_Log_Entry".

2. A task that empties the FIFO queue
into a log file. The task calls an entry of
the FIFO protected object to get a log
entry from the queue, but executes the
file-writing operations in task context,
not in a protected operation.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 1 Oct 2020 13:48:26 +0200

> I remember that there was a GNAT
pragma to catch it, but it was a run-time
check

Well, just use AdaControl with the rule:

check Potentially_Blocking_Operations;

;-)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Oct 2020 14:51:54 +0200

> If the program is using ceiling-priority-
based protection, the priority of the
calling object must be less or equal to
the priority of the called object.

My mental picture was protected
procedure calls executed concurrently on
different cores of a multi-core processor.
Would that sort of implementation be
legal?

If so, then let there be protected procedure
P1 of the object O1 and P2 of O2. If P1
and P2 call to P3 of O3 that would be a
problem. Ergo either wandering or
concurrent protected protected calls must
be illegal.

> 1. A FIFO queue of log entries
implemented in a protected object of
highest priority. The object has a
procedure "Write_Log_Entry".

Ada Pract ice 203

Ada User Journal Volume 41, Number 4, December 2020

Yes, that was what I thought and what
Debug.adb does. However Debug.adb
allocates the body of the FIFO element in
the pool. I would rather use my
implementation of indefinite FIFO which
does not use pools. I don't want
allocators/deallocators inside protected
stuff.

> 2. A task that empties the LIFO queue
into a log file.

A simpler approach is to flush the queue
by the first call to an unprotected variant
of Trace. I believe Debug.adb does just
this.

From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 1 Oct 2020 16:18:58 +0200

> My mental picture was protected
procedure calls executed concurrently
on different cores of a multi-core
processor. Would that sort of
implementation be legal?

No. Protected objects guarantee that only
one task at a time can be inside (ignoring
functions). Multi-cores don't come into
play.

> I don't want allocators/deallocators
inside protected stuff.

As surprising as it may seem,
allocators/deallocators are NOT
potentially blocking operations. But I
understand your concerns...

> A simpler approach is to flush the queue
by the first call to an unprotected
variant of Trace. I believe Debug.adb
does just this.

Yes. Moreover, there is a Finalize of a
controlled object to make sure that no
trace is lost if the program terminates
without calling any (unprotected) Trace.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 1 Oct 2020 18:38:12 +0300

> My mental picture was protected
procedure calls executed concurrently
on different cores of a multi-core
processor. Would that sort of
implementation be legal?

If the protected procedures belong to
different protected objects, yes it is legal.
But not if they belong to the same object,
as J-P noted.

Note that the ordinary form of the ceiling-
priority-locking method does not work for
multi-cores, because a task executing at
the ceiling priority of a protected object
does not prevent the parallel execution of
other tasks (on other cores) at the same or
lower priority.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 1 Oct 2020 19:37:01 +0200

[...] Now let's continue the example. What
happens when the calling paths are:

O1.P1 --> O3.P3 --> O2.Q
O2.P2 --> O3.P3 --> O2.Q

Let Q1.P1 blocks Q2.P2 on an attempt to
enter O3.P3:

O1.P1 --> O3.P3
O2.P2 --> blocked

Then O3.P3 calls O2.Q:

O1.P1 --> O3.P3 --> O2.Q
|
O2.P2 --> blocked V

This will either re-enter O2 or deadlock.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Oct 2020 17:10:10 -0500

[...]

A task has to wait to get access to a PO.
This is *not* blocking, it is not allowed to
do anything else during such a period.
(This is why protected operations are
supposed to be fast!). It's canonically
implemented with a spin-lock, but in
some cases one can use lock-free
algorithms instead.

For a single core, one can use ceiling
locking instead (and have no waiting), but
that model seems almost irrelevant on
modern machines.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Oct 2020 17:13:14 -0500

> [...] you have a problem when two
independently running protected
procedures of *different* objects call a
procedure of a third object. You must
serialize these calls, and that is
effectively blocking.

Not really: blocking implies task
scheduling (and possible preemption and
priority inversion), whereas no scheduling
happens on a protected call. There's just a
possible wait. It's a subtle difference,
admittedly, but it makes a world of
difference to analysis.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 2 Oct 2020 07:36:07 +0200

To continue on Randy's response: mutual
exclusion is not blocking. "Blocking" (as
in "potentially blocking operation")
means "being put on a queue", i.e. when
the waiting time is potentially unbounded.
The waiting time due to mutual exclusion
is bounded by the execution time of the
protected operation, and then can be
included in the execution time of the
waiting task. (In reality, it can be slightly
more complicated, but the idea is that it is
bounded).

[...]

In summary, the model of PO is two
levels:

1) mutual exclusion, which is not
"blocking"

2) for entries: queuing, which is
"blocking"

Once you realize this, it should make this
whole thread clearer....

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Oct 2020 08:56:38 +0200

> mutual exclusion is not blocking.
"Blocking" (as in "potentially blocking
operation") means "being put on a
queue", i.e. when the waiting time is
potentially unbounded.

It would be a poor definition, because
deadlock is not bounded as well. If
jumping from one protected object to
another is legal, we can construct a
deadlock out of mutual exclusion. We
also have a situation when multiple tasks
executing protected procedures are
awaiting their turn to enter a procedure of
some object. They will continue (if not
deadlocked) in some order, which is
obviously a queue.

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 2 Oct 2020 09:42:02 +0200

> It would be a poor definition, because
deadlock is not bounded as well. If
jumping from one protected object to
another is legal, we can construct a
deadlock out of mutual exclusion.

But this would necessarily involve an
"external call to the same protected
object", which is defined as a potentially
blocking operation. Note that AdaControl
is quite powerful at detecting that
situation (by following the call graph).

> We also have a situation when multiple
tasks executing protected procedures
are awaiting their turn to enter a
procedure of some object. They will
continue (if not deadlocked) in some
order, which is obviously a queue.

No, it can be implemented with a spin
lock. It is bounded by the number of
waiting tasks x service time. You don't
have to wait for some unpredictable
barrier.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Oct 2020 22:14:49 -0500

> But this would necessarily involve an
"external call to the same protected
object", which is defined as a
potentially blocking operation.

Note that such an operation doesn't really
block, it is a deadlocking operation; Ada
lumped it into "potentially blocking" in
order to save some definitional overhead.
(A mistake, in my view, it should simply
have been defined to raise Program_Error
or maybe Tasking_Error.) "Potentially
blocking", in normal use, means
something else.

204 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 1 Oct 2020 17:21:01 -0500

> O2.P2 --> O3.P3 --> O2.Q

This latter path is always going to
deadlock, since the second call to O2 is
necessarily an external call (you're inside
of O3, not O2). An external call has to get
the lock for the protected object, and since
the lock is already in use, that will never
proceed.

[If O3 was nested in O2, then the second
call to O2 could be internal. But in that
case, the first path would be impossible as
O1 could not see O3 to call it.]

Remember that the decision as to whether
a call is internal or external is purely
syntactic: if a protected object is given
explicitly in the call, one needs to trigger
the mutual exclusion mechanisms again.
The only time one doesn't need to do that
is when the call does not include the
object (that is, directly from the body of
an operation).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 2 Oct 2020 08:55:56 +0200

> This latter path is always going to
deadlock, since the second call to O2 is
necessarily an external call

Is that implementation or requirement?
The lock can be task-re-entrant.

> Remember that the decision as to
whether a call is internal or external is
purely syntactic: if a protected object is
given explicitly in the call, one needs to
trigger the mutual exclusion
mechanisms again.

Even when the object in the call is
statically known to be the same?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 2 Oct 2020 22:09:19 -0500

> Is that implementation or requirement?
The lock can be task-re-entrant.

Language requirement. An external call
requires a separate mutual exclusion. If
Detect_Blocking is on, then
Program_Error will be raised. Otherwise,
any pestilence might happen.

> Even when the object in the call is
statically known to be the same?

Yes. An external call *always* gets the
lock again. I believe that was made the
rule to make it obvious as to what will
happen based on the form of call.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 3 Oct 2020 08:42:03 +0200

> Yes. An external call *always* gets the
lock again. I believe that was made the
rule to make it obvious as to what will
happen based on the form of call.

I mean this:

 protected body O is

 procedure P1 is

 begin

 ...

 end P1;

 procedure P2 is

 begin

 P1; -- OK

 O.P1; -- Deadlock or Program_Error

 end P2;

 end O;

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 3 Oct 2020 10:44:59 +0300

> I mean this:

>

> protected body O is

> procedure P1 is

> begin

> ...

> end P1;

> procedure P2 is

> begin

> P1; -- OK

> O.P1; -- Deadlock or
Program_Error

That is an internal call, so no deadlock
nor error.

See RM 9.5(4.e), which is this exact case.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 3 Oct 2020 10:16:15 +0200

> That is an internal call, so no deadlock
nor error.

I.e. it is *not* based on the syntax of the
call.

Anyway the rather disappointing result is
that protected procedures may deadlock
(or Program_Error) in a legal program.

So my initial disinclination to jump from
one protected object to another is
reasonable advice. Or at least the order in
which protected objects are navigated
must be the same.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 3 Oct 2020 13:44:47 +0300

> I.e. it is *not* based on the syntax of the
call.

At least not on /that/ syntactical
difference.

> Anyway the rather disappointing result
is that protected procedures may
deadlock (or Program_Error) in a legal
program.

Legal programs can run into all sorts of
problems, starting with use-before-
elaboration.

> So my initial disinclination to jump
from one protected object to another is
reasonable advice.

Quite conservative advice, though.

> Or at least the order in which protected
objects are navigated must be the same.

I would say that it is advisable to arrange
the POs (or PO types) in a layered
architecture and make inter-PO calls only
from a higher-layer PO to a lower-layer
PO.

GDNative Thick Binding
Design

From: Michael Hardeman
<mhardeman25@gmail.com>

Subject: GDNative thick binding design
Date: Thu, 15 Oct 2020 14:08:19 -0700
Newsgroups: comp.lang.ada

I'm working on a binding to the Godot
game engine for Ada.

Project link here: https://github.com/
MichaelAllenHardeman/gdnative_ada

Once the game engine has loaded your
dynamic library it will call the function
*_nativescript_init (where * is the
symbol_prefix defined in the library
resource config file). This function is
responsible for registering objects, object
methods, and allocating any memory
needed.

What I want to discuss here is that I'm a
bit at a loss as to how to design a thick
binding wrapper around this object
registration pattern. So let me describe the
pattern.

I have a very simple example translated
from C using the thin binding here:
https://github.com/MichaelAllenHardema
n/gdnative_ada/blob/master/examples/gdn
ative_c_example/src/simple.adb#L44

The objects must have a name, but may or
may not override the constructor/
destructor life cycle functions (which you
pass in during registration)

There are

https://docs.godotengine.org/en/stable/
classes/class_object.html#class-object

There is kind of a hierarchy at play as
well:

the Node type extends Object

https://docs.godotengine.org/en/stable/
classes/class_node.html#node

and has addition life cycle events like
_process (callback on each frame)
https://docs.godotengine.org/en/stable/
classes/class_node.html#
class-node-method-process

Ada Pract ice 205

Ada User Journal Volume 41, Number 4, December 2020

Now I don't even know where to start
defining something nice in Ada that
would match this pattern and would hide
all the nastiness from the C binding. I
kind of want the tagged record hierarchy
structure, with overriding functions, but it
should only register methods with godot
you've overridden. How would I know
what methods have been overridden? I
feel like I need some kind of generic or
helper functions?

I'm hoping some more experienced people
might have some suggestions?

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Oct 2020 07:38:05 +0100

> I'm working on a binding to the Godot
game engine for Ada.

Ok, so what you have now is a gcc
generated binding, which isn't the nicest
to work with.

What you really need to do is to start by
wrapping up the thin inside a thick
binding such that the plug-ins only use the
thick binding and that any of the calls
such as simple_constructor are wrapped,
i.e.

Godot.Make(Instance :
Godot.Root_Class; parameters...) -> calls
simple_constructor(Instance.Internal_Poi
nter, parameters). Use overloads for this
kind of stuff.

The way I bind to C is like this:

1) If it's a simple function that takes no
parameters and returns nothing, then
bind directly.

2) If it's a simple return type, use an
expression function to bind.

3) Anything else gets a thick binding.

4) Types are mapped onto the C ones, so I
lift out the definition from the thin
binding and put it in the root package of
the thick. I also rename so there's less
repetitive stuff like
GODOT_VARIANT_* and I case
properly, this will be difficult for
situations where identifiers are Ada
keywords, so rename to something else
completely if you have to, just document
the change.

Essentially you want all the C nastiness
inside the thick binding.

Look at SDLAda for some ideas, but this
was done by hand. Anything generated by
GCC needs to be hand massaged to be
nicer imo.

From: Michael Hardeman
<mhardeman25@gmail.com>

Date: Fri, 16 Oct 2020 09:39:17 -0700

Thanks for the detailed reply.
Unfortunately I think I didn't get my
question across correctly.

I'm pretty familiar with most of the basic
stuff I can do in Ada. I'm not asking for
general advice on making a thick binding,
I'm asking for help with one specific data
structure/pattern.

What is the best way to make Ada
types/functions that wrap a particular
thing:

I just pushed a work in progress branch
where you can see what I'm struggling
with:

https://github.com/
MichaelAllenHardeman/gdnative_ada/
blob/feature/adventure_game/examples/
adventure_game/src/engine_hooks.adb
#L29

https://github.com/
MichaelAllenHardeman/gdnative_ada/
blob/feature/adventure_game/examples/
adventure_game/src/example_object.adb
#L90

Is it possible to create a type (tagged
record maybe) whose dispatching
methods automatically register in some
way?

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Oct 2020 19:09:13 +0100

> Is it possible to create a type (tagged
record maybe) who's dispatching
methods automatically register in some
way?

If you mean call Register(Context); on
construction of the object, then have you
looked at the factory stuff?

http://www.ada-auth.org/standards/
12rm/html/RM-3-9.html#I2118

From: Michael Hardeman
<mhardeman25@gmail.com>

Date: Fri, 16 Oct 2020 11:28:30 -0700

not when the object is constructed. I was
wondering if something like the following
were possible:

package GDNative.Thick.Objects is

 type Object is abstract tagged private;

 -- create abstract or null subprograms for

 -- each subprogram here:

 -- https://docs.godotengine.org/en/stable/

 -- classes/class_object.html#class-object

 function Name (Self : in Object'class)

return Wide_String is abstract;

procedure Initialize (Self : in out

Object'class) is null;

 -- etc...

private

 type Object is abstract tagged null

record;

end;

But I need some way of knowing here:
https://github.com/
MichaelAllenHardeman/gdnative_ada/
blob/feature/adventure_game/examples/
adventure_game/src/engine_hooks.adb
#L28

what all the types that extend that object
tagged type are, and what all the null
methods they've chosen to override are.
Kind of like the Java Class() style
introspection.

I'm sure there must be some way of doing
it better tho, with generics? I'm just not
creative enough to see the solution atm.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 16 Oct 2020 19:31:56 +0100

> But I need some way of knowing here:
https://github.com/MichaelAllenHarde
man/gdnative_ada/blob/feature/adventu
re_game/examples/adventure_game/src
/engine_hooks.adb#L28

That's what the generic constructor would
allow.

> what all the types that extend that object
tagged type are, and what all the null
methods they've chosen to override are.
Kind of like the Java Class() style
introspection.

>

> I'm sure there must be some way of
doing it better tho, with generics? I'm
just not creative enough to see the
solution atm.

You can't know what the null methods
are. Why do you even need to know?

I'm probably not understanding this, tbf.

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Sat, 17 Oct 2020 03:09:04 -0700

> package GDNative.Thick.Objects is

> type Object is abstract tagged private;

>

> -- create abstract or null subprograms
for each subprogram here:

> --
https://docs.godotengine.org/en/stable/c
lasses/class_object.html#class-object

> function Name (Self : in Object'class)
return Wide_String is abstract;

> procedure Initialize (Self : in out
Object'class) is null;

> -- etc...

>

> private

> type Object is abstract tagged null
record;

> end;

I do not know what you are trying to do,
but I see a basic misunderstanding here
wrt keyword abstract on operations. It has
two fundamentally different purposes:

* When used on a primitive operation of a
non-tagged type, it makes an inherited

206 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

operation disappear, i.e. this operation
does no longer exist, e.g.:

 type T is range -42..42;

 function "/" (L, R: T'Base) return T'Base

 is abstract;

* When used on a primitive operation of a
tagged type, this operation is dispatching
and must be overridden for derived types;
e.g.

 type T is abstract tagged private;

 procedure Op(X:T) is abstract;

 type T1 is new T with private;

 procedure Op(X:T1);

Now your

 function Name (Self : in Object'class)

 return Wide_String is abstract;

is a classwide operation, not a primitive
operation, so it cannot be overridden. It is
not a primitive operation of any type, so it
just declares that such an operation cannot
exist - a rather useless declaration.

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Sun, 18 Oct 2020 22:21:38 +0200

My usual path is:

1) find bindings in other languages and
try to understand their intention.

2) Generate a 1:1 binding to the C API
since that will provide a sound ground
(this is an 100% automatic process).

3) Write the high-level binding trying to
mimic other language bindings while
keeping an Ada twist to it,

With a minor effort I managed to do step
one and two but step three is the hard one.
Have a look on https://github.com/
Ada-bindings-project/godot

From: Luke A. Guest
<laguest@archeia.com>

Date: Wed, 21 Oct 2020 07:59:00 +0100
>> I'm probably not understanding this,

tbf.

>

 > Can you explain the Generic
Constructor some more? I need to use it
now, but I can't exactly figure it out. I
found this example:
https://www.adacore.com/gems/ada-
gem-19 but I have no idea how they can
use the 'Input attribute as the
constructor function. It doesn't match
the signature requested by the generic
at all.

>

> I have a simple example I was trying to
get working: https://ideone.com/f5bpr9

> Do you think you could help me
understand where I'm going wrong
here?

>

I've never used it, but this might help

https://www.adaic.org/resources/
add_content/standards/05rat/html/
Rat-2-6.html

From: Michael Hardeman
<mhardeman25@gmail.com>

Date: Sun, 25 Oct 2020 20:38:36 -0700

https://github.com/
MichaelAllenHardeman/gdnative_ada

I've done an initial pass on the thick
binding. [...]

Still, as is, it's pretty nice to use. It only
takes just a tiny bit of user code to get an
object registered and running a function
on each frame.

https://github.com/
MichaelAllenHardeman/gdnative_ada/
tree/master/examples/adventure_game/src

Windows GUI Frameworks

From: DrPi <314@drpi.fr>
Subject: Which GUI framework?
Date: Thu, 29 Oct 2020 19:48:36 +0100
Newsgroups: comp.lang.ada

I'd like to create a PC (Windows) GUI
program. This program needs to be able to
create many Windows and tabs in one of
them. A working thread receives data
from a serial line and sends messages to
the GUI to print received content.

I know the most common way is to use
GtkAda. The problem is I'm an Ada
beginner and I never used Gkt. So, the
effort is double.

I have a quite good knowledge of
wxWidgets since I have used wxPython
for years. I thought I could use wxAda but
it seems the project is dead.

Any other binding to wxWidgets that I'm
not aware of?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 29 Oct 2020 20:23:55 +0100

> Any other binding to wxWidgets that
I'm not aware of?

If that is only Windows (are you
serious?), you do not need any. Simply
use Windows GDI API directly. They are
callable from Ada more or less out of the
box because Windows handles all objects
internally as graphic resources.

There are Win32Ada thin bindings, but it
is incomplete and most of the time you do
not need it.

The Microsoft's way of defining and using
types is so idiotic that no reasonably
usable thin Ada bindings are possible. I
just declare an Ada counterpart new as
appropriate with parameters of types I
want in order to avoid casting types.

In short, Windows GDI is ugly but it is
native and task-safe. (GtkAda is neither)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 29 Oct 2020 15:45:09 -0500

> If that is only Windows you do not need
any. Simply use Windows GDI API
directly. [...] There are Win32Ada thin
bindings, but it is incomplete and most
of the time you do not need it.

For Win32, both Claw
(www.rrsoftware.com) and GWindows
provide thick Ada bindings. Much easier
to use than raw Win32.

From: DrPi <314@drpi.fr>
Date: Fri, 30 Oct 2020 10:37:13 +0100

> If that is only Windows (are you
serious?),

Did I say that? ;)

I currently do my dev on a Windows
machine but a cross-platform framework
is welcome.

> In short, Windows GDI is ugly but it is
native and task-safe. (GtkAda is
neither)

Windows GDI... I used it a long time ago.
Not my best memory.

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 30 Oct 2020 09:52:11 +0000

> know the most common way is to use
GtkAda. The problem is I'm an Ada
beginner and I never used Gtk. So, the
effort is double.

Gtk isn't all that pleasant either.

> I have a quite good knowledge of
wxWidgets since I have used wxPython
for years. I thought I could use wxAda
but it seems the project is dead.

Yup, I agree that wxWidgets is much
simpler as it was based on MFC, only
portable.

At this time wxAda is dead on my hdd
right now and not going to be resurrected
until I get some money coming in.

> Any other binding to wxWidgets that
I'm not aware of?

No, both efforts were abandoned as it was
too much work. I have a start to a
generator, but like I said, it's not
happening right now.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 30 Oct 2020 10:54:54 +0100

> I currently do my dev on a Windows
machine but a cross-platform
framework is welcome.

Cross-platform would be:

1. GTK (GtkAda)

2. Qt (not sure about the project name)

3. HTTP (Gnoga)

Ada Pract ice 207

Ada User Journal Volume 41, Number 4, December 2020

From: Chris M Moore
<zmower@ntlworld.com>

Date: Fri, 30 Oct 2020 11:36:27 +0000

> Cross-platform would be:

Or Tk via https://github.com/
simonjwright/tcladashell
(or https://github.com/thindil/tashy
but I've not used that).

From: Jeffrey R. Carter
Date: Fri, 30 Oct 2020 13:31:45 +0100

Gnoga
(https://sourceforge.net/projects/gnoga/) is
all Ada (not a binding) and platform
independent.

From: DrPi <314@drpi.fr>
Date: Sat, 31 Oct 2020 12:20:41 +0100

Gnoga is very interesting when the GUI is
remotely run.

I think using such a system locally is
nonsense (very resource hungry).

From: DrPi <314@drpi.fr>
Date: Sat, 31 Oct 2020 12:14:46 +0100

Binding to C++ libraries is a problem.

In the Python world, there are many ways
to achieve this.

If I remember well, the author of
wxPython has written its own binding
system for version 3. Before version 3, he
used a "standard" one but with many
manual patches.

PySide (Python binding for Qt) authors
also have written their own binding
system after using one that was not
fulfilling their needs.

It's a pity since I like wxWidgets' way of
working.

From: DrPi <314@drpi.fr>
Date: Sat, 31 Oct 2020 17:30:15 +0100

Do you know SWIG (http://swig.org/)?

SWIG manages C++ bindings to many
languages... but not Ada. However, SWIG
tools might be of interest, like the tree
parser outputting xml. Maybe SWIG can
be modified to manage Ada. Just an idea.
But not my skills.

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 31 Oct 2020 16:35:26 +0000

> Do you know SWIG (http://swig.org/)?

I know of it and no thanks. My generator
would actually be simpler.

Publisher/Subscriber for
Ada

From: DrPi <314@drpi.fr>
Subject: PubSub
Date: Sat, 31 Oct 2020 18:58:03 +0100
Newsgroups: comp.lang.ada

Another question indirectly concerning
GUI programming:

Does an Ada "PubSub" package exist?

Something like this:
https://pypubsub.readthedocs.io/en/v4.0.3/

Search on Alire returned no result.

Global search on the internet is "polluted"
by many Ada answers.

From: Jeffrey R. Carter
Date: Sat, 31 Oct 2020 19:23:55 +0100

> Global search on the internet is
"polluted" by many Ada answers.

There's Google custom search for Ada
programming topics at
https://thindil.github.io/adasearch/
and the Ada-specific search from the
AdaIC at
https://www.adaic.org/ada-resources/
ada-on-the-web/

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 31 Oct 2020 19:38:09 +0100

> Another question indirectly concerning
GUI programming: Does a Ada
"PubSub" package exist?

Yes. We have a commercial middleware
100% in Ada. We use that thing in
automation and control systems.
Naturally, it provides publisher/subscriber
services, distributed or not with controlled
QoS. That is so to say horizontal
communication between applications or
tasks. It also has a vertical communication
aspect abstracting hardware/protocols
from application. E.g. you can
publish/subscribe to a MQTT topic, or to
an EtherCAT object, or to a CANOpen
dictionary object etc without even
knowing if that’s really the thing,
something else or another application.

Having said that, for horizontal
communication inside a single process
you do not need that in Ada. Many things
done for other languages are not needed
in Ada.

Ada protected objects and tasks provide
much more efficient, safer (typed) and
easier to use way to communicate
between tasks.

From: DrPi <314@drpi.fr>
Date: Sun, 1 Nov 2020 11:36:37 +0100

> Ada protected objects and tasks provide
much more efficient, safer (typed) and
easier to use way to communicate
between tasks.

What I'm looking for is not inter-task
communication. It is some sort of
message dispatcher (which is not thread
safe). It is like a GUI event manager but
for custom events.

A simple description here:
https://wiki.wxpython.org/WxLibPubSub

This is very useful when using a GUI
since it allows to directly send messages
to windows/dialogs/controls.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 1 Nov 2020 12:18:20 +0100

> It is some sort of message dispatcher
(which is not thread safe). It is like a
GUI event manager but for custom
events.

You do not need that stuff. Even less if
that is not task safe. In the context of the
same task, it is just a call. You need no
marshalled arguments because the call is
synchronous and it must be synchronous
because it is the same task. The very term
"event" makes no sense if the task that
emits it is the task that consumes it.

> This is very useful when using a GUI
since it allows to directly send
messages to windows/dialogs/controls.

It is not useful, it is a mess, e.g. in GTK.

Anyway, the standard Ada library
contains implementation of FIFO queues.
If you want it 1-n rather than 1-1 use a
blackboard instead of a FIFO.

Dueling Compilers

From: Jeffrey R. Carter
Subject: Dueling Compilers
Date: Wed, 25 Nov 2020 15:08:40 +0100
Newsgroups: comp.lang.ada

Consider the package

with Ada.Containers.Bounded_

Doubly_Linked_Lists;

generic

 type E is private;

package Preelaborable is

package EL is new

 Ada.Containers.Bounded_

 Doubly_Linked_Lists (

 Element_Type => E);

end Preelaborable;

Two Ada-12 compilers give different
results on this. Compiler G accepts it
without problem. Compiler O rejects it
with the error message preelaborable.ads:
Error: line 6 col82 LRM:10.2.1(11.8/2), If
a pragma Preelaborable_Initialization has
been applied to the generic formal, the
corresponding actual type must have
preelaborable initialization AFAICT from
the ARM, the generic formal
Element_Type of Ada.Containers.
Bounded_Doubly_Linked_Lists does not
have pragma Preelaborable_Initialization
applied to it. However, the type List,
which probably has [sub]components of
Element_Type, does.

Which compiler is correct? What is the
intent of the ARM?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 25 Nov 2020 20:19:34 -0600

I'd say both compilers are wrong, in that
the RM clearly has a bug here and one of
the implementers should have complained
about it to the ARG long ago. :-)

208 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

I'd suggest you post this question to Ada-
Comment so that it gets on the ARG's
radar.

(I'll call Preelaborable_Initialization "PI"
in the following for my sanity. :-)

It's clear from 10.2.1 that a type with
pragma PI which has components of a
generic formal type has to have
components that have a type with PI. It
isn't possible to initialize such
components without a function call, so the
other possibility does not exist. The
Bounded containers are designed such
that there are components of the element
type (more accurately, a component of an
array of the element type). In order for
there to be such a component, the formal
type must have PI. Ergo, anybody for a
bounded container written in Ada is
necessarily illegal. This is a problem that
someone should have brought up at the
ARG.

Since it is not required to write language-
defined package bodies in Ada, one could
imagine that both compilers are correct in
the sense that they are using some non-
Ada language to implement the
containers. But that is a fiction in the case
of the containers (every implementation I
know of is in Ada), and in any case, we
intended the containers to be
implementable in Ada. If they are not,
that is a bug.

I don't know what the fix ought to be:
adding PI to the formal private type
would work, but it would reduce the
usability of the containers in non-
preelaborated contexts. Similarly,
removing the PI from the container would
work, but would reduce the usability of
the containers in preelaborated contexts.
Both seem pretty bad.

I'd be in favor of removing PI and
Preelaboration in general from the
language (it serves no purpose other than
to encourage implementers to make
optimizations that they should make
anyway - the other intentions don't work
or are better handled with other
mechanisms), but I doubt that I'd get any
support for that.

So this will have to be an ARG question -
- I can't answer it definitively.

P.S. If you post this question to Ada-
Comment, do me a favor and post this
analysis along with it. That will save me
having to reproduce it later.

From: Jeffrey R. Carter
Date: Fri, 27 Nov 2020 08:32:41 +0100

> Ergo, anybody for a bounded container
written in Ada is necessarily illegal.

I think both compilers are doing macro-
expansion of generics, so a generic is only
really compiled when it is instantiated.
Presumably any test code used actual

parameters that the compiler could tell
were PI, so they compiled OK.

> adding PI to the formal private type
would work, but it would reduce the
usability of the containers in non-
preelaborated contexts. Similarly,
removing the PI from the container
would work, but would reduce the
usability of the containers in
preelaborated contexts. Both seem
pretty bad.

I presumed that leaving PI on the
container was an oversight.

> So this will have to be an ARG question
-- I can't answer it definitively.

OK, I'll research the format of
submissions to Ada-Comment and send it
in.

> P.S. If you post this question to Ada-
Comment, do me a favor and post this
analysis along with it. That will save
me having to reproduce it later.

I would have done that anyway. Thanks
for confirming my suspicion that
something is rotten in Denmark.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 27 Nov 2020 20:35:57 -0600

> I think both compilers are doing macro-
expansion of generics, so a generic is
only really compiled when it is
instantiated.

That would be an incorrect
implementation of generic units in Ada.
One has to enforce the language rules
only knowing the guaranteed properties of
the formal types (knowing nothing about
the actual). There is a later legality
recheck in the specification of an
instance, but that would be irrelevant in
this case since the generic unit already is
illegal.

> I presumed that leaving PI on the
container was an oversight.

It definitely is intended, if the unit is
Preelaborated, we definitely want any
private types in it to be PI (lest they be
unable to be used in Preelaborated units.

From: Jeffrey R. Carter
Date: Thu, 17 Dec 2020 21:22:50 +0100

For those who are interested, this became
AI12-0409-1, approved 2020-12-09

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 18 Dec 2020 20:00:02 -0600

> For those who are interested, this
became AI12-0409-1, approved 2020-
12-09

For what it's worth, that approval included
moving most of AI12-0399-1 to this AI,
and making this AI a Binding
Interpretation so it applies to Ada 2012 as
well. We agreed not to require in the

ACATS that implementations define the
Preelaborable_Initialization aspect (if
they have some other existing way to do
this, that's fine by us for Ada 2012), but
they can if they want. We will insist that
bounded containers have P_I if the
element type has P_I, and that they can be
instantiated if the element type does not
have P_I.

Advent of Code

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code
Date: Fri, 27 Nov 2020 19:12:21 -0800
Newsgroups: comp.lang.ada

Does anyone know about Advent of
Code, and has anyone ever participated
for Ada? It's typically a sequence of
programming puzzles posed as an Advent
calendar: one for each new day.

 https://adventofcode.com/2020/about

Older examples are here:

 https://adventofcode.com/2020/events

I had thought of it, but I don't have too
much time. Some languages maintain
their own mini-communities and
leaderboards, and it might be a way to
raise Ada's profile (or even SPARK'S?).

From: Jeremy Grosser
<jeremy@synack.me>

Date: Sat, 28 Nov 2020 19:36:48 -0800

I did Advent of Code in Ada last year. I
got distracted by other projects and didn't
finish it, but found it to be a very good
way to learn with focused problems. My
solutions are up on GitHub if you're
curious, but knowing what I know now,
they're far from optimal and some parts
are definitely in need of refactoring.

https://github.com/JeremyGrosser/advent

From: Bojan Petrovic
<bojan_petrovic@fastmail.fm>

Date: Sun, 29 Nov 2020 15:03:45 +0100

I solved a couple of challenges from the
last year's AoC in both Ada and Rust, just
to get a feel for the differences between
them in a puzzle solving context:

https://github.com/ALPHA-60/
advent-of-code-2019

I've been organising a weekly recreational
coding workshop at my company for the
last couple of years, and we've been
solving Project Euler and Codility tasks. I
stopped doing it in March because of the
Covid-19 situation, but we'll reboot it
online on December 1st, when AoC 2020
starts, though our schedule will remain
the same - one AoC problem per week.

A while ago we did some interview
question exercises on #Ada Telegram
group, so maybe we can do it again there.

From: John Perry <john.perry@usm.edu>
Date: Mon, 30 Nov 2020 23:08:29 -0800

Ada Pract ice 209

Ada User Journal Volume 41, Number 4, December 2020

Well, the first day wasn't too bad. It took
me an hour, mainly because I'm not as
familiar with Ada as I'd like. Once I re-
learned file input & remembered the
declare clause, it was quick.

I'll follow Jeremy Grosser's example and
post my solutions to GitHub, too.

https://github.com/johnperry-math/
AoC2020.git

From: Max Reznik <reznik@adacore.com>
Date: Tue, 1 Dec 2020 03:37:06 -0800

Someone posted on reddit:
https://www.reddit.com/r/ada/comments/
k4fn9w/anyone_else_participating_in_
advent_of_code/

From: gautier_niouzes@hotmail.com
Date: Wed, 2 Dec 2020 12:51:04 -0800

Thanks John for the reminder about the
Advent of Code. It's lots of fun!

Just before starting with today's puzzle, I
had the idea of programming the solution
with HAC (and the LEA editor). The
quick edition-compilation-run cycle of
HAC is an advantage for this contest.
However, today, I was not quick enough
to get points. Perhaps another day?

Links to my solutions are at the end of the
following post:
https://gautiersblog.blogspot.com/2020/
12/advent-of-code-2020-with-hac-and-
lea.html

From: Max Reznik <reznik@adacore.com>
Date: Wed, 2 Dec 2020 13:29:43 -0800

I gathered a list of GitHub repositories
from this topic on a page, if someone
wants to see all of them in one place.

https://github.com/reznikmm/
ada-howto/tree/advent-2020

I also provided mine Ada solutions as
Jupyter Notebooks. You can read them in
Markdown or launch in the browser with
"launch | binder" button.

Have fun :)

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 02 Dec 2020 14:59:18 -0800

> Just before starting with today's puzzle,
I had the idea of programming the
solution with HAC (and the LEA
editor). The quick edition-compilation-
run cycle of HAC is an advantage for
this contest.

On these small files, can you really tell
the difference in speed between GNAT
and HAC? or (insert other favorite editor,
mine is Emacs) and LEA? For me,
everything is instantaneous.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Date: Mon, 14 Dec 2020 09:43:05 -0800

> On these small files, can you really tell
the difference in speed between GNAT
and HAC? or (insert other favorite
editor, mine is Emacs) and LEA? For
me, everything is instantaneous.

From GNAT Studio I get a range of 1.5
sec (an i5 PC @2.9 GHz) to 9 sec (a
lightweight laptop) for building
aoc_2020_12.adb (almost a benchmark
for easy puzzles ;-)).

On the same source, I run hac -v2
aoc_2020_12.adb:

Compilation finished in 0.000335500
seconds.

Part 1: Manhattan distance of the ship to
(0,0): 1631 (1631.0)

Part 2: Manhattan distance of the ship to
(0,0): 58606 (58606.0)

VM interpreter done after 0.008894500
seconds.

So, for this kind of puzzle, it makes a
difference (correct solution to part 1 was
sent at 00:11:01).

But agreed, it's quite rare.

Especially on today's puzzle, I didn't even
consider using HAC...

From: John Perry <john.perry@usm.edu>
Date: Mon, 14 Dec 2020 13:56:02 -0800

What follows is a long way of saying
"Thank you." :-)

I spend about 2 hours on each puzzle,
which probably doesn't speak well of my
programming prowess (I've programmed
for decades, so I can't really say it's
because I'm learning Ada). Somehow I
enjoy it enough to come back day after
day.

The puzzles themselves are usually easy
(to me), and most of the ones with a non-
trivial solution can probably be solved
trivially, with one exception. At least the
mathematics has gotten a little more
sophisticated; I used the Chinese
Remainder Theorem recently, which I got
a kick out of implementing in Ada as a
one-line function (not including a support
function to compute a modular inverse). I
noticed that Maxim used Fermat's Little
Theorem.

I sometimes roll my eyes at the puzzles,
but the one thing I've really enjoyed so far
is how each new puzzle has nudged me to
learn a different Ada feature with each
new puzzle. I'd spend a lot less time on it
if I allowed myself to use a computer
algebra system, but the point is to learn
Ada, and the really nice surprise has been
how people have helped out, some of
them even commenting directly on
GitHub.

Advent of Code Thread
Compilation

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Advent of Code Thread
Compilation

Date: Fri, 05 Feb 2021 17:59:27 +0100
To: Ada User Journal Readership

[This is a special message in that I am
directly writing it to the Ada User Journal
readership. Besides the previous thread on
Advent of Code, there were a number of
threads for each day. These threads refer
to unstated off-groups problems and the
discussion is too informal and disjointed
to make a coherent post-hoc read, even
after summarizing. For that reason, I am
not including these threads as-is in the
Digest. For the interested readers, I have
compiled all the related threads in the
newsgroup at the end of this message.

There are nonetheless some interesting
tidbits and snippets discussing Ada
features, libraries and resources that, even
without context, may be useful pointers to
follow. I am keeping these in the
following messages, with the title of the
thread they belong to. —arm]

Day 2: https://groups.google.com/g/
comp.lang.ada/c/ASTsQiya1yQ/m/
sx27Sb3XAgAJ

Day 3: https://groups.google.com/g/
comp.lang.ada/c/zsZV1RSf01c/m/
Fl7CTEB2AAAJ

Day 4: https://groups.google.com/g/
comp.lang.ada/c/7CmcyU37SkA/m/
aI2k3YxfAwAJ

Day 5: https://groups.google.com/g/
comp.lang.ada/c/aOF1sirDOiY/m/
GEDagaqpAwAJ

Day 6: https://groups.google.com/g/
comp.lang.ada/c/co9hjh6F1Ng/m/
xbdMecnjAwAJ

Day 8: https://groups.google.com/g/
comp.lang.ada/c/jxx-4c2hPng/m/
3EO7rO30BAAJ

Day 10: https://groups.google.com/g/
comp.lang.ada/c/Z4mmw_t94Ls/m/
X2MG3IDfAQAJ

Day 11: https://groups.google.com/g/
comp.lang.ada/c/BIBRIl7iirw/m/
1tO_250LAgAJ

Day 12: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

Day 17: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

Day 19: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

210 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

Day 23: https://groups.google.com/g/
comp.lang.ada/c/lqb0iuLXm5E/m/
FVGVnyNlAgAJ

Day 25: https://groups.google.com/g/
comp.lang.ada/c/zcMzC_q9KmA/m/
Aa7iA3q4BAAJ

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code Day 2
Date: Wed, 2 Dec 2020 15:45:25 -0800
Newsgroups: comp.lang.ada

> ...I should have used Gnatcoll.regexp.

I was wondering if there was a pattern
matching library I could use, and had
wanted to ask that, but forgot.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 03 Dec 2020 03:52:47 -0800

'Reduce is a new Ada 2020 attribute

(www.ada-auth.org/standards/2xrm/html/
RM-4-5-10.html); it can sum an array.

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code Day 3
Date: Sat, 5 Dec 2020 07:11:06 -0800

> Day 4 task is dull :)

>

> https://github.com/reznikmm/ada-
howto/blob/advent-2020/md/04/04.md

Flourishes like this:

 return Passport (byr .. pid) =

 (byr .. pid => True);

illustrate idioms that I really want to
learn, thanks for sharing.

From: John Perry <john.perry@usm.edu>
Subject: Advent of Code day 5
Date: Sat, 5 Dec 2020 09:57:00 -0800

According to the Internet (And Therefore
It Is True (TM)) the A380 can seat up 853
people. My problem had up to 894 seats,
with the first 5 missing, so it wasn't that
far beyond the realm of reason.

Then again, I don't know if anyone would
want to fly an A380 configured for 853
people.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Advent of Code day 5
Date: Sun, 06 Dec 2020 08:21:24 -0800

> and ran it through cut/sort/uniq

Next time, try
ada.containers.generic_array_sort;

http://www.ada-auth.org/standards/2xrm/
html/RM-A-18-26.html

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Advent of Code day 5
Date: Sun, 06 Dec 2020 08:27:54 -0800

> Next time, try
ada.containers.generic_array_sort;

> http://www.ada-
auth.org/standards/2xrm/html/
RM-A-18-26.html

Or
Doubly_Linked_Lists.Generic_Sorting:

http://www.ada-auth.org/standards/2xrm/
html/RM-A-18-3.html

From: Randy Brukardt
<randy@rrsoftware.com>

Subject: Advent of Code Day 7
Date: Mon, 7 Dec 2020 17:44:44 -0600

> Entry: Bag_Entry := (Quantity => 10);

>

> However, GNAT says this is invalid
[...]

In Ada 2005 and later, write:

 Entry: Bag_Entry := (Quantity => 10,

 Description => <>);

In an aggregate, <> means a default
initialized component. Following the Ada
Way TM ;-), one has to explicitly ask for
a default initialized component - just
leaving it out might have been a mistake
or intended -- neither the compiler nor a
reader can tell. The above is clearly
intended.

From: Jeffrey R. Carter
Subject: Advent of Code Day 7
Date: Tue, 8 Dec 2020 12:25:54 +0100

>

> type Bag_Entry is record

> Description: Bag_Description := "
";

Humans are notoriously bad at counting
things, and even worse at counting things
they can't see, so this kind of literal can be
a source of errors, especially during
modification. (At least with Ada these
tend to be compiler errors, not run-time
errors.)

Of course, Ada offers a Better Way. You
can write

 Description: Bag_Description :=

 (Bag_Description'range => ' ');

or

 Description: Bag_Description :=

 (others => ' ');

and be proof against any changes to
Bag_Description's bounds.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Advent of Code Day 10
Date: Fri, 11 Dec 2020 09:04:27 -0800

> My answer was able to fit in a
Long_Long_Integer on my machine.
But, due to a bug, I did play with the
Big_Integers package. It worked well,
and I'd recommend taking a look at it
for upcoming

Yes; GNAT Community 2020 with -
gnat2020 and -gnatX supports
Ada.Numerics.Big_Integer. I updated my
solution to use that.

From: Jeffrey R. Carter
Subject: Advent of Code Day 10
Date: Sat, 12 Dec 2020 23:25:41 +0100

> hmm. I got constraint error when I used
Long_Integer; maybe that's not 64 bits?
Using Ada.Big_Numbers.Big_Integers
was a good exercise anyway.

That sounds like C thinking. If you need
64 bits, say so, don't hope that optional
language-defined types will be big
enough.

type S is range -(2 ** 63) + 1 .. 2 ** 63 - 1;

type U is mod 2 ** 64;

I used

type U is mod

 System.Max_Binary_Modulus;

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Advent of Code Day 17
Date: Fri, 18 Dec 2020 11:47:59 -0800

> Advent of Code hasn't been a
complete waste of time. ;-)

Far from that: now the major part of the
test suite for HAC stems from AoC:

[Omitted output of 27 successful tests for
HAC, 15 of them being Advent of Code
entries. —arm]

Starting Time of Real-time
Clock

From: Simon Wright
<simon@pushface.org>

Subject: Ada.Real_Time.Time_First
Date: Wed, 09 Dec 2020 12:30:44 +0000
Newsgroups: comp.lang.ada

I opened an issue[1] on Cortex GNAT
RTS, saying

 You’d expect
Ada.Real_Time.Time_First to be quite a
long time before any possible value of
Ada.Real_Time.Clock; but in fact the
system starts with Clock equal to
Time_First.

On the other hand, I had written

Last_Flight_Command_Time :

Ada.Real_Time.Time

:= Ada.Real_Time.Time_First;

 ...

 Quad_Is_Flying :=

 Ada.Real_Time.To_Duration (Now -

 Last_Flight_Command_Time)

 < In_Flight_Time_Threshold;

but Now - Last_Flight_Command_Time
is going to be quite small, to start with, so
Quad_Is_Flying is going to be True when
it shouldn't be.

The workaround I used was

Ada Pract ice 211

Ada User Journal Volume 41, Number 4, December 2020

 Quad_Is_Flying :=

 Last_Flight_Command_Time /=

 Ada.Real_Time.Time_First

 and then

 Ada.Real_Time.To_Duration (Now -

 Last_Flight_Command_Time)

 < In_Flight_Time_Threshold;

In other words, I was using Time_First as
a flag to indicate that
Last_Flight_Command_Time was invalid.

What would your standard pattern for this
sort of problem be? Especially
considering that if I make Time_First a
large negative number I'll get the opposite
problem, e.g. predicting ahead for a very
large interval, possibly even leading to
numeric overflows.

I'm thinking of a Time type with the
concept of validity, possibly built round

type Time (Valid : Boolean := False) is

record

 case Valid is

 when True => Value :

 Ada.Real_Time.Time;

 when False => null;

 end case;

 end record;

and addition, etc. with appropriate
preconditions.

(not so sure about the discriminated
record, might be more trouble than it's
worth)

[1] https://github.com/simonjwright/*
cortex-gnat-rts/issues/33

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 9 Dec 2020 14:16:10 +0100

> What would your standard pattern for
this sort of problem be?

I would use Next_Time instead of
Last_Time:

Next_Flight_Command_Time : Time :=

Time_First;

begin

 loop

 Now := Clock;

 if Now >= Next_Flight_Command_Time

then

 Fire_All_Rockets;

 Next_Flight_Command_Time :=

 Next_Flight_Command_Time +

 In_Flight_Time_Threshold;

 end if;

 end loop;

exception

 when Constraint_Error =>

 -- the End of Times!

 Put_Line ("Thank you for your

 cooperation!");

 Fire_Death_Star;

 Self_Destroy;

end;

From: Simon Wright
<simon@pushface.org>

Date: Wed, 09 Dec 2020 20:07:32 +0000

> I would use Next_Time instead of
Last_Time:

Great idea; the name isn't right in my
context, but the method applies very well.
(It's the time by which the next flight
command has to have been given before
we decide we're not flying anymore. I
plead that (a) this logic seems not to be
our Earth logic, (b) it's a translation from
someone's C, (c) the original code has a
comment expressing doubt)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 9 Dec 2020 16:21:02 +0200

> I opened an issue[1] on Cortex GNAT
RTS, saying

>

> You’d expect
Ada.Real_Time.Time_First to be quite
a long time before

> any possible value of
Ada.Real_Time.Clock; but in fact the
system

> starts with Clock equal to Time_First.

I don't see any reason for expecting
Time_First to be far in the past relative to
program start. In fact, RM D.8(19) says
"For example, [the start of Time] can
correspond to the time of system
initialization".

Contrariwise, it could be useful to know
that Clock actually starts from
Time_First, because I have often needed a
"Start_Time" object that records the
Clock at the start of the program, and it
would be much simpler to use Time_First,
if Time_First is known to equal the initial
Clock.

> Quad_Is_Flying :=

> Ada.Real_Time.To_Duration (Now
- Last_Flight_Command_Time)

> < In_Flight_Time_Threshold;

If Time_First, as the initial value of
Last_Flight_Command_Time, would
really be in the far past compared to Now,
that computation risks overflowing the
range of Duration, which may be as small
as one day (86_400 seconds), RM
9.6(27).

> The workaround I used was [...] I was
using Time_First as a flag to indicate
that Last_Flight_Command_Time was
invalid.

Even that can still overflow Duration, if
more than one day can pass since the last
flight command.

> What would your standard pattern for
this sort of problem be?

You have two problems: your assumption
about Time_First (or perhaps it's not an
assumption, if you make your own RTS)
and the possible overflow of Duration.

To indicate an invalid
Last_Flight_Command_Time, I would
either use a discriminated type wrapping a
Time value that depends on a Valid
discriminant, as you suggested, or just
have a Boolean flag, say
Flight_Commands_Given that is initially
False. I would use the discriminated type
only if there is more than one such
variable or object in the program.

For the overflow, I suggest changing the
comparison to

 Now < Last_Flight_Command_Time

 + To_Time_Span

 (In_Flight_Time_Threshold)

assuming that
Last_Flight_Command_Time is valid in
the sense we are discussing. That will
overflow only when
Last_Flight_Command_Time approaches
Time_Last, and the program is likely to
fail then anyway.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 09 Dec 2020 20:16:24 +0000

[...] This conversation has been very
valuable, particularly in the case of other
similar tests. I suspect, though, that "are
we still flying?" is a question that'll take
more thinking to resolve!

Possible to Recover Default
Value of Scalar Type?

From: reinert <reinkor@gmail.com>
Subject: Possible to recover default value of

scalar type?
Date: Sun, 13 Dec 2020 01:54:40 -0800
Newsgroups: comp.lang.ada

Assume the following code:

type A_Type is new Natural range 0..9 with

Default_Value => 9;

A : A_Type;

Is it later on here possible to get access to
the default value (9)? If A was a
component of a record, one could get it
"9" via

 some_record'(others =><>).A

But more directly? [Without declaring a
variable, as is made clear in some omitted
posts. —arm]

From: AdaMagica
 <christ-usch.grein@t-online.de>

Date: Mon, 14 Dec 2020 01:01:21 -0800

I do not really understand the problem. It
seems you want to be able to access the
default value like so:

N: Natural := Natural(A_Type'Default_Value);

This is not possible. There is no
corresponding attribute 'Default_Value.

212 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

If this presents a real problem, submit it to
Ada comment stating why this is
important.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Dec 2020 10:38:40 +0100

> If this presents a real problem, submit it
to Ada comment stating why this is
important.

It could in the cases like this:

 procedure Library_Foo (Bar : Baz :=

 Baz'Default_Value)

You can declare constants in some places,
but not at the library level. But in any
case, being forced to declare a constant
each time you need to get at the default
value?

The same problem arises with container
generics. If you have an array keeping
container elements, logically freed
elements need to be "destroyed" in some
way. The default type value would be that
thing as well as a default for
Null_Element, if used.

I think that all non-limited types one
could declare uninitialized, must have
S'Default_Value equal to the default value
the compiler would use. And it should
produce same warnings uninitialized
values do:

 Put_Line (String (1..10)'Default_Value);

 -- print garbage

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Mon, 14 Dec 2020 07:56:29 -0800

> procedure Library_Foo (Bar : Baz :=
Baz'Default_Value)

Suppose type Baz has no default value
aspect. Then a call to Library_Foo
without parameter would use what?

A solution could be that the attribute is
illegal if there is no aspect. The compiler
knows.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Dec 2020 17:31:29 +0100

> Suppose type Baz has no default value
aspect. Then a call to Library_Foo
without parameter would use what?

The default used by the compiler in this:

 declare

 Bar : Baz;

 begin

with an appropriate warning of course.

[It was a language design bug to allow
implicitly uninitialized variables in the
first place. Declarations like above should
have been illegal.]

> A solution could be that the attribute is
illegal if there is no aspect. The
compiler knows.

I would argue that if

 declare

 Bar : Baz;

 begin

is legal, then it must be logically
equivalent to:

 declare

 Bar : Baz := Baz'Default_Value;

 begin

From: Simon Wright
<simon@pushface.org>

Date: Mon, 14 Dec 2020 18:24:54 +0000

> [It was a language design bug to allow
implicitly uninitialized variables in the
first place. Declarations like above
should have been illegal.]

There is an argument that you should only
initialise variables at the point of
declaration if you know what value they
should take; so that the compiler can
detect the use of uninitialised variables.

If you always initialize variables, even if
you don't know what value they should
take, the compiler can't help you if you
forget to assign the correct value.

Personally I always try hard not to declare
an uninitialised variable.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 14 Dec 2020 19:53:23 +0100

> There is an argument that you should
only initialise variables at the point of
declaration if you know what value
they should take; so that the compiler
can detect the use of uninitialised
variables.

I think Robert Dewar argued that
variables must be declared in the
narrowest possible scope. Which would
imply that at the beginning of that scope
you should know the value, because it
would be the first use of the variable.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Dec 2020 19:21:53 -0600

> N: Natural :=
Natural(A_Type'Default_Value);

We considered an attribute like that, but it
becomes a semantic problem if the type
doesn't have a Default_Value and you are
in a context where you don't know (such
as for a generic formal type). I vaguely
remember some other semantic problem,
but I don't remember the details. These
things could be worked out, but it seemed
messy.

I've long wanted <> to work as it does in
aggregates generally (if that existed, I'd
also have a restriction to require all
objects to be initialized; that would
provide an encouragement to initialize as
many objects as possible; right now, the
iffy thing (not initializing) is the easiest).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Dec 2020 19:26:10 -0600

> procedure Library_Foo (Bar : Baz :=
Baz'Default_Value)

I would have suggested to write this as:

 procedure Library_Foo (Bar : Baz := <>)

since this is the syntax used in aggregates
(and why should aggregates have all the
fun??).

> Put_Line (String
(1..10)'Default_Value); -- print garbage

The above isn't a legal attribute prefix in
any case (can't slice a type). And you
don't need to because this is clearly an
aggregate (which is legal in Ada 2012):

 Put_Line (String'(1..10 => <>));

 -- print garbage

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 Dec 2020 19:27:39 -0600

> The compiler knows.

Not always. Never forget generics. One
would hope to be able to use this on
generic formal types, as most of them are
going to have default values (at least in
new code).

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 15 Dec 2020 07:47:32 +0100

> I think Robert Dewar argued that
variables must be declared in the
narrowest possible scope.

Not applicable if your variable is used in a
loop:

 V : Integer;

begin

 loop

 Get (V);

 exit when V =0;

 -- do something with V

 end loop;

Clearly, initializing V makes no sense.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 15 Dec 2020 08:23:33 +0100

> Not applicable if your variable is used
in a loop

 loop

 declare

 V : constant Integer := Get;

 begin

 exit when V = 0;

 -- do something with V

 end;

 end loop;

It is related to another long standing issue
with returning values (multiple values)
from functions and functions with in out
parameters (resolved recently).

[...]

Ada Pract ice 213

Ada User Journal Volume 41, Number 4, December 2020

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 15 Dec 2020 08:35:32 +0100

>> Put_Line (String
(1..10)'Default_Value); -- print garbage

> The above isn't a legal attribute prefix
in any case (can't slice a type).

I mean a subtype.

> And you don't need to because this is
clearly an aggregate (which is legal in
Ada 2012):

> Put_Line (String'(1..10 => <>)); --
print garbage

Yes, I would prefer the box notation too.
However having a proper name would has
some advantages too:

 subtype S is T range T'Default_Value -

 100..T'Default_Value + 100;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 16 Dec 2020 18:43:56 -0600

> subtype S is T range T'Default_Value
- 100..T'Default_Value + 100;

If box was generally allowed, you could
qualify it to get this effect:

 subtype S is T range T'(<>) - 100 .. T'(<>)

 + 100; -- Not Ada, but should be IMHO. :-)

and it's shorter, too. Of course, if T
doesn't have a default value, neither of the
above is a good idea. :-)

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 15 Dec 2020 10:07:02 +0100

> V : constant Integer := Get;

Well, you can push anything in a
function, but it's not always
clear/readable/simpler...

> V : Integer := <>; -- Invented syntax
for explicit lack of initialization

That would make more sense: make
initialization required, and say so if you
don't care.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 16 Dec 2020 18:48:06 -0600

> Clearly, initializing V makes no sense.

Saying that you *meant* to have an
uninitialized value does make sense,
though:

 V : Integer := <>;

 -- Not Ada, but should be IMHO.

Whenever something is omitted, one
never knows whether it was on purpose or
a mistake. You get similar issues when
"else" is omitted (RR's style guide only
allows that in very specific
circumstances). It's unfortunate that Ada
doesn't have a positive way to indicate
default initialization, outside of
aggregates.

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Tue, 15 Dec 2020 10:14:59 -0800

Just a story about my work (long ago):

Our coding standard required for every
type declaration a default value that
indicated an uninitialised value:

type T is ...

Nd_T : constant T := ...; -- Nd: not defined

X: T := Nd_T; -- required

The idea was that this Nd value should be
thus that it would be likely to produce an
exception when used in an expression.
Also any change of this value should have
absolutely no effect on the code. In any
case, at some time it was decided that the
Nd value for numeric types was 0. The
effect: It was no longer possible to see
whether in a declaration like

X: T := Nd_T;

denoted a truly undefined value or a
concrete and correct initial value.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 16 Dec 2020 18:53:06 -0600

> It was no longer possible to see whether
in a declaration [...] this value denoted a
truly undefined value or a concrete and
correct initial value.

Typically, values like this, at least those
used in debuggers, use some permutation
of 16#DEADBEEF# since it is obvious in
data dumps, and is a rather unlikely value
to be intended. The next version of
Janus/Ada will initialize all
"uninitialized" objects to this value unless
you tell it not to. (Essentially, a version of
Normalize_Scalars, except that these days
it doesn't make much sense for that not to
be the default. Optimization can remove
most unneeded initializations, and if they
are actually needed, it's better to have a
known dubious value than stack garbage.)

Ada Syntax Questions

From: DrPi <314@drpi.fr>
Subject: Ada syntax questions
Date: Thu, 17 Dec 2020 23:39:44 +0100
Newsgroups: comp.lang.ada

Ada claims to have a better syntax than
other languages. I'm fine with, but...

1) What about array indexing ?

In some other languages, arrays are
indexed using square brackets. In Ada,
parentheses are used for function calls and
for array indexing. In the code "status :=
NewStatus(some_var);", you can't tell if
NewStatus is a function or an array.

2) In Ada, a function without arguments is
called without any parentheses.

In the code "status := NewStatus;", you
can't tell if NewStatus is a function or a
variable.

For my knowledge, are there good
reasons for these syntaxes?

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>

Date: Thu, 17 Dec 2020 15:18:34 -0800

1) This allows you to replace your array
with a function with the same name,
which takes the subscript as an argument
and returns a value, without touching your
client code. Think about an expensive
lookup table -vs- a simple function which
computes your data. Do not see this as an
ambiguity but rather a nice uniformity of
calling something for a value.

2) Nearly the same, but in another context
and without an argument. "NewStatus"
could be, e.g., a constant, as long as types
match.

From: Jeffrey R. Carter
Date: Fri, 18 Dec 2020 09:26:39 +0100

> 1) What about array indexing?

 The requirements for the language
included a restricted set of characters for
source code that did not include brackets.
So that is the primary reason parentheses
are used.

However, both arrays and functions are
often used as maps, and so an after-the-
fact rationalization is that using the same
syntax for both array indexing and
function calls makes it easy to switch
between the two.

> 2) In Ada, a function without arguments
is called without any parentheses.

> In the code "status := NewStatus;", you
can't tell if NewStatus is a function or a
variable.

That's because Newstatus is a terrible
name. If you'd used New_Status there
would be no confusion.

Seriously: Ada 80 required empty
parentheses for a subprogram call with no
explicit parameters. During the review
process that resulted in Ada 83, these
were universally reviled and so were
eliminated.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 18 Dec 2020 10:18:45 +0100

1. Separation of interface and
implementation. Being an array or
function is an implementation detail of a
map or a named entity.

Another example is pointer dereferencing.
In Ada X.A is the same as P.A. In C you
have X.A vs P->A.

Yet another one. All instances of
parameterization in Ada deploy ()
parentheses. In C++ it would be <>, [], (),
depending on semantically irrelevant
context.

2. Languages that like C use bottom-up
matching are forced to distinguish certain

214 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

things prematurely on the syntax level.
This is also the reason why you cannot
use the result type to distinguish
signatures in C++, but you can in Ada.
Thus in C++ you would have something
as disgusting as

 123ull

while in Ada it is just

 123

Long time ago anything but strictly
bottom-up matching was considered too
complicated or impossible. So artificial
distinctions like () vs [] were invented and
then promoted into orthodoxy.

From: Mart van de Wege
<mvdwege@gmail.com>

Date: Fri, 18 Dec 2020 17:55:56 +0100

> 1) What about array indexing ?

Why would you care? It is obvious that
NewStatus will return something based on
the value of some_var. How it does that,
by array dereference or function call
should make no difference to the caller;
they are only interested in the final value
of status.

Or another look at it: array indexing is
effectively a function call anyway. It is
"return value of array_base + index".

> 2) In Ada, a function without arguments
is called without any parentheses.

Again, why would you care how
NewStatus returns a value? Either by
returning the value of a function or by
dereferencing a variable, all you're
interested in is the value assigned to
status.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 18 Dec 2020 18:38:27 +0100

> 2) In Ada, a function without arguments
is called without any parentheses.

As others have stated, why do you care?

I often mock up a function with a
constant, add a pragma
compile_time_warning/error ("fix
implementation later") and only later
write the body of the function. And that is
the only code change - I don't need to add
an useless empty pair of () just because it
is a function to all the callers

> For my knowledge, are there good
reasons for these syntaxes?

Yes

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 18 Dec 2020 21:35:37 +0200

> Ada claims to have a better syntax than
other languages.

I would say the claim is that the Ada
syntax was rationally designed to have
certain properties, which are desired by

certain users (us Ada programmers) so it
is "better" for us, although some aspects
are subjective for sure.

In addition to what others have said, here
are some further comments on

the examples you gave:

> 1) What about array indexing?

There are proposals to allow [] as well as
(), mainly to increase familiarity for new
Ada users.

> 2) In Ada, a function without arguments
is called without any parentheses.

Parameterless functions are rare, and
properly so.

Parameterless procedures are much more
common. Writing

 Frobnicate_Widget();

is longer than

 Frobnicate_Widget;

and seems to have no advantages over the
shorter form.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 18 Dec 2020 15:09:19 -0800

> 1) What about array indexing?

This is true.

You seem to be implying this is bad;
why?

> 2) In Ada, a function without arguments
is called without any parentheses.

This is true.

You seem to be implying this is bad;
why?

> For my knowledge, are there good
reasons for these syntaxes?

Yes. See the Ada Rationale: http://ada-
auth.org/standards/rationale12.html

From: DrPi <314@drpi.fr>
Date: Sat, 19 Dec 2020 12:50:40 +0100

Thanks all for your answers.

 > Why would you care?

Calling a function can have side effects.
Accessing an array or a variable can't
have side effects.

> You seem to be implying this is bad;
why?

Reading the code can't tell you the writer's
intentions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Dec 2020 13:40:25 +0100

> Calling a function can have side effects.
Accessing an array or a variable can't
have side effects.

Untrue. Both array and variable access
have side effects on the registers, on the
cache, on the process memory paging, in
the form of exception propagation etc.
Even direct effects on the outside world
are possible when using machine memory
load instructions. E.g. on some hardware
reading memory at the specific address
location means physical serial input.

All these effects are either desired parts of
the implementation or else bugs to be
fixed. If desired, why do you care?

> Reading the code can't tell you the
writer's intentions.

What intentions? Unless you are talking
about the intention to deploy a specific
machine instruction, function or array
gives you no clue. But even then. PDP-11
FORTRAN IV used subprogram calls to
implement basically everything,
elementary arithmetic operations. If the
function is inlined, where is any call?
Functions can be tabulated into lookup
tables. Arrays can be compressed into
functions.

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Sat, 19 Dec 2020 09:01:53 -0800

> Calling a function can have side effects.
Accessing an array or a variable can't
have side effects.

The declaration of the function is a
contract about pre and post conditions,
albeit in Ada incomplete. In SPARK, the
contract is firm. As a user of the function,
you have to believe the programmer that
he follows the contract. If the
implementation needs a side effect, so be
it.

If on the other hand you are a maintainer
or are chasing a bug, you have to check
the requirements first, not the body of the
function. This comes later.

> Reading the code can't tell you the
writer's intentions.

The intentions are in the requirements (or
in the accompanying comments, you hope
they are up to date and not wrong). If
there are none, good luck.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 09:13:56 -0800

> Untrue. Both array and variable access
have side effects on the registers, on the
cache, on the process memory paging,
in the form of exception propagation
etc.

Dmitry, DrPi here is referring to side-
effects as viewed from the functional-
programming paradigm's perspective.
Some programming languages have a
"pure" designator (usually the keyword:
pure) that assures that this subroutine and
all invoked subroutines therein are pure
(i.e., have no FP side effects).

Ada Pract ice 215

Ada User Journal Volume 41, Number 4, December 2020

The side effects of which you speak are at
the machine-code level: e.g.,
setting/clearing comparison flag(s),
setting/clearing carry flag, setting/clearing
overflow/underflow flag(s), evictions
from L1/L2/L3 cache, (on RISC
processors) latching an address in
preparation of a load/store, and so forth.
None of these are externally observable
side effects from FP's perspective above
the machine-code level. DrPi's FP goals
are valid.

> > Reading the code can't tell you the
writer's intentions.

> What intentions?

The intentions of the Ada programmer to
design an overtly FP-pure or either an
overtly FP-impure subroutine or an FP-
impure subroutine by happenstance.
Subroutine here is preferably a function,
preferably at that a single-parameter
function (for ability to utilize over a
century of mathematical-analysis
techniques). Ada is showing its 1970s
vintage by unfortunately omitting overtly
expressing FP pureness as a fundamental
principle (among a few other FP features).
DrPi's FP goals are valid.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Dec 2020 18:49:08 +0100

> The side effects of which you speak are
at the machine-code level

Memory paging is pretty much
observable.

What you are saying is a question of
contracts. The contract must include all
effects the user may rely on. The contract
of a function may include observable
effects or have none (to some extent).

If contracts were indeed relevant to the
syntax then functions without contracted
side effects must have been called using []
instead of ().

No? Then it is not about the contracts.

>>> Reading the code can't tell you the
writer's intentions.

>> What intentions?

> The intentions of the Ada programmer
to design an overtly FP-pure or either
an overtly FP-impure subroutine or an
FP-impure subroutine by happenstance.

Intentions are constraints expressed by
contracts. Everything else is
implementation details.

Ada programmers are not motivated by
pureness of a subroutine. These are totally
irrelevant. What is relevant is the strength
of the contract. Functions without side
effects are preferable just because they
have weakest preconditions and strongest
postconditions. Side effects weaken
postconditions.

For the clients these are of no interest,
even less to deserve a different syntax.
The user must simply obey the contract
whatever it be, ignoring the
implementation as much as possible.

Ada's unified syntax is a great help here. I
quite often replace arrays and variables
with functions. It would be great if literals
were fully equivalent to parameterless
functions.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 10:40:53 -0800

> No? Then it is not about the contracts.

As witnessed by your final sentence
quoted below and multiple other replies
along this thread, the key tactical
advantage of Ada's usage parentheses for
array indexing is to accomplish a
switcheroo days, weeks, months, years, or
decades later: to substitute a function
invocation later for what was formerly an
array index. Cute trick. Advantageous in
some situations. But for people like DrPi
who seek contractual assurance of FP-
purity of (all?) invoked functions (and
overt declaration of impurity of other
functions), Ada's 1) implicit switcheroo
there in unfortunate combination with
Ada's 2) lack of flamboyantly advertising
impurity in the replacement function does
in fact violate the purity portion of the
contract that the mere offset-into-array
implementation had—and indeed
•overtly• declared in its specification as a
mere offset-into-array operation-of-
unquestionable-purity.

It is okay for a 1970s Ada to not foresee
this, because FP was not a mainstream
programming practice back then. (But,
btw, it is not as okay for there to be a lack
of HOLWGn each decade since the 1980s
to revisit whether HOLWG1 forgot
anything, where n>1, n∈ℤ.) This 1970s
faux pas in letting a silent slip-streamed
switcheroo into the core contract-
definition declaration mechanism of Ada
(not comments! btw, tisk tisk) is merely
some tarnish that an AdaNG (next-
generation Ada) would fix: e.g., by
mandating that all functions (and
procedures?) shall be overtly declared &
enforced to be pure or impure, which
would then mean that only pure functions
could substitute for array indexing is the
()-based switcheroo on which so many
replies in this thread hang their hat. And
DrPi would enjoy seeing the compile-time
errors emerge when some cavalier
programmer over yonder changed an
array index to an •impure• function
invocation as contract violation. The cute
implicit switcheroo isn't evil, but the lack
of compile-time detection of impurity in
the switcherooed function is what is evil.
(While drinking tea as none of my
business as the meme goes,) I actually
claim that Ada's usage of parentheses for
array indexing was merely happenstance

copying the Fortran-PL/I-PL/1-Simula-
PL/P-PL/M/CHILL heritage popular in
the 1970s*, which itself mimicked
mathematics' usage of parentheses around
each matrix. Because there was no way
to represent mathematics' subscripts as the
notation for indexing, the next best
punctuation for matrix/vector indexing
was borrowed: parentheses.

* as opposed to the ALGOL58's,
ALGOL60's, ALGOL68's, BCPL's, C's
square brackets, so the big split was
somewhere around 1957 for FORTRAN
(and whichever predecessor languages
influenced it) and 1958 for ALGOL58
(and whichever predecessor languages
influenced it), as opposed to APL's ⍳ iota
which uses neither parentheses nor square
brackets to pull out an element since 1966

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 19 Dec 2020 20:37:31 +0100

> [...] the key tactical advantage of Ada's
usage parentheses for array indexing is
to accomplish a switcheroo

Not substitute, but to provide whatever
implementation necessary. In fact Ada is
limited in terms of abstractions. There
still exist things which cannot be
implemented by user-defined
subprograms. Ideally there should be
none. Whatever syntax sugar, there
should be always a possibility to back it
by a user-provided primitive operation.

> But for people like DrPi who seek
contractual assurance of FP-purity of
(all?) invoked functions (and overt
declaration of impurity of other
functions),

If they are unsatisfied with the higher
abstraction level of Ada, they can switch
to lower-level languages where
implementation details are exposed in
syntax. The best we can do is to explain
why such exposure is a bad idea.

[Conceptually Ada has nothing to do
with FP and I sincerely hope it never
will.]

> This 1970s faux pas [...] is merely some
tarnish that an AdaNG would fix

This would be highly undesired. On the
contrary impure array implementations
are all OK to implement various heuristics
and caching schemes on the container
side. In fact, Ada moved in that direction
already by providing crude user-defined
array indexing. Clearly as hardware
evolves towards parallel architectures
with partitioned memory, low-level arrays
will be less frequently exposed in
interfaces. Comparing older and newer
Ada code we can see that trend of moving
away from plain arrays.

Furthermore, purity of implementation is
not contract, per definition of. Purity is a
non-functional requirement.

216 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

There is only few areas of interest for
such:

1. Compile-time evaluation/initialization
of static objects and constraints.

2. Optimization, especially in the cases of
fine grained parallelism.

In any case there is no reason to reflect
that in the syntax, whatsoever.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 14:11:59 -0800

> If they are unsatisfied with the higher
abstraction level of Ada, they can
switch to lower-level languages where
implementation details are exposed in
syntax.

No, Dmitry, that is where you are wrong.
In this regard, Ada is the lower-level,
grungier, cruder, uncouther programming
language, closer to assembly language or
ALGOL60. Languages that have a pure
keyword (or equivalent elective
designator for compile-time purity
enforcement throughout a call-tree of
subroutines) are the ones that are high-
level, cleaner, more-sophisticated, more-
refined programming languages, closer to
the lofty heaven of mathematics. This is
actually a sad commentary on software
engineering as a professed practice that
we cannot even agree which
programming-language feature-sets are
higher-level versus lower-level, grungier
versus cleaner, cruder versus more
sophisticated, and uncouther versus more
refined.

There is no good reason for Ada to lack
all of the mechanisms to support FP
(other than historical happenstance, then
being substantially frozen in a Steelman
mindset without any follow-on
Stainlessman (arguably Ada95's,
Ada2005's, Ada2012's would-be set of
requirements that they have incrementally
grown into) then Silverman (arguably
SPARK's would-be set of requirements
that is an ever-closer-to-finished work-in-
progress) then Iridiumman then Goldman
then Palladiummand then Platinumman
evermore sophisticated requirements for a
best-practices programming language to
live up to as humankind's understanding
of programming, system engineering,
software engineering, and mathematics
advances over time).

> Furthermore, purity of implementation
is not contract, per definition of. Purity
is a non-functional requirement.

So is all of Ada's rich typing/subtypes.
Ada is simply capable of expressing some
categories of nonfunctional requirements
of the design (e.g., rich typing) but not
other more-modern categories of
nonfunctional requirement (e.g., a pure
keyword).

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 19 Dec 2020 13:51:35 -0800

> Reading the code can't tell you the
writer's intentions.

That's what comments and design
documents are for.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sat, 19 Dec 2020 14:20:52 -0800

> > Reading the code can't tell you the
writer's intentions.

> That's what comments and design
documents are for.

For decades, assembly-language
programmers said the same thing about
structured-programming feature-set as
being representable in mere comments &
design documents. For decades, C
programmers said the same thing about
Ada's and C++'s and now Rust's feature-
sets as being representable in mere
comments & design documents.
Arguably, the entire history of
programming from Fortran (1957) and
ALGOL (1958) forward is to encode the
designer's intentions in source code that is
vetted by a compiler instead of merely
letting comments and design documents
bit-rot as the declarative & imperative
source code marches onward in the flow
of time during initial greenfield
completion (after all the “then a miracle
occurs” on the blackboard sketches
become rubber meeting road) and then
during maintenance (as the design
incrementally changes).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 20 Dec 2020 09:47:50 +0100

> No, Dmitry, that is where you are
wrong. In this regard, Ada is the lower-
level, grungier, cruder, uncouther
programming language, closer to
assembly language or ALGOL60.

Then we disagree on the definition of
higher level. Mine is the level of
abstraction away from calculus toward the
problem space entities.

[...]

> So is all of Ada's rich typing/subtypes.
Ada is simply capable of expressing
some categories of nonfunctional
requirements of the design (e.g., rich
typing) but not other more-modern
categories of nonfunctional requirement
(e.g., a pure keyword).

The abstract datatype (in its original
sense, rather than as abstract type in Ada)
is meant to be a part of abstraction
expressing the problem space. Purity of
whatever implementation has nothing to
do with the problem space. It is a design
artifact.

Moreover, from the standpoint of
programming paradigm, the whole
procedural decomposition is lower level
than OO decomposition done in terms of
types and sets of types.

FP sits firmly in the procedural world.
Even ignoring all fundamental flaws of
FP concept, you will find no interest in FP
from my side.

From: DrPi <314@drpi.fr>
Date: Sun, 20 Dec 2020 15:10:47 +0100

>> Reading the code can't tell you the
writer's intentions.

> That's what comments and design
documents are for.

A good IDE with code analysis showing
you object declaration/use is very useful.
Especially when comments are out of
sync with the code.

I'm surprised that no modern
tool/language allows the programmer to
embed a "complete" documentation in
source files. I'm not talking about
comments formatted to suit a specific tool
convention, like Python or Perl doc-
strings. I'm talking about embedding
schematics, drawings, bitmaps,
mathematical equations, etc directly in the
source code. Or maybe the reverse:
embed source code in standard document.
Like javascript in SVG files. Why not a
.odt file with code sections? Ok, a specific
file format would be better. Of course, the
editor should be specific. No more a
simple text editor.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Sun, 20 Dec 2020 08:53:36 -0800

> Then we disagree on the definition of
higher level. Mine is the level of
abstraction away from calculus toward
the problem space entities.

Ada's inexpressiveness of imprecision of
vagueness of misrepresenting design
intent in this regard (of inability to
compile-time enforce purity of
subroutines) is clearly not abstraction. It
is mere self-imposed blindness, ignoring
the purity-enforcement topic altogether.
Assembly language and Ada have the
same inability to overtly express and
enforce a declaration of FP-purity. Other
languages have a pure keyword or
equivalent for subroutines (i.e., functions,
procedures, lambdas, coroutines,
generators) to overtly express compile-
time-enforced purity of the subroutine not
making modifications to any data outside
of its parameter data and callstack-based
transient data. Clearly when a
programming language (i.e., Ada) and
assembly language share the same lack of
feature, they are the more-primitive.
Clearly when other pure-keyword-
equipped programming languages can
facilitate & enforce a higher civilization
to capture the finer points of a

Ada Pract ice 217

Ada User Journal Volume 41, Number 4, December 2020

mathematical description of the problem
domain via a rule-declaration & compile-
time enforcement that assembly language
lacks, they are higher-order and less
primitive. There is no valid definition of
“higher-order programming language”
that permits assembly language's lack of a
pure keyword (or equivalent purity-
enforcement mechanism) to be a higher-
order language than, say, Scala with a
pure keyword. Dmitry, your line of
reasoning here of what constitutes a
higher-order language is preposterous!

From: Stéphane Rivière <stef@genesix.fr>
Date: Tue, 22 Dec 2020 11:05:10 +0100

> Ada's inexpressiveness of imprecision
of vagueness of misrepresenting design
intent in this regard (of inability to .../...

Thanks for your message. It makes my
day. I'm not fluent as you in english, nor
in Ada concepts (I just use it with joy),
but let me express my admiration for
assertions such as:

> Assembly language and Ada have the
same inability to overtly express and
enforce a declaration of FP-purity.

Although this thought also plunges me
into an abyss of reflection:

> Ada's inexpressiveness of imprecision
of vagueness of misrepresenting design
intent in this regard (of inability to
compile-time enforce purity of
subroutines) is clearly not abstraction.

There remains a mystery.

Why does your message remind me of
this scene from another genius, Stanley
Kubrick?
https://www.youtube.com/watch?
v=iAHJCPoWCC8

No need to answer me, I don't have your
skills to debate it. Just be assured that this
post is not mocking and more expressing
amazement.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 18:58:51 -0600

>Ada's inexpressiveness of imprecision of
vagueness of misrepresenting design
intent in this regard (of inability to
compile-time enforce purity of
subroutines) ...

Which Ada? Ada 202x has Global aspects
specifically for this purpose, and they are
compile-time enforced. Methinks are you
simply looking to troll Ada rather than
any serious intent.

There's no implementation of Global yet,
sadly. Hopefully coming soon.

From: Andreas Zuercher
<zuercher_andreas@outlook.com>

Date: Mon, 21 Dec 2020 18:39:45 -0800

> Ada 202x has Global aspects
specifically for this purpose, and they
are compile-time enforced.

This is very good news. I will need to
investigate those AIs further. I take it
from your wording that Global aspects are
a general mechanism that a codebase
could use to implement e.g. the purity
check that FP seeks. If a general
mechanism, it will be interesting to
foresee what other categories of axioms
can be enforced/assured beyond purity.
Btw, I botched my example of extant
programming languages in a prior
comment that has a purity check on a call
tree. D has it currently, but it has been
proposed but not yet incorporated into
Scala.

> Methinks are you simply looking to
troll Ada rather than any serious intent.

No, absolutely not, at least not in the
pejorative [sense] that your wording
implies. As a system-engineer •critic• of
finding the flaws in the system at large, I
am always performing gap analysis on
current Ada versus desired state of a
universal programming language, using a
technique not unlike FMEA. At some
level you are coincidentally correct: I am
negatively disappointed with Ada as
much as C++ as much as Scala as much
as D as much as Kotlin as much as Swift
as much as C# as much as OCaml, but in
different ways and to different degrees for
each language.

For example, I admire so many portions
of Ada, especially its declarative rich
typing expressivity and its 35-year lead in
accomplishing much of what C++20 will
finally get with their oft-pursued concept
feature. Conversely, it is sad that few
people realize that Ada has had much of
the new whizbang C++20 concept feature
for 35 years.

It is as if Ada is a mostly superior product
whose salesmen don't consummate as
many sales contracts as they ought. It is
useful to study in depth precisely why the
superior product partially fails to achieve
its potential glory.

One of the most interesting successes of
Ada is that its user community seems to
have fairly consistently utilized the vast
majority of the features of the language
on a regular basis. Despite C++'s
perceived popularity by comparison, each
C++ codebase utilizes 10% of C++, but
worse it is a different 10% of C++ utilized
for each different codebase with vast
rivalry between codebases regarding
which portions of C++ are God's gift to
humankind and which portions of C++
are uncouth. Hence, C++'s perceived
popularity is more of a mirage than it first
appears because there is no one C++ that
is popular, but rather a hundred subsets of
C++, 75 of which are intensely unpopular
to each of the others and 24 of which are

eye-rollingly barely tolerable to each of
the others.

As no small achievement, Ada achieves
Scott McNealy's “all the wood behind one
arrow” vastly more than, say, C++'s or
D's everything-and-the-kitchen-sink
pandering to me-too-isms. Scala/JVM,
Scala/Native, Scala/OO, and Scala/FP are
constantly in a multi-way tug-of-war of
sorts (actually 2 orthogonal tugs-of-wars
at 2 different ontological levels) that again
isn't “all the wood behind one arrow” that
Ada better achieves than Scala (so far).

> There's no implementation of Global
yet, sadly. Hopefully coming soon.

It will be interesting to see the furthest
push-the-limits extent of applicability of
Global aspects.

From: Keith Thompson
<keith.s.thompson+u@gmail.com>

Date: Sun, 20 Dec 2020 13:59:20 -0800

I've never found any of the arguments in
favor of using parentheses for array
indexing convincing, and I've never liked
the way Ada does it. But of course the
decision was made in the early 1980s, and
it can't be changed now.

At least part of the reason was that Ada
needed to be used on systems that didn't
have '[' and ']' in their character sets. I
don't know to what extent that necessity
has been used as an after the fact
rationalization.

Function calls and array indexing can be
substituted for one another in *some*
circumstances, but not in all. But they
really are very different things. A
function call executes user-written code,
and may have side effects; an array
indexing expression refers to an object.
An array indexing expression can appear
on the LHS of an assignment; a function
call can't.

If Ada had originally used '[' and ']' for
array indexing, I doubt that anyone would
be complaining that it would have been
better to use '(' and ')' (other than some
Fortran programmers, I suppose).

Why not use parentheses for record
components, Object(Component) rather
than Object.Component Doesn't the same
argument apply?

> There are proposals to allow [] as well
as (), mainly to increase familiarity for
new Ada users.

Ick. The only thing more confusing than
using () for array indexing would be
allowing either () or [] at the
programmer's whim. (Well, not the only
thing; I'm sure I could come up with
something even worse.)

> Parameterless procedures are much
more common. Writing

> Frobnicate_Widget();

218 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

> is longer than

> Frobnicate_Widget;

> and seems to have no advantages over
the shorter form.

I wouldn't have expected the designers of
Ada to be concerned about saving two
characters.

I see your point about procedure calls. A
statement consisting of an identifier
followed by a semicolon can only be a
procedure call (I think), so there's no
ambiguity. My mild dislike for the
function call syntax is that it needlessly
treats the zero-parameter case as special.

There could also be some potential
ambiguities, though I'm not aware of any
actual ambiguous cases in Ada. In some
languages, the name of a function not
followed by parentheses refers to the
function itself (or its address) and does
not call it. I can easily imagine an
attribute for which Func'Attribute could
sensibly refer either to the function Func
itself or to the value returned by calling it.

Again, if Ada 83 had required empty
parentheses on parameterless procedure
and function calls, I'm skeptical that
anyone would now be arguing that it was
a bad decision.

And again, it would be impossible to
change it without breaking existing code.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 21 Dec 2020 09:08:30 +0100

> Function calls and array indexing can
be substituted for one another in
some circumstances, but not it all.

IMO the only circumstances violating this
substitutability are language design bugs
and deficiencies:

- Passing array elements in in-out mode

- Assigning array elements

- Multidimensional indices

- Slices

all these must be substitutable with user-
defined subprograms.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:04:43 -0600

> Function calls and array indexing can
be substituted for one another in
some circumstances, but not it all.

This is false in modern languages with
user-defined indexing (Ada and C++
included), since what looks like array
indexing can actually be implemented
with a function call.

Not having variable returning functions is
a flaw in Ada, IMHO. These days, I think
there are still too many special cases in
Ada. If I was starting today, () would be a
function call, and . would be selection/

dereferencing, and there would not be
anything else (which means getting rid of
type conversions, array indexing and
slicing, and anything else I've forgotten
about). Compilers are smart enough to
generate better code when they know
something about the function involved
(including if it is that of a predefined
container). Doing that would allow
overloading to be more general and to
allow for the complication of variable
returning functions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 22 Dec 2020 09:00:14 +0100

> If I was starting today, () would be a
function call, and . would be
selection/dereferencing, and there
would not be anything else

But you cannot get rid of X(...) syntax,
where X is an object. It is not only
indexing, e.g. in declarations:

 X : T (Y);

Then what is wrong with indexing? It
should simply apply to all types [from
some predefined class]:

 X (...) ::= CALL (<index-operation>, X, ...)

 (...) ::= CALL (<aggregate-operation>, ...)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 22 Dec 2020 19:23:51 -0600

> Then what is wrong with indexing?

Nothing is "wrong" with it, it is just
redundant. As others have noted here,
both indexes and function calls represent
a mapping. What's the point of having two
ways to represent a mapping? In an Ada-
like language, there's no syntax nor
semantic difference.

Ada (and most other languages) are full of
redundant stuff. Simplify the basics and
then one has more room for interesting
stuff (static analysis, parallel execution,
etc.).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 23 Dec 2020 09:59:46 +0100

>> But you cannot get rid of X(...) syntax,
where X is an object.

> That's a prefixed view, of course. No
one would want to get rid of that.

Hmm, where is the operation? A prefixed
view is

 <expression>.<operation>(...)

Indexing is

 <expression>(...)

In particular:

 "abc"(1)

>> It is not only indexing, e.g. in
declarations:

>> X : T (Y);

> That's not an expression and is not
resolved (that is, there is no possible
overloading).

I see no fundamental difference between
"first-class" expressions and type-
expressions.

>> Then what is wrong with indexing?

> Nothing is "wrong" with it, it is just
redundant. As others have noted here,
both indexes and function calls
represent a mapping. What's the point
of having two ways to represent a
mapping? In an Ada-like language,
there's no syntax nor semantic
difference.

Both are mappings, but unless you make
functions first-class citizens there exist
language level differences between a
function and a container object.

> Ada (and most other languages) are full
of redundant stuff. Simplify the basics
and then one has more room for
interesting stuff (static analysis, parallel
execution, etc.).

Yes, but I would rather keep all this stuff
in the language making it overridable
primitive operations.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 23 Dec 2020 22:06:03 -0600

> Hmm, where is the operation? A
prefixed view is

> <expression>.<operation>(...)

> Indexing is

> <expression>(...)

I neglected to mention that what Ada calls
objects are also function calls in this
proposed generalization. (Much like
enumeration literals are in Ada.) So for
static semantics (that is, compile-time),
pretty much everything is a function call.
This gets rid of the anomalies associated
with constants (which don't overload and
thus hide more than a parameterless
function - which is otherwise the same
thing); combined with variable-returning
functions, everything is overloadable and
treated the same in expressions. Almost
no special cases (operators still require
some special casing, but we can make
them always visible which would
eliminate more issues).

Clearly a compiler for this language
(which can't be Ada, unfortunately, way
too incompatible) would special-case
some kinds of built-in functions for things
like objects and indexing. But that doesn't
need to hair up the semantic model, just
the implementations.

>> Ada (and most other languages) are
full of redundant stuff. Simplify the
basics and then one has more room for

Ada Pract ice 219

Ada User Journal Volume 41, Number 4, December 2020

interesting stuff (static analysis, parallel
execution, etc.).

> Yes, but I would rather keep all this
stuff in the language making it
overridable primitive operations.

Yeah, you don't plan to formally describe
nor implement this language, so you don't
really care about how complex it gets. :-)
Well, at least not until performance
suffers. Ada is reaching the limit of what
can be done without substantial
incompatibility. If we're going to allow
that, we need to start with a cleaner base,
and part of that is getting rid of
redundancies.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 24 Dec 2020 10:37:10 +0100

> I neglected to mention that what Ada
calls objects are also function calls in
this proposed generalization.

Well, you must stop the recursion
somewhere. It is fine to treat access to
objects as calls, e.g. to getter/setter, or to
indexation, or to dereferencing, but you
must finish at some point with something
spelled as a call to a subprogram. In the
case of a subprogram call you are already
there. With "objects" you need a few hops
to get there.

[...]

> Ada is reaching the limit of what can be
done without substantial
incompatibility. If we're going to allow
that, we need to start with a cleaner
base, and part of that is getting rid of
redundancies.

We see that differently. So far new
features were added on top which
naturally leads to the mess we observe.
The problem is lack of generalization not
inconsistency. If the new Ada cannot
express the old messy, but consistent Ada,
then this new Ada is not general enough
and it will arrive at the same amount of
mess sooner or later.

Getting Integers from
Strings

From: John Perry <john.perry@usm.edu>
Subject: Help parsing the language manual

on Get'ing integers from Strings
Date: Sun, 20 Dec 2020 16:11:43 -0800
Newsgroups: comp.lang.ada

Sorry if the subject is unclear. I recently
tried to use

 Get(S, Value, Last);

...in a program where Value was a Natural
and S has the value "29: 116 82 | 119 24".
GNAT gave me a Data_Error.

I don't understand why. [...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Dec 2020 09:44:30 +0200

[...]

It seems that the Get procedure
understands ':' as a base indicator, as in

 "12#44#" works, Value = 52, Last = 6.

 "12#44" fails with Data_Error.

[...]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 21 Dec 2020 08:57:36 +0100

[...]

 Colon: is a replacement character for #
(see allowable replacements of
characters). So it might think of 29: 116
as a malformed base-29 number with
wrong base and missing closing:.

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Mon, 21 Dec 2020 10:06:47 +0200

I see, an "obsolescent feature" in RM J.2.
I learn something new every day (I hope).

Ok, so no bug.

From: Jeffrey R. Carter
Date: Mon, 21 Dec 2020 10:40:17 +0100

> I see, an "obsolescent feature" in RM
J.2.

Yes. I never worked with a system that
required such substitutions, even in 1984
when it was not an obsolescent feature,
but as we can see, it's important to be
aware of them.

These days they are sometimes used for
obfuscation.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:11:32 -0600

> Yes. I never worked with a system that
required such substitutions, even in
1984 when it was not an obsolescent
feature, but as we can see, it's important
to be aware of them.

I believe that restriction had to do with
certain keypunches. But hardly anyone
used keypunches even in 1981. (The
Unisaur computer that our CS compiler-
construction class used still had a few
keypunches, but they had mostly
transitioned to terminals by that time. I
think that was the last class to use the
Unisaur; they just had installed some
VAX 780s for research and they soon got
some for student use as well. My first few
programming classes at UW used the
Unisaurs keypunches.) I think that
requirement was obsolete by the time Ada
was completed (it probably wasn't when
the Ada design was started).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 21 Dec 2020 19:19:44 -0600

> Perhaps RM-A.10.8(8) should be
clarified/corrected.

For what it's worth, we once tried to do
that, but couldn't come to an agreement on
precisely what to change the wording to.
As a change is not critical, we didn't make
one. The ACATS has long had tests in
this area that require something subtly
different than the wording requires, and it
didn't make any sense to change them
(since presumably all implementers are
passing them, rather than strictly
following the RM wording).

In any case, the ":" replacement trips up
people from time-to-time, as pretty much
no one remembers it. I recall we had to
change some piece of new syntax because
the possibility of a colon in a number
made it ambiguous.

On the Future of the
Distributed Systems Annex

From: Rod Kay <rodakay5@gmail.com>
Subject: 2dsa | !2dsa?
Date: Tue, 22 Dec 2020 12:00:48 -0800
Newsgroups: comp.lang.ada

I've heard that the Distributed Systems
Annex (DSA) may be dropped from the
Ada standard soon. Can anyone confirm
this?

I've been using the PolyORB
implementation of DSA for some time
and find it very useful. The way in which
it abstracts away socket 'plumbing' details
makes for very simple/understandable
comms.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 22 Dec 2020 19:32:37 -0600

> I've heard that the Distributed
Systems Annex (DSA) may be dropped
from the Ada standard soon. Can
anyone confirm this?

Annex E remains in the proposed Ada
202x standard.

Compiler support, of course, is up to
vendors. Dunno if anyone is still
supporting it.

> I've been using the PolyORB
implementation of DSA for some time
and find it very useful. The way in
which it abstracts away socket
'plumbing' details makes for very
simple/understandable comms.

That was the promise, not sure it ever
really was realized. Since the Annex was
weakened enough that third-party support
isn't really possible anymore (necessary to
allow it to be used with current
middleware), it's really a vendor-specific
thing these days.

220 Ada Pract ice

Volume 41, Number 4, December 2020 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 23 Dec 2020 09:44:26 +0100

> Compiler support, of course, is up to
vendors. Dunno if anyone is still
supporting it.

It should be moved to the user level. As
specified in the Annex there seems no
obvious way to provide a user-defined
transport for DSA, and there seems no
way to have different implementations of
DSA in the same program.

[...]

> [...] it's really a vendor-specific thing
these days.

Yes, I always wished to include DSA
support based on various communication
protocols I have implemented in Ada,
rather than plain sockets. E.g. I have a
ready-to-go DSA implementation for
interprocess communication over shared
memory, but no idea how to make GNAT
aware of it. Or AQMP and ASN.1 look
like a straightforward candidate as a DSA
transport as they have detailed type
description systems to map Ada objects.

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Thu, 24 Dec 2020 04:02:24 -0800

I forked an older (Garlic) GNAT DSA
implementation and found it quite
hackable. :)

My idea is to implement a
WebSocket/WebRTC transport and
compile it by GNAT-LLVM to
WebAssembly to have distributed Ada
applications in a browser. I have a
working proof of concept demo already :)

https://github.com/reznikmm/garlic/tree/
web_socket

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 24 Dec 2020 14:30:54 +0100

> I forked an older (Garlic) GNAT DSA
implementation and found it quite
hackable. :)

My question is how to proceed without
GLADE/Garlic etc. I have DSA
implemented, e.g. System.RPC. I need
GNAT to accept it as such.

In a more distant perspective I need a
work-around of stream attributes. They
are non-portable, so there must be an
option to replace them for DSA and/or
provide a non-stream parameter
marshaling when the transport is a higher-
level protocol, e.g. CANopen, EtherCAT,
ASN.1, AMQP etc. For these you must
map Ada types into the types defined by
the protocol. Without this DSA is pretty
much pointless.

From: Rod Kay <rodakay5@gmail.com>
Date: Sun, 27 Dec 2020 11:34:10 -0800

Is it likely that the ARG might address the
aforementioned issues?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 28 Dec 2020 17:41:39 -0600

>Is it likely that the ARG might address
the aforementioned issues?

As of now, it doesn't appear that there
would be any point. Annex E is an
optional annex, and so far as we're aware,
no compiler vendor has any plans for
increasing support for that annex. So the
ARG could change the annex but it seems
unlikely that any changes would make it
into implementations. (We've been told
not to expect even the implementation of
bugs fixes included in Ada 202x, even
from the vendor that originally requested
the bug fixes.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 29 Dec 2020 15:56:35 +0100

>> Is it likely that the ARG might address
the aforementioned issues?

> As of now, it doesn't appear that there
would be any point.

Why should there be any vendor support
in the first place? Why not to redefine it
as a set of abstract tagged types allowing
custom user implementations like storage
pools and streams do?

The idea of having an IDL, statically
assigned partitions, linking everything
together before start is not the way the
distributed systems are designed and work
today. CORBA died for a reason.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 29 Dec 2020 16:51:19 +0100

> Would the compiler still need any
support for this or would it just be a set
of interfaces at library level?

Yes, because the idea is to have remote
objects and remote calls looking exactly
the same as local objects and local calls.

So the compiler must translate a call to an
RPC to a call to some user primitive
operation like System.RPC does. The
operation would have a controlling
parameter "connection" or "remote
partition". The actual input values of the
original call must be marshaled, e.g. as an
output stream. The output values and the
result will be returned via an input stream
and deserialized from there into the actual
parameters/result or else into a remote
exception occurrence to re-raise locally if
that was the outcome.

Here lie a lot of problems. First is non-
portability of stream attributes. Second is
lack of support for bulky transfers and
multiplexing. It is highly desirable that
the output stream could be written in
chunks as well as reading the input
stream. E.g. if you pass large objects or if

you want to multiplex RPCs made from
different tasks rather than interlock them
(which for synchronous RPC would result
in catastrophic performance).

The current Annex E is very crude to
allow efficient, low-latency, real-time
implementations.

P.S. If Ada supported delegation,
introspection and getter/setter interface,
then, probably, all remote call/objects
stuff could be made at the library level.
But for now, compiler magic is needed.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 31 Dec 2020 17:43:39 -0600

> Why should there be any vendor
support in the first place? Why not to
redefine it as a set of abstract tagged
types allowing custom user
implementations like storage pools and
streams do?

Marshalling/unmarshalling surely require
vendor support, and there has to be a
standard interface for the marshalling
stuff to talk to. That to me was always the
value of Annex E. My understanding is
that there is not much interest in doing
any work at all, even to correct the
mistakes in the existing definitions.

In any case, Storage_Pools and Streams
are some of the most expensive features
of Ada to support. That's not a model for
"lightweight" support of anything.

My advice would be to talk to your
vendor if you feel strongly about this sort
of support.

Easiest Way to Use Regular
Expressions?

From: reinert <reinkor@gmail.com>
Subject: Easiest way to use redular

expressions?
Date: Sun, 27 Dec 2020 00:20:11 -0800
Newsgroups: comp.lang.ada

I made the following hack to match a
string with a regular expression (using a
named pipe and grep under linux):

[Omitted example of spawning a process
and capturing the output. —arm]

OK, I assume it somehow breaks the
philosophy on Ada and
security/reliability. Could someone
therefore show a better and more simple
way to do this? gnat.expect?

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 27 Dec 2020 09:36:49 +0100

AdaControl uses Gnat.Regpat, and is
quite happy with it...

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Sun, 27 Dec 2020 03:14:47 -0800

> AdaControl uses Gnat.Regpat, and is
quite happy with it...

Obituary 221

Ada User Journal Volume 41, Number 4, December 2020

GNAT.Regpat is a package I wrote 18
years ago or so (time flies..), basically
manually translating C code from the Perl
implementation of regular expressions.
Nowadays, I think it would be better to
write a small binding to the pcre library
(which has quite a simple API, so the
binding should not be too hard). This will
provide much better performance, support
for unicode, and a host of regexp features
that are not supported by GNAT.Regpat.

Never did that while I was working for
AdaCore because we would have ended
up with too many regexp packages (there
is also GNAT.Regexp, which is very
efficient but limited in features because it
is based on a definite state machine).

I think libpcre might even be distributed
with gcc nowadays, although I did not
double-check so might be wrong.

This binding would be a nice small
project for someone who wants to get
started with writing Ada bindings

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Mon, 28 Dec 2020 05:58:06 -0800

The Matreshka library has rather
advanced regexp engine with full Unicode
support

https://forge.ada-ru.org/matreshka/wiki/
League/Regexp

From: Jeffrey R. Carter
Date: Mon, 28 Dec 2020 22:07:24 +0100

You can use PragmARC.Matching.
Regular_Expression or its instantiation for
Character and String, PragmARC.
Matching.Character_Regular_Expression

https://github.com/jrcarter/PragmARC/
tree/Ada-12

Renames Usage

From: DrPi <314@drpi.fr>
Subject: renames usage
Date: Thu, 31 Dec 2020 12:48:25 +0100
Newsgroups: comp.lang.ada

One can read here
https://github.com/AdaCore/svd2ada/
blob/master/src/descriptors-field.adb#L83
this line:

Tag : String renames

Elements.Get_Tag_Name (Child);

Is it equivalent to the following line?

Tag: String:= Elements.Get_Tag_Name

(Child);

From: John Perry <john.perry@usm.edu>
Date: Thu, 31 Dec 2020 04:10:21 -0800

No. Assignment copies the object, and
changes to the copy don't affect the
original, while renaming obtains a
reference to the object. [...]

From: Gautier write-only address
<gautier_niouzes@hotmail.com>

Date: Thu, 31 Dec 2020 04:33:30 -0800

> Tag : String renames
Elements.Get_Tag_Name (Child);

> Is it equivalent to the following line ?

> Tag : String :=
Elements.Get_Tag_Name (Child);

Since the temporary object containing the
result of the call
"Elements.Get_Tag_Name (Child)" is not
accessible anywhere else, the effect is the
same.

But, perhaps in some implementations,
the "renames" accesses that temporary
object, which means the memory
containing it must not be freed until Tag
is out of scope. Perhaps it is even
required. Any compiler specialist here?

From: Jeffrey R. Carter
Date: Thu, 31 Dec 2020 15:49:04 +0100

> Tag : String renames
Elements.Get_Tag_Name (Child);

> Is it equivalent to the following line ?

> Tag : String :=
Elements.Get_Tag_Name (Child);

No. A function result is a constant, so the
1st version gives you a constant. The
second gives you a variable with the same
value.

From: DrPi <314@drpi.fr>
Date: Thu, 31 Dec 2020 16:55:34 +0100

> No. A function result is a constant, so
the 1st version gives you a constant.
The second gives you a variable with
the same value.

Good to know.

What disturbed me was the function call
associated with "renames".

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 31 Dec 2020 19:48:43 +0100

> What disturbed me was the function call
associated with "renames".

Renaming a call to a function does not
rename it in some functional-
programming manner. It renames only the
result of.

So if you do

 X : Float renames Random (Seed);

 Y : array (1..10) of Float := (others => X);

That would not give you ten pseudo-
random numbers. But this will:

 Z : array (1..10) of Float := (others =>

 Random (Seed));

Obituary

Tragic News about Vinzent
Hoefler

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Tragic news about Vinzent Hoefler
Date: Wed, 28 Oct 2020 11:09:09 -0000
Newsgroups: comp.lang.ada

Dear all,

Many of you may know Vinzent Höfler.

I am sad to pass the most tragic news that
Vinzent died last Wednesday 21
October...

Below is the message Vinzent's wife
Katja Saranen asked me earlier today to
share with the Ada community.

He was active in various forums and
newsgroups as Vinzent aka "Jellix" aka
"JeLlyFish.software@gmx.net" aka
"ada.rocks@jlfencey.com" aka
"vinzent@heisenbug.eu". He worked on
professional as well as open-source Ada
projects, was a member and participated
in events of ACM SIGAda, Ada-Europe
and Ada-Belgium, and helped with
several recent Ada DevRooms at
FOSDEM events.

I first met Vinzent what seems an eternity
ago at the SIGAda 2002 conference in
Houston. Our paths crossed many times
since, until five years ago he became an
"Ada" colleague at Eurocontrol.

I will miss Vinzent, as a colleague, as a
like-minded spirit on various issues, and
most of all as an intelligent human being.
I will miss our interesting discussions: we
had too few...

Dirk

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Message from Katja Saranen, Wed Oct 28
2020:

**

With the deepest sorrow I have to share
with you a devastating tragedy.

Our beloved Vinzent has left this world,
he is not with us anymore.

Vinzent "Jellix" Saranen (Höfler,
Fritzsche)

09.01.1974 - 21.10.2020

Unspeakable loss for so many. A father,
son, brother, grandfather, husband, friend,
colleague and much more.

The love of my life. My soulmate. My
person. My husband. My safe place.
Incredible, wonderful, beautiful, weird,
intelligent, talented. So special in so many
ways.

222 Obi tuary

Volume 41, Number 4, December 2020 Ada User Journal

We were supposed to grow old together
and move to wilderness. I was not
supposed to outlive you. I was not
supposed to face the world without you. I
don't know yet how am I even expected to
keep going without you on my side.

This is not a farewell. You're not gone.
Love is not any less. You're always with
me until we meet again. Love you,
forever.

starlingc/katja

"Death is that state in which one exists
only in the memory of others, which is

why it is not an end. No goodbyes. Just
good memories. Hailing frequencies
closed, sir."

(Star Trek TNG; Tasha Yar)

There will be no funeral or grave. He has
been cremated yesterday and next
summer I will take his ashes to the place
where he was happiest and where he
wanted to go to grow old. For a place to
remember him, you can go to nature
anywhere and you'll always be close.
Memorial(s) will be planned at later time,
I am not able to now.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 28 Oct 2020 07:24:32 -0700

Tragic news indeed.

Sorry to see him go.

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Wed, 28 Oct 2020 11:35:56 -0700

> Tragic news indeed.

> Sorry to see him go.

Rest in peace. Sincere condolences.

224

Volume 41, Number 4, December 2020 Ada User Journal

Conference Calendar
Dirk Craeynest

KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Where available, the status of events is
indicated with the following markers: "(c)" = event is cancelled, "(v)" = event is held online, and "(h)" = event is held in a
hybrid form (i.e. partially online).

2021

January 18-20

(v)

16th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2021). Budapest, Hungary. Topics include: computer architecture,

programming models, compilers and operating systems for embedded and general-purpose systems.

January 19-21

(c)

13th Software Quality Days (SWQD'2021), Vienna, Austria. Topics include: improvement of

software development methods and processes, testing and quality assurance of software and software-

intensive systems, domain specific quality issues (such as embedded, medical, automotive systems),

novel trends in software quality, etc.

☺ January 17-22

(v)

48th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2021),

Copenhagen, Denmark. Topics include: all aspects of programming languages and programming

systems.

January 25-29

(v)

47th International Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM'2021), Bozen-Bolzano, Italy. Topics include: methods and tools for improved software

processes, software architecture of complex software-intensive systems, model-based software

engineering methods and tools, methods and tools for software engineering applications, empirical

software engineering, trustworthiness and qualities of modern software systems, etc.

February 01-05

(v)

19th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2021), Australia.

Topics include: all areas of parallel and distributed computing; multi-core systems; GPUs and other

forms of special purpose processors; middleware and tools; parallel programming models, languages

and compilers; runtime systems; resource scheduling and load balancing; reliability, security, privacy

and dependability; etc.

☺ February 06-07

(v)

Free and Open source Software Developers' European Meeting (FOSDEM'2021), Brussels,

Belgium. FOSDEM 2021 is a two-day event (Sat-Sun 06-07 Feb), exceptionally held fully online.

After the 10th Ada DevRoom last year there won't be an Ada DevRoom in 2021, but there will be some

Ada-related content after all.

☺ Feb 27 - Mar 03

(v)

26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP'2021). Seoul, South Korea.

Feb 27 - Mar 03

(v)

30th ACM SIGPLAN 2021 International Conference on Compiler Construction (CC'2021), Seoul,

South Korea. Co-located with CGO, HPCA, and PPoPP. Topics include: processing programs in the

most general sense (analyzing, transforming or executing input that describes how a system operates,

including traditional compiler construction as a special case); compilation and interpretation techniques

(including program representation, analysis, and transformation; code generation, optimization, and

synthesis; the verification thereof); run-time techniques (including memory management, virtual

machines, and dynamic and just-in-time compilation); programming tools (including refactoring

editors, checkers, verifiers, compilers, debuggers, and profilers); techniques, ranging from

programming languages to micro-architectural support, for specific domains such as secure, parallel,

distributed, embedded or mobile environments; design and implementation of novel language

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html

Conference Calendar 225

Ada User Journal Volume 41, Number 4, December 2020

constructs, programming models, and domain-specific languages. Deadline for submissions: January 5,

2021 (artifacts).

March 04-06

(h)

25th International Conference on Engineering of Complex Computer Systems (ICECCS'2020),

Singapore. ICECCS'2020 was postponed from 28-31 October 2020 to 4-6 March 2021, and later

moved to a hybrid format. Topics include: all areas related to complex computer-based systems,

including the causes of complexity and means of avoiding, controlling, or coping with complexity,

such as verification and validation, security and privacy of complex systems, model-driven

development, reverse engineering and refactoring, software architecture, design by contract, agile

methods, safety-critical and fault-tolerant architectures, real-time and embedded systems, systems of

systems, cyber-physical systems and Internet of Things (IoT), tools and tool integration, industrial case

studies, etc.

March 09-12

(v)

28th IEEE Conference on Software Analysis, Evolution, and Reengineering (SANER'2021),

Honolulu, Hawaii, USA. Topics include: theory and practice of recovering information from existing

software and systems; software analysis, parsing, and fact extraction of multi-language systems;

mining software repositories; empirical studies in software re-engineering, maintenance, and evolution;

software architecture evolution; software maintenance and re-engineering economics; software release

engineering, continuous integration and delivery; evaluation and assessment of reverse engineering and

re-engineering tools; software analysis and comprehension; education related issues; etc.

March 10-12

(v)

29th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP'2021), Valladolid, Spain.

March 22-26

(v)

IEEE International Conference on Software Architecture (ICSA'2021), Stuttgart, Germany. Topics

include: model driven engineering for continuous architecting; component based software engineering;

architecture evaluation and quality aspects of software architectures; automatic extraction and

generation of software architecture descriptions; refactoring and evolving architecture design decisions

and solutions; architecture frameworks and architecture description languages; linking architecture to

requirements and/or implementation; architecture conformance; reusable architectural solutions;

software architecture for legacy systems and systems integration; architecting families of products;

software architect roles and responsibilities; training, education, and certification of software architects;

industrial experiments and case studies; etc. Deadline for submissions: January 4, 2021 (Early Career

Researchers Forum abstracts), January 11, 2021 (Early Career Researchers Forum papers), January 20,

2021 (workshops).

☺ Mar 22-26

(v)

International Conference on the Art, Science, and Engineering of Programming

(Programming'2021), Cambridge, UK

 Mar 22

(v)

5th International Workshop on Programming Technology for the Future Web

(ProWeb'2021). Topics include: programming technology and formalisms for

implementing web applications and for maintaining their quality, as well as

experience reports about their usage; such as on web app quality (static and dynamic

program analyses, development tools, automated testing, contract systems, type

systems, migration from legacy architectures, API conformance checking, ...);

designing for and hosting novel languages on the web; new languages and runtimes;

security on the new web; surveys and case studies using state-of-the-art web

technology; ideas on and experience reports about how to reconcile the need for

quality with the need for agility on the web, how to master and combine the myriad

of tier-specific technologies required to develop a web application; etc. Deadline for

submissions: February 8, 2021.

March 22-26

(v)

36th ACM Symposium on Applied Computing (SAC'2021), Gwangju, Korea.

 Mar 22-26

(v)

Software Verification and Testing Track (SVT'2021). Topics include: new results

in formal verification and testing, technologies to improve the usability of formal

methods in software engineering, applications of mechanical verification to large

scale software, model checking, correct by construction development, model-based

testing, software testing, static and dynamic analysis, abstract interpretation, analysis

methods for dependable systems, software certification and proof carrying code, fault

diagnosis and debugging, verification and validation of large scale software systems,

real world applications and case studies applying software testing and verification,

226 Conference Calendar

Volume 41, Number 4, December 2020 Ada User Journal

 etc.

 Mar 22-26

(v)

Embedded Systems Track (EMBS'2021). Topics include: the application of both

novel and well-known techniques to the embedded systems development.

☺ Mar 22-26

(v)

Track on Programming Languages (PL'2021). Topics include: technical ideas and

experiences relating to implementation and application of programming languages,

such as compiling techniques, domain-specific languages, garbage collection,

language design and implementation, languages for modeling, model-driven

development, new programming language ideas and concepts, practical experiences

with programming languages, program analysis and verification, etc.

Mar 22-26

(v)

16th Track on Dependable, Adaptive, and Secure Distributed Systems

(DADS'2021). Topics include: Dependable, Adaptive, and secure Distributed

Systems (DADS); modeling, design, and engineering of DADS; foundations and

formal methods for DADS; etc.

March 27

(v)

IEEE International Conference on Code Quality (ICCQ'2021), Moscow, Russia. Topics include:

static analysis, program verification, bug detection, and software maintenance.

Mar 27 - Apr 01

(v)

24th European Joint Conferences on Theory and Practice of Software (ETAPS'2021),

Luxembourg, Luxembourg. Events include: ESOP (European Symposium on Programming), FASE

(Fundamental Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and

Computation Structures), TACAS (Tools and Algorithms for the Construction and Analysis of

Systems), SV-COMP (the 10th Competition on Software Verification). Deadline for submissions:

January 17, 2021 (nominations ETAPS doctoral dissertation award).

☺ April 07-09

(v)

29th International Conference on Real-Time Networks and Systems (RTNS'2021), Nantes, France.

Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,

telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-

physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks

modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)

analysis, security, ...), software technologies for real-time systems (model-driven engineering,

programming languages, compilers, WCET-aware compilation and parallelization strategies,

middleware, Real-time Operating Systems (RTOS), ...), formal specification and verification, real-time

distributed systems, etc.

April 12-15

(v)

27th International Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ'2021), Essen, Germany. Deadline for submissions: February 8, 2021 (OpenRE track,

posters, tools, workshop papers), February 15, 2021 (Doctoral Symposium), March 15, 2021 (Graduate

Students' event).

April 12-16

(v)

14th IEEE International Conference on Software Testing, Verification and Validation

(ICST'2021), Porto de Galinhas, Brazil. Topics include: manual testing practices and techniques,

security testing, model based testing, test automation, static analysis and symbolic execution, formal

verification and model checking, software reliability, testability and design, testing and development

processes, testing in specific domains (such as embedded, concurrent, distributed, ..., and real-time

systems), testing/debugging tools, empirical studies, experience reports, etc. Deadline for submissions:

January 10, 2021 (workshop papers).

April 19-23

(v)

12th ACM/SPEC International Conference on Performance Engineering (ICPE'2021), Rennes,

France. Deadline for submissions: January 20, 2021 (posters, demos, tutorials, work-in-progress

papers).

May 11-13

(v)

ACM International Conference on Computing Frontiers 2021 (CF'2021), Catania, Sicily, Italy.

Topics include: embedded, IoT, and Cyber-Physical Systems; large-scale system design and

networking; system software, compiler technologies, and programming languages; fault tolerance and

resilience (solutions for ultra-large and safety-critical systems, e.g. infrastructure, airlines; hardware

and software approaches in adverse environments such as space); security (methods, system support,

and hardware for protecting against malicious code; ...); etc. Deadline for submissions: January 28,

2021 (abstracts), February 4, 2021 (papers).

Conference Calendar 227

Ada User Journal Volume 41, Number 4, December 2020

May 18-21

(v)

14th Cyber-Physical Systems and Internet of Things Week (CPS Week'2021), Nashville,

Tennessee, USA. Event includes: 5 top conferences, HSCC, ICCPS, IPSN, RTAS, and IoTDI, multiple

workshops, tutorials, competitions and various exhibitions from both industry and academia. Deadline

for submissions: Deadline for submissions: February 3 - March 18, 2021 (workshop papers).

☺ May 18-21 27th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS'2021). Topics include: systems research related to embedded systems and

time-sensitive systems, ranging from traditional hard real-time systems to embedded

systems without explicit timing requirements; papers describing original systems,

applications, case studies, methodologies, and algorithms that contribute to the state

of practice in design, implementation, verification, and validation of embedded

systems or time-sensitive systems.

May 19-21

(h)

9th International Conference on Fundamentals of Software Engineering (FSEN'2021), Tehran,

Iran. Topics include: all aspects of formal methods, especially those related to advancing the

application of formal methods in the software industry and promoting their integration with practical

engineering techniques; software specification, validation, and verification; software architectures and

their description languages; integration of formal and informal methods; component-based systems;

cyber-physical software systems; model checking and theorem proving; software verification; CASE

tools and tool integration; industrial applications; etc.

May 23-29

(v)

43rd International Conference on Software Engineering (CSE'2021), Madrid, Spain. Topics

include: the full spectrum of Software Engineering, such as testing and analysis (software testing,

program analysis, validation and verification, fault localization, formal methods, programming

languages), empirical software engineering (mining software repositories, software ecosystems, ...),

software evolution (evolution and maintenance, debugging, program comprehension, API design and

evolution, configuration management, release engineering and DevOps, software reuse, refactoring,

reverse engineering, ...), social aspects of software engineering (human aspects of software

engineering, agile methods and software processes, software economics, ethics in software engineering,

...), requirements, modeling, and design (requirements engineering, modeling and model-driven

engineering, software architecture and design, tools and environments, variability and product lines,

parallel, distributed, and concurrent systems, ...), dependability (software security, privacy, reliability

and safety, performance, embedded / cyber-physical systems, ...), etc. Deadline for submissions:

February 22, 2021 (workshop papers), February 1, 2021 (student volunteers).

 May 17-19

(v)

9th International Conference on Formal Methods in Software Engineering

(FormaliSE'2021). Topics include: approaches and tools for verification and

validation; application of formal methods to specific domains, e.g., autonomous,

cyber-physical, and IoT systems; scalability of formal methods applications;

integration of formal methods within the software development lifecycle;

model-based software engineering approaches; formal methods in a certification

context; formal approaches for safety and security-related issues; usability of

formal methods; guidelines to use formal methods in practice; case studies

developed/analyzed with formal approaches; experience reports on the

application of formal methods to real-world problems; etc. Deadline for

submissions: January 5, 2021 (abstracts), January 12, 2021 (papers).

 May 19-21

(v)

4th International Conference on Technical Debt (TechDebt'2021). Topics

include: technical debt management and decision making; tools and indicators

for identifying technical debt; technical debt remediation strategies, methods,

and tools; experiences, approaches and tools for teaching technical debt topics

in academic courses or industrial training; etc. Deadline for submissions:

January 12, 2021 (research and experience papers), January 27, 2021 (short

papers).

May 24-28

(v)

13th NASA Formal Methods Symposium (NFM'2021), Norfolk, Virginia, USA. Topics include:

challenges and solutions for achieving assurance for critical systems; formal verification, model

checking, and static analysis techniques; theorem proving; techniques and algorithms for scaling formal

methods; design for verification and correct-by-design techniques; experience report of application of

formal methods in industry; use of formal methods in education; applications of formal methods in the

development of autonomous systems, safety-critical systems, concurrent and distributed systems,

cyber-physical, embedded, and hybrid systems, ...; etc.

228 Conference Calendar

Volume 41, Number 4, December 2020 Ada User Journal

☺ June 01-03

(h)

24th IEEE International Symposium On Real-Time Distributed Computing (ISORC'2021), Daegu,

South Korea. Topics include: all aspects of object/component/service-oriented real-time distributed

computing (ORC) technology; real-time distributed computing; Internet of Things (IoT); real-time

scheduling theory; resilient cyber-physical systems; autonomous systems (e.g., autonomous driving);

optimization of time-sensitive applications; applications based on ORC technology, for example,

medical devices, intelligent transportation systems, industrial automation systems and industry 4.0,

smart grids, ...; etc. Deadline for submissions: February 5, 2021 (main track), April 5, 2021 (posters,

demos).

 June 07-11

(v)

25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2021 aka Ada-Europe 2021). Santander, Spain. AEiC'2020 was
postponed from 8-12 June 2020 to 7-11 June 2021, then moved to a hybrid and later
to a full virtual event format. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGPLAN, SIGBED, and the Ada Resource Association (ARA). Deadline for
submissions: January 14, 2021 (journal-track papers, workshop proposals), 31 March
2021 (Work-in-Progress papers, industrial presentation outlines, tutorial and invited
presentation proposals).

June 21-23

(v)

25th International Conference on Evaluation and Assessment in Software Engineering

(EASE'2021), Trondheim, Norway. Topics include: assessing the benefits/costs associated with using

chosen development technologies; empirical studies using qualitative, quantitative, and mixed

methods; evaluation and comparison of techniques and models; replication of empirical studies and

families of studies; software technology transfer to industry; etc. Deadline for submissions: January 22,

2021 (workshops), February 19, 2021 (Full Research Track abstracts), February 26, 2021 (Full

Research Track papers, Vision and Emerging Results Track papers), March 26, 2021 (PhD symposium

papers, workshop papers).

June 21-25

(v)

Software Technologies: Applications and Foundations (STAF'2021). Bergen, Norway. STAF'2020

was postponed from 22-26 June 2020 to 21-25 June 2021.

 June 21-25

(v)

15th International Conference on Tests And Proofs (TAP'2021). Topics

include: many aspects of verification technology, including foundational work,

tool development, and empirical research; the connection between proofs (and

other static techniques) and testing (and other dynamic techniques); verification

and analysis techniques combining proofs and tests; program proving with the

aid of testing techniques; deductive techniques supporting the automated

generation of test vectors and oracles, and supporting novel definitions of

coverage criteria; program analysis techniques combining static and dynamic

analysis; testing and runtime analysis of formal specifications; verification of

verification tools and environments; applications of test and proof techniques in

new domains, such as security, configuration management, learning; combined

approaches of test and proof in the context of formal certifications (Common

Criteria, CENELEC, ...); case studies, tool and framework descriptions, and

experience reports about combining tests and proofs; etc. Deadline for

submissions: March 1, 2021 (abstracts), March 8, 2021 (full papers).

June 28 - July 02 15th ACM International Conference on Distributed Event-Based Systems (DEBS'2021), Milan,

Italy. Topics include: systems dealing with collecting, detecting, processing and responding to events

through distributed middleware and applications; models, architectures and paradigms (trustworthy

event-based systems, real-time analytics, ...); systems and software (distributed programming, security,

reliability and resilience, ...); applications (Internet-of-Things, cyber-physical systems, healthcare and

logistics, ...); etc. Deadline for submissions: February 26, 2021 (abstracts), March 5, 2021 (papers).

July 07-09

(v)

33rd Euromicro Conference on Real-Time Systems (ECRTS'2021), Modena, Italy. Topics include:

all aspects of timing requirements in computer systems; elements of time-sensitive computer systems,

such as operating systems, hypervisors, middlewares and frameworks, programming languages and

compilers, runtime environments, ...; classic worst-case execution time (WCET) analysis; formal

methods for the verification and validation of real-time systems; the interplay of timing predictability

and other non-functional qualities such as reliability, security, quality of control, scalability, ...;

foundational scheduling and predictability questions, such as schedulability analysis, locking and

Conference Calendar 229

Ada User Journal Volume 41, Number 4, December 2020

non-blocking synchronization protocols, computational complexity, ...; etc. Deadline for submissions:

March 3, 2021.

☺ July 12-16 35th European Conference on Object-Oriented Programming (ECOOP'2021), Aarhus, Denmark.

Topics include: design, implementation, optimization, analysis, testing, verification, and theory of

programs, programming languages, and programming environments. Deadline for submissions:

January 11, 2021 (papers), January 31, 2021 (workshops), February 28, 2021 (Artifact Evaluation

Committee nominations).

July 12-16

(v)

45th Annual IEEE Conference on Computers, Software and Applications (COMPSAC'2021),

Madrid, Spain. Deadline for submissions: January 15, 2021 (main conference papers), April 1, 2021

(student competition), April 21, 2021 (worskhop papers).

 July 12-16 1st IEEE International Workshop on Software Engineering for Industrial

Cyber-Physical Systems (SE4ICPS'2021). Topics include: middleware design

for industrial IoT/CPS; software design theory for IoT/CPS; formal Methods for

IoT/CPS; safety-critical cyber-physical software systems; software quality

attributes of IoT/CPS; fault-tolerant IoT/CPS; testing, validation, verification,

simulation, and visualization of IoT/CPS; IoT/CPS engineering Methods and

Tools; etc. Deadline for submissions: April 21, 2021 (papers).

☺ August 23-27

(v)

25th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2021),

Paris, France. Co-located with CONCUR'2021 and FORMATS'2021. Topics include: case studies and

experience reports on industrial applications of formal methods, focusing on lessons learned or

identification of new research directions; methods, techniques and tools to support automated analysis,

certification, debugging, descriptions, learning, optimisation and transformation of complex,

distributed, real-time, embedded, mobile and autonomous systems; verification and validation methods

that address shortcomings of existing methods with respect to their industrial applicability (e.g.,

scalability and usability issues); impact of the adoption of formal methods on the development process

and associated costs; application of formal methods in standardisation and industrial forums. Deadline

for submissions: May 7, 2021 (abstracts), May 14, 2021 (papers).

☺ Aug 30 - Sep 03

(v)

27th International European Conference on Parallel and Distributed Computing (Euro-Par'2021),

Lisbon, Portugal. Topics include: all flavors of parallel and distributed processing, such as compilers,

tools and environments, scheduling and load balancing, theory and algorithms for parallel and

distributed processing, parallel and distributed programming, interfaces, and languages, multicore and

manycore parallelism, etc. Deadline for submissions: February 5, 2021 (abstracts), February 12, 2021

(papers).

September 07-10

(h)

40th International Conference on Computer Safety, Reliability and Security (SafeComp'2021),

York, UK. Deadline for submissions: January 25, 2021 (workshops, tutorials), February 1, 2021

(abstracts), February 15, 2021 (full papers).

September 08-11 14th International Conference on the Quality of Information and Communications Technology

(QUATIC'2021), Faro, Portugal. Topics include: all quality aspects in ICT systems engineering and

management; quality in ICT process, product and applications domains; practical studies; etc. Tracks

on ICT verification and validation, safety, security and privacy, model-driven engineering, quality in

cyber-physical systems, software evolution, evidence-based software quality engineering, software

quality education and training, etc. Deadline for submissions: March 30, 2021 (full papers), May 25,

2021 (short papers).

September 21-23 20th International Conference on Intelligent Software Methodologies, Tools and Techniques

(SOMET'2021), Cancun, Mexico. Topics include: state-of-art and new trends on software

methodologies, tools and techniques; software methodologies, and tools for robust, reliable, non-fragile

software design; software developments techniques and legacy systems; software evolution techniques;

agile software and lean methods; formal methods for software design; software maintenance; software

security tools and techniques; formal techniques for software representation, software testing and

validation; software reliability; Model Driven Development (DVD), code centric to model centric

software engineering; etc. Deadline for submissions: March 21, 2021 (papers).

October 10-15

(v)

Embedded Systems Week 2021 (ESWEEK'2021). Shanghai, China. The venues for ESWEEK 2020

and 2021 were swapped. ESWEEK 2020 was to be held in Hamburg, Germany from September 20-25,

2020, and ESWEEK 2021 would be held in Shanghai, China from October 10-15, 2021. Includes

230 Conference Calendar

Volume 41, Number 4, December 2020 Ada User Journal

CASES'2021 (International Conference on Compilers, Architectures, and Synthesis for Embedded

Systems), CODES+ISSS'2021 (International Conference on Hardware/Software Codesign and System

Synthesis), EMSOFT'2021 (International Conference on Embedded Software). Deadline for

submissions: April 2, 2021 (journal track abstracts), April 9, 2021 (journal track full papers), April 16,

2021 (workshops), April 30, 2021 (tutorials, special sessions), June 4, 2021 (Work-in-Progress papers).

 October 10-15

(v)

ACM SIGBED International Conference on Embedded Software

(EMSOFT'2021). Topics include: the science, engineering, and technology of

embedded software development; research in the design and analysis of

software that interacts with physical processes; results on cyber-physical

systems, which integrate computation, networking, and physical dynamics.

Deadline for submissions: April 2, 2021 (Journal-Track abstracts), April 9,

2021 (Journal-Track full papers), June 4, 2021 (Work-in-Progress

submissions).

 October 10-15

(v)

International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS'2021). Topics include: system-level design,

hardware/software co-design, modeling, analysis, and implementation of

modern Embedded Systems, Cyber-Physical Systems, and Internet-of-Things,

from system-level specification and optimization to system synthesis of multi-

processor hardware/software implementations. Deadline for submissions:

April 2, 2021 (Journal-Track abstracts), April 9, 2021 (Journal-Track full

papers), June 4, 2021 (Work-in-Progress submissions).

 October 10-15

(v)

International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES'2021). Topics include: latest advances in

compilers and architectures for high-performance, low-power, and domain-

specific embedded systems; compilers for embedded systems: multi- and

many-core processors, GPU architectures, reconfigurable computing including

FPGAs and CGRAs, security, reliability, and predictability (secure

architectures, hardware security, and compilation for software security;

architecture and compiler techniques for reliability and aging; modeling,

design, analysis, and optimization for timing and predictability; validation,

verification, testing & debugging of embedded software); etc. Deadline for

submissions: April 2, 2021 (Journal-Track abstracts), April 9, 2021 (Journal-

Track full papers), June 4, 2021 (Work-in-Progress submissions).

October 18-22 19th International Symposium on Automated Technology for Verification and Analysis

(ATVA'2021), Gold Coast, Australia. Topics include: theoretical and practical aspects of automated

analysis, synthesis, and verification of hardware, software, and machine learning (ML) systems;

program analysis and software verification; analytical techniques for safety, security, and

dependability; testing and runtime analysis based on verification technology; analysis and verification

of parallel and concurrent systems; verification in industrial practice; applications and case studies;

automated tool support; etc. Deadline for submissions: April 9, 2021 (full papers).

November 15-19 36th IEEE/ACM International Conference on Automated Software Engineering (ASE'2021),

Melbourne, Australia. Topics include: foundations, techniques, and tools for automating the analysis,

design, implementation, testing, and maintenance of large software systems; testing, verification, and

validation; software analysis; empirical software engineering; maintenance and evolution; software

security and trust; program comprehension; software architecture and design; reverse engineering and

re-engineering; model-driven development; specification languages; software product line engineering;

etc. Deadline for submissions: March 22, 2021 (workshops), April 16, 2021 (research track abstracts),

April 23, 2021 (research papers), June 11, 2021 (tutorials, New Ideas and Emerging Results (NIER)

track, Late Breaking Results track, tool demos).

November 20-26 24th International Symposium on Formal Methods (FM'2021), Beijing, China. Topics include:

formal methods in a wide range of domains including software, computer-based systems, systems-of-

systems, cyber-physical systems, security, human-computer interaction, manufacturing, sustainability,

energy, transport, smart cities, and healthcare; formal methods in practice (industrial applications of

formal methods, experience with formal methods in industry, tool usage reports, experiments with

challenge problems); tools for formal methods (advances in automated verification, model checking,

and testing with formal methods, tools integration, environments for formal methods, and experimental

Conference Calendar 231

Ada User Journal Volume 41, Number 4, December 2020

validation of tools); formal methods in software and systems engineering (development processes with

formal methods, usage guidelines for formal methods, and method integration); etc. Deadline for

submissions: February 15, 2021 (workshops, tutorials), April 30, 2021 (abstracts), May 6, 2021 (full

papers).

☺ Dec 07-10 42nd IEEE Real-Time Systems Symposium (RTSS'2021), Taipei, Taiwan. Topics include: addressing

some form of real-time requirements such as deadlines, response times or delays/latency; real-time

system track (middleware, compilers, tools, scheduling, QoS support, testing and debugging, design

and verification, modeling, WCET analysis, performance analysis, fault tolerance, security, system

experimentation and deployment experiences, ...); design and application track (cyber-physical systems

design methods, tools chains, security and privacy, performance analysis, robustness and safety,

analysis techniques and tools, ...; architecture description languages and tools; Internet of Things (IoT)

aspects of scalability, interoperability, reliability, security, middleware and programming abstractions,

protocols, modelling, analysis and performance evaluation, ...); etc. Deadline for submissions: February

28, 2021 (TCRTS award nominations), May 27, 2021 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

25th Ada-Europe
International Conference on

Reliable Software Technologies
(AEiC 2021)

7-11 June 2021, Virtual Event

Conference Chair
Michael González Harbour
Universidad de Cantabria, Spain

mgh@unican.es

Program Chairs
Mario Aldea Rivas
Universidad de Cantabria, Spain

aldeam@unican.es

J. Javier Gutiérrez García
Universidad de Cantabria, Spain

gutierjj@unican.es

Work-in-Progress Chair
Kristoffer Nyborg Gregertsen
SINTEF Digital, Norway

kristoffer.gregertsen@sintef.no

Tutorial & Workshop Chair
Jorge Garrido Balaguer
Universidad Politécnica de Madrid, Spain

jorge.garrido@upm.es

Industrial Chair
Patricia Balbastre Betoret
Universitat Politècnica de València, Spain

patricia@ai2.upv.es

Exhibition & Sponsorship Chair
Ahlan Marriott
White Elephant GmbH, Switzerland

software@white-elephant.ch

Publicity Chair
Dirk Craeynest
Ada-Belgium & KU Leuven, Belgium

dirk.craeynest@cs.kuleuven.be

General Information
The 25th Ada-Europe International Conference on Reliable Software Technologies (AEiC
2021 aka Ada-Europe 2021), initially scheduled to take place in Santander, Spain, will be
held online from the 7th to the 11th of June, 2021. The conference schedule includes a
technical program, vendor exhibition and parallel tutorials and workshops.

The organizing committee estimates that the conditions for a safe in-person conference
will not be met in June 2021. Consequently, the AEiC 2021 Conference will be a virtual-
only event.

Schedule

14 January 2021 Submission of journal-track papers and workshop proposals

19 March 2021 Notification of journal-track paper presentations and workshops

31 March 2021 Submission of Work-in-Progress (WiP) papers, industrial
presentation outlines, and tutorial and invited presentation proposals

30 April 2021 Notification of acceptance for WiP papers, industrial presentation
outlines, and tutorial and invited presentations proposals

Topics
The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long-lived, high-quality software systems for a challenging variety of
application domains. The program will have keynotes, Q&A sessions and discussions,
and virtual social events. Participants include practitioners and researchers from
industry, academia and government organizations active in the promotion and
development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

 Design and Implementation of Real-Time and Embedded Systems,
 Design and Implementation of Mixed-Criticality Systems,
 Theory and Practice of High-Integrity Systems,
 Software Architectures for Reliable Systems,
 Methods and Techniques for Quality Software Development and Maintenance,
 Ada Language and Technologies,
 Mainstream and Emerging Applications with Reliability Requirements,
 Achieving and Assuring Safety in Machine Learning Systems,
 Experience Reports on Reliable System Development,
 Experiences with Ada.

Refer to the conference website for the full list of topics.

www.ada-europe.org/conference2021
(C) Pachi Hondal

(C) RMR

Program Committee

Mario Aldea, Univ. de Cantabria, ES

Johann Blieberger, Vienna Univ. of
Technology, AT

Bernd Burgstaller, Yonsei Univ., KR

Daniela Cancila, CEA LIST, FR

António Casimiro, Univ. Lisboa, PT

Xiaotian Dai, University of York

Juan A. de la Puente, Univ. Pol. de
Madrid, ES

Barbara Gallina, Mälardalen Univ., SE

Marisol García Valls, Univ. Pol. de
València, ES

J. Javier Gutiérrez, Univ. de Cantabria, ES

Jérôme Hugues, CMU/SEI, USA

Patricia López Martínez, Univ. de
Cantabria, ES

Lucía Lo Bello, DIEEI - Università degli
Studi di Catania

Kristina Lundqvist, Malardalen University

Kristoffer Nyborg Gregertsen, SINTEF
Digital, NO

Laurent Pautet, Telecom ParisTech, FR

Luís Miguel Pinho, CISTER/ISEP, PT

Jorge Real, Univ. Pol. de València, ES

José Ruiz, AdaCore, FR

Sergio Sáez, Univ. Pol. de València, ES

Frank Singhoff, Univ. de Bretagne
Occidentale, FR

Tucker Taft, AdaCore, USA

Elena Troubitsyna, Åbo Akademi Uni., FI

Santiago Urueña, GMV, ES

Tullio Vardanega, Univ. of Padua, IT

Industrial Committee

Patricia Balbastre, Universitat Politècnica
de València

Dirk Craeynest, Ada-Belgium &
KU Leuven, BE

Ahlan Marriott, White Elephant, CH

Maurizio Martignano, Spazio-IT, IT

Silvia Mazzini, Intecs

Laurent Rioux, Thales R&T, FR

Jean-Pierre Rosen, Adalog, FR

Call for Journal-Track Papers
The journal-track papers submitted to the conference are full-length papers that must describe
mature research work on the conference topics. They must be original and shall undergo
anonymous peer review.
Accepted journal-track papers will get a presentation slot within a technical session of the
conference and they will be published in an open-access special issue of the Journal of Systems
Architecture (Q2 in the JCR and SJR ranks) with no additional costs to authors. The
corresponding authors shall submit their work by 14 January 2021 via the Special Issue web page:
https://www.journals.elsevier.com/journal-of-systems-architecture/call-for-papers/special-issue-on-
reliable-software-technologies-aeic2021.
Submitted papers must follow the guidelines provided in the "Guide-for-Authors" of the JSA (https://
www.elsevier.com/journals/journal-of-systems-architecture/1383-7621/guide-for-authors). In
particular, JSA does not impose any restriction on the format or extension of the submissions.

Call for WiP-Track Papers
The Work-in-Progress papers (WiP-track) are short (4-page) papers describing evolving and
early-stage ideas or new research directions. They must be original and shall undergo anonymous
peer review. The corresponding authors shall submit their work by 31 March 2021, via
https://easychair.org/conferences/?conf=aeic2021, strictly in PDF and following the Ada User
Journal style (http://www.ada-europe.org/auj/).
Authors of accepted WiP-track papers will get a presentation slot within a regular technical session
of the conference and will also be requested to present a poster. The papers will be published in
the Ada User Journal as part of the proceedings of the Conference.
The conference is listed in the principal citation databases, including DBLP, Scopus, Web of
Science, and Google Scholar. The Ada User Journal is indexed by Scopus and by EBSCOhost in
the Academic Search Ultimate database.

Call for Industrial Presentations
The conference seeks industrial presentations that deliver insightful information value but may
not sustain the strictness of the review process required for regular papers. The authors of
industrial presentations shall submit their proposals, in the form of a short (one or two pages)
abstract, by 31 March 2021, via https://easychair.org/conferences/?conf=aeic2021, strictly in PDF
and following the Ada User Journal style (http://www.ada-europe.org/auj/).
The Industrial Committee will review the submissions anonymously and make recommendations
for acceptance. The abstract of the accepted contributions will be included in the conference
booklet, and authors will get a presentation slot within a regular technical session of the
conference.
These authors will also be invited to expand their contributions into articles for publication in the
Ada User Journal, as part of the proceedings of the Industrial Program of the Conference.

Awards
Ada-Europe will offer an honorary award for the best presentation. All journal-track and industrial
presentations are eligible.

Call for Invited Presentations
The invited presentations are intended to allow researchers to present paramount research
results that are relevant to the conference attendees. There will be no publication associated to
these presentations, which may include previously published works, relevant new tools, methods or
techniques.
The invited presentations will be allocated a presentation slot.
The Program Committee will select invited presentation proposals that may be submitted by e-mail
to one of the Program Chairs as a one-page summary of the proposed presentation, along with the
information and/or links required to show the relevance of the covered topic.

Call for Educational Tutorials
The conference is seeking tutorials in the form of educational seminars including hands-on or
practical demonstrations. Proposed tutorials can be from any part of the reliable software domain,
they may be purely academic or from an industrial base making use of tools used in current
software development environments. We are also interested in contemporary software topics, such
as IoT and artificial intelligence and their application to reliability and safety.
Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the
presentation, the proposed duration (half day or full day), and the intended level of the tutorial
(introductory, intermediate, or advanced). All proposals should be submitted by e-mail to the
Educational Tutorial Chair.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops
Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half- or full-day events, to be scheduled at either end of the conference days.
Workshop proposals should be submitted by e-mail to the Workshop Chair. The workshop
organizer shall also commit to producing the proceedings of the event, for publication in the Ada
User Journal.

Call for Exhibitors
The commercial exhibition will span the core days of the main conference. As an alternative to the
traditional physical exhibition, a virtual room will be provided for exhibition activities. Vendors and
providers of software products and services should contact the Exhibition Chair for information and
for allowing suitable planning of the exhibition space and time.

(C) Antoni Cutiller y Roig(C) We are content (C) Gob. Cantabria

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

 235

Ada User Journal Volume 41, Number 4, December 2020

From Ada to Platinum SPARK: A Case Study

Patrick Rogers, PhD

AdaCore; email: rogers@adacore.com

1 Introduction

An effective approach to learning a new programming

language is to implement data structures common to

computer programming. The approach is effective because

the problem to be solved is well understood, allowing one

to focus on the language details. Moreover, several

different forms of a given data structure are often possible:

bounded versus unbounded, sequential versus thread-safe,

and so on. These multiple forms likely require a wide range

of language features.

Fortunately, for learning SPARK one need not start from

scratch. We can begin with an existing, production-ready

Ada implementation for a common data structure and make

the changes necessary to conform to SPARK. This

approach is possible because SPARK is based directly on

Ada, and the component architecture, based on the

principles of software engineering, is the same in both

languages. In both cases we would have a generic package

exporting a private type, with primitive operations

manipulating that type. The type might be limited, and

might be tagged, using the same criteria to decide. As a

result, the changes need not be extensive, although they are

important and, in some cases, subtle.

Therefore, we will start with a fundamental reusable

component used in real-world applications: a sequential,

bounded stack abstract data type (ADT). By "sequential"

we mean that the code is not thread-safe. By "bounded" we

mean that it is backed by an array, which as usual entails a

discriminant on the private type to set the upper bound of

the internal array component. Client misuse of the Push and

Pop routines, e.g., pushing onto a full stack, raises

exceptions. As Ada has evolved new features have been

applied to make the code more robust, for example the

Push and Pop routines use preconditions to detect clients

misusing the abstraction, raising exceptions from within the

preconditions in response.

The result will be a completely proven SPARK

implementation that relies on static verification of the

abstraction’s semantics instead of run-time enforcement.

We will prove that there are no reads of unassigned

variables, no run-time errors (array indexing errors, range

errors, numeric overflow errors, etc.), and that subprogram

bodies implement their functional requirements, including

some requirements not previously identified. For compliant

client code, analysis will be able to prove there are no

attempts to push onto a full stack, no attempts to pop from

an empty stack, and so forth. As a result, we get a

maximally robust implementation of a full, complete Stack

ADT that allows provably compliant client usage.

We assume familiarity with Ada, including preconditions

and postconditions. Basic language details can be obtained

from the online learning facilities available at

https://learn.adacore.com/, an interactive site allowing one

to enter, compile, and execute Ada programs in a web

browser. We also assume a minimal degree of familiarity

with SPARK. That same web site provides a similar

interactive environment and materials for learning SPARK,

including formal proof.

2 SPARK Adoption Levels

In 2016, AdaCore collaborated with Thales in a series of

experiments on the application of SPARK to existing

software projects written in Ada. The resulting document

presents a set of guidelines for adopting formal verification

in existing projects. These guidelines are arranged in terms

of five levels of software assurance, in increasing order of

benefits and costs. The levels are named Stone, Bronze,

Silver, Gold and Platinum. Successfully reaching a given

level requires successfully achieving the goals of the

previous levels as well.

The guidelines were developed jointly by AdaCore and

Thales for the adoption of the SPARK language technology

at Thales but are applicable across a wide range of

application domains. The document is available online:

http://www.adacore.com/knowledge/technical-

papers/implementation-guidance-spark

2.1 Stone Level

The goal at the Stone level is to identify as much code as

possible that belongs to the SPARK subset. That subset

provides a strong semantic coding standard that enforces

safer use of Ada language features and forbids those

features precluding analysis (e.g., exception handlers). The

result is potentially more understandable, maintainable

code.

2.2 Bronze Level

The goal at the Bronze level is to verify initialization and

correct data flow, as indicated by the absence of

GNATprove messages during SPARK flow analysis. Flow

analysis detects programming errors such as reading

uninitialized data, problematic aliasing between formal

parameters, and data races between concurrent tasks. In

addition, GNATprove checks unit specifications for the

actual data read or written, and the flow of information

from inputs to outputs. As one can see, this level provides

significant benefits, and can be reached with comparatively

low cost. There are no proofs attempted at this level, only

data and flow analyses.

236 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

2.3 Silver Level

The goal at the Silver level is to statically prove absence of

run-time errors (AoRTE), i.e., that there are no exceptions

raised. Proof at this level detects programming errors such

as divide by zero, array indexes that are out of bounds, and

numeric overflow (integer, fixed-point and floating-point),

among others. These errors are detected via the implicit

language-defined checks that raise language-defined

exceptions. The checks themselves preclude a number of

significant situations, including, for example, buffer

overflow, which is often exploited to inject malicious

executable code.

Preconditions, among other additions, may be required to

prove these checks. To illustrate the benefit and part of the

cost of achieving the Silver level, consider the way the Ada

version of the stack ADT uses preconditions for this

purpose. (The complete Ada implementation is explored in

section 4.1.) First, here is the full declaration for type Stack

in the package private part:

type Content is array (Positive range <>) of Element;
type Stack (Capacity : Positive) is record
 Values : Content (1 .. Capacity);
 Top : Natural := 0;
 end record;

The type Element represents the kind of individual values

contained by stack objects. Top is used as the index into the

array Values and can be zero. The Values array uses 1 for

the lower index bound so when Top is zero the enclosing

stack object is logically empty. The following function

checks for that condition:

function Empty (This : Stack) return Boolean is
 (This.Top = 0);

Consider, then, a function using Empty as a precondition.

The function takes a stack parameter as input and returns

the Element value at the logical top of the stack:

19 function Top_Element (This : Stack) return Element
 with
20 Pre => not Empty (This);

Given the precondition on line 20, within the function

implementation we know that Top has a value that is a

potentially valid array index. (We'll also have to be more

precise about Top's upper bound, as explained later in

section 4.4.) There is no need for defensive code so the

body is simply as follows:

57 function Top_Element (This : Stack) return Element
 is
58 (This.Values (This.Top));

If we did not have the precondition specified, GNATprove

would issue a message:

58:24: medium: array index check might fail, (e.g. when

This = (…, Top => 0) and …)

The message shows an example situation in which the

check could fail: Top is zero, i.e., the stack is empty. (We

have elided some of the message content to highlight the

part mentioning Top.)

GNATprove will attempt to prove, statically, that the

preconditions hold at every call site, flagging those calls, if

any, in which the preconditions might not hold. Those

failures must be addressed at the Silver level because the

preconditions are necessary to the proof of absence of run-

time errors.

As you can see, the Silver level provides highly significant

benefits, but does require more contracts and potentially

complex changes to the code. The effort required to achieve

this level can be high. Arguably, however, this level should

be the minimum target level, especially if the application

executable is to be deployed with run-time checks disabled.

2.4 Gold Level

The goal at the Gold level is proof of key integrity

properties. These properties are typically derived from

software requirements but also include maintaining critical

data invariants throughout execution. Working at this level

assumes prior completion at the Silver level to ensure

program integrity, such that control flow cannot be

circumvented through run-time errors and data cannot be

corrupted. Verification at this level is also expected to pass

without any violations.

Key integrity properties are expressed as additional

preconditions and postconditions beyond those used for

defensive purposes. In addition, the application may

explicitly raise application-defined exceptions to signal

violations of integrity properties. GNATprove will attempt

to prove that the code raising an exception is never reached,

and thus, that the property violation never occurs. This

approach may also require further proof-oriented code.

The Gold level provides extremely significant benefits. In

particular, it can be less expensive to prove at this level

than to test to the same degree of confidence. However, the

analysis may take a long time, may require adding more

precise types (ranges), and may require adding more

preconditions and postconditions. Even if a property is

provable, automatic provers may fail to prove it due to

limitations of the provers, requiring either manual proof or,

alternatively, testing.

2.5 Platinum Level

The goal at the Platinum level is nothing less than full

functional proof of the requirements, including the

functional unit level requirements, but also any abstract

requirements such as, for example, safety and security.

As with the Gold level, the application code must pass

SPARK analysis without any violations. Furthermore, at

the Platinum level GNATprove must verify complete user

specifications for type invariants, preconditions,

postconditions, type predicates, loop variants, and loop

termination.

The effort to achieve Platinum level is high, so high that

this level is not recommended during initial adoption of

SPARK.

P. Rogers 237

Ada User Journal Volume 41, Number 4, December 2020

3 Development Environment and
Configuration

When we say we use SPARK, we mean that we develop the

sources in the SPARK language, but also that we use the

SPARK analysis tool to examine and verify those sources.

We developed our sources in GNAT Studio (formerly

GPS), a multi-lingual IDE supporting both Ada and

SPARK, among others. The SPARK analysis tool is named

GNATprove, a command-line tool integrated with GNAT

Studio. GNAT Studio facilitates invocation of GNATprove

with control over switches and source files, providing

traversable results and even, if need be, interactive proof.

3.1 The Provers

A critical concept for using GNATprove is that it

transparently invokes third-party “provers” to analyze the

given source files. These provers are somewhat specialized

in their ability to analyze specific semantics expressed by

the source code. As a result, invocation of a series of

provers may be required before some source code is

successfully proven. In addition, we may need to ask the

provers to “try harder” when attempting to analyze difficult

situations. GNATprove can do both for us via the “level=n”

switch, where “n” is a number from 0 to 4 indicating

increasing strength of analysis and additional provers

invoked. In proving our stack implementation we use level

4.

3.2 Language-Defined Run-time Checks

GNATprove is also integrated with the GNAT Ada

compiler, including the analysis of language-defined run-

time checks produced by the compiler. GNATprove

attempts to verify that no exceptions are raised due to these

checks. It will do so even if we suppress the checks with

compiler switches or pragma Suppress, so we can interpret

lack of corresponding messages as successful verification

of those checks.

Integer overflow checks are a special case, and as a result

have a dedicated GNAT switch that affects whether that

specific check is generated by the compiler. They are a

special case because, in addition to the functional code,

they may appear in the logical assertions about the

functional code, including subprogram preconditions and

postconditions. In these contexts, we might expect them to

behave mathematically, without implementation bounds.

For example, consider the following declaration for a

procedure that enters a log entry into a file:

5 Entry_Num : Natural := 0;
6
7 procedure Log (This : String) with
8 Pre => Entry_Num + 1 <= Integer'Last,
9 Global => (In_Out => Entry_Num);

The procedure body increments Entry_Num by one and

then prepends the result to the string passed as the log

entry. This addition in the body might overflow, but the

issue under consideration is the addition in the precondition

on line 8. If Entry_Num is Integer’Last at the point of the

call, the addition on line 8 will overflow, as GNATprove

indicates:

8:26: medium: overflow check might fail (e.g. when

Entry_Num = Natural'Last)

We could revise the code so that the expression cannot

overflow:

 Pre => Entry_Num <= Integer'Last - 1,

although that is slightly less readable. Other alternatives

within the code are possible as well. However, with regard

to switches pertinent for check generation, GNAT provides

the “-gnato” switch that allows us to control how integer

overflow is treated. (There is a pragma as well, with the

same effects.) We can use that switch to have the compiler

implement integer arithmetic mathematically, without

bounds, the way we might conceptually expect it to work

within logical, non-functional assertions. As a result, there

will be no integer overflow checks generated. The default

effect for the switch, and the default if the switch is not

present, is to enable overflow checks in both functional and

assertion code so we just need to be aware of non-default

usage when we want to determine whether integer overflow

checks have been verified. (See the SPARK User Guide,

section 5.7 “Overflow Modes” for the switch parameters.)

In our GNAT project file, the switch is explicitly set to

enable overflow checks in both the functional code and the

assertion code.

3.3 Source Code File Organization

Logically, there are four source files in the application: two

(declaration and body) for the generic package, one for the

instantiation of that generic package, and one containing

the demonstration main subprogram. Operationally,

however, there are multiple source files for the generic

package. Rather than have one implementation that we alter

as we progress through the SPARK adoption levels, we

have chosen to have a distinct generic package for each

level. Each generic package implements a common stack

ADT in a manner consistent with an adoption level. The

differences among them reflect the changes required for the

different levels. This approach makes it easier to keep the

differences straight when examining the code. Furthermore,

we can apply the proof analyses to a conceptually common

abstraction at arbitrary adoption levels without having to

alter the code.

In addition to the content differences required by the

adoption levels, each generic package name reflects the

corresponding level. We have generic package

Bounded_Stacks_Stone for the Stone level,

Bounded_Stacks_Gold for the Gold level, and so on.

Therefore, although the instantiation is always named

Character_Stacks, we have multiple generic packages

available to declare the one instantiation used.

There are also multiple files for the instantiations. Each

instantiation is located within a dedicated source file

corresponding to a given adoption level (lines 2 and 3

below). For example, here is the content of the file

providing the instance for the Stone level:

1 pragma Spark_Mode (On);
2 with Bounded_Stacks_Stone;

238 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

3 package Character_Stacks is new
 Bounded_Stacks_Stone
4 (…);

The file names for these instances must be unique but are

otherwise arbitrary. For the above, the file name is

“character_stacks-stone.ads” because it is the instance of

the Stone level generic.

Only one of these instances can be used when GNATprove

analyzes the code (or when building the executable). To

select among them we use a “scenario variable” defined in

the GNAT project file that has scenario values matching

the adoption level names. In the IDE this scenario variable

is presented with a pull-down menu so all we must do to

work at a given level is select the adoption level name in

the pull-down list. The project file then selects the

instantiation file corresponding to the level, e.g.,

“character_stacks-silver.ads” when the Silver level is

selected.

There are also multiple source files for the main program.

Rather than have one file that must be edited as we prove

the higher levels, we have two: one for all levels up to and

including the Silver level, and one for all levels above that.

The scenario variable also determines which of these two

source files is active. The main procedures exist only to act

as clients so that we prove certain properties about the

``Stack`` type. Therefore, they declare objects of that type

and make a series of assertions and calls to ``Stack``

operations. They have no functional purpose whatsoever.

3.4 Verifying Generic Units

One of the current limitations of GNATprove is that it

cannot verify generic units on their own. GNATprove must

instead be provided an instantiation to verify. Therefore,

whenever we say that we are verifying the generic package

defining the stack ADT, we mean we are invoking

GNATprove on an instantiation of that generic. As noted

earlier in section 3.3, there are multiple source files

containing these instantiations so we must select the file

corresponding to the desired level when we want to verify

the generic package alone.

However, because there are only four total files required at

any one time, we usually invoke the IDE action that has

GNATprove analyze all the files in the closure of the

application. The instantiation file corresponding to the

scenario variable’s current selection will be analyzed; other

instantiation files are ignored. This approach also verifies

the main program’s calls to the stack routines, which is

vital to the higher adoption levels.

4 Implementations Per Adoption Level

Our first main procedure (Listing 1), used for all adoption

levels up through Silver, declares two stack objects (line 6)

and manipulates them via the abstraction’s interface:

This is the “demo_aorte.adb” file. The purpose of the code

is to illustrate issues found at the initial levels, including

proof in a caller context. It has no functional purpose

whatsoever. As we progress through the levels, we will add

more assertions to highlight more issues, as will be seen in

the other main procedure in the “demo_gold.adb” file.

4.1 Initial Ada Implementation

The initial version defines a canonical representation of a

sequential, bounded stack. As an abstract data type, the

Stack type is declared as a private type with routines

manipulating objects of the type. The type is declared

within a generic package that has one generic formal

parameter, a type representing the kind of elements

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Character_Stacks; use Character_Stacks;
3
4 procedure Demo_AoRTE with SPARK_Mode is
5
6 S1, S2 : Stack (Capacity => 10); -- arbitrary
7
8 X, Y : Character;
9
10 begin
11 pragma Assert (Empty (S1) and Empty (S2));
12 pragma Assert (S1 = S2);
13 Push (S1, 'a');
14 Push (S1, 'b');
15 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
16
17 Pop (S1, X);
18 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
19 Pop (S1, Y);
20 pragma Assert (Empty (S1) and Empty (S2));
21 Put_Line (X & Y);
22
23 Reset (S1);
24 Put_Line ("Extent of S1 is" & Extent (S1)'Image);
25
26 Put_Line ("Done");
27 end Demo_AoRTE;

Listing 1. Procedure Demo_AoRTE

P. Rogers 239

Ada User Journal Volume 41, Number 4, December 2020

contained by Stack objects. This approach is used in all the

implementations.

Some routines have “defensive” preconditions to ensure

correct functionality. They raise exceptions, declared

within the package, when the preconditions do not hold.

The generic package in Ada is declared in Listing 2.

This version is below the Stone level because it is not

within the SPARK subset, due to the raise expressions on

lines 8, 11, 14, and 24. We will address those constructs in

the Stone version.

The generic package body is shown in Listing 3.

Note that both procedure Copy and function “=” are

defined for the sake of increased efficiency when the

objects in question are not full. The procedure only copies

the slice of Source.Values that represents the Element

values logically contained at the time of the call. The

language-defined assignment operation, in contrast, would

copy the entire contents. Similarly, the overridden equality

operator only compares the array slices, rather than the

entire arrays, after first ensuring the stacks are the same

logical size.

However, in addition to efficiency, the "=" function is also

required for proper semantics. The comparison should not

compare array elements that are not, and perhaps never

have been, currently contained in the stack objects. The

1 generic
2 type Element is private;
3 package Bounded_Stacks_Magma is
4
5 type Stack (Capacity : Positive) is private;
6
7 procedure Push (This : in out Stack; Item : Element) with
8 Pre => not Full (This) or else raise Overflow;
9
10 procedure Pop (This : in out Stack; Item : out Element) with
11 Pre => not Empty (This) or else raise Underflow;
12
13 function Top_Element (This : Stack) return Element with
14 Pre => not Empty (This) or else raise Underflow;
15 -- Returns the value of the Element at the "top" of This
16 -- stack, i.e., the most recent Element pushed. Does not
17 -- remove that Element or alter the state of This stack
18 -- in any way.
19
20 overriding function "=" (Left, Right : Stack) return Boolean;
21
22 procedure Copy (Destination : out Stack; Source : Stack) with
23 Pre => Destination.Capacity >= Extent (Source)
24 or else raise Overflow;
25 -- An alternative to predefined assignment that does not
26 -- copy all the values unless necessary. It only copies
27 -- the part "logically" contained, so is more efficient
28 -- when Source is not full.
29
30 function Extent (This : Stack) return Natural;
31 -- Returns the number of Element values currently
32 -- contained within This stack.
33
34 function Empty (This : Stack) return Boolean;
35
36 function Full (This : Stack) return Boolean;
37
38 procedure Reset (This : out Stack);
39
40 Overflow : exception;
41 Underflow : exception;
42
43 private
44
45 type Content is array (Positive range <>) of Element;
46
47 type Stack (Capacity : Positive) is record
48 Values : Content (1 .. Capacity);
49 Top : Natural := 0;
50 end record;
51
52 end Bounded_Stacks_Magma;

Listing 2. Generic package Bounded_Stacks_Magma

240 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

predefined equality would do so and must, therefore, be

replaced.

The changes to the body made for the sake of SPARK will

amount to moving certain bodies to the package declaration

so we will not show the package body again. The full

Platinum implementation, both declaration and body, is

provided at the end of this article.

4.2 Stone Implementation

The Stone level version of the package cannot have the

"raise expressions" in the preconditions because they are

not in the SPARK subset. The rest of the preconditions are

unchanged. Here are the updated declarations for Push and

Pop, for example:

procedure Push (This : in out Stack; Item : Element)
with Pre => not Full (This);

procedure Pop (This : in out Stack; Item : out Element)
with Pre => not Empty (This);

When we get to the adoption levels involving proof,

GNATprove will attempt to verify statically that the

preconditions will hold at each call site. Either that

verification will succeed, or we will know that we must

change the calling code accordingly. Therefore, the

prohibited “raise expressions” are not needed.

The exception declarations, although within the subset, are

also removed because they are no longer needed.

The remaining code is wholly within the SPARK subset so

we have reached the Stone level.

4.3 Bronze Implementation

The Bronze level is about initialization and data flow.

When we apply GNATprove to the Stone version in flow

analysis mode, GNATprove issues messages on the

declarations of procedures Copy and Reset in the generic

package declaration:

medium: "Destination.Values" might not be initialized

in "Copy"

high: "This.Values" is not initialized in "Reset"

The procedure declarations are repeated below for

reference:

1 package body Bounded_Stacks_Magma is
2
3 procedure Reset (This : out Stack) is
4 begin
5 This.Top := 0;
6 end Reset;
7
8 function Extent (This : Stack) return Natural is
9 (This.Top);
10
11 function Empty (This : Stack) return Boolean is
12 (This.Top = 0);
13
14 function Full (This : Stack) return Boolean is
15 (This.Top = This.Capacity);
16
17 procedure Push (This : in out Stack; Item : Element) is
18 begin
19 This.Top := This.Top + 1;
20 This.Values (This.Top) := Item;
21 end Push;
22
23 procedure Pop (This : in out Stack; Item : out Element) is
24 begin
25 Item := This.Values (This.Top);
26 This.Top := This.Top - 1;
27 end Pop;
28
29 function Top_Element (This : Stack) return Element is
30 (This.Values (This.Top));
31
32 function "=" (Left, Right : Stack) return Boolean is
33 (Left.Top = Right.Top and then
34 Left.Values (1 .. Left.Top) = Right.Values (1 .. Right.Top));
35
36 procedure Copy (Destination : out Stack; Source : Stack) is
37 subtype Contained is Integer range 1 .. Source.Top;
38 begin
39 Destination.Top := Source.Top;
40 Destination.Values (Contained) := Source.Values (Contained);
41 end Copy;
42
43 end Bounded_Stacks_Magma;

Listing 3. Generic package body.

P. Rogers 241

Ada User Journal Volume 41, Number 4, December 2020

procedure Copy (Destination : out Stack;
 Source : Stack)
 with Pre => Destination.Capacity >= Extent (Source);

procedure Reset (This : out Stack);

Both messages result from the fact that the updated formal

stack parameters have mode “out” specified. That mode, in

SPARK, means more than it does in Ada. It indicates that

the actual parameters are fully assigned by the procedures,

but these two procedure bodies do not do so. Procedure

Reset simply sets the Top to zero because that is all that a

stack requires, at run-time, to be fully reset. It does nothing

at all to the Values array component. Likewise, procedure

Copy may only assign part of the array, i.e., just those array

components that are logically part of the Source object. (Of

course, if Source is full, the entire array is copied.) In both

subprograms our notion of being fully assigned is less than

SPARK requires. Therefore, we have two choices. Either

we assign values to all components of the record, or we

change the modes to “in out.” These two procedures exist

for the sake of efficiency, i.e., not writing any more data

than logically necessary. Having Reset assign anything to

the array component would defeat the purpose. For the

same reason, having Copy assign more than the partial slice

(when the stack is not full) is clearly inappropriate.

Therefore, we change the mode to “in out” for these two

subprograms. In other cases we might change the

implementations to fully assign the objects.

The other change required for initialization concerns the

type Stack itself. In the main subprogram, GNATprove

complains that the two objects of type Stack have not been

initialized:

warning: "S1" may be referenced before it has a value

high: private part of "S1" is not initialized

warning: "S2" may be referenced before it has a value

high: private part of "S2" is not initialized

high: private part of "S1" is not initialized

Our full definition of the Stack type in the private part is

such that default initialization (i.e., elaboration of object

declarations without an explicit initial value) will assign the

record components so that a stack will behave as if initially

empty. Specifically, default initialization assigns zero to

Top (line 5 below), and since function Empty examines

only the Top component, such objects are empty.

1 type Content is array (Positive range <>) of Element;
2
3 type Stack (Capacity : Positive) is record
4 Values : Content (1 .. Capacity);
5 Top : Natural := 0;
6 end record;

Proper run-time functionality of the Stack ADT does not

require the Values array component to be assigned by

default initialization. But just as with Reset and Copy,

although this approach is sufficient at run-time, the

resulting objects will not be fully initialized in SPARK,

which analyzes the code prior to run-time. As a result, we

need to assign an array aggregate to the Values component

as well. Expressing the array aggregate is problematic

because the array component type is the generic formal

private type Element, with a private view within the

package. Inside the generic package we don’t know how to

construct a value of type Element so we cannot construct an

aggregate containing such values. Therefore, we add the

Default_Value generic formal object parameter and use it

to initialize the array components.

This new generic formal parameter, shown below on line 5,

is added from the Bronze version onward:

1 generic
2 type Element is private;
3 -- The type of values contained by objects
 -- of type Stack
4
5 Default_Value : Element;
6 -- The default value used for stack contents. Never
7 -- acquired as a value from the API, but required for
8 -- initialization in SPARK.
9 package Bounded_Stacks_Bronze is

The full definition for type Stack then uses that parameter

to initialize Values (line 2):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) :=
 (others => Default_Value);
3 Top : Natural := 0;
4 end record;

With those changes in place flow analysis completes

without further complaint. The implementation has reached

the Bronze level.

The need for that additional generic formal parameter is

unfortunate because it becomes part of the user’s interface

without any functional use. None of the API routines ever

return it as a value as such, and the actual value chosen is

immaterial.

Note that SPARK will not allow the aggregate to contain

default components (line 2):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others => <>);
3 Top : Natural := 0;
4 end record;

as per SPARK RM 4.3(1).

Alternatively, we could omit this generic formal object

parameter if we use an aspect to promise that the objects

are initially empty, and then manually justify any resulting

messages. We will in fact add that aspect for other reasons,

but we prefer to have proof as automated as possible, for

convenience and to avoid human error.

Finally, although the data dependency contracts, i.e., the

“Global” aspects, would be generated automatically, we

add them explicitly, indicating that there are no intended

accesses to any global objects. For example, on line 3 in the

following:

1 procedure Push (This : in out Stack; Item : Element)
2 with Pre => not Full (This),
3 Global => null;

242 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

We do so because mismatches between reality and the

generated contracts are not reported by GNATprove, but

we prefer positive confirmation for our understanding of

the dependencies.

The flow dependency contracts (the “Depends” aspects)

also can be generated automatically. Unlike the data

dependency contracts, however, usually these can be

omitted from the code even though mismatches with the

corresponding bodies are not reported. That lack of

notification is not a problem because the generated

contracts are safe: they express at least the dependencies

that the code actually exhibits. Therefore, all actual

dependencies are covered. For example, a generated flow

dependency will state that all outputs depend on all inputs,

which is possible but not necessarily the case.

However, overly conservative contracts can lead to

otherwise-avoidable issues with proof, leading the

developer to add precise contracts explicitly when

necessary. The other reason to express them explicitly is

when we want to prove data flow dependencies as part of

the abstract properties, for example data flowing only

between units at appropriate security levels. We are not

doing so in this case.

4.4 Silver Implementation

If we try to prove the Bronze level version of the generic

package, GNATprove will complain about various run-time

checks that cannot be proved in the generic package body.

The Silver level requires these checks to be proven not to

fail, i.e., not to raise exceptions.

The check messages are as follows, preceded by the code

fragments they reference, with some message content

elided in order to emphasize parts that lead us to the

solution:

37 procedure Push (This : in out Stack; Item : Element)
 is
38 begin
39 This.Top := This.Top + 1;
40 This.Values (This.Top) := Item;
41 end Push;

bounded_stacks_silver.adb:39:28: medium: overflow

check might fail, … (e.g. when This = (…, Top =>

Natural'Last) …

bounded_stacks_silver.adb:40:24: medium: array index

check might fail, … (e.g. when This = (…, Top => 2)

and This.Values'First = 1 and This.Values'Last = 1)

47 procedure Pop (This : in out Stack; Item : out
 Element) is
48 begin
49 Item := This.Values (This.Top);
50 This.Top := This.Top - 1;
51 end Pop;

bounded_stacks_silver.adb:49:32: medium: array index

check might fail, … (e.g. when This = (…, Top => 2)

and This.Values'First = 1 and This.Values'Last = 1)

57 function Top_Element (This : Stack) return Element
 is
58 (This.Values (This.Top));

bounded_stacks_silver.adb:58:24: medium: array index

check might fail, … (e.g. when This = (…, Top => 2)

and This.Values'First = 1 and This.Values'Last = 1)

64 function "=" (Left, Right : Stack) return Boolean is
65 (Left.Top = Right.Top and then
66 Left.Values (1 .. Left.Top) = Right.Values (1 ..
 Right.Top));

bounded_stacks_silver.adb:66:12: medium: range check

might fail, … (e.g. when Left = (Capacity => 1, …, Top

=> 2) …

bounded_stacks_silver.adb:66:43: medium: range check

might fail, … (e.g. when Right = (Capacity => 1, …,

Top => 2) …

72 procedure Copy(Destination : in out Stack; Source :
 Stack) is
73 subtype Contained is Integer range 1 .. Source.Top;
74 begin
75 Destination.Top := Source.Top;
76 Destination.Values(Contained) :=
 Source.Values(Contained);
77 end Copy;

bounded_stacks_silver.adb:76:47: medium: range check

might fail, … (e.g. when Destination = (Capacity => 1,

…) and Source = (Capacity => 1, …), Top => 2)

All of these messages indicate that the provers do not know

that the Top component is always in the range 0 .. Capacity.

The code has not said so, and indeed, there is no way to use

a discriminant in a scalar record component declaration to

constrain the component’s range. This is what we would

write for the record type implementing type Stack in the

full view, if we could (line 3):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others =>
 Default_Value);
3 Top : Natural range 0 .. Capacity := 0;
4 end record;

but that range constraint on Top is not legal. The reason it

is illegal is that the application can change the value of a

discriminant at run-time, under controlled circumstances,

but there is no way at run-time to change the range checks

in the object code generated by the compiler. With Ada and

SPARK there is now a way to express the constraint on

Top, and the provers will recognize the meaning during

analysis. Specifically, we apply a “subtype predicate” to the

record type declaration (line 5):

1 type Stack (Capacity : Positive) is record
2 Values : Content (1 .. Capacity) := (others =>
 Default_Value);
3 Top : Natural := 0;
4 end record with
5 Predicate => Top in 0 .. Capacity;

This aspect informs the provers that the Top component for

any object of type Stack is always in the range 0 ..

Capacity. That addition successfully addresses all the

messages about the generic package body. Note that the

provers will verify the predicate too.

P. Rogers 243

Ada User Journal Volume 41, Number 4, December 2020

However, GNATprove also complains about the main

program. Consider that the first two assertions in the main

procedure are not verified:

10 begin
11 pragma Assert (Empty (S1) and Empty (S2));
12 pragma Assert (S1 = S2);

GNATprove emits:

11:19: medium: assertion might fail, cannot prove

Empty (S1)

12:19: medium: assertion might fail, cannot prove S1 =

S2

We can address the issue for function Empty, partly, by

adding another aspect to the declaration of type Stack, this

time to the visible declaration:

 type Stack (Capacity : Positive) is private
 with Default_Initial_Condition => Empty (Stack);

The new aspect indicates that default initialization results in

stack objects that are empty, making explicit, and

especially, verifiable, the intended initial object state. We

will be notified if GNATprove determines that the aspect

does not hold.

That new aspect will handle the first assertion in the main

program on line 11 but GNATprove complains throughout

the main procedure that the preconditions involving Empty

and Full cannot be proven. For example:

13 Push (S1, 'a');
14 Push (S1, 'b');
15 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");

GNATprove emits:

13:06: medium: precondition might fail, cannot prove

not Full (This)

14:06: medium: precondition might fail, cannot prove

not Full (This) [possible explanation: call at line 13

should mention This (for argument S1) in a

postcondition]

15:35: medium: precondition might fail, cannot prove

not Empty (This) [possible explanation: call at line 14

should mention This (for argument S1) in a

postcondition]

Note the “possible explanations” that GNATprove gives us.

These are clear indications that we are not specifying

sufficient postconditions. Remember that when analyzing

code that includes a call to some procedure, the provers’

knowledge of the call’s effect is provided entirely by the

procedure’s postcondition. That postcondition might be

insufficient, especially if it is absent!

Therefore, we must tell the provers about the effects of

calling Push and Pop, as well as the other routines that

change state. We add a new postcondition on Push (line 3):

1 procedure Push (This : in out Stack; Item : Element)
with
2 Pre => not Full (This),
3 Post => Extent (This) = Extent (This)'Old + 1,
4 Global => null;

The new postcondition expresses the fact that the Stack

contains one more Element value after the call. This is

sufficient because the provers know that function Extent is

simply the value of Top:

 function Extent (This : Stack) return Natural is
 (This.Top);

Hence the provers know that Top is incremented by Push.

The same approach addresses the messages for Pop (line

3):

1 procedure Pop (This : in out Stack; Item : out
Element) with
2 Pre => not Empty (This),
3 Post => Extent (This) = Extent (This)'Old - 1,
4 Global => null;

In the above we say that the provers know what the

function Extent means. For that to be the case when

verifying client calls, we must move the function

completion from the generic package body to the generic

package declaration. In addition, the function must be

implemented as an “expression function,” which Extent

already is (see above). As expression functions in the

package spec, the provers will know the semantics of those

functions automatically, as if each is given a postcondition

restating the corresponding expression explicitly. We also

need functions Full and Empty to be known in this manner.

Therefore, we move the Extent, Empty, and Full function

completions, already expression functions, from the generic

package body to the package declaration. We put them in

the private part because these implementation details

should not be exported to clients.

However, we have a potential overflow in the postcondition

for Push, i.e., the increment of the number of elements

contained after Push returns (line 3 below). The

postcondition for procedure Pop, of course, does not have

that problem.

1 procedure Push (This : in out Stack; Item : Element)
with
2 Pre => not Full (This),
3 Post => Extent (This) = Extent (This)'Old + 1,
4 Global => null;

The increment might overflow because Extent returns a

value of subtype Natural, which could be the value

Integer'Last. Hence the increment could raise

Constraint_Error and the check cannot be verified. We

must either apply the “-gnato” switch so that assertions can

never overflow, or alternatively, declare a safe subrange so

that the result of the addition cannot be greater than

Integer'Last.

Our choice is to declare a safe subrange because the effects

are explicit in the code, as opposed to an external switch.

Therefore, here are the added subtype declarations:

 subtype Element_Count is
 Integer range 0 .. Integer'Last - 1;
 -- The number of Element values currently contained
 -- within any given stack. The lower bound is zero
 -- because a stack can be empty. We limit the upper
 -- bound (minimally) to preclude overflow issues.

244 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

 subtype Physical_Capacity is
 Element_Count range 1 .. Element_Count'Last;
 -- The range of values that any given stack object can
 -- specify (via the discriminant) for the number of
 -- Element values the object can physically contain.
 -- Must be at least one.

We use the second subtype for the discriminant in the

partial view for Stack (line 1):

1 type Stack (Capacity : Physical_Capacity) is private
2 with Default_Initial_Condition => Empty (Stack);

and both subtypes in the full declaration in the private part

(lines 1, 3, and 5):

1 type Content is array (Physical_Capacity range <>)
 of Element;
2
3 type Stack (Capacity : Physical_Capacity) is record
4 Values : Content (1 .. Capacity) :=
 (others =>
Default_Value);
5 Top : Element_Count := 0;
6 end record with
7 Predicate => Top in 0 .. Capacity;

The function Extent is changed to return a value of the

subtype Element_Count so adding one in the postcondition

cannot go past Integer’Last. Overflow is precluded but note

that there will now be range checks for GNATprove to

verify.

With these changes in place we have achieved the Silver

level. There are no run-time check verification failures and

the defensive preconditions are proven at their call sites.

4.5 Gold Implementation

We will now address the remaining changes needed to

reach the Gold level. The process involves iteratively

attempting to prove the main program that calls the stack

routines and makes assertions about the conditions that

follow. This process will result in changes to the generic

package, especially postconditions, so it will require

verification along with the main procedure. Those

additional postconditions may require additional

preconditions as well.

In general, a good way to identify postcondition candidates

is to ask ourselves what conditions we, as the developers,

know to be true after a call to the routine in question. Then

we can add assertions after the calls to see if the provers

can verify those conditions. If not, we extend the

postcondition on the routine.

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Character_Stacks; use Character_Stacks;
3
4 procedure Demo_Gold with SPARK_Mode is
5
6 S1, S2 : Stack (Capacity => 10); -- arbitrary
7
8 X, Y : Character;
9
10 begin
11 pragma Assert (Empty (S1) and Empty (S2));
12 pragma Assert (S1 = S2);
13 Push (S1, 'a');
14 pragma Assert (not Empty (S1));
15 pragma Assert (Top_Element (S1) = 'a');
16 Push (S1, 'b');
17 pragma Assert (S1 /= S2);
18
19 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
20
21 Pop (S1, X);
22 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
23 Pop (S1, Y);
24 pragma Assert (X = 'b');
25 pragma Assert (Y = 'a');
26 pragma Assert (S1 = S2);
27 Put_Line (X & Y);
28
29 Push (S1, 'a');
30 Copy (Source => S1, Destination => S2);
31 pragma Assert (S1 = S2);
32 pragma Assert (Top_Element (S1) = Top_Element (S2));
33 pragma Assert (Extent (S1) = Extent (S2));
34
35 Reset (S1);
36 pragma Assert (Empty (S1));
37 pragma Assert (S1 /= S2);
38
39 Put_Line ("Done");
40 end Demo_Gold;

Listing 4. Demo_Gold procedure.

P. Rogers 245

Ada User Journal Volume 41, Number 4, December 2020

For example, we can say that after a call to Push, the

corresponding stack cannot be empty. Likewise, after a call

to Pop, the stack cannot be full. These additions are not

required for the sake of assertions or other preconditions

because the Extent function already tells the provers what

they need to know in this regard. However, they are good

documentation and may be required to prove additional

conditions added later. (That is the case, in fact, as will be

shown.)

To see what other postconditions are required, we now

switch to the other main procedure, in the “demo_gold.adb”

file. This version of the demo program includes a number

of additional assertions (Listing 4).

For example, we have added assertions after the calls to

Reset and Copy, on lines 31 through 33 and 36 through 37,

respectively. GNATprove now emits the following (elided)

messages for those assertions:

demo_gold.adb:31:19: medium: assertion might fail,

cannot prove S1 = S2 (e.g. when S1 = (…, Top => 0)

and S2 = (…, Top => 0)) [possible explanation: call at

line 30 should mention Destination (for argument S2) in

a postcondition]

demo_gold.adb:36:19: medium: assertion might fail,

cannot prove Empty (S1) … [possible explanation: call

at line 35 should mention This (for argument S1) in a

postcondition]

Note again the “possible explanation” hints. For the first

message we need to add a postcondition on Copy

specifying that the value of the argument passed to

Destination will be equal to that of the Source parameter

(line 3):

1 procedure Copy (Destination : in out Stack;
 Source : Stack)
with
2 Pre => Destination.Capacity >= Extent (Source),
3 Post => Destination = Source,
4 Global => null;

We must move the “=” function implementation to the

package spec so that the provers will know the meaning.

The function was already completed as an expression

function so moving it to the spec is all that is required.

For the second message, regarding the failure to prove that

a stack is Empty after Reset, we add a postcondition to that

effect (line 2):

1 procedure Reset (This : in out Stack) with
2 Post => Empty (This),
3 Global => null;

The completion for function Empty was already moved to

the package spec, earlier.

The implementations of procedure Copy and function “=”

might have required explicit loops, likely requiring loop

invariants, but using array slicing we can express the loop

implicitly. Here is function “=” again, for example:

1 function "=" (Left, Right : Stack) return Boolean is
2 (Left.Top = Right.Top and then

3 Left.Values (1 .. Left.Top) = Right.Values (1 ..
Right.Top));

The slice comparison on line 3 expresses an implicit loop

for us, as does the slice assignment in procedure Copy.

The function could have been implemented as follows, with

an explicit loop:

1 function "=" (Left, Right : Stack) return Boolean is
2 begin
3 if Left.Top /= Right.Top then
4 -- They hold a different number of element values
so
5 -- cannot be equal.
6 return False;
7 end if;
8 -- The two Top values are the same, and the arrays
9 -- are 1-based, so the bounds are the same. Hence
the
10 -- choice of Left.Top or Right.Top is arbitrary and
11 -- there is no need for index offsets.
12 for K in 1 .. Left.Top loop
13 if Left.Values (K) /= Right.Values (K) then
14 return False;
15 end if;
16 pragma Loop_Invariant
17 (Left.Values (1 .. K) = Right.Values (1 .. K));
18 end loop;
19 -- We didn't find a difference
20 return True;
21 end "=";

Note the loop invariant on lines 16 and 17. In some

circumstances GNATprove will handle the invariants for us

but often it cannot. In practice, writing sufficient loop

invariants is one of the more difficult facets of SPARK

development so the chance to avoid them is welcome.

Continuing, we know that after the body of Push executes,

the top element contained in the stack will be the value

passed to Push as an argument. But the provers cannot

verify an assertion to that effect (line 15 below):

13 Push (S1, 'a');
14 pragma Assert (not Empty (S1));
15 pragma Assert (Top_Element (S1) = 'a');

GNATprove emits this message:

demo_gold.adb:15:19: medium: assertion might fail,

cannot prove Top_Element (S1) = 'a'

We must extend the postcondition for Push to state that

Top_Element would return the value just pushed, as shown

on line 4 below:

1 procedure Push (This : in out Stack; Item : Element)
with
2 Pre => not Full (This),
3 Post => not Empty (This)
4 and then Top_Element (This) = Item
5 and then Extent (This) = Extent (This)'Old + 1,
6 Global => null;

Now the assertion on line 15 is verified successfully.

Recall that the precondition for function Top_Element is

that the stack is not empty. We already have that assertion

in the postcondition (line 3) so the precondition for

Top_Element is satisfied. We must use the short circuit

246 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

form for the conjunction, though, to control the order of

evaluation so that “not Empty” is verified before

Top_Element.

The short-circuit form on line 4 necessitates the same form

on line 5, per Ada rules. That triggers a subtle issue flagged

by GNATprove. The short-circuit form, by definition,

means that the evaluation of line 5 might not occur. If it is

not evaluated, we’ve told the compiler to call Extent and

make a copy of the result (via ‘Old, on the right-hand side

of “=”) that will not be needed. Moreover, the execution of

Extent might raise an exception. Therefore, the language

disallows applying ‘Old in any potentially unevaluated

expression that might raise exceptions. As a consequence,

in line 5 we cannot apply ‘Old to the result of calling

Extent. GNATprove issues this error message:

prefix of attribute "Old" that is potentially unevaluated

must denote an entity

We could address the error by changing line 5 to use

Extent(This'Old) instead, but there is a potential

performance difference between Extent(This)'Old and

Extent(This'Old). With the former, only the result of the

function call is copied, whereas with the latter, the value of

the parameter is copied. Copying the parameter could take

significant time and space if This is a large object. Of

course, if the function returns a large value the copy will be

large too, but in this case Extent only returns an integer.

In SPARK, unlike Ada, preconditions, postconditions, and

assertions in general are verified statically, prior to

execution, so there is no performance issue. Ultimately,

though, the application will be executed. Having statically

proven the preconditions and postconditions successfully,

we can safely deploy the final executable without them

enabled, but not all projects follow that approach (at least,

not on that basis). Therefore, for the sake of emphasizing

the idiom with typically better performance, we prefer

applying ‘Old to the function in our implementation.

We can tell GNATprove that this is a benign case, using a

pragma in the package spec:

 pragma Unevaluated_Use_of_Old (Allow);

GNATprove will then allow use of ‘Old on the call to

function Extent and will ensure that no exceptions will be

raised by the function.

As with procedure Push, we can also use Top_Element to

strengthen the postcondition for procedure Pop (line 4

below):

1 procedure Pop (This : in out Stack; Item : out
Element)
2 with Pre => not Empty (This),
3 Post => not Full (This)
4 and Item = Top_Element (This)'Old
5 and Extent (This) = Extent (This)'Old – 1,
6 Global => null;

Line 4 states that the Item returned in the parameter to Pop

is the value that would be returned by Top_Element prior to

the call to Pop.

One last significant enhancement now remains to be made.

Consider the assertions in the main procedure about the

effects of Pop on lines 24 and 25, repeated below:

21 Pop (S1, X);
22 Put_Line ("Top of S1 is '" & Top_Element (S1) & "'");
23 Pop (S1, Y);
24 pragma Assert (X = 'b');
25 pragma Assert (Y = 'a');

Previous lines had pushed ‘a’ and then ‘b’ in that order

onto S1. GNATprove emits this one message:

25:19: medium: assertion might fail, cannot prove Y =

'a' (e.g. when Y = 'b')

The message is about the assertion on line 25, alone. The

assertion on line 24 was verified. Also, the message

indicates that Y could be some arbitrary character. We can

conclude that the provers do not know enough about the

state of the stack after a call to Pop. The postcondition

requires strengthening.

The necessary postcondition extension reflects a unit-level

functional requirement for both Push and Pop. If one

considers that postconditions correspond to the low-level

unit functional requirements (if not more), one can see why

the postconditions must be complete. Identifying and

expressing complete functional requirements is difficult in

itself, and indeed the need for this additional postcondition

content is not obvious at first.

The unit-level requirement for both operations is that the

prior array components within the stack are not altered,

other than the one added or removed. We need to state that

Push and Pop have not reordered them, for example, nor

changed their values. Specifically, for Push we need to say

that the new stack state has exactly the same prior array

slice contents, ignoring the newly pushed value. For Pop,

we need to say that the new state has exactly the prior array

slice contents without the old value at the top.

A new function can be used to express these requirements

for both Push and Pop:

 function Unchanged (Invariant_Part, Within : Stack)
 return Boolean;

The Within parameter is a stack whose internal state will be

compared against that of the Invariant_Part parameter. The

name “Invariant_Part” is chosen to indicate the stack state

that has not changed. The name "Within" is chosen for

readability in named parameter associations on the calls.

For example:

 Unchanged (X, Within => Y)

means that the Element values of X should be equal to

precisely the corresponding values within Y.

However, this function is not one that users would call

directly. We only need it for proof. Therefore, we mark the

Unchanged function as a "ghost" function so that the

compiler will neither generate code for it nor allow the

application code to call it. The function is declared with

that aspect (on line 2) as follows:

P. Rogers 247

Ada User Journal Volume 41, Number 4, December 2020

1 function Unchanged (Invariant_Part, Within : Stack)
 return Boolean
2 with Ghost;

Key to the usage is the fact that by passing This’Old and

This to the two parameters we can compare the before/after

states of a single object. Viewing the function's

implementation will help understand its use in the

postconditions:

1 function Unchanged (Invariant_Part, Within : Stack)
 return Boolean is
2 (Invariant_Part.Top <= Within.Top and then
3 (for all K in 1 .. Invariant_Part.Top =>
4 Within.Values (K) = Invariant_Part.Values (K)));

This approach is based directly on a very clever one by Rod

Chapman, as seen in some similar code.

The function states that the array components logically

contained in Invariant_Part must have the same values as

those corresponding array components in Within. Note how

we allow Invariant_Part to contain fewer values than the

other stack (line 2 above). That is necessary because we use

this function in the postconditions for both the Push and

Pop operations, in which one more or one less Element

value will be present, respectively.

For Push, we add a call to the function in the postcondition

as line 6, below:

1 procedure Push (This : in out Stack; Item : Element)
 with
2 Pre => not Full (This),
3 Post => not Empty (This)
4 and then Top_Element (This) = Item
5 and then Extent (This) = Extent (This)'Old + 1
6 and then Unchanged (This'Old, Within => This),
7 Global => null;

This'Old provides the value of the stack prior to the call of

Push, without the new value included, whereas This

represents the stack state after Push returns, with the new

value in place. Thus, the prior values are compared to the

corresponding values in the new state, with the newly

included value ignored.

Likewise, we add the function call to the postcondition for

Pop, also line 6, below:

1 procedure Pop (This : in out Stack; Item : out
 Element)
2 with Pre => not Empty (This),
3 Post => not Full (This)
4 and Item = Top_Element (This)'Old
5 and Extent (This) = Extent (This)'Old - 1
6 and Unchanged (This, Within => This'Old),
7 Global => null;

In contrast with procedure Push, on line 6 This and

This'Old are passed to the opposite parameters. In this case

the new state of the stack, with one less array component

logically present, is used as the invariant to compare

against. Line 6 expresses the requirement that the new

state's content is the same as the old state's content except

for the one array component no longer present. Because the

function only compares the number of array components

within the Invariant_Part, the additional top element value

within This'Old is ignored.

Note that we must apply ‘Old to This in the calls to

Unchanged in both procedures, rather than to some

function result. That is unavoidable because we must refer

to the prior state of the one stack object being compared.

With those additions to the postconditions we get no further

messages from GNATprove from the main procedure,

including assertions about the states resulting from a series

of calls. We have achieved the Gold level.

Some additional postconditions are possible, however, for

completeness. We can also use function Unchanged in a

new postcondition for the "=" function:

1 function "=" (Left, Right : Stack) return Boolean with
2 Post => "="'Result = (Extent (Left) = Extent (Right)
3 and then Unchanged (Left, Right));

This postcondition expresses an implication: whenever the

“=” function comparing the two stacks returns True, the

Extent (i.e., Top) values will be the same and Unchanged

will hold. In other words, they will have the same logical

size and content. Whenever “=” returns False, the

conjunction will not hold. Note that on line 3, neither

argument to function Unchanged has ‘Old applied because

we are comparing two distinct stack objects, rather than

different states for one object. The sizes will be the same

(from line 2) so Unchanged will compare the entire slices

logically contained by Left and Right.

We can use the same implication approach in a new

postcondition for function Empty:

 function Empty (This : Stack) return Boolean with
 Post => Empty'Result = (Extent (This) = 0);

Whenever Empty returns True, Top (i.e., Extent) will be

zero, otherwise Top will not be zero.

4.6 Platinum Implementation

Our Gold level implementation also achieved the Platinum

level because our postconditions fully covered the

functional requirements and there were no abstract

properties to be proven. Achieving the Platinum level is

rare in itself, all the more so using the Gold level

implementation. Doing so is possible in no small part

because stacks are simple abstractions.

5 Concluding Remarks

We have shown how to transition an Ada implementation

of a sequential, bounded stack abstract data type into a

SPARK implementation supporting formal proof of the

abstraction’s semantics.

Overall, the changes were relatively simple and brief. The

truly difficult part of the effort, of course, was determining

what changes to make in order to satisfy the provers. That

difficulty is somewhat understated in the text because we

go directly from specific problems to their solutions,

without indicating the time and effort required to identify

those solutions. Similarly, we elided parts of the

GNATprove messages to highlight the parts indicating the

actual problem. Knowing how to interpret the messages,

the counterexamples, and possible explanations is a skill

that comes with experience.

248 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

In addition, we must point out that stacks are simple,

especially bounded stacks based on arrays. The relative

ease in reaching the Gold or Platinum levels would likely

not be possible for other data structures. In particular, a

“model” of the abstraction’s state will often be required,

resulting in complexity well beyond the Unchanged

function that was sufficient for bounded stacks. See, for

example, the formal containers shipped with GNAT.

Thanks are due to Yannick Moy and the entire SPARK

team at AdaCore for their essential help. The source code

and full GNAT project are available on GitHub here.

6 Gold/Platinum Implementation Listing

The following is the generic package declaration and body

for the Platinum level implementation. As described earlier,

the Platinum level implementation is the same as the Gold

level implementation. We have kept the two versions in

separate packages and files. The Platinum version, like the

Gold version, did not include the Depends contracts.

Listings 5 and 6 show a version with those contracts, for

completeness.

generic

 type Element is private;
 -- The type of values contained by objects of type Stack
 Default_Value : Element;
 -- The default value used for stack contents. Never
 -- acquired as a value from the API, but required for
 -- initialization in SPARK.
package Bounded_Stacks_Platinum is
 pragma Unevaluated_Use_of_Old (Allow);
 subtype Element_Count is Integer range 0 .. Integer'Last - 1;
 -- The number of Element values currently contained
 -- within any given stack. The lower bound is zero
 -- because a stack can be empty. We limit the upper
 -- bound (minimally) to preclude overflow issues.
 subtype Physical_Capacity is
 Element_Count range 1 .. Element_Count'Last;
 -- The range of values that any given stack object can
 -- specify (via the discriminant) for the number of
 -- Element values the object can physically contain.
 -- Must be at least one.
 type Stack (Capacity : Physical_Capacity) is private
 with Default_Initial_Condition => Empty (Stack);
 procedure Push (This : in out Stack; Item : Element) with
 Pre => not Full (This),
 Post => not Empty (This)
 and then Top_Element (This) = Item
 and then Extent (This) = Extent (This)'Old + 1
 and then Unchanged (This'Old, Within => This),
 Global => null;
 procedure Pop (This : in out Stack; Item : out Element) with
 Pre => not Empty (This),
 Post => not Full (This)
 and Item = Top_Element (This)'Old
 and Extent (This) = Extent (This)'Old - 1
 and Unchanged (This, Within => This'Old),
 Global => null;
 function Top_Element (This : Stack) return Element with
 Pre => not Empty (This),
 Global => null;
 -- Returns the value of the Element at the "top" of This
 -- stack, i.e., the most recent Element pushed. Does not
 -- remove that Element or alter the state of This stack
 -- in any way.
 overriding function "=" (Left, Right : Stack) return Boolean with
 Post => "="'Result = (Extent (Left) = Extent (Right)
 and then Unchanged (Left, Right)),
 Global => null;
 procedure Copy (Destination : in out Stack; Source : Stack) with
 Pre => Destination.Capacity >= Extent (Source),
 Post => Destination = Source,
 Global => null;
 -- An alternative to predefined assignment that does not
 -- copy all the values unless necessary. It only copies
 -- the part "logically" contained, so is more efficient
 -- when Source is not full.

P. Rogers 249

Ada User Journal Volume 41, Number 4, December 2020

 function Extent (This : Stack) return Element_Count with
 Global => null;
 -- Returns the number of Element values currently
 -- contained within This stack.
 function Empty (This : Stack) return Boolean with
 Post => Empty'Result = (Extent (This) = 0),
 Global => null;
 function Full (This : Stack) return Boolean with
 Post => Full'Result = (Extent (This) = This.Capacity),
 Global => null;
 procedure Reset (This : in out Stack) with
 Post => Empty (This),
 Global => null;
 function Unchanged (Invariant_Part, Within : Stack) return Boolean
 with Ghost;
 -- Returns whether the Element values of Invariant_Part
 -- are unchanged in the stack Within, e.g., that inserting
 -- or removing an Element value does not change the other
 -- Element values held.
private
 type Content is array (Physical_Capacity range <>) of Element;
 type Stack (Capacity : Physical_Capacity) is record
 Values : Content (1 .. Capacity) := (others => Default_Value);
 Top : Element_Count := 0;
 end record with
 Predicate => Top in 0 .. Capacity;

 -- Extent --

 function Extent (This : Stack) return Element_Count is
 (This.Top);

 -- Empty --

 function Empty (This : Stack) return Boolean is
 (This.Top = 0);

 -- Full --

 function Full (This : Stack) return Boolean is
 (This.Top = This.Capacity);

 -- Top_Element --

 function Top_Element (This : Stack) return Element is
 (This.Values (This.Top));

 -- "=" --

 function "=" (Left, Right : Stack) return Boolean is
 (Left.Top = Right.Top and then
 Left.Values (1 .. Left.Top) = Right.Values (1 .. Right.Top));

 -- Unchanged --

 function Unchanged (Invariant_Part, Within : Stack) return Boolean is
 (Invariant_Part.Top <= Within.Top and then
 (for all K in 1 .. Invariant_Part.Top =>
 Within.Values (K) = Invariant_Part.Values (K)));
end Bounded_Stacks_Platinum;

Listing 5. Platinum Version.

250 From Ada to Plat inum SPARK: A Case Study

Volume 41, Number 4, December 2020 Ada User Journal

package body Bounded_Stacks_Platinum is

 -- Reset --

 procedure Reset (This : in out Stack) is
 begin
 This.Top := 0;
 end Reset;

 -- Push --

 procedure Push (This : in out Stack; Item : Element) is
 begin
 This.Top := This.Top + 1;
 This.Values (This.Top) := Item;
 end Push;

 -- Pop --

 procedure Pop (This : in out Stack; Item : out Element) is
 begin
 Item := This.Values (This.Top);
 This.Top := This.Top - 1;
 end Pop;

 -- Copy --

 procedure Copy (Destination : in out Stack; Source : Stack) is
 subtype Contained is Element_Count range 1 .. Source.Top;
 begin
 Destination.Top := Source.Top;
 Destination.Values (Contained) := Source.Values (Contained);
 end Copy;
end Bounded_Stacks_Platinum;

Listing 6. Platinum Version Body.

 251

Ada User Journal Volume 41, Number 4, December 2020

A Layered Mapping of Ada 202X to OpenMP

S. Tucker Taft

AdaCore, Lexington, MA

1 Introduction

The OpenMP specification defines a set of compiler

directives, library routines, and environment variables that

together represent the OpenMP Application Programming

Interface, and is currently defined for C, C++, and Fortran.

The forthcoming version of Ada, currently dubbed Ada

202X, includes lightweight parallelism features, in

particular parallel blocks and parallel loops. All versions of

Ada, since its inception in 1983, have included “tasking,”

which corresponds to what are traditionally considered

“heavyweight” parallelism features, or simply

“concurrency” features. Ada “tasks” typically map to what

are called “kernel threads,” in that the operating system

manages them and schedules them. However, one of the

goals of lightweight parallelism is to reduce overhead by

doing more of the management outside the kernel of the

operating system, using a light-weight-thread (LWT)

scheduler. The OpenMP library routines support both levels

of threading, but for Ada 202X, the main interest is in

making use of OpenMP for its lightweight thread

scheduling capabilities.

For C, C++, and Fortran, the programmer is fully aware

when they are making use of OpenMP for any lightweight

parallelism features, in that they use OpenMP-specific

compiler directives and in some cases explicit calls on the

OpenMP library, to implement their program. By contrast,

for Ada 202X, the language defines the lightweight

parallelism features, and our goal is to enable the

implementation of those features on top of OpenMP, or on

top of some alternative LWT scheduler, or as a fallback,

with effectively sequential semantics. We anticipate the

desire to pass options to the underlying LWT scheduler, be

it OpenMP or some other infrastructure, but such options

would be intended to only affect performance, with no

effect on the fundamental dynamic semantics.

Given the above goals, we are recommending a layered

mapping to OpenMP (or other LWT scheduler), where

upon seeing the syntax for a parallel construct, the compiler

generates calls on a top layer (dubbed "System.Parallelism"

for now). This layer is independent of the particular LWT

scheduler that will be controlling the light-weight threads

that are spawned as a result of the parallel constructs.

Below System.Parallelism is a package dubbed

"System.LWT", which provides the LWT-scheduler-

independent API, and implements it using a "plug-in"

architecture. Specific LWT schedulers would be children of

this package, for example "System.LWT.OpenMP", and

one of them could be "plugged in" to System.LWT and

handle the various calls through the API. In the absence of

any plugin, System.LWT would fall back to a purely

sequential implementation.

The user will determine which particular LWT scheduler, if

any, gets linked into the program by mentioning in a “with”

clause a package (e.g. Interfaces.OpenMP) and declaring a

"control" object of a type that was declared in that package

(e.g. Interfaces.OpenMP.OMP_Parallel), in the task body

for the Ada tasks (or the main subprogram for the

environment task) where it is desired to have multiple light

weight threads of control. Data within the control object

can be used to control the level of parallelism desired (e.g.

"Control : OMP_Parallel (Num_Threads => 5);"), as well

as potentially other options that should apply by default

across all parallel constructs in the given Ada task. This

approach is modeled on the "#pragma omp parallel" of

OpenMP which creates a "parallel region" in which work-

sharing or other forms of parallelism can be used. The

Interfaces.OpenMP package might have other subprograms

intended to be called directly by the user, in particular those

that are part of the "official" OpenMP API, such as

"omp_get_thread_num" or "omp_get_team_size,” though

there would be no requirement to call such subprograms in

normal operation of a parallel program.

2 Interaction with Ada tasks

As mentioned above, Ada has always had heavier weight

“tasks” to provide basic concurrency, where tasks are

defined by creating an object of a given task type. The Ada

program as a whole always represents another task, which

is called the environment task. We propose that each such

Ada task defines its own parallelism region, if any,

recognizing that many Ada tasks will need no internal

parallelism, and might continue to serve special roles in a

real-time environment, such as managing particular

hardware devices, or specific jobs of the real-time system,

at a particular real-time priority.

For each Ada task that does want internal parallelism, the

expectation is that the underlying LWT scheduler (e.g.

OpenMP) will start up (or re-use) additional (heavy-

weight) "kernel threads" to act as servers for the LWTs that

will be spawned somewhere within the Ada task. Each of

these servers will run at the same priority as the enclosing

Ada task, and will share the Ada "identity" and "attributes"

of that Ada task from the point of view of the Ada

semantics. The LWTs served by these server threads will in

turn get their Ada task "identity" and "attributes" from

these servers.

252 A Layered Mapping of Ada 202X to OpenMP

Volume 41, Number 4, December 2020 Ada User Journal

3 Light-weight thread groups

Each light-weight thread is run in the context of an "LWT

group," which maps quite directly to an OpenMP

"taskgroup." All of the LWTs spawned during the scope of

an LWT group are automatically awaited at the end of the

LWT group. This ensures that the scope where an LWT is

defined isn't exited while such LWTs are still running and

potentially making up-level references to objects from the

enclosing scope. When the Ada 202X compiler sees a

parallel construct, it will emit code to create an LWT

group, and then call the appropriate sequence of

System.Parallelism and System.LWT routines at

appropriate points, and then emit code to wait for the group

to complete before proceeding past the construct.

4 OpenMP options

One challenge is how the Ada programmer, and the Ada

compiler, can pass options through the LWT layer down to

the underlying thread scheduler. The general idea is to

allow for a variant of Ada’s standard “aspect” syntax

(similar to what are called “annotations” in other

languages) any place where the parallel reserved word is

used to initiate a parallel construct, and allow the syntax to

be generalized by specifying a value of any type that is an

extension of a special Ada.Aspects.Root_Aspect tagged

type. This value can be passed through the various

System.Parallelism and System.LWT APIs, allowing the

underlying LWT scheduler to receive the options and use

them as it sees fit, with a default value of Null_Aspect. The

advantage of this approach is that a user-provided LWT

scheduler might be substituted for one provided by the

compiler vendor, and it could also take advantage of the

generalized aspect syntax without any need to add special

handling into the compiler. This also allows us to reach

additional options for some future OpenMP standard

without further additions to the compiler.

5 Conclusion

This layered approach, along with the parallelism control

object and the generalized aspects defined by types from

the Interface.OpenMP package, should allow Ada 202X

users to take advantage of the OpenMP features of interest,

and to accommodate evolution of the OpenMP standard as

well as the ability to use other LWT schedulers which

might come from, say, an RTOS vendor. If the user

chooses to use no LWT scheduler, a sequential fall back

will be part of System.LWT whenever there is no LWT

scheduler "plugged in." We believe this layered approach

may be a model for other languages that want to provide a

binding to OpenMP capabilities, while not requiring heavy

use of compiler directives, which can hurt readability and

do not tend to be as composable as syntax.

Appendix

Handling secondary stack, exceptions, and
transfers of control out of the code for a
light-weight thread

Independent of which particular LWT scheduler is present

(if any), the code for a particular light-weight thread is

defined by a function pointer and a data object. For Ada,

the data object will typically be a tagged data object, and

the function will be a simple wrapper that merely invokes a

special “LWT_Body” dispatching operation on the object,

and handles all exceptions propagated by the body (similar

to the way a wrapper around an Ada task body handles all

exceptions). Normal secondary stack and exception raising

and handling can be performed inside the LWT_Body,

because light-weight threads run on a given server until

completion or cancelation. They aren’t swapped back and

forth, so there is no added complexity in stack or exception

management. Effectively, exceptions are being raised and

handled on the stack of the server, in the usual way.

When an exception is propagated out of an LWT_Body, or

if the code for an LWT_Body has an explicit transfer of

control out of the code for the light-weight thread, an

attempt is made to cancel the other threads in the LWT

group. The first LWT to attempt cancelation receives an

indication of “success” from this attempt. Later LWTs of

the same group making such an attempt will not receive the

“success” indicator. Cancelation in OpenMP, and in Ada

202X, allows cancelation to be implemented using a

polling approach, where there are various well-defined

“cancelation points.” When code within LWT_Body

detects that the enclosing LWT group has been canceled, it

generally just returns from the LWT_Body. The LWT that

successfully initiated the cancelation records in a variable

visible at the point where the LWT group ends, what action

should be taken. The code at the end of the LWT group

propagates the exception, or continues any other transfer of

control, after waiting for all of the LWTs within the group

to complete their execution.

Expansions for proposed Ada 202X features

A. Expansion for Ada 202X parallel block

The OpenMP recommended approach to supporting a

sequence of blocks to be (potentially) run in parallel is to

create a loop around a switch/case statement. The “GOMP”

implementation indicates the same approach in:

https://gcc.gnu.org/onlinedocs/libgomp/

Implementing-SECTIONS-construct.html

We suggest the same approach for Ada. Here is an example

expansion:

procedure Walk (Tree : Tree_Ptr) is
 -- Walk nodes of Tree in parallel
begin
 if Tree = null then
 return;
 elsif Tree.Kind = Leaf then
 Process (Tree);
 else
 parallel
 do
 Walk (Tree.Left);
 and
 Walk (Tree.Right);
 end do;
 end if;
end Walk;

expands into:

S. Tucker Taft 253

Ada User Journal Volume 41, Number 4, December 2020

procedure Walk (Tree : Tree_Ptr) is
 -- Walk nodes of Tree in parallel
begin
 if Tree = null then
 return;
 elsif Tree.Kind = Leaf then
 Process (Tree);
 else
 parallel
 for _I in 1 .. 2 loop
 case _I is
 when 1 =>
 Walk (Tree.Left);
 when 2 =>
 Walk (Tree.Right);
 end case;
 end loop;
 end if;
end Walk;

which then expands further as a parallel loop, as described

below. This approach makes it easy to turn parallelism on

and off, and requires the creation of only one out-of-line

procedure independent of the number of arms in the

parallel block statement.

B. Expansions for Ada 202X parallel loop

In this description, we show an optional intermediate step

where the compiler might use a pragma Par_Loop so that

parallel loops could be specified while remaining

compilable by older Ada compilers, analogous to the way

the "Pre" aspect expands into a “pragma Precondition” in

the GNAT compiler.

Ada 202X defines the notion of a “chunk specification”

which can give a user-specified name to the index used to

identify a chunk. When using a pragma instead of syntax,

there would be no way to specify the chunk-index name, so

the value of the chunk index can be referenced when inside

the body of a parallel loop by calling the intrinsic

parameterless function System.Parallelism.Chunk_Index,

which will always return 1 in a version of the

System.Parallelism package for use with sequential-only

implementations. If there is an explicit "chunk parameter"

in the chunk specification, references to the chunk

parameter could be replaced by a computation based on the

result of a call to this intrinsic Chunk_Index function.

parallel (Num_Chunks)
for ... loop
 <loop body>
end loop;

expands into:

pragma Par_Loop(Num_Chunks);
for ... loop
 <loop body>
end loop;

which expands further according to the kind of for-loop

immediately following the pragma Par_Loop:

(1) Parallel loop over a range of values:

pragma Par_Loop(Num_Chunks);
for I in S range A..B loop
 <loop body>
end loop;

expands into:

declare
 procedure I__Loop_Body
 (I__Low, I__High : Longest_Integer;
 I__Chunk_Index : Positive) is
 begin
 for I in S'Val (I__Low) .. S'Val (I__High) loop
 <loop body>
 end loop;
 end I__Loop_Body;
begin
 System.Parallelism.Par_Range_Loop
 (S'Pos(A), S'Pos(B), Num_Chunks,
 Loop_Body => I__Loop_Body'Access);
end;

(2) Parallel loop over an array:

pragma Par_Loop(Num_Chunks);
for C of Arr loop
 <loop body>
end loop;

expands into:

pragma Par_Loop(Num_Chunks);
for C__Index in Arr'Range loop
 declare
 C renames Arr(C__Index);
 begin
 <loop body>
 end;
end loop;

which then expands according to expansion (1) above for a

loop over a range. Note that a loop over a

multidimensional array would be transformed effectively

into a loop over a conceptually flattened array, as is done in

the sequential loop case.

(3) Parallel loop over a generalized iterator:

pragma Par_Loop(Num_Chunks);
for C of Iterator loop
 <loop body>
end loop;

expands into:

declare
 package Inst renames <some instantiation of
 Ada.Iterator_Interfaces>;
 package Par_Iterator_Inst is new
 Inst.Par_Iterator_Loop;
 procedure C__Loop_Body
 (C__Iterator : Inst.Parallel_Iterator'Class;
 C__Chunk_Index : Positive) is
 C : Inst.Cursor :=
 C__Iterator.First (C__Chunk_Index);
 begin
 while Inst.Has_Element(C) loop
 <loop body>
 C := C__Iterator.Next (C, C__Chunk_Index);
 end loop;
 end C__Loop_Body;
begin
 Par_Iterator_Inst
 (Iterator, Num_Chunks, Loop_Body =>
 C__Loop_Body'Access);
end;

(4) Parallel loop over a container:

254 A Layered Mapping of Ada 202X to OpenMP

Volume 41, Number 4, December 2020 Ada User Journal

pragma Par_Loop(Num_Chunks);
for E of Container loop
 <loop body>
end loop;

expands into:

pragma Par_Loop(Num_Chunks);
for E__Cursor of
 Container'Default_Iterator(Container) loop
 declare
 E renames Container(E__Cursor);
 begin
 <loop body>
 end;
end loop;

which then expands according to (3) above for a loop over

an iterator.

C. System.Parallelism package and

Ada.Iterator_Interfaces.Par_Iterator_Loop child

The System.Parallelism package spec might contain (at

least) the following:

package System.Parallelism is
 type Longest_Integer is range
 System.Min_Int .. System.Max_Int;
 -- Not worrying about unsigned ranges with
 -- upper bound > System.Max_Int for now.
 -- Could be handled by having a version of

 -- Par_Range_Loop that operates on
 -- unsigned integers.
 procedure Par_Range_Loop
 (Low, High : Longest_Integer;
 Num_Chunks : Positive;
 Aspects : access Ada.Aspects.Root_Aspect’Class :=
 null;
 Loop_Body : access procedure
 (Low, High : Longest_Integer;
 Chunk_Index : Positive));
 function Chunk_Index return Positive
 with Convention => Intrinsic;
end System.Parallelism;

A child unit of Ada.Iterator_Interfaces, Par_Iterator_Loop,

could be provided as follows. Note that the Ada 202X

compiler might want to instantiate this just once for each

instantiation of Ada.Iterator_Interfaces, rather than at each

parallel loop over an iterator.

generic
procedure Ada.Iterator_Interfaces.Par_Iterator_Loop is
 (Iterator : Parallel_Iterator'Class;
 Num_Chunks : Positive;
 Aspects : access Ada.Aspects.Root_Aspect’Class :=
 null;
 Loop_Body : access procedure
 (Iterator : Parallel_Iterator'Class;
 Chunk_Index : Positive));

255

Parallel Software to Offset the Cost of Higher
Precision∗

Jan Verschelde
University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S. Morgan St.
(m/c 249), Chicago, IL 60607-7045; email: janv@uic.edu; URL: http://www.math.uic.edu/∼jan

Abstract
Hardware double precision is often insufficient to solve
large scientific problems accurately. Computing in
higher precision defined by software causes significant
computational overhead. The application of parallel
algorithms compensates for this overhead. Newton’s
method to develop power series expansions of algebraic
space curves is the use case for this application.

1 Problem Statement and Overview
While parallel computers are fast and can solve large prob-
lems, the propagation of roundoff errors increases as problems
grow larger and the hardware supports only double precision.
If we can afford the same time as on a sequential run, then we
ask for quality up: by how much can we improve the quality
of the results with a parallel run? To us, quality means accu-
racy. The goal is to compensate for the overhead of multiple
double arithmetic with parallel computations.
The focus of this paper is on recently developed code for new
algorithms described in [3], [12, 13], added to PHCpack [14].
PHCpack is a free and open source package to apply Poly-
nomial Homotopy Continuation to solve systems of many
polynomials in several variables. Continuation methods are
classic algorithms in applied mathematics, see e.g. [9]. Ada is
the main language in which the algorithms in PHCpack have
been developed during the past thirty years. Strong typing
and standardization make that the same code runs on different
platforms (Linux, Windows, Mac OS X) and that the same
code continues to run, even after decades, without the need
to update for upgrades of the language. Ada tasking provides
an effective high level tool to develop algorithms for parallel
shared memory computers; see [2] or [8] for introductions.
Using QDlib [6] and the software CAMPARY [7], we extend
the range of precision offered by hardware doubles [10], as a
step towards rigorous verification. In our numerical study of
algebraic curves [15], we apply algorithmic differentiation [5],
numerical linear algebra [4], and rational approximation tech-
niques [1].
The first three sections in this paper motivate the need for
higher precision and describe the computational cost over-
head. This overhead then motivates the application of multi-
tasking. All computational experiments for this paper were

∗Supported by the National Science Foundation under grant DMS
1854513.

done on a CentOS Linux workstation with 256 GB RAM and
two 22-core 2.2 GHz Intel Xeon E5-2699 processors.

2 Multiple Double Numbers
A double double is an unevaluated sum of two hardware
doubles. With the application of basic arithmetical opera-
tions in IEEE double format, we obtain more accurate results,
up to twice the accuracy of the hardware double precision.
In [11], double double arithmetic is described in the context of
error-free transformations; see also [10, Chapter 14]. Double
double and quad double arithmetic is provided by QDlib [6].
Code generators for general multiple double and multiple
float arithmetical operations are available in the software
CAMPARY [7].
As an illustration of multiple double arithmetic, consider
the computation of the 2-norm of a vectors of dimension 64
of complex numbers generated as cos(θ) + sin(θ)

√
−1, for

random angles θ. The 2-norm equals 8. Observe in Table 1
the second double of the multiple double 2-norm.
The format of the result shown in Table 1 is for this experi-
ment preferable over the decimal expansion which may appear
as 7.999 . . . 9. The Ada code for multiple double precision is
available in the free and open source software PHCpack [14],
under version control at github.
Table 2 shows the cost of the basic operations in multiple
double precision, expressed in the number of hardware double
arithmetical operations. A tenfold increase in precision from
double to deca double leads to a more than thousandfold
increase in the count of the arithmetical operations.
The operation counts in Table 2 then motivate the need for
parallel computations as follows. What takes a millisecond
to compute in double precision will take several seconds in
deca double precision. A program that finishes in a second in
double precision will take more than an hour in deca double
precision. A computation in double precision that takes a
hour will in deca double precision take more than a month to
finish.

3 Polynomials as Truncated Power Series
Writing a polynomial backwards (starting at the constant term
and then listing the monomials in the increasing degree order),
leads to the interpretation of a polynomial as the sum of the
leading terms in a power series. Unlike polynomials, every
power series with a leading nonzero constant term has an

Ada User Jour na l Vo lume 41, Number 4, December 2020

256 Para l le l Sof tware to Of fset the Cost o f Higher Prec is ion

double double : 8.00000000000000E+00 - 6.47112461314111E-32
triple double : 8.00000000000000E+00 + 1.78941597340672E-48

quad double : 8.00000000000000E+00 + 3.20475411419393E-65
penta double : 8.00000000000000E+00 + 2.24021706293649E-81
octo double : 8.00000000000000E+00 - 9.72609915198313E-129
deca double : 8.00000000000000E+00 + 3.05130075600701E-161

Table 1: Illustration of multiple double arithmetic.

double double triple double quad double
+ − ∗ / + − ∗ / + − ∗ /

add 8 12 13 22 35 54
mul 5 9 9 83 84 42 99 164 73
div 33 18 16 3 113 214 63 4 266 510 112 5

penta double octo double deca double
+ − ∗ / + − ∗ / + − ∗ /

add 44 78 95 174 139 258
mul 162 283 109 529 954 259 952 1743 394
div 474 898 175 6 1599 3070 448 9 2899 5598 700 11

Table 2: Number of double operations for addition (add), multiplication (mul), division (div), required for a 2-fold, 3-fold, 4-fold,
5-fold, 8-fold, and 10-fold increase in precision.

inverse. One can divide power series by another and calculate
with power series similar as to number arithmetic [15]. In this
section, we consider Newton’s method where the arithmetic
happens with truncated power series instead of with ordinary
numbers.
One common parameter representation for points on the circle
with radius one is (cos(t), sin(t)), for t ∈ [0, 2π[. With
truncated power series arithmetic we can approximate this
representation. Consider a system of two polynomials in three
variables:{

t− 1/6t3 + 1/120t5 − 1/5040t7 − y = 0
x2 + y2 − 1 = 0.

The first polynomial represents the equation y = t− 1/6t3 +
1/120t5 − 1/5040t7. The right hand side of this equation
contains the first four leading terms of the Taylor expansion
of sin(t).
Given the leading terms of sin(t), running Newton’s method,
with 8 as the truncation degree of the power series, starting
at x = 1, y = 0, and t = 0, the leading terms of cos(t) will
appear as the solution series for x. Indeed, the numerical
output contains

2.48015873015868E-05*t^8
- 1.38888888888889E-03*t^6
+ 4.16666666666667E-02*t^4
- 5.00000000000000E-01*t^2 + 1.

The second polynomial has floating-point coefficients which
approximate the Taylor series of the cos(t), in particular
x = 1− 1/2t2 + 1/24t4 − 1/720t6 + 1/40320t8. Although
many programmers will experience the temptation to display
5.00000000000000E-01 as 1/2, the 7 in the number
4.16666666666667E-02 gives an indication about the
size of the roundoff error. This information would be lost
if one would display the result by the nearest rational num-
ber 1/24.

Looking at polynomials as truncated power series has the
benefit that the solver can handle larger classes of nonlinear
systems, as the first equation of the above polynomial system
can be viewed as an approximation for sin(t)− y = 0. With
truncated power series as coefficients, the solutions of systems
where the number of variables is one more than the number
of equations are also power series. Although the convergence
radius of power series can be limited, power series serve as
input to compute highly accurate rational approximations for
functions [1].
Even as the above calculation was performed in double preci-
sion, Newton’s method did not run on vectors of numbers, but
on vectors of truncated power series, represented as power
series with vector coefficients. Working with truncated power
series causes an extra cost overhead and provides an addi-
tional motivation for parallel computations. In particular,
the multiplication of two power series truncated to degree d
requires (d + 2)(d + 1)/2 multiplications and (d + 1)d/2
additions. For a modest degree d = 8, the formulas in the
previous sentence evaluate to 45 and 36. For d = 32 the cor-
responding numbers are 561 and 528. These numbers predict
the cost overhead factors in working with truncated power
series arithmetic.
Working with power series of increasing degrees of truncation
leads to more roundoff and requires therefore arithmetic in
higher precision, as will be made explicit in the next section.

4 Newton’s Method on Truncated Power
Series

In this section we make our problem statement more precise.
In particular, running a lower triangular block Toeplitz solver
results in a loss of accuracy.
One step of Newton’s method requires evaluation and dif-
ferentiation of the system, followed by the solution of a
linear system. Consider f(x) = 0 as a system of poly-

Volume 41, Number 4, December 2020 Ada User Jour na l

J. Versche lde 257

nomials in several variables, with coefficients as truncated
power series in the variable t, where f = (f1, f2, . . . , fN),
x = (x1, x2, . . . , xn), and N ≥ n. For N > n, the linear
systems are solved in the least squares sense, either with QR
or SVD; for N = n, an LU factorization can be applied;
see [4] for an introduction to matrix factorizations.
Then we compute x(t) a power series solution to f(x) = 0,
starting at a point x(0) = z, x(t) = z+x1t+x2t

2+· · · . With
linearization [3], instead of vectors and matrices of power
series, we consider power series with vectors and matrices
as coefficients. A matrix is denoted with a capitalized letter,
e.g.: A; vectors are denoted in bold, e.g.: x, b. To compute
the update ∆x to the solution in Newton’s method, a linear
system is solved. With truncated power series arithmetic, this
linear system is written in short as A(t)∆x(t) = b(t). The
given coefficients in this equation A and b, where A is a
vector of matrices A = (A0, A1, . . . , Ad) and b is a vector
of power series.
In linearized format, for truncation degree d, A(t)∆x(t) =
b(t) represents(

A0 +A1t+A2t
2 + · · ·+Adt

d
)(

∆x0 + ∆x1t+ ∆x2t
2 + · · ·+ ∆xdt

d
)

= b0 + b1t+ b2t
2 + · · ·+ bdt

d.

The A0 is the matrix of all partial derivatives of the polynomi-
als in f at the leading constant coefficient of the power series
expansion of the solution vector. Methods of algorithmic
differentiation [5] lead to an efficient calculation of A(t). In
particular, computing all n partial derivatives of a function f
in n variables requires about 3 (and not n) times the cost to
evaluate f .
Expanding the multiplication and rearranging the terms ac-
cording to the powers of t leads to a lower triangular block
system:
A0

A1 A0

A2 A1 A0

...
...

...
. . .

Ad Ad−1 Ad−2 · · · A0




∆x0

∆x1

∆x2

...
∆xd

 =


b0

b1

b2

...
bd

 .

Forward substitution is applied as follows. First solve
A0∆x0 = b0. Once ∆x0 is known, The second equa-
tion A1∆x0 + A0∆x1 = b1 then becomes A0∆x1 =
b1 −A1∆x0. After the computation of ∆x1, the third equa-
tionA2∆x0+A1∆x1+A0∆x2 = b2 turns into the equation
A0∆x2 = b2 −A2∆x0 −A1∆x1, etc.
The exploitation of the block structure reduces the compu-
tation of d linear systems with the same N -by-n coefficient
matrixA0. Suppose that in each step up to two decimal places
of accuracy would be lost, then the accuracy loss of the last
∆xd could be as large as 2d. Even with a modest degree
of 8, in double precision, this would imply that all 16 decimal
places of accuracy are lost. A loss of 16 decimal places of
accuracy in double double precision still leads to sufficiently
accurate results. This argument is expressed formally in [13].

5 Application of Multitasking
In multiple double arithmetic, programs become compute
bound, which is beneficial on computers with faster processor
speed than memory speed. On a parallel shared memory
computer, multiple threads run within one process. In the
type of multitasking applied in this paper, each task is mapped
to one kernel thread. Typically the total number of tasks in
each parallel run should then not exceed (twice) the number
of available cores on the processor.
Current processors run at the speed of a couple of GHz
and have thus a theoretical peak performance of one billion
floating-point operations per second. One billion is 109 or
1, 000×1, 000×1, 000. The first two thousands in this billion
represent roughly the overhead caused by multiple double and
power series arithmetic, with the last thousand the original
computational cost in double precision. This rough estimate
explains that one job will typically take several seconds and
is relatively much larger than the cost of launching several
threads.
All data is allocated and defined before the threads are
launched. Figure 1 illustrates the design of a job queue with 8
jobs and 4 finished jobs, as the counter counts the number of
finished jobs. The arrows in the picture point to the read only
input data and the work space for each job. While the input
may point to shared data, each job has distinct, non overlap-
ping memory locations for the work space needed for each
job. When a task needs to work on the next job, it requests
entry to the binary semaphore that guards the counter for the
next job. Once entry is granted, the tasks increments the value
of the counter and releases the lock. The time spent inside a
critical section is thus minimal.

queue r
?

1 r
?

2 r
?

3 r
?

4 r
?

5 r
?

6 r
?

7 r
?

8

counter 4 guarded by a binary semaphore

Figure 1: Schematic of a job queue with a counter guarded by
a binary semaphore.

The organization of all computational work into a job queue
determines the granularity of the parallelism. In the appli-
cation of running Newton’s method, medium grained par-
allelism is applied. For the evaluation and differentiation
of a system of polynomials, one job is concerned with one
polynomial. For the solving of the block triangular linear
system, one job is the update of one right hand side vector
after the computation of one update vector. The solution of
the linear system can happen only after all polynomials in
the system are evaluated and differentiated. The synchroniza-
tion between those two stages is performed by terminating
all tasks and launching a new set of tasks for the next stage.
Details are described in [13].
The main executable in PHCpack is phc. The user can spec-
ify the number of tasks at the command line, e.g., call the
solver with eight tasks as phc -b -t8. If no number fol-
lows the -t, then the number of tasks equals the number

Ada User Jour na l Vo lume 41, Number 4, December 2020

258 Para l le l Sof tware to Of fset the Cost o f Higher Prec is ion

of available kernel threads. Below is the output of time
phc -b and time phc -b2 -t, respectively in double
and double double precision, on the cyclic 7-roots benchmark,
using 88 threads.
real 0m10.310s real 0m1.661s
user 0m10.188s user 1m12.226s
sys 0m0.008s sys 0m0.083s

The numbers after real are the elapsed wall clock time.
With multitasking, the speedup in double double over double
precision is 10.310/1.661 ≈ 6.2. We have speedup and
quality up.

6 A Numerical Experiment using Multiple
Doubles

At the end of [13], we reported an instance where quad double
precision was insufficient for Newton’s method to converge
and compute the coefficients of the series past degree 15.
Details for the experiment can be found in [13], a short sum-
mary follows. The series development start at a generic point
on a 7-dimensional surface of cyclic 128-roots, defined by
a polynomial system of 128 polynomials in 128 variables,
augmented with seven linear equations. To every equation in
the system, a parameter t is added. At t = 0, the generic point
on the 7-dimensional surface is then the leading coefficient
vector of the power series expansion of the solution curve
in t.
For this problem, the inverse of the condition number of the
matrixA0 is estimated at 4.6E−6, which implies that up to six
decimal places of accuracy may be lost in the computation of
the next term of the power series. The accuracy of the power
series is measured by ‖∆x‖, the modulus of the update to the
last coefficient in the power series. The tolerance on ‖∆x‖
for all runs is set to 1.0E−32. Newton’s method stops when
‖∆x‖ ≤ 1.0E−32 or when the number of steps has exceeded
the maximum number of iterations. The maximum number
of iterations with Newton’s method is as many as as 8, 8, 12,
and 16, for the respective degrees 8, 16, 24, and 32 of the
power series.
Table 3 summarizes the data of the numerical experiment
with phc -u -t. Once ‖∆x‖ is too large for one degree,
computations for the next degree are not done.
For degree 8, the computations with penta doubles finish in
10 seconds sooner than the computations with quad doubles,
because 5 iterations suffice. For degree 16, the results in
deca double precision are much more accurate than in octo
double precision, with the same number of iterations. Adding
up all seconds in Table 3 gives 18,717 seconds, or 5 hours,
11 minutes, and 57 seconds. Without parallel software, this
experiment would have taken more than 100 hours, more
than 4 days. The multiplication factor of 20 is derived from
the efficiency study in the next section. Obviously, parallel
software saves time when running numerical experiments.

7 Computational Results
The runs are done on a CentOS Linux workstation with 256
GB RAM and two 22-core 2.2 GHz Intel Xeon E5-2699 pro-
cessors. If one is mainly interested in the fastest throughput,

then with hyperthreading, runs could be done with 88 threads.
However, the effect of hyperthreading is not equivalent to
doubling the number of cores. In the practical evaluation
of the parallel implementation, the runs therefore stop at 40
worker threads.
Random polynomial systems are generated, 64 polynomials
with 64 monomials per polynomial. Power series are trun-
cated to degrees 8, 16, and 32. Efficiencies are reported for
2, 4, 8, 16, 32, and 40 worker threads. Efficiency is speedup
divided by the number of worker threads.
The plots in Figure 2 show efficiencies for degrees 8 and
16 of the truncated power series. The efficiencies decrease
from close to 100% (a near perfect speedup for 2 threads) to
below 60% when 40 worker threads are used. As efficiency
equals speedup divided by the number of worker threads,
the speedup corresponding to 60% efficiency for 40 worker
threads equals 0.6× 40 = 24.
The plots in Figure 3 compare the efficiencies for degrees
16 and 32. For truncation degree 32, we observe that 60%
efficiency is reached already at triple double precision. More
extensive numerical experiments would increase the number
of polynomials and the number of monomials per polynomial
to investigate the notion of isoefficiency. In particular, by how
much should the size of the problem increase to obtain the
same efficiency as the number of threads increases?
The computational results of this section (the 60% efficiency
or the 24 speedup) justify the multiplication factor of 20 used
in the last paragraph of section 6.

8 Conclusions
This paper presents a use case of multiple double precision in
the application of Newton’s method to develop power series
expansions for solution curves of polynomial systems. The
experiments described in this paper are performed by recent
additions to the free and open source software PHCpack,
available via github.
PHCpack contains an Ada version of the code in QDlib [6],
for double double and quad double precision, and of code
generated by the software CAMPARY [7], for triple, penta,
octo, and deca double precision. The cost overhead factors of
multiple double precision are multiplied with the cost over-
head factors of truncated power series arithmetic. This cost
overhead justifies the application of multitasking to write par-
allel software. Using all kernel threads on a 44-core computer,
numerical experiments that took about 5 hours are estimated
to take more than four days without multitasking.
The efficiency of the current implementation is limited by the
medium grained parallelism and may not scale well on shared
memory computers with over one hundred cores. In refining
the granularity of the current implementation, the Ada 202X
parallel features look promising.
Acknowledgments. The author thanks Clyde Roby, Tucker
Taft, and Richard Wai, the organization committee of the
HILT 2020 Workshop on Safe Languages and Technologies
for Structured and Efficient Parallel and Distributed/Cloud
Computing. Earlier versions of the software were presented
in the Ada devroom at FOSDEM 2020. The author is grateful

Volume 41, Number 4, December 2020 Ada User Jour na l

J. Versche lde 259

precision output degree 8 degree 16 degree 24 degree 32
quad ‖∆x‖ 2.2E−30 1.6E+3

#iterations 8 8
seconds 56 168

penta ‖∆x‖ 1.1E−47 1.1E−14 4.1E+19
#iterations 5 8 12

seconds 46 231 722
octo ‖∆x‖ 1.4E−69 9.5E−63 3.8E−30 3.4E+3

#iterations 5 6 12 16
seconds 128 472 1,934 4,400

deca ‖∆x‖ 1.4E−69 2.4E−95 1.2E−62 1.1E−29
#iterations 5 6 7 16

seconds 222 807 1,952 7,579

Table 3: Newton’s method for the power series expansion of a generic point on a surface of cyclic 128-roots, for truncation degrees 8,
16, 24, and 32, for quad, penta, octo, and deca double precision. The seconds record the wall clock time with 88 threads.

Figure 2: Efficiency plots for power series truncated to degrees 8 and 16, for 2, 4, 8, 16, 32, and 40 worker tasks, for seven precisions:
double (d), 2-d, 3-d, 4-d, 5-d, 8-d, and 10-d, in the plots labeled respectively by bars 1, 2, 3, 4, 5, 6, and 7.

to Dirk Craeynest and Jean-Pierre Rosen for the organization
of the FOSDEM 2020 Ada devroom.

References
[1] G. A. Baker and P. Graves-Morris. Padé Approximants,

volume 59 of Encyclopedia of Mathematics and its Ap-
plications. Second edition, Cambridge University Press,
1996.

[2] A. Burns and A. Wellings. Concurrent and Real-Time
Programming in Ada. Cambridge University Press,
2007.

[3] N. Bliss and J. Verschelde. The method of Gauss-
Newton to compute power series solutions of polyno-
mial homotopies. Linear Algebra and Its Applications
542:569–588, 2018.

[4] G. H. Golub and C. F. Van Loan. Matrix Computations.
The Johns Hopkins University Press, 1983.

[5] A. Griewank and A. Walther. Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentia-
tion. SIAM, 2008.

[6] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for
quad-double precision floating point arithmetic. In the
Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (Arith-15 2001), pages 155–162. IEEE Com-
puter Society, 2001.

[7] M. Joldes, J.-M. Muller, V. Popescu, W. Tucker. CAM-
PARY: Cuda Multiple Precision Arithmetic Library and
Applications. In Mathematical Software – ICMS 2016,
the 5th International Conference on Mathematical Soft-
ware, pages 232–240, Springer-Verlag, 2016.

Ada User Jour na l Vo lume 41, Number 4, December 2020

260 Para l le l Sof tware to Of fset the Cost o f Higher Prec is ion

Figure 3: Efficiency plots for power series truncated to degrees 16 and 32, for 2, 4, 8, 16, 32, and 40 worker tasks, for seven precisions:
double (d), 2-d, 3-d, 4-d, 5-d, 8-d, and 10-d, in the plots labeled respectively by bars 1, 2, 3, 4, 5, 6, and 7.

[8] J. W. McCormick, F. Singhoff, and J. Hugues. Building
Parallel, Embedded, and Real-Time Applications with
Ada. Cambridge University Press, 2011.

[9] A. Morgan. Solving Polynomial Systems using Continua-
tion for Engineering and Scientific Problems, volume 57
of Classics in Applied Mathematics. SIAM, 2009.

[10] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod,
M. Joldes, V. Lefevre, G. Melquiond, N. Revol, S. Tor-
res. Handbook of Floating-Point Arithmetic. Second
Edition, Springer-Verlag, 2018.

[11] S. M. Rump. Verification methods: Rigorous results
using floating-point arithmetic. Acta Numerica 19:287–
449, 2010.

[12] S. Telen, M. Van Barel, and J. Verschelde. A robust
numerical path tracking algorithm for polynomial ho-

motopy continuation. SIAM Journal on Scientific Com-
puting 42(6):A3610–A3637, 2020.

[13] S. Telen, M. Van Barel, and J. Verschelde. Robust nu-
merical tracking of one path of a polynomial homotopy
on parallel shared memory computers. In the Proceed-
ings of the 22nd International Workshop on Computer
Algebra in Scientific Computing (CASC 2020), volume
12291 of Lecture Notes in Computer Science, pages
563–582. Springer-Verlag, 2020.

[14] J. Verschelde. Algorithm 795: PHCpack: A general-
purpose solver for polynomial systems by homo-
topy continuation. ACM Transactions on Mathemat-
ical Software 25(2):251–276, 1999. Runs online at
www.phcpack.org.

[15] R. J. Walker. Algebraic Curves. Princeton University
Press, 1950.

Volume 41, Number 4, December 2020 Ada User Jour na l

 261

Ada User Journal Volume 41, Number 4, December 2020

Shrinking Squares and Colourful Cubes

John Barnes

11 Albert Road, Caversham, Reading, RG4 7AN, UK; Tel: +44 118 9474125; email: john@jbinformatics.co.uk

Hello readers

The new puzzle this time is an easy one about cubes. But

first we have to look at the nasty nested squares from last

time. The numbers at the corner of an inner square are the

differences between the numbers at the corners of the outer

square. The sample shown was as below.

In that example it took five iterations to get all zeroes. The

question is what is the maximum number of iterations

required? The overall brief answer is that it is unlimited.

But it depends upon the ordering of the original numbers.

There are three possibilities:

1) Largest and smallest are opposite. 2) Largest and

smallest adjacent, second next to largest. 3) Largest and

smallest adjacent, second next to smallest. The example

above is of type 3.

In type 1, it always converges in at most six iterations. In

type 2, it always converges in at most four iterations. These

are easy to prove. For example, here is the proof for type 2.

Suppose the numbers around the square are a, b, c, and d

with a being the minimum and d the maximum. So we have

a < c < b < d

also we set x = (d – b) – (c – a), that is the absolute

value of the difference between d minus b and c minus a.

Then the sequence of numbers per iteration goes as follows

0: a b c d

1: b–a b–c d–c d–a

2: d–b c–a d–b c–a

3: x x x x

4: 0 0 0 0

and hence it converges to zeroes on the fourth iteration.

Note that if d–b and c–a happen to be equal as in (1, 4, 3,

6), then x itself is zero so it converges in just three

iterations.

Type 1 where the largest and smallest are opposite can be

proved to converge in six iterations in a similar way.

However, in type 3, there is no limit at all. It is fairly easy

to write a nice Ada program to explore various samples.

The smallest to require seven iterations is (0, 1, 2, 4) thus

 0 1 2 4

 1 1 2 4

 3 0 1 2

 3 1 1 1

 2 2 0 0

 0 2 0 2

 2 2 2 2

 0 0 0 0

Amazingly, no matter what numbers we start with, in the

final step every number is a power of 2. For example, the

smallest sequence that takes eight iterations starts with 0, 1,

4, 9 and has penultimate sequence 4, 4, 4, 4 thus

 0 1 4 9

 1 3 5 9

 8 2 2 4

 6 0 2 4

 2 6 2 2

 4 4 0 0

 4 0 4 0

 4 4 4 4

 0 0 0 0

These smallest sequences form groups of three according to

the power of 2 for the penultimate stage. It is convenient to

assume that the smallest number is zero.

We find that the smallest sequences ending with 4 = 22 are

the group, which we can call G(2)

8: 1 4 9

9: 2 5 11

10: 2 6 13

where the first number is the sequence length and the other

three together with zero are the smallest initial sequence.

Those ending with 8 = 23 are the group G(3) thus

11: 5 14 31

12: 6 17 37

13: 7 20 44

The next two groups are G(4) ending with 16 = 24

14: 17 48 105

15: 20 57 125

16: 24 68 149

and G(5) ending with 32 = 25 thus

17: 57 162 355

18: 68 193 423

19: 81 230 504

262

Volume 41, Number 4, December 2020 Ada User Journal

Surprisingly, by just looking, we see that these groups are

related by the following recurrence relation

G(n) = 3G(n–1) + G(n–2) + G(n–3)

For example, taking n = 5 and considering the top row in

each group we find

57 = 3×17+5+1; 162 = 3×48+14+4; 355 = 3×105+31+9

so it works! Readers might recall that such a recurrence

relation can be solved by considering the cubic equation

x3 – 3x2 – 3x – 1 = 0

The real root is about 3.382975768. This means that the

ratio between groups G(n–1) and G(n) should be close to

this for large n. The largest numbers in groups 4 and 5 are

149 and 504 and their ratio is 3.38255....which is quite

close.

We can easily calculate higher groups by simply using the

recurrence relation. For example the bottom rows of G(16)

and G(17) are

52: 53798080 152748176 334745777

55: 181997601 516743378 1132436852

The ratio of the bottom right numbers 334745777 and

1132436852 (using my c1985 HP 15C pocket calculator) is

3.382975768 which is overwhelmingly convincing.

We have seen that the sequences appear to go on for ever.

And that they are grouped in threes. Moreover, that the

groups satisfy a curious recurrence relation. But we haven’t

actually proved anything yet.

Suppose we start with (0, x, y, z) where 0 < x < y < z. Then

the next sequence down is (x, y–x, z–y, z) and after the first

term is reduced to zero is (0, a, b, c) where

a = y – 2x

b = z – x – y

c = z – x

However, given a, b, and c, these three equations can also

be treated as equations for the three unknowns x, y, z in

terms of a, b, c. This gives

x = (c – a – b)/2

y = c – b

z = (3c – a – b)/2

We should check that if 0 < a < b < c then the same

property applies to x, y, z. This is easily done and is left to

the reader. Thus we have shown that the process goes on

for ever. If a, b, c take n iterations to reach all zeroes, then

x, y, z will take n+1 iterations.

Better just check that it works. Consider group G(3). In the

case of 5, 14, 31 we get

x = (31 – 5 – 14)/2 = 12/2 = 6

y = 31 – 14 = 17

z = (3×31 – 5 – 14)/2 = 74/2 = 37

So that is correct. Similarly (6, 17, 37) leads to (7, 20, 44).

But if we try it again we get

x = (44 – 7 – 20)/2 = 17/2 = 8½

y = 44 –20 = 24

z = (3×44 – 7 – 20)/2 = 105/2 = 52½

which is not as expected because of the halves. So the

sequence has to be doubled to give (17, 48, 105). That

explains why the groups of three occur. And why it then

goes on for ever as integers. And also why the sequences

end with powers of 2.

Just for fun here are the short sequences of lengths 2, 3, and

4. Note that they end with 1, 1, 1, 1. Remember that 20 is 1.

Well that's quite enough about the squares. One might ask

what happens if we try doing nested triangles in the same

way. It's a bit boring and often gets stuck in a rut with

values oscillating at 1, 0, 1. One problem is that the

smallest and largest numbers are always adjacent and the

third number is in between. I suppose one could try doing it

with a pentagon.

And now for something quite different and much easier.

How many ways can one colour a cube with six different

colours, one colour on each face? Hint: it's more than 10.

And suppose we have such a set of different coloured

cubes. Pick one out and from the remainder find eight that

can be put together 2 by 2 by 2 to make a large cube that

matches the one removed in such a way that not only do the

faces match externally but the faces touching internally also

match. Thus

Another example of cubes with different faces is provided

by dice. In this case there are six numbers as opposed to six

colours. Moreover, real dice always have the 6 opposite the

1, the 5 opposite 2, and 4 opposite 3. However, the pips for

two and three can slope one way or the other and the six

can be done as 2 by 3 or 3 by 2. So there are quite a few

kinds of dice.

The UK delegation at Portland in 2014 (Jeff Cousins, head

of delegation, and I) drove up the Columbia river and

stopped for refreshment at a hotel on Mt Hood. We

encountered some ladies playing Craps. Their dice were an

amazing jumble! How many different kinds can you find?

 263

Ada User Journal Volume 41, Number 4, December 2020

In Memoriam: William (Bill) Bail

William (Bill) Bail, well known to many Ada-Europe conference

participants, passed away suddenly at his home on Monday 7 December

2020.

His daughter Evin wrote: “His final day was not expected to be his last, but

he did what he loved... his work. His passion for computer science and his

integrity fueled him in his 30 years at MITRE. He earned his PhD in

computer science in the mid-80s when the field was ever changing. He was

active in Ada circles and Ada-Europe.”

Informing us of Bill’s passing, his wife Julie wrote: “You may share this

information with anyone at Ada-Europe. He loved the conferences and

would come back with wonderful reports on whom he saw and how much he

enjoyed seeing his friends. Thanks for helping me to get the word out to the

people who were so important to him.”

Bill was active in the Ada community, including almost two decades of

Ada-Europe conferences (2001-2017) as well as ACM SIGAda events. He was a regular participant and frequent contributor

to the Ada-Europe conferences, and taught numerous tutorials over the years. Bill was an experienced presenter, his tutorials

were very well prepared and appreciated by the attendees. He always made various submissions, in order to let the organizers

choose the most appropriate ones, matching their preferences and the schedule of the event. Being more software engineering

related, his proposals were of a different “nature” than many of the others, which provided a good mix of topics to

participants.

In his (in hindsight) last e-mails, after we announced our plans to hold the 2021 conference in the originally planned location

for 2020 (Santander, Spain), he reminisced about past Ada-Europe conferences: “If you remember my first was Leuven, a

wonderful event, and almost every one since then until Lisbon. Wonderful people, wonderful discussions…” and “I still

regret every day missing Lisbon and Warsaw since these meetings are such wonderful events – I have enjoyed every one I

have been to, made all the more rewarding because of the people attending with whom I feel closely connected after all these

years (attended 14 conferences since 2001 in Leuven, only missed 3 since then until Lisbon).”

His last sentence was: “Here's hoping that we can meet again at the next conference in Spain.”

Alas...

Dirk Craeynest, Ada-Europe Board, December 2020

264

Volume 41, Number 4, December 2020 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller

Karlsruher Institut für Technologie (KIT)

Institut für Angewandte Informatik (IAI)

Campus Nord, Gebäude 445, Raum 243

Postfach 3640

76021 Karlsruhe

Germany

Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

http://www.ada-france.org/
http://www.adaspain.org/

Beckengässchen 1
8200 Schaffhausen

Switzerland
Contact: Ahlan Marriott

admin@white-elephant.ch

Ada-Europe Sponsors

24 Quai de la Douane
29200 Brest, Brittany

France
Contact: Pierre Dissaux

pierre.dissaux@ellidiss.com
www.ellidiss.com

46 Rue d’Amsterdam
F-75009 Paris, France
Contact: Jamie Ayre
sales@adacore.com
www.adacore.com

27 Rue Rasson
B-1030 Brussels, Belgium
Contact:Ludovic Brenta

ludovic@ludovic-brenta.org

In der Reiss 5
D-79232 March-Buchheim

Germany
Contact: Frank Piron

info@konad.de
www.konad.de

http://www.ada-europe.org/info/sponsors

22 St. Lawrence Street
Southgate

Bath BA1 1AN, United Kingdom
Contact: Stuart Matthews

sparkinfo@altran.com
www.altran.co.uk

1090 Rue René Descartes
13100 Aix en Provence, France

Contact: Patricia Langle
patricia.langle@systerel.fr

www.systerel.fr/en/

Tiirasaarentie 32
FI 00200 Helsinki, Finland

Contact: Niklas Holsti
niklas.holsti@tidorum.fi

www.tidorum.fi

3271 Valley Centre Drive,
Suite 300

San Diego, CA 92069, USA
Contact: Shawn Fanning

sfanning@ptc.com
www.ptc.com/developer-tools

2 Rue Docteur Lombard
92441 Issy-les-Moulineaux Cedex

France
Contact: Jean-Pierre Rosen

rosen@adalog.fr
www.adalog.fr/en/

Jacob Bontiusplaats 9
1018 LL Amsterdam

The Netherlands
Contact: Wido te Brake

wido.tebrake@deepbluecap.com
www.deepbluecap.com

United Kingdom
Contact: Chris Nettleton

nettelton@xgc.com
www.xgc.com

Signal Business Centre
2 Innotec Drive, Bangor
North Down BT19 7PD
Northern Ireland, UK

enquiries@sysada.co.uk
www.sysada.co.uk

Millennium Tower, floor 41
Handelskai 94-96
A-1200 Austria

Contact: Massimo Bombino
sales@at.vector.com

www.vector.com

