

Ada User Journal Volume 41, Number 2, June 2020

ADA
USER
JOURNAL

Volume 41

Number 2

June 2020

Contents
Page

Editorial Policy for Ada User Journal 62

Editorial 63

Quarterly News Digest 64

Conference Calendar 89

Forthcoming Events 97

Article from the 10th Ada Developer Room at FOSDEM 2020

 M. Stein

“Spunky, a Genode Kernel in Ada/SPARK” 99

Articles from the Industrial Track of AEiC 2020

 T. A. Beyene, C. Herrera

“Integrated Formal Analysis for Ada Programs” 103

 F. Gómez, M. Masmano, V. Nicolau, J. Andersson, J. Le Rhun, D. Trilla, F. Gallego,

G. Cabo, J. Abella

“De-RISC – Dependable Real-Time Infrastructure for Safety-Critical Computer Systems” 107

 Y. Valiente, P. Balbastre, F. Gómez, L. Rioux, R. Henia

“Time4PS: Fully Integrated Development Toolset for Partitioned Systems” 113

Puzzle

 J. Barnes

“The problem of the Greek Cross” 117

Ada-Europe Associate Members (National Ada Organizations) 118

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

64

Volume 41, Number 2, June 2020 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 64
Ada-related Events 64
Ada in Education 65
Ada-related Resources 67
Ada-related Tools 68
Ada-related Products 72
Ada and Operating Systems 73
Ada and Other Languages 75
Ada Practice 76
Ada in Jest 86

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. --arm]

Preface by the News
Editor

Dear Reader,

In this new section opening the News
Digest I would like to highlight a few
topics in the current number that I found
personally more interesting, or out of the
ordinary, or particularly relevant for some
reason.

On this occasion, compilers are the stars
of the show. PTC has announced the
release of ObjectAda 10.2, which
becomes the second compiler with full
Ada 2012 support [1]. Meanwhile, the
announcement of a new GNAT
Community Edition is always exciting
[2], but this year we are also witnessing
the fast progress of the HAC compiler.
The topic on future directions and
blurring the lines between compilation
and scripting [3] puts the spot on the
many possibilities that this new open
source Ada compiler may bring to the
table.

In a related vein, the prototype for Jupyter
notebooks with Ada posted to the
Telegram Ada group [4] shows the
potential of script-like capabilities for the
use of Ada in learning/presentation
contexts. Incidentally, this Telegram topic
is the first one to appear from that source
in the News Digest.

Finally, Jeremy Grosser has put together a
searchable (and cloneable) archive of all
posts to comp.lang.ada since 1982, with
synchronization moving forward [5].

Sincerely,

Alejandro R. Mosteo.

[1] “PTC ObjectAda 10.2”, in Ada-related
Products.

[2] “AdaCore GNAT Community Edition
2020”, in Ada-related Tools.

[3] “Script-like Jobs in Ada (Ideas for
HAC)”, in Ada Practice.

[4] “Jupyter Kernel for Ada”, in Ada and
Education.

[5] “Searchable comp.lang.ada Archive
Since 1982”, in Ada-related Resources.

Ada-related Events

Adalog Webinar on Formal
Methods with Ada and
Spark

[Past event, for the record. --arm]

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] Adalog Webinar on formal

methods with Ada and SPARK
Date: Tue, 5 May 2020 12:16:22 +0200
Newsgroups: comp.lang.ada

Adalog is pleased to announce a training
session as a 3-day webinar, May 27th to
29th, about using formal methods with
Ada and SPARK.

This webinar is organized in cooperation
with Ran Ettinger, a specialist in formal
methods and professor at Ben-Gurion
University and Academic College of Tel
Aviv.

It will be given in French/English

All details (in French) available from:

https://adalog.fr/fr/
formation_adaspark.html

Request for WG 9
Participation and Ada 202x
Draft Standard Review

[The deadline for contributions is closed,
but attaining membership for future
occasions is timeless. --arm]

From: Pat Rogers <rogers@adacore.com>
Subject: Request for WG 9 participation and

Ada 202x draft standard review
Date: Fri, 22 May 2020 13:43:22 -0700
Newsgroups: comp.lang.ada

To Whom It May Concern,

On behalf of ISO JTC 1/SC 22/WG 9, the
working group responsible for the ISO
Ada standard, I am writing to make two
very important requests regarding the Ada
language. Please forward this message to
whomever you think is most appropriate
within your organization if you are not
that person. For that matter, if you know
someone outside your organization please
feel free to forward this note to them.

My first request is that you consider
joining WG 9 as an official member
(unless you are already a member, of
course). WG 9 is responsible for the
technical content and direction of the
evolution of the ISO Ada standard. Your
inputs would directly affect both.

Participation involves attending two
meetings per year, either in person or
remotely (virtually). One meeting is held
in the United States, usually in the Fall,
and one in Europe, immediately after the
annual Ada Europe conference each
Summer. Activities include reviewing and
voting on the content of the ARG
language proposals, setting the direction
for the language as it evolves, and
anything pertinent to your specific
interests and backgrounds, such as
creating technical reports, liaising with
other Working Groups for others
languages and reports (e.g., the report on
language vulnerabilities), and so on.

Participation requires ISO membership.
Membership in ISO committees and
working groups is organized in terms of
national bodies, managed by entities
specific to each country. Your
membership in WG 9, therefore, would
entail whatever the managing entity for
your specific country requires.

For example, in the United States, ISO
participation is managed by INCITS, the
InterNational Committee for Information
Technology Standards
(http://www.incits.org/). Membership in
INCITS is organized in terms of
individual corporations, with individuals
from within those companies designated
as representatives to ISO committees.

mailto:amosteo@unizar.es

Ada and Educat ion 65

Ada User Journal Volume 41, Number 2, June 2020

INCITS charges an annual membership
fee per company. Other countries have
other requirements.

I will be happy to help facilitate your
membership in any way I can.

Please feel free to ask.

My second request, again on behalf of
WG 9, is for your comments on the Ada
202x draft standard.

As you may know, the next revision,
known informally as Ada 202x, is
expected to be completed in the next
several months. There are a number of
important additions to the language, and
your expertise in reviewing these
proposals would be invaluable.

If you can, please send your written
comments by 7 June, 2020, which will
give us time prior to the next WG 9
meeting to analyze them.

You can use the following links to access
the draft standard and the AIs.

The Annotated Ada 202X Reference
Manual:

http://www.ada-auth.org/standards/
2xaarm/html/AA-TOC.html

The Ada 202X Reference Manual, absent
the annotations:

http://www.ada-auth.org/standards/
2xrm/html/RM-TOC.html

The list of AIs: http://ada-auth.org/
AI12-VOTING.HTML

For convenience, the Annotated Ada 2012
reference manual:

http://www.ada-auth.org/standards/
aarm12_w_tc1/html/AA-TOC.html

Thank you in advance for your
consideration.

Best regards,

Patrick Rogers

WG 9 Convenor

rogers@adacore.com

Call for Presentations: ACM
HILT 2020 Workshop at
SPLASH 2020.

[Due date, found below, is September 4th.
--arm]

From: ric.wai88@gmail.com
Subject: Call For Presentations: ACM HILT

2020 (High Integrity Language
Technologies) workshop at SPLASH
2020.

Date: Tue, 16 Jun 2020 08:17:24 -0700
Newsgroups: comp.lang.ada

This is the 6th HILT workshop, and will
focus on the growing importance of large-

scale, highly parallel, distributed and/or
cloud applications.

The workshop will be part of SPLASH
2020 Conference, on November 15-20.
The conference is tentatively planned to
take place in Chicago, but may be hosted
virtually, or a combination thereof,
depending on the evolution of the
COVID-19 pandemic.

We are currently accepting proposals for
presentations, due by September 4th. The
workshop program committee will select
presentations and organize them into
sessions.

Attendees wishing to present at the
workshop should prepare extended
abstracts (approx. 2-4 pages) for the
proposed presentations. Full papers (6-8
pages) are also acceptable.

Key areas of interest include:

 • Safe and Productive Languages and
Frameworks for the development of
structured parallel and/or distributed
applications (e.g. Rust, Concurrent
Collections, Ada 202X, Parsl)

• Broadly available technologies to
support large dataset analysis and
machine learning workloads (e.g.
TensorFlow, Apache Spark)

• Practical tools for applying static
analysis and formal methods to parallel
and/or distributed/cloud applications
(e.g. SPARKProver, Java Pathfinder)

• Underlying Portability Frameworks to
support higher level capabilities (e.g.
OpenMP, OpenACC, OpenCL, MPI)

• Key technologies to bring high-
performance computing to more
traditional programming environments
(e.g. advanced IRs supporting
parallelism and heterogeneity such as
MLIR and Tapir/LLVM)

 Please visit the landing page at
https://2020.splashcon.org/home/
hilt-2020 for more information!

Ada and Education

Strategies for Teaching Ada

[A recent book by Andrew T. Shvets --
"Beginning Ada Programming" -- elicits
debate on how to best introduce Ada to
beginners. This thread collects a number
of responses from the author to previous
criticism and the ensuing discussion. --
arm]

From: Andrew Shvets
<andrew.shvets@gmail.com>

Subject: Re: Beginning Ada Programming,
by Andrew T. Shvets (2020)

Date: Thu, 16 Apr 2020 20:58:56 -0700
Newsgroups: comp.lang.ada

> This is not out yet, but it looks
interesting and is due at the end of the
month:

> https://www.springer.com/us/book/
9781484254271

>

> Is the author the same Andrew Shvets
who posts here sometimes?

>

> Andrew if you're here, what does the
book cover in terms of e.g. new Ada
features, SPARK, etc.?

>

> It's great that new books are coming out
about Ada.

I just stumbled across this thread (I
haven't been here a while). Hence the very
late reply.

The book is pretty much the same as my
"Introduction to Ada Programming". The
one key advantage in the Apress version
is that the Index is much much much
better now. Also, I feel like the formatting
is vastly improved than what it was
before.

Lastly, by going with Apress, it improves
the status and visibility of Ada. It's no
longer the language of someone that
programmed when Reagan was president.
It gives it a new feel of vitality and drives
home the point that Ada is not "dead".

I'm under contract with Apress for a 2nd
edition for this book. That one will have
much more information (such as a chapter
on making GUIs). I'm still working on
that one.

From: Andrew Shvets
<andrew.shvets@gmail.com>

Date: Thu, 16 Apr 2020 21:04:24 -0700

> > Is the author the same Andrew Shvets
who posts here sometimes?

>

> Yes, he is. I had a little conversation on
the very first edition with him. I esp.
objected that he started his examples
with using Integer rather than user-
defined types (which IMHO is the very
heart of Ada). I do not know whether
he changed this.

You have to understand something from
the perspective of a newbie. If you're new
to Ada, heard all the wonderful things
about it and then get started... Most of the
time you get stuck in a long chapter about
types that go down the rabbit hole of
explaining the entire type system of Ada
right away.

Don't get me wrong, this is a core strength
of Ada and it's absolutely awesome.
However, when you're just starting out, it
can be daunting, frustrating and
discouraging. It was for me.

66 Ada and Educat ion

Volume 41, Number 2, June 2020 Ada User Journal

My personal take on this was to ease the
reader into the subject. I wanted to give
an overhead of how powerful types are in
Ada, but not dump the reader at the deep
end of the pool. As a result, I had a
chapter on the basic types and then moved
on to control structures, methods, OOP,
etc. Later on, I went back and revisited
this topic.

From: Andrew Shvets
<andrew.shvets@gmail.com>

Date: Thu, 16 Apr 2020 21:07:12 -0700

> > There's nothing wrong with using
Integer to start off and then moving
onto defined types.

>

> Yes there is! (see my paper at the last
Ada-Europe). The first message when
you teach Ada is that it is all about
defining proper types. You have to start
by fighting bad habits from other
languages.

shrug You have your own way of
looking at this. However, I really did not
want to leave someone that is just starting
with a long and academic chapter on
types in Ada. It would be boring and
discourage someone from learning Ada.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 17 Apr 2020 07:49:48 +0200

> *shrug* You have your own way of
looking at this. However, I really did
not want to leave someone that is just
starting with a long and academic
chapter on types in Ada. It would be
boring and discourage someone from
learning Ada.

It does not need to be long and boring. I
usually tell:

"You've been taught at elementary school
not to add apples and oranges.
Surprisingly enough, Ada is the only
language that prevents you from doing
it!"

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Fri, 17 Apr 2020 14:44:27 +0200

[...]

I think the crux of the matter is who you
decide your audience to be.

If you decide that you want to write a
"Ada for Fortran/Pascal/C programmers"
then they already know all about control
structures etc; and you should dive into
the type system upfront.

If, on the other hand, you are writing
"Ada as a first language" (or even "Ada
for Lisp programmers") then yes, by all
means, postpone the discussion of user-
defined types until after the basics of
variables, subprograms and control
structures.

So I don't think there should be real
opposition; both approaches have their
merits depending on the audience.

From: Jere <jhb.chat@gmail.com>
Date: Fri, 17 Apr 2020 06:07:44 -0700

> If you decide that you want to write a
"Ada for Fortran/Pascal/C
programmers" then they already know
all about control structures etc.; and
you should dive into the type system
upfront.

 I'll slightly disagree here. As a person
who came to Ada from other languages,
the first things I needed to know was how
things were like for loops and if
statements were handled differently in
Ada. You are correct that I didn't need to
learn how a for loop worked, but I did
need to know how to construct a for loop
in Ada. Things like "in" vs "of" for loops,
how to exit loops, etc. If a person is
coming from another language, I would
expect the first thing to do is help them
bridge the gap from where they came to
where they are going: show them how to
take what they already know and apply it
to the new language. Then teach new
features. Again, it's just my opinion, but it
is based on my own experience trying to
learn Ada.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Fri, 24 Apr 2020 07:42:37 -0700

[...]

I think that there are 2 kinds of beginners
to programming:

1) mathematicians at heart: beginners that
start from mathematics concepts and
move downward to sequential
execution of mathematics (as opposed
to designing soft logic circuits in
FPGAs)

versus

2) electrical engineers at heart: beginners
that start from hardware concepts and
move upward a little to controlling that
hardware then move up to abstracting
that control.

There is something quite satisfying in #2
that assembly language and C typically
provide to #2's adherents, hence C's
popularity as “Gee whiz, mom, look at
what I made the computer do” when
ultimately interfacing with actual registers
on an IC. Ada-for-beginners fits best here
in #2 because of its focus on the need for
the programmer to be aware of resource
allocation (e.g., finite-sized storage pool
allocation). Soon after the gee whiz phase,
some people yearn fairly early on for the
greater intellectual discipline and direct
rich expressiveness that Ada provides
instead of doing it all by wink-wink-
nudge-nudge idioms in C.

There is something quite satisfying in #1
that functional languages provide to #1's
adherents, hence Haskell's popularity and
to a lesser extent ML in a certain older
age group. The automatic memory
management and arbitrarily-large bignum
integers fit here, I think, because of the
avoidance of thinking about the hardware
very much at all.

And there might be a 3rd distinct category
of beginner: those that yearn to see the
world as Mealy or Moore state machines
and get frustrated that neither imperative
nor functional programming languages
put finite state machines as the true 1st-
class citizens [...]; they become attracted
to Erlang and Shlaer-Mellor eventually.
These people tend to reach a degree of
now-this-is-what-I'm-talking-about
satisfaction of sorts if they ever learn
VHDL or Verilog for FPGAs, but few
ever go that direction, so Erlang and
Shlaer-Mellor is what they up embracing
as the true maturity of their initial
beginner starting point.

I have always thought that both tight Ada
and loose C have been an especially
uphill battle for this category of FSMphile
beginner, because if FSMs are covered at
all in Ada or C, it is as a passing thought
in the 7th or 11th book that they read,
perhaps even buried as a mere interested-
reader exercise at the end of the chapter.
These people are expecting FSMs to be
the Hollywood star in chapter 1 of the 1st
book that they read on computer
programming, as a fundamental stimulus-
response concept.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Fri, 24 Apr 2020 11:35:40 -0400

>And there might be a 3rd distinct
category of beginner: those that yearn
to see the world as Mealy or Moore
state machines [...]

In my college, state machines weren't
considered something for a language class
-- they were part of the (nominally)
language independent /algorithms and
data structures/ course.

Strangely, the only other place I've seen
them recently is in the Valvano ARM
Cortex-M text books (using TI TIVA-C
boards).

From: Paul Rubin
<no.email@nospam.invalid>

Date: Thu, 30 Apr 2020 01:01:48 -0700

> I think that there are 2 kinds of
beginners to programming:

> 1) mathematicians at heart... 2)
electrical engineers at heart

That's a very interesting way to look at
things! But, I think you have to add
architects, zoologists, and maybe a few
other types. RMS used to say that
working inside a big program was like
building a city. You had to design new

Ada-re lated Resources 67

Ada User Journal Volume 41, Number 2, June 2020

stuff, adapt old stuff, undertake urban
renewal projects, etc. I guess that's not a
beginner viewpoint though.

From: "J-P. Rosen" <rosen@adalog.fr>
Subject: Teaching Ada types
Date: Fri, 17 Apr 2020 08:17:44 +0200
Newsgroups: comp.lang.ada

(was: Re: Beginning Ada Programming,
by Andrew T. Shvets (2020))

Here is how I explain the Ada
approach:Whatever the language, when
you need to represent data, it is important
to choose an appropriate type. This
involves two steps:

1) Analyze your problem to determine the
requirements (range f.e.) on your type.

2) Make a representation choice, i.e.
choose a machine type that covers the
requirements of 1)

Ada saves you step 2), by allowing you to
express your needs directly, and leaving
the choice of representation to the
compiler.

The trouble is that other languages offer
only machine types (for basic types).
Therefore, most people tend to think
directly in terms of machine types and
skip step 1.

Of course, this assumes that you teach
how to create software, and not just a
language. Some time ago, a little niece of
mine started a software school. I was
especially interested in how design was
taught! Well, the school taught the syntax
of C, and then gave programming
exercises. I asked: "but how did they
teach you how to go from a problem
statement to its solution?" She didn't even
understand what I was talking about.
Sigh...

Jupyter Kernel for Ada

From: Maxim Reznik
Subject: Jupyter Kernel for Ada
Date: Mon, 6 Jul 2020 09:37:14 +0100
To: Telegram’s Ada Group

[Jupyter Notebooks are interactive
websites where the user can play with the
code, which is given as a stream of
“cells”, each containing some lines. The
output of each cell is interspersed,
allowing impactful presentations of code
and results. Users of Mathematica or
Maxima will find the concept familiar.
--arm]

I've made a prototype of Jupyter Kernel
for Ada:

https://mybinder.org/v2/gh/reznikmm/ada
-howto/master?filepath=%2Fhome%2
Fjovyan%2FHello_Ada.ipynb

Anton writes:

> So, what did you use for the REPL?

Maxim writes:

The kernel uses a try and error method to
combine code into something that the
compiler understands. There's no separate
executable underneath of the kernel,
except gprbuild.

Jay writes:

> For an OS

Maxim writes:

It works on Linux, but should work on
Windows/macOS also, I hope. And it
works "in the clouds" using mybinder.org,
so you can try it in a browser and share by
a link.

Ada-related Resources

[Delta counts are from Apr 6th to Jul
20th. --arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 2_950 (+47) members [1]

- Reddit: 4_086 (+745) members [2]

- StackOverflow: 1864 (+69) questions
 [3]

- Freenode : 88 (-7) users [4]

- Gitter: 56 (+5) people [5]

- Telegram: 79 (+18) users [6]

- Twitter: 53 (-35) tweeters [7]

 65 (-104) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

GitHub: 652 (+76) developers [1]

Rosetta Code: 747 (+40) examples [2]

 37 (-1) developers [3]

Sourceforge: 275 (+4) projects [4]

Open Hub: 212 (+1) projects [5]

Bitbucket: 90 (+2) repositories [6]

Codelabs: 51 (+2) repositories [7]

AdaForge: 8 (=) repositories [8]

[1] https://github.com/search?q=language
%3AAda&type=Users

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://bitbucket.org/repo/all?
name=ada&language=ada

[7] https://git.codelabs.ch/
?a=project_index

[8] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 20 Jul 2020 09:38:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go
down in the ranking. The IEEE last report
is kept, as the 2020 report has not yet
been released. --arm]

- TIOBE Index: 43 (+6) 0.28%
(+0.05%) [1]

- IEEE Spectrum (general): 43 (=)
Score: 24.8 [2]

- IEEE Spectrum (embedded): 13 (=)
Score: 24.8 [2]

[1] https://www.tiobe.com/tiobe-index/

[2] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2019

Searchable comp.lang.ada
Archive Since 1982

From: Jeremy Grosser
<jgrosser@gmail.com>

Subject: Searchable comp.lang.ada archive
dating back to 1982

Date: Wed, 17 Jun 2020 19:39:37 -0700
Newsgroups: comp.lang.ada

I'm not fond of Google Groups, so I built
my own archive.

https://archive.legitdata.co/comp.lang.ada/

Sources:

 UTZOO tapes

68 Ada-re lated Tools

Volume 41, Number 2, June 2020 Ada User Journal

 1982 - 1991

 https://archive.org/details/
 utzoo-wiseman-usenet-archive

 Usenet Historical Collection

 1993 - 2013

 https://archive.org/details/
 usenethistorical

 Eternal September NNTP

 2012 - Current

 http://www.eternal-september.org/

The earliest messages here were copied
from the net.lang.ada group, which was
renamed to comp.lang.ada in 1986. If you
have messages from either of these groups
that aren't in the archive, I'd love to
include them.

Where practical, an additional Date
header has been added to each message in
ISO 8601 format to aid in chronological
sorting. Where no timezone was given,
UTC is assumed. Early messages routed
via UUCP were often delayed by days as
indicated by the difference between the
Posted and Date-Received timestamps. In
most cases, I use the value from the
Posted timestamp.

A spam filter has been applied to the
archive. Many thousands of
advertisements for prescription drugs, sex
acts, spiritual salvation, and prejudice
have been removed. I do not wish to host
this type of content and are actively
working to train better filters and remove
spam that slipped through.

This archive is updated hourly via NNTP.

From: briot.emmanuel@gmail.com
Date: Wed, 17 Jun 2020 23:41:32 -0700

> https://archive.legitdata.co/
comp.lang.ada/

Impressive work! Well done

When we click on a message (for instance
the very first message from Robert
Dewar, https://archive.legitdata.co/
comp.lang.ada/20200615230049.GPFs9s2
3hbJuXG9EM_R0FWXl5noNdM87UxDf
ojB0oVo@z/) the date doesn't seem to be
visible (it is in the summary window,
1983 in this case).

I note that for most other messages it is
visible though!

The first message that contains "GNAT"
is from Tucker Taft in 1993. Not sure
whether there was a formal announcement
for the birth of GNAT.

In any case, some fun reading to be had
for historically-inclined people.

From: jgrosser@gmail.com
Date: Thu, 18 Jun 2020 00:48:08 -0700

>

> When we click on a message (for
instance the very first message from
Robert Dewar,
https://archive.legitdata.co/
comp.lang.ada/20200615230049.GPFs
9s23hbJuXG9EM_R0FWXl5noNdM87
UxDfojB0oVo@z/) the date doesn't
seem to be visible (it is in the summary
window, 1983 in this case).

>

> I note that for most other messages it is
visible though!

> [...]

Thanks for the feedback! I've [fixed] the
missing date issue for messages where
there was no Date header, only a Posted
header.

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Thu, 18 Jun 2020 03:14:57 -0500

> I'm not fond of Google Groups, so I
built my own archive.

>

> https://archive.legitdata.co/
comp.lang.ada/

> [...]

Very nice and good job. Thanks for doing
this.

Did you use Ada to do the above? Or just
pure JavaScript or other software?

From: jgrosser@gmail.com
Date: Thu, 18 Jun 2020 01:34:50 -0700

>

> Did you use Ada to do the above? Or
just pure javascript or other software?

At the moment, I'm using public-inbox
[1], which is a horrifying mess of Perl
scripts. Now that I've got all of the
archives in a reasonably consistent
format, I do plan to rewrite it in Ada.

The only JavaScript involved at the
moment is for obfuscating email
addresses from naive crawlers, which the
public-inbox maintainers felt was
necessary.

[1] https://public-inbox.org/
README.html

Ada-related Tools

VisualAda 1.3.2

[Releases for VisualAda 1.3 and 1.3.1
were also announced in this period, with
the following changes. --arm]

> - Added preliminary support for the
GNAT Community edition 2019 ARM
toolchain and the associated runtimes.

> - Preliminary support for "Peek
Definition"

> - Improved statement completion

> - Improved symbol handling (more
dynamic)

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.3.2

Date: Sat, 27 Jun 2020 20:55:11 -0700
Newsgroups: comp.lang.ada

Dear Ada Community

VisualAda version 1.3.2 has been released

Enhancements include the following:

- Preliminary support for "Find all
references"

- Fix - Static Library project template did
not reference ARM targets correctly

- Add support for Tools->Options->Ada
Language

Please feel free to download the free
plugin from the following URL

https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

Simple Components 4.49

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components v4.49
Date: Thu, 7 May 2020 09:36:03 +0200
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- Bug fix in GNAT.Sockets.
Connection_State_Machine.
HTTP_Client.Signaled that prevented
signaling successful connection;

- Sample code
Test_HTTPS_OpenSSL_JSON_Client
added;

- Free_Space function added to
Generic_FIFO;

- The package Generic_Bounded_Map
added.

Ada-re lated Tools 69

Ada User Journal Volume 41, Number 2, June 2020

HAC 0.06

[Release 0.05 was also announced in this
period, with the following changes. --arm]

> - type VString (variable-size string),
with concatenation ("&" operator)
including concatenation with numeric
types (their image), comparison
operators, Element, Length, Slice,
Index, "*", Trim, Image, Integer_Value,
Float_Value functions; Get_Line, Put,
Put_Line subprograms for VString> -
Argument_Count, Argument (the latter
returns a VString)

> - Get_Env, Set_Env, Shell_Execute
system subprograms

From: gautier_niouzes@hotmail.com
Subject: Ann: HAC v.0.06 - Text File I/O
Date: Tue, 19 May 2020 01:50:12 -0700
Newsgroups: comp.lang.ada

HAC (HAC Ada Compiler) is available
on two open-source development sites:

 https://hacadacompiler.sourceforge.io/

 https://github.com/zertovitch/hac

HAC is a small, quick, open-source Ada
compiler, covering a subset of the Ada
language. Even though the HAC
documentation is more or less non-
existent, the good news is that you can
use as a help Ada books and online
documentation about Ada: HAC does not
define a dialect of Ada, only a subset. A
glimpse into the file "src/hac_pack.ads"
gives you the currently available types
and subprograms.

The latest additions are:

 - v.0.06: Text File I/O around File_Type
(example below)

HAC programs are real Ada programs,
they can be built by a "serious" Ada
compiler, through the HAC_Pack
compatibility package. See the
exm/hac_exm.gpr and test/hac_test.gpr
project files for the GNAT compiler.

HAC is itself programmed in Ada. To
build HAC for the command-line, all you
need (with GNAT) is to run "gprbuild -p -
P hac". Then you get the executable
hax[.exe]. The command "hax" alone will
show you basic help.

 HAX: command-line compilation and
execution for HAC (HAC Ada Compiler)

 Compiler version: 0.06 dated 18-May-
2020.

 URL:
 https://hacadacompiler.sourceforge.io/

 Usage: hax [options] main.adb
[command-line parameters for main]

 Options: -h: this help

 -v, v1: verbose

 -v2 : very verbose

 -a : assembler output

 -d : dump compiler information

Enjoy

[...]

PS: The example (exm/file_copy.adb):

with HAC_Pack; use HAC_Pack;

procedure File_Copy is

 s : VString;

 f1, f2 : File_Type;

begin

 Open (f1, "file_copy.adb");

 Create (f2, "file_copy.txt");

 while not End_Of_File (f1) loop

 Get_Line (f1, s);

 Put_Line (f2, s);

 end loop;

 Close (f1);

 Close (f2);

end File_Copy;

From: joakimds@kth.se
Date: Tue, 19 May 2020 05:39:58 -0700

> [...]

> - v.0.06: Text File I/O around
File_Type (example below)

Nice Gautier regarding the possibility of
copying text files. Is support for
copying/reading/writing binary files in the
works?

From: gautier_niouzes@hotmail.com
Date: Wed, 20 May 2020 02:47:48 -0700

> Nice Gautier regarding the possibility of
copying text files.

Thx. Of course file_copy.adb is a tiny
demonstration example. You can now
make a parser or whatever you want with
text files, from HAC: nested
subprograms, local types and variables are
supported.

> Is support for copying/reading/writing
binary files in the works?

Not yet, but I've added this to the to-do
list.

From: Stéphane Rivière <stef@genesix.fr>
Date: Wed, 20 May 2020 13:29:57 +0200

> HAC (HAC Ada Compiler) is available
on two open-source development sites:

Well done Gautier!

I've build (a breeze) and test HAC: this is
not a toy but a really useable tool for
simple - but not simplistic - purposes...

An educative Ada way inside (the
compiler code) and outside (for Ada
newbies to adminsys complex scripting
needs).

Straight reuse of HAC code in GNAT is
really great (and a key point IMHO).

All the best from Oleron Island :)

HAC 0.07, LEA 0.71

From: gautier_niouzes@hotmail.com
Subject: Ann: HAC v.0.07, LEA 0.71
Date: Fri, 5 Jun 2020 13:34:34 -0700
Newsgroups: comp.lang.ada

In a nutshell:

- HAC (the HAC Ada Compiler) has now
an exception system, with messages and
trace-backs.

 Details here:

 https://gautiersblog.blogspot.com/
2020/06/hac-v007-exceptions-and-trace-
backs.html

- LEA (a Lightweight Editor for Ada)
leverages trace-backs in its navigation
system.

 Details here:

 https://gautiersblog.blogspot.com/
2020/06/lea-071-with-exception-trace-
back.html

HAC is pure Ada (*).

LEA is Windows only (although the
LEA_Common part is pure Ada), but
runs seamlessly on the Wine emulator
for instance.

Enjoy!

(*) ... except for the following bit which
should be easy to adapt if you build HAC
with another compiler than GNAT:

 -- Here is the non-Ada-standard stuff in

 -- HAC_Pack.

 package Non_Standard is

 function Sys (Arg :

 Interfaces.C.char_array) return Integer;

 pragma Import(C, Sys, "system");

 Directory_Separator : constant Character;

 pragma Import (C, Directory_Separator,

 "__gnat_dir_separator");

 end Non_Standard;

Gnu Emacs Ada Mode 7.1.3

[Version 7.1.1 was also announced in this
period, with the following changes. --arm]

> * ada-mode fully supports non-ASCII
text (the few remaining ASCII-only
regular expressions have been fixed).

> * gpr_query now starts in the
background, and provides a completion
table of all symbols in the project.

> * keystroke C-M-i is bound to
`completion-at-point', and uses the
symbol table provided by gpr-query.

> * Commands that prompt for a symbol
(i.e. C-u C-c C-d wisi-goto-spec/body
and C-u M-. xref-find-definitions) use
the completion table provided by
gpr_query. With a single C-u, all
symbols in the project are used; with
two C-u, only symbols defined in the
current file are used.

70 Ada-re lated Tools

Volume 41, Number 2, June 2020 Ada User Journal

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 7.1.3
released.

Date: Sun, 7 Jun 2020 14:22:39 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.1.3 is now
available in GNU ELPA.

Relative to the previous Ada mode release
(7.1.2), this is a bug fix release.

* There was a bug in wisi--before-change
that made it miss many buffer changes.

See the NEWS files in ~/.emacs.d/elpa/
ada-mode-7.1.3 and wisi-3.1.3, or at
http://www.nongnu.org/ada-mode/,
for more details.

The required Ada code requires a manual
compile step, after the normal list-
packages installation ('install.sh' is new in
this release):

cd ~/.emacs.d/elpa/ada-mode-7.1.3

./build.sh

./install.sh

If you get an error like:

sal-

gen_unbounded_definite_red_black_trees.ad

b:326:29: access discriminant in return

aggregate would be a dangling reference

it is due to a bug in all recent versions of
GNAT. Edit the file in
~/.emacs.d/elpa/wisi-3.1.3; see the
WORKAROUND comment there.
Different versions of GNAT either require
the .all or forbid it.

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

GCC 10.1.0 for macOS

From: Simon Wright
<simon@pushface.org>

Subject: ANN: GCC 10.1.0 for macOS
Date: Sat, 16 May 2020 13:47:09 +0100
Newsgroups: comp.lang.ada

Native and cross-arm-eabi compilers now
available at
https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
10.1.0/

AdaCore GNAT Community
Edition 2020

From: Karl Müller <mtb23@gmx.de>
Subject: AdaCore GNAT Community

Edition 2020 arrived
Date: Wed, 20 May 2020 19:27:40 +0200
Newsgroups: comp.lang.ada

To whom it may concern:

AdaCore GNAT Community Edition
2020 arrived:

https://www.adacore.com/download

From: DrPi <314@drpi.fr>
Date: Wed, 20 May 2020 23:15:20 +0200

Great!

Any known schedule for bb-runtime
"community 2020"?

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Mon, 25 May 2020 00:00:46 -0700

> Any known schedule for bb-runtime
"community 2020"?

What target do you have in mind? I can
see that both the ARM and RISC-V ports
of the bare-board run-time are available
for download.

From: DrPi <314@drpi.fr>
Date: Mon, 25 May 2020 14:30:34 +0200

>

> What target do you have in mind? I can
see that both the ARM and RISC-V
ports of the bare-board run-time are
available for download.

Cortex-M4 based NXP Kinetis micro-
controller.

I started to write my own runtime based
on Adacore bb-runtime github repository
(Community 2019). It does not compile
with GNAT Community edition 2020.

ISAM Implementation

From: Norman Worth
<nworth@comcastNOSPAM.net>

Subject: ISAM
Date: Thu, 21 May 2020 10:53:36 -0600
Newsgroups: comp.lang.ada

Is there an Ada package or binding for
ISAM [indexed sequential access
method]? I seem to remember one many
years ago, but I can't find anything now.

From: Wesley Pan
<wesley.y.pan@gmail.com>

Date: Thu, 21 May 2020 10:55:59 -0700

I think you are referring to the old ACM
SigAda Ada Letters articles by Karl
Kuberl and Wolfram Pietsch on their
ISAM implementation. They are on the
ACM webpage.

Here are the direct links to the PDF files
(need to rotate the view 90deg, btw):

"A Portable Ada Implementation of
Indexed Sequential Input-Output"

[Part 1/2] https://dl.acm.org/doi/pdf/
10.1145/381943.381955?download=true

[Part 2/2] https://dl.acm.org/doi/pdf/
10.1145/9305.9306?download=true

I only skimmed the articles. Doesn't
appear to be a way to get their
implementation... Maybe email them?

From: Stéphane Rivière <stef@genesix.fr>
Date: Thu, 21 May 2020 20:09:29 +0200

> Is there an Ada package or binding for
ISAM? I seem to remember one many
years ago, but I can't find anything
now.

Hi Norman,

From the outdated AIDE (Ada Instant
Development Environment) source
repository... Nancy, a very kind person -
and also a remarkable modern painter -
gave me permission [1], years ago, to
distribute all the files from her book.

I've just re-packaged this (and more) for
you and all cla ng readers:

The Nancy Packages (LGPL licence)
from her book (ISAM sources - Chap 09):

https://stef.genesix.org/pub/ada/
Files_structures_with_Ada.zip

Her near 500 pages book is really good
(everyone interested in disk file structures
and btree indexes should have this
book)... for six bucks wo shipping :()

https://www.amazon.com/
Structures-Benjamin-Cummings-
Computer-Science/dp/0805304401

And... more here (mainly public domain
but check licences - more btree, paradox
db and even a well documented dbase
implementation with btree index support):

https://stef.genesix.org/pub/ada/Sequentia
l_Indexed_With_Ada.zip

Have fun.

Stef

[1] [Quoted email from Nancy Miller
follows. --arm]

Stephane, Sorry to be so long in
responding but we are home now and
adjusting to the change in time zones. The
AIDE sounds very exciting.

We would be willing to give you
permission to use the source code from
our book with the license of LGPL. I have
completed the reference below for you.

I'm not sure the book is listed on the
publishing company's web page but
should be available if someone were to
ask.

Les sources de ce répertoire proviennent
de l'ouvrage :

The sources contained in this directory are
coming from the book:

 File Structures With Ada
Nancy E Miller and Charles G Petersen
Alan Apt
ISBN 0-8053-0440-1

http://www2.netdoor.com/~petersen/
nembooks

 http://www.aw-bc.com

 Avec l'autorisation de l'auteur.

Ada-re lated Tools 71

Ada User Journal Volume 41, Number 2, June 2020

 With the author's permission.

Nancy E Miller

From: Stéphane Rivière <stef@genesix.fr>
Date: Fri, 22 May 2020 09:39:01 +0200

> Here are the direct links to the PDF files
(need to rotate the view 90deg, btw):

Thanks Wesley for the pointers. Rotate it
and concatenate too:

https://stef.genesix.org/pub/ada/
A_portable_Ada_implementation_of_
index_sequential_input-output.pdf

AdaStudio 2020 Free Edition

From: leonid.dulman@gmail.com
Subject: AdaStudio 2020
Date: Tue, 26 May 2020 20:52:50 -0700
Newsgroups: comp.lang.ada

Announce: AdaStudio-2020 free edition

1. Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.15.0 final)

 Qt5ada version 5.15.0 open source and
qt5c.dll,libqt5c.so(x64) built with
Microsoft Visual Studio 2019 in
Windows, gcc x86-64 in Linux (includes
binaries prebuilds Qt 5.15.0).

 Package tested with GNAT gpl 2019
Ada compiler in Windows 64bit , Linux
Debian 10 x86-64

 It supports GUI, SQL, Multimedia,
Web, Network, Touch devices,
Sensors,Bluetooth, Navigation and many
others things.

 Changes for new Qt5Ada release:

 Added new package: Qt.QPDF for
manipulate wit PDF documents

 The full list of released classes is in
"Qt5 classes to Qt5Ada packages
relation table.docx"

2. VTKAda version 9.0 is based on VTK
9.0.0 (OpenGL2) is fully compatible
with Qt5Ada 5.15.0

 vtkc.dll,vtkc2.dll (libvtkc.so,libvtkc2.so)
were built with Microsoft Visual Studio
2019 in Windows 10 (WIN64) and gcc
in Linux Debian 10 x86-64(includes
binaries prebuilds VTK 9.0.0)

3. Qt5AVAda is ada-2012 port to QtAV
multimedia playback framework based
on Qt + FFmpeg. Cross platform. High
performance.

 Easy to use and base on QtAV 1.13
developed by wang-bin
https://github.com/wang-bin/QtAV.

 QtAVAda builds widgets inside Qt5Ada
application (includes binaries prebuilds
QtAV 1.13 and ffmpeg 4.4.2)

4. Voice recognition
package(speech2text) is a qtada
extension, based on pocketsphinx .

 As a role Ada is used in embedded
systems, but with QTADA
(+VTKADA) you can build any desktop

applications with powerful 2D/3D
rendering and imaging (games,
animations, emulations) GUI, Database
connection, server/client, Internet
browsing , Modbus control and many
others thinks.

AdaStudio-2020
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/adastudio.html
web page

or Google drive

https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRl83M1dTRVE
&usp=sharing (google drive. It can be
mounted as virtual drive or directory or
viewed with Web Browser)

I hope AdaStudio-2020 will be useful for
students, engineers, scientists and
enthusiasts

With AdaStudio-2020 you can build any
applications and solve any problems
easily and quickly.

If you have any problems or questions, let
me know.

Win32 and WinRT Bindings
10.0.19041

From: alby.gamper@gmail.com
Subject: Ann: Win32 and WinRt bindings

update
Date: Fri, 5 Jun 2020 18:33:26 -0700
Newsgroups: comp.lang.ada

Dear Ada Community

The Win32 and WinRT bindings have
both been updated to the latest Microsoft
SDK version (10.0.19041). This version
corresponds to the 20H1 release of
Windows 10.

Packages/Source can be found at

https://github.com/Alex-Gamper/
Ada-Win32

https://github.com/Alex-Gamper/
Ada-WinRT

For a detailed list of what is new in the
SDK refer to the following links

https://docs.microsoft.com/en-us/
windows/uwp/whats-new/
windows-10-build-19041

https://docs.microsoft.com/en-us/
windows/uwp/whats-new/
windows-10-build-19041-api-diff

PragmAda Reusable
Components

From: PragmAda Software Engineering
<pragmada@
pragmada.x10hosting.com>

Subject: [Reminder] The PragmAda
Reusable Components

Date: Sun, 7 Jun 2020 17:15:41 +0200
Newsgroups: comp.lang.ada

The PragmARCs are a library of (mostly)
useful Ada reusable components provided
as source code under the GMGPL at
https://github.com/jrcarter/PragmARC.

This reminder will be posted about every
six months so that newcomers become
aware of the PragmARCs. I presume that
those who want notification when the
PragmARCs are updated have used
Github's notification mechanism to
receive them, so I no longer post update
announcements. Anyone who wants to
receive notifications without using
Github's mechanism should contact me
directly.

Jeffrey R. Carter, President

PragmAda Software Engineering

pragmada.x10hosting.com

pragmada.tk

github.com/jrcarter

OpenGLAda 0.8.0

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Ann: OpenGLAda v.0.8.0 released
Date: Sat, 20 Jun 2020 11:28:57 +0200
Newsgroups: comp.lang.ada

Reddit user flyx86 asked that his
announcement be crossposted here. The
original announcement is at
https://www.reddit.com/r/ada/comments/
hc8de8/openglada_v080_released/

Posting: begin

This release contains a breaking change,
namely the removal of the SOIL library
previously used to load image files. SOIL
has been removed since on macOS, it
depends on the Carbon API which has
been deprecated for a long time and
finally removed in macOS Catalina.
Being a C library with its last release in
2008, SOIL was always more of a
necessary [evil] than a good part of
OpenGLAda.

As replacement for SOIL, the excellent
Generic Image Decoder (GID) library is
included in this OpenGLAda release.
Moreover, a package GL.Images has been
added that uses GID to provide an API
similar to the one of the removed SOIL
binding.

The long deprecated FTGL binding has
also been removed since a replacement
has been available for some time with the
FreeTypeAda binding and the simple
GL.Text API built on top of that binding.

Some additional OpenGL functionality
has been wrapped, see the changelog for
details.

Finally, all example code has been
extracted to an own repository and is not
spread with OpenGLAda anymore.

72 Ada-re lated Products

Volume 41, Number 2, June 2020 Ada User Journal

I would like to thank Roger Mc Murtrie
for his continued contribution of
examples and core functionality.

Regarding OpenGLAda's future, it keeps
being in maintenance mode and won't see
new features unless someone contributes
them. I am aware that quite some
OpenGL 4.x functionality is missing.
Asmaintainer, I will respond to issues on
GitHub to keep the library usable.

end Posting;

LEA - Lightweight Editor
for Ada 0.74

From: gautier_niouzes@hotmail.com
Subject: LEA - Lightweight Editor for Ada -

Binary release v. 0.74
Date: Tue, 30 Jun 2020 00:42:56 -0700
Newsgroups: comp.lang.ada

LEA - Lightweight Editor for Ada -
Binary release v. 0.74

LEA is a Lightweight Editor for Ada.

What's new in 2020 so far:

 - embedded Ada samples collection,
ready to run

 - exception trace-back for HAC

 - console input for HAC

 - "auto-repair" feature (tool icon in the
compiler message box)

Features:

 - multi-document

 - multiple undo's & redo's

 - multi-line edit, rectangular selections

 - color themes, easy to switch

 - duplication of lines and selections

 - syntax highlighting

 - parenthesis matching

 - bookmarks

 - includes the HAC Ada Compiler

 - free, open-source, fully programmed in
Ada

Currently available on Windows.

Gtk or other implementations are
possible: the LEA_Common[.*] packages
are pure Ada, as well as HAC.

Web site: https://l-e-a.sourceforge.io/

Blog: https://gautiersblog.blogspot.com/
search/label/LEA

Enjoy!

From: Stéphane Rivière <stef@genesix.fr>
Date: Tue, 30 Jun 2020 10:19:58 +0200

Looks like a tiny GNAT Community
environment at human scale!

With a true Ada subset as HAC sources
are compilable by GNAT...

Does it work with Wine?

[...]

Yes!!!!

And... All this embedded in one binary...
Amazing. A real KISS Ada environment
for serious scripting tasks and educational
purposes.

Thanks and congrats Gautier ;)

SweetAda 0.1 Released

From: gabriele.galeotti.xyz@gmail.com
Subject: SweetAda 0.1 released
Date: Tue, 30 Jun 2020 09:34:51 -0700
Newsgroups: comp.lang.ada

Hi all.

I've just released SweetAda version 0.1.

SweetAda is a lightweight development
environment to create Ada code on a wide
range of CPUs and platforms.

Have a look at http://www.sweetada.org.

This is an experimental preview, so
comments and advice are welcome.

Feel free to ask me about everything, I
know that a lot of components are poorly
documented and difficult to understand
without startup information. This is a
heavy work in progress, the manual is
under incomplete translation and things
could be not in-sync.

Many things do work, but many things,
even basic, are still in a TODO list, and I
will complete them upon an explicit
interest.

E.G.:

- a PC-x86 platform will respond to
network pings

- IBM S/390 (emulated) support is lacking
even basic CPU setup, interrupts
handling, etc (but will startup and write
a message to a 3270 terminal)

- a Raspberry board is only able to start
the first core and pulse a GPIO LED

I release SweetAda this way because
otherwise I will spend other years in the
development without feedback, and
existing codebase shows me enough
prospective.

Excuse me for slow download of the
packages and toolchains, the website is
hosted at my home.

Ada-related Products

PTC ObjectAda 10.2

From: Shawn M. Fanning
<sfanning@ptc.com>

Subject: PTC ObjectAda V10.2
announcement for Ada User Journal

Date: Fri, Jul 24, 2020 at 11:26 PM (CET)
To: Ada User Journal readership

On July 22, 2020, PTC announced the
availability of version 10.2 of our
ObjectAda for Windows andObjectAda64
for Windows products. This new product
release provides full support for Ada 2012
language features and represents the
completion of the phased implementation
strategy PTC adopted for Ada 2012
language feature support within the
ObjectAda technology. With ObjectAda
for Windows version 10.2, the ObjectAda
compiler conforms to the Ada Conformity
Assessment Test Suite (ACATS) version
4.1Q and adds several new features not
present in the previous release
(ObjectAda version 10.1 released in May
2019) including support for storage
subpools and the Default_Storage_Pool
pragma, execution time enforcement of
type invariants, and complete support for
new Ada expression forms.

The new installation approach introduced
with ObjectAda for Windows v10.x
allows ObjectAda to be used with the
latest releases of Microsoft’s Visual
Studio tools and the Windows 10 SDK.
ObjectAda version 10.2 includes version
4.0.0 of the ObjectAda Ada Development
Toolkit (ADT) Eclipse interface which
supports Eclipse 2020-03 (4.15) or later.
All of these upgrades combined make
ObjectAda for Windows version 10.2 a
solid, modern, and effective toolset for
development of mission-critical
application code in the Ada language.
ObjectAda version 10.2 supports Ada 95,
Ada 2005, and Ada 2012 compiler
operation modes to provide compatibility
with previous versions.

Additional information about ObjectAda
version 10.2 is available within the
Product Release Announcement which
can be downloaded from
https://www.ptc.com/products/developer-
tools/objectada.

Customers with active subscription
licenses for ObjectAda for Windows
v10.x or ObjectAda64 for Windows v10.x
are entitled to a no-charge upgrade to
v10.2. (Requests for upgraded license
keys can be sent by email to objectada-
support@ptc.com.)

If you are not currently using ObjectAda
and wish to learn more or if you are using
an earlier release of ObjectAda and wish
to upgrade, register your request at
https://www.ptc.com/en/products/develop
er-tools/objectada/contact-sales.

With Best Regards,
Shawn Fanning

PTC ApexAda 5.2

From: Shawn M. Fanning
<sfanning@ptc.com>

Subject: PTC ObjectAda V10.2
announcement for Ada User Journal

Date: Fri, Jul 24, 2020 at 11:26 PM (CET)
To: Ada User Journal readership

Ada and Operat ing Systems 73

Ada User Journal Volume 41, Number 2, June 2020

On May 19, 2020 PTC announced the
release of the PTC ApexAda v5.2
Embedded for Linux/Armv8 64-bit
product. This product is the initial product
offering based on a new 64-bit code
generator for ApexAda for the Armv8 64-
bit (aarch64) architecture and is our latest
release supporting 64-bit embedded
application development.

The host operating system for this product
is Intel x64 Red Hat Enterprise Linux
v7.x/v8.x (or CentOS equivalent)
distribution. Using the Linaro GNU cross-
development toolchain for 64-bit Armv8
Cortex-A processors on the Linux/Intel64
host, PTC ApexAda supports the
generation of Ada 95 / Ada 2005
application images that execute on
ARMv8-A 64-bit (aarch64) processors
(for example Arm Cortex A53, A57, A72)
running 64-bit embedded Linux
distributions. Examples of embedded
Linux distributions which can be
supported are openSUSE Leap v15.1,
SUSE Linux Enterprise Server for Arm
v15.1, Ubuntu Server 20.04, Wind River
Linux and other Yocto-derived Linux
distributions with a 64-bit kernel.
Reference hardware used for the
development and test of ApexAda was the
Raspberry Pi 3 Model B/B+. (Raspberry
Pi 4 Model B with its larger 4GB RAM
configuration and other boards such as the
VPX-1703 from Curtiss-Wright Defense
Solutions can also be supported by
ApexAda.)

Included with the 64-bit embedded
compiler is the PTC® ApexAda v5.2 64-
bit compiler for Linux native application
development. Also included is the
integrated ApexAda 64-bit C/C++
compiler which facilitates seamless
development of mixed-language
applications written in Ada, C, and C++.
ApexAda V5.2 Embedded compilers
provide a complete cross-development
toolchain hosted from Linux distributions
including RedHat Enterprise Edition,
CentOS, and SUSE. A complete
description of PTC ApexAda v5.2
Embedded for Linux/Armv8 64-bit is
available within the Product Release
Announcement which can be downloaded
from
https://www.ptc.com/products/developer-
tools/apexada .

The addition of the new code generation
capability for 64-bit Armv8 processors to
ApexAda opens up a whole new
landscape for embedded application
development using ApexAda. PowerPC
processors have for a long time been a
design choice for our aerospace and
defense customers due to their balance of
performance, cost, and power
characteristics. Intel processors have
offered many of our customers increased
performance at a cost of additional
complexity and power requirements.

Driven by the mobile consumer market,
Arm processors provide high performance
and low power advantages over Intel
processors. We think these advantages
combined with the flexibility provided by
embedded Linux distributions and the
availability of low-cost and high-
performance consumer-grade
development boards as well as ruggedized
64-bit Arm boards will provide
substantial benefits to our customers
looking to modernize existing deployed
applications while mitigating risks
through continued use of the same time-
proven and industrial-strength ApexAda
compiler technology. The 64-bit Armv8
(aarch64) processors are now well-known
and proven processors with a long
lifecycle and there are multiple 64-bit
Linux distributions available which run
on these processors. Follow-on products
leveraging the new ApexAda 64-bit
Armv8 (aarch64) code generation
capability for other real-time operating
systems are under development with
prioritization based on customer interest
and requirements.

If you would like to receive additional
information about the new PTC ApexAda
v5.2 Embedded for Linux/Intel64 to
Linux/Armv8 64-bit product or wish to be
contacted by a PTC Developer Tools sales
representative regarding evaluations,
upgrades and associated pricing, register
your request at
https://www.ptc.com/en/products/develop
er-tools/objectada/contact-sales .

With Best Regards,
Shawn Fanning

Ada and Operating
Systems

Scheduling Behaviour Issue
with FreeRTOS

From: Simon Wright
<simon@pushface.org>

Subject: Scheduling behaviour issue
Date: Wed, 22 Apr 2020 12:34:48 +0100
Newsgroups: comp.lang.ada

As some will recall, I've based my Cortex
GNAT RTS[1] (for ARM Cortex-M
devices, so far) on FreeRTOS[2].

I've now discovered an unfortunate
difference between what the ARM
requires at D.2.3(9)[3] and the way
FreeRTOS behaves. What we need is

 “A task dispatching point occurs for the
currently running task of a processor
whenever there is a nonempty ready
queue for that processor with a higher
priority than the priority of the running
task. The currently running task is said to
be preempted and it is added at the head
of the ready queue for its active priority.”

but FreeRTOS adds the preempted task at
the *tail* of its ready queue ([4], section
Prioritized Pre-emptive Scheduling
(without Time Slicing), on page 95 or
thereabouts).

I can see that this will make an
application less predictable, but I don't
think it'll make a correct application
misbehave.

I've been having some trouble thinking of
a way to demonstrate the (mis)behaviour!

[1] https://github.com/simonjwright/
cortex-gnat-rts

[2] https://www.freertos.org

[3] http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-D-2-3.html#p9

[4] https://bit.ly/2VK7slM

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Wed, 22 Apr 2020 21:03:53 +0300

> [Original message.]

I'm not sure about the definition of a
"correct [Ada] application" in this
context, but it seems to me that the Ada
RM rule means that if several tasks have
the same priority, they can assume mutual
non-pre-emption, in essence that the
running task will not yield to another task
within this same-priority set until the
running task explicitly blocks or yields.

Under that rule, therefore, tasks at the
same priority, on the same processor core,
can act on shared data without mutual-
exclusion protections -- more or less as in
a co-operative, non-pre-emptive system --
even if they are pre-empted by higher-
priority tasks (which do not share these
same data). The tasks in the same-priority
set just have to take care not to block or
yield while engaged in such actions on
shared data.

Under RTEMS, if there are higher-
priority tasks on that processor core, such
actions on shared data would not have this
mutual-exclusion property, and the shared
data could be messed up. However, I'm
not sure if such use of shared data is
"correct" per the Ada RM, and if the
resulting mess can be called
"misbehaviour".

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Wed, 22 Apr 2020 13:41:19 -0700

> Under RTEMS, if there are higher-
priority tasks on that processor core,
such actions on shared data would not
have this mutual-exclusion property,
and the shared data could be messed up.
However, I'm not sure if such use of
shared data is "correct" per the Ada
RM, and if the resulting mess can be
called "misbehaviour".

This is the reasoning of Ada 83 (RM 9.11
Shared Variables):

74 Ada and Operat ing Systems

Volume 41, Number 2, June 2020 Ada User Journal

<quote>

For the actions performed by a program
that uses shared variables, the following
assumptions can always be made:

* If between two synchronization points
of a task, this task reads a shared
variable whose type is a scalar or access
type, then the variable is not updated by
any other task at any time between these
two points.

* If between two synchronization points
of a task, this task updates a shared
variable whose type is a scalar or access
type, then the variable is neither read nor
updated by any other task at any time
between these two points.

The execution of the program is erroneous
if any of these assumptions is violated.

</quote>

I'm too lazy to search for the relevant text
in current Ada, but as far as I can tell, this
principle is still valid. This is one of the
reasons I guess that protected objects
were introduced.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Apr 2020 00:58:49 +0300

> This is the reasoning of Ada 83 (RM
9.11 Shared Variables):

 [snipped]

> I'm too lazy to search for the relevant
text in current Ada, but as far as I can
tell, this principle is still valid.

The wording in Ada 2012 is very different
(RM 9.10 Shared Variables, and C.6
Shared Variable Control).

As I understand it, two tasks can read
and/or write shared atomic variables
without that being erroneous, and all tasks
see the same order of operations on each
variable separately, but the interleaving
order of these reads and writes from the
two tasks is not specified (if the
reads/writes are not in a protected
operation or similar).

Mutual exclusion for actions on shared
data is usually necessary to ensure that a
sequence of reads/writes done by one
task is not _interleaved_ with reads/writes
from another task. As far as I can see, RM
9.10 and C.6 (and Ada 83 RM 9.11) do
not address that question.

The usual example is a simple increment
of an atomic counter variable (read - add
one - write):

 Counter := Counter + 1;

which can lose one count if executed
interleaved by two tasks. However, if the
two tasks have the same priority, and
compete for the same processor, and the
Ada rule quoted by Simon (D.2.3(9))
applies, then both tasks can execute the
increment without risking interleaving, or

so it seems to me. But if the RTEMS rule
is followed, then pre-emptions from
higher-priority tasks can force
interleaving of instructions from the two
incrementing tasks, and thus break the
counter.

> This is one of the reasons I guess that
protected objects were introduced.

Certainly (and why rendez-vous
parameters were introduced in Ada 83)
and I would definitely recommend using
protected objects for shared counters.
That would make the counters work
properly even under RTEMS.

Simon's challenge was to find a correct
program that misbehaves under the
RTEMS scheduling rule. I think my
example will misbehave (not work as the
programmer expected) but I'm not fully
sure if the Ada RM defines its behaviour
even under the Ada rules. I'm looking for
an RM rule that says that if two tasks
have the same priority and are scheduled
on the same processor then only one task
is running at a time, and executes all its
reads/writes without any interleaved
reads/writes from the other task, until the
running task somehow yields to the other
task. This may be implicit in the notions
of "scheduling" and "running", but I
would prefer an explicit connection
between those notions and RM 9.10 and
C.6.

In this connection I want to ask if the
"Discussion" in RM 2012 9.10(15.b) uses
a valid example. The Discussion says that
two "sequential" assignments to the same
variable, where neither "signals" the
other, are not erroneous, because there
may be cases where the order in which the
assignments are executed makes no
difference. The Discussion gives, as an
example, assignments that just
"accumulate aggregate counts". It seems
to me that the order of two such
assignments to the same counter does
matter, because the values written may be
different, as in the counter-increment
example above. Am I right? If so, this
example seems wrong for this Discussion
(also in Ada 202X ARM).

From: Simon Wright
<simon@pushface.org>

Date: Thu, 23 Apr 2020 12:48:21 +0100

I've done some tests on this with GNAT
CE 2019. Test program at the end; the
commented-out lines are for checks on
host machines, irrelevant for single-cpu
STM32F4 boards. The test execution is to
be under GDB, but a breakpoint on the
null; in task C (line 48), and set up this
script for that breakpoint:

 command

 silent

 print As

 print Bs

 continue

 end

On macOS with 4 CPUs, both As and Bs
are updated, and the user load is ~199%
(i.e. two CPUs in use).

On debian stretch under VMware (1
CPU), both As and Bs are updated.

Conclusion: the macOS host RTS doesn't
respect the CPU restriction. Can't tell
about macOS, but the Linux RTS behaves
in the same way as FreeRTOS.

On STM32F4, with cortex-gnat-rts, the
behaviour is as I expected (both As and
Bs updated).

On STM32F4, with ravenscar-{sfp,full}-
stm32f4, the behaviour is as D.2.3(9)[3]
(only As updated).

with Ada.Real_Time;

with System;

-- with System.Multiprocessors;

package body Priority_Issue is

 type Count is mod 2 ** 64;

 As : Count := 0;

 Bs : Count := 0;

 task A

 with

 -- CPU => 1,

 Priority => System.Default_Priority;

 task B

 with

 -- CPU => 1,

 Priority => System.Default_Priority;

 task C

 with

 -- CPU => 1,

 Priority => System.Default_Priority + 1;

 use type Ada.Real_Time.Time;

 task body A is

 begin

 delay until Ada.Real_Time.Clock +

 Ada.Real_Time.Milliseconds (300);

 loop

 As := As + 1;

 end loop;

 end A;

 task body B is

 begin

 delay until Ada.Real_Time.Clock +

 Ada.Real_Time.Milliseconds (600);

 loop

 Bs := Bs + 1;

 end loop;

 end B;

 task body C is

 begin

 loop

 delay until Ada.Real_Time.Clock +

 Ada.Real_Time.Seconds (1);

 null; -- break here, print As, Bs

 end loop;

 end C;

end Priority_Issue;

Ada and Other Languages 75

Ada User Journal Volume 41, Number 2, June 2020

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 23 Apr 2020 15:57:54 +0300

[...]

As I said in a later post, I agree that using
static priority assignments to ensure
synchronization or mutual exclusion
between tasks is fragile, and more robust
methods (protected objects) are
preferable.

On the other hand, I often see posts on
e.g. comp.arch.embedded from people
who prefer co-operative multi-tasking (or
even single-thread programming). They
could find it attractive to use such designs
based on this Ada feature.

Several coding standards (rulebooks) or
design standards that I've seen have rules
forbidding tasks of equal priority, I
assume in order to avoid uncertainties
about execution order, including the case
under discussion.

Status of GNAT on Red
Hat/Fedora

From: reinert <reinkor@gmail.com>
Subject: Ada (gnat) on Red Hat Enterprise

og Fedora is OK ?
Date: Wed, 3 Jun 2020 08:20:14 -0700
Newsgroups: comp.lang.ada

Hello,

Has RedHat been more Ada (GNAT)
friendly the latest years? Some years ago I
went from Fedora to Debian because I did
not manage to use "gprbuild
projectfile.gpr" etc under Redhat.

I ask because someone would like to
invest in using my Ada-program under
RedHat or Fedora which the IT-
department there prefers. Hence it would
be nice if someone here could share their
experience with Ada and RedHat.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Jun 2020 18:33:35 +0200

I cannot tell for RedHat but Fedora and
CentOS are perfectly OK. Fedora has the
latest GCC 10.

BTW on Raspberry for my projects
Fedora beats Debian in compile/build
time. Before GCC 10 it was the reverse.

From: reinert <reinkor@gmail.com>
Date: Wed, 3 Jun 2020 11:31:32 -0700

>

> I cannot tell for RedHat but Fedora and
CentOS are perfectly OK. Fedora has
the latest GCC 10.

And is gprbuild included in a Fedora main
repository (and functions)?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 3 Jun 2020 21:32:12 +0200

> And is gprbuild included in a Fedora
main repository (and functions)?

Yes it does.

Under CentOS you might be required to
compile gprbuild and create a
configuration file for it because it does
not find the compiler.

But, as I said, Fedora works out of the
box.

Ada and Other
Languages

Running Python Scripts
from Ada

From: "Rego, P." <pvrego@gmail.com>
Subject: Running a simple Python from Ada

program
Date: Fri, 3 Apr 2020 09:57:14 -0700
Newsgroups: comp.lang.ada

Does someone have a simplest as possible
way to run a Python script from the Ada
project?

The Python script in this case only has a
print in a loop, with a sleep, so each
iteration it should print the arguments.

The Python script I'm using is

import sys

import time

for index in range(10):

 print(sys.argv)

 time.sleep(1)

One approach I am trying is running this
one as a batch script, so using

import sys

import time

with Text_IO;

with Interfaces.C; use Interfaces.C;

procedure systest2 is

 function Sys (Arg : Char_Array)

 return Integer;

 pragma Import(C, Sys, "system");

 Ret_Val : Integer;

begin

 Ret_Val := Sys(To_C

 ("python testpy.py arg1 arg2"));

end systest2;

The problem is that the execution blocks
the script, meaning that the Python
printouts are only printed at the end of the
execution, at once.

I know that there is a solution (to run
Python from Ada) based on GNATCOLL,
but I couldn't find any example to run it.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 3 Apr 2020 19:35:23 +0200

> Does someone have a simplest as
possible way to run a Python script
from the Ada project?

There is no simple way of doing that.
Python has serious issues. [From another
reply by the sender: “Loading the Python
library and initializing the environment is
challenging under Windows. Tasking is a
problem, cleaning up is a problem, some
of C API functions do not work.” --arm]

> The Python script in this case only has a
print in a loop, with a sleep, so each
iteration it should print the arguments.

Yes, this is what I am doing. I also keep
state between iterations so that the called
Python script could update an object and
then get it back on the next iteration.

> The Python script I'm using is [...]. The
problem is that the execution blocks the
script, meaning that the Python
printouts are only printed at the end of
the execution, at once.

Do not do that. There exist Python C API,
which you should use:

https://docs.python.org/3/c-api/index.html

> I know that there is a solution (to run
Python from Ada) based on
GNATCOLL, but I couldn't find any
example to run it.

Well, as an alternative, you could take a
look how “MAX! Home Automation”
runs Python scripts.

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm#5.1

It:

1. Loads Python DLL dynamically

2. Initializes Python environment

3. Compiles script file and loads it as a
module into the Python environment

4. Calls a function from the module (in a
loop)

5. Handles exceptions from Python

6. Makes some Ada subroutines callable
from the Python script

I must warn you, it is complicated. The
files py.ads/adb are Python bindings.
Subdirectories Linux and Windows
contain OS-dependent bodies of Python
library loader py-
load_python_library.adb. py-
elv_max_cube.ads/adb is a module of Ada
subroutines callable from Python.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 3 Apr 2020 22:06:49 +0200

> But I am doing this [...] which blocks
the testpy.py script until its end. This
should not happen.

It must, actually:

https://docs.microsoft.com/en-us/cpp/
c-runtime-library/reference/
system-wsystem?view=vs-2019

> So, please, how could I fix this?

76 Ada Pract ice

Volume 41, Number 2, June 2020 Ada User Journal

You need to spawn Python in an
asynchronous process or else a batch
script with something like "call python
test.py ddddd" inside.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Fri, 03 Apr 2020 21:48:36 -0400

>But I am doing this [...] which blocks the
testpy.py script until its end. This
should not happen. So, please, how
could I fix this?

system() block until the invoked
command completes... That happens for
both C and via the Ada definition.

However, output via python print() might
be getting buffered if the spawned
command does not see stdout as a console
-- which might be a result of not having
the C I/O environment initialized...

Try adding the -u option to the invocation
https://docs.python.org/3/using/cmdline.ht
ml#miscellaneous-options

"""

-u

 Force the stdout and stderr streams to
be unbuffered. This option has no effect
on the stdin stream.

 See also PYTHONUNBUFFERED.

 Changed in version 3.7: The text layer
of the stdout and stderr streams

now is unbuffered.

"""

EG: "python -u testpy.py arg1 arg2"

Autogeneration of Ada
Bindings from Complex C
Headers

From: hreba <f_hreba@yahoo.com.br>
Subject: -fdump-ada-spec: "FILE" not

declared
Date: Tue, 7 Apr 2020 19:10:45 +0200
Newsgroups: comp.lang.ada

I am trying to generate Ada bindings for
the GSL (Gnu Scientific Library) odeiv2
package (ordinary differential equations).
So I do the following 2 steps:

1. Go to an empty directory "src" and
execute

 g++ -c -fdump-ada-spec -C
 /usr/include/gsl/gsl_odeiv2.h

2. Go to an empty directory "obj" and
execute

 gcc -c -gnat05 ../src/*.ads

Unfortunately, gsl_odeiv2.h includes
stdio.h, and this leads to a series of errors
like
stdio_h.ads:117:69: "FILE" not declared
in
"x86_64_linux_gnu_bits_types_FILE_h"

[...]

Any idea?

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Tue, 7 Apr 2020 21:29:00 +0200

I recalled that I played with it some years
ago so I just pushed my play to github.

Have a look on:
https://github.com/Ada-bindings-project/
ada-gsl

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 15 Apr 2020 16:18:27 +0100

[...]

It's best to use the slim variant [-fdump-
ada-spec-slim] of that option, then go in
and hand massage the generated code to
be "nice" and not the mess you get.

Julia for Next-Generation
Airborne Collision
Avoidance System

From: Jerry <list_email@icloud.com>
Subject: Julia for Next-Generation Airborne

Collision Avoidance System
Date: Tue, 7 Apr 2020 21:45:05 -0700
Newsgroups: comp.lang.ada

You can find these words

Safer Skies

The Federal Aviation Administration is
using Julia to develop the Next-
Generation Airborne Collision Avoidance
System at this link

https://juliacomputing.com/
case-studies/lincoln-labs.html.

Do they plan to field a final product in
Julia? The article is unclear on this point.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 8 Apr 2020 08:57:08 +0200

Jets do not fly anymore. So why not? (:-))

P.S. I made Ada bindings to Julia, for I
wished to try it as an alternative to Python
for scripting.

Unfortunately I could not use Julia
bindings beyond rudimentary tests,
because Julia builds are incompatible with
MinGW. If you have some third-party
libraries in C they will collide with Julia's
C run-time.

And Julia cannot be built from sources
under MSYS either. Apparently it could
be some years ago, but then they broke
something and it does not work anymore.
It's serious avionics stuff... (:-))

Furthermore Julia does not have loadable
modules one could recompile/load once
and call multiple times without compiling
them each time. I would not try to use it
in a medium to large size system

regardless of the language qualities,
which are not brilliant either.

All in one, an obvious candidate for safer
skies...

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Wed, 8 Apr 2020 16:51:47 -0500

> All in one, an obvious candidate for
safer skies...

There is a trend going on in software
engineering for the last 30 years.

Languages that are weak on typing (no
typing at all, Duck typing, loose typing,
dynamic typing, etc...) are getting very
popular and languages that have strong
static type checking which allows more
error to be detected at compile time, are
being ignored and are less popular with
the masses.

Go figure.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Thu, 9 Apr 2020 07:44:53 +0200

> There is a trend going on in software
engineering for the last 30 years. [...]

I'd even say that the trend is for ease of
writing rather than ease of
reading/maintaining. Well, software
engineering is not the only domain where
advertising for long term benefit against
immediate gain is difficult and
unpopular...

From: AdaMagica
<christ-usch.grein@t-online.de>

Date: Thu, 9 Apr 2020 08:23:54 -0700

> I'd even say that the trend is for ease of
writing rather than ease of
reading/maintaining. Well, software
engineering

Would you really call this SE?

> is not the only domain where
advertising for long term benefit
against immediate gain is difficult and
unpopular...

“When Roman engineers built a bridge,
they had to stand under it while the first
legion marched across. If programmers
today worked under similar ground
rules,they might well find themselves
getting much more interested in Ada!”

Robert Dewar

Ada Practice

Learning from Intermediate
Representation

From: foo wong
<crap@spellingbeewinnars.org>

Subject: Intermediate Representation
Date: Wed, 1 Apr 2020 04:40:22 -0700
Newsgroups: comp.lang.ada

Ada Pract ice 77

Ada User Journal Volume 41, Number 2, June 2020

Hi everyone, my real name is not Foo, it
is Patrick, just keeping Google off my
trail.

I have been using GnuCOBOL
extensively since 2013. One thing that I
love about it is that it compiles to
intermediate C.

If you write a program, you can compile it
to this, run ctags on the runtime and the
intermediate C and then hop around
jumping from the C function calls
generated into the runtime to see how
they are actually implemented.

I would like to do the same with Ada. Is
there a way? Using readelf, I was able to
get some clues and looking at the .ali files
I had a few more clues but so far it does
not seem to be the same thing.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Wed, 1 Apr 2020 05:06:55 -0700

https://www.cse.iitb.ac.in/~uday/courses/
cs324-05/gccProjects/node4.html
gives some command-line options that
you might find interesting. Note that that
webpage has a typo: it misspells GIMPLE
as SIMPLE in one place, but then goes on
to spell it correctly in the command-line
flag name. GIMPLE is the AST primarily
purposed for C/C++ to which Ada gets
tree-transducer in GNAT.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 01 Apr 2020 16:53:08 +0100

> [Original post]

Try compiling with -gnatG; I found this
very helpful when developing Cortex
GNAT RTS. You have to keep your wits
about you!

Look at [1], from section Tasking. This
was with GCC 4.9.1 for a restricted
runtime: the details, particularly task
creation, vary a bit between compiler
releases.

[1] https://forward-in-code.blogspot.com/
2015/06/building-runtime-system-for-
arm-eabi.html

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Wed, 1 Apr 2020 18:27:43 +0200

As others mentioned GNAT/GCC is open
source so just download and read. And to
get the "expanded" Ada code just

$gcc -c -gnatD source.adb

and you will get an source.adb.dg that
will contain an intermediate code that is
feed further into the compiler.

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Wed, 1 Apr 2020 10:17:52 -0700

If using GPS, from editing pane right
click -> Expanded Code -> Show entire
file for example. Finer option can be
chosen as well, also.

From: Bob Duff <bobduff@example.com>
Date: Wed, 01 Apr 2020 18:28:38 -0400

> Whoo! I like -gnatD and -gnatG

I like -gnatDGL. The "L" intersperses the
Ada source code with the generated code.

Proposal: Auto-allocation of
Indefinite Objects

From: Stephen Davies
<joviangm@gmail.com>

Subject: Proposal: Auto-allocation of
Indefinite Objects

Date: Fri, 3 Apr 2020 15:48:41 -0700
Newsgroups: comp.lang.ada

Firstly, apologies if this has already been
discussed or, more likely, if it's a really
stupid idea for some reason that I haven't
thought of.

My proposal is that it should
(sometimes?) be possible to declare
objects of indefinite types such as String
and have the compiler automatically
declare the space for them without the
programmer having to resort to access
types.

Benefits:

1. Easier, especially for newbies/students.

2. Safer due to reduced use of access
types.

3. Remove the need to have definite and
indefinite versions of generic units.

It is the 3rd reason that initially got me
thinking about this. It seems excessive to
have two versions of packages just
because one version can say
"Node.Item:= New_Item;" but the other
has to say "Node.Item_Ptr := new
Element_Type'(New_Item);".

It's probably not a good idea for auto-
allocation to be the default behaviour, so I
suggest something like:

 type Node_Type is record

 Item : new Element_Type;

 Prev : Node_Ptr_Type;

 Next : Node_Ptr_Type;

 end record;

If Element_Type is a definite type in the
instantiation then Node.Item will be a
normal object of that type. Otherwise, it is
implemented as a pointer but the code still
treats it as an object. The target of the
pointer is allocated on assignment of the
object. The pointer cannot be copied to
any other object. Assignments of the
whole record will perform a deep-copy of
the auto-allocated component. The target
of the Node.Item pointer can be auto-
deallocated when Node goes out of scope
or is deallocated.

Ok, I've probably missed something
obvious and have been wasting my time,
but at least I've got plenty of time to waste
at the moment.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sat, 4 Apr 2020 10:31:35 +0200

> [Explanation of the proposed syntax
omitted. --arm]

This looks interesting to me. There is a
huge number of cases I am using this
schema, especially when Item is
initialized once.

The major advantage is of course in
having a plain String instead of
Unbounded_String. No conversions, no
space/time penalties. I refrain from using
Unbounded_String as much as possible.

Also there must be a possibility to specify
the pool of Item. I frequently place things
like Node_Type into an arena pool, so I
want the string going there as well.
Another case is marshaling such objects,
so that the body of Item would not be left
behind.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Sat, 4 Apr 2020 12:54:44 +0200

[...]

For an issue related to the OP's idea,
consider

with System;

procedure Boom is

 type Very_Large_Item is ...;

 type Very_Large_Index is mod

System.Max_Binary_Modulus;

 type Very_Large_List is array

(Very_Large_Index range <>) of

Very_Large_Item;

 Last : constant := ...;

 List : Very_Large_List (0 .. Last);

begin -- Boom

 ... -- Do some thing useful with List

end Boom;

There exists a value N > 0 such that Last
= N works and Last = N + 1 results in
Storage_Error. The actual value of N may
vary depending on the compiler, target,
and the actual machine on which the
program is executed.

If you want to handle a List with Last >
N, you have to make it an access to
Very_Large_List unless you care where it
is allocated. There is still a value M which
will result in Storage_Error, but on most
machines where you'd try to process such
a large object, M >> N because on such
machines the heap is much larger than the
stack. Implicit dereferencing makes this
change less painful than it would be
without implicit dereferencing, but there
are still usually places where explicit
dereferencing will be needed, so there is
still some pain involved even though you
don't care where the object is allocated.

It would be nice if there were a compiler
option where objects that don't fit on the
stack would be automatically allocated on

78 Ada Pract ice

Volume 41, Number 2, June 2020 Ada User Journal

the heap, and automatically deallocated
when they go out of scope.

Similar arguments can be made for a
compiler option where all numeric types
would be accepted, with some
implemented in terms of the compiler's
ability to calculate static expressions
exactly, rather than the user having to
switch from a numeric type to an
unbounded-number pkg. This has the
added value that such pkgs usually lose
the automated checks that numeric types
have.

All of these issues have been around for
some time, and the ARG is aware of them
and has chosen to take no action. That
seems unlikely to change.

From: Stephen Davies
<joviangm@gmail.com>

Date: Sat, 4 Apr 2020 13:55:16 -0700

[Brackets in the following quotes by the
author. --arm]

>>

>> Item : New String; [ill-thought-out
proposal]

On 2020-04-04, Stephen Leake wrote:

>

> [Ada-101 stuff ;-)]

On 2020-04-04, Dmitry A. Kazakov
wrote:

>

> This looks interesting to me. There is a
huge number of cases I am using this
schema, especially when Item is
initialized once.

Woohoo, I'm not a complete idiot.

On 2020-04-04, Jeffrey R. Carter wrote:

>

> the ARG is aware of them and has
chosen to take no action. That seems
unlikely to change.

Oh. :-(

Printing Access Values

From: ldries46 <bertus.dries@planet.nl>
Subject: Put the access value
Date: Tue, 14 Apr 2020 09:15:49 +0200
Newsgroups: comp.lang.ada

I have a situation in which it is not
practical to use the debugging
possibilities of GNAT GPS. Instead I
want to use the Put procedure to show
certain values.

Normally that is not a problem with the
Predefined Language attributes (mostly
with the 'image attribute).

Now I have the following:

[Redacted code for conciseness. --arm]

type Buffer_Pointer is access

 Block_Buffer;

I just want to see if the routing of the
different Buffer_Pointer's is correct so I
thought Buffer_Pointer'Image would
show the value of the pointer, f.i.
?x000000 for null or even the simple
decimal value 0.

This construction creates a failure during
compiling. Should I use another attribute
or some other construction?

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Tue, 14 Apr 2020 09:42:53 +0200

In Ada, a pointer is not an integer and has
no 'Image attribute. A pointer is not an
address either. Of course, for debugging
you can indulge yourself to constructs that
would be thrown at for long term
maintenance. So...

1) Use Unchecked_Conversion to convert
it to an appropriate integer type

2) use package Address_To_Access
conversion to convert your pointer to an
address, then
System.Storage_Elements.To_Integer to
convert the address to Integer_Address,
which is an integer type.

From: briot.emmanuel@gmail.com
Date: Wed, 15 Apr 2020 00:20:31 -0700

The approach I tend to use is using
`System.Address_Image`:

 El: Buffer_Pointer := LastBuffer;

 ...

 if El /= null then

 Ada.Text_IO.Put_Line

 (System.Address_Image

 (El.all'Address));

 end if;

or if this is for slightly longer term

 function Convert is new

Ada.Unchecked_Conversion

 (Buffer_Pointer, System.Address);

 Ada.Text_IO.Put_Line

(System.Address_Image (Convert (El));

This is really just for quick debugging,
and the code is never (really, I swear)
committed... Otherwise, I would go to the
trouble of creating an `Image` function
and use that

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Mon, 20 Apr 2020 19:02:26 -0400

> In Ada, a pointer is not an integer and
has no 'Image attribute.

Sure it does. ;-)

So do records and everything else. See
AI12-0020-1 (don't pay attention to
details; they're changing). I implemented
that recently, so the latest development
version of GNAT has it.

This program:

with Ada.Strings.Text_Output.Formatting;

use Ada.Strings.Text_Output;

procedure Access_Image is

 type R is record

 This : Integer;

 That : String (1..10);

 end record;

 type A is access all R;

 X : A := new R'(This => 123, That =>

"helloworld");

begin

 Formatting.Put ("\1, \2\n", X'Image,

X.all'Image);

end Access_Image;

prints:

(access 162b740),

(this => 123,

 that => "helloworld")

Script-like Jobs in Ada
(Ideas for HAC)

From: gautier_niouzes@hotmail.com
Subject: Script-like jobs in Ada (ideas for

HAC)
Date: Fri, 24 Apr 2020 12:45:33 -0700
Newsgroups: comp.lang.ada

It's a poll - sort of.

The question is: what kind of jobs do you
prefer to let a scripting language do and
not Ada?

My guess is that this kind of choice is
related to toolsets, libraries and other
aspects that are not necessarily related to
languages.

For instance you would perhaps avoid
using Ada for a 30-lines program that
browses files and collects some
information in those files (just an
example). Or a little math / stats program?
Or a small game?

But maybe the real reason (even if it is
unconscious) you'd avoid Ada is because
the compiler you are using is slow, or
because it spits objects and executable
files each time you change your small
program. And you'd be more comfortable
with a script that runs immediately
without making garbage files.

A goal of the HAC compiler [1] is
precisely to blur the border between a
script and an Ada program: from the
command line, you write "hax
myprog.adb" and it just runs (that's
already working). Now I'd be curious
about examples of scripts you'd consider
writing in Ada with HAC, if it supplied
the convenient functions and libraries. It's
all work-in-progress currently, and ideas
of applications are welcome at this point
of the development.

Thanks for any input!

[1] http://hacadacompiler.sf.net/ and
https://github.com/zertovitch/hac

Ada Pract ice 79

Ada User Journal Volume 41, Number 2, June 2020

From: cantanima.perry@gmail.com
Date: Fri, 24 Apr 2020 16:22:34 -0700

What about REPL with hot code
reloading?

I know this is the province of LISP and
recently Nim did it too, and I guess most
scripting languages do it, like iPython?
Anyway, I mean this: long ago I used a
programming language called Basic09
that despite its name had a lot in common
with Pascal and Modula-2 -- well, OK,
with Ada if you want to put it that way: it
offered structured programming
techniques and modular programming,
including modules. Like any BASIC, you
interacted with an interpreter, but with
Basic09 you could compile to I-code,
save, load, and I believe even reload that
I-code, etc.

I've always wished that modern compiled
languages allowed one to do something
like that, so that you could combine the
best of a compiled language with the best
of an interpreted one. The fact that it's
pretty rare probably shows how little I
know, though.

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Fri, 24 Apr 2020 19:11:41 -0500

> [Entire original post removed. --arm]

Main advantage of scripts, and by this I
really mean bash, sh, Python, and maybe
Perl, is that these come pre-installed on
Linux. I.e. once you install Linux, most
likely you'll have bash, sh, Python
interpreter ready to be used. (For
Windows, it will be DOS scripts)

Hence any script written will run as is,
with no need to have to first "compile" it
for that specific version of the OS. Also
easy to email one a script and they run on
their end. No need to install a compiler
first, figure how to compile it, link it,
etc...

That is I think is the main advantage of
scripts over compiled languages. Ease of
use.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 25 Apr 2020 11:52:08 -0700

[...]

Reliability/longevity is the biggest
problem with "scripting" languages, and
with many "modern" platforms. That
Visual Basic game broke with each
release of Visual Basic, until I got tired of
maintaining it. I have a small music
playing app I wrote for Android; it breaks
with each release of Android. I never did
get the car dashboard controls working
after they broke the first time.

From: mockturtle <framefritti@gmail.com>
Date: Sat, 25 Apr 2020 23:49:09 -0700

> The question is: what kind of jobs do
you prefer let a scripting language do
and not Ada?

The threshold is fuzzy, but usually I go
with a script if

* I need to interact heavily with the
system (e.g., moving files, directories,
...)

* I can do everything with basic shell
commands. For example, if I need to do
some math like matrix algebra I do not
use a script (not entirely true... Once I
did this by calling octave from the script
and piping into it the required
computations... I would not advise it,
though...)

* It is something quite simple and/or I
need it "fast and dirty" (e.g., to do
something to lots of files, but a
"something" that I will not need in the
future) so that the maintenance
advantage that Ada gives you has not
much impact.

Sometimes in the gray area of problems
too complex for a bash script, but not
enough to justify the investment of initial
effort required by Ada, I go with Ruby
that is, IMHO, a fair compromise.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 26 Apr 2020 15:49:09 +0100

> The question is: what kind of jobs do
you prefer to let a scripting language do
and not Ada?

The problem was a membership database,
which as inherited was an Excel
spreadsheet with one sheet per year, and
many issues of consistency and form.

My first thought was Ada, but I totally
failed at the "simple" task of
reading/writing a CSV file; looking at
SQLite interfacing, producing a GUI,
sending mail, and the thought that
someone else might well inherit it from
me, I decided that Python was the best
compromise.

~3000 lines (including blanks).

From: Bojan Bozovic
<bozovic.bojan@gmail.com>

Date: Mon, 27 Apr 2020 11:50:46 -0700

> The question is: what kind of jobs do
you prefer to let a scripting language do
and not Ada?

Make it embeddable! That's the advantage
of scripting language, code/modules in
compiled language can do all the heavy
lifting, while providing ease of use of a
scripting language.

That's normal for the web and it's the way
PHP, Python and Perl work. That's also
normal in game development, where
game logic is often written in some
scripting language.

Also for some uses it would be useful if it
could run compiled pseudocode, in a
manner NET does.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Mon, 27 Apr 2020 12:01:44 -0700

> Make it embeddable! [...]

HAC's MIT license is conducive to
embeddability. Conversely, GNAT would
be embeddable (ignoring all technical
impracticalities thereof) only in GPLv3-
licensed derivative works. So that would
be a difference that makes a difference in
mission for HAC (no matter where it ends
up 20 years from now feature-
wise/language-coverage-wise).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 27 Apr 2020 22:31:38 +0200

> Make it embeddable!

Yes, that is the key feature. On top of
that:

1. Asynchronous aborting of the running
script with data cleanup.

2. External loadable module/packages for
it written in Ada.

3. Means to maintain the process state
between calls to the script. For Python
it is resolved by returning an object
from the script. The object is then
passed as an argument by the next call.
For an Ada script one could do it better,
as a kind of "library package".

BTW, there is another project alike,
AdaScript: http://www.pegasoft.ca/docs/
sparforte12/doc/ref_adascript.html

which also lacks the above. It is a shame
that GPS uses Python for the purpose. I
am using Python too, because presently
nothing is better. I considered Lua and
Julia, but neither were usable.

Having yet another shell is not interesting.
From my experience no regular task
deserves writing it in a script. Each time I
do this in bash etc, I get punished for it.
When I am lucky I rewrite that in Ada. I
am too lazy to do this from the start
always hoping it would end differently.
When I am not so lucky I am stuck for
years with maintaining the crap which
periodically stops working.

From: Jerry <list_email@icloud.com>
Date: Tue, 28 Apr 2020 01:51:50 -0700

HAC in Jupyter(Lab)? https://jupyter.org/

From: joakimds@kth.se
Date: Wed, 29 Apr 2020 08:47:41 -0700

> The question is: what kind of jobs do
you prefer to let a scripting language do
and not Ada?

Hi Gautier,

I currently use Ada for scripting and need
to compile "the script" before being able
to execute it. I would find being able to

80 Ada Pract ice

Volume 41, Number 2, June 2020 Ada User Journal

use HAC for scripting very useful. The
only issue I can see with it is the "with
HAC_Pack; use HAC_Pack;" that seems
to be required to use HAC. I would like to
keep the "Ada scripts" cross-compiler if
possible.

From: gautier_niouzes@hotmail.com
Date: Thu, 30 Apr 2020 01:02:43 -0700

Thank you all for your answers and
brainstorming. Here are a few points, so
far, to summarize:

- Clear need for adding strings and files
manipulation, access to databases, UI, ...

- Embeddable: inside a real Ada program?
Yes, it is possible.

 Here I just simplify what you find in
hax.adb:

 ...

 CD : Compiler_Data;

 begin

 Set_Source_Stream (CD, [Some stream

access], [Possibly related file name]);

 Compile (CD);

 if CD.Err_Count = 0 then

 Interpret_on_Current_IO (CD);

 end if;

 …

 - Freezing and restoring the state of the
VM, and its data: it is possible. I still
need to wrap the "global" variables for
the state of the VM interpreter into an
object type, but it is doable: they are
located in a subpackage that could be
turned into a record type with not much
more effort than hitting it with a magic
wand ;-) .

- Jupyter: seems something to be
considered!

- Euphoria: seems a very good source of
inspiration!

- The nasty need for "with HAC_Pack;
use HAC_Pack;"

 Yes it is still required - until the point
where support for packages will be
implemented in HAC.

 However, it is already possible to
cross-compile, since there is a "real"
package (spec + body) in pure Ada in

 exm/special/hac_pack.ads,

 exm/special/hac_pack.adb.

 For instance, the HAC demos and tests
can be built with GNAT through the
exm/hac_exm.gpr and test/hac_test.gpt
project files respectively.

 That's the big difference between HAC
and a classical scripting language system:
in the classical setup, the frontier is
permanently set between the
slow/interpreted/dynamic-typing part and
the fast/compiled/static-typing part.
Typically people need to reprogram parts
or all of their scripts as C++ inserts in
order to have a decent performance. With

HAC you have the option to switch to
your preferred compiler, with native code
generation and optimization options. For a
mix of VM/native code, we could imagine
options or pragmas that triage units to
VM or native code compilation. Just
thinking loud...

[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 30 Apr 2020 10:44:19 +0200

> Thank you all for your answers and
brainstorming.

1. Where are the modules? It should be
possible to write a module for the script
e.g. a package that has functions and
procedures, which call to Ada
implementations. I.e. calling Ada from
the script.

2. What about exceptions handling, the
ones propagating out of the script into
the Ada caller?

3. Aborting the script. Ideally the
Interpret_on_Current_IO you
mentioned must be abortable per some
event set via protected object, for
example. E.g. from another task
provided Interpret_on_Current_IO runs
on the caller's context. The interpreter
will look for the event periodically and
propagate exception Canceled_Error if
the event is set.

From: gautier_niouzes@hotmail.com
Date: Fri, 1 May 2020 00:31:15 -0700

> 1. Where are the modules? [...]

On the to-do list :-)

> 2. What about exceptions handling [...]

Same, but this is a lower-hanging fruit:
the VM has error states that could be
grouped into an exception_raised state,
which would trigger the expected
behaviour (with an exception identity and
message). If the exception is not handled
from the VM, the VM interpreter would
raise Unhandled_HAC_Exception with a
message.

> 3. Aborting the script. [...]

I add this to the to-do list right now,
thanks!

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 1 May 2020 09:51:25 +0200

> [Previous message entire quote. --arm]

With these changes I would consider
integrating it into here:

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm#5

I presume you have an equivalent of
Unbounded_String, records and arrays of.
That should make it. Is
https://sourceforge.net/projects/
hacadacompiler/

the major source where you publish
updates?

From: gautier_niouzes@hotmail.com
Date: Fri, 1 May 2020 08:46:33 -0700

> With these changes I would consider
integrating it into here:

>

> http://www.dmitry-
kazakov.de/ada/max_home_automation
.htm#5

>

> I presume you have an equivalent of
Unbounded_String, records and arrays
of. That should make it.

On top of the to-do list now :-). But I have
an idea how to implement it...

> Is

>

> https://sourceforge.net/projects/
hacadacompiler/

>

> the major source where you publish
updates?

Yep. With a mirror @

 https://github.com/zertovitch/hac

in case of allergies to SourceForge.

Getting the Three-Letter
Time Zone Abbreviation

From: Bob Goddard
<1963bib@googlemail.com>

Subject: Getting the 3 letter time zone
abbreviation

Date: Wed, 29 Apr 2020 01:46:58 -0700
Newsgroups: comp.lang.ada

I'm sure this has been asked many times...

I need to get the 3 letter time zone
abbreviation.

Does anyone have code that can do that?

Neither Ada.Calendar nor ada_util can get
it.

I did take a look at the tz db source code,
and I shuddered multiple times.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 29 Apr 2020 11:09:37 +0200

>

> I need to get the 3 letter time zone
abbreviation.

3-4 you mean, e.g. CEST.

> Does anyone have code that can do
that?

I had only a partial success. I used
GTK/GLib time zone functions. The
abbreviation of the zone name is the
thing. Unfortunately it works poorly
under Windows, and Windows updates
tend to break time zone settings [*] I

Ada Pract ice 81

Ada User Journal Volume 41, Number 2, June 2020

needed to plant various fallbacks to
deduce the zone from UTC offset.

Anyway, Ada bindings are here:

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm#5.14

[*] I believe it was the case why one
could not log into Origin account for a
couple of days not so long ago. Their
server verified the time zone and blocked
access because Windows reported
garbage.

From: Bob Goddard
<1963bib@googlemail.com>

Date: Wed, 29 Apr 2020 12:20:13 -0700

> I used GTK/GLib time zone functions.
[...]

Seems easier just to import strftime and
call it requesting just "%Z". This is on
Linux, but MS suggests it should also
work on Windows.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Wed, 29 Apr 2020 21:53:08 +0200

> Seems easier just to import strftime and
call it requesting just "%Z". This is on
Linux, but MS suggests it should also
work on Windows.

An interesting idea. Did you try it under
Windows? (There is a suspicious remark
that it depends on the setlocale)

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 30 Apr 2020 23:11:34 +0200

[...]

OK, I tested it. As expected it does not
work. [...]

Windows POSIX layer relies on Windows
API. If the API does something wrong, so
would whatever POSIX function.

From: Bob Goddard
<1963bib@googlemail.com>

Date: Sat, 2 May 2020 05:46:41 -0700

Here goes...

On Linux and the various BSD's, the tm
structure has been extended to include:

 long int tm_gmtoff;
 /* Seconds east of UTC. */

 const char *tm_zone;
 /* Timezone abbreviation. */

When you make a call to localtime_r,
these are filled in with the correct info, at
least on Linux.

The other big iron Unix's do not have this
extension, and neither does Windows.

[...]

From: Bob Goddard
<1963bib@googlemail.com>

Date: Sat, 2 May 2020 12:25:16 -0700

[...]

Anyway, turns out Windows does not
support the IANA 3/4 letter tz database.

Calling tzset and examining the returned
array, returns a string similar to "New
Zealand Daylight Time".

tzset, at least on Linux, and I assume
every other unix type system which uses
the tz database does returns the 3/4 letter
tz name.

Ho hum!

The History Behind
Natural'First = 0

From: reinert <reinkor@gmail.com>
Subject: What is the history behind

Natural'First = 0?
Date: Thu, 30 Apr 2020 21:51:07 -0700
Newsgroups: comp.lang.ada

I have been wondering about this for
years:

Why Natural'First = 0?

There is no consensus about including 0
among the natural numbers. Since there is
a Positive (Positive'First = 1), one may
expect Natural'First = 0. Except for this, I
find little intuition in "Natural'First = 0".

Copy form: https://en.wikipedia.org/wiki/
Natural_number#History

Some definitions, including the standard
ISO 80000-2,[1][2] begin the natural
numbers with 0, corresponding to the
non-negative integers 0, 1, 2, 3, …,
whereas others start with 1, corresponding
to the positive integers 1, 2, 3, …,[3][4]
while others acknowledge both
definitions.[5] Texts that exclude zero
from the natural numbers sometimes refer
to the natural numbers together with zero
as the whole numbers, but in other
writings, that term is used instead for the
integers (including negative integers).[6]

Is the key point here: "the standard ISO
80000-2" ?

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 1 May 2020 09:52:04 +0200

> Why Natural'First = 0 ?

Because that's the way it is ;-)

Anyway, type Integer is not the
mathematical notion of (infinite) integers,
and more generally computer types are
only reduced abstractions of mathematical
notions.

There is a need for a subtype of type
Integer with lower bound 0, and another
one for lower bound 1. The names have
been chosen by Ichbiah following usual
practice, they could have been anything
else.

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Fri, 1 May 2020 01:38:12 -0700

[...]

Being a wiseacre, I'd like to point out RM
3.5.4(8):

"The set of values for a signed integer
type is the (infinite) set of mathematical
integers [, though only values of the base
range of the type are fully supported for
run-time operations]."

[...]

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 1 May 2020 12:24:15 +0200

> [...] The set of values for a signed
integer type is the (infinite) set of
mathematical integers [...]

Yes, but being even more pedantic, let me
point out that Integer is not a type, it is a
first named subtype.

The type is purely conceptual in Ada
(wasn't like this in Ada83).

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Fri, 1 May 2020 11:14:19 -0700

[In reply to the original post. --arm]

The key here is that there has always been
a terminology divide between North
America and Europe (with UK & Canada
sometimes going a 3rd way along British-
Empire lines).

Generally, in the USA, the set of natural
numbers is the set of positive integers,
that is denoted ℕ domestically or ℕ*
when interacting with people outside of
the USA to show the lack of zero.
Generally, in the USA, the set of whole
numbers is the set of positive integers,
that is denoted either ℕ₀ or ℤ⁺.

Conversely, generally in UK and Europe,
the set of natural numbers is the set of
nonnegative integers, which is denoted ℤ-
⁺. (The dispute even goes that far: having
different double-struck/white Z
mnemonic notation: ℤ⁺ versus ℤ-⁺.)
Generally in UK and Europe, the set of
counting numbers was formerly the set of
positive integers, but the further away
from the 19th century we get, whole
numbers have at times become
synonymous with the UK/European
definition of natural numbers.

https://mathworld.wolfram.com/
NaturalNumber.html

https://mathworld.wolfram.com/
NonnegativeInteger.html

https://mathworld.wolfram.com/
CountingNumber.html

https://en.wikipedia.org/wiki/
Natural_number

Ichbiah showed his European culture by
institutionalizing the European definition
as the sole normative definition in Ada.
(And don't even get me started on billion,
trillion, and milliard.)

82 Ada Pract ice

Volume 41, Number 2, June 2020 Ada User Journal

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Fri, 01 May 2020 17:36:40 -0400

[...]

I seem to recall an early version of Ada
(or Green) that said "subtype Natural is
Integer range 1..Integer'Last;". I could be
misremembering that, and (if true) I don't
remember what the 0..Integer'Last one
was called.

Speaking of zero:

Q: What caused the fall of the Roman
Empire?

A: They didn't know about zero, so they
had no way to terminate the strings in
their C programs. Har, har.

From: Keith Thompson
<Keith.S.Thompson+u@gmail.com>

Date: Sun, 03 May 2020 13:08:37 -0700

> I seem to recall an early version of Ada
(or Green) that said "subtype Natural is
Integer range 1..Integer'Last;".

Yes, I remember that. I found a copy of
the 1979 Preliminary Ada Reference
Manual from SIGPLAN Notices, June
1979 at

https://dl.acm.org/doi/pdf/10.1145/
956650.956651

The section covering package
STANDARD says:

 subtype NATURAL is INTEGER range

 1 .. INTEGER'LAST;

 type STRING is array (NATURAL) of

 CHARACTER;

There was no predefined subtype starting
at 0. I don't know just when NATURAL
was changed to start at 1 and POSITIVE
was introduced.

(And I'm glad they decided to stop using
ALL_CAPS for identifiers).

> Speaking of zero:

>

> Q: What caused the fall of the Roman
Empire?

> A: They didn't know about zero, so they
had no way to terminate the strings in
their C programs. Har, har.

But it wasn't all that bad, since they only
had 100 programs.

A Centurion walks into a bar. He holds up
two fingers. "Five beers, please."

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Mon, 04 May 2020 10:22:03 -0400

>The 1980 edition had the same thing. I
know there was another preliminary
version in 1982 (before the first official
standard in 1983), but I don't know
what it said.

What is your definition of "official
standard"? MIL-STD-1815 and 1815A
/are/ official standards -- just not
international standards.

ANSI/MIL-STD-1815A (dated 22 Jan
1983, approved 17 Feb 1983 "superseding
MIL-STD-1815 10 Dec 1980") has the 0-
based NATURAL and 1-based
POSITIVE.

Preconditions Rock

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: preconditions rock
Date: Sun, 24 May 2020 17:00:56 -0700
Newsgroups: comp.lang.ada

I just have to say that I'm really
appreciating how much preconditions
help during development; I'm getting way
better error messages when tests fail, so it
is very easy to fix the problems.

[...]

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Mon, 25 May 2020 10:24:21 +0200

> I just have to say that I'm really
appreciating how much preconditions
help during development; I'm getting
way better error messages when tests
fail, so it is very easy to fix the
problems.

Certainly, but preconditions are a way of
thinking during design to create correct
software. It's nice to have them directly
supported in a language, but they're
nothing new. I used preconditions in Ada
83 over 30 years ago.

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Mon, 25 May 2020 10:14:01 -0700

> [...] I used preconditions in Ada 83 over
30 years ago.

But now the precondition is elevated. In
addition, the codes and comments are
always in synchronization. This will be
the music to the ears of maintainers.

Ada in Code Art

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Ada in code art
Date: Tue, 26 May 2020 03:21:13 -0700
Newsgroups: comp.lang.ada

Strangely pleased to find Ada included in
the 128-Language Uroboros Quine.

https://www.youtube.com/watch?v=6avJ
HaC3C2U&feature=youtu.be&t=2081

[The alluded program is compiled in a
starting language (Ruby), and when run it
outputs the source code for a new
program in a new language (Rust). When
compiled in this second language, it
produces a program that when run outputs
the source code of a program in a third
language. After going through over a

hundred similar operations, the original
program in Ruby is emitted by its
predecessor, in REXX. The languages are
ordered alphabetically to boot. The source
code is also obfuscated in the form of an
Uroboros. Find the source code at [1].
--arm]

[1] https://github.com/mame/quine-relay

Multiline Strings in Ada

[A subthread on multiline strings evolved
from the “Ada++” thread (found in the
Ada in Jest section). --arm]

From: "Nasser M. Abbasi"
<nma@12000.org>

Subject: Ada++
Date: Thu, 28 May 2020 23:38:16 -0500
Newsgroups: comp.lang.ada

> [...] fix things like string types.

Yes, for example Ada is one of few
languages that still does not have
multiline raw string support. (may be also
Fortran)

https://en.wikipedia.org/wiki/
Here_document

Check also

https://rosettacode.org/wiki/
Here_document

"A here document (or "heredoc") is a
way of specifying a text block, preserving
the line breaks, indentation and other
whitespace within the text."

See the Ada answer above

"Ada has neither heredocs nor multiline
strings. A workaround is to use containers
of strings:"

Python, Perl, ruby, even C++11 added
multiline raw string and more languages.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 29 May 2020 08:06:31 +0200

> "Ada has neither heredocs nor multiline
strings. A workaround is to use
containers of strings:"

Please provide a use case showing how
these features are necessary/important.
[...]

From: fabien.chouteau@gmail.com
Date: Fri, 29 May 2020 02:23:20 -0700

> Please provide a use case showing how
these features are necessary/important.

https://github.com/alire-project/alire/
blob/dfa1e1e8029dee2959742b73ed8a0fc
96e22c8de/src/alr/
alr-commands-index.adb#L171

[This is a code fragment in which
standard vector containers of String are
used to store paragraphs of text. --arm]

Ada Pract ice 83

Ada User Journal Volume 41, Number 2, June 2020

From: raph.amiard@gmail.com
Date: Fri, 29 May 2020 02:43:47 -0700

> On Friday, May 29, 2020 at 8:06:34
AM UTC+2, J-P. Rosen wrote:

> > Please provide a use case showing
how these features are
necessary/important.

Or in GNAT: https://github.com/aosm/
libstdcxx_SUPanWheat/blob/02812415a4
78d43bcc37a17bb779fcab146fbe4c/
libstdcxx/gcc/ada/snames.adb#L59

Or in Libadalang:

https://github.com/AdaCore/libadalang/
blob/1cf553d5fc37317c670888f0893bc25
560c85b7b/ada/extensions/src/
libadalang-env_hooks.adb#L47

Those are just two examples on the top of
my mind. Every time you want to embed
a multiline string in an Ada app you need
to go through this frankly annoying
gymnastics.

This is also annoying for compiler
writers. In Libadalang we need to
recognize those as special cases because
they can create comb trees of unbounded
depth.

They are totally useless. (Embedding was
never a good idea, embedded SQL,
embedded machine code etc.)

Demonstrably not. Anyway those kinds of
blanket statements tend to be false in
general, I hope you can see that there are
many legitimate use cases for this, and
that the fact that you did not need it
doesn't mean it's useless.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 29 May 2020 22:57:50 +0200

> Or in Libadalang:

>

> https://github.com/AdaCore/
libadalang/blob/1cf553d5fc37317c6708
88f0893bc25560c85b7b/ada/extensions
/src/libadalang-env_hooks.adb#L47

This is a surprising example in its very
principle. Is the specification of Standard
hard-coded in Libadalang? This would
mean that the definition of Integer et.alt.
is not the one of the compiler you are
using, but the one of Libadalang.
Puzzled…

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 29 May 2020 13:00:16 +0200

>> [...] Every time you want to embed a
multi line string in an Ada app you
need to go through this frankly
annoying gymnastics.

>

> A S/W engineer, when encountering
"frankly annoying gymnastics" a 2nd
time, creates an abstraction to hide the
"frankly annoying gymnastics", and so

never has to go through the "frankly
annoying gymnastics" ever again.

Which BTW was, at least partially, done
by AdaCore as the comment preceding
the string constant in the cited source
code reads:

"The content of the following string literal
has been generated running GNAT with
flag -gnatS, and then post-processed by
hand."

How, e.g. images are supposed to be
literally embedded in the code is beyond
me. So for my projects I wrote a few lines
Ada code generator that creates a nice
Ada package per image. No need to read
its content ever.

Even embedding text content is a non-
starter beyond a few toy cases, because of
formatting, markup, Unicode, fonts and
thousands other issues. Literal text is
pretty much a non-existent thing.
Typewriter times are gone.

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Sat, 13 Jun 2020 04:40:53 -0500

>> "Ada has neither heredocs nor
multiline strings. A

>> workaround is to use containers of
strings:"

> Please provide a use case showing how
these features are necessary/important.

I wanted some time ago to use Ada to
generate a Latex file on the fly.

You might ask, why not use a Latex
editor? Because this is different.

When writing a program to generate the
Latex file, then one can do some
computation in the program on the fly,
and emit the resulting string into the
Latex file as it is being composed.

This way each time the program is run, a
new Latex file is generated, with possible
new content each time.

This can be much faster/better than
having to edit a static Latex file in the
Latex editor and update the document
manually each time new results are
obtained for example, by manually
copying some computation result from
another program into the Latex document.

I do this all the time for example in
Mathematica.

Each time I update something in the data,
I run the program, which generates a
brand new Latex file, then compile this
Latex file to get the new PDF report.
Much much faster than editing a Latex
file each time something new changes.

But to do this, one has to be able to write,
inside the Ada editor, as if one is using a
plain Latex editor, and not worry about
having to close strings every 80 characters
or so and start a new line and having to

append each string one by one. It is much
better to write a large amount of text at
once, and having its structure preserved as
is.

This is what multi-line raw strings allow
one to do.

It is like writing a program to generate a
new program.

It is not possible to do this in Ada. Well, it
is, but it will be very very cumbersome.

Here are some very basic examples using
Ruby, Perl and C++

https://www.12000.org/my_notes/here_do
cument/index.htm

To see an example using Mathematica,
used to generate a web page, here is an
example

https://mathematica.stackexchange.com/q
uestions/152663/making-a-website-with-
mathematica

it is the second answer there.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Sun, 14 Jun 2020 07:29:33 +0200

> I wanted some time ago to use Ada to
generate a Latex file on the fly.

> [...]

I think it is a bad idea to have the template
file in the code. Every time you change a
coma in your text, you'll need to
recompile your program.

A much better solution is to use AWS
template parser. You keep the template
separate from your program, and you can
parameterize the content at will. By
changing the template, you can even
move from Latex to whatever-is-in-
fashion-today without changing your
program.

Mathematics Libraries,
Big_Numbers support in
Ada 202x

[Although it does not seem to include the
functions requested in this topic, the
Mathpaqs library by Gautier de
Montmollin is a referent in Ada.
https://mathpaqs.sourceforge.io/ --arm]

From: reinert <reinkor@gmail.com>
Subject: Any good package for

mathematical function in Ada?
Date: Sun, 31 May 2020 03:46:46 -0700
Newsgroups: comp.lang.ada

Hello,

I would like to use for example the Bessel
function from Ada. I need to program it
from scratch?

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Sun, 31 May 2020 13:26:38 +0200

> I would like to use for example the
Bessel function from Ada.

https://mathematica.stackexchange.com/questions/152663/making-a-website-with-mathematica
https://mathematica.stackexchange.com/questions/152663/making-a-website-with-mathematica
https://mathematica.stackexchange.com/questions/152663/making-a-website-with-mathematica

84 Ada Pract ice

Volume 41, Number 2, June 2020 Ada User Journal

Do you mean something concrete? I don't
remember how many dozens of Bessel
functions and integrals exist. Do you need
all of them?

> I need to program it from scratch?

That depends on the approximation
method, of which there are lots.
Something universal, well, if you have
coefficients of Chebyshev series e.g. from

https://www.amazon.com/
Special-Functions-Their-
Approximations/dp/0124110371

I have an Ada implementation for:

http://www.dmitry-kazakov.de/ada/
components.htm#15.2

> Any hint?

If you need something concrete and
frequently used, you certainly could find a
library and use it. Ada bindings to a
mathematical library is a matter of
minutes to do.

From: Jerry <list_email@icloud.com>
Date: Sun, 31 May 2020 16:25:31 -0700

> I would like to use for example the
bessel function from Ada. I need to
program it from scratch?

You have hit on what, for me, is a PITA
for Ada, generally speaking, and that is a
lack of broad numerical functions.

You can link to the GNU Scientific
Library (GSL) or the Octave binary
library (I have also once written a very
simple special-case Octave code generator
to run interpreter code since some
functionality is not available as compiled
code). You might also enjoy ALGLIB,
IMSL, NAG, and NetLib depending on
the licenses. You might be able to link to
the Python libraries scipy and numpy if,
as I suppose, they are written in C.
Consult this list if you like:

https://en.wikipedia.org/wiki/
List_of_numerical_libraries

BTW if you have access to Numerical
Recipes it can be a lifesaver sometimes. I
have an early book with Pascal code in an
appendix.

If the binary you are linking to is in C or
Fortran your job as an Ada programmer
isn't too bad but if you have never done it,
it will take you a while to figure it out.
Just remember that Ada is built to do this.
[...]

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Jun 2020 12:19:14 +0200

> Anybody having a simple (complete -
runnable) code example using GSL
from Ada?

Assuming Windows.

Install MSYS2 if you did not already. [64-
bit, GNAT GPL is not available for 32-bit
anymore.]

Install GSL mingw-w64-x86_64-gsl
under MSYS.

Now, assuming that MSYS2 is under
C:\MSYS64\MinGW, here you go:

---gsl.gpr--------------

project GSL is

 for Main use ("test.adb");

 package Linker is

 for Default_Switches ("ada")

 use ("-L/c/msys64/mingw/lib", "-lgsl");

 end Linker;

end GSL;

---gsl.ads-------------

with Interfaces.C; use Interfaces.C;

package GSL is

function Bessel_J0 (X : double)

return double;

private

 pragma Import (C, Bessel_J0,

 "gsl_sf_bessel_J0");

end GSL;

---test.adb------------>

with Ada.Text_IO; use Ada.Text_IO;

with GSL; use GSL;

with Interfaces.C; use Interfaces.C;

procedure Test is

begin

 Put_Line ("J0(1)=" & double'Image

(Bessel_J0 (1.0)));

end Test;

The test produces:

J0(1)= 7.65197686557967E-01

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Mon, 1 Jun 2020 05:48:54 -0500

> The test produces:

>

> J0(1)= 7.65197686557967E-01

That is good. In Mathematica

N[BesselJ[0, 1], 100]

0.76519768655796655144971752610266
3220909274289755325241861547549119
2789122152724401671806000989156340

[...]

Want 1,000 digits? 2,000 digits? all can
be done.

I think these systems both link to GMP
"GNU Multiple Precision Arithmetic
Library" for this. "There are no practical
limits to the precision "
https://en.wikipedia.org/wiki/GNU_Multi
ple_Precision_Arithmetic_Library

https://www.wolfram.com/legal/
third-party-licenses/gmp.html

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Mon, 1 Jun 2020 13:34:59 +0200

>

> Want 1,000 digits? 2,000 digits? all can
be done.

[...]

As for GMP specifically, I think that
arbitrary precision numeric types must be
an integral part of Ada. Unfortunately,
this would introduce the same mess
Unbounded_String did. So, for now, I
would not push for them until the
language type system matures to
accommodate them smoothly.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 5 Jun 2020 17:49:45 -0500

> As for GMP specifically, I think that
arbitrary precision numeric types must
be an integral part of Ada.
Unfortunately, this would introduce the
same mess Unbounded_String did. So,
for now, I would not push for them
until the language type system matures
to accommodate them smoothly.

You're a little late for that. See
Big_Integer:

http://www.ada-auth.org/standards/2xrm/
html/RM-A-5-6.html

and Big_Real:

http://www.ada-auth.org/standards/2xrm/
html/RM-A-5-7.html

Since Ada 202x has user-defined literals
and user-defined Image, this is almost as
good as a built-in number. The only
downside would be using them in
generics (like GEF), but most of those
implementations assume a maximum
precision that's not true for these so they'd
need rewriting anyway.

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Sat, 6 Jun 2020 06:58:51 -0700

[...]

GNAT CE 2020 has them (albeit not in
the latest RM form). They behave much
like numbers.

pragma Warnings (Off);

with

Ada.Numerics.Big_Numbers.Big_Integers,

Ada.Numerics.Big_Numbers.Big_Reals;

use

Ada.Numerics.Big_Numbers.Big_Integers,

Ada.Numerics.Big_Numbers.Big_Reals;

pragma Warnings (On);

with Ada.Text_IO;

use Ada.Text_IO;

procedure Main is

 I: Big_Integer := From_String (" 42 ");

 J: Big_Integer := 42;

Ada Pract ice 85

Ada User Journal Volume 41, Number 2, June 2020

 R: Big_Real := From_String("10.0")**100

 - 1.0;

 S: Big_Real := 10.0**100 - 1/1;

 D: Big_Real := 1 / 3;

begin

 Put_Line (Boolean'(I=J)'Image);

 Put_Line (to_String (R));

 Put_Line (Boolean'Image(R=S));

 Put_Line (to_String (Numerator (S)) &

 to_String (Denominator (S)));

 Put_Line (to_String (D, Aft => 110));

 Put_Line (to_String (Numerator (D)) &

 to_String (Denominator (D)));

end Main;

Deprecation of Xref
Information

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: GNAT gcc flag for generating xref
info?

Date: Wed, 3 Jun 2020 16:56:08 -0700
Newsgroups: comp.lang.ada

There used to be a flag -fdumpxref for the
GNAT gcc C compiler that output .gli
files, which gnatcoll.xref parsed just as it
does .ali files for Ada code.

But that is apparently gone;

gcc.exe: error: unrecognized command
line option '-fdumpxref'

gnat/.../cc1.exe --help shows a flag -fxref,
but that is also gone:

gcc.exe: warning: switch '-fxref' is no
longer supported

So how do I use gnatcoll.xref with C
code?

From: Simon Wright
<simon@pushface.org>

Date: Thu, 04 Jun 2020 17:43:59 +0100

You would have thought, given the
maturity of GCC (:-)) that the
ChangeLogs would contain some
references to these switches. The only one
I can see is that references to -fdump-xref
in the Ada documentation were removed
(because the switch was deprecated) in
December 2017.

The current GNAT Studio documentation
says that the gnatinspect cross-reference
database is deprecated.

So I guess they're now using libadalang
(and a putative libclang???) but since
GNAT Studio isn't provided in the Mac
CE 2020 pack and the 2019 version works
fine on the rare occasions I need it I can't
comment further.

From: Simon Wright
<simon@pushface.org>

Date: Thu, 04 Jun 2020 21:15:50 +0100

> a putative libclang

In the Github sources!
https://github.com/AdaCore/gps/tree/
master/libclang

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 5 Jun 2020 03:47:12 -0700

> So I guess they're now using libadalang
(and a putative libclang???)

There is https://github.com/
cquery-project/cquery; I'll try that with
eglot [a client for Language Server
Protocol servers].

Putting Data in the .data
Section

From: "Luke A. Guest"
<laguest@archeia.com>

Subject: How can I get this data into the
.data section of the binary?

Date: Tue, 16 Jun 2020 12:31:26 +0100
Newsgroups: comp.lang.ada

I'm trying to get some static data tables
into the data section rather than be
elaborated at runtime. I can see no reason
why this particular set of types, records
and aggregates cannot go into the data
section.

I've searched for use of pragma
Static_Elaboration_Desired, but there is
very little information.

[Huge source code section removed. I
have inserted explanations to make the
discussion self-contained without
requiring the Ada examples. --arm]

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Tue, 16 Jun 2020 14:03:39 +0100

[After suggestions to try pragmas
Shared_Passive or Preelaborate. --arm]

So, I re-applied an old patch from onox
which adds in preelaborate everywhere
and it still doesn't work. The pragma is in
the package, the disassembly for the
package shows the various objects being
stored in .bss not .data and there is an
elaboration procedure which initialised
these objects in the .bss in the final
applications.

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Tue, 16 Jun 2020 14:44:02 +0100

>

> I understand your problem, but this is a
compiler issue, not a language issue.
There is no such thing as a "data
section" in a high level, machine
independent, definition of a
programming language...

According to 10.2.1 it should be possible:

 “is important that programs be able to
declare data structures that are link-time
initialized with aggregates, string_literals,
and concatenations thereof.” etc.

Even adding pragma
Preelaborable_Initialization (x) for each
of the types, doesn't do anything.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue, 16 Jun 2020 21:19:43 +0300

>

> I'm trying to get some static data tables
into the data section [...]

I haven't tried with your example, but is
GNAT specific pragma Linker_Section
acceptable?

https://docs.adacore.com/
gnat_rm-docs/html/gnat_rm/
gnat_rm/implementation_defined_pragma
s.html#pragma-linker-section

I use that for some AVR-Ada code when I
want to relocate some of the stuff to
progmem. [...]

From: "Luke A. Guest"
<laguest@archeia.com>

Date: Wed, 17 Jun 2020 13:37:05 +0100

>

> I haven't tried with your example, but is
GNAT specific pragma Linker_Section
acceptable?

I can't really see how it would be as it
would still require the compiler to
actually generate the correct value in .data
or .rodata space rather than a 0x0 which
gets filled in later by elaboration.

Interesting though.

I wrote the above before trying. Trying to
place it in ".rodata..." caused a compiler
error, placing it in .data worked, but there
is still elaboration code. Although
changing the section caused many more
references to the object for some reason.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Wed, 17 Jun 2020 21:55:04 -0500

> According to 10.2.1 it should be
possible:

>

> is important that programs be able to
eclare data structures that are link-
time initialized with aggregates,
string_literals, and concatenations
thereof. etc.

>

> Even adding pragma
Preelaborable_Initialization (x) for each
of the types, doesn't do anything.

The requirement in the Ada Standard is
that one should preelaborate data if the
containing package is preelaborated.
There's no requirement otherwise, and
since it is an annex C requirement, it is
not required of all Ada compilers. [...]

Anyway, I would expect a compiler to do
it if it is possible. But it very often isn't
possible for one reason or another [...].

86 Ada in Jest

Volume 41, Number 2, June 2020 Ada User Journal

The better question is why do you care?
One ought to be concerned about whether
performance is good enough for your
application, and it's highly unlikely that
the load time would have any impact on
that whatsoever. [...] (The situation can be
different on a bare machine, of course.)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 18 Jun 2020 12:55:47 +0300

>

> The better question is why do you care?
[...] (The situation can be different on a
bare machine, of course.)

[...] here are my reasons for needing them,
just for the record.

For background, both cases occurred in
bare-machine systems in which the entire
SW is stored in EEPROM and is then
entirely copied to RAM for execution,
including the code and read-only
(constant) data.

For my case of the large constant array,
we needed to save RAM space, and did
not want to spend RAM _both_ for the
elaboration code that initialized the array
(larger than the array itself) and for the
array. [...]

For my case of the constant version-
identifier string, the customer required the
executable SW image (in EEPROM) to
contain a version identifier at a fixed
address. This is a very common
requirement in this domain. Of course it
can be implemented in many ways
(directly in the linker command script, for
example), but I was pleased to be able to
do it in Ada with the Linker_Section
pragma.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Sat, 20 Jun 2020 22:55:37 -0500

>...

> For my case of the large constant array,
we needed to save RAM space, and did
not want to spend RAM _both_ for the
elaboration code that initialized the
array (larger than the array itself) and
for the array.

I suppose it would depend on the
declaration of the array, but I would not
expect that to be the case most of the
time. Typically, one can initialize most
Ada data types with a block-copy, which
would only be a handful of bytes on most
target machines. Of course, if you have
lots of controlled types and tasks, you'd
have issues, but those aren't preelaborable
anyway (some code would need to be
executed for them).

[...]

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sun, 21 Jun 2020 09:55:16 +0300

> I suppose it would depend on the
declaration of the array, but I would not
expect that to be the case most of the
time. [...]

I'm sure you are right, most of the time.

In our case, however, even if the compiler
would have done a block-copy, the
source of the block-copy would also
have been in RAM because the *whole*
SW image was copied at boot from
EEPROM to RAM (as is ESA practice).
So the RAM consumption of the array
would still be at least twice the array size.

A block copy from EEPROM to RAM
would have been ok, in principle, but in
our case the compiler/linker knew nothing
about the program's EEPROM residence.
That was Boot SW business.

And if the compiler could have created
the static source data for a block copy, it
could as well have placed the whole load-
time initialized array (a constant) in the
read-only-data segment, which was what
we wanted, and got in the end.

This was in the days when RAM in ESA
on-board computers was expensive static
RAM; nowadays it is usually dynamic
RAM, I believe, and typical RAM size
has gone up by one or two orders of
magnitude.

Ada on Apple's New
Processors, Licensing
Concerns

From: Jerry <list_email@icloud.com>
Subject: Ada on Apple's new procesors
Date: Mon, 22 Jun 2020 15:53:00 -0700
Newsgroups: comp.lang.ada

Apple is beginning its third nightmare
transition to a new processor family.
What does this mean for Ada on macOS?

Can we hope for a native compiler
anytime soon? We will have Rosetta 2
until we don't. (Original Rosetta lasted for
two OS generations and then it was taken
away.) I could tell you the story of
needing to run a small PowerPC program
to set up a slightly old Apple WiFi device
a couple years ago. Buy Parallels. Call
Apple and send $30 to get Snow Leopard
Server--that's 10.6. Virtualize Snow
Leopard Server on Parallels to run the
WiFi set-up program in Rosetta.)

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 23 Jun 2020 03:42:46 -0700

> Apple is beginning its third nightmare
transition to a new processor family.
What does this mean for Ada on
macOS?

>

> Can we hope for a native compiler
anytime soon?

I suppose a native toolchain will be based
on LLVM, thus it will allow to use GNAT
LLVM on new processors.

[A large discussion is omitted at this point
on the implications of GCC code
generation in regard to the Runtime
Library Exception (RLE) clause of
GPLv3. However, as later was pointed
out, GNAT LLVM does not rely on GCC.
Yet, the bitcode of LLVM might still
clash with the RLE and/or Apple Store
terms of use. The discussion is ongoing
and will be included as a whole in the
next News Digest. --arm]

Ada in Jest

[I believe this project to be firmly tongue
in cheek. But, who knows, and it sparks
looots of discussion, some of it valuable...
--arm]

Ada++

From: Jerry <list_email@icloud.com>
Subject: Ada++
Date: Thu, 28 May 2020 15:33:14 -0700
Newsgroups: comp.lang.ada

Ada++. YABL? Please discuss.

http://www.adapplang.com/

[Ada++ could be summarized as Ada with
curly braces. See the "Hello, World!"
example that follows, taken from the
website. --arm]

 use Ada.Wide_Text_IO;

 proc Main:

 {

 Put_Line ("Hello World");

 }

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Thu, 28 May 2020 21:09:48 -0500

> Ada++. YABL? Please discuss.

> http://www.adapplang.com/

I do not know if this is real or just a joke.

But I do not like Ada++. I actually prefer
the Pascal type constructs which Ada
uses, which is explicit "Begin" "End" and
"If" "Then" "Else", "LOOP", etc...

I do not like brackets {}. I find Pascal
constructs more algorithmic and makes
the code and the logic more clear.

btw, I do not think changing Ada syntax
to make it look like C and C++ is the
solution to making "Ada" become more
popular. If so, then they should change
Ada to make it use Python syntax in that
case :)

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Thu, 28 May 2020 20:45:46 -0700

> Ada++. YABL? Please discuss.

> http://www.adapplang.com/

Ada in Jest 87

Ada User Journal Volume 41, Number 2, June 2020

[...]

In mild support of their efforts, I would
suggest that the Ada++ team go digging
deep into old SIGADA and Tri-Ada
academic papers at dl.acm.org [...] The
article below is the biggest inventory of
alternate variants of Ada that were
discarded as proposal Green morphed into
mil-standard Ada post-Steelman. [...]
What a next-gen Ada would fix [...] Hint:
more radical semantic maturations [...]
greater amounts of orthogonality such as
constant members of records as required
in Steelman 3-3F [...] resurrection of the
old a.app Ada-interpreter-within-the-Ada-
compiler that was in DEC/Sun Ada
compilers [...] then drastically extending
a.app's capabilities for multistage
programming beyond OCaml-P4's.

https://dl.acm.org/doi/pdf/10.1145/
989791.989792

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Fri, 29 May 2020 08:41:32 -0700

> [...]

> https://dl.acm.org/doi/pdf/10.1145/
989791.989792

In addition to the prose summary linked
above, here is a much more fine-grained
list of when features of Green or Ada
were added or taken away. It is available
without cost until 30 June 2020. Ada++
could revisit a great multitude of these
decisions, some of which were from
design-by-committee HOLWG reviewers
not from Ichbiah's mastermind
vision/intent.

https://dl.acm.org/doi/pdf/10.1145/
24611.24614

From: cantanima.perry@gmail.com
Date: Thu, 28 May 2020 20:54:41 -0700

> Ada++. YABL? Please discuss.

> http://www.adapplang.com/

Didn't AdaCore have an April Fool's Joke
to this effect?

[A subthread on beginner shock starts
here. --arm]

From: Rick Newbie
<nuttin@nuttn.nowhere>

Date: Thu, 28 May 2020 19:57:34 -0700

> btw, I do not think changing Ada syntax
to make it look like C and C++ is the
solution to making "Ada" become more
popular. If so, then they should change
Ada to make it use Python syntax in
that case :)

As an Ada newbie I can tell you what is
the most off-turning thing about Ada:

1) The IDE does not measure up to Visual
Studio

2) The GDB debugger

3) The fact that you need lots of various
external libraries and you have to deal

with the Linux hell of library versions
and installation to accomplish basic
things like a graphical user interface.

The curly braces are definitely not a
problem

From: raph.amiard@gmail.com
Date: Fri, 29 May 2020 02:49:08 -0700

> > btw, I do not think changing Ada
syntax to make it look like C and C++

> > is the solution to making "Ada"
become more popular. If so, then

> > they should change Ada to make it
use Python syntax in that case :)

>

> As an Ada newbie I can tell you what is
the most offturning thing about

> Ada:

> 1) The IDE does not measure up to
Visual Studio

> 2) The GDB debugger

What might be of interest to you is using
VS Code for Ada programming. AdaCore
already provides an extension, and
VSCode's front-end on top of GDB is
pretty neat :)

> 3) The fact that you need lots of various
external libraries and you have to deal
with the Linux hell of library versions
and installation to accomplish basic
things like a graphical user interface.

The Ada library ecosystem is certainly
lacking. Hopefully Alire [a package
manager] will help with that situation in
the long run.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 29 May 2020 13:09:18 +0200

> The curly braces are definitely not a
problem

If you ever lost one in the middle, you
know that they ARE a problem

end if/end case /end proc-name /end
func.name /end package name /end loop
etc makes it much easier to see where
something ends

switch (a)

{

 case 1 :

 {

 if (B==C)

 {

 while (true)

 {

 doSometing1();

 done = doSometing2();

 if done break;

 }

 }

 }

}

compared to

case a is

 when 1 =>

 if B = C then

 loop

 Do_Someting1;

 Done := Do_Someting2;

 exit when Done;

 end loop;

 end if;

 when others => null;

end case;

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Fri, 29 May 2020 14:57:14 -0700

> If you ever lost one in the middle, you
know that they ARE a problem

> [...]

Well, to be fair, C and its progeny have
botched the original BCPL block-
statement bracketing hints.

https://dl.acm.org/doi/pdf/10.1145/
988131.988138

As depicted in the article above, the
BCPL feature applied to C would be the
following, including compile-time
enforcement to assure that the
programmer-chosen bra tags match the
programmer-chosen ket tags (where bra-
ket is slang for open bracket and close
bracket).

switch (a)

{sa

 case 1 :

 {c1

 if (B==C)

 {ifBC

 while (true)

 {wT

 doSometing1();

 done = doSometing2();

 if done break;

 }wT

 }ifBC

 }c1

}sa

As also mentioned in the above-linked
article, PL/I had an analogous label-based
mechanism for LBL: block-statement here
END LBL; which, btw, Green-Ada
partially borrowed due its limited amount
of competitiveness with Red-PL/I.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Sun, 31 May 2020 13:40:08 +0200

> Well, to be fair, C and its progeny have
botched the original BCPL block-
statement bracketing hints.

Meaning they do not have them?

Which is something I find a bad thing - or
if you turn it around - I find having it a
really good thing

I also noted some years ago that end
procedure-name/end function-name is not
mandatory in Ada. However GNAT has a
style option to warn if they are missing.
That is a good thing too. Other compilers
may have that - but I don't know.

88 Ada in Jest

Volume 41, Number 2, June 2020 Ada User Journal

I also find lone begin/end - as in Pascal -
just as hard to read. And difficult to find if
you happen to lose one - or pasting code
into another piece of code.

From: Rick Newbie
<nuttin@nuttn.nowhere>

Date: Fri, 29 May 2020 18:36:57 -0700

>> The curly braces are definitely not a
problem

OK I formulated it the wrong way. What I
meant was that having curly braces or not
was not the problem. I should have said
"Begin/End is not the problem"

From: ric.wai88@gmail.com
Date: Sat, 30 May 2020 08:25:54 -0700

Guys, this was an April Fools Day joke.

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Sat, 30 May 2020 13:56:45 -0700

> Guys, this was an April Fools Day joke.

… perhaps by the same Ada++ name
elsewhere, but this Ada++ seems to not be
that one at all.

In addition to Stéphane Rivière's April 3rd
(not April 1st, as one might expect for an
April Fool's joke) dates of GitHub
activity, the private-to-GoDaddy WHOIS
information for adapplang dot com shows
that the domain was registered on 21
January 2020 (not 31 March or 01 April,
as one might expect for an April Fool's
joke).

https://www.whois.com/whois/
adapplang.com

Conversely, Ada++'s roadmap below
seems blandly modest & mundane,
referring only to work in-queue
elsewhere: so far nothing that AdaCore
itself wouldn't eventually do for GNAT.
Therefore as an April Fool's joke, it isn't
outlandish at all. Hence, where is the
April-Fools humor in that?

http://www.AdappLang.com/docs.html

From: ric.wai88@gmail.com
Date: Sat, 30 May 2020 14:58:34 -0700

The original author posted it to Ada
Comment on April 1st. Yes it is a fun

side-project for him I'm sure, but it is not
a serious thing (thankfully).

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 5 Jun 2020 17:37:43 -0500

> The original author posted it to Ada
Comment on April 1st. Yes it is a fun
side-project for him I'm sure, but it is
not a serious thing (thankfully).

Which unfortunately got delayed several
days because of me not being in the office
to approve it, thus clobbering the joke.

As far as starting it early, I wrote AI12-
0841-1 right after the previous year's
April Fools day. And I spent time on it
and the associated "news" post for a week
before posting it. (And I failed to get
Wordpress to post it on April 1st. Perhaps
there is a pattern here. ;-) Doing these
things right takes a decent investment of
time.

