

Ada User Journal Volume 41, Number 1, March 2020

ADA
USER
JOURNAL

Volume 41

Number 1

March 2020

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 21

Forthcoming Events 29

Anniversary Articles

 J. Barnes
“From Byron to the Ada Language” 31

 C. Brandon
“CubeSat, the Experience” 36

 B. M. Brosgol
“How To Succeed in the Software Business While Giving Away the Source Code:
The AdaCore Experience” 43

Special Contribution

 J. Cousins
“ARG Work in Progress IV” 47

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and
 Cyber-Physical Systems Engineering" of Ada-Europe 2019

 L. Nogueira, A. Barros, C. Zubia, D. Faura, D. Gracia Pérez, L. M. Pinho
“Non-functional Requirements in the ELASTIC Architecture” 51

Puzzle

 J. Barnes
“Forty Years On and Going Strong” 57

Ada-Europe Associate Members (National Ada Organizations) 58

Ada-Europe Sponsors Inside Back Cover

2

Volume 41, Number 1, March 2020 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and December.
Copy date is the last day of the month of
publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics, such
as reliable software technologies, are
welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the field
of software engineering.

Further details on our approach to these
are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will be
relayed to the authors at the discretion
of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups to
find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be of
interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it a

wider audience. This includes papers
published in North America that are not
easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These may
represent the views either of individuals
or of organisations. Such articles can be
of any length – inclusion is at the
discretion of the Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report on
events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal is
at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to print
reviews submitted from elsewhere at
the discretion of the Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be rapid.
Currently, accepted papers submitted
electronically are typically published 3-
6 months after submission. Items of
topical interest will normally appear in
the next edition. There is no limitation
on the length of papers, though a paper
longer than 10,000 words would be
regarded as exceptional.

 3

Ada User Journal Volume 41, Number 1, March 2020

Editorial

This is a very special and peculiar issue of the AUJ, for several reasons.

The first issue of the Ada User Journal (in fact, of the Ada UK News, which preceded the AUJ) was published in March 1980,
which means that in March 2020 we celebrated its 40th anniversary (for the most curious about historical facts, I recommend
taking a look at the “History” page of the AUJ on https://www.ada-europe.org/auj/history/). Therefore, this is a special
“Anniversary Issue”, featuring specific contents to adequately celebrate the occasion.

While we were commemorating the AUJ anniversary, the world was struck by the COVID-19 pandemic. Many of us could
keep working remotely, but many events and activities were cancelled or postponed, and many more were affected in various
ways. In particular, the 25th Ada-Europe International Conference on Reliable Software Technologies (AEiC 2020) had to be
cancelled and postponed to June 2021, although with different repercussions on the conference elements, as detailed in the
Notice of Cancellation on page 29. The preparation of this issue was not an exception – we missed deadlines, postponed tasks,
and eventually were unable to complete its preparation in due time. The large delay, certainly a rare event, makes it a peculiar
issue, even if not for good reasons.

Finally, and still a direct consequence of this extraordinary situation that we are now living, we were (and still are) unable to
print and post the AUJ to our subscribers. We thus decided to make it available in a digital form, to avoid any further delays,
with a promise that the printed copy will follow later, whenever businesses reopen, and we can resume the normal procedures.
Being fully and publicly available on the AUJ online archive without any embargo period, also makes this AUJ issue very
peculiar.

In this special Anniversary issue, we include three invited articles with which we intend to somehow celebrate the relevance of
the Ada language and important events that took place in the last decade. We start with an article by John Barnes, entitled
“From Byron to the Ada Language”, which is a polished version of an article that appeared in the AUJ December 2015 issue,
to celebrate the 200th birthday of Ada Lovelace. We then include an article by Carl Brandon that describes the fundamental
role of the Ada language in building an extremely reliable system – a CubeSat that worked. The third invited article is authored
by Benjamin Brosgol, reporting the AdaCore experience and lessons learned in the development of open source software that
is commercially viable.

Then, the issue includes the fourth article on the series of reports on the work of the Ada Rapporteur Group (ARG), written by
Jeff Cousins, member and former chair of the ARG, which provides further updates on the proposed changes for the next edition
of Ada.

After that, we conclude the publication of the Proceedings of the Workshop on Challenges and New Approaches for Dependable
and Cyber-Physical Systems Engineering (DeCPS 2019), with a paper co-authored by researchers from CISTER/ISEP
(Portugal), Ikerlan Technology Research Centre (Spain) and Thales (France). The paper is about the ELASTIC software
architecture for processing data from many sources while satisfying non-functional requirements related to real-time, security
or energy-efficiency, highlighting the constraints imposed to the architecture that are necessary to fulfil those requirements.

Finally, we close this anniversary issue with some thoughts by John Barnes on memorable Ada-Europe conferences over the
past 40 years, along with a puzzle that would have probably been given at this years’ conference. We hope the readers will
enjoy as they would have enjoyed during the conference.

Last but not the least, the issue includes, as usual, the Quarterly News Digest and Calendar sections, prepared respectively by
Alejandro R. Mosteo and Dirk Craeynest, their editors.

 Antonio Casimiro
Lisboa

March 2020
 Email: AUJ_Editor@Ada-Europe.org

4

Volume 41, Number 1, March 2020 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Events 5
Ada-related Resources 10
Ada-related Tools 11
Ada and Operating Systems 15
Ada Practice 15

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes.
 —arm]

Ada-related Events

25th Ada-Europe Int'l Conf.
on Reliable Software
Technologies

[This year’s edition has been cancelled
(see cancellation post below). This
extended call is reproduced here for
reference. —arm]

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: Ada-Europe 2020 Conference -
EXTENDED 14 January deadline

Date: Thu, 19 Dec 2019 18:29:46 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

The Ada-Europe 2020 Conference
organizers decided to provide more time
for authors to prepare their contributions.
The deadline for most submissions is
extended to Tuesday 14 January 2020.
3+ weeks remain!

Call for Contributions

UPDATED Call for Papers -
EXTENDED DEADLINE

25th Ada-Europe International
Conference on

Reliable Software Technologies
(AEiC 2020)

8-12 June 2020, Santander, Spain

www.ada-europe.org/conference2020

Organized by University of Cantabria and
Ada-Europe

in cooperation with ACM SIGAda
(pending)

and the Ada Resource Association (ARA)

*** Extended DEADLINE
14 JANUARY 2020 AoE ***

#AdaEurope #AEiC2020
#AdaProgramming

General Information

The 25th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-
Europe 2020) will take place in
Santander, Spain, in the week of 8-12
June. The conference schedule includes a
technical program and vendor exhibition,
and parallel tutorials and workshops.

The 2020 edition of the conference
continues the major revamp in the
registration fees introduced in 2019,
redesigned to extend participation from
industry and academia, and to reward
contributors, especially but not solely,
students and post-doc researchers.

Schedule

14 January 2020: Submission of journal-
track papers, industrial presentation
outlines, and tutorial and workshop
proposals (EXTENDED)

20 March 2020: Notification of
acceptance for journal-track papers,
industrial presentations, tutorials and
workshops

31 March 2020: Submission of Work-in-
Progress (WiP) papers

30 April 2020: Notification of acceptance
for WiP papers

Topics

The conference is a leading international
forum for providers, practitioners and
researchers in reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
challenging variety of application
domains. The program will allow ample
time for keynotes, Q&A sessions and
discussions, and social events.
Participants include practitioners and
researchers from industry, academia and
government organizations active in the
promotion and development of reliable
software technologies.

The topics of interest for the conference
include but are not limited to:

- Design and Implementation of Real-
Time and Embedded Systems: Real-
Time Scheduling, Design Methods and
Techniques, Architecture Modelling,
HW/SW Co-Design, Reliability and
Performance;

- Design and Implementation of Mixed-
Criticality Systems: Scheduling
Methods, Mixed-Criticality
Architectures, Design Methods,
Analysis Methods;

- Theory and Practice of High-Integrity
Systems: Medium to Large-Scale
Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages
Vulnerabilities;

- Software Architectures for Reliable
Systems: Design Patterns, Frameworks,
Architecture-Centered Development,
Component-based Design and
Development;

- Methods and Techniques for Quality
Software Development and
Maintenance: Requirements
Engineering, Model-driven Architecture
and Engineering, Formal Methods, Re-
engineering and Reverse Engineering,
Reuse, Software Management Issues,
Compilers, Libraries, Support Tools;

- Ada Language and Technologies:
Compilation Issues, Runtimes,
Ravenscar, Profiles, Distributed
Systems, SPARK;

- Mainstream and Emerging Applications
with Reliability Requirements:
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation,
Cloud Environments, Smart Energy
Systems, Serious Games, etc;

- Achieving and Assuring Safety in
Machine Learning Systems;

- Experience Reports in Reliable System
Development: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics;

- Experiences with Ada: Reviews of the
Ada 2012 language features,
implementation and use issues,
positioning in the market and in the
software engineering curriculum,
lessons learned on Ada Education and
Training Activities with bearing on any
of the conference topics.

Ada-related Events 5

Ada User Journal Volume 41, Number 1, March 2020

Call for Journal-Track Papers

The journal-track papers submitted to the
conference are full-length papers that
must describe mature research work on
the conference topics. They must be
original and shall undergo anonymous
peer review.

Accepted journal-track papers will get a
presentation slot within a technical
session of the conference and they will be
published in an open-access special issue
of the Journal of Systems Architecture
with no additional costs to authors.

The corresponding authors shall submit
their work by 14 January 2020 via the
Special Issue web page:
https://www.journals.elsevier.com/journal
-of-systems-architecture/call-for-
papers/advances-in-reliable-software-
technologies

Submitted papers must follow the
guidelines provided in the "Guide-for-
Authors" of the JSA
(https://www.elsevier.com/journals/journa
l-of-systems-architecture/1383-
7621/guide-for-authors). In particular,
JSA does not impose any restriction on
the format or extension of the
submissions.

Call for WiP-Track Papers

The Work-in-Progress papers (WiP-track)
are short (4-page) papers describing
evolving and early-stage ideas or new
research directions. They must be original
and shall undergo anonymous peer
review. The corresponding authors shall
submit their work by 31 March 2020, via
https://easychair.org/
conferences/?conf=aeic2020, strictly in
PDF and following the Ada User Journal
style (http://www.ada-europe.org/auj/).

Authors of accepted WiP-track papers
will get a presentation slot within a
regular technical session of the
conference and will also be requested to
present a poster. The papers will be
published in the Ada User Journal as part
of the proceedings of the Conference.

The conference is listed in the principal
citation databases, including DBLP,
Scopus, Web of Science, and Google
Scholar. The Ada User Journal is indexed
by Scopus and by EBSCOhost in the
Academic Search Ultimate database.

Call for Industrial Presentations

The conference seeks industrial
presentations that deliver insightful
information value but may not sustain the
strictness of the review process required
for regular papers. The authors of
industrial presentations shall submit their
proposals, in the form of a short (one or
two pages) abstract, by 14 January 2020,
via https://easychair.org/conferences/
?conf=aeic2020, strictly in PDF and
following the Ada User Journal style
(http://www.ada-europe.org/auj/).

The Industrial Committee will review the
submissions anonymously and make
recommendations for acceptance. The
abstract of the accepted contributions will
be included in the conference booklet, and
authors will get a presentation slot within
a regular technical session of the
conference.

These authors will also be invited to
expand their contributions into articles for
publication in the Ada User Journal, as
part of the proceedings of the Industrial
Program of the Conference.

Awards

Ada-Europe will offer an honorary award
for the best presentation.

Call for Educational Tutorials

The conference is seeking tutorials in the
form of educational seminars including
hands-on or practical demonstrations.
Proposed tutorials can be from any part of
the reliable software domain, they may be
purely academic or from an industrial
base making use of tools used in current
software development environments. We
are also interested in contemporary
software topics, such as IoT and artificial
intelligence and their application to
reliability and safety.

Tutorial proposals shall include a title, an
abstract, a description of the topic, an
outline of the presentation, the proposed
duration (half day or full day), and the
intended level of the tutorial
(introductory, intermediate, or advanced).
All proposals should be submitted by e-
mail to the Educational Tutorial Chair.

The authors of accepted full-day tutorials
will receive a complimentary conference
registration. For half-day tutorials, this
benefit is halved. The Ada User Journal
will offer space for the publication of
summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference days. Workshop
proposals should be submitted by e-mail
to the Workshop Chair. The workshop
organizer shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the
core days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.

Special Registration Fees

Authors of accepted contributions and all
students will enjoy reduced registration
fees.

Venue

Santander is a nice tourist city in the north
of Spain, with a well-connected airport
and at a 100 km drive from Bilbao airport.

The conference venue and hotel is the
Bahia Hotel in the city center and beside
Santander bay.

Organizing Committee

* Conference Chair

Michael González Harbour, Universidad
de Cantabria, Spain

mgh at unican.es

* Program Chair

Mario Aldea Rivas, Universidad de
Cantabria, Spain

aldeam at unican.es

* Work-in-Progress Chair

Kristoffer Nyborg Gregertsen, SINTEF
Digital, Norway

kristoffer.gregertsen at sintef.no

* Tutorial & Workshop Chair

Jorge Garrido Balaguer, Universidad
Politécnica de Madrid, Spain

jorge.garrido at upm.es

* Industrial Chair

Patricia Balbastre Betoret, Universitat
Politècnica de València, Spain

patricia at ai2.upv.es

* Exhibition & Sponsorship Chair

Ahlan Marriott, White Elephant GmbH,
Switzerland

software at white-elephant.ch

* Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium

dirk.craeynest at cs.kuleuven.be

*** Program Committee

Mario Aldea Rivas, Univ. de Cantabria,
ES

Iain Bate, University of York, UK

Johann Blieberger, Vienna Univ. of
Technology, AT

Bernd Burgstaller, Yonsei Univ., KR

Daniela Cancila, CEA LIST, FR

António Casimiro, Univ. Lisboa, PT

Juan A. de la Puente, Univ. Pol. de
Madrid, ES

Barbara Gallina, Mälardalen Univ., SE

Marisol García Valls, Univ. Pol. de
València, ES

J. Javier Gutiérrez, Univ. de Cantabria,
ES

Jérôme Hugues, CMU/SEI (USA)

Hubert Keller, Karlsruhe Institute of
Technology, DE

Patricia López Martínez, Univ. de
Cantabria, ES

6 Ada-related Events

Volume 41, Number 1, March 2020 Ada User Journal

Kristoffer Nyborg Gregertsen, SINTEF
Digital, NO

Laurent Pautet, Telecom ParisTech, FR

Luís Miguel Pinho, CISTER/ISEP, PT

Erhard Plödereder, Univ. Stuttgart, DE

Jorge Real, Univ. Pol. de València, ES

José Ruiz, AdaCore, FR

Sergio Sáez, Univ. Pol. de València, ES

Frank Singhoff, Univ. de Bretagne
Occidentale, FR

Tucker Taft, AdaCore, USA

Elena Troubitsyna, Åbo Akademi Uni., FI

Santiago Urueña, GMV, ES

Tullio Vardanega, Univ. of Padua, IT

Eugenio Villar Bonet, Univ. de Cantabria,
ES

Industrial Committee

Ian Broster, Rapita Systems, UK

Javier Coronel, FentISS, ES

Dirk Craeynest, Ada-Belgium & KU
Leuven, BE

Thomas Gruber, Austrian Institute of
Technology (AIT), AT

Ismael Lafoz, Airbus Defence and Space,
ES

Ahlan Marriott, White Elephant, CH

Maurizio Martignano, Spazio IT, IT

Laurent Rioux, Thales R&T, FR

Marian Roselló, Terma, NL

Jean-Pierre Rosen, Adalog, FR

Emilio Salazar, GMV, ES

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 25th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), and Warsaw,
Poland ('19).

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement. Please
circulate widely.

Dirk.Craeynest@cs.kuleuven.be, Ada-
Europe 2020 Publicity Chair

*** 25th Ada-Europe Int'l. Conf. on
Reliable Software Technologies ***

June 8-12, 2020 * Santander, Spain *
www.ada-europe.org/conference2020

Ada-Europe Int'l
Conference 2020 (AEiC
2020) Cancelled!

From: dirk@orka.cs.kuleuven.be. (Dirk
Craeynest)

Subject: Ada-Europe Int'l Conference 2020
(AEiC 2020) cancelled!

Date: Sat, 21 Mar 2020 20:15:38 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[Notice of Cancellation is included in the
Forthcoming Events Section —arm]

10th Ada Developer Room at
FOSDEM 2020 - Summary
of Talks

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: FOSDEM 2020 - Ada Developer
Room - Sat 1 Feb 2020 - Brussels

Date: Sun, 22 Dec 2019 21:53:32 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Ada-Belgium is pleased to announce its

10th Ada Developer Room at
FOSDEM 2020

Ada at the Free and Open source Software
Developers' European Meeting
on Saturday 1 February 2020

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/

200201-fosdem.html

fosdem.org/2020/schedule/track/ada

--
General Information

FOSDEM, the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
weekend event organized early each year
in Brussels, Belgium. It is highly
developer-oriented and brings together
8000+ participants from all over the
world.

The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote

the development and the benefits of open
source solutions.

The 2020 edition takes place on Saturday
1 and Sunday 2 February. It is free to
attend and no registration is necessary.

In this edition, Ada-Belgium organizes
once more a series of presentations related
to the Ada Programming Language and
Free or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2020 is held on the first day of the event,
Saturday 1 February 2020.

This year FOSDEM has a total of 13 Ada-
related presentations by 12 authors from 8
countries! A mini-poster about the Ada
DevRoom [1], as well as a one-page Call
for Participation for the Ada DevRoom
[2] is available; they can be used to help
announce the event, and to give an idea
about its scope.

[1] www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem-cfpart-poster.jpg

[2] www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem-cfpart-a4.pdf

Ada Programming Language and
Technology

Ada is a general-purpose programming
language originally designed for safety-
and mission-critical software engineering.
It is used extensively in air traffic control,
rail transportation, aerospace, nuclear,
financial services, medical devices, etc. It
is also perfectly suited for open source
development.

Awareness of safety and security issues in
software systems is ever increasing.
Multi-core platforms are now abundant.
These are some of the reasons that the
Ada programming language and
technology attracts more and more
attention, among others due to Ada's
support for programming by contract and
for multi-core targets. The latest Ada
language definition was updated early
2016. Work on new features is ongoing,
such as improved support for fine-grained
parallelism, and will result in a new Ada
standard scheduled for 2021. Ada-related
technology such as SPARK provides a
solution for the safety and security aspects
stated above. More and more tools are
available, many are open source,
including for small and recent platforms.
Interest in Ada keeps further increasing,
also in the open source community, and
many exciting projects have been started.

The Ada DevRoom aims to present the
facilities offered by the Ada language
(such as for object-oriented, multicore, or
embedded programming) as well as some
of the many exciting tools and projects
using Ada. FOSDEM is an ideal fit for an
Ada Developer Room. On the one hand, it
gives the general open source community
an opportunity to see what is happening in
the Ada community and how Ada

Ada-related Events 7

Ada User Journal Volume 41, Number 1, March 2020

technology can help to produce reliable
and efficient open source software. On the
other hand, it gives open source Ada
projects an opportunity to present
themselves, get feedback and ideas, and
attract participants to their project and
collaboration between projects.

Video/Volunteers

This year as well, audio/video equipment
and network facilities are provided by the
FOSDEM organizers, to enable recording
and live streaming all DevRoom
presentations. Volunteers "man" that
equipment during the day. After
postprocessing the recordings, links to
them are made available via the "More
information" entry for each presentation.

Additional volunteers to help with various
logistic issues during the day are needed
as well, such as monitoring room
overflow and refusing entry when the
room is too full, defragmenting the room
in between presentations, helping
speakers with microphone adjustments,
monitoring the timeslots and warning
speakers when they have to start or when
they risk running out of time, as well as
various practical issues that need to be
handled ASAP when they occur.

If you'd like to help, please get in touch
(see below).

Ada Developer Room Presentations
(room: AW1.125, 76 seats)

The presentations in the Ada DevRoom
start after the opening FOSDEM
keynotes. The program runs from 10:30 to
19:00.

10:00-10:30 - Arrival & Informal
Discussions

Feel free to arrive early, to start the day
with some informal discussions while the
set-up of the DevRoom is finished.

10:30-10:35 - Welcome to the Ada
DevRoom by Dirk Craeynest - Ada-
Belgium

Welcome to the Ada Developer Room at
FOSDEM 2020, which is organized by
Ada-Belgium in cooperation with Ada-
Europe. Ada-Belgium and Ada-Europe
are non-profit organizations set up to
promote the use of the Ada programming
language and related technology, and to
disseminate knowledge and experience
into academia, research and industry in
Belgium and Europe, resp. Ada-Europe
has member-organizations, such as Ada-
Belgium, in various countries, and direct
members in many other countries.

10:35-11:20 - An Introduction to Ada for
Beginning and Experienced Programmers
by Jean-Pierre Rosen - Adalog, France

An overview of the main features of the
Ada language, with special emphasis on
those features that make it especially
attractive for free software development.
Ada is a feature-rich language, but what
really makes Ada stand-out is that the

features are nicely integrated towards
serving the goals of software engineering.
If you prefer to spend your time on
designing elegant solutions rather than on
low-level debugging, if you think that
software should not fail, if you like to
build programs from readily available
components that you can trust, you should
really consider Ada!

11:30-11:50 - HAC: the Compiler which
will Never Become Big by Gautier de
Montmollin - Ada-Switzerland

In the Ada world, we are surrounded by
impressive and professional tools that can
handle large and complex projects. Did
you ever dream of a tiny, incomplete but
compatible system to play with? Are you
too impatient, for developing small pieces
of code, for long compile-bind-link-run
cycles? Are you a beginner intimidated by
project files and sophisticated tools? Then
HAC (the HAC Ada Compiler, or the
Hello-world Ada Compiler) is for you.
HAC is a revival of the SmallAda project,
which supported the "Pascal subset" plus
tasking.

12:00-12:50 - Tracking Performance of a
Big Application from Dev to Ops by
Philippe Waroquiers - Eurocontrol,
Belgium

This talk describes how performance
aspects of a big Air Traffic Flow
Management mission critical application
are tracked from development to
operations. Tracking performance is
needed when new functionality is added,
to balance the additional services versus
the resource increase needed. Measuring
and tracking performance is also critical
to ensure a new release can cope with the
current or expected load. We will discuss
various aspects such as which tools and
techniques are used for performance
tracking and measurements, what are the
traps and pitfalls encountered for these
activities. The application in question is
using Ada, but most of the items
discussed are not particularly Ada related.

13:00-13:20 - Cappulada: What we've
Learned by Johannes Kliemann -
Componolit, Germany

Last year I presented Cappulada, a C++
binding generator for Ada that intended to
overcome the shortcomings of existing
solutions and to provide usable bindings
even for complex C++ code. This year I
want to show our conclusions on why
automatic bindings between C++ and Ada
are hard (if not impossible) and where
existing solutions (including our own)
fail.

13:30-13:50 - Programming ROS2 Robots
with RCLAda by Alejandro R. Mosteo -
Centro Universitario de la Defensa, Spain

The Robot Operating System (ROS) is
one of the chief frameworks for service
robotics research and development. The
next iteration of this framework, ROS2,
aims to improve critical shortcomings of

its predecessor like deterministic memory
allocation and real-time characteristics.
RCLAda is a binding to the ROS2
framework that enables the programming
of ROS2 nodes in pure Ada with seamless
integration into the ROS2 workflow.

14:00-14:50 - Live Demo of Ada's
Distribution Features by Jean-Pierre
Rosen - Adalog, France

Ada incorporates in its standard a model
for distributed execution. It is an abstract
model that does not depend on a
particular kind of network or any other
communication mean, and that preserves
full typing control across partitions. This
presentation briefly exposes the principles
of Ada's distribution model, then shows
the possibilities with life demos across
different machines and operating systems.

15:00-15:20 - Writing Shared Memory
Parallel Programs in Ada by Jan
Verschelde - University of Illinois at
Chicago, USA

Multitasked Newton's Method for Power
Series Tasks in Ada are effective to speed
up computations on multicore processors.
In writing parallel programs we determine
the granularity of the parallelism with
respect to the memory management. We
have to decide on the size of each job, the
mapping of the jobs to the tasks, and on
the location of the input and output data
for each job. A multitasked Newton's
method will show the effectiveness of
Ada to speed up the computation of
power series. This application belongs to
the free and open source package
PHCpack, a package to solve polynomial
systems by polynomial homotopy
continuation.

15:30-15:50 - Spunky: a Genode Kernel
in Ada/SPARK by Martin Stein - Genode
Labs, Germany

The Genode OS framework is an open-
source tool kit for building highly secure
component-based operating systems
scaling from embedded devices to
dynamic desktop systems. It runs on a
variety of microkernels like SeL4,
NOVA, and Fiasco OC as well as on
Linux and the Muen SK. But the project
also features its own microkernel named
"base-hw" written in C++ like most of the
Genode framework. Spunky is a pet
project of mine. Simply put it's an
approach to re-implement the design of
the "base-hw" kernel first in Ada and later
in SPARK with the ultimate goal to prove
its correctness. It is also an opportunity to
learn how Genode can benefit from Ada
and SPARK in general and promote the
use of safety-oriented languages in the
project.

16:00-16:50 - Alire: Ada Has a Package
Manager by Alejandro R. Mosteo -
Centro Universitario de la Defensa, Spain,
Pierre-Marie de Rodat and Fabien
Chouteau - AdaCore, France

8 Ada-related Events

Volume 41, Number 1, March 2020 Ada User Journal

Alire (Ada LIbrary REpository) is a
package manager project for the
Ada/SPARK community. The goal of a
package manager is to facilitate
collaboration within the community and
to lower the barrier of entry for beginners.
In this talk we will present the Alire
project, what it can do for you and how
you can contribute and give more
visibility to your Ada/SPARK projects.
We will also provide a tutorial to show
how to use Alire to create a library and
then publish it for others to use.

17:00-17:20 - Protect Sensitive Data with
Ada Keystore by Stephane Carrez -
Twinlife, France

Storing passwords and secret
configuration is a challenge for an
application. Ada Keystore is a library that
stores arbitrary content by encrypting
them in secure keystore (AES-256,
HMAC-256). The talk presents the project
and shows how to use the Ada Keystore
library to get or store secret information
in a secure manner. The presentation
explains how the Ada features such as
types, protected types, tasks, pre/post
conditions have helped during the
development of this project.

17:30-17:50 - EUgen: a European Project
Proposal Generator by Riccardo
Bernardini - University of Udine, Italy

Whoever wrote a research project
proposal knows how much unnerving it
can be. The actual project description
(made of work packages, tasks,
deliverable items…) has lots of
redundancies and cross-references that
makes its coherency as frail as a house of
cards. For example, if the duration of a
task is changed most probably you'll need
to update the effort in person-months of
the task and of the including work
package; you must update the start date of
depending tasks and the delivery date of
any deliverable items; most probably also
the WP efforts and length need update
too; not to mention the need of updating
all the summary tables (summary of
efforts, deliverable, ..) and the GANTT
too. Any small changes is likely to start a
ripple of updates and the probability of
forgetting something and getting an
incoherent project description is large.
Given the harsh competition in project
funding, if your project is incoherent the
probability of getting funded is nil.

One day I got sick of this state of affair
and I wrote my own project generator:
10k lines of Ada code that reads a non-
redundant project description from a
simple-format text file and produces a set
of files ready to be imported in the
proposal, GANNT chart included. The
user can specify dependences between
different items (e.g., this deliverable is
produced at the end of this task, this
milestone is reached when this deliverable
is available, this task must begin after this
other task...) and the program

automatically computes all the dates. Both
input parser and output processors are
implemented using a plugin structure that
makes it easy to write new parsers to read
different formats or new output
processors to produce output in different
formats. Currently a parser for a simple
ad-hoc format and an output processor
that produces LaTeX files are provided; a
new processor based on the template
expander *protypo* is currently being
implemented. Did I eat my own dog food?
Well, yes, I did. I used it to write a
proposal (still under evaluation) and it
served me well.

18:00-18:20 - On Rapid Application
Development in Ada by Tomasz
Maluszycki - Poland

In the Ada world we typically write
mission critical software that just has to
work, but in a way one could argue that a
lot more software is mission critical than
is usually admitted. What does it take to
actually perform rapid application
development in any language? Can we do
it in Ada and why would we do so? A
quick look into some language features
that can be [ab]used for enabling quick
development of 'just a prototype' - which,
as practice shows is often deployed into
production, usually without proper quality
controls and predictable outcome.

18:30-18:50 - Ada-TOML: a TOML
Parser for Ada by Pierre-Marie de Rodat
AdaCore, France

The world of generic structured data
formats is full of contenders: the mighty
XML, the swift JSON, the awesome
YAML… Alas, there is no silver bullet:
XML is very verbose, JSON is not
convenient for humans to write, YAML is
known to be hard to parse, and so on.
TOML is yet another format whose goal
is to be a good configuration language:
obvious semantics, convenient to write
and easy to parse in general-purpose
programming languages. In this talk, I'll
shortly describe the TOML format and
show a few use cases in the real world. I'll
then present the ada-toml library itself: its
high-level architecture and examples.

18:50-19:00 - Informal Discussions &
Closing

 Informal discussion on ideas and
proposals for future events.

More information on Ada Developer
Room

Speakers’ bios, pointers to relevant
information, links to corresponding
FOSDEM pages, etc., are available on the
Ada-Belgium site at

www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem.html

We invite you to attend some or all of the
presentations: they will be given in
English. Everybody interested can attend

FOSDEM 2020; no registration is
necessary.

We hope to see many of you there!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for
Ada-Belgium/Ada-Europe/SIGAda/WG9)

Livestream for Ada
Developer Room at
FOSDEM 2020

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: Livestream for Ada Developer
Room at FOSDEM 2020

Date: Sat, 1 Feb 2020 09:17:27 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc,
be.comp.programming

10th Ada Developer Room at FOSDEM

2020

Ada at the Free and Open source Software
Developers' European Meeting
on Saturday 1 February 2020

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/

200201-fosdem.html

fosdem.org/2020/schedule/track/ada

Today, February 1 2020, marks the start
of the 20th edition of FOSDEM, the Free
and Open source Software Developers'
European Meeting, held this weekend in
Brussels, Belgium.

In this edition, Ada-Belgium organizes
once more a series of presentations related
to the Ada Programming Language and
Free or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2020 is held today, starting at 10:30. This
year the Ada DevRoom has a total of 13
Ada-related presentations by 12 authors
from 8 countries! There are also 4 more
Ada-related presentations in other
DevRooms.

If (like me) you can't be in the Ada
DevRoom, follow the livestream or watch
the recordings later!

On the Ada DevRoom page of the Ada-
Belgium site, you see the schedule for the
day, both in that DevRoom and others.
Each entry points to the resp. page on the
FOSDEM site, which has at the bottom
the link for the livestream from the resp.
room.

For the Ada DevRoom the live video
stream is at:

Ada-related Resources 9

Ada User Journal Volume 41, Number 1, March 2020

https://live.fosdem.org/watch/aw1125

Enjoy!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for
Ada-Belgium/Ada-Europe/SIGAda/WG9)

FOSDEM 2020
Presentations & Videos

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: FOSDEM 2020 Ada Developer
Room - presentations & videos online

Date: Tue, 4 Feb 2020 14:19:28 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

*** Presentations and video recordings
available online ***

10th Ada Developer Room at FOSDEM
2020

Saturday 1 February 2020

Brussels, Belgium

www.cs.kuleuven.be/~dirk/ada-
belgium/events/20/200201-fosdem.html

fosdem.org/2020/schedule/track/ada

--

All presentations and video recordings
from the 10th Ada Developer Room, held
at FOSDEM 2020 in Brussels recently,
are available via the Ada-Belgium and
FOSDEM web sites now.

- "Welcome to the Ada DevRoom" by
Dirk Craeynest - Ada-Belgium, Jean-
Pierre Rosen - Ada-France

- "An Introduction to Ada for Beginning
and Experienced Programmers" by Jean-
Pierre Rosen - Adalog, France

- "HAC: the Compiler which will Never
Become Big" by Gautier de Montmollin -
Ada-Switzerland

- "Tracking Performance of a Big
Application from Dev to Ops" by Philippe
Waroquiers - Eurocontrol, Belgium

- "Cappulada: What we've Learned" by
Johannes Kliemann - Componolit,
Germany

- "Programming ROS2 Robots with
RCLAda" by Alejandro R. Mosteo -
Centro Universit. de la Defensa, Spain

- "Live Demo of Ada's Distribution
Features" by Jean-Pierre Rosen - Adalog,
France

- "Writing Shared Memory Parallel
Programs in Ada" by Jan Verschelde -
Univ. of Illinois at Chicago, USA

- "Spunky: a Genode Kernel in
Ada/SPARK" by Martin Stein - Genode
Labs, Germany

- "Alire: Ada Has a Package Manager" by
Alejandro R. Mosteo - Centro Universit.
de la Defensa, Spain

 & Pierre-Marie de Rodat and Fabien
Chouteau - AdaCore, France

- "Protect Sensitive Data with Ada
Keystore" by Stephane Carrez - Twinlife,
France

- "EUgen: a European Project Proposal
Generator" by Riccardo Bernardini -
University of Udine, Italy

- "On Rapid Application Development in
Ada" by Tomasz Maluszycki - Poland

- "Ada-TOML: a TOML Parser for Ada"
by Pierre-Marie de Rodat - AdaCore,
France

- "Securing Existing Software using
Formally Verified Libraries” by Tobias
Reiher - Componolit (in Security room)

- "BSP Generator for 3000+ ARM
Microcontrollers" by Fabien Chouteau -
AdaCore (in Hardware room)

- "Gneiss: A Nice Component Framework
in SPARK" by Johannes Kliemann -
Componolit (in Microkernels room)

- "A Component-based Environment for
Android Apps" by Alexander Senier -
Componolit (in Microkernels room)

Presentation abstracts, speaker bios,
pointers to relevant information, copies of
slides, links to corresponding pages and
video recordings, are available via the
Ada-Belgium and FOSDEM sites at the
URLs above.

Some pictures will be posted later as well.
If you have pictures or other material you
would like to share, or know someone
who does, then please contact me.

Finally, thanks once more to all presenters
and helpers for their work and
collaboration, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

#AdaFOSDEM #AdaDevRoom
#AdaProgramming

#AdaBelgium #AdaEurope
#FOSDEM2020

Make with Ada Winners
Announced

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: Make with Ada 2019-2020
competition - winners announced

Date: Wed, 4 Mar 2020 18:49:43 -0000
Newsgroups: comp.lang.ada

I didn't see this mentioned on
comp.lang.ada yet, so...

The winners of the latest "Make with
Ada" programming competition [1] have
been announced [2]: 10 winners were

awarded a Finalist Prize, one of which got
an additional First Prize and another one a
Student Prize.

Congratulations to all winners!

[1] http://www.makewithada.org/

[2] https://www.hackster.io/contests/
adacore2

Check out the many exciting projects!

Dirk

Dirk.Craeynest@cs.kuleuven.be (for
Ada-Belgium/Ada-Europe/SIGAda/WG9)

*** 25th Ada-Europe Int'l. Conf. on
Reliable Software Technologies ***

June 8-12, 2020 * Santander, Spain *
www.ada-europe.org/conference2020

Ada-related Resources
[Delta counts are from Dec 2nd to Apr
2nd. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Thu, 2 Apr 2020 14:56:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 2_903 (+7) members [1]

- Reddit: 3_341 (+921) members [2]

- StackOverflow: 1795 (+49) questions
 [3]

- Freenode: 95 (+10) users [4]

- Gitter: 51 (+7) people [5]

- Telegram: 61 (+11) users [6]

- Twitter: 88 (+15) tweeters [7]

 169 (+80) unique tweets [7]

[1] https://www.linkedin.com/
groups/114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/details.php
?room=%23ada&net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Thu, 2 Apr 2020 14:56:21 +0100
To: Ada User Journal readership

GitHub: 576 (+3) developers [1]

Rosetta Code: 707 (+41) examples [2]

 38 (+2) developers [3]

10 Ada-related Tools

Volume 41, Number 1, March 2020 Ada User Journal

Sourceforge: 271 (+1) projects [4]

Open Hub: 211 (+2) projects [5]

Bitbucket: 88 (+1) repositories [6]

Codelabs: 49 (+2) repositories [7]

AdaForge: 8 (=) repositories [8]

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags
?names=ada

[6] https://bitbucket.org/repo/all
?name=ada&language=ada

[7] https://git.codelabs.ch/
?a=project_index

[8] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Thu, 2 Apr 2020 14:56:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go
down in the ranking. —arm]

- TIOBE Index: 37 (+1) 0.23% (=) [1]

- IEEE Spectrum (general): 43 (=)
Score: 24.8 [2]

- IEEE Spectrum (embedded): 13 (=)
Score: 24.8 [2]

[1] https://www.tiobe.com/tiobe-index/

[2] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2019

Ada Learning Resources

[Follow-up to topic “Exercism” in AUJ
2019.4. —arm]

From: mario.blunk.gplus@gmail.com
Subject: Re: Ada learning resources
Date: Wed, 18 Dec 2019 10:47:59 -0800
Newsgroups: comp.lang.ada

Over the years I have put together lots of
simple demo programs. The collection is
growing. Perhaps it helps to understand
Ada step by step. Your feedback is highly
welcome.

https://github.com/Blunk-electronic/
ada_training

From: charlet@adacore.com
Date: Sun, 15 Dec 2019 01:34:37 -0800

> There are a variety of Ada learning
resources collected at
https://www.adaic.org/learn/materials/,

in a variety of forms (books, > tutorials,
wikis, etc.).

By the way Randy,

https://learn.adacore.com/ should have a
more prominent place in this page, it is
the most up to date and well maintained
training material for Ada, and is really
much more than a tutorial, it contains
complete training courses. It should be the
first link IMO, instead of the current first
section which is now getting outdated
("This series of articles is an introduction
to Ada 95. The content is in the process of
being updated to reflect the revisions
introduced in Ada 2005 and the revisions
currently underway for Ada 2012. But
this is still an excellent introduction into
the core technical features and benefits of
Ada." isn't really the best advocate for
recent training Ada material).

Ada-related Tools

Gnu Emacs Ada Mode Beta
Test 7.0.0

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode beta test
7.0.0

Date: Fri, 20 Dec 2019 09:15:42 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode beta test 7.0.0 is
now available at
http://www.nongnu.org/ada-mode/. This
is a significant refactoring, which may
affect some user custom code, so it is not
in Gnu ELPA yet.

To install, download the candidate ELPA
archive, set package-archives to point to
it, and use list-packages (more detailed
instructions at
http://www.nongnu.org/ada-mode/).

The wisi package now provides a more
complete integration with Emacs
project.el.

Several bugs have been fixed.

You may want to work thru the tutorials
in ada-mode.info again; they now cover
many of the new features.

See the NEWS files in
~/.emacs.d/elpa/ada-mode-7.0.0 and wisi-
3.0.0, for more details. See wisi.info in
the release for more information on the
package.el integration.

Gnu Emacs Ada Mode 7.0.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 7.0.1
released.

Date: Fri, 31 Jan 2020 06:01:11 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.0.1 is now
available in GNU ELPA.

Relative to the previous Ada mode release
(6.2.1), this is a significant refactoring,
which may affect some user custom code.

The wisi package now provides a more
complete integration with Emacs
project.el.

You may want to work thru the tutorials
in ada-mode.info again; they now cover
many of the new features.

Relative to the previous beta test (7.0.0),
this is a minor feature and bug fix release.

See the NEWS files in ~/.emacs.d/elpa/
ada-mode-7.0.1 and wisi-3.0.1, or at
http://www.nongnu.org/ada-mode/, for
more details.

The required Ada code requires a manual
compile step, after the normal
list-packages installation ('install.sh' is
new in this release):

cd ~/.emacs.d/elpa/ada-mode-7.0.1
./build.sh
./install.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

Qt5Ada 5.14.0 Free Edition

From: leonid.dulman@gmail.com
Subject: Announce: Qt5Ada version 5.14.0

(571 packages) release 13/12/2019 free
edition

Date: Tue, 17 Dec 2019 06:34:49 -0800
Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.14.0 final)
Qt5ada version 5.14.0 open source and
qt5c.dll,libqt5c.so(x64) built with
Microsoft Visual Studio 2019 in
Windows, gcc x86-64 in Linux.

Package tested with GNAT GPL 2019
Ada compiler in Windows 64bit, Linux
x86-64 Debian 10.

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices,
Sensors,Bluetooth, Navigation and many
other things.

Changes for new Qt5Ada release:

Added new packages:

Qt.QTest for simulate mouse and
keyboard events

Speech recognitions based on CMU
Phenix

Prebuilt unofficial Qt 5.14.0 and VTK
8.2.0 win64 on Windows and x86-64 on
*nix

My configuration script to build Qt 5.14.0
is:

configure -opensource -release -nomake
tests -opengl dynamic -qt-zlib -qt-libpng -
qt-libjpeg -openssl-linked

Ada-related Tools 11

Ada User Journal Volume 41, Number 1, March 2020

OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.14"

As a role Ada is used in embedded
systems, but with QTADA (+VTKADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing, Modbus control and
many other things.

Qt5Ada and VTKAda for Windows,
Linux (Unix)
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/adastudio.html

Google drive:

https://drive.google.com/folderview?id=
0B2QuZLoe-yiPbmNQRl83M1dTRVE
&usp=sharing

(It can be mounted as virtual drive or
directory or viewed with Web Browser)

The full list of released classes is in
"Qt5 classes to Qt5Ada packages relation
table.docx"

VTKAda version 8.2 is based on VTK
8.2.0 (OpenGL2) is fully compatible with
Qt5Ada 5.14.0

I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts. With Qt5Ada you can
build any application and solve any
problems easily and quickly.

If you have any problems or questions, let
me know.

VisualAda 1.2.5

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.2.5

Date: Fri, 10 Jan 2020 14:05:44 -0800
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.2.5 has been
released.

Fixes include the following:

- Source code navigation implemented (ie
goto definition and goto
implementation).

- Quickinfo support has been added.

- Rudimentary statement completion
support has been added.

- Project templates are now tagged
appropriately under Visual Studio 2019,
making it easier to find Ada related
templates.

Please feel free to download the free
plugin from the following URL:

https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

VisualAda 1.2.7

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.2.7

Date: Sat, 8 Feb 2020 22:51:12 -0800
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.2.7 has been
released.

Enhancements include the following:

- Improved project load time (only load
projects once if they are referenced
multiple times within a solution)

- Improved statement completion
response times (editor was significantly
lagging when opening large projects /
solutions)

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

VisualAda 1.3

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.3

Date: Fri, 17 Apr 2020 21:48:30 -0700
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.3 has been released.

Enhancements include the following:

- Added preliminary support for the
GNAT Community edition 2019 ARM
toolchain and the associated runtimes.

The runtime that is to be used must be
selected in the "Ada RTS" property
located in the "General" property page for
the project.

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

SDLAda, LÖVE, and
Programming for Beginners

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Subject: sdlada, löve and programming for
beginners

Date: Sat, 08 Feb 2020 12:40:54 +0100
Newsgroups: comp.lang.ada

At FOSDEM, my colleague Thomas
Maluszycki gave a talk [1] about rapid
application development in Ada. This
made me think. You see, I have a 14-year-
old son whom I teach programming to. He
is lukewarm about it but I think it is my
duty as a parent to give him basic
education in this field, as computers are

already everywhere and will probably
govern his live even more than ours. So I
played with him with Colobot[2], taught
him a little bit of Ada (with the French
translation of Barnes' book for Ada 95), a
little bit of ZX Spectrum BASIC, and now
he's writing a Pong clone with the LÖVE
framework[3], in Lua[4]. This framework
makes it very easy to have immediate
results... but Lua lacks strong typing and
in particular range checking, and a
debugger.

So it occurred to me that LÖVE is really a
Lua binding to SDL plus a predefined
event loop, and that it would be quite easy
to do something similar based on the
sdlada thick binding. The goal would be
to attract teenage programmers to the
language and to programming in general.
Possibly on a Raspberry Pi. I'd be willing
to make a Debian package for it. What do
you think?

[1] https://fosdem.org/2020/schedule/
event/ada_rad/

[2] http://colobot.info/

[3] http://love2d.org/

[4] https://www.lua.org/

From: Lucretia
<laguest9000@googlemail.com>

Date: Mon, 10 Feb 2020 06:27:31 -0800

On Saturday, 8 February 2020 11:41:01
UTC, Ludovic Brenta wrote:

Dragging this thread back on track...

> So it occurred to me that LÖVE is
really a Lua binding to SDL plus a

I never looked at it before, but knew of it,
never knew it was a wrapper around SDL.

> predefined event loop, and that it would
be quite easy to do something similar
based on the sdlada thick binding. The
goal would be to attract

Yeah, that would be pretty cool. Any
features required, just add a PR.

I want to get iterators around Surfaces
(old, not really for new projects) and
textures (for accelerated 2D and for new
stuff).

Definitely not having to mess about with
OpenGL/Vulkan is a good start.

> teenage programmers to the language
and to programming in general.
Possibly on a Raspberry Pi. I'd be
willing to make a Debian package for
it. What do you think?

Sounds good to me.

From: Chris Sykes <chris@amtiskaw.net>
Date: Tue, 11 Feb 2020 19:10:46 +0000

> So it occurred to me that LÖVE is
really a Lua binding to SDL plus a
predefined event loop, and that it would
be quite easy to do something similar
based on the sdlada thick binding. The
goal would be to attract teenage
programmers to the language and to
programming in general. Possibly on a

12 Ada-related Tools

Volume 41, Number 1, March 2020 Ada User Journal

Raspberry Pi. I'd be willing to make a
Debian package for it. What do you
think?

FWIW, I think it's an excellent idea.

One of the most important things for a
beginner is being able to achieve visible
results from simple code. So something
that allows you to draw to the screen and
respond to user input, while minimum
boiler-plate code (often confusing to
newbies) really helps.

If you're looking for inspiration for some
demos/examples, you should checkout the
"One Lone Coder" videos on YouTube:

https://www.youtube.com/channel/
UC-yuWVUplUJZvieEligKBkA/featured

He has written a really simple "game
engine" in C++ along the same lines, and
(IMO) his projects show just how
valuable lowering the barriers to
experimentation can be. Lots of fun too!

From: Lucretia
<laguest9000@googlemail.com>

Date: Tue, 11 Feb 2020 11:25:40 -0800

> If you're looking for inspiration for
some demos/examples, you should
checkout the "One Lone Coder" videos
on YouTube:

> https://www.youtube.com/channel/UC-
yuWVUplUJZvieEligKBkA/featured

Can confirm OLC is very good /
accessible, check out his SNES emulator
series.

From: Rick Newbie
<nuttin@nuttn.nowhere>

Date: Sun, 9 Feb 2020 09:34:16 -0800

[Starting here the thread goes on a tangent
about Ada books and language
complexity. —arm]

> [Original message quoted verbatim
omitted. —arm]

[...]

On the topic of teenage programmers:
Although I am not a teenager I am new to
Ada. What is repelling is when you read
Barne's book and you throw up your arms
and think: How am I ever going to master
all that?!

But I guess what is true for C++ must be
true for Ada as well: People use 20% of
the language features 80% of the time. it
would be good to find a way to introduce
new programmers using these 20% to
start with. Barne's book is simply
overwhelming for the newcomer since it
covers nearly all aspects and you can start
out with much less

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Sun, 09 Feb 2020 23:55:05 +0100

> On the topic of teenage programmers:
Although I am not a teenager I am new
to Ada. What is repelling is when you
read Barne's book and you throw up

your arms and think: How am I ever
going to master all that?!

Even though it is out of date by now, I
still like and recommend the free book by
John English, "Ada 95: the Craft of
Object-Oriented Programming". This is a
gentle introduction to Ada as a first
programming language and it is not
overwhelming. Professionals and die-hard
enthusiasts can always learn from the
reference manual

https://www.adaic.org/resources/
add_content/docs/craft/html/contents.htm

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Sun, 9 Feb 2020 22:53:13 -0600

> On the topic of teenage programmers:
Although I am not a teenager I am new
to Ada. What is repelling is when you
read Barne's book and you throw up
your arms and think: How am I ever
going to master all that?!

One of the reasons a programming
language become less popular is that it
becomes more complicated with time.

Look at what happened to C++. Same
with Ada. They start relatively small and
simple, and each few years, they update
the standard and add more complication
and "advanced" features so that few could
understand it all. This has also happened
to Fortran with addition of OO to it,
where it is as complex as C++ and Ada.
Fortran used to be a very simple language.

One of the reasons why python is so
popular (even though I think it is a
horrible language myself) is that it is
"simple".

There should be something in between. A
simple, yet well designed and strongly
typed language. That is why I liked Pascal
the most of all the languages I
programmed in (followed by Ada).

From: Rick Newbie
<nuttin@nuttn.nowhere>

Date: Mon, 10 Feb 2020 02:05:45 -0800

That's actually very true. I have to work in
C++ professionally but I always
remember the day of Turbo Pascal or
Modula-2. Install, run the IDE and ready
to go, no fighting about missing libraries
or esoteric features. I must admit that I
look at some new C++ programs and I
don't understand what's going on. Same
with forums. Sometimes I browse
Stackexchange just for fun and I read
questions from people about the behavior
of pieces of code that they don't
understand and the answers just make me
shake my head. Who would have ever
thought of that?!

When I learned C I had a book about 200
pages. I read that and afterwards I was
able to write my first small programs. I
don't have the feeling it will be that easy
with Ada. In fact I try to keep it simple
and get me some exercise by translating

some of the games from David Ahl's
1970's book from BASIC to Ada because
I think that it is possible to translate those
games with the more simple features of
Ada to get me going.

I think when the language becomes so
complicated that you need professional
help, not with algorithmic problems but
with syntactical questions, it is too
bloated. Hence my above remark that you
use 20% of the features 80% of the time. I
know certain modern features are a
blessing, for instance I love Lambdas in
C++ because they allow me to put active
code in a datatable instead of in a long
switch statement, but I could live without
it if necessary.

If I remember my early teachings
correctly you can formulate nearly every
problem on a Turing Machine.

Stack Usage

From: Simon Wright
<simon@pushface.org>

Subject: ANN: Stack usage
Date: Thu, 20 Feb 2020 22:24:02 +0000
Newsgroups: comp.lang.ada

Want a worst-case estimate of your
embedded app's stack usage? (so you can
allocate your tasks only enough stack to
avoid stack overflow ...)

https://github.com/simonjwright/
stack_usage

[Summary from the above link follows.
—arm]

The Python program stack_usage.py is
intended to help with this (it's not a
panacea, though! if you have AdaCore
support, you'll be better off using
GNATstack).

The initial motivation for this work was a
hard fault encountered while writing a test
program to check that Ada timing events
work properly (well, usably) with the
FreeRTOS-based Cortex GNAT RTS.

stack_usage has been developed on
macOS Mojave using Python 2.7 and 3.7
and PLY (Python Lex and Yacc). To
install PLY,

 pip install --user ply

It relies on the information generated by
the GCC compiler (FSF GCC 10 or later,
GNAT GPL 2015 or later) using the
switch -fcallgraph-info=su,da.

Threefish-256

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Threefish-256
Date: Sun, 16 Feb 2020 17:46:34 +0100
Newsgroups: comp.lang.ada

I have made an implementation of the
Threefish-256 encryption algorithm
available at
https://github.com/jrcarter/Threefish
in the hope that some will find it useful.

Ada-related Tools 13

Ada User Journal Volume 41, Number 1, March 2020

While I think it's correct, I cannot be sure,
and would appreciate additional people
inspecting it for errors.

KDF9 Emulator Release
4.1d

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Subject: ee9, KDF9 emulator release 4.1d
Date: Wed, 26 Feb 2020 18:13:50 +0000
Newsgroups: comp.lang.ada

If you are interested in historical
computers you might like to take a look at
the new release of ee9, my emulator of
the English Electric KDF9, now available
here:

http://www.findlayw.plus.com/KDF9/
#Emulator

where you can find pre-built binaries for
macOS and Linux. I expect that the Linux
binary will also work on Windows 10, but
have not tried that.

For the first time, this release of ee9
enables both the use of the Kidsgrove
optimising Algol 60 compiler and the
execution of object programs under the
control of the Time Sharing Director,
KDF9's elegantly simple
multiprogramming operating system.

In the download package are papers
describing the hardware and software of
the KDF9, and its role in the development
of machine-independent benchmarking.

ee9 and its ancillary programs are written
in Ada 2012 (of course). Source code, and
instructions on using the build process,
are also included.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 26 Feb 2020 12:49:38 -0800

Cool! Do you have the KDF9 source code
for the Algol 60 compiler or the
timesharing OS?

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Thu, 27 Feb 2020 00:47:48 +0000

The ee9 download includes listings of the
Whetstone Algol system.

You can find a lot more original or
resurrected KDF9 material, starting here:

http://sw.ccs.bcs.org/KDF9/index.html

See also the Bibliography included in the
download.

Simple Components v4.47

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.47

Date: Sun, 1 Mar 2020 13:11:28 +0100
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,

stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- MODBUS RTU client implementation
was added;

- On_Reader_Start and On_Writer_Start
primitive operation were added to
Blocking_Server;

- On_Start primitive operation was added
to Call_Service;

- On_Pooled_Server_Start primitive
operation was added to Pooled_Server;

- On_Worker_Start primitive operation
was added to Connections_Server;

- Activated primitive operation was added
to Connection.

Zip-Ada v56

From: gautier_niouzes@hotmail.com
Subject: Ann: Zip-Ada v.56
Date: Thu, 26 Mar 2020 10:02:16 -0700
Newsgroups: comp.lang.ada

New in v.56:

- Zip: the Zip_info type is now controlled
(no need to call Delete; additionally,
clones are done correctly).

- UnZip.Streams: added Size and Name
functions for Zipped_File_Type.

- LZ77: added nice simple LZ77
compressor by Rich Geldreich, Jr.

- (Tools) Added Zip_Dir_List.

New in v.55:

- Zip_Streams: ZS_Size_Type is now 64-
bit signed, enabling Zip.Create to
capture archive size overflows in Zip_32
mode.

- Zip.Create raises
Zip_Capacity_Exceeded when archive
creation exceeds the Zip_32 format's
capacity: 4GB total size, 65,535 entries.

- Zip.Create is now using an Ada 2005+'s
Containers's Hashed Maps; creation is
much faster on Zip archives with many
entries.

- (Tools) ReZip has a new option for
working only with its own internal
compression algorithms - those provided
by Zip.Compress. This option is useful
if external tools are not available.

- New Trained_Compression package:
generic streaming encoder-decoder
engine with the capability of training the
engine with data known in advance, in
order to achieve better compression. Not
Zip-related.

-!- Minimum required Ada version is now
Ada 2005 (was Ada 95 before).

Full history: http://unzip-ada.sf.net/
hist.htm

Main site & contact info:

http://unzip-ada.sf.net

Project site:

https://sf.net/projects/unzip-ada/

GitHub clone:

https://github.com/zertovitch/zip-ada

AdaNetFramework - Proof
of Concept Alpha Release

From: alby.gamper@gmail.com
Subject: Ann: AdaNetframework - Proof of

concept / alpha release
Date: Thu, 26 Mar 2020 02:11:35 -0700
Newsgroups: comp.lang.ada

Dear Ada Community

For those interested in Microsoft
NetFramework, I have developed a set of
bindings, runtime that allows native Ada
applications built using GNAT to use the
NetFramework. Conceptually this is very
similar to "Embedinator 4000" developed
by the "Mono" development team. Note
this is not Ada compiled into CLR/VM
bytecode, but a native (albeit for the
moment) Windows x64 application that
can make use of the functionality
provided by the NetFramework.

Note this is a Proof of concept/alpha
release, but it is functional

The git repo contains 3 branches, these
being

1) Master - a cutdown version of mscorlib
(only includes subset of mscorlib)

2) System.dll - contains the core system
bindings (core dependency)

3) System.Windows.forms.dll - contains
winforms bindings

I suggest that if you want to build/test the
repo, please start with the "Master"
branch (which contains a rudimentary test
application (i.e., VS/GPR project) and
then progress to System and finally
System.Windows.Forms branch. Note that
the Winforms branch will take ~45 min to
complete, so be patient (it's a large lib!)

Notes:

1) Please use the latest version of
VisualAda to build the projects. There
was a memory leak which may/will
cause the final part of the build to fail

2) I am intending to support NetCore
going forward, so that Mac, Linux
clients will be supported. But this may

14 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

 take some time, since the CLR hosting
/interop Api's are very different from
NetCore to NetFRamework

Git repo is https://github.com/
Alex-Gamper/Ada-NetFramework.git

Feel free to raise questions / comments

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 31 Mar 2020 08:25:18 -0700

So, this allows you to use DOTNET stuff
in native applications; that's pretty nifty.

There was a GANT that targeted
DOTNET directly, though the latest one
is pretty old now (2014?) and there was
an Ada spec generator where you could
import DOTNET libraries for use in your
Ada programs. [I have a copy of
Delphi.NET, so of course I ran it over the
Delphi DLLs. ;) And had some fun
playing around with that.]

From: alby.gamper@gmail.com
Date: Fri, 3 Apr 2020 23:27:39 -0700

Hi Shark8

Yes it does allow you to use DOTNET
directly (ie from a native x64 binary) The
big difference between my approach and
targeting CLR/DOTNET directly as the
BNAT 2014 did, is that the Bindings need
to be generated based on a predefined set
of assemblies. Hence the reason for the 2
main branches in Git

The "system.dll" branch contains only the
bindings for system.dll and the
"System.windows.Forms.dll" branch
contains the bindings for WinForms and
all its dependencies (If there is demand I
can do another branch for WPF)

Ada and Operating
Systems

Ada and macOS Cocoa

From: Matt Borchers
<mattborchers@gmail.com>

Subject: Ada development resources for
Mac OSX Cocoa applications

Date: Sun, 8 Mar 2020 17:10:58 -0700
Newsgroups: comp.lang.ada

Doing a search here for "mac osx cocoa"
returns one hit from 1999. Needless to
say, any "help" in that thread would be
woefully outdated.

I am new to a team that needs to port a
32-bit Carbon graphical desktop
application written in Ada to its 64-bit
Cocoa equivalent. Searching the web for
any kind of Cocoa function library (in the
same spirit as .NET) is leading me to very
little of use aside from what I find at
developer.apple.com. Apple developers
seem to care mostly about iOS/phone
development than desktop apps. Can
anybody direct me to a good set of
reference guides, on-line or off-line, that
would be helpful to a programmer writing

a graphical Mac application using non-
native (i.e. non-Apple) tools. Being old-
school, I would even appreciate the name
of a good book.

I know that 20 years ago interfacing Ada
to Objective-C was a very difficult task. I
am hopeful that the past 20 years have
brought technologies that have made this
easier or even simple. Has anybody
written an Ada binding to AppKit or
Foundation with good documentation?

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 10 Mar 2020 07:09:31 -0700

The Carbon-to-Cocoa in any language is
going to be a near-total rewrite. While
performing that rewrite, you might
consider rewriting in a nonAda language
(e.g., Swift) anyway.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Tue, 10 Mar 2020 18:36:44 +0100

> That isn't the reply I was hoping to read,
but it is the one I expected.

Not what you're asking, but I would
suggest you use Gnoga for your desktop
applications (which Gnoga refers to as
"singleton" applications). Then your code
will be portable across platforms.

Ada Practice

Type Naming Conventions:
Any_Foo

[As this topic involves a degree of
personal preference, a large conversation
sprung around this question, requiring a
more extensive cherry-picking of posts. I
have selected what I feel most relevant,
but I apologize to the topic contributors if
they see some of their answers omitted.
—arm]

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Subject: Type naming conventions:
Any_Foo

Date: Wed, 4 Dec 2019 14:56:21 +0100
Newsgroups: comp.lang.ada

I've recently come across a new (to me)
type naming convention and I'm curious
about how extended it is. I was aware of
the

 Foo.Object -- where Foo is a package and
 -- Object is the type name

and

 Foos.Foo -- where Foos is a package and
 -- Foo is the type

and

 Foos.Bars -- where both packages and
 -- types are in plural

and

 Foo_Type -- where the enclosing package
 -- name is not used

This variant is

 Any_Foo -- enclosing package also not
 -- used

I've found only one example in the ARM
in System.Any_Priority. I find I like
better Any_Foo than Foo_Type, not sure
why. I've had since I can remember an
aversion for the _Type thing.

Anyway, just curious. Any champions of
the Any_Foo in the readership?

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Date: Wed, 4 Dec 2019 17:42:56 +0100

> Not come across this, is this for when
"use" is used? What's the name of the
package, Foos? Foo?

I was ambiguous, sorry. In this case I
think the enclosing package is secondary.
I guess the advantages are the same as in
_Type, that you can write Foo: Any_Foo;

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Thu, 5 Dec 2019 02:51:34 -0800
Of all of these schemes, my favorite is

 Package Foos
 Type Any_Foo
 Object Foo

This is tightly related to the discussion
predefined types vs. user defined types.
It's not always easy, ahem it's often
difficult to find good names.

I think finding good names and spending
time on this is well spent effort.

I do not know who posted this example a
long time ago, but I like it:

Do not use abbreviations. Good names
make a program understandable. What is
Wpn?

type Weapon_Type is (Broadsword,
 Catapult, Bow_and_Arrow);
procedure Attack_Using (Weapon:

 Weapon_Type);
 Weapon: Weapon_Type;
 Attack_Using (Weapon => Catapult);
 -- a bit talkative
 Attack_Using (Catapult);
 -- good only with positional association

versus

 type Weapon is (Broadsword, Catapult,
 Bow_and_Arrow);
 procedure Attack (Using: Weapon);
 My_Weapon, Foes_Weapon: Weapon;
 Attack (Using => Catapult);
 -- good only with named association
 Attack (Catapult);
 -- Do we attack the catapult or what?

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Fri, 6 Dec 2019 00:57:06 -0800

> procedure Attack (Using: Weapon);

> Attack (Using => Catapult);

As nice as this may read in user's code,
within the body of Attack, the parameter

Ada Pract ice 15

Ada User Journal Volume 41, Number 1, March 2020

name is not optimal.

Also a declaration like

 My_Weapon: Weapons.Weapon;

is awkward when use-clause is banned.
So a further point to consider is whether
you want your package to be used with
use-clause or without:

 My_Weapon: Weapons.Object;

I'm not sure I like this.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 6 Dec 2019 10:55:28 +0100

Small remark: do not confuse using the
use clause, and not using selected names.
You are perfectly allowed to use selected
names within the scope of a use clause if
you feel it is more readable!

I am a known supporter of the use clause,
however for classes, I use the package for
the object name, and "object" for the
record that's the data part of it. Of course,
I always use selected names in that case.

[small plug] There is an AdaControl rule
to check that some names always use
selected notation.

Whether or not you are hostile to the use
clause, the best advice is to choose a
name which is nice for your favorite
notation, and acceptable for the other one.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 5 Dec 2019 18:27:24 +0100

> (Broadsword, Catapult,
Bow_and_Arrow);

There are 2 ways to look at them:

1. These identify the possible weapons:
Weapon_ID

2. These are the names of the possible
weapons: Weapon_Name

Either of these are better than any name
derived using a convention, while still
leaving the best name (weapon) available
for parameter names. This because they
were created by thinking (which is what
S/W engineers are paid to do), while
conventions exist to allow developers to
avoid thinking.

I would even say that those who use
naming conventions such as T[y[p[e]]]
are either not S/W engineers or are
shirking their duties.

From: Lucretia
<laguest9000@googlemail.com>

Date: Fri, 6 Dec 2019 03:44:46 -0800

[...]

An alternative for enumerations would be:

 type All_Weapons is (Broadsword,
 Catapult, Bow_and_Arrow);
 Weapon : All_Weapons := Broadsword;

But this does look a bit weird, maybe a
renaming of All_Weapons to A_Weapon
would make the variable definition look
better?

 Weapon : A_Weapon := Broadsword;

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Fri, 6 Dec 2019 21:23:45 +0100

It has been demonstrated that the first few
characters of an identifier are the most
important in distinguishing them; having
lots of identifiers with the same first few
characters makes the code harder to read.
So common prefixes are even worse than
suffixes.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 6 Dec 2019 23:55:59 +0200

Some people have suggested decorating
the variable/component name instead of
the type name, for example

 function Is_Lethal (The_Weapon :
 Weapon) return Boolean

but (as you say) such prefixes are worse
than suffixes.

I have also seen coding rules that require
specific suffixes on formal parameters,
such as:

 function Is_Lethal (Weapon_P : Weapon)
 return Boolean;

but they tend to also require suffixes (like
"_T") on type names, so there we are
again.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 6 Dec 2019 21:46:33 +0100

>> But if a value of the type Weapon_Id
is an identifier of a Weapon, how can
you defend saying

>>

>> Weapon : Weapon_Id;

>>

>> The variable Weapon does not
represent a Weapon; it represents an
identifier of a Weapon, so the name
Weapon is IMO a little misleading.

> Obviously there are no weapons in the
S/W; there are only bit patterns that you
have decided to interpret in various
ways. But if you're modeling the
problem space and it contains
something called Weapon, then

> your software had better have
something named Weapon it in, too.

Which something is the variable Weapon
in the example above. Though
Holstered_Weapon, Current_Weapon
might be better. But then again,
"_Weapon" would look like a nasty
suffix.

I don't think there is a universal solution
and I agree with Randy that a consistent
convention is better than anything else
(unless pushed ad absurdum like
Hungarian notation).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 5 Dec 2019 18:45:05 +0100

> I would even say that those who use
naming conventions such as _T[y[p[e]]]
are either not S/W engineers or are
shirking their duties.

There exist cases:

1. Formal generic types. They are
customarily named XXX_Type.

2. Types which are artifacts of language
issues or of design. These have no
separate problem space meaning and
thus no meaningful name. E.g.

 type Something is ...;
 type Something_Ptr is access Something;
 -- I don't want access type,
 -- I am required to have it

BTW, this includes all sorts of helper
types Ada kept introducing recently.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 5 Dec 2019 22:51:36 +0100

> On 12/5/19 6:45 PM, Dmitry A.
Kazakov wrote:

>>

>> 1. Formal generic types. They are
customarily named XXX_Type.

>

> Well chosen names for generic formal
types do not end with _Type. The

> PragmAda Reusable Components have
many generic formal types, none of

> which end with _Type.

Ada standard library uses _Type, e.g.

 generic
 type Element_Type (<>) is private;
 with function "=" (Left, Right :
Element_Type) return Boolean is <>;
 package
Ada.Containers.Indefinite_Holders

As I said, the rationale is that there is no
meaningful name for Element_Type in
the problem space. There is no problem
space at all. Indefinite_Holders is a helper
package so general that considered in
isolation it has no meaning.

>> -- I don't want access type, I am
required to have it

> Please provide examples of being
required to have an access type.

There are lots of cases in Ada, you
certainly should know that. As a

practical example GtkAda declares all
widget types twice:

 type Gtk_Button_Record is ...
 type Gtk_Button is access all
 Gtk_Button_Record'Class;

The suffix _Record is an equivalent to
_Type.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 5 Dec 2019 17:12:57 -0600

16 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

> There are lots of cases in Ada, you
certainly should know that. As a
practical example GtkAda declares all
widget types twice: [...]

This is the only case where I've used
"Any_" as a type prefix, in Claw --
specifically, class-wide access types.

 type Root_Window_Type is abstract
 tagged private;
 type Any_Window_Access_Type is
 access all Root_Window_Type'Class;

Access-to-classwide is a different sort of
thing than access-to-specific, and I
wanted a different sort of name for it.

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 6 Dec 2019 18:57:19 -0600

[The conversation veers towards
examples in the ARM. —arm]

> On 2019-12-06 21:18, Jeffrey R. Carter
wrote:

>> On 12/5/19 10:51 PM, Dmitry A.
Kazakov wrote:

>>>

>>> Ada standard library uses _Type, e.g.

>>>

>>> generic

>>> type Element_Type (<>) is private;

>>> with function "=" (Left, Right :
Element_Type) return Boolean is <>;

>>> package
Ada.Containers.Indefinite_Holders

>>

>> Yes, and the ARM also includes such
abominations as anonymous access
types. Just because it's in the ARM
doesn't mean it's the best way to do
something. Element is be [sic] a better
name for that formal type.

>

> No, it would be misleading. Element
must be reserved for instances of the
type. They are actual elements. The
type of an element is not an element,
these are two totally different things.

Agreed. Ada.Containers all have a
function Element that retrieves a (copy of)
a single element object from the
container. If the type was named element,
what would this function be called?
Similarly, some of the parameters are
called Element (thus, Element:
Element_Type in many parameter lists);
those also would need alternate names.

There were a number of ARG members
that disliked the "_Type" notation, so we
looked at alternatives. And we didn't find
anything that worked as well. Sometimes,
package design is about the "least bad"
alternative.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 7 Dec 2019 14:36:51 +0200

>> Agreed. Ada.Containers all have a
function Element that retrieves a (copy
of) a single element object from the
container. If the type was named
element, what would this function be
called? [...]

>

> At a conference long ago (probably in
the Ada-83 days), a presenter claimed
that well designed Ada has 90% of its
operations named Put or Get.

Horror. The result of blind OO
convention :-)

> Get is an appropriate name for such an
operation.

I follow the convention that procedure
names are verbs ("Get") or verb phrases
("Remove_Last_Item") that describe the
action or its effects, while function names
are nouns ("Element") or noun phrases
("Largest_Element") that describe the
value returned by the function.

Therefore, IMO, "Get" is not a proper
name for a function (unless the program
models animal breeding, and the Get
function returns all the offspring of a
particular animal or pair of animals).

[...]

Importance of
GNAT.Source_Info

From: Jere <jhb.chat@gmail.com>
Subject: Importance of GNAT.Source_Info
Date: Mon, 6 Jan 2020 14:03:54 -0800
Newsgroups: comp.lang.ada

I'm working on a baremetal RTS and
while looking at
https://wiki.osdev.org/Ada_Bare_bones,
one of the files it suggests is part of the
minimum set of RTS files is g-souinf.ads
which contains the package
GNAT.Source_Info.

Does anyone know what part of the
compiler requires this? So far I haven't
had GNAT barf at me for not having it
while compiling the files I do have, but I
don't want to leave it out if it is indeed
necessary for something. I didn't see any
info on why it is necessary. It's definitely
useful in that it gives a lot of compile time
values, but not sure why it would be a
"required" file. I'm assuming something
will break without it, but don't know
what. [...]

From: charlet@adacore.com
Date: Fri, 10 Jan 2020 02:54:18 -0800

This package is completely optional and
standalone, and not used by the compiler
or other runtime units. It's just provided
because it doesn't have any associated
runtime so portable to all GNAT ports
and because it's convenient. You can

safely remove or ignore it if that's
convenient for you.

Peculiarities of "of"
Iteration Syntax

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Subject: Peculiarities of "of" syntax
Date: Sat, 11 Jan 2020 19:05:21 +0100
Newsgroups: comp.lang.ada

[...]

The following GNAT 2019-rejected
examples of iterating with the new "of"
are giving me some pause if this is an
oversight in the feature, a bug in the
compiler, or actually intended for some
good reason:

procedure Pro is
 type Int_Array is array (Positive range <>)
 of Integer;
 Arr : Int_Array (1 .. 10) := (others => 0);
begin
 -- 1)
 for Z of Arr loop -- of course valid
 null;
 end loop;

 -- 2)
 for Z of Int_Array'(Arr & Arr) loop
 -- also works
 null;
 end loop;

 -- INVALID
 -- 3)
 for Z of Arr & Arr loop
 -- Error is "missing loop"
 null;
 end loop;

 -- 4)
 for Z of (Arr & Arr) loop
 -- Error is "name expected"
 null;
 end loop;

end Pro;

The crux of the matter might be in 5.5.2,
where an "iterator_name" appears:

iterator_specification ::=
defining_identifier in [reverse]
iterator_name | defining_identifier
[: subtype_indication] of [reverse]
iterable_name

http://www.ada-auth.org/
standards/rm12_w_
tc1/html/RM-5-5-2.html

[...]

From some other related question [1] I
need to review the master rules in 7.6, but
my first instinct is that 3) and 4) could be
legal if the loop is the master of the
expression.

In conclusion: any insight on what's going
on with 3) and 4)? Thanks!

Ada Pract ice 17

Ada User Journal Volume 41, Number 1, March 2020

[1] https://groups.google.com/d/msg/
comp.lang.ada/veW6BNBGBfo/
gDFwEsyyAgAJ

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Sat, 11 Jan 2020 16:45:07 -0500

The syntax rules require a name after
"of", and neither "Arr & Arr" nor "(Arr &
Arr)" are names. [...]

From: "Alejandro R. Mosteo"
<amosteo@unizar.es>

Date: Sat, 11 Jan 2020 17:38:00 -0800

So the question would be [...] why a name
is required instead of an expression, or
why a qualified expression is good
enough but an unambiguous plain
expression is not.

A normal function call will work there
too, so why not the poor infix operator...

From: Simon Wright
<simon@pushface.org>

Date: Sun, 12 Jan 2020 11:27:22 +0000

This is OK too:

 -- 3a)
 for Z of "&" (Arr, Arr) loop
 null;
 end loop;

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 13 Jan 2020 17:32:36 -0600

[...]

A qualified expression, a type conversion,
and a function call are all "names". You
can always use a qualified expression to
turn any "expression" into a "name".

> A normal function call will work there
too, so why not the poor infix
operator...

The usual reason is that infix operators
would make the grammar ambiguous; that
depends on what follows them. There are
cases where that isn't a problem (this
might be one of them). I don't think
anyone was thinking about using
expressions in this context, the intent was
to iterate over an object.

Of course, Bob is right that the difference
between "name" and "expression" (and
similarly "value" and "object") are minor
enough that it would be nice to eliminate
them. (But it's also a lot of work, and we
decided not to try for Ada 202x.)

Ada 202X Syntax Legibility
Concerns

[This subthread derived from an unrelated
question about counting occurrences of
numbers in a sequence. —arm]

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Re: Tally
Date: Tue, 14 Jan 2020 22:08:07 +0100
Newsgroups: comp.lang.ada

> [...] I would like to get an advice on
how to program in a simple and fast
way the following [...]:

>

> Example_Input: (2, 3, 8, 2, 2, 2, 7, 2, 3,
4, 8) ; -- variable Length

>

> Output by function or procedure: ((2,
5), (3, 2), (8, 2), (7, 1), (4, 1)); --
unknown Length

A lot depends on what restraints the
problem domain puts on the input values.
If you can define something like

 type Input_Number is range 1 .. 10;

then you can do something
straightforward like

 type Count_Map is array (Input_Number)
 of Natural;
 Count : Count_Map := (others => 0);
 Number : Input_Number;
 ...
 loop
 exit when No_More_Numbers;

 Number:= Next_Number;
 Count (Number):= Count (Number) + 1;
 end loop;

If you can't limit the input numbers to a
sufficiently small range that an object like
Count can be declared, then you'll need to
use a map, as Holsti suggested, which is
only a little more complicated.

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Thu, 16 Jan 2020 07:35:28 -0800

In Ada 2020, I think one could use a
container aggregate to initialize the map
to contain the initial objects:

e.g.

 package Count_Maps is new
 Containers.Ordered_Maps
 (Key_Type => Natural,
 Element_Type => Natural);

 Counts : Count_Maps.Map
 := [for I in Input'Range
 when (for all J in Input'First .. I - 1 =>
 Input (I) /= Input (J))
 use I => 0];

The "when" clause should filter the input
to just the unique values.

The "use" clause creates the mapping
between key value and count value
(Initially 0).

Then you could just write:

 for Number of Input loop
 Counts (Number):= Counts (Number) + 1;
 end loop;

To update the counts.

I leave it to the reader to decide whether
this is clearer than what you had, as I
think many would prefer what you had.

For that matter, you could do it all in one
shot and even make the map a constant.

 Counts : constant Count_Maps.Map
 := [for I in Input'Range
 when (for all J in Input'First .. I - 1 =>
 Input (I) /= Input (J))
 use I =>
 [for K in Input'Range when Input
 (K) = Input (I)) => 1]
 'Reduce("+", 0)];

Using a reduction expression to count the
values. But this is definitely quite a
mouthful.

I think if one wanted a constant object, it
would be clearer to write a function that
returns the map container object using a
simpler form of expression to create the
return object.

It would be nice however, if one could
test membership of an array or container
using "in" or "not in" to see if a particular
element value can be found.

Then one could write;

Counts : Count_Maps.Map :=
 [for I in Input'Range when (Input (I) not in
 Input (1 .. I - 1)) use I => 0];

To create the initial map objects, which is
easier to read.

Similarly, it would be nice to apply 'Max
or 'Min to an array or container object,
which could be shorthand forms for
reduction expressions using Ada 2020
syntax to return the largest or smallest
element in the array or container.

e.g.

Put_Line ("Biggest=>" &
 Natural'Image(Input'Max));

But if these ideas have any merit, you'd
have to look past Ada 2020 to a future
version of the language.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 16 Jan 2020 14:20:13 -0600

> Counts : constant Count_Maps.Map

> := [for I in Input'Range

> when (for all J in Input'First .. I -
1 => Input (I) /= Input

> (J))

> use I =>

> [for K in Input'Range when
Input (K) = Input (I)) => 1]

> 'Reduce("+", 0)];

>

> Using a reduction expression to count
the values. But this is definitely quite a
mouthful.

So Ada 202x will allow us to catch up to
C++ and many other "expressive"
languages by allowing us to have "guess
what this code does" contests!! :-)

Compared to Jere's loop, the above is
impenetrable. And it's hard to guess the

18 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

performance of that (I'd have to expand
the aggregate into its underlying
operations to figure out whether it is more
or less expensive than the simple loop
would be).

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 16 Jan 2020 23:00:58 +0100

> Counts : Count_Maps.Map

> := [for I in Input'Range

> when (for all J in Input'First .. I -
1 => Input (I) /= Input (J))

> use I => 0];

I think you want

 use Input (I) => 0

here (and further on). I can figure out
what this does, but I wouldn't call it
clear.

> Counts : constant Count_Maps.Map

> := [for I in Input'Range

> when (for all J in Input'First .. I -
1 => Input (I) /= Input (J))

> use I =>

> [for K in Input'Range when
Input (K) = Input (I)) => 1]

> 'Reduce("+", 0)];

This is getting close to write-only code.

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Thu, 16 Jan 2020 18:51:39 -0800

> > This is getting close to write-only
code.

> Already there.

That'll be the challenge, I think. With
more tools (and new ones) to work with,
one hopes people will end up choosing
the right tool for the job. Some of the new
tools are powerful, and there might be a
tendency to want to use them, but a
simpler tool can get the job done faster
sometimes.

This example feels like using a big new
table saw to slice bread, when a good 'ol
bread knife can get it done faster and
better.

Note that the simple loop accomplishes
the task with a single pass through the
date. The monster expression has 3 levels
of nested loops, so hard to imagine it
would beat the simple loop.

Getter Functions vs Record
Components

[The thread discusses visibility of record
components taking precedence over
functions with the same name when using
dot notation. —arm]

From: reinert <reinkor@gmail.com>
Subject: Is this a bug?
Date: Mon, 30 Dec 2019 07:44:35 -0800
Newsgroups: comp.lang.ada

Hello,

assume the following Ada procedure:

with Text_IO;
procedure test1 is

 package test_package is
 type rec1_t is tagged record
 a : integer := 2;
 -- b : integer := 2;
 end record;
 function a(x : rec1_t) return integer
 is (3);
 rec1 : rec1_t;
 end test_package;

begin
 Text_IO.Put(" test_package.rec1: " &
 Integer'image(test_package.rec1.a));
end test1;

It gives (for my computer):

 test_package.rec1: 2

If I change the statement

 "a : integer := 2;"

to

 "b : integer := 2;"

then I get:

 test_package.rec1: 3

Is this reasonable? Bug?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 30 Dec 2019 20:41:07 +0200

When rec1_t is tagged, the "selected
component" text "test_package.rec1.a"
could refer either to the rec1_t-component
"a" or to the subprogram (function) "a". In
RM 4.1.3(9.1/2) and RM 4.1.3(9.2/3), the
latter case is available only under the
condition that the tagged record type
(rec1_t) does not have a (visible)
component with the name "a". This means
that the ambiguity is resolved in favour of
the component "a", which has the value 2.

One could ask, why is such an ambiguity
not rejected (made illegal)? Probably
because such an illegality rule would have
made illegal many Ada programs that
were legal before the introduction of the
"object.operation" syntax for tagged-
record objects.

If this is a problem for you, you might
check if your compiler has an option to
warn about such cases, or if AdaControl
can do the same.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Tue, 31 Dec 2019 07:08:39 +0100

> If this is a problem for you, you might
check if your compiler has an option to
warn about such cases, or if
AdaControl can do the same.

Not yet, but it's a good idea. I keep it as
an improvement suggestion.

From: reinert <reinkor@gmail.com>
Date: Mon, 30 Dec 2019 11:50:37 -0800

> One could ask, why is such an
ambiguity not rejected (made illegal)?
Probably because such an illegality rule
would have made many illegal many
Ada programs that were legal before
the introduction of the

"object.operation" syntax for tagged-
record objects.

I have had the understanding that the
intention of primitive operations of
tagged (record) types in some way can be
looked at as an extension of the actual
record - especially if one uses the dot
notation. In this case I would expect (at
least) a warning from the compiler.

I discovered the ambiguity when I
accidentally did put in an extra
component in a tagged record and with
the same name as a primitive function of
it (introduced long ago). Then the (old)
primitive function suddenly seemed to
give strange results so after this
experience I will be careful about possible
name collisions between record
components and primitive functions.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 30 Dec 2019 17:16:17 -0600

> One could ask, why is such an
ambiguity not rejected (made illegal)?

> Probably because such an illegality rule
would have made many illegal many

> Ada programs that were legal before the
introduction of the

> "object.operation" syntax for tagged-
record objects.

The other reason is that there isn't any
alternative notation available for
components, whereas there is an
alternative method for function calls.
Ergo, we assume that you mean a
component if both are available --
otherwise, it would be impossible to
access a component at all if there is a
function with the same name visible.
Since that function wouldn't even have to
be in the same scope, there would be a
significant maintenance hazard.

Moral: This is another reason to make
everything a private type (and also to not
use prefixed notation with types that aren't
private).

Generating Files with
GPRbuild

From: mockturtle <framefritti@gmail.com>
Subject: gpr and Makefiles
Date: Mon, 27 Jan 2020 08:22:40 -0800
Newsgroups: comp.lang.ada

I have a question about the interaction
between gprbuild and Makefile. I googled
a bit and found mostly how to use
gprbuild inside a Makefile, but, in a sense,
I am interested in the other way around.

Ada Pract ice 19

Ada User Journal Volume 41, Number 1, March 2020

More precisely, among all my source files
there is one package (say, foo.ads) that is
actually generated by an external file (say,
bar.txt) using a utility (call it "convert").
The matter is a bit more complex, but this
is the core of the issue.

I can express the dependency between
foo.ads and bar.txt in a Makefile like
foo.ads: bar.txt

 convert --from=bar.txt --to=foo.ads

What I would like is having gprbuild
checking if bar.txt is newer than foo.ads;
if it is, run convert and after that proceed
with the actual building.

Is this possible?

I also checked Gem #152
(https://www.adacore.com/gems/gem-
152-defining-a-new-language-in-a-
project-file) about defining a new
language inside a gpr file, but I am not
sure it can be a solution.

Thank you in advance for your help

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 27 Jan 2020 09:49:36 -0800

> [...]

> I also checked Gem #152 [...] about
defining a new language inside a gpr
file, but I am not sure it can be a
solution.

Why not?

Wouldn't you just use

 package Compiler is
 for Driver ("Converter") use "convert";
 for Object_Generated ("Converter")
 use "False";
 --...
 end Compiler;

From: mockturtle <framefritti@gmail.com>
Date: Mon, 27 Jan 2020 12:28:57 -0800

It worked, thank you.

Actually, it was less trivial than I
expected. The main problem was that
gprbuild expects a command line like

<compiler name> <pre-options>
<source> <post-options>

while my command line was

convert <output filename> <input
filename>

However, since convert is actually a Ruby
script I changed it to handle the case
<output>=-c as an "automagical" case
where the output filename is obtained
from the input.

From: briot.emmanuel@gmail.com
Date: Tue, 28 Jan 2020 03:57:51 -0800

gprbuild is pretty weak for generated
code. When I was working at AdaCore,
we had made a nice design to properly
handle this, but I don't know what
happened to that design.

Here, you are trying to generate Ada
code. So when you start gprbuild, it might

quickly compile a unit that depends on
one of the generated Ada packages,
without having generated them already. In
practice, you end up having to run
gprbuild multiple times (once to generate
the files, then to compile everything). A
proper build tool should be able to handle
that automatically in one pass, just by
having a full graph of dependencies.

Catching All Elaboration-
Time Exceptions

From: ahlan@marriott.org
Subject: Last chance handler on a PC
Date: Thu, 30 Jan 2020 00:55:41 -0800
Newsgroups: comp.lang.ada

Does anyone know if it is possible to
install a last chance handler for a PC
program. i.e., write a procedure that gets
called when a program issues an
unhandled exception If it is possible how
do you do it?

From: Egil H H <ehh.public@gmail.com>
Date: Thu, 30 Jan 2020 01:17:15 -0800

You can use the Termination_Handler in
Annex C.7.3 (Added in Ada 2005),
provided your compiler/runtime supports
it.

http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-C-7-3.html

Example usage is discussed in the Ada
2005 Rationale:

https://www.adaic.org/resources/
add_content/standards/05rat/html/
Rat-5-2.html#I1150

From: ahlan@marriott.org
Date: Thu, 30 Jan 2020 11:27:50 -0800

Very interesting but we want to catch all
unhandled exceptions, specifically those
raised during package elaboration.

From: ahlan@marriott.org
Date: Thu, 30 Jan 2020 11:35:56 -0800

To answer my own question...

To catch unhandled exceptions you only
need to write a simple procedure and
export it as __gnat_last_chance_handler.

This is linked into the program in
preference to the default last chance
handler provided by GNAT.

This procedure is called if nothing catches
a raised exception.

Including those raised during package
elaboration.

The procedure is not allowed to return so
after doing whatever it is you want to do
with the exception you must call
__gant_unhandled_terminate

The following is an example.

procedure Last_Chance_Handler
(Occurrence :
Ada.Exceptions.Exception_Occurrence)
 with
 No_Return, Unreferenced, Export,
 Convention => C,

 External_Name =>
 "__gnat_last_chance_handler";

 procedure Last_Chance_Handler
(Occurrence :
Ada.Exceptions.Exception_Occurrence) is
 procedure Unhandled_Terminate
 with
 No_Return, Import,
 Convention => C,
 External_Name =>
 "__gnat_unhandled_terminate";

 begin
 begin
 null; -- Process the exception here.
 exception
 when others =>
 null;
 end;
 Unhandled_Terminate;
 end Last_Chance_Handler;

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 30 Jan 2020 21:02:17 +0100

Doing

Ada.Task_Termination.Set_Specific_Handler
 (T =>
Ada.Task_Identification.Environment_Task,
 Handler => Last_Chance'access);

should do the same thing more portably. It
will be called when the environment task
terminates for any reason; you would only
want it to actually do something when
Cause = Unhandled_Exception.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 30 Jan 2020 22:26:38 +0200

Looks good, but to catch all elaboration-
time exceptions (in other packages) the
package that executes that call, in its own
elaboration code, must be elaborated
before all other packages. Do you have
some easy way to ensure that, without
inserting elaboration pragmas in all other
packages?

I had a similar elaboration problem some
time ago in an embedded application,
where I wanted to set up some HW error-
trap handlers that I would like to be active
also during elaboration, but I found no
easy way to ensure that the trap-handling
package would be elaborated before all
other packages.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 30 Jan 2020 21:51:09 +0100

Of course that call has to be done before
anything that might raise an exception
during elaboration. Usually you'd put it in
its own pkg, and then every other library-
level unit in the system would with it with
a pragma Elaborate_Body for it. If
everything is part of a hierarchy, then
only the spec of the root package of the
hierarchy should need to do that.

20 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

Time Image and ARM
Interpretations

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Ada.Calendar.Formatting.Image
(or Time_Of) changing the time

Date: Mon, 2 Mar 2020 10:49:52 -0800
Newsgroups: comp.lang.ada

Feeding Ada.Calendar.Formatting.Image
with an Ada.Calendar.Time_Of the year,
month, day, seconds on the left, we get
the image on the right. Some images,
marked *, are 1 hour behind.

2015 1 21 32040 (8:54 AM) =>
2015-01-21 08:54:00

2015 1 21 39240 (10:54 AM) =>
2015-01-21 10:54:00

2015 7 21 32040 (8:54 AM) =>
2015-07-21 07:54:00 *

2015 7 21 39240 (10:54 AM) =>
2015-07-21 09:54:00 *

The different input is the month, January
versus July, so it looks like a daylight
savings thing. Is this expected behaviour?
Thanks.

[Compiler = GNAT Community 2018
(20180523-73)]

From: Simon Wright
<simon@pushface.org>

Date: Tue, 03 Mar 2020 14:53:43 +0000

There was a conversation on Ada-
Comment in June last year, in which it
turned out that compiler implementers
may have been misinterpreting the ARM.
It was quite confusing.

Part of the problem is that
Ada.Calendar.Clock, implemented over
the OS facilities, may or may not be in
local time; and how does it treat times
which are not in the 'now' time zone?

[...]

From: Simon Wright
<simon@pushface.org>

Date: Tue, 03 Mar 2020 17:40:06 +0000

Also, see AI95-00160,

http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ais/ai-00160.txt?
rev=1.4&raw=N

[This AI deals with the problem of times
that happen twice at the boundaries of
daylight savings time. —arm]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Tue, 3 Mar 2020 17:49:31 -0600

> There was a conversation on Ada-
Comment in June last year, in which it
turned out that compiler implementers
may have been misinterpreting the
ARM. It was quite confusing.

Not just a conversation, but also a
Binding Interpretation AI (which
therefore applies to Ada 2012 compilers),
AI12-0336-1.

Essentially, the formal definition of
Time_Offset, and the way it was actually
implemented by every compiler except
mine, was completely different. We
decided to match practice, especially as
that matches the way the Internet uses
time offsets. So that part of the RM was
rewritten.

As Dmitry says, the default Time_Offset
on GNAT gives one UTC. If you want
CST or CDT (my time zones, which
change on this coming Sunday), one
needs to use -360 or -300. We've added a
new renaming Local_Time_Image to
make this relatively easy (dunno if GNAT
has it yet).

The advantage of this definition is that the
base UTC time doesn't jump during the
year, but if you are interested in local
time, you have to determine the offset
based on the time-of-year.

Your example suggests that GNAT is
doing something weird with times that are
far away from today. That's certainly not
intended, sounds like a bug to me.
Certainly is a bug with the rewritten rules
for Time_Image.

Enforcing Instantiations at
Library Level

From: Vincent Marciante
<vincent.marciante@l3harris.com>

Subject: Good/best way to enforce library-
level instantiation a generic package

Date: Mon, 16 Mar 2020 11:51:25 -0700
Newsgroups: comp.lang.ada

I made a generic package that I want only
to be instantiated at library level. I'm
working on compile-time a way to
enforce that desire which involves access
type accessibility level checking but have
not yet set it up correctly. Is there a
better/standard way?

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 16 Mar 2020 20:21:16 -0500

For Ada 95, deriving from Controlled
does the trick, but that was eliminated (at
substantial cost) in Ada 2005 and later.

I suppose you could use type
String_Access (which is a library-level
access type) for this:

 with Ada.Strings.Unbounded;
 generic
 ...
 package My_Generic is
 -- Real stuff here.
 Library-Level: constant aliased String
 := "Library-Level";
 Check : Ada.Strings.
 Unbounded.String_Access :=
 Library_Level'Access;
 -- 'Access is illegal if My_Generic is not
 -- instantiated at the library level.
 end My_Generic;

String_Access is a silly type that isn't
used in the spec of
Ada.Strings.Unbounded, and thus
shouldn't be there, but it does work for
this use.

You can of course use any library-level
access type in your program for this
purpose; I picked this one 'cause it is
already sitting around.

From: briot.emmanuel@gmail.com
Date: Mon, 16 Mar 2020 23:29:56 -0700

The way I do this is using gnat-specific
pragmas and attributes:

generic
package Generics is
 pragma Compile_Time_Error
 (not Generics'Library_Level,
 "must be at library level");
 ...
end Generics;

From: Vincent Marciante
<vincent.marciante@l3harris.com>

Date: Tue, 17 Mar 2020 03:15:14 -0700

'Library_Level is nice and clean! It should
be part of the Standard! I am using GNAT
but still have to be compatible with other
compiler so will have to go with
something along the lines of Randy's
suggestion.

 21

Ada User Journal Volume 41, Number 1, March 2020

Conference Calendar
Dirk Craeynest
KU Leuven, Belgium. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

The COVID-19 pandemic had a catastrophic impact on conferences world-wide. Where available, the status of events is
indicated with the following markers: "(c)" = event cancelled, "(p)" = event postponed to a later date, and "(v)" = event is fully
or partially held online.

2020

April 01-03
(p)

20th International Real-Time Ada Workshop (IRTAW'2020). Benicàssim, Spain.
In cooperation with Ada-Europe.

April 15-17
(p)

24th International Conference on Evaluation and Assessment in Software Engineering
(EASE'2020). Trondheim, Norway. EASE'2020 was postponed from 15-17 April 2020 to June 2021.
Topics include: assessing the benefits / costs associated with using chosen development technologies;
empirical studies using qualitative, quantitative, and mixed methods; evaluation and comparison of
techniques and models; replication of empirical studies and families of studies; etc.

April 21-24
(v)

13th Cyber-Physical Systems and Internet of Things Week (CPS Week'2020). Sydney, Australia.
Event includes: 4 top conferences, HSCC, ICCPS, IPSN, and RTAS, as well as up to 20 satellite events,
such as poster and demo sessions, workshops, tutorials, competitions, industrial exhibitions, and summit
forums.

  April 21-24 26th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS'2020). Topics include: research related to embedded systems or timing issues,
ranging from traditional hard real-time systems to embedded systems without explicit
timing requirements, including latency-sensitive systems with informal or soft real-time
requirements; original systems and applications, case studies, methodologies, and
applied algorithms that contribute to the state of practice in the design, implementation,
verification, and validation of embedded systems and time-sensitive systems (of any
size); etc.

April 25-30
(p)

23rd European Joint Conferences on Theory and Practice of Software (ETAPS'2020). Dublin,
Ireland. ETAPS'2020 was postponed from 25-30 April 2020 to fall 2020.

  April 25-30 VerifyThis Verification Competition 2020. Topics include: VerifyThis Collaborative
Long-Term Challenge; no restrictions on verification technology used; at least one team
is using SPARK.

  April 26 12th Workshop on Programming Language Approaches to Concurrency- and
communication-cEntric Software (PLACES'2020). Topics include: general area of
programming language approaches to concurrency, communication, and distribution and
may range from foundational issues, language implementations, to applications and case
studies; design and implementation of programming languages with first class
concurrency and communication; models, such as process algebra and automata;
concurrent data types, objects, and actors; verification and program analysis methods for
concurrent and distributed software; etc.

April 27-30
(v)

15th European Conference on Computer Systems (EuroSys'2020). Heraklion, Crete, Greece. Topics
include: all areas of computer systems research, such as distributed systems, language support and
runtime systems, systems security and privacy, dependable systems, parallelism, concurrency, and

22 Conference Calendar

Volume 41, Number 1, March 2020 Ada User Journal

multicore systems, real-time, embedded, and cyber-physical systems, tracing, analysis, verification, and
transformation of systems, etc.

May 11-13
(c)

ACM International Conference on Computing Frontiers 2020 (CF'2020). Catania, Sicily, Italy.
Topics include: embedded, IoT and cyber-physical systems; large-scale system design and networking;
system software, compiler technologies and programming languages; fault tolerance and resilience;
security; etc.

May 11-15
(v)

12th NASA Formal Methods Symposium (NFM'2020). Moffett Field, California, USA. Topics
include: identifying challenges and providing solutions towards achieving assurance for critical systems;
formal verification, including theorem proving, model checking, and static analysis; run-time
verification; techniques and algorithms for scaling formal methods, such as abstraction and symbolic
methods, compositional techniques, as well as parallel and/or distributed techniques; safety cases and
system safety; formal approaches to fault tolerance; design for verification and correct-by-design
techniques; empirical evaluations of formal methods techniques for safety-critical systems; formal
methods in systems engineering and model-based development; etc.

 May 19-21
(v)

23rd IEEE International Symposium On Real-Time Distributed Computing (ISORC'2020).
Nashville, Tennessee, USA. Topics include: object/component/service-oriented real-time distributed
computing (ORC) technology; software architectures for real-time distributing computing (programming
paradigms, ORC paradigms, object/component models, languages, synchronous languages), trusted and
dependable systems, system software (real-time kernels, operating systems, distribution middleware for
ORC, extensibility, synchronization, resource allocation, scheduling, timing analysis, fault tolerance and
resilience, security, ...), applications (medical devices, intelligent transportation systems, industrial
automation systems and Industry 4.0, Internet of Things and Smart Grids, embedded and cyber-physical
systems in automotive, avionics, autonomous vehicles, consumer electronics, ...), system evaluation
(performance & timing evaluation, dependability, fault detection and recovery time, ...), etc.

May 25-26 23rd International Workshop on Software and Compilers for Embedded Systems (SCOPES'2020)
St. Goar, Germany. Topics include: all aspects of compilation and mapping process of embedded
systems, such as models of computation and programming languages; automatic code parallelization
techniques; mapping and scheduling techniques for embedded multi-processor systems; code generation
techniques for embedded single- and multi-processor architectures; design of real-time systems;
techniques for compiler aided profiling, measurement, debugging and validation of embedded software;
etc.

May 26 Ada-France Webinar. Topics include (in French): découvrir le langage Ada et ses
atouts pour vos développements logiciels.

June 03-05
(c)

20th International Conference on Computational Science (ICCS'2020). Amsterdam, the Netherlands.
Topics include: scientific computing, complex systems - modelling and simulation, parallel and
distributed computing, new programming models, education in computational science, etc.

 June 08-12
(p)

25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-Europe 2020). Santander, Spain. AEiC'2020 was
postponed from 8-12 June 2020 to June 2021. Sponsored by Ada-Europe, in
cooperation with ACM SIGAda, SIGBED, and the Ada Resource Association (ARA).

June 08-12
(v)

21st International Conference on Agile Software and Systems Development (XP'2020). Copenhagen,
Denmark.

 June 09-11
(v)

28th International Conference on Real-Time Networks and Systems (RTNS'2020). Paris, France.
Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-
physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks
modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)
analysis, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), hypervisors, ...), formal specification and verification, real-time distributed
systems (fault tolerance, publisher/subscriber protocols, ...), etc.

Conference Calendar 23

Ada User Journal Volume 41, Number 1, March 2020

 June 16
(v)

21st ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES'2020). London, UK. Topics include: support for enhanced programmer
productivity; support for enhanced debugging, profiling, and exception/interrupt handling; hardware,
system software, application software, and their interfaces; system integration and testing; run-time
system support for embedded systems; support for system security and system-level reliability; validation
and verification, in particular of concurrent and distributed systems; formal foundations of model-based
design for code generation, analysis, verification; architecture for new language features, virtualization,
compilation, debugging tools; empirical studies and their reproduction, and confirmation; etc.

June 18
(v)

European Conference on Software Engineering Education (ECSEE'2020). Seeon Monastery,
Bavaria, Germany.

June 22-26
(p)

Software Technologies: Applications and Foundations (STAF'2020). Bergen, Norway. STAF'2020
was postponed from 22-26 June 2020 to June 2021.

 June 22-26 14th International Conference on Tests And Proofs (TAP'2020). Topics include:
many aspects of verification technology, including foundational work, tool
development, and empirical research; the connection between proofs (and other static
techniques) and testing (and other dynamic techniques); verification and analysis
techniques combining proofs and tests; program proving with the aid of testing
techniques; deductive techniques supporting the automated generation of test vectors
and oracles; deductive techniques supporting novel definitions of coverage criteria;
program analysis techniques combining static and dynamic analysis; testing and runtime
analysis of formal specifications; verification of verification tools and environments;
applications of test and proof techniques in new domains, such as security, configuration
management, learning; combined approaches of test and proof in the context of formal
certifications (Common Criteria, CENELEC, ...); case studies, tool and framework
descriptions, and experience reports about combining tests and proofs; etc.

June 23-26
(v)

26th International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ'2020). Pisa, Italy. REFSQ'2020 was postponed from 24-27 March to a virtual event on
23-26 June.

July 06 - 11
(v)

42nd International Conference on Software Engineering (ICSE'2020). Seoul, South Korea.
ICSE'2020 was postponed from 23-27 May to June 27 – July 19. Topics include: the full spectrum of
Software Engineering.

 July 7-10 Software Engineering Education and Training (SEET'2020). Topics include: novel
methods of teaching software engineering skills, empirical studies describing software
engineering education contexts, novel learning technologies that support software
engineering education and training, well-substantiated arguments about what skills are
most essential to learn, etc.

 July 13 8th International Conference on Formal Methods in Software Engineering
(FormaliSE'2020). Topics include: approaches and tools for verification and validation;
application of formal methods to specific domains, e.g. autonomous, cyber-physical, and
IoT systems; scalability of formal methods applications; integration of formal methods
within the software development lifecycle formal specification; model-based
engineering approaches; formal methods in a certification context; formal approaches
for safety and security-related issues; usability of formal methods; guidelines to use
formal methods in practice; case studies developed/analyzed with formal approaches;
experience reports on the application of formal methods to real-world problems; etc.

 June 28-30 3rd International Conference on Technical Debt (TechDebt'2020). Topics include:
the business case for technical debt management; understanding causes and effects of
technical debt; technical debt management within software life-cycle management;
technical debt in design and architecture; technical debt and software evolution,
maintenance, and aging; concrete practices and tools used to manage technical debt; debt
remediation and refactoring; technical debt and quality attributes, such as security
(especially at run-time); technical debt in (ultra-) large-scale systems, ecosystems,
platforms and product lines; success and failure stories of technical debt management;
education and training related to technical debt; etc.

24 Conference Calendar

Volume 41, Number 1, March 2020 Ada User Journal

July 07-10
(v)

32nd Euromicro Conference on Real-Time Systems (ECRTS'2020). Modena, Italy.

July 07 5th Workshop on Security and Dependability of Critical Embedded Real-Time
Systems (CERTS'2020). Topics include: the intersection of security and dependability
of embedded and real-time systems, with an emphasis on criticality and distribution.
Deadline for submissions: April 16, 2020.

 July 13-17 34th European Conference on Object-Oriented Programming (ECOOP'2020). Berlin, Germany.
Topics include: design, implementation, optimization, analysis, and theory of programs, programming
languages, and programming environments.

July 13-17
(v)

44th Annual IEEE Conference on Computers, Software and Applications (COMPSAC'2020).
Madrid, Spain. Deadline for submissions: April 9, 2020 (workshop papers).

July 13-17
(v)

14th ACM/IFIP International Conference on Distributed Event-Based Systems (DEBS'2020).
Montreal, Quebec, Canada. Topics include: systems dealing with collecting, detecting, processing and
responding to events through distributed middleware and applications; embedded systems, real-time
analytics, complex event processing, distributed programming, security, reliability and resilience,
Internet-of-Things, cyber-physical systems, etc. Deadline for submissions: May 10, 2020 (posters,
demos, doctoral symposium papers).

 August 19-21 26th IEEE International Conference on Embedded Real-Time Computing Systems and
Applications (RTCSA'2020). Gangnueng, South Korea. Topics include: real-time scheduling, timing
analysis, programming languages and run-time systems, middleware systems, applications and case
studies of IoT and CPS, cyber-physical co-design, multi-core embedded systems, fault tolerance and
security, etc. Deadline for submissions: April 14, 2020 (papers), June 1, 2020 (student session).

August 26-28 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2020).
Portoroz, Slovenia. Topics include: information technology for software-intensive systems; conference
tracks on Embedded Systems and the Internet of Things (ES-IoT), Software Process and Product
Improvement (SPPI), Model-Driven Engineering and Modeling Language (MDEML), etc.; special
sessions on Cyber-Physical Systems (CPS), Software Engineering and Technical Debt (SEaTeD), etc.

September 01-04
(v)

31st International Conference on Concurrency Theory (CONCUR'2020). Vienna, Austria. Topics
include: semantics, logics, verification and analysis of concurrent systems; basic models of concurrency;
verification and analysis techniques for concurrent systems such as abstract interpretation, atomicity
checking, model checking, race detection, run-time verification, static analysis, testing, theorem proving,
type systems, security analysis, ...; distributed algorithms and data structures; theoretical foundations of
architectures, execution environments, and software development for concurrent systems such as
multiprocessor and multi-core architectures, compilers and tools for concurrent programming,
programming models such as component-based, object-oriented, ...; etc. Deadline for submissions: April
28, 2020 (abstracts), May 6, 2020 (papers).

September 02-03
(v)

25th International Conference on Formal Methods for Industrial Critical Systems (FMICS'2020).
Vienna, Austria. Co-located with CONCUR'2020 and FORMATS'2020. Topics include: case studies and
experience reports on industrial applications of formal methods, focusing on lessons learned or
identification of new research directions; methods, techniques and tools to support automated analysis,
certification, debugging, descriptions, learning, optimisation and transformation of complex, distributed,
real-time, embedded, mobile and autonomous systems; verification and validation methods that address
shortcomings of existing methods with respect to their industrial applicability (e.g., scalability and
usability issues); impact of the adoption of formal methods on the development process and associated
costs; application of formal methods in standardisation and industrial forums. Deadline for submissions:
May 8, 2020 (abstracts), May 15, 2020 (papers).

September 06-09 15th Federated Conference on Computer Science and Information Systems (FedCSIS'2020). Sofia,
Bulgaria. Event includes: Language Technologies and Applications (5th Workshop LTA'20), Scalable
Computing (11th Workshop WSC'20), Cyber Security, Privacy and Trust (1st International Forum
NEMESIS'20), Advances in Software and System Engineering (ASSE'20), Cyber-Physical Systems (7th
Workshop IWCPS'20), Lean and Agile Software Development (4th International Conference LASD'20),
Model Driven Approaches in System Development (6th Workshop MDASD'20), Software Engineering
(40th IEEE Workshop SEW'20), etc. Deadline for submissions: May 15, 2020 (papers), June 9, 2020
(position papers).

Conference Calendar 25

Ada User Journal Volume 41, Number 1, March 2020

September 09-11 13th International Conference on the Quality of Information and Communications Technology
(QUATIC'2020). Faro, Portugal. Topics include: all quality aspects in ICT systems engineering and
management; quality in ICT process, product and applications domains; practical studies; etc. Tracks on
ICT verification and validation, safety, security and privacy, model-driven methods, agile methods,
evolution in ICT / reengineering and refactoring, evidence-based software quality engineering, software
quality education and training, etc. Deadline for submissions: May 25, 2020 (short papers).

September 14-18
(v)

18th International Conference on Software Engineering and Formal Methods (SEFM'2020).
Amsterdam, the Netherlands. Topics include: software development methods (software evolution,
maintenance, re-engineering, and reuse ...), design principles (programming languages, abstraction and
refinement, ...), software testing, validation, and verification (model checking, theorem proving, and
decision procedures; testing and runtime verification; other light-weight and scalable formal methods;
...), security and safety (security, privacy, and trust; safety-critical, fault-tolerant, and secure systems;
software certification), applications and technology transfer (real-time, hybrid, and cyber-physical
systems; education; ...), case studies, best practices, and experience reports. Deadline for submissions:
April 27, 2020 (abstracts), May 4, 2020 (papers).

September 15-18 39th International Conference on Computer Safety, Reliability and Security (Safecomp'2020).
Lisbon, Portugal. Topics include: all aspects related to the development, assessment, operation and
maintenance of safety-related and safety-critical computer systems; formal modelling, verification and
validation; model-driven engineering; security and privacy protection mechanisms; safety/security co-
engineering and risk assessment; testing, verification and validation methods & tools; qualification,
assurance and certification methods & tools; cyber-physical threats and vulnerability analysis; safety and
security guidelines, standards and certification; etc. Domains of application include: railways,
automotive, space, avionics & process industries; highly automated and autonomous systems;
telecommunication and networks; safety-related applications of smart systems and IoT; critical
infrastructures; medical devices and healthcare; surveillance, defense, emergency & rescue; logistics,
industrial automation, off-shore technology; education & training; etc. Deadline for submissions: May
28, 2020 (position papers).

September 20-25 Embedded Systems Week 2020 (ESWEEK'2020). Hamburg, Germany. ESWEEK'2020 was moved
from October 11-16 in Shanghai, China, to September 20-25 in Hamburg, Germany. Deadline for
submissions: April 3, 2020 (Journal Track abstracts), April 17, 2020 (Journal Track full papers,
workshops), May 1, 2020 (tutorials, special sessions), June 5, 2020 (Work-in-Progress papers), July 13,
2020 (PhD Student Forum extended abstracts).

 Sep 20-25 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES'2020). Topics include: latest advances in compilers and
architectures for high-performance, low-power, and domain-specific embedded
systems; compilers for embedded systems; multi- and many-core processors, GPU
architectures, reconfigurable computing including FPGAs and CGRAs; security,
reliability, and predictability (secure architectures, hardware security, and compilation
for software security; architecture and compiler techniques for reliability and aging;
modeling, design, analysis, and optimization for timing and predictability; validation,
verification, testing & debugging of embedded software); Trusted IoT Day; etc.

 Sep 20-25 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS'2020). Topics include: system-level design, hardware/software co-
design, modeling, analysis, and implementation of modern embedded and cyber-
physical systems, from system-level specification and optimization to system synthesis
of multi-processor hardware/software implementations.

 Sep 20-25 ACM SIGBED International Conference on Embedded Software (EMSOFT'2020).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which compose computation, networking,
and physical dynamics.

September 21-24 39th International Symposium on Reliable Distributed Systems (SRDS'2020). Shanghai, China.
Topics include: distributed systems design, development and evaluation, with emphasis on reliability,
availability, safety, dependability, security, and real-time. Deadline for submissions: April 27, 2020
(workshops), May 8, 2020 (abstracts), May 15, 2020 (full papers).

26 Conference Calendar

Volume 41, Number 1, March 2020 Ada User Journal

September 21-25 35th IEEE/ACM International Conference on Automated Software Engineering (ASE'2020).
Melbourne, Australia. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; testing, verification, and
validation; software analysis; empirical software engineering; maintenance and evolution; software
security and trust; program comprehension; software architecture and design; reverse engineering and
re-engineering; model-driven development; specification languages; software product line engineering;
etc. Deadline for submissions: April 17, 2020 (research track abstracts), April 24, 2020 (research track
papers, tutorials), May 29, 2020 (most other tracks).

September 22-24 19th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SOMET'2020). Kytakyushu, Japan. Topics include: state-of-art and new trends on software
methodologies, tools and techniques; software methodologies, and tools for robust, reliable, non-fragile
software design; software developments techniques and legacy systems; automatic software generation
versus reuse, and legacy systems; software evolution techniques; Agile Software and Lean Methods;
formal methods for software design; software maintenance; software security tools and techniques;
formal techniques for software representation, software testing and validation; software reliability;
Model Driven Development (DVD), code centric to model centric software engineering; etc.

October 06-09 20th International Conference on Runtime Verification (RV'2020). Los Angeles, California, USA.
Topics include: monitoring and analysis of the runtime behaviour of software and hardware systems.
Application areas include cyber-physical systems, safety/mission critical systems, enterprise and systems
software, cloud systems, autonomous and reactive control systems, health management and diagnosis
systems, and system security and privacy. Deadline for submissions: May 18, 2020 (abstracts), May 25,
2020 (papers, tutorials).

October 24-28 13th IEEE International Conference on Software Testing, Verification and Validation (ICST'2020).
Porto, Portugal. ICST'2020 was postponed from 23-27 March to 24-28 October. Topics include: manual
testing practices and techniques, security testing, model based testing, test automation, static analysis and
symbolic execution, formal verification and model checking, software reliability, testability and design,
testing and development processes, testing in specific domains (such as embedded, concurrent,
distributed, ..., and real-time systems), testing/debugging tools, empirical studies, experience reports, etc.

November 08-13 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE'2020). San Francisco, California, USA. Topics include: agile
software development; component-based software engineering; configuration management and
deployment; cyber physical systems; debugging; dependability, safety, and reliability; education;
embedded software; emerging domains of software; empirical software engineering; formal methods;
middleware, frameworks, and APIs; mining software engineering repositories; model-driven
engineering; parallel, distributed, and concurrent systems; program analysis; program comprehension;
program repair; programming languages; refactoring; reverse engineering; safety-critical systems;
scientific computing; security, privacy and trust; software architecture; software economics and metrics;
software evolution and maintenance; software modeling and design; software process; software product
lines; software reuse; software testing; software visualization; specification and modeling languages;
tools and environments; traceability; validation and verification; etc. Deadline for submissions: April 1,
2020 (workshops), May 5, 2020 (industry - full papers), June 19, 2020 (doctoral symposium, tool demos),
June 26, 2020 (student research competition), June 30, 2020 (Journal First - full papers).

November 09-11 19th International Conference on Software Reuse (ICSR'2020). Hammamet, Tunisia. Theme: "Reuse
in emerging software engineering practices". Topics include: new and innovative research results and
industrial experience reports dealing with all aspects of software reuse within the context of the modern
software development landscape. Deadline for submissions: June 19, 2020 (research paper abstracts),
July 3, 2020 (full papers).

November 09-12 32nd International Conference on Software Engineering Education and Training (CSEET'2020).
Munich, Germany. CSEET'2020 was postponed from 28-31 July to 9-12 November. Topics include:
Teaching formal methods (TFM), Teaching "real world" SE practices (TRW), Software quality assurance
education (SQE), Global and distributed SE education (GDE), Open source in education (OSE),
Cooperation between Industry and Academia (CIA), Training models in industry (TMI), Continuous
education (CED), Methodological aspects of SE education (MAE), etc.

 November 15-20 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2020). Chicago, USA. Topics include: all aspects of software construction, at the

Conference Calendar 27

Ada User Journal Volume 41, Number 1, March 2020

intersection of programming, languages, and software engineering. Deadline for submissions: April 1,
2020 (SPLASH workshops), April 15, 2020 (PACMPL Issue OOPSLA), April 22, 2020 (Static Analysis
Symposium abstracts), April 23, 2020 (Onward! papers), April 24, 2020 (Static Analysis Symposium
papers), May 23, 2020 (Onward! essays), June 11, 2020 (DLS - Dynamic Languages Symposium), June
21, 2020 (GPCE abstracts - Generative Programming: Concepts & Experiences, SLE abstracts - Software
Language Engineering), June 28, 2020 (GPCE papers - Generative Programming: Concepts &
Experiences, SLE papers - Software Language Engineering), July 10, 2020 (SPLASH-E), July 15, 2020
(Doctoral Symposium, Student Research Competition abstracts), Augustus 7, 2020 (PLMW Travel Grant
Applications - PL Mentoring Workshop), Augustus 10, 2020 (posters), September 1, 2020 (student
volunteer applications).

November 16-20 23rd Ibero-American Conference on Software Engineering (CIbSE'2020). Curitiba, Brazil.
CIbSE'2020 was postponed from 4-8 May to 16-20 November.

November 25-27 21st International Conference on Product-Focused Software Process Improvement
(PROFES'2020). Turin, Italy. Topics include: experiences, ideas, innovations, as well as concerns related
to professional software development and process improvement driven by product and service quality
needs. Deadline for submissions: June 5, 2020 (full research paper abstracts, workshops), June 12, 2020
(full research papers), July 31, 2020 (short papers, industry papers, tutorials), August 7, 2020 (Journal-
First papers).

December 11-14 20th IEEE International Conference on Software Quality, Reliability and Security (QRS'2020).
Macau, China. QRS'2020 was postponed from 27-31 July to December 11-14. Topics include: reliability,
security, availability, and safety of software systems; software testing, verification, and validation;
program debugging and comprehension; fault tolerance for software reliability improvement; modeling,
prediction, simulation, and evaluation; metrics, measurements, and analysis; software vulnerabilities;
formal methods; operating system security and reliability; benchmark, tools, industrial applications, and
empirical studies; etc. Deadline for submissions: April 10, 2020 (regular and short papers), May 15, 2020
(workshop papers), June 10, 2020 (fast abstracts, industry track, posters).

 December 01-04 41st IEEE Real-Time Systems Symposium (RTSS'2020). Houston, Texas, USA. Deadline for
submissions: July 2, 2020 (submissions).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2021

January 18-20 16th International Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC'2021). Budapest, Hungary. Topics include: computer architecture, programming
models, compilers and operating systems for embedded and general-purpose systems. Deadline for
submissions: June 30, 2020 (workshops, tutorials).

June 07-11 25th Ada-Europe International Conference on Reliable Software
Technologies (AEiC 2021 aka Ada-Europe 2021). Santander, Spain. AEiC'2020 was
postponed from 8-12 March 2020 to June 2021. Sponsored by Ada-Europe.

October 10-15 Embedded Systems Week 2021 (ESWEEK'2021). Shanghai, China. The venues for ESWEEK 2020
and 2021 were swapped. ESWEEK 2020 will now be held in Hamburg, Germany from September 20-
25, 2020, and ESWEEK 2021 will be held in Shanghai, China from October 10-15, 2021.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

28

Volume 41, Number 1, March 2020 Ada User Journal

Join Ada-Europe!

Become a member of Ada-Europe and support Ada-
related activities and the future development of the
Ada programming language.

Membership benefits include receiving the quarterly
Ada User Journal and a substantial discount when
registering for the annual Ada-Europe conference.

To apply for membership, visit our web page at

http://www.ada-europe.org/join

Forthcoming Events 29

Ada User Journal Volume 41, Number 1, March 2020

Saturday, 21 March 2020

AEiC 2020 – Notice of Cancellation

The containment measures put in place on a world scale against the COVID‐19 pandemic, which is affecting us
all so severely, have taken precedence in everybody’s personal and professional life. The consequent regulations
issued by national governments and public health authorities in the regard of public gatherings, oblige us to
cancel the Ada‐Europe International Conference 2020 (AEiC 2020), scheduled for 8‐12 June 2020, in Santander,
Spain.

Consequent to that obligation, the organizing committee and its principal sponsor Ada‐Europe have made a
number of decisions, which we wish to share with authors, sponsors, participants and any other interested
parties.

In regard to the calendar of events promoted by Ada‐Europe:

 Santander, Spain, will be the venue of the next Ada‐Europe International Conference on Reliable
Software Technologies in June 2021.

 The venue originally earmarked for the 2021 edition of the AEiC, Ghent, Belgium, will be the prime
candidate to host the 2022 edition of the conference.

 Selected elements of the technical program of the 2020 conference program will be considered for
presentation at an Ada event co‐organized with the International Real‐Time Ada Workshop (IRTAW
2020), now tentatively postponed to late October 2020, near Valencia, Spain. The details of that event
will be announced in due course, contingent on the lifting of current sanitary restrictions.

In regard to the elements of the 2020 conference program:

 The processing of the Journal‐track submissions continues seamlessly, with a view to ensuring prompt
open‐access publication to those that gain acceptance. The authors of the accepted papers will be
invited to present their work at the 2021 conference.

 The authors of the Industrial Presentations that are accepted after review will be invited to forward
their work to the Ada User Journal for immediate publication.

 The call for Work‐in‐Progress submissions is cancelled. The prospective authors are invited to forward
their work to the Ada User Journal for consideration.

We express our heartfelt friendship to all members of our community and their families in these difficult times,
and look forward to the restoration of a safe normality.

See you all soon!

The Ada‐Europe Board

 31

Ada User Journal Volume 41, Number 1, March 2020

From Byron to the Ada Language
John Barnes
11 Albert Road, Caversham, Reading, RG4 7AN, UK; Tel: +44 118 947 4125; email: john@jbinformatics.co.uk

Abstract

This is a slightly polished version of an extended
version of a talk given by the author at a Symposium
in Oxford to celebrate the 200th birthday of Ada
Lovelace in December 2015. It starts with a few
words about Byron and his Bear at Cambridge. This
is followed by some remarks about Babbage who also
went to Cambridge and was involved in an important
event involving Brunel and Safety on the Railways.
The main topic is a look at the events that led to the
new programming language devised to satisfy the
needs of the US Department of Defense and which
was named Ada in recognition of the fact that Ada
Lovelace was the world's first programmer. The
polishing is in celebration of 40 years of the Ada User
Journal.

Keywords: Byron, Babbage, Ada.

1 Byron and his Bear

Byron went up to Trinity College, Cambridge in July 1805.
He graduated as an MA in 1808. However, as a Noble he
did not have to take any examinations in order to graduate
but just had to stay in residence for the required number of
terms (presumably nine as it is now). He did not graduate
with honours as a BA as would happen to mere commoners
but jumped straight to MA.

Incidentally, an important examination at Cambridge is
known as a tripos. Thus the examination for mathematics
is the Maths Tripos. The name derives from the fact that
originally the examination started with a viva and the
student sitting on a three-legged stool.

Another curiosity of the time was that one had to take the
Maths Tripos before any other. Thus if one wanted to read
Classics or Theology then one had to pass the Maths Tripos
with honours first. Seems very sensible to me. Apart from
Classics and Theology there probably wasn't anything else
one could read. The sciences had not been discovered much
so there was no Natural Philosophy. But the Maths Tripos
did cover a lot of mechanics and optics (remember that
Newton was keen on mechanics and optics).

Byron wanted to have a dog in college but dogs were (and
still are) forbidden. Other animals are permitted and cats
are common. So Byron decided that he wanted a Bear. It is
quite clear that he did indeed have a Bear but there is some
doubt about where Bruin was kept. Now according to John
M F Wright who came up to Trinity in 1813 and writing
much later in his anonymously published book, Alma
Mater, in 1827, he says that Byron kept Bruin in Great
Court. And then

"When Lord Byron was at Trinity, he kept in rooms on this
staircase, round which you might drive a coach and six, and
had, moreover, the use of the small Hexagonal one in the
tower."

He is referring to K staircase in Great Court which has a
tower/turret which contains a spiral staircase. K staircase
and the diagonally opposite A staircase are in corners of
the court. Figure 1 is a view of Great Court from the foot
of K staircase showing clearly the opposite A staircase and
its tower. Note the fountain in the centre of the court; the
Master's lodge is to the left of A staircase. Figure 2 shows
K staircase (with roadworks).

Figure 1. Great Court from K staircase

Figure 2. The turret at K staircase

The "hexagonal" room Wright refers to is at the top of the
tower. If Byron did live on K staircase then he probably
lived in a room on the first floor. Indeed K6 (with window

32 From Byron to the Ada Language

Volume 41, Number 1, March 2020 Ada User Journal

open in the figure) is the best room although it would be
tricky to drive a coach and six around it!

About 150 years later, by a strange coincidence, I was an
undergraduate at Trinity, Cambridge and in my last year, I
lived in Great Court in K6. I was told that I could well be
living in Byron's old rooms. However, there was no sign of
bears having been in the top of the turret which is now a
toilet.

Further evidence is suggested by an item in a small book
entitled The Night Climber's Guide to Trinity published in
1960. The K corner is known as Mutton-Hole corner for
some reason and the book gives guidance on clambering on
the roof around it. It says "The Mutton-hole Trail is a long
stretch of leads running to the tower of the same name,
where Byron once kept his bear." Moreover, this item is
prefaced by

"Lo! dusky masses steal in dubious sight
Along the leaguered wall."

 Byron, Don Juan, Canto VII

However, I am told by the college archivist that this story
regarding the bear is almost certainly not true. As a Noble
he would have had extra posh rooms and it is thought that
he probably lived in I1 Nevile's Court. Posh but cold. But
the bear was real and probably lived in Rams yard where
Byron kept his horses.

It is a mystery to me as to why Wright wrote a fanciful story
about the bear. Most of his book seems truthful, it contains
descriptions of examination papers and advice to parents
on which college to choose for their son. Maybe Byron kept
the bear temporarily in that turret until it was moved. Some
details of Wright and his career will be found in Mr
Hopkins' Men, by Alex Craik. Mr Hopkins crammed
students for the Maths Tripos including many Senior
Wranglers. A wrangler is someone who obtains a First in
the Maths Tripos and a Senior Wrangler is one who is top
of the list in that year. Mr Hopkins' successes included G
G Stokes (fluid dynamics) and Arthur Cayley (matrices)
who were Senior Wranglers in 1841 and 1842 respectively;
also J J Sylvester (geometry and Second Wrangler in
1837). Another was J W Colenso (Second Wrangler in
1836) who became Bishop of Natal. Colenso wrote a jolly
book on arithmetic; the 1886 edition has an interesting
appendix on decimalization.

Anyway, it seems that Wright broke some regulation
(perhaps due to being gored by a bull) that prevented him
from taking the Maths Tripos although he was a good
mathematician and it was likely he would have been a high
wrangler.

One curious loose end is that the turrets in Great Court are
not hexagonal at all. They appear to be octagonal but a
close inspection from above shows that the internal corner
is in fact a right angle so there are only seven sides and thus
the turret is an irregular heptagon. (There is a good jigsaw
from Wentworth Wooden Puzzles which clearly shows this
fact, see www.wentworthpuzzles.com.)

Byron seems to have achieved little academically while in
Cambridge but wrote some poetry and generally had a good
social life. He did many things that undergraduates do, he
suffered being thrown into the fountain which is a fate that
befalls many (it's a bit cold but not too deep as I remember).

Regarding pets it is interesting to note that Lady Butler, the
Master’s wife around 1970 had a pet. It looked remarkably
like a dog and made barking noises much like a dog.
Nevertheless, it was classified as a cat and thus permitted!

Years ago, at the assizes, the judge used to stay in A1 in
Great Court which is adjacent to the Master's lodge. This is
a magnificent room with a glorious bed with silken back
embroidered with the letters VR (Queen Victoria slept
here). Some years ago it was available as a guest room.
Several old chums hired it (in about 1970) for a nostalgic
weekend. After a jolly evening they were playing draughts
(checkers) by jumping from square to square of the
patterned carpet. This disturbed Lady Butler in the Lodge
above who came down in her nightgown via a secret door
to investigate.

2 Babbage

Charles Babbage was also an undergraduate at Trinity. He
came up in 1810 but transferred for some reason to
Peterhouse in 1812. Babbage also did not take the Tripos
exam for other reasons. In those days, the exam started with
a viva with the student sitting on a stool while being asked
questions by the Examiner. It is reported that Babbage was
unpleasant and maybe blasphemous and was not allowed
to sit the examination. He was given an ordinary degree in
1814.

It is conjectured that maybe Babbage deliberately had
himself rejected since he did not want to take the exam for
fear of being beaten by Herschel from St John's College.
Indeed, Herschel was Senior Wrangler in 1813 and the
Second Wrangler was Peacock of Trinity. John Herschel
was later involved in the discovery of the planet Neptune.
George Peacock later became Dean of Ely and supervised
the restoration of the cathedral.

Babbage was grumpy concerning the educational state of
affairs at the time and formed the Analytical Society with
Herschel and Peacock while they were all still
undergraduates. This society was eventually instrumental
in stimulating modernization. As we know, Babbage was
also grumpy with the government many years later
regarding the funding of his Analytical Engine.

Babbage was appointed Lucasian professor of mathematics
(the same chair that Newton held several centuries earlier)
from 1828 to 1839 but never lectured. Incidentally, Newton
lived in E staircase in Great Court.

3 Babbage and Brunel

Babbage was a consultant to Brunel during the construction
of the Great Western Railway (GWR often known as God’s
Wonderful Railway). I gather that he was instrumental in
helping Brunel over the matter of the gauge which was set
at 7 feet as opposed to the standard gauge of 4 feet and 8½

J. Barnes 33

Ada User Journal Volume 41, Number 1, March 2020

inches as in Roman chariots and used by most railways.
The advantage of the broad gauge is that it permits higher
speeds and greater comfort. Moreover, the line from
London to Bristol is very level and straight and trains did
go like the clappers for the time. Indeed, when the HST
diesel trains were introduced on that line in 1975, they were
the fastest passenger trains in the world outside Japan and
ran at 200kph (125 mph).

Sadly, the force of standardization saw the broad gauge
replaced in 1892 by standard gauge throughout. It is
interesting to note that the first London Underground
railway from Paddington to Farringdon was originally
broad gauge and steam hauled from 1863.

As a senior consultant, Babbage was entitled to a company
train. These days a senior consultant might have a company
car. In those days one might have expected a company
horse. But Babbage had rights to a company train!

In 1838, the railway only went from Paddington to
Maidenhead. A scary event is described in Red for Danger
by L T C Rolt and in Vol 1 of History of the Great Western
Railway by E T MacDermot. Briefly, one Sunday morning
Babbage arrives at Paddington and demands his train and
is told that nothing else is about so he can use either line.
He is just about to set out when Brunel arrives
unexpectedly in his own special train that he has taken from
Maidenhead. Imagine the disaster if they had met and been
on the same line.

The story would have been more dramatic if at night and
Babbage was going to Maidenhead to meet a lady at the
then notorious Skindles hotel. And we can imagine Brunel
having galloped into Maidenhead sweaty from surveying
the Sonning cutting and eager to go to his London club for
a late dinner. They might have seen each other approaching
in the darkness at a closing speed of around 100 mph and
prayed they were not on the same track.

Indeed, if they had crashed and Babbage had died that
fateful day quite early in his collaboration with Ada
Lovelace, then there would have been no analytical engine,
it would have been the end of working with Ada Lovelace,
our language would not be called Ada, the symposium
would not have been held and so you would not be reading
this paper.

This incident and others laid the thought of the need for
safety on the railways through signalling. Even today,
railways are one of the few industries who seem to care
about software correctness. Another is avionics.

And now I will turn at last to the matter of events leading
to the beautiful Ada language. There were initially two
threads of activity, one in Europe and one in the US.

4 LTPL-E

In the mid 1970s, a number of different programming
languages were in use in Europe for process control and
similar embedded system applications. They included
Coral 66 from the UK Ministry of Defence, RTL/2 from
Imperial Chemical Industries, LTR in France (RTL

backwards), and Pearl in Germany. The European
Commission felt that it would be a good idea if the same
language could be used throughout Europe and so
supported many meetings aimed at defining the basis for a
new language. This was perhaps the first stirrings of the
objective of ever closer union.

Most meetings were in Brussels and the attendees enjoyed
excellent lunches helping to reduce the wine lake and beef
mountain which were a problem at the time. The meetings
were useful in identifying the requirements for a successor
language.

Eventually, the post of chief designer was advertised in the
Sunday Times to lead such a development known as LTPL-
E (Long Term Procedural Language – Europe). It is said
that all those who attended interviews to lead LTPL-E
advised that Europe should join with the US in a common
development. And indeed the two efforts were merged.

5 The HOL project

In the United States they too thought that there were too
many languages. Examples included the Air Force's Jovial
(Jules Own Version of the International Algorithmic
Language which was based on Algol 58), the Navy's CMS-
2 and the Army's Tacpol to name but a few.

Accordingly, the High Order Language project was
established under the leadership of Col. William Whitaker.
The management team included Philip Wetherall of RSRE
(the Royal Signals and Radar Establishment) at Great
Malvern in England and David Fisher of IDA (Institute for
Defense Analyses) in the US. The first task of the project
was to decide what it was all for, that is to define the
Requirements. That was an excellent idea – too many
projects bash ahead doing something without firmly
knowing what it is all for.

So requirements documents emerged and were refined
after much deliberation. They were called
Strawman, Woodman, Tinman, Ironman, and finally
Steelman. A sample of Steelman is shown in
Figure 3. Note the relatively abstract level of the
requirements. These documents are available at
http://iment.com/maida/computer/redref/index.htm.

Figure 3 A sample of Steelman

6 The competition

Four contracts were let for initial designs. They were
colour-coded to preserve anonymity to ensure unbiased
evaluations. They were as follows:

Green: Honeywell, notionally in Minneapolis but the
work was really done at CII-Honeywell-Bull in Versailles.
The leader was Jean Ichbiah (now sadly deceased).

34 From Byron to the Ada Language

Volume 41, Number 1, March 2020 Ada User Journal

Red: Intermetrics in Boston. The leader was Ben Brosgol
who has recently retired from AdaCore.

Blue: Softech also in Boston. The leader was John
Goodenough who has recently retired (he tells me) after
many years at the Software Engineering Institute in
Pittsburgh.

Yellow: SRI in Silicon Valley. The leader was Jay Spitzen
and he was assisted by many academic consultants.

The four initial drafts are shown in Figure 4. As you can
see they are completely anonymous.

Figure 4. The colourful initial drafts

After one year, Blue and Yellow were eliminated. Blue was
interesting but considered somewhat strange. Yellow was
rejected largely because it failed to meet the requirements.

Green and Red were then given another year to refine their
designs. Red somewhat changed direction and leader and
was considered overly ambitious whereas Green
consolidated its position.

Green was acclaimed the winner in 1979.

7 The name

The project had gone to plan apart from one vital thing and
that was that choosing a name for the new language had not
happened.

Eventually, in a wine bar in Paris, a group of management
team members chose the name Ada. I understand that the
reasons were roughly as follows:

The Pascal language (one of the baselines for Ada) was
named after the famous French mathematician Blaise
Pascal (1623–1662) well known for his triangle (of
binomial coefficients) and his theorem about a hexagon
inscribed in a conic. So a good idea to name the new
language after a person.

They wanted to honour a woman. Grace Hopper had done
much for COBOL.

Ada Lovelace was clearly the world's first programmer. So
the name Ada was proposed. Permission was sought from
her descendant, the 4th Earl of Lytton. Philip Wetherall
from the MoD wrote to the Earl on 10th October 1978. The
Earl replied on the 18th to say Yes and observed

 that ADA was at the heart of RADAR

But do remember that we always write Ada and not ADA
which is the American Dental Association.

The language community were delighted to have Ada as
their mascot. Pictures of Ada sprung up on books and
documents. And statuettes of Ada continue to be awarded
to those making valued contributions to the cause. See
Figure 5.

Figure 5. Images of Ada

Many exciting conferences have been held and an
especially good one was in London in 1997 when the 5th
Earl of Lytton was guest of honour. It was his father that
gave permission to use the name Ada.

A particular feature of this conference was entertainment
from the New York Village Opera Group. This took the
form of a play entitled The Maiden and the Mandate which
showed the conflict between Lady Ada who wrote
excellent software in Ada and the treacherous Senior
Hacker who wrote in C. It was based on Trial by Jury by
Gilbert and Sullivan. Lady Ada was played by Karen
Mason (née Leah). The lovely lady is shown in Figure 6.

Figure 6. Lady Ada

8 The standard

Ada was proclaimed as MIL-STD 1815 on 10th December
1980, the 165th anniversary of the birth of Ada Lovelace
in 1815 (note the standard number) at an ACM SIGPLAN
conference in Boston. Gosh that was also 40 years ago.
After a certain amount of polishing Ada became an ANSI
standard in 1983 and an ISO standard in 1987.

J. Barnes 35

Ada User Journal Volume 41, Number 1, March 2020

For a detailed description of the evolution of the project
from requirements to international standard including the
correspondence with the 4th Earl of Lytton see the paper
Ada – The Project by William Whitaker in SIGPLAN
Notices.

9 Ada now

We all crave freedom. But freedom takes two forms. There
is freedom from problems on the one hand and freedom to
do whatever you want on the other. These two freedoms
clash. Ada aims to provide freedom from problems by
detecting difficulties early in the development of software.

Ada is mainly used for software that matters in areas such
as avionics, space, and railways. Many applications are
somewhat confidential but I can mention iFACTS, part of
the Air Traffic Control system now in use over the London
area. There is a demonstration in the computer museum at
Bletchley. And I am pleased to say that my daughter Janet
is one of the system architects.

iFACTS is written in Ada and SPARK. Most readers will
be aware of SPARK which is a subset of Ada with
additional contracts (historically called annotations) that is
supported by static analysis and proof tools. It has its
origins long ago in work done at RSRE in the 1970s by Bob
Philips and sponsored by a requirements board chaired by
Dame Steve Shirley. Bob Philips later worked with
Bernard Carré and they created SPADE which later
became SPARK. It is sad to note that both Bob Philips and
Bernard Carré are no longer with us.

Ada 2012 incorporates contracts and SPARK 2014 is now
integrated into the GNAT Ada toolset. The goal is to show
that a program is correct through the use of contracts and
formal static proof. Testing can only show the presence of
errors and not their absence.

It is pleasing to note that both Dame Steve Shirley and the
Earl of Lytton were at the banquet held in Balliol College
as part of the symposium celebrations.

Ada is of course still evolving and Ada 202y is imminent.
Key enhancements will include further features to enhance
correctness and proof and to take further advantage of
multiple core processors.

At the present time (with the coronavirus dominating our
lives) we are all very much aware of the importance of
software to keep us going. One is concerned that much of
this software is not written with due diligence. An area of
great concern is the automotive industry. I gather that a
reputable maker has recently issued a recall of a new model
regarding a problem with the brakes. Scary.

10 A sad note

This paper ends on a sad note. Some years ago when at a
conference in Paris, a member of the HOL team said he
would take me to the elegant wine bar on the Champs
Elysées where the name Ada was chosen and we would
celebrate with champagne. But ... alas it was now a Burger
King!

Acknowledgements

I have consulted many people in preparing this talk and I
am very grateful for their help. I fear that I am almost sure
to have omitted someone but I must thank (in alphabetical
order) Jamie Ayre, Sarah Baldwin, Janet Barnes, Susan
Bond, Ben Brosgol, Bill Carlson, Larry Druffel, Terry
Froggatt, John Goodenough, Ursula Martin, Karen Mason,
Nick Neve, Ed Schonburg, Jonathan Smith, Doron Swade,
Tucker Taft, Betty Toole, John Webb.

Bibliography

The following are referenced in the text.

Anon, The Night Climber's Guide to Trinity, 3rd edition,
Wetherhead, Cambridge, 1960.

Alex D. D. Craik, Mr Hopkin's Men, Springer, 2007.

E. T. MacDermot, revised by C. R. Clinker, History of the
Great Western Railway, Vol 1, revised edition, Ian Allen,
1964.

L. T. C. Rolt, Red for Danger, David and Charles, 1966.

William A. Whitaker, “Ada – The Project”, in ACM
SIGPLAN Notices, Vol 28, No 3, March 1993)

John M. F. Wright, Alma Mater, or Seven Years at the
University of Cambridge, by a Trinity Man, 2 Vols, Black,
Young and Young, 1827.

36

Volume 41, Number 1, March 2020 Ada User Journal

From Physicist to Rocket Scientist and How to
Make a CubeSat That Works
Carl Brandon
Vermont Technical College, PO Box 500, Randolph Center, VT 05061; Tel: +1 802 728 9947; email:
carl.brandon@vtc.edu

Abstract

With a lengthy background in physics-related
computing and involvement with Ada from its
beginnings, I had the opportunity to develop a CubeSat
using SPARK/Ada. The reliability of this language
choice enabled us to make one of the few successful
CubeSat missions, the only one using Ada, and the first
and still only spacecraft of any kind using SPARK/Ada.
We are continuing to add to our CubeSat software.

Keywords: CubeSat, SPARK, Ada.

Introduction

As a child, I became interested in science early, following
the Collier's Magazine space series in the 1950s. I built many
electronic projects and became particularly interested in
physics during my high school course.

I went to Michigan State University in 1962 as a physics
major. In 1963 I did my first programming, in hex, on their
vacuum tube computer, called MISTIC, that was a copy of
ILLIAC 1. It had an electrostatic memory of 1,024 by 40-bit
words. My project that summer was designing the extractor
coil for the cyclotron.

On the side, I wrote a video game ("Space War") that used
its one kilo-pixel CRT. I believe it was the second video
game ever written, a few months after one at MIT. A
significant part of the design of the first Michigan State
cyclotron used this vacuum tube computer. I continued
programming for the cyclotron group throughout the rest of
my time as an undergraduate, both in assembly and
FORTRAN, as we moved to the first Control Data 3600. I
was able to see the cyclotron completed and operating by the
time I graduated in 1966.

IBM

That summer, I had an internship at the IBM Thomas
Watson Research Lab studying the magnetic properties of
europium oxide near the Curie point. Returning for the fall,
I decided to leave Michigan State during the best physics job
market ever (the middle of the Apollo program), resulting in
many job offers, and I accepted at the IBM Components
Division in East Fishkill, NY. I first designed a high power
(60W) PNP transistor to complement an existing NPN
design. With two colleagues, we designed IBM's first
memory chip, of 128 bits. It was the main memory for the
IBM 370. (Figure 1)

Figure 1. 128 Bit Chip with Core Memory Background

UMass

After two years at IBM, I went to the University of
Massachusetts (UMass) for graduate school. I did computer
modeling of the seagull (Larus argentatus) soaring flight
based on films I made of gulls in flight. For my doctoral
research, I filmed the bats (Noctilio albiventris & Tadarida
brasiliensis) flying in a wind tunnel. I used a high speed
rotating prism camera with a custom strobe I designed and
did a frame by frame computer analysis of their flight and
related that to their shoulder anatomy.

Vermont Technical College

In 1977 I joined the Science Department at Vermont Tech
(part of the Vermont State Colleges) to teach physics,
zoology, and anatomy and physiology. Shortly after arriving,
I bought and built a Heathkit H-8 computer kit (Figure 2).
The math department, which had been teaching BASIC
programming on terminals via a remote telephone connected
Harris computer, complained that it was so unreliable, they
were refusing to use it the next fall. I demonstrated my
completed H-8, and Vermont Tech bought four H-8s to
replace the four terminals they had. The microcomputer age
had begun at the Vermont State Colleges.

C. Brandon 37

Ada User Journal Volume 41, Number 1, March 2020

Figure 2. Heathkit H-8 Computer

It soon became clear I had more computer background than
anyone in Vermont State Colleges. I started teaching
programming in BASIC, using H-8 computers. I found a
five-day intensive Pascal course in the Boston area by
George Poonen [1], which I took, and an Ada course by him
the following week. At this time, no compilers were
available for Ada. I started teaching Pascal. When the RR
Software Janus/Ada compiler became available in 1983, I
developed a two-semester Ada sequence, which I taught as
part of our new Computer Technology hardware/software
degree, which I helped initiate, though not part of that
department. In 1986, a new faculty member, Peter Chapin,
joined that department, and not knowing Ada, convinced the
department to switch to C. Several years later, while working
on his Ph.D., he did a project with Ada and "saw the light"
[20].

CubeSats

In 2004, I was made aware of CubeSats (10 cm cube, 1
kilogram for a 1U [2]) by a childhood friend who made large
satellites about two hours from Vermont Tech. In August
2004, the Vermont NASA Spacegrant Consortium called the
Academic Dean and asked her to come to a Technical
Advisory Committee meeting, and not being interested,
asked the Associate Academic Dean. He was not interested,
so asked me (of the 77 faculty, I'm not sure why he asked
me, but it turned out to be the right choice), and happy to go
to the University of Vermont for a free lunch (this eventually
led to a free launch) I went to the meeting. At the end of the
session, the director of Spacegrant asked me if I could use
$10,000, and I said yes. I sent in a half-page proposal 8 pm
Sunday, and 8 am the next morning, he approved it. The
grant allowed the purchase of a CubeSat Kit (Figure 3) and
some accessories. Since then, I have applied for about 25
NASA grants and received about 35, only not winning three.

Arctic Sea Ice Buoy

While the CubeSat Kit came with essential CubeSat
software, which used C, I decided we should find a way to
write our CubeSat software in SPARK/Ada. Through our
connections at Vermont Spacegrant, we received a contract
to build a prototype Alaskan Ice Buoy. The project was to
develop a buoy that collects environmental data from the
Arctic and transmits that data back to Vermont. The project
allowed us to gain experience with CubeSat Kit hardware
(we used the CubeSat Kit CPU board), in hopes of using the

CubeSat Kit platform to launch a satellite into space as a
subsequent project. The buoy used the NAL Research
Iridium Satellite Modem and GPS. The Iridium data modem
sent the position, temperature, wind direction, and speed
data to the Iridium network, and then via email attachment
to us.

The project was a collaboration with the University of
Vermont, which had been studying and mathematically
modeling arctic sea ice. The ice forms in the colder months
in the northern regions and some melts in the spring and
summer months. Unlike terra firma, this ice is continually
moving and shifting due to many variables, such as
temperature, wind speed, and wind direction. One of the
problems that the researchers at the University of Vermont
have encountered, having used NASA and ESA radar
satellite data, is that they do not have enough data about the
sea ice to model it completely. To better model the
mechanics of sea ice, they needed to collect data from on the
ice itself, which was the goal of the buoy.

The software for the buoy used SPARK, a strict subset of the
Ada programming language. We chose it because of its high
integrity and reliability. Once we deploy the buoys, there
will be no opportunity to correct software bugs or errors, so
a reliable program is essential. Unfortunately, the
microcontroller in the CubeSat Kit CPU board (Texas
Instruments MSP430) has no Ada compiler available. I came
up with an idea to get around this and presented it at Ada
Europe [3]. This idea was put into practice by a software
toolchain created by Peter Chapin (Figure 4). We were able
to do this with donated software tools from AdaCore.

In detail, the SPARK code written by the developers was run
through the SPARK examiner to ensure that the annotations
match the code. The code was then run through SofCheck's
AdaMagic compiler, which compiles the Ada code into C
code. That C code is then combined with microcontroller
device drivers written in C and called from Ada, and it was

Figure 3. CubeSat Kit Structure & CPU Board

38 Physic is t to Rocket Scient is t

Volume 41, Number 1, March 2020 Ada User Journal

compiled for the MSP430 platform using the Rowley
Associates' CrossWorks C compiler.

We completed the prototype, and the plan at the University
of Vermont was to deploy a couple of dozen buoys in the
Bering Strait, where they had modeled the sea-ice interface.
By this time, however, climate change eliminated Bering
Strait ice. The second choice, the north coast of Alaska, had
ice about 150 km from the shore, and the remote area meant
helicopter costs of $5,000 per hour, and they never obtained
the follow-up grant. While we missed the fun project of
deploying sea ice buoys in the arctic, we learned how we
could use SPARK/Ada in our proposed CubeSat.

In July 2009, NASA announced a Consortium Development
Competition with a very short two weeks for a letter of intent
and then four weeks for the final grant application. Because
we had done work with the University of Vermont (100 km)
and Norwich University (25 km) and I had been working on
concepts for sending a CubeSat to the Moon, we were able
to get the letter and grant in early! We received the award
with the goal of the project to develop the prototype
technologies for a triple CubeSat that would be self-
propelled (chemical rockets, or ion drive) from a
geosynchronous (communications satellite) launch to the
Moon. The chemical rocket would have a lunar lander, and
the ion drive spacecraft would go into lunar orbit. The idea
for a lunar lander came from a fantasy design from Aalborg
University in Denmark (Figure 5). While I realized looking
at their image that it was not realistic, I started doing some
calculations, and then a detailed design spreadsheet of a
chemical propelled lander (Figure 6). With that work already
done, we were able to get the grant in on time.

While we had done a fair amount of analysis during the
project, in February 2010, NASA announced the
Educational Launch of Nanosatellites where NASA would

launch a single CubeSat for a cost of $30,000 instead of the
commercial launch cost of about $125,000. In the end, they
didn’t charge anything. This was a competitive program, and
while we weren't finished with the Consortium grant work,
an actual CubeSat and launch was too good to pass up. We
proposed to test some of our lunar technologies on an actual
flight. We were in the first group selected for launch. We
were initially scheduled on a SpaceX Falcon 9, in 2012, but
that early version of the Falcon on an International Space
Station supply mission would not have gone high enough
(180 km x 325 km) for more than a few days in orbit. The
entire group, now called ELaNa IV chose to wait for a 500
km circular orbit launch the following year. It turned out to
be the US Air Force ORS-3 launch on an Orbital Sciences
Minotaur 1 rocket (first two stages from a Minuteman II
ballistic missile and the third and fourth stages from an
Orbital Pegasus air dropped launch vehicle, Figure 7).

 Figure 4. Software Tool Chain

Figure 4. Software Tool Chain

Figure 6. My Lunar Lander Design

Figure 5. Aalbort University Lunar

C. Brandon 39

Ada User Journal Volume 41, Number 1, March 2020

Figure 7. Our Launch!

Work continued over the next one and one-half years on the
hardware design and construction and software design and
programming. I did most of the hardware work with
assistance from several former Modern Physics students;
then, at the company, they formed in Randolph, Vermont, 8
km from Vermont Tech, LED Dynamics. They had space
experience having supplied lighting for the Space Shuttle
and the International Space Station. Our students designed
the software under the supervision of Peter Chapin, with
about 80% of the software written by our Software
Engineering student Dan Turner [4]. Dan was very
considerate, having graduated in May, working on finishing
the software all summer so I could deliver the completed
CubeSat, called "Vermont Lunar CubeSat." He worked for
the student salary of $15 per hour, where he could have made
three times that. He quickly got a job near Burlington,
Vermont, after the CubeSat was finished and turned down
an offer from NSA. By using SPARK/Ada, he was able to
complete the software on time. The productivity of 38 LOC
per programmer day shown by the Tokeneer project [5] as
opposed to the 10-12 LOC per programmer day with C was
almost the exact productivity that Dan achieved. The
Tokeneer code size was also almost exactly the size of our
CubeSat code. Tokeener found four errors in their 10,000
LOC, where a C program would have expected around 1,000
[6]. Without SPARK/Ada, Dan would not have been able to
complete the software on time.

On our launch on November 19, 2013, arranged by NASA's
ELaNa program on an Air Force rocket contained in addition
to 15 classified Air Force satellites (14 3U CubeSats) two
NASA 3U (10 cm x 10 cm x 30 cm, 3 kg) CubeSats and
twelve university CubeSats of either 1U or 3U size. Since
they were classified, we don't know the results of the Air
Force CubeSats. Neither NASA CubeSats (both, I believe

programmed in C) worked. Of the twelve university
CubeSats (all but ours had been programmed in C), eight
were never heard from, two had partial contact for about a
day (one of which had multiple software errors), one worked
for about four months, and ours (Figure 8) worked for two
years and two days, 11,071 times around the Earth, 472
million kilometers traveled until it burned up over the mid-
Pacific Ocean during re-entry November 21, 2015. We were
communicating with it shortly before re-entry.

The primary purpose of our CubeSat was to demonstrate we
could make one. We certainly had the smallest group ever to
build a satellite. We mostly had three people and, at most,
five working on it. For the final three months, just me and
Dan Turner, as Peter Chapin was finishing up his Ph.D. We
were testing some of the technologies we would use to go to
the Moon, primarily the high integrity software system,
SPARK/Ada, that would ensure it would work. We had an
inertial measurement unit for three-axis linear and rotational
accelerations, and magnetic field. We also had a $20 VGA
camera from which we received several dozen beautiful
photos (Figures 9 & 10). We included the Mad River Glen
ski area bumper sticker in miniature (Figure 11). At the ski
area bar, there are photos of the bumper sticker all over the
world, including at the International Space Station. Ours
holds the not likely to be exceeded distance record. Just
before launch, we described the control program at another
Ada Europe 2013 [7], and further developments at the
International Astronautical Congress [8].

Since the Vermont Lunar CubeSat, we have been working
on a general-purpose small spacecraft software system
called CubedOS [9] designed by Peter Chapin and worked
on by our students. We described CubedOS at the High
Integrity Language Technology workshop in 2016 [10].

Figure 8. Completed Vermont Lunar CubeSat

40 Physic is t to Rocket Scient is t

Volume 41, Number 1, March 2020 Ada User Journal

Figure 9. Our First Photo, the North Coast of Western
Australia

Figure 10. Photo near Africa

We designed this basic software package so we could
expand it for specific spacecraft missions. Our current work
is involved in adding additional functionality to CubedOS.
In addition to basic other features, we are adding particular
modules useful for deep space missions, particularly looking
at lunar or Martian missions.

The first added deep space module, Spiral Thrusting, was the
implementation of an algorithm developed at NASA's Jet
Propulsion Lab (JPL) [11]. Although not designed for
CubeSat sized spacecraft, it is uniquely applicable for deep
space CubeSats. In more massive spacecraft, angular
momentum control (when away from the Earth's magnetic
field, where magnetorquers work) in addition to controlling
the x-y-axes with the gimbaled main engine, there are
auxiliary thrusters for z-axis control. In a CubeSat sized
spacecraft (the smallest contemplated for deep space would
be a 6U (10 cm x 20 cm x 30 cm, 8 kg) for which there is no
room nor mass budget for auxiliary thrusters. Spiral
Thrusting allows for 3-axis control with a 2-axis gimbaled
thruster. There is a commercially available iodine fuelled ion
thruster, the Busek BIT-3 [12]. JPL published this algorithm
in 2011, but no one had ever implemented it. Our first
Software Engineering Masters student, Chris Farnsworth,
implemented it in SPARK/Ada for his Master's project.

Figure 11. Camera/IMU Board with Mad River Glen Bumper
Sticker

Figure 12. MarCO 6U CubeSat

The module was written with an interface for the Busek BIT-
3, but could easily be modified for other thrusters if
available. When we demonstrated the software at JPL, they
were quite excited to see it implemented and operating.
While most of CubedOS is and will be available on Github
[13], Spiral Thrusting most likely falls under ITAR and thus
is only available to US citizens.

The second module for deep space use is the addition of the
JT65 weak signal communication protocol [14]. For most
deep-space communications, spacecraft use the NASA Deep
Space Network of 70 m and 34 m dishes at Goldstone, CA,
Madrid, and Canberra. Besides the high cost, currently
$6,000 per hour, it is hard to get time on the very busy DSN
system [15]. The JT65 protocol, developed by Joe Taylor,
one of my professors in grad school and winner of the 1993
Nobel Prize in physics [16] allows for the accurate reception
of radio signals that are as much as 23 dB below the noise
floor. Radio amateurs have used JT65 for Moon bounce
communication, and I have done this with a student. I was
also able to communicate with a station in Japan using JT65

C. Brandon 41

Ada User Journal Volume 41, Number 1, March 2020

with a 1 m pole antenna on my dining room table and 10 W,
a distance of 10,600 km. It used to take dozens of Yagi
antennas and a couple of kilowatts of power to accomplish
Moon bounce. Now it can be done with a one-meter dish and
10 W using JT65.

In calculating the equivalent straight path loss to the Moon
bounce loss of 262 dB, it turns out to be equal to the distance
from Jupiter to the Earth, when on the same side of the Sun.
While the JT65 data rate is very slow at 72 bits per minute,
it allows the use of a university ground station for
communication. JT65 would be useful for general
housekeeping functions and controlling the spacecraft, with
three ground stations spaced around the Earth like the DSN,
24 hours per day would yield 13 kB per day and 389 kB per
month. So even if the DSN were used occasionally for large
chunks of data, the use of JT65 at other times would be
beneficial. We currently have two students working this
summer on adding JT65 using SPARK/Ada to CubedOS.
JT65 requires time coordination between transmitter and
receiver. On the Earth and in low Earth orbit (LEO), GPS
time signals can be used. When in deep space, out of the
range of GPS, another solution is needed. There is a chip-
scale atomic clock [17], a rubidium atomic clock with a mass
of 35 g and 4.1 cm x 3.5 cm x 1.1 cm dimensions. It has short
term stability of about ten ns per hour and less than a one-
third second per year drift. This accuracy is more than
enough for a multi-year deep space mission. There has
already been a deep space mission that tested an antenna on
a 6U CubeSat suitable for our purposes. The MarCO
CubeSats (Figure 12) used as data relays during the entry
descent, and landing of the Insight [18] mission to Mars used
a folded reflectarray antenna with a 29 dB gain at 8.4 GHz
[19]. While this allowed for a reasonably high data rate to
the DSN 70 m dish, it would work just as well for the JT65
low data rate to a 3 m university ground station dish (we have
one).

We have a new grant starting in October to add distributed
processing to CubedOS. Distributed processing would allow
a swarm of CubeSats to work together, sharing computing
resources. While continuing to work on CubedOS and
adding deep space functionality, we are looking for another

satellite mission. We are a small school with about 1,200
students, and a more complicated task than a 1U CubeSat
seems desirable. We would have to partner with a larger
school or with a NASA center. Our goal would be to supply
the software for a deep space mission. Preferably one where
we could use our Spiral Thrusting and JT65 modules. If we
can do this, we would have created the first and second space
missions using SPARK/Ada. While continuing to follow my
interest in software supporting my physics applications, I
have returned to my childhood interest in space now part of
my career. I would not have thought this would happen, but
now I can say about what I do, "It IS rocket science"!

References

[1] G. Poonen, “Tutorial on Ada”, Proceedings of the 1983
annual conference on Computers, 1983.

[2] Jordi Puig-Suari (Cal Poly) & Bob Twiggs (Stanford
U.), CubeSat Design Specification, 1999.

[3] Carl Brandon, “Use of Ada in a Student CubeSat”
Project, Ada Europe 2008, Venice, Italy & Ada User
Journal, Vol 29, No 3, pp 213-216, 2008.

[4] Chad Loseby, Peter Chapin, and Carl Brandon, “Use of
SPARK in a Resource-Constrained Embedded System”,
Proceedings of SIGAda 2009, pp 87-90, 2009.

[5] https://www.adacore.com/tokeneer

[6] Andy German, “Software Static Code Analysis Lessons
Learned”, Crosstalk, Vol 16, No 11, pp 13-17 (C-130J),
2003.

[7] Carl Brandon and Peter Chapin, “SPARK/Ada CubeSat
Control Program”, Proceedings of Ada Europe 2013,
LNCS 7896, pp 51-64, 2013.

[8] Carl Brandon and Peter Chapin, “High Integrity
Software for CubeSats and Other Space Missions”,
Proceedings of 66th International Astronautical
Congress, 2015.

[9] http://cubesatlab.org/CubedOS.jsp

 Figure 13. 6U CubeSat with Ion Thruster for a Deep Space mission

42 Physic is t to Rocket Scient is t

Volume 41, Number 1, March 2020 Ada User Journal

[10] Carl Brandon and Peter Chapin, “The Use of SPARK in
a Complex Spacecraft”, Proceedings of the High
Integrity Language Technology workshop (HILT-
2016), 2016.

[11] Thomas Randolph, Timothy McElrath, Steven Collins
and David Oh, Three-Axis Electric Propulsion Attitude
Control System with a Dual-Axis Gimbaled Thruster,
47th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference 2011, San Diego, CA, 2011.

[12] http://busek.com/index_htm_files/70010819F.pdf

[13] https://github.com/cubesatlab/cubedos

[14] http://physics.princeton.edu/pulsar/K1JT/JT65.pdf

[15] https://eyes.nasa.gov/dsn/dsn.html

[16] https://www.nobelprize.org/prizes/physics/1993/summ
ary/

[17] https://www.microsemi.com/document-
portal/doc_download/1243238-space-csac-datasheet

[18] https://mars.nasa.gov/insight/

[19] https://ieeexplore.ieee.org/document/7859458

[20] John McCormick and Peter Chapin, Building High
Integrity Applications with SPARK, 1st Ed, Cambridge
University Press, 2015.

 43

Ada User Journal Volume 41, Number 1, March 2020

How To Succeed in the Software Business While
Giving Away the Source Code:
The AdaCore Experience1
Benjamin M. Brosgol
AdaCore, 81 Hartwell Ave., Lexington MA 02421, USA; email: brosgol@adacore.com

Abstract

Open-source software, or, more accurately, Freely
Licensed Open-Source Software (“FLOSS”), at first
appears to present a dilemma when adopted as part
of a business model. If users are allowed to access,
modify and/or redistribute the source code, how does
a software producer protect its intellectual property
and sell something that can be easily and legally
reproduced?

AdaCore has faced this issue since the company’s
inception in 1994. Its major commercial product,
GNAT Pro Ada, is an Ada development environment
based on the GNU Compiler Collection (GCC) from
the Free Software Foundation (FSF). AdaCore has
implemented an Ada compiler front end and comp-
anion run-time libraries and tools and has con-
tributed these components to the FSF. In turn, the
GNAT Pro Ada compiler incorporates the GCC back
end for a variety of target architectures. By lever-
aging the GCC back end, AdaCore has made Ada
available on a wide range of platforms, both native
and embedded, at a significantly reduced effort –
indeed, that was the technical rationale for choosing
GCC and a design goal of GCC itself. But the
challenge of this approach is how to generate a
sustained and profitable business. AdaCore's 25
years of FLOSS experience offers an explanation and
“lessons learned”.

1 Introduction

A software company faces many challenges in realizing its
goals for profit and growth, and a fundamental question
concerns its business model:

Since software is relatively simple to replicate, how
does a company protect its investment – i.e., prevent
unauthorized uses of its product – without inconven-
iencing or penalizing customers who use the product
legitimately?

And a related question about the “bottom line”:

1 This is a condensed version of an article that appeared in IEEE Software (Volume 36, Issue 6, Nov.-Dec. 2019), pp. 17-22 (special issue: Twenty Years of
Open Source Software). Reprinted with permission.
https://ieeexplore.ieee.org/document/8792964

How can a company realize a sufficient revenue stream
to be profitable and fund ongoing product enhance-
ments?

The answers are influenced by the company’s choice
between proprietary and FLOSS approaches. AdaCore has
adopted a FLOSS model, and this article explains the
rationale and the company’s experience with FLOSS lic-
ensing for its major product line, the GNAT Ada develop-
ment toolset. The article describes the relationship between
AdaCore and the FLOSS developer community
(principally the FSF), identifies issues that have arisen and
explains how they have been addressed, and shows how the
FLOSS approach has helped AdaCore sustain a growing
and profitable revenue stream over its 25-year history.

2 Early decisions

In the early 1990s a team from New York University was
awarded a U.S. government contract to develop a compiler
for the language known as Ada 9X (later renamed Ada 95),
a major revision to the original Ada 83 standard. The goal:
a user-friendly compiler available to academia at no cost,
on multiple platforms. Following discussions with Richard
Stallman from the FSF, the project adopted the GCC
technology for the compiler back end, with GDB for de-
bugging support, and added an Ada-specific front end and
run-time libraries. The resulting toolset was somewhat
whimsically named “GNAT”, which stood for “GNU NYU
Ada Translator”. (The acronym expansion has long been
abandoned, but the GNAT name has persisted.) Since the
GNAT compiler contained GNU software and was in-
tended for teaching and research, the standard GNU
General Public License (GPL) was appropriate. This made
the GNAT source code available and prevented any of the
components from being used in proprietary software.

GNAT was not a production-quality compiler, but the
project leaders – Robert Dewar, Edmond Schonberg and
Richard Kenner – recognized the commercial potential for
a professional Ada 95 development environment and
founded AdaCore (then Ada Core Technologies) in 1994
to productize the GNAT technology. Two years later ACT-
Europe was founded in France by Cyrille Comar and

44 The AdaCore Exper ience

Volume 41, Number 1, March 2020 Ada User Journal

Franco Gasperoni, and the current AdaCore is a result of
the subsequent unification of the two companies.

The customer base for the commercial GNAT offering
initially comprised two sectors: hardware vendors who
needed an Ada 95 compilation system, and software devel-
opment teams who wanted to use Ada 95. Both sectors’
personnel contributed to the technology indirectly, by ex-
pressing requirements that would drive product enhance-
ments to be implemented by the AdaCore team.

GPL licensing is appropriate for the compiler but not for
the run-time libraries, since customers may need to develop
and distribute proprietary or classified applications whose
source code has to stay hidden. As explained below, a
variation of the GPL license was adopted for the run-time
libraries.

3 Why FLOSS?

FLOSS is sometimes touted as being more secure than
proprietary software (“given enough eyeballs, all bugs are
shallow”) but the opposite claim has also been made
(“security through obscurity”). In fact, high-profile vul-
nerabilities have materialized in both types. AdaCore
adopted a FLOSS approach not from considerations of
software quality but rather for other reasons:

• AdaCore’s founders shared the FLOSS philosophy that
openly available source code can help the software
community advance.

• A production-quality Ada compiler technology target-
able to a variety of processors was a major goal from
the outset, and the GCC technology offered an effective
solution.

• The company founders perceived that making product
source code available to customers, and contributing
components to the FSF, were not endangering its busi-
ness. Compiler construction is a specialized field, and
the expertise needed to package the FLOSS
components into a commercial product (and then to
provide the necessary technical support) is high. The
risk of the source code being used by potential
competitors would be low.

4 Product evolution

From the outset, AdaCore envisioned two user com-
munities for its GNAT technology: individuals or
academic institutions adopting Ada for FLOSS software
development or teaching, and organizations using Ada to
implement professional-grade software for commercial or
government-sponsored projects. The version of the GNAT
technology for FLOSS developers and academia has
helped Ada gain traction in those communities. Known as
the “Community Edition,” it consists of a no-cost
downloadable executable (and source code) for the
compiler and accompanying tools / libraries, available on a
number of platforms, with licensing appropriate for
academic usage and free software development.

The professional version, GNAT Pro Ada, shares a
common code base with the Community Edition but has
several major differences:

• Customers gain access to the toolset through an annual
paid subscription, with licensing appropriate for soft-
ware developers who do not want, or are not allowed,
to distribute their source code along with the
executable.

• It comes with product support that includes guaranteed
rapid response to questions and defect reports, with
access to wavefronts (specially generated interim re-
leases) if needed to correct critical problems. Support is
provided by the product developers themselves.

• It undergoes a more extensive QA regimen, with night-
ly regression testing on many platforms.

• Some specialized tools are only available with the
GNAT Pro version.

Both the Community Edition and GNAT Pro have at least
one major release each year, allowing all users to keep up
to date with product enhancements, and, for GNAT Pro,
serving as an incentive for customers to renew their
subscriptions. The FLOSS approach helps, since the
GNAT technology can take advantage of GCC
improvements such as new code generators and back end
optimizations.

5 AdaCore and the FLOSS Community

AdaCore’s has always enjoyed a tightly coupled relation-
ship with the FLOSS community, pulling periodic updates
of the GCC and GDB source code from the FSF, and push-
ing new versions of the Ada-specific components to the
FSF. To properly control these interactions, and more gen-
erally to manage the release of multiple products on dozens
of platforms, AdaCore’s development and verification en-
vironment has always been highly structured, e.g., with
regression tests run at check-in and with extensive QA
before product release. The production process is much
more like a “cathedral” than a “bazaar”.

In addition to contributing its Ada technology to the FSF,
AdaCore also makes a variety of tools and libraries avail-
able in github repositories where they are open to commun-
ity enhancements and analysis.

6 Business model and licensing

When AdaCore was founded, contracts from Silicon
Graphics and DEC helped fund the initial GNAT develop-
ment and productization, but these were “one-off” projects.
A different source of revenue would be needed to support
continued growth and technology enhancements. One
approach, common for proprietary software, is to charge a
large fee initially and perhaps additional fees for run-time
licenses or support. However, this typically results in an
uneven (and unpredictable) revenue stream. Moreover,
charging for run-time licenses would put Ada at a
competitive disadvantage, since other languages do not
impose such fees. Instead, AdaCore’s business model is

B. M. Brosgol 45

Ada User Journal Volume 41, Number 1, March 2020

based on an annual subscription that reflects the value that
the company adds to its FLOSS software: an expert level
of support coupled with assurance about the software’s
licensing status.

The subscription model has the benefit of revenue
predictability and also incentivizes AdaCore to provide
product improvements that encourage customers to renew.
There are no run-time license fees.

The GNAT Pro product includes two kinds of software:

• a compiler and companion tools, and

• run-time support libraries.

Different licensing is appropriate for the two cases. The
compiler and tools are covered by the GNU General
Purpose License, more specifically GPLv3. Under this
license, if a user builds the compiler or tool source code
(either modified or unchanged), and then distributes a
binary version of the result, they also have to make the
resulting source code available under the same (GPLv3)
terms. This scenario comes up often in practice (for
example, Red Hat’s distribution of the GNAT Ada toolset
from the FSF repository) and helps ensure that FLOSS
software stays both freely licensed and open.

AdaCore selected the GPL over other FLOSS licenses
because software licensed under the GPL cannot be made
part of proprietary software and will always be freely
available. In addition, software distributed under GPLv3
cannot be used in hardware that forbids other software from
running on that hardware.

The run-time library situation, however, is different. Run-
time libraries are linked with object modules from user
code, and if the libraries are covered by a GPL license then
a user distributing an executable would need to make the
source available for their own components. But GNAT Pro
is intended for users who may need to develop software
that can only be distributed in binary form. The run-time
libraries for GNAT Pro (like those for GCC) therefore
carry an exception to the GPL:

[You] can freely distribute your programs built with the
GNAT Pro compiler, including any required library
run-time units, using any licensing terms of your choos-
ing.

This does not apply to the GNAT Community Edition,
whose run-time libraries are covered by the GPL without
any special exception. Since the Community Edition is
intended for free software developers and academic users,
the GPL licensing is appropriate.

7 Intellectual property

Although AdaCore is a software product company, it
regards its intellectual property (“IP”) as being embodied
not in its technology per se but rather in its development,
verification and QA processes / infrastructure. AdaCore’s
policy of making all of its product source code available
with permissive licensing thus helps rather than threatens
the company’s business: it is in AdaCore’s interest if users

are familiar with how the technology works, and in fact
having the run-time library code accessible and modifiable
can be critical in some domains (for example real-time
embedded systems). However, although the company’s
source code is made openly available, its QA tests are not,
since many of these tests are proprietary code submitted by
AdaCore’s customers.

A basic question is how a company can protect its
investment – i.e., prevent unauthorized uses of its product
– without inconveniencing or penalizing customers who
are using the product legitimately. AdaCore addresses this
issue in several ways:

• A subscription is based on the number of users, and
customers register the personnel who are authorized to
download the software, send reports/questions to Ada-
Core support, etc.

• The product’s licensing guarantees are only assured
during the duration of the customer’s subscription,
incentivizing the customer to renew their subscription
if they intend to continue using the product.

• There are no run-time license fees, product locks, or
other intrusive mechanisms.

8 Issues and “lessons learned”

Coordination among different developers, and integration
of components into a coherent product, are challenges for
any software development project but are perhaps more
acute when FLOSS components are involved. A specific
issue for GNAT is when to synchronize with the FSF on
incorporating new versions of GCC into the compiler, and,
in the other direction, when to commit new versions of the
Ada front end, tools and libraries. AdaCore has chosen to
be selective with how often it incorporates new versions of
GCC, because each upgrade requires significant QA work
and often some minor changes to GNAT. On the other
hand, the company has pushed its code to the FSF as time
has allowed, as long as GCC was in a development stage
where changes were permitted.

Another potential issue is how well FLOSS software sat-
isfies customer requirements (reliability, performance,
etc.), since, unlike typical projects that start with require-
ments analysis, FLOSS components are generally devel-
oped “bottom up” by contributors who do not necessarily
know how the software will be reused. In the case of
AdaCore’s use of GCC, this has not been a problem: the
GCC back end has served well as a retargetable optimizing
compiler technology, with sufficient coverage of
processors and operating systems to support AdaCore’s
needs. On the other hand, the standard FSF format for
documentation, Texinfo, proved to be somewhat fragile
and in general did not provide a modern “look and feel”.
This issue has been largely ameliorated with the transition
to Sphinx. Also, the GCC technology dates back to an era
when tools were invoked only through the command line,
but modern development teams typically prefer a graphical
Integrated Development Environment (IDE). As a result,
AdaCore has developed an IDE, originally known as the

46 The AdaCore Exper ience

Volume 41, Number 1, March 2020 Ada User Journal

GNAT Programming Studio (GPS) and more recently
rebranded as GNAT Studio, that has special support for the
GNAT technology.

AdaCore’s experience as a FLOSS user and contributor
have produced several “lessons learned”:

• The annual subscription model works well for a cus-
tomer base that is developing critical software and
therefore may need the added assurance that comes
with expert and timely support.

• Since support has to be provided for the external
FLOSS software (GCC and GDB, in the case of
GNAT), the company needs to have internal expertise
on these components.

• Synchronization with the FSF must be carefully
coordinated (when to upgrade to a new version of GCC
or GDB, and when to commit a new version of the Ada
components) to avoid disruptions.

In summary, freely licensed open source software can save
development cost and be the basis of a profitable business.
Its value is not strictly in the product IP but rather in the
full complement of processes and the assurances they offer.
The key is to provide a high level of support, as well as
continued innovation, encouraging customers to continue
renewing their subscriptions. AdaCore has traditionally
realized a renewal rate of more than 90%, demonstrating
that FLOSS can and does work.

 47

Ada User Journal Volume 41, Number 1, March 2020

ARG Work in Progress IV
Jeff Cousins CEng FIET
Member and former chair of the Ada Rapporteur Group; email: jeffrey.cousins@btinternet.com

Abstract

After a year of the prototyping and validation phase,
the finishing touches are being applied to the Ada 202X
proposals, though not all features will be implemented
in the near future.

1 Introduction

This paper presents a further update on the proposed changes
for the next edition of Ada. The previous papers were
published in the Vol. 38, No. 1, March 2017, Vol. 39, No. 3,
September 2018 and Vol. 40, No.3, September 2019 editions
of the AUJ.

As before, Ada Issues (AIs) are first worked on and
approved by the Ada Rapporteur Group (ARG).

The ARG follows the following instructions from WG 9,
extracted from ISO/IEC JTC 1/SC 22/WG 9 N571:

"The ARG is requested to pay particular attention to the
following two categories of improvements:

A. Improvements that will maintain or improve Ada's
advantages, especially in those user domains where
safety and security are prime concerns;

B. Improvements that will remedy shortcomings in
Ada.

Improvements of special interest in these categories are:

 Improving the capabilities of Ada on multi-core
and multi-threaded architectures;

 Improving the ability to write and enforce contracts
for Ada entities (for instance, via preconditions);

 Improving the use and functionality of the
predefined containers;

 Improving support for Unicode in the language and
predefined libraries.

These are all examples of improvements in category A,
except for the last which is an example of an improvement
in category B.

In selecting features for inclusion in the revision, the ARG
should consider the following factors:

 Implementability (vendors concerns). Can the
proposed feature be implemented at reasonable
cost?

 Need (users concerns). Does the proposed feature
fulfill (sic) an actual user need?

 Language stability (users concerns). Would the
proposed feature appear disturbing to current users?

 Competition and popularity. Does the proposed
feature help improve the perception of Ada, and
make it more competitive with other languages?

 Interoperability. Does the proposed feature ease
problems of interfacing with other languages and
systems?

 Language consistency: Is the provision of the
feature syntactically and semantically consistent
with the language's current structure and design
philosophy?"

The proposals from the ARG are then passed to WG 9 (the
ISO/IEC Working Group responsible for Ada) for
consideration and approval before eventually being
consolidated and sent to ISO for formal processing to create
a revised international standard.

As you can see, there is a balance to be struck between the
first area for improvement being in the area of parallelism,
and the first factor for consideration being "Implementability
(vendors concerns)". Much feedback from vendors has been
incorporated, but the (virtual) WG 9 meeting in June 2020
decided that the parallelism features shall remain in Ada
202X even though there are doubts about whether they will
be implemented any time soon.

The first year of prototyping and validation has also been
useful for polishing the wording for the new features, so
hopefully there won't be many issues remaining for any
future corrigendum to correct.

Thanks again to John Barnes for his review comments.

2 WG 9 approved

No proposals were submitted to WG 9 during the first year
of prototyping and validation.

3 In the pipeline

These have been approved by the ARG but have yet to be
approved by WG 9. With many AIs being ARG approved
and entering the "pipeline", but none being WG 9 approved
and leaving since October 2018, the pipeline is now bulging
even more. The (virtual) WG 9 meeting in June 2020
decided that the submission of ARG-approved AIs to WG 9
should resume, so the backlog should start being cleared.

3.1 From previous "The Future"s
The following proposals to support parallelism were
approved by the ARG:

48 ARG Work in Progress IV

Volume 41, Number 1, March 2020 Ada User Journal

 Global-in and global-out annotations to specify
which global objects a subprogram may access, and
in which mode (AI12-0079-3). This supersedes the
previously approved AI12-0079-1 and Global
aspect and access types used to implement Abstract
Data Types (AI12-0240-6);

 Default Global aspect for language-defined units
(AI12-0302).

With regards to the Real-Time proposals, Atomic and
Volatile generic formal types (AI12-0282) was re-opened
but after some tweaking, primarily to avoid a backward
incompatibility, was subsequently re-approved.

Support for Arithmetic Atomic Operations and Test and Set
(AI12-0321) and Add a modular atomic arithmetic package
(AI12-0364) provide further Real Time support.

Other proposals that were ARG approved include:

 Making 'Old more sensible (AI12-0280-2);

 Image attributes of language-defined types (AI12-
0304);

 Bounded errors associated with procedural iterators
(AI12-0326-2);

 Empty function for Container aggregates (AI12-
0339);

 Swap for Indefinite_Holders (AI12-0350);

 Add a modular atomic arithmetic package (AI12-
0364);

 Changes to Big_Integer and Big_Real (AI12-
0366).

Most of the above are expanded below.

Numerous small AIs improved the wording of previously
approved AIs without adding new features.

3.2 Global-in and global-out annotations (AI12-
0079-3)
These allow the programmer to specify what global data a
subprogram uses, in a manner that is similar to that by which
subprogram parameters are specified. Specifying the "side
effects" (i.e. effects other than via a parameter) of a
subprogram makes it easier for static analysis tools to reason.
For example:

type Operating_Mode_Type is
 (Initialising, Normal, Fallback, Shutting_Down);
type Status_Type is (Success, Inaccurate, Failed);

Data_Table : …;
Operating_Mode : Operating_Mode_Type;
Status : Status_Type;

procedure Process_Data_Table
 with
 Global => (in => Operating_Mode,
 out => Status,
 in out => Data_Table);

This should be fairly familiar to SPARK users, but as we are
extending the language proper we may use the reserved
words in, out and in out rather than the SPARK terms Input,
Output and In_Out.

The Global'Class aspect can be used to specify an upper
bound on the set of global variables any subprogram
dispatched to may access.

Rather than listing many global variables individually, the
reserved word all can be used for the set of all global
variables, or the reserved word synchronized for all
synchronized variables (i.e. tasks and protected objects), the
implication being that accesses to them are thread-safe.

The intention is that although advanced users may impose
stricter requirement on themselves, the typical user should
have to specify few, if any, Global aspects. Thus the Global
aspect for a library unit usually defaults to Unspecified
(sounds a bit like Rumsfeld's "known unknown"!), though to
null for Pure library units (i.e. no read or write of any global
variable). For other entities, the Global aspect defaults to that
of the enclosing library unit.

Besides covering any global variables accessed by the body
of the subprogram, the Global aspect should also cover those
accessed by any preconditions, postconditions, predicates
and type invariants. Global variables accessed by other
subprograms that the subprogram calls should normally also
be identified, though if the other subprogram is passed in as
an access-to-subprogram parameter then it is up to the caller
of the original subprogram to take account of the effects of
whatever subprogram it passes in. If an access-to-variable
value is created then presumably the variable that it
designates is going to be written, and if an access-to-constant
value is created then presumably the constant that it
designates is going to be read, so these accesses should be
identified too. However, the core language does not check
accesses to objects reached via dereferences of access
values.

Optional Annex H, for High Integrity Systems, adds
restriction No_Unspecified_Globals, disallowing the Global
and Global’Class for a library-level entity from being set or
defaulting to Unspecified, thereby forcing the specification
of Global. It also adds the restriction
No_Hidden_Indirect_Globals, requiring that any accesses to
objects reached via dereferences of access values are
identified.

Annex H also provides an extension for dealing with
"handles", for example the File_Type of Text_IO or the
Generator of Discrete_Random. Hence, in:

procedure Put (File : in File_Type; Item : in String);

the File parameter is of mode in as the parameter itself isn't
modified, yet the state associated with the file is modified.
This can now be indicated using an overriding global mode,
thus:

procedure Put (File : in File_Type; Item : in String)
 with
 Global => overriding in out File;

J. Cousins 49

Ada User Journal Volume 41, Number 1, March 2020

3.3 Making 'Old more sensible (AI12-0280-2)
This was covered in Part III.

3.4 Atomic, Volatile, and Independent generic
formal types (AI12-0282)
The aspects Atomic, Volatile, Independent,
Atomic_Components, Volatile_Components, and
Independent_Components can now be specified for generic
formal types. The actual type must have a matching
specification, though for backward compatibility reasons the
actual types can be Atomic, etc., without the formal types
necessarily matching.

3.5 Default Global aspect for language-defined
units (AI12-0302)
This was covered in Part III.

3.6 Image attributes of language-defined types
(AI12-0304)
Following on from 'Image for all types (AI12-0020), it is
required that 'Image is required to work for the language
defined container types. This uses the new [] array aggregate
syntax from Container aggregates; generalized array
aggregates (AI12-0212). For Maps it uses the form of a
named array aggregate, e.g.:

[Key1 => Value1, Key2 => Value2]

for Trees the form of a positional array aggregate, e.g.:

[[1, 2], [111, 222, 333]]

and for null containers the form of a null array aggregate,
i.e.:

[]

3.7 Support for Arithmetic Atomic Operations
and Test and Set (AI12-0321)
Following on from Compare-and-swap for atomic objects
(AI12-0234), an atomic integer arithmetic package is added,
providing operations such as atomic test and set, and atomic
increment. This will support the use of locks on
multiprocessor platforms.

3.8 Bounded errors associated with procedural
iterators (AI12-0326-2)
This was covered in Part III.

3.9 Empty function for Container aggregates
(AI12-0339)
Following on from Array Aggregates; generalized array
aggregates (AI12-0212), the Aggregate aspect now
identifies an Empty function, rather than an
Empty_<Container> constant, so as to allow a Capacity
parameter for those container types that have the notation of
capacity (e.g. Vectors).

Thus the example given previously (in Part III) becomes:

type Set is tagged private
 with -- Ada 2012 has these
 Constant_Indexing => Constant_Reference,
 Default_Iterator => Iterate,

 Iterator_Element => Element_Type,
 …
 Aggregate => (Empty => Empty,
 Add_Unnamed => Include),
 …

3.10 Swap for Indefinite_Holders (AI12-0350)
A Swap operation is added to both Indefinite_Holders and
Bounded_Indefinite_Holders. For the former this avoids the
overhead of copying the element (and any associated
Adjust/Finalize).

procedure Swap (Left, Right : in out Holder)
 …

3.11 Add a modular atomic arithmetic package
(AI12-0364)
Following on from Support for Arithmetic Atomic
Operations and Test and Set (AI12-0321), an atomic
modular arithmetic package is also added.

4 The Future

4.1 Carried over from previous "The Future"s
Ghost code (AI12-0239), code that is added to support
specification and verification, has been voted Hold for a
future edition.

Thread-safe Ada libraries (AI12-0139) has been abandoned;
no one showed any interest in working on it.

Two alternatives of Generators/co-routines (AI12-0197)
have been abandoned and two voted Hold for a future
edition.

The long-running Defaults for generic formal parameters
(AI12-0205) has finally been ARG approved. Its spin-off
Defaults for generic formal packages and formal "in out"
objects (AI12-0297) was voted Hold (until a future edition).
Of the other AIs relating to making generics easier for the
user, Implicit instantiations (AI12-0215) has two variants
still open, but they may be too difficult, and Automatic
instantiation for generic formal parameters (AI12-0268) has
been abandoned.

No completely new features are under consideration for Ada
202X as we are now approaching its finishing line.

4.2 Floor and other rounding attributes for fixed
point types (AI12-0362)
An implementation is permitted to support Floor, Ceiling,
and rounding attributes for fixed point types. The AI came
in rather late in the day to mandate support, but there is
sufficient support to add something.

5 Conclusion

The submission of the Ada 202X proposals to WG 9 is
tantalisingly close. Hopefully they will be completed in early
2021; the exact timetable should be decided soon.

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

 51

Ada User Journal Volume 41, Number 1, March 2020

Non-functional Requirements in the ELASTIC
Architecture
Luis Nogueira*, António Barros*, Cristina Zubia**, David Faura***, Daniel Gracia Pérez***,
Luis Miguel Pinho*
* CISTER/ISEP, Polytechnic Institute of Porto, Portugal
** Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain
*** Thales Research & Technology, France

Abstract

The new generation of smart systems require processing a
vast amount of information from distributed data sources,
while fulfilling non-functional properties related to real-
time, energy-efficiency, communication quality and security.
The ELASTIC software architecture is being developed to
tackle this challenge, considering the complete continuum
from the edge to the cloud. This paper provides a brief
analysis of the smart application considered in the project,
and the requirements emanating from their non-functional
properties. The paper then identifies some of the technical
constrains imposed to the ELASTIC software architecture to
allow guaranteeing the non-functional requirements of the
systems.

Keywords: Non-functional requirements, elasticity,
computing continuum.

1 Introduction

The ELASTIC project1 addresses the challenge of extreme-
scale analytics, developing a software architecture that
incorporates a new elasticity concept, that will enable smart
systems to satisfy the performance requirements of extreme-
scale analytics workloads. The vision of ELASTIC is that by
extending the elasticity concept 2 across the compute
continuum in a fog computing environment, combined with
the usage of advanced hardware architectures at the edge
side, can significantly increase the capabilities of the
extreme-scale analytics integrating both responsive data-in-
motion and latent data-at-rest analytics into a single solution.

One of the main challenges to be tackled by ELASTIC is the
necessity to fulfil the non-functional properties inherited
from smart systems, such as real-time, energy efficiency,
communication quality or security [1]. In a smart system,
such as smart cities, large volumes of data are collected from
distributed sensors, transformed, processed and analysed,
through a range of hardware and software stages conforming
the so-called compute continuum, i.e., from the physical
world sensors (commonly referred to as edge computing), to

1 “A Software Architecture for Extreme-Scale Big Data Analytics
in Fog Computing Ecosystems”, http://www.elastic-project.eu

2 Elasticity aims at matching the amount of resources allocated to a
service with the amount of resources it actually requires, avoiding

the analytics back-bone in the data-centres (commonly
referred to as cloud computing).

This complex and heterogeneous layout presents several
challenges, of which an important one refers to non-
functional properties inherited from the application domain
including real-time, energy-efficiency, quality of
communications and security:

 Real-time data analytics is becoming a main pillar in
industrial and societal ecosystems. The combination of
different data sources and prediction models within real-
time control loops, will have an unprecedented impact
in domains such as smart cities. Unfortunately, the use
of remote cloud technologies makes challenging to
provide strict real-time guarantees due to the large and
unpredictable communication costs on cloud
environments.

 Mobility shows even increased trade-offs and
technological difficulties. Mobile devices are largely
constrained by the access to energy, as well as suffering
from unstable communication, which may increase
random communication delays, unstable data
throughput, loss of data and temporal unavailability.

 Security is a continuously growing priority for
organizations of any size, as it affects data integrity,
confidentiality and potentially impacting safety.
However, strict security policy management may hinder
the communication among services and applications,
shrinking overall performance and real-time guarantees.

Overall, while processing time and energy cost of
computation is reduced as data analytics is moved to the
cloud, the end-to-end communication delay and the
performance of the system (in terms of latency) increases
and becomes unpredictable, making not possible to derive
real-time guarantees. Moreover, as computation is moved to
the cloud, the required level of security increases to
minimise potential attacks, which may end up affecting the
safety assurance levels, hindering the execution and data
exchange among edge and cloud resources.

over- or under-provisioning. Elasticity is a defining characteristic
that differentiates cloud computing from previously proposed
computing paradigms, such as grid computing.

52 Non-funct ional Requirements in the ELASTIC Archi tecture

Volume 41, Number 1, March 2020 Ada User Journal

It is thus necessary that the ELASTIC architecture includes
mechanisms which allow the specification of the required
level of non-functional properties, the offline analysis of
these parameters to determine an appropriate system
configuration which enables their fulfilment, and an online
monitoring and analysis capability which is able to trigger
configuration changes upon detection of level violations.
This will be provided via the Non-Functional Requirements
(NFR) tool, which will operate both at the offline analysis
phase, as well as dynamically during execution.

This paper provides a brief overview of the non-functional
system properties which are being considered, as well as
some of the technical constrains imposed to the ELASTIC
software architecture, both from the requirements emanating
from the ELASTIC use cases, as well as from related
application domains (smart manufacturing, avionics and
automotive). This paper is structured as follows: the next
section provides a summary of the considered application
domains. The analysis of these domains feed into the non-
functional requirements considered, presented in Section 3,
and on the integration of the NFR tool in the software
architecture, as described in Section 4.

2 Applications with elasticity
requirements

The ELASTIC project includes a realistic and challenging
smart mobility use-case, but the architecture is not intended
to be restricted to this domain. Therefore, an analysis was
performed of application requirements emanating from
several different domains: Smart Cities/Smart
Transportation, Smart Manufacturing, Avionics and
Automotive.

2.1 Smart Cities/Smart Transportation
The ELASTIC use-case [2] consists of three different
systems, with different types of requirements: a positioning
and obstacle detection system; a predictive maintenance and
energy consumption system; and an application to manage
the coexistence of public and private means of transport.

The first system is a representative set of applications which
are intended to increase the safety of the operation of smart
transport systems: autonomous localisation of a tram vehicle
and obstacle detection to assist the vehicle driver. While
traditional solutions adopt sensors along the tracks to detect
position, new applications autonomously localise
themselves, using sensors (e.g. GPS receivers,
accelerometers, RADAR) integrated in a computing system
onboard the vehicle. The generated information is also
transmitted to other devices connected on the cloud for
control systems, which poses new challenges.

At the same time, the current trends to increase the safety of
circulating vehicles is to assist the driver with systems that
automatically detect and alert for potential hazard situations.
Again, systems use specific sensors (e.g. video cameras,
RADAR, LIDAR) integrated in a computing system to
detect obstacles, determine the potential hazard and alert the
driver or even take automatic actions to avoid collision.

Information about detected events may be useful on a
broader perspective and also transmitted to the cloud.

By onboarding the vehicle with sensors, it is possible also to
improve the operation of the full transportation system.
Monitoring the rail tracks is a good example of using sensors
(e.g. video camera, RADAR, LASER) to acquire significant
amounts of data, which must be processed and transmitted
to the maintenance management system, to enable predictive
maintenance. Monitoring energy consumption is also
expected to provide means to potentially improve the
electricity energy saving (quite relevant if vehicles rely on
battery autonomy in certain catenary-free sectors). This
activity may also generate considerable amounts of data that
must be processed and delivered so it can be analysed.

Monitoring the interaction between the public and the
private transport can potentially increase the safety of both
pedestrians and public/private passengers, as traffic can be
regulated in real-time, in ways to reduce the risk of
accidents. In this case data from multiple different systems
is acquired (in a distributed way), and used at the edge level
(e.g. to prevent a potential hazard) or at the cloud level (e.g.
to adapt the traffic management strategy). Making a
coordinated use of the acquired data requires processing,
storage and dispatching of traffic data and events.
Communication requirements are fundamental to establish
where data should be processed.

2.2 Smart Manufacturing
Smart manufacturing is a broad concept. The European
Commission DG Communications Networks, Content &
Technology defined Smart Manufacturing as real-time
workflow application systems assembled from selected data
management, modelling, analysis, display, and interface
application, in which all information is available when it is
needed, where it is needed, and in the form it is most useful,
enabling infusion and integration of network based data and
information throughout the lifecycle of design, engineering,
planning, and production [3]. The development of such
smart manufacturing environment depends on the Internet of
Things (IoT) capabilities in an industrial context and
demands a better integration between IoT and cloud domain.
It must be able to handle several data streams from different
inputs (such as sensors and actuators, human input, etc.) and
be able to store these data into local or distributed cloud
infrastructures that are able to communicate effectively with
each other.

Smart Manufacturing architectures must be also capable of
supporting closed loop control capabilities for low latency
automation functionalities. Closed loop control can only
achieve high quality results if the underlying infrastructure
can provide appropriate Quality of Service (QoS), especially
in relation to high timing constraints scenarios. It needs real-
time capable physical and transport layers and the use of
local clouds or the concept of fog/edge architectures, where
the automation is local. Those local clouds provide a
protective security fence that protect sensitive automation
operations as real-time closed control loops and safety-
critical operations.

L. Nogueira, A. Barros, C. Zubia, D. Faura, D. Gracia Pérez, L. M. Pinho 53

Ada User Journal Volume 41, Number 1, March 2020

The concept of elasticity in Smart Manufacturing has not yet
been fully explored in the literature. An adaptive elastic
implementation of manufacturing process management
should consider aspects such as QoS and Service Level
Agreement (SLA) metrics and perform an optimization and
a runtime adjustment of infrastructural components.

2.3 Avionics
As a reminder, avionics deal about all the electronical
systems embedded on an aircraft. With the introduction of
the A380 from Airbus or B787 for Boeing, Avionics
Systems have changed to a distributed computing
architecture, based on Integrated Modular Avionics (IMA)
[4]. This computing architecture evolution has maintained
the main mandatory avionics properties: the isolation of the
avionics applications, by implementing a robust partitioning
on the applications being executed on dedicated computing
module and on the dedicated deterministic networks. The
successful implementation of the robust partitioning has
involved the enforcement of the following non-functional
properties: the mastery of execution time, the mastery of
memory access, the mastery of the access to inputs and
outputs, and the mastery of all exchanges. The current
avionics architecture is a critical embedded distributed
computing platform which is becoming more and more
complex. It will be difficult to guarantee that safety and
cyber security properties are well maintained during all
phases of the flight. So, it will require implementing
advanced monitoring mechanisms to confirm in real-time
the validity of end-to-end non-functional requirements.

The ITU-T and the actors of the aviation industry have
established a working group [5] to evaluate the interest to
introduce technologies from the cloud computing and big
data analytics domain into the avionic domain and all the
others aviation related on-ground domains (maintenance,
flight tracking) [6]. The working group has suggested to
embed in the aircraft some of the advance monitoring
functions performed in the airline maintenance centre as the
Flight Data Monitoring [7] and to use the key advantage
provided by 'Data in Motion' analytics. The main asset is to
implement the fundamental ability to analyse (on the fly, and
not analysed after the event occurs), the data collected from
various embedded aircraft sources and identify as soon as
possible the safety-related and security events that are
occurring during the flight to take the most appropriate
safety action or to send an alert to the ground station for more
investigations and recommendations.

2.4 Automotive

Cars are quickly morphing from an isolated, largely
mechanical piece of equipment to one of the most
technically sophisticated and connected platforms on the
planet. From entertainment and navigation to driver
assistance, crash avoidance, and autopilot, today’s cars are
vastly different from those of a few years ago.

One of the main requirements of these new functionalities is
the need for cars to sense and understand the environment,
for which numerous sensors are being used, including
cameras, radar, and LIDAR [8], generating huge amounts of

data. Using multiple sensor technologies also improves the
safety level of the car and at the same time can relax the
safety requirement for each individual sensor.

At the same time, cars will interact with each other and have
access to each other’s information or information about their
surroundings [9]. Future automotive safety applications
based on vehicle-to-vehicle and vehicle-to-infrastructure
communication are regarded as a means for decreasing the
number of fatal traffic accidents.

Developing and deploying autonomous driving systems
requires the ability to collect, store and manage massive
amounts of data, high performance computing capacity and
advanced deep learning frameworks, along the capability to
do real-time processing of local rules and events in the
vehicle. Therefore, it is also important to consider the cloud
infrastructure [10], which the potential to enable a wide
range of applications and new paradigms in autonomous
vehicles, overcoming the limitations posed by standalone
implementations, but at the same time opens challenges
related to real-time response, communication quality and
security.

Cybersecurity is thus an important concern as it relates to
both trust and acceptance of autonomous driving technology
as well as safety. Like all other connected communications
networks, concerns remain that hackers could steal personal
information and spy on people or that malicious control of a
vehicle could cause personal harm or disrupt traffic flow
[11][12].

Sufficient power needs to be available to operate all these
car components at all times needed, which of course involves
when the car is in motion, but also when it is idle, and even
to some degree when the car is no longer considered in active
use for a driving journey. It is taken for granted that the
autonomous systems being tested right now require a lot of
computing power, but it is easy to overlook that all of that
computing power comes at a cost of actual electric power.
Much more complex autonomous systems will also require
a lot more computing power to run, which translates into
energy consumption.

3 Non-functional requirements for the
ELASTIC software architecture

Based on the analysis of the considered application domains,
the following section provides a summary of the
requirements (67 in total [1]) which are placed to the
ELASTIC software architecture.

3.1 Timing requirements
Coping with real-time computing across the compute
continuum requires the ability to specify and manage
different timing perspectives. These systems have either
local (i.e. at the edge node) or end-to-end (i.e. edge-to-cloud)
requirements that define the boundaries of their useful
operation. Local timing requirements can be critical (e.g. to
timely brake the tram vehicle in order to avoid a collision),
but also can be end-to-end timing requirements (e.g.
informing the control centre about the current localisation of
the tram vehicle). Two main challenges arise: tasks deployed

54 Non-funct ional Requirements in the ELASTIC Archi tecture

Volume 41, Number 1, March 2020 Ada User Journal

at the edge (for example, on board the connected car) need
to guarantee “hard real-time” responses (e.g. very low
latency) and those deployed at the cloud need to guarantee
certain QoS levels regarding time: right-time or “soft real-
time” guarantees.

Closer to the environment, at the edge, tight timing mapping
and scheduling approaches can be used, while at the cloud,
time is measured in terms of average statistical performance
with Quality of Service (QoS) constraints. These
perspectives complement each other, and ELASTIC will
provide solutions that will allow to dynamically deploy
application components distributed over the system, to
provide the required response time to applications, whilst
optimizing energy and communication costs. ELASTIC will
provide analysis and tools to determine offline a predictive
response-time for a particular application, and then
dynamically adjusting the system resources to which the
application is mapped, depending on the actual load of the
system. A particular concern will be given to model the
different time scales of the system, providing execution
models that consider temporal behaviour of applications
from the fast interactions at the edge side to the wider timing
perspective of the cloud side.

3.2 Energy requirements
The energy requirements placed by mobile and autonomous
systems require that special attention is given to energy
efficiency and trade-offs between energy consumption and
other non-functional properties (current prototypes for fully
autonomous driving systems consume the equivalent energy
of 50 to 100 laptops [13]).

This requires that systems are augmented with
“introspection” capabilities in terms of power consumption,
and the use of energy-aware execution models, from the
hardware platform to the holistic system. This will allow to
propagate workload-specific information from the run-time
to the decision-making module, which can be exploited to
better adapt to the requirements, as well as to the time
predictability and security optimisation levels. Furthermore,
a richer knowledge of applications’ requirements and
concurrency structure, coupled with precise energy models
for the underlying hardware, combined with the possibility
of dynamically switching between edge and cloud
deployments, constitutes an enabling factor towards larger
energy savings, and the development of novel online and
offline optimization strategies. For this purpose, it is
required to devise methods to extract information on
workload specifications, including non-functional
specifications, and platform characteristics, impacting on
energy efficiency. This will enable allocation strategies and
run-time mechanisms that consider energy information and
energy-aware execution models to efficiency tune power
consumption over the complete continuum.

3.3 Communication requirements
The main objective of the communication in the ELASTIC
use cases [2] is to transfer information between applications
from the edge side to applications hosted in a private cloud.
The data exchange along the ELASTIC fog computing

architecture is mainly done through wireless interfaces (LTE
and Wi-Fi).

The compute continuum needed to implement safety related
communication channel [14] to allow the communication
between the IT environment (clouds) and the Critical Edge
Environment (Tram, Aircraft, Car,...). This communication
architecture must be able to transfer monitoring data, images
and video from the edge nodes to the cloud and the control
data from the cloud to the edge nodes and providing at the
same time safe end-to-end transfer and end-to-end security.

ELASTIC must ensure reliable communication channels to
avoid information loss and must implement verification
mechanisms for data communication, in order to realise
reliable communication on top of communication
infrastructures with unknown quality (mechanisms for out-
of-order-delivery and acknowledgement, for example). It
must be shown that the end-to-end information being
transmitted is complete, not altered, not missing, on time and
must be monitored at runtime. All this potential monitoring
function must be distributed between each node of the
compute continuum and the Non-Functional Requirements
(NFR) tool.

The compute continuum architecture by design uses
different kinds of network protocols and standards
depending mainly on the type of the network physical
medium. This communication architecture must also
implement a safe full-duplex communication system to
forward the information. So, low latency communication
protocols must be supported by ELASTIC in order to collect
real-time data from devices and support real-time traffic to
process sensor data.

3.4 Security requirements
The security requirements of the different use cases must be
considered in the ELASTIC architecture. Depending on the
trustworthy level of the application domain (railway,
avionics, automotive,…) and the risks associated to each
device (edge, network, cloud, …) in the architecture, some
key properties and the embedded associated mechanisms are
needed to be implemented in order to master the behaviour
of the communication system and to ensure the end-to-end
enforcement of the security properties defined during the
design phase.

The ELASTIC communication architecture should
implement secure bidirectional data flow channels in order
to provide privacy, data integrity and authentication between
the different actors present in the architecture. It is
recommended to identify at design time the critical dataflow
involved in the communication Use Cases and to define their
main characteristics. The ELASTIC wired and wireless
communication system must ensure for the most critical
dataflow a robust partitioning [15] of its allocated bandwidth
to prevent Denial of Service attack. The critical dataflow
bandwidth availability and their main metadata fields
(@Source, @Dest, Protocol, Timestamp, Geolocation, CRC
…) must be monitored at runtime in each communication
nodes and each erroneous message must be deleted. The

L. Nogueira, A. Barros, C. Zubia, D. Faura, D. Gracia Pérez, L. M. Pinho 55

Ada User Journal Volume 41, Number 1, March 2020

availability and metadata field errors must be reported to the
NFR Tool communication supervisors function.

ELASTIC shall also satisfy GDPR [16] for managing
personal data. There are different critical stages where
personal information is managed. Some examples include
the facility of data erasure with no restrictions, the creation
of a hierarchy of roles and users for controlling the access to
restricted components of the system, etc. A RBAC (rule-
based access control) can be implemented in order to control
the access of each device to certain endpoints of services.
The use of device certificates and mutual authentication
would offer a higher level of security, and improved control
of the connected devices and permissions.

3.5 Requirements interdependency
Interdependency between the requirements provides further
challenges to the architecture. The expected large amounts
of data generated by new applications raises the relevance of
timing and communication requirements. Processing data on
the edge allows for tighter timing properties, also potentially
reducing the amount of data that has to be delivered to the
cloud. However, the cloud has more computing power to
perform data analysis, and potentially larger energy
envelops, but the end-to-end communication delay and the
latency of the system increases and becomes unpredictable.

Also, as computation is moved to the cloud, the required
level of security increases to minimise potential attacks,
which may end up affecting the safety assurance levels,
hindering the execution and data exchange among edge and
cloud resources.

4 Integrating Non-Functional
Requirements in the ELASTIC software
architecture

Contemporary cloud computing solutions, both research
projects and commercial products, have mainly focused on
providing functionalities at levels close to the infrastructure.
Furthermore, they tend to focus on functional aspects only.

In order to provide an improved ecosystem, which considers
the full compute continuum, there is a great need for analysis
and monitoring tools that support higher-level concerns and
non-functional aspects in a comprehensive manner, from the
edge to the cloud. Therefore, the NFR tool of the ELASTIC
architecture will operate both at the analysis phase, and
during execution.

4.1 Analysis
The goal of the analysis phase is to guarantee the fulfilment
of the system non-functional properties, considering the
potential trade-offs between performance, predictability,
energy-efficiency, communication quality and security. The
result of this analysis is a set of possible initial deployment
configurations. For example, in one configuration, to fulfil
security requirements, a stronger encryption algorithm might
be used than another alternative service configuration.
However, using a stronger encryption algorithm may lead to
consuming more memory or processing capacity and CPU
time, and, in this way, it impacts memory and performance

requirements. Today, a plethora of verification techniques
exist for different layers in the cloud stack (IaaS, PaaS, SaaS)
that typically address a single non-functional property.

The analysis phase should be able to carefully identify how
satisfying and fulfilling one requirement can impair the
satisfaction of other requirements in the system. Establishing
and maintaining such interdependencies during the
development process and the lifecycle of the system is also
an important point, taking into account the evolution of the
software architecture and the introduction of new
requirements or the modification of existing ones. Moreover,
not only requirements can have impact on each other, but
also one requirement usually crosscuts different parts of a
system. For example, achieving security in a system requires
design decisions for different parts of a system spanning
from user interfaces (e.g., what a user can enter as input),
database backends, communication protocols, network
topology, and so on.

4.2 Online monitor
Deployment decisions should be made in light of a target
system, aiming for high quality of the system deployed under
given constraints. However, in order to support deployment
decisions, it is essential to identify concrete measures as a
basis for decision making and evaluation of the proposed
solutions. Such measures can be static, as described in the
previous section, and dynamic, in the case of systems that
evolve continuously as the workloads, allocated resources
and requirements of these systems change over time.

Therefore, runtime monitoring of requirements should be
used to guide this evolution towards configurations that are
guaranteed to satisfy the system’s overall requirements.
Monitoring should be used to identify the scenario the
system operates in, and to select a model whose quantitative
verification enables the detection or, sometimes, prediction
of violations. The subsequent synthesis and execution of a
provably correct reconfiguration plan help the system to re-
instate or maintain compliance with the expected level of
service.

The monitoring phase also requires that the ELASTIC
software architecture is able to provide information on the
resource usage and application execution in the nodes, and
dynamically re-map and schedule components considering
the execution profile identified by the monitor.

5 Conclusions

The ELASTIC project targets the development of a software
architecture that incorporates a new elasticity concept, which
will enable smart systems to satisfy the performance
requirements of extreme-scale analytics workloads. A main
challenge of the project is the need to consider the non-
functional properties inherited from smart systems, such as
real-time, energy efficiency, communication quality or
security. This paper provides a summary of the non-
functional properties identified in the scope of the ELASTIC
project, and the technical requirements imposed into the
ELASTIC software architecture.

56 Non-funct ional Requirements in the ELASTIC Archi tecture

Volume 41, Number 1, March 2020 Ada User Journal

Acknowledgements

This work has been financially supported by the European
commission through the ELASTIC project (H2020 grant
agreement 825473).

References

[1] ELASTIC Consortium, Deliverable D4.2: “Non-
functional properties analysis and constraints
specification”, May 2019

[2] ELASTIC Consortium, Deliverable D1.1: “Use case
requirement specification and definition”, May 2019

[3] European Commission DG Communications Networks,
Content & Technology, “Definition of a Research and
Innovation Policy Leveraging Cloud Computing and
IoT Combination”, ISBN 978-92-79-47760-7, 2014.

[4] Henning Butz, “Open integrated modular avionic
(IMA): State of the art and future development road”,
Technical report, Department of Avionic Systems,
Airbus Deutschland GmbH, 2010.

[5] ITU-T, Focus Group on Aviation Applications of Cloud
Computing for Flight Data Monitoring.

[6] ITU-T, “Existing and emerging technologies of cloud
computing and data analytics”, 2016

[7] EASA, “Flight Data Monitoring on ATR Aircraft”,
2016

[8] Rajeev Thakur, "Infrared Sensors for Autonomous
Vehicles", Recent Development in Optoelectronic
Devices, IntechOpen, 2017. DOI: 10.5772/
intechopen.70577

[9] M. Campbell, M. Egerstedt, J.P. How, R.M. Murray,
"Autonomous driving in urban environments:
approaches, lessons and challenges", Philosophical
Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences,
368:4649-4672, 2010. DOI: 10.1098/rsta.2010.0110

[10] S. Liu, J. Tang, C. Wang, Q. Wang, J. L. Gaudiot, "A
Unified Cloud Platform for Autonomous Driving",
Computer, 50: 42-49, 2017.

[11] Andy Greenberg, "The Jeep Hackers are Back to Prove
Car Hacking Can Get Much Worse", Wired, 2018.
Available at: https://www.wired.com/2016/08/jeep-
hackers-return-high-speed-steering-acceleration-hacks/

[12] Jared Gall, "Can a Connected Car Ever Be Safe from
hacking?", Car and Driver, 2017. Available at:
https://www.caranddriver.com/features/a15079914/
can-a-connected-car-ever-be-safe-from-hacking-
feature/

[13] Gabrielle Coppola, Esha Dey, "Driverless Cars Are
Giving Engineers a Fuel Economy Headache",
Bloomberg, 2017. Available at:
https://www.bloomberg.com/news/articles/
2017-10-11/driverless-cars-are-giving-engineers-a-
fuel-economy-headache

[14] CENELEC, “EN 50159: Railway applications -
Communication, signalling and processing systems -
Safety-related communication in transmission
systems”, 2011.

[15] P.Toillon, P.B.Champeaux, D.Faura, W.Terroy,
M.Gatti, “An optimized answer toward a Switchless
Avionics Communication Network”, DASC, 2015.

[16] EU General Data Protection Regulation,
https://ec.europa.eu/commission/priorities/justice-and-
fundamental-rights/data-protection/2018-reform-eu-
data-protection-rules_en.

 57

Ada User Journal Volume 41, Number 1, March 2020

Forty Years On and Going Strong
John Barnes
11 Albert Road, Caversham, Reading, RG4 7AN, UK; Tel: +44 118 9474125; email: john@jbinformatics.co.uk

Hello readers:

It is forty years of the Ada User Journal. It is ten years since
it was thirty years ago and I wrote a short paper giving the
history of the journal and how it had evolved. In this current
issue you will also find a revamp of a paper about the
evolution of the language and some mutterings about Lord
Byron and his bear.

This has made me contemplate some highlights of the past
40 years especially with regard to memorable conferences.

But first some remarks about a book that I found in a second-
hand bookshop in Henley-on-Thames in around 1997. It was
Mathematical Bafflers by Angela Dunn. What really
intrigued me was that tucked into the front was the shipping
packaging slip. This showed that it was purchased by David
C Sullivan of Litton Industries in Beverly Hills. The date of
purchase was 27 June 1967, price (including Calif state tax)
was $7.45. It contains puzzles from an internal weekly
magazine of Litton Industries. The foreword tells us that
these have been submitted by readers and answers are
included. Two questions struck, why was this book
thousands of miles away from California? And who was
Miss Dunn? Was she now a maths professor at a college in
California?

At a SigAda conference in Washington in 1998 I met some
people from Litton but they could tell me little. However, at
the SigAda conference in Redondo Beach in 1999, I obtained
Miss Dunn's phone number from a local library. I called her
and we met for dinner in a Mexican joint in Beverly Hills. It
turned out that the editorship had been a transitory part of
her life and she had spent most of her career interviewing
film stars and writing pieces for magazines. She gave me a
list of stars whom she had met. It starts with Fred Astaire and
Bob Hope! But the truly interesting thing was that her middle
name was Fox. She was the granddaughter of the founder of
Twentieth Century Fox. Amazing!

Two Ada-Europe conferences stand out in my memory. One
was awful, one was wonderful. The awful one was in
Frankfurt in 1995. The first disaster was that I broke my
spectacles when changing trains in Brussels. So I was fairly
blind for the week. The other bad thing was that it was a joint
conference with Eurospace, they gave an opening address
roughly saying, we are not that keen on Ada!

The following conference in 1996 organized by Alfred
Strohmeier was in Montreux. It was wonderful! Alfred had
persuaded the manager of the hotel to let the executive suite
to the President for the price of a normal room on grounds
that he could then let an additional normal room. The suite
included a private bar, a meeting room, a secretaries room, a
veranda with seating for 24. The meeting room was superb

for our board meetings. I even gave tours of my rooms. And
one could control the fancy B&O sound system lying in the
bath by foot-controlled switches!

At the gorgeous Ada-Europe conference in Venice in 2008,
I was given honorary membership of Ada-Europe (I had
dragged on as President for some years but was relieved to
hand over to Erhard Ploedereder). In exchange I was asked
to give a smallish speech/address at future conferences
(much to the dismay of my wife). These addresses have
continued and generally comprise a few remarks about the
progress of Ada, probably a wretched joke, and ending with
some sort of mathematical puzzle.

Since many of us are locked down by the virus, I thought
maybe a puzzle or two would not come amiss right now.

One of the puzzles was the sum

 CROSS
 ROADS

 DANGER

where the letters represent digits. The answer is

96233 + 62513 = 158746

Another particularly nasty one was

 * * *
 * * *

 * * *
 * * *
 * * *

 * * * * *

where we are told that each of the ten digits from 0 to 9
occurs exactly twice in this multiplication puzzle.

Other puzzles of a similar sort are

 HOCUS + POCUS = PRESTO

 COUPLE + COUPLE = QUARTET

 ZEROES + ONES = BINARY

 FISH + N + CHIPS = SUPPER

and using multiplication for a change

 PI * R * R = AREA

The answers might be given in the next issue of the Journal.

Take care.

58

Volume 41, Number 1, March 2020 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

