

Ada User Journal Volume 40, Number 3, September 2019

ADA
USER
JOURNAL

Volume 40
Number 3

September 2019

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

Quarterly News Digest 132

Conference Calendar 143

Forthcoming Events 149

Special Contribution

 J. Cousins
“ARG Work in Progress III” 153

Ada-Europe 2019 Industrial Presentations

 A. R. Mosteo
“RCLAda, or Bringing Ada to the Robotic Operating System” 159

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and
 Cyber-Physical Systems Engineering" of Ada-Europe 2019

 M. Schranz, M. Sende, A. Bagnato, E. Brosse, A. Eckel
“Modeling CPS Swarms: An Automotive Use Case” 165

 M. Schranz, M. Sende, A. Bagnato, E. Brosse
“Modeling Swarm Intelligence Algorithms for CPS Swarms” 169

Ada-Europe 2019 Speaker's Corner

 J. P. Rosen
“Experience in 40 Years of Teaching Ada” 179

Article

 M. Gajdzica
“Ada-Europe 2019 – Newcomer Experience” 183

Ada-Europe Associate Members (National Ada Organizations) 186

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:
http://www.ada-europe.org/join

132

Volume 40, Number 3, September 2019 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en
Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Organizations 132
Ada-related Events 132
Ada-related Resources 133
Ada-related Tools 134
Ada-related Products 136
Ada and Operating Systems 137
Ada and other Languages 138
Ada Practice 139

Ada-related
Organizations
Additional Comment Period
for Upcoming Ada Revision
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Additional Comment Period for

Upcoming Ada Revision
Date: Fri, 26 Jul 2019 21:53:30 -0500
Newsgroups: comp.lang.ada
ISO/IEC JTC 1/SC 22/WG 9 (WG 9) is
responsible for the maintenance and
revision of the Ada Programming
Language and associated standards and
technical reports. As part of the language
maintenance activity, WG 9 has
established a group of Ada experts as the
Ada Rapporteur Group (ARG). The ARG
receives input from the Ada community at
large to consider for inclusion in revision
to the Ada programming language
standard. The WG 9 has produced a
number of revisions to the language in
accordance with ISO policy and to
address the evolution of technology (Ada
83, Ada 95, Ada 2005 and Ada 2012).
Presently, the ARG is nearing completion
on a revision to Ada 2012 (known for
now as Ada 202x) which includes new
contracts and lightweight parallelism
features. Concern has been raised that
these new proposals have not been
prototyped nor has the suitability for
diverse target environments been
assessed.
Therefore, the ARG is seeking comments,
based on prototyping and review, on the
new features (focused on the parallelism
features) incorporated within the current
draft of the Ada 202X standard.
Comments should be submitted to ada-
comment@ada-auth.org as described in

the Ada Reference Manual Introduction
(http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-0-3.html#p58).
Please include the draft number with any
Ada Reference Manual references in your
comment. Comments should be sent by 1
June 2020 in order to be considered for
the revision. (Note: While not required,
joining the mailing list as described at
http://www.ada-auth.org/comment.html is
recommended so that you receive any
queries on or responses to your
comment.)
The draft revision can be found at
http://www.ada-auth.org/standards/
ada2x.html.
A list of issues addressed in Ada 202x can
be found at http://www.ada-auth.org/
ai-files/grab_bag/
2020-Amendments.html.
(You can find an on-line version of this
announcement at https://www.adaic.org/
2019/07/additional-comment-period-for-
upcoming-ada-revision/.)
From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Fri, 26 Jul 2019 22:02:39 -0500n
To translate this announcement into plain
English, the completion date of Ada 202x
has been pushed back a year and a half in
order to get more feedback on the
proposed changes. Most of the major
features went from rough outlines last fall
to a completed standard with detailed
wording by May. This rate of completion
was just too much for most interested
parties outside of the ARG to keep up
with.
Rather than standardize something under-
baked that might have to be changed in a
few years, we're dialing back the amount
of work and letting the Ada community
catch up.
This comment period is not intended to
introduce additional new features; such
comments are always welcome but most
will be deferred until the following
revision. (Of course, additional features
related to the ones already intended for
the revision are possible.)
From: “Yannick Moy”
<moy@adacore.com>
Date: Mon, 29 Jul 2019 02:44:22 -0700
I would add that participation in the new
Ada/SPARK RFC website hosted by
AdaCore is very welcome for anyone who

wants to influence the future of Ada
and/or SPARK:
https://github.com/AdaCore/
ada-spark-rfcs
Participation can come in many flavors:
- signal your opinion on Pull Requests

(PR) by adding a thumb-up/thumb-down
on the first message of the PR

- comment on a PR to refine your opinion
- propose an RFC as a PR for others to

comment

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event, feel free to
inform us as soon as possible. If you
attended one such event, please consider
writing a small report for the Ada User
Journal.]

Ada-Europe 2019 Final Call
for Participation
From: Dirk Craeynest

<dirk@cs.kuleuven.be>
Subject: Press Release - Reliable Software

Technologies, Ada-Europe 2019
Date: Tue, 4 Jun 2019 22:21:31 -0000
Newsgroups: comp.lang.ada

--
FINAL Call for Participation

*** UPDATED Program Summary ***
24th International Conference on

Reliable Software Technologies - Ada-
Europe 2019

11-14 June 2019, Warsaw, Poland
http://www.ada-europe.org/

conference2019
**Check out tutorials and workshop! **

http://www.ada-europe.org/
conference2019/tutorials.html
http://www.ada-europe.org/

conference2019/workshops.html
*** Exhibition Opening & Welcome

Aperitif on Tuesday ***
*** Full Program available on conference

web site ***
*** Register now! ***

--

Ada-related Resources 133

Ada User Journal Volume 40, Number 3, September 2019

Press release:
24th Ada-Europe Conference on Reliable
Software Technologies
International experts meet in Warsaw
Warsaw, Poland (5 June 2019) - Ada-
Europe together with EDC (the
Engineering Design Center, a partnership
of General Electric and the Institute of
Aviation), organize from 11 to 14 June
2019 the "24th International Conference
on Reliable Software Technologies - Ada-
Europe 2019" in Warsaw, Poland. The
event is in cooperation with the Ada
Resource Association (ARA), and with
ACM's Special Interest Groups on Ada
(SIGAda), on Embedded Systems
(SIGBED) and on Programming
Languages (SIGPLAN).
[...]
This year's conference offers tutorials and
a workshop, two keynotes, a technical
program of refereed papers and industrial
presentations, an industrial exhibition and
vendor presentations, and a social
program.
Two tutorials are scheduled on Tuesday,
targeting different audiences: "An
Introduction to Ada", for those who want
to understand the benefits of using Ada;
and "Controlling I/O Devices with Ada,
using the Remote I/O Protocol", for those
willing to develop Ada programs that
control external hardware devices. On
Friday the conference hosts for the 6th
consecutive year the workshop on
"Challenges and new Approaches for
Dependable and Cyber-Physical Systems
Engineering" (DeCPS 2019): registration
is complementary for conference
participants.
The industrial exhibition opens Tuesday
mid-afternoon in the networking area and
runs until the end of Thursday afternoon.
Exhibitors include AdaCore, PTC
Developer Tools, Rapita Systems, Vector,
and Ada-Europe. All tutorial and
conference participants are invited to the
exhibition opening, as well as to the
Welcome Aperitif afterwards.
Two eminent keynote speakers have been
invited to open each day of the core
conference program: Michael Klemm
(OpenMP, Germany), on "OpenMP API:
A Story about Threads, Tasks and
Devices"; and Tucker Taft (AdaCore,
USA), on "A 2020 View of Ada".
The technical program on Wednesday and
Thursday presents 9 refereed technical
papers and 8 industrial presentations in
sessions on Assurance Issues in Critical
Systems, Tooling Aid for Verification,
Best Practices for Critical Applications,
Uses of Ada in Challenging
Environments, Verification Challenges,
and Real-Time Systems. Also included is
a speaker's corner on "Experience from 40
years of teaching Ada", and vendor
presentations. Peer-reviewed papers will

be published in an open-access journal,
industrial presentations and tutorial
abstracts in the Ada User Journal, the
quarterly magazine of Ada-Europe.
The social program includes on Tuesday
evening a Welcome Aperitif on the
terrace of the Institute of Aviation,
enjoying a wonderful view of the Warsaw
airport and city center, accompanied by
drinks and typical Polish snacks. On
Wednesday evening will be the traditional
Ada-Europe Conference Banquet, with
Polish cuisine, drinks, and live piano
music, in the restaurant "Przepis na
kompot" in the town where Chopin was
born.
The Best Paper Award will be presented
during the Conference Banquet, the Best
Presentation Award during the Closing
session.
The full program is available on the
conference web site. [...]
Latest updates:
The 12-page "Final Program" is available
at http://www.ada-europe.org/
conference2019/
AE-2019-Final-Program.pdf
Check out the tutorials in the PDF
program, or in the schedule at
http://www.ada-europe.org/
conference2019/tutorials.html.
[...]
A printed Conference Booklet with
abstracts of all technical papers and
industrial presentations will be included
in every conference handout.
Help promote the conference by
advertising for it:
http://www.ada-europe.org/
conference2019/promotion.html
Put up the poster at
http://www.ada-europe.org/
conference2019/picts/AE2019_poster.pdf
Recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2019.
For more info and latest updates see the
conference web site at
http://www.ada-europe.org/
conference2019.

Update about Ada-Europe
Conferences 2019 and 2020
From: Dirk Craeynest

<dirk@cs.kuleuven.be>
Subject: Update about Ada-Europe

Conferences 2019 and 2020
Date: Sat, 29 Jun 2019 13:53:33 -0000
Newsgroups: comp.lang.ada
The 24th edition of Ada-Europe's
International Conference on Reliable
Software Technologies took place on 11-
14 June in Warsaw, Poland, with
considerable success.

The conference, graciously hosted by the
Institute of Aviation, had nearly 100
participants, enjoyed a rich technical and
social program, and saw much active
interaction between participants,
presenters, and exhibitors.
For your information, the following
material is now available online:
- the "Conference Booklet" in PDF, which

contains the abstracts of all presentations
in the core program (see first section on
[1]);

- copies of conference presentations (see
"Download" links in "Conference Core
Schedule" table on [1]);

- copies of DeCPS workshop
presentations (see "Download links in
"Program" table on [2]);

- pictures of the exhibition booths (see
final part of [3]).

[1] www.ada-europe.org/
conference2019/overview.html

[2] www.ada-europe.org
/conference2019/workshops.html

[3] www.ada-europe.org/
conference2019/sponsors.html

As announced in Warsaw, next year's
conference will be held in Santander,
Spain, in the week of 8-12 June 2020.
The preliminary Call for Contributions is
already available on the (mini) conference
web site at [4]. More details will follow
later.
[4] www.ada-europe.org/

conference2020/
On this occasion, the Ada-Europe Board
announces a slight update of the name of
its conference series:
- the complete name is "25th Ada-Europe

International Conference on Reliable
Software Technologies";

- the short name is "Ada-Europe
Conference 2020";

- the acronym is "AEiC 2020".
Hence on social media when referring to
the Ada-Europe organization we'll use
#AdaEurope, and when referring to next
year's Ada-Europe Conference we'll use
#AEiC2020.

Ada-related Resources
Ada on Social Media
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada on Social Media
Date: 2019/Aug/06
To: Ada User Journal readership
Ada groups on various social media:
- LinkedIn: 2_848 (+35) members [1]
- Reddit: 2_307 (+64) members [2]
- StackOverflow: 1_685 questions [3]

134 Ada-related Tools

Volume 40, Number 3, September 2019 Ada User Journal

- Freenode: 76 (-11) users [4]
- Gitter: 42 (=) people [5]
- Telegram: 45 (-2) users [6]
- Twitter: 32 (+26) tweeters [7]
 36 unique tweets [7]
[1] https://www.linkedin.com/groups/

114211/
[2] http://www.reddit.com/r/ada/
[3] http://stackoverflow.com/questions/
tagged/ada
[4] #Ada on irc.freenode.net
[5] https://gitter.im/ada-lang
[6] https://t.me/ada_lang
[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Repositories of Open Source

software
Date: 2019/Aug/06
To: Ada User Journal readership
GitHub: 573 (-30) developers [1]
Rosetta Code: 666 (+2) examples [2]
 36 (=) developers [3]
Sourceforge: 270 (=) projects [4]
Open Hub: 209 (=) projects [5]
Bitbucket: 87 (=) repositories [6]
Codelabs: 47 (+1) repositories [7]
AdaForge: 8 (=) repositories [8]
[1] https://github.com/search?

q=language%3AAda&type=Users
[2] http://rosettacode.org/wiki/

Category:Ada
[3] http://rosettacode.org/wiki/

Category:Ada_User
[4] https://sourceforge.net/directory/

language:ada/
[5] https://www.openhub.net/tags?

names=ada
[6] https://bitbucket.org/repo/all?

name=ada&language=ada
[7] https://git.codelabs.ch/?

a=project_index
[8] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings
From: Alejandro R. Mosteo

<amosteo@unizar.es>
Subject: Ada in language popularity

rankings
Date: Thu May 23 2019
To: Ada User Journal readership
Note: positive ranking changes means to
go down in the ranking.

- TIOBE Index: 37 (+1) 0.296%
(-0.03%) [1]

- IEEE Spectrum (general): 42 (-4) [2]
- IEEE Spectrum (embedded): 13 (=) [2]
[1] https://www.tiobe.com/tiobe-index/
[2] https://spectrum.ieee.org/static

/interactive-the-top-programming-
languages-2018

Ada-related Tools
Pure Ada libraries for
Artificial Intelligence
From: Daniel

<danielnorberto@gmail.com>
Subject: Artificial Intelligence libraries in

Ada
Date: Wed, 10 Jul 2019 00:25:48 -0700
Newsgroups: comp.lang.ada
Does anybody knows pure Ada libraries
for AI?
Specially, I'm interested in Decission
Trees, but I can't find anything on
internet.
In case of a negative answer, does
anybody knows a good CPU performance
AI C/C++ Library working good binded
to Ada code?
From: "J-P. Rosen" <rosen@adalog.fr>
Date: Wed, 10 Jul 2019 09:39:39 +0200
There is FannAda
(https://sourceforge.net/projects/lfa/), a
binding to the Fann neural network
library. No idea what it's worth.
From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>
Date: Wed, 10 Jul 2019 12:52:40 +0200
http://www.dmitry-kazakov.de/ada/
fuzzy_ml.htm
This includes decision trees both fuzzy
and crisp. It is 100% Ada, except the
database persistence back ends.
From: "Jeffrey R. Carter"

<spam.jrcarter.not@spam.not.acm.org>
Date: Wed, 10 Jul 2019 18:13:14 +0200
I guess you're not interested in neural
networks, but there's an implementation
of REM NNs in the PragmAda Reusable
components.
https://github.com/jrcarter/PragmARC
[...] It's NNs with the REM 2nd-order
learning algorithm.
http://pragmada.x10hosting.com/
REM_Eq.pdf

Gnu Emacs Ada mode 6.1.1
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Gnu Emacs Ada mode 6.1.1

released.
Date: Fri, 12 Jul 2019 11:10:22 -0700
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 6.1.1 is now
available in GNU ELPA. This is a minor
feature and bug fix release; partial file
parsing is now supported for `which-
function-mode', and error correction is
improved. See the NEWS files in
~/.emacs.d/elpa/ada-mode-6.1.1 and wisi-
2.1.1, or at http://www.nongnu.org/ada-
mode/, for more details.
The process parser requires a manual
compile step, after the normal list-
packages installation:
cd ~/.emacs.d/elpa/ada-mode-6.1.1
./build.sh
This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

dcf-ada 2.0.0 Library for
Document Container Files
From: onox <denkpadje@gmail.com>
Subject: ANN: dcf-ada 2.0.0 -- A library for

document container files, a Zip-based
archive format

Date: Tue, 23 Jul 2019 14:15:03 -0700
Newsgroups: comp.lang.ada
An Ada 2012 library for document
container files, a Zip-based archive format
standardized in ISO/IEC 21320-1:2015.
Document container files are Zip files
with several restrictions:
* Only "store" (uncompressed) and

"deflate" compression methods are
allowed

* Archives may not be encrypted or
contain digital signatures

* Archives may not span multiple
volumes or be segmented

This library is based on the Zip-Ada
library, with extensive modifications:

* Binary and Windows-specific files have
been removed with The BFG Repo
Cleaner

* Reformatted code to Ada default style
guide

* Removed obsolescent features and
implementation-defined extensions

* All packages except one that uses
Ada.Calendar are preelaborated

* Removed features prohibited by ISO
standard

* Removed lots of duplicated code and
simplified the API, reducing SLOC from
12k to 4.5k

Although the tools can (un)zip basic .zip
files, the purpose of the library is to be
able to read container files, including a
future binary storage format for 3D
meshes.
See the README.md at
https://github.com/onox/dcf-ada on how
to list or extract files from an archive.

Ada-related Tools 135

Ada User Journal Volume 40, Number 3, September 2019

Qt5Ada 5.13.0
From: leonid.dulman@gmail.com
Subject: Announce : Announce : Qt5Ada

version 5.13.0 (594 packages) release
01/07/2019 free edition

Date: Sat, 3 Aug 2019 05:09:13 -0700
Newsgroups: comp.lang.ada
Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.13.0 open
source final)
Qt5ada version 5.13.0 open source and
qt5c.dll(win64),libqt5c.so(x64) built with
Microsoft Visual Studio 2017 x64 in
Windows, gcc x86-64 in Linux.
Package tested with gnat gpl 2012 Ada
compiler in Windows 64bit, Linux x86-64
Debian 9.4.
It supports GUI, SQL, Multimedia, Web,
Network, Touch devices, Sensors,
Bluetooth, Navigation and many others
thinks.
My configuration script to build Qt 5.13.0
is: configure -opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.13"
As a role Ada is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.
Qt5Ada and VTKAda for Windows,
Linux (Unix) is available from
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/
The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx"
VTKAda version 8.2.0 is based on VTK
8.2.0 (OpenGL2) is fully compatible with
Qt5Ada 5.13.0.

Qt5AVAda
From: leonid.dulman@gmail.com
Subject: Announce : QtAVAda version

1.12.0 release 01/08/2019 free edition
Date: Sat, 3 Aug 2019 05:09:13 -0700
Newsgroups: comp.lang.ada
Qt5AVAda is ada-2012 port to QtAV
multimedia playback framework based on
Qt + FFmpeg. Cross platform. High
performace. Easy to use and base on
QtAV 1.12 developed by wang-bin
https://github.com/wang-bin/QtAV.
QtAVAda build widgets inside Qt5Ada
application(5.13.1 release 01/08/2019).
QtAVAda for Windows, Linux (Unix) is
available from
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio

If you have any problems or questions,
tell me know.

String edit v3.5
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: ANN: String edit v3.5 released
Date: Sun, 4 Aug 2019 16:56:40 +0200
Newsgroups: comp.lang.ada
The library provides various means for
editing and formatting strings:
http://www.dmitry-kazakov.de/ada/
strings_edit.htm
This release adds implementations of
some standards actively used in
communication RFC 3061, 4514; ISO
8601.
Changes to the previous version:
- Added the package

Strings_Edit.Long_Floats, an instance of
String_Edit.Floats with Long_Float;

- The package
Strings_Edit.UTF8.ITU_T61 provides
ITU T.61 encoding conversions;

- The package
Strings_Edit.Object_Identifiers provides
implementation of RFC 3061 object
identifiers (OID);

- The package
Strings_Edit.Distinguished_Names
provides implementation of RFC 4514
distinguished names (DN);

- The package Strings_Edit.ISO_8601
provides ISO 8601 representations of
time and duration;

- Encoding and decoding Base64 streams
were added to the package
Strings_Edit.Base64.

Simple Components for Ada
v4.41
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple components for Ada

v4.41 released
Date: Mon, 5 Aug 2019 13:57:16 +0200
Newsgroups: comp.lang.ada
The new release is focused on ASN.1
support. The implementation does not
require ASN.1 compiler. It is based on
reflection of Ada attributes. The objects
corresponding to ASN.1 objects are put
together into record types and the
encoding is deduced from the placement.
The implementation provides arena pool
to allocate data associated with ASN.1
objects. This allows to handle very large
and indefinite ASN.1 objects without
allocating maximum possible memory in
advance. This also enables sharing
memory between ASN.1 CHOICE
alternatives as well as recursively defined
ASN.1 objects. Implementations of LDAP
and X.509 certificates based on ASN.1
are provided.

http://www.dmitry-kazakov.de/ada/
components.htm
Changes to the previous version:
- The package OpenSSL was extended;
- Added implementation of ASN.1

encoding;
- X.509 ASN.1 certificates

implementation added;
- LDAP implementation added.
From: Shark8

<onewingedshark@gmail.com>
Date: Mon, 5 Aug 2019 07:22:43 -0700
Wow!
This is incredible news, especially for
things like the Wasabee browser project.
There was someone who was working on
an Ada/SPARK ASN.1 compiler (Peter
Chapin?) and I think the people doing this
project -- https://github.com/ttsiodras/
asn1scc -- which *is* an ASN.1 compiler.
WRT the OpenSSL dependency, how
much work would it be to get rid of it?
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Mon, 5 Aug 2019 17:56:43 +0200
> Wow!
> This is incredible news, especially for

things like the Wasabee browser
project. There was someone who was
working on an Ada/SPARK ASN.1
compiler (Peter Chapin?) and I think
the people doing this project [...]

I am aware of ASN1SCC, but I wanted an
alternative approach that does not require
code generator and can handle constraints
dynamically.
ASN.1 specifications are infested with
objects defined up to "MAX" items. E.g.
the LDAP filter is a variable record
(CHOICE) with disjunctive and
conjunctive forms as alternatives
containing the LDAP filter recursively as
terms. The number of terms is an
unspecified MAX and the depth of
recursion is kind of infinite. I have no
idea how the generators handle this mess.
If compiled literally, e.g. with MAX=256
depth=32, it would take a huge amount of
memory while in reality it is bounded
from above just by the message length.
> WRT the OpenSSL dependency, how

much work would it be to get rid of it?
There is no dependency on OpenSSL.
OpenSSL and GNUTLS are two back-
ends used in the corresponding
implementations of the secure connection
handler. Both are separate gpr-projects.
All network stacks are designed to work
with any handler implementation. Should
Ada TLS become available I would use it
in yet another implementation of.

136 Ada-related Products

Volume 40, Number 3, September 2019 Ada User Journal

Ada-related Products
Embedded Boards for Ada
From: Ricardo Brandão

<rbrandao.br@gmail.com>
Subject: Which embedded devices do you

use?
Date: Tue, 4 Jun 2019 08:01:50 -0700
Newsgroups: comp.lang.ada
I worked with embedded systems for a
long time.
I started with Z-World devices on late
80's. And now I'm working mainly with
ESP32 boards.
I'm learning Ada and I'd like to use it on
my new projects. So, I'd like to know
what boards/processors you guys are
using.
Normally, my projects need Digital IOs,
Analog Inputs, and any way to wireless
communication: Bluetooth, BLE, WiFi...
And I'm used to work with I2C devices as
well (OLED displays, sensors, RTC, and
so on).
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Tue, 4 Jun 2019 17:14:33 +0200
On 2019-06-04 17:01, Ricardo Brandão
wrote:
> So, I'd like to know what

boards/processors you guys are using.
ARM-based boards with a Linux on it.
> Normally, my projects need Digital IOs,

Analog Inputs, and any way to wireless
communication: Bluetooth, BLE,
WiFi...

For quality analogue I/O we are using
EitherCAT or ModBus terminals. For
digital I/O on board GPIO could serve but
usually it is terminals as well. CAN and
Serial is used too.
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Tue, 4 Jun 2019 17:56:39 +0200
On 2019-06-04 17:26, Ricardo Brandão
wrote:
> So, it could be a good idea use

Beaglebone as a start point?
Yes. We are using BB a lot, for
prototyping etc.
From: Optikos <optikos@verizon.net>
Date: Tue, 4 Jun 2019 08:55:21 -0700
I like Marvell's ESPRESSObin board, as
distributed in the USA by Globalscale
Technologies (shipped direct from
PRChina).
http://ESPRESSObin.net
With an Armada 3720 SOC, it is capable
of doing some serious telecom/datacom
high-speed packet processing with some
hardware assist (instead of slow software-
processor speed) on its 2 LAN and 1

WAN Ethernet ports. (Of course better
would be the 7000 or 8000 series
Armadas which have full-fledged SR-IOV
on their SOC, but hey there is always
room for improvement in the future.)
There is also the ESPRESSObin's baby
brother (with fewer Ethernet ports): the
new Sheeva64 in wall-wart form-factor,
continuing the venerable SheevaPlug
family.
https://www.GlobalscaleTechnologies.
com/p-86-sheeva64.aspx
What is nice about the ESPRESSObin and
Sheeva is that they are embrace Yocto-
Project Linux, so you are not tied to any
one Linux distro. Instead, Yocto Project
requires that you roll your own Linux
distro from near-scratch (e.g., mimicking
whichever distro or bleeding edge
referent* that you prefer).
* e.g., Linus Torvalds' git repository
https://www.YoctoProject.org
Each ARM hobbyist SBC community has
a different specialty. I wouldn't do high-
packet-rate telecom/datacom processing
on a Raspberry Pi, for example. That is
what the Marvell Armada line is better
suited for.
Btw, Marvell's Armada series is the
descendent whose ancestors include the
DEC StrongARM and the Intel XScale, so
in some ways this is one of the “main
trunks” in the ARM-processor
community, especially for industrial
usage–not some twig on a branch.
https://www.TheRegister.co.uk/2006/
06/27/intel_sells_xscale
Plus, Marvell's MoChi (modular chip
multi-die SOCs) technology (•not• in the
Armada 3720) is one of the industry
leaders in DARPA's MoChi endeavors in
recent years. DARPA is trying to seed
some of the major SOC processor
manufacturers with MoChi. Getting on
board with Marvell now likely prepares
you for the aggressive MoChi future as
the 1st-generation-MoChi 7000 and 8000
series eventually migrates into the
hobbyist SBCs, and then aggressive-
MoChi successors follow after that in
coming years.
https://www.marvell.com/architecture/
mochi
From: Olivier Henley

<olivier.henley@gmail.com>
Date: Tue, 4 Jun 2019 11:51:10 -0700
You can dig here:
- https://github.com/ohenley/awesome-

ada#Runtimes (the bb-runtimes repo by
AdaCore)

- https://github.com/ohenley/awesome-
ada/blob/master/README.md#Hardwar
e-and-Embedded (The main repo to
check is ada-drivers-library. Adacore is
behind and they are of great assistance.)

- https://github.com/ohenley/awesome-
ada/blob/master/README.md#Books
Do not forget to check the book about
embedded by Maciej Sobczak.

Hope it helps and any PR/Suggestions to
refactor the list is welcome.
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Tue, 4 Jun 2019 22:14:12 +0300
The AdaCore "Make with Ada"
competition entries use a wide range of
hardware. See
https://www.hackster.io/contests/adacore/
submissions#challengeNav.
(As for myself, I've recently used Ada for
embedded systems only in space
applications, so only on made-for-space
computers, usually with SPARC
processors and a high price tag.)
From: Philip Munts

<philip.munts@gmail.com>
Date: Wed, 5 Jun 2019 01:33:09 -0700
BeagleBone (more and better I/O) and
Raspberry Pi (faster). Both running my
own embedded Linux distribution:
https://github.com/pmunts/muntsos
Debian and Raspbian are fine general
purpose operating systems, but IMHO
they are wretched for embedded systems.
Anything on mains power should be
running Linux. The networking
capabilities and development tools are
just so far beyond microcontrollers.
I'm especially fond of the PocketBeagle
and the Raspberry Pi Zero Wireless.
Running Ada programs, of course.

Janus/Ada 3.2.1
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Janus/Ada 3.2.1 Released!
Date: Wed, 26 Jun 2019 00:12:16 -0500
Newsgroups: comp.lang.ada
A new version of Janus/Ada has finally
made it to release. This version includes
recognition of the full Ada 2012 syntax,
null exclusions, private with, a number of
language-defined libraries from both Ada
2005 and 2012, and code quality warnings
to detect likely bugs early.
Read the full announcement at
http://www.rrsoftware.com/html/blog/
ja-321a-rel.html.
Existing customers with a current support
agreement (including those in their first
90 days of ownership) can download the
new version and use their existing key to
unlock it. For everyone else, see our
website for pricing:
http://www.rrsoftware.com/html/
companyinf/prices.htm.
Randy Brukardt.
P.S. I apologize to anyone that would
rather not see the blatant ad. I try not to

Ada and Operat ing Systems 137

Ada User Journal Volume 40, Number 3, September 2019

do this more often than once per year, and
the information ought to be relevant to
those who sometimes forget that there are
other, actively developed Ada compilers
out there.
From: "Jeffrey R. Carter"

<spam.jrcarter.not@spam.not.acm.org>
Date: Wed, 26 Jun 2019 08:53:02 +0200
Good news. I see that the website still
refers to the compiler as Janus/Ada 95.
How much additional work is needed
before you have a full Ada-12 compiler?
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Wed, 26 Jun 2019 17:40:42 -0500
Probably more years than I have left on
the planet. While I've mapped out a
design for most new features, a few things
have been pretty much ignored (esp.
interfaces and real-time stuff).
If I was able to find a business plan that
made sense, it could get done faster, but
as it stands I don't expect to ever break
even with it and as such one can't really
spend $$$ (as opposed to time) on it.
From: Optikos <optikos@verizon.net>
Date: Wed, 26 Jun 2019 08:41:54 -0700
On Wednesday, June 26, 2019 at 3:52:51
AM UTC-5, Dmitry A. Kazakov wrote:
[...]
> P.S. I hope Janus will target Linux

someday. It could be a Windows-hosted
cross. I think many would buy that
thing.

I concur, but the highest-RoI would be for
Janus/Ada to have the LLVM backend in
one fell swoop. Then we as users would
naturally get various object-file formats
(e.g., ELF, XCOFF) and ISAs (e.g.,
Apple ARM) and debug formats (e.g.,
gdb's; lldb's)—both native and cross-
compiled—inherited as a by-product,
killing multiple birds with one stone.
Randy, would putting Janus/Ada's front
end on
0) LLVM backend
be more difficult than any major target
feature listed above alone (e.g.:
1) Janus/Ada as-is without LLVM plus
ELF on x86;
2) Janus/Ada as-is without LLVM plus
PE-on-ARM for the forthcoming ARM-
based bendable/foldable Surface Phone
thingy-whatever-it-will-be-called,
deriving from Andromeda & Courier
prototypes with Composable-Shell and
Windows Core OS)?
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Wed, 26 Jun 2019 17:36:27 -0500
[Replying to the numbered list in the
previous post:]
These are almost completely orthogonal:
the existing code generator would work
for Linux, and the (old) Unix JLink did

ELF. The issue with Linux is updating the
runtime to use Linux system calls (these
are different than the ones from the old
Unix).
OTOH, attaching LLVM is a totally
different level of work, and I don't know
enough about LLVM to say how easy or
hard it would be. OTOH, we did
something similar of Unisys, so we
already have most of the ability available.
But again, note that a code generator is a
small (and usually easiest) part of porting
to a new target. Making a usable runtime
(that is, exception handling, finalization,
overflow checking, divide-by-zero traps,
basic I/O, and most of all, tasking) is
generally a bigger job.

AdaControl 1.21r3
From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] AdaControl version 1.21r3

released
Date: Thu, 11 Jul 2019 14:42:04 +0200
Newsgroups: comp.lang.ada
Adalog is pleased to announce version
1.21r3 of AdaControl. There are now 71
rules, 579 subrules.
This version includes new checks to ease
the transition to Ada 2012 (like for-in
loops that can be changed to for-of loops),
improvements to the auto-fixing features,
extensions to existing rules (like use-
package that can be changed to use use-
type or use-all-type), bug fixes... See file
HISTORY for the complete list of
improvements.
The pre-compiled version uses now
GNAT Community 2019.
Available from http://www.adacontrol.fr
Enjoy!

Ada and Operating
Systems
GNAT CE 2019 and
Impending Changes on
MacOS
From: Simon Wright

<simon@pushface.org>
Subject: Re: GNAT CE 2019 macOS
Date: Thu, 30 May 2019 20:34:44 +0100
Newsgroups: comp.lang.ada
[The following post discusses an issue
with missing system libraries during
linking in MacOS, due to changes in the
operating system SDK.]
Bill Findlay
<findlaybill@blueyonder.co.uk> writes:
>> gnatlink

/Users/wf/mekhos/MacOSX/e.ali -
funwind-tables -fdata-sections -
ffunction-sections -mtune=native -fno-

stack-check -fomit-frame-pointer -flto -
O3

> ./quad_div.o -Wl,-dead_strip -Wl,-
dead_strip -flto

>
>> ld: library not found for -lSystem
>> collect2: error: ld returned 1 exit status
>> gnatmake: *** link failed.
>
> -lSystem ??
I've had a discussion about this with
AdaCore.
The problem they are addressing is that
Apple are moving towards having system
includes only in the SDKs rather than in
/usr/include; see [1], which says "As a
workaround, an extra package is provided
which will install the headers to the base
system. In a future release, this package
will no longer be provided".
"this package" is the one I reference at
[2].
AdaCore's approach is to build the
compiler with a "system root" that
references the SDK in situ; the actual link
takes place with
/usr/bin/ld -syslibroot
/Library/Developer/CommandLineTools/
Platforms/MacOSX.platform/Developer/S
DKs/MacOSX.sdk/
and, unfortunately for us, that's the full
Xcode and not the CommandLineTools
subset; so if you only have the
CommandLineTools, ld looks for
libSystem.dylib in a non-existent
directory.
One approach is to build with
-largs -Wl,-syslibroot,/
Another one is to install the full Xcode.
I guess Xcode is the way to go.
For the future
I don't think it's possible to have multiple
syslibroots.
I don't think the GCC developers would
be happy with building knowledge of
xcode-select into the compiler, so it could
make the same runtime choices as Apple
tools.
Since the SDKs really only impact the
includes, at any rate as long as you're on
macOS and not iOS, I'm wondering
whether it'd be possible to add both SDK
include paths to GCC's include paths and
avoid the syslibroot impact on libraries.
Nothing yet about this on the GCC
mailing lists, that I can see.
[1] https://developer.apple.com/
documentation/xcode_release_notes/
xcode_10_release_notes#3035624
[2] https://forward-in-code.blogspot
.com/2018/11/mojave-vs-gcc.html

138 Ada and other Languages

Volume 40, Number 3, September 2019 Ada User Journal

From: Simon Wright
<simon@pushface.org>

Date: Tue, 18 Jun 2019 18:00:52 +0100
I did something on this, written up here:
https://forward-in-code.blogspot.com/
2019/06/macos-software-development-
kit-changes.html

Ada in Genode OS
From: Kay-Uwe Genz <kug1977@web.de>
Subject: Genode OS Framework 19.05 goes

SPARK
Date: Mon, 17 Jun 2019 03:43:40 -0700
Newsgroups: comp.lang.ada
you might be interested to see, that
Genode OS Framework 19.05 is
integrating Ada/SPARK runtime and
SPARK-based cryptography
Spunky: A kernel using Ada - Part 1: RPC
For me these news were new.
https://www.osnews.com/story/130141/
ada-spark-on-genode/
From: Kay-Uwe Genz <kug1977@web.de>
Date: Wed, 19 Jun 2019 07:30:34 -0700
> I don't understand why they put c++ on

one end and SPARK on the other...
Don't they know "normal" Ada includes
quite enough "non-static" features? Or
is that compatibility with existing
libraries the problem? Not really said in
that article.

Most of the L4 development which is
where Genode OS Framwork came from
is done in C++ and Ada/SPARK is more a
hobbiest project, I guess. The Muen
kernel is focussed 100% on Ada/SPARK.

Ada and other
Languages

Specification/Body
Separation in Ada
From: John Perry <john.perry@usm.edu>
Subject: Why .ads as well as .adb?
Date: Sat, 1 Jun 2019 17:48:16 -0700
Newsgroups: comp.lang.ada
I understand that Ada, like Modula-2 and
Modula-3, and arguably like C++,
requires a definition file (.ads) as well as
an implementation file (.adb). With
Oberon, Wirth moved away from
definition files, using a symbol to indicate
which module identifiers should be
exported. (Someone else may have done
this before him; it's just that I'm most
familiar with this history.) Most
languages I'm familiar with these days do
something similar, either via
public/private or some other mechanism.
As far as I can tell, though, Ada has stuck
with the two separate files, rather than,
say, generating an .ads from an .adb with
export markup.

Is there a reason Ada hasn't moved to this
simpler structure?
From: "J-P. Rosen" <rosen@adalog.fr>
Date: Sun, 2 Jun 2019 07:42:58 +0200
[...]
One of the main (huge) benefits of Ada is
in being able to use specifications even
before the body exists. You can:
1) write the specification, compile it to

make sure that it make sense
2) write the code that uses the

specification, to make sure that the
specification meets the needs of the
using code

3) write the body, with the assurance that
what you do is the right thing.

You can even add:
2.5) write a prototype body to check that

the behaviour is correct, before writing
the full body that meets all requirements.

[...]
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Sun, 2 Jun 2019 08:39:23 +0200
It is general design principle of separation
specifications from implementations. [...]
[It] has evident advantages for code base
maintenance, team development, testing,
separate compilation etc. BTW, you can
stuff bodies and specifications in the same
file. It is purely compiler's business. See
gnatchop for GNAT. [...]
On 2019-06-02 02:48, John Perry wrote:
> As far as I can tell, though, Ada has

stuck with the two separate files, rather
than, say, generating an .ads from an
.adb with export markup.

That is not possible. You cannot generate
specification from implementation and
conversely. In both cases there is
additional information missing. It could
be two different languages. Even in the
languages that confuse these things,
declarations have syntax different from
definitions. [...]
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Tue, 4 Jun 2019 01:03:26 -0700
[Written by J-P. Rosen
<rosen@adalog.fr>]
> If you have a body with many

subprograms, how can you tell which
ones are intended to be exported, and
which ones are private to the body?

By annotating them appropriately?
Keywords "private" or "export" or similar
are commonly used for this purpose.
Please note that your question could also
refer to the concept of DLLs, which is not
directly addressed by Ada (nor C++). Yet,
somehow we do manage to solve this
problem.
[...]

From: Keith Thompson <kst-u@mib.org>
Date: Mon, 03 Jun 2019 12:51:14 -0700
"Dmitry A. Kazakov" <mailbox@dmitry-
kazakov.de> writes:
> No. Specification describes a class of

implementations. You cannot deduce
class from its single member.

I suspect the point is that you *could*
have an Ada-like language in which
specifications could be unambiguously
generated from implementations. You'd
need some kind of additional annotation
to specify whether a given declaration is
to be exported.
You can't in Ada as it is, because Ada
isn't designed that way.
[Editor’s note: the following subthread
discusses the readability concerns of
separating specifications, but also that
clarity and separation may be achieved
not only via specifications.]
From: Brad Moore

<bmoore.ada@gmail.com>
Date: Fri, 7 Jun 2019 07:10:11 -0700
On Friday, June 7, 2019 at 1:59:26 AM
UTC-6, Maciej Sobczak wrote:
> 1. There *are* languages that don't use

separate spec files. Java and Python are
well known examples, representing
both compiled and scripted approaches.

[...] I think it is a big mistake of languages
that encourage the specification and
implementation to be in the same source
file, and very surprised to see that anyone
would be arguing for that.
The separation of specification and
implementation ties into the "separation
of concerns" attributed to Dijkstra way
back in 1974.
When wanting to make use of a 3rd party
package in Ada, I value being able to
generally understand how to use that
package by looking at the specification
without having to look at the
implementation. You generally only need
to look at the public part of a package
specification, as you can rely on anything
past that as being implementation details.
Even with C++, one cannot stop reading
when you see a private: keyword in a
class definition, because there can be
many public and private sections in a
class. You have to keep reading the class
specification until to hit the end of the
class specification, in case you missed
more public parts.
[...]
> 2. Programs written in those languages

do *not* need to be written in one giant
file. Actually, Java is frequently
criticized (it was even in this thread) for
forcing the programmer to use too
many (!) files. Even though it does not
have separate specs.

Maybe Ada offers a benefit here. In
languages like Java, there is a tendency to

Ada Pract ice 139

Ada User Journal Volume 40, Number 3, September 2019

want to put each class in a separate file.
With Ada packages, it can make more
sense to organize related types in the
same package.
[Editor’s note: another subthread explores
the implications for “Programming in the
large”]
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Mon, 10 Jun 2019 17:07:38 -0500
[...]
"Maciej Sobczak"
<see.my.homepage@gmail.com> wrote
[...]
> What I don't accept is the religious

attitude that Ada is the only language
that got the software engineering right
and (consequently) that everything else
is broken.

The truth hurts. So far as I can tell, no
other language has really tried to "get
software engineering right". It's possible,
of course, but everyone either is trying to
graft engineering onto some preexisting
base without it (C++, Java) or is building
something that's more about fast
construction than engineering (Python).
[...]
From: Optikos <optikos@verizon.net>
Date: Mon, 10 Jun 2019 17:32:36 -0700
There was only one other programming
language that tried to “get software
engineering right” and that achieved
significant industrial usage and an open-
source GCC compiler and that was ISO
standardized: CHILL. While DoD &
NATO were busy with their HOLWG
effort for the military, ITU-T (in the
United Nations) launched a somewhat
competing effort for telecom in the EU
(and AT&T steadfastly rejected both for
the most part except for some monitoring
of the 2 other efforts, so that AT&T
pushed forward with C).
As can be seen in the following example
CHILL source code, if Ada was
envisioned as a Pascal/Wirth-esque-
family language, CHILL was envisioned
as a PL/1esque-family language. As such,
Ada is beautiful & refined by comparison,
whereas CHILL is rather abrupt &
uncouth, as if it is most at home on an
IBM mainframe with its fellow brethren
CICS and JCL and of course PL/I. CHILL
and Ada share many of the same goals
and as such have some analogous
language features that are absent in most
other programming languages. Except for
some maintenance of CHILL-based
telecom equipment from Alcatel and
Siemens, CHILL has become a dead
language.
http://psc.informatik.uni-jena.de/
languages/chill/chill.htm
[...]

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Tue, 11 Jun 2019 17:49:24 +0200
On 6/11/19 12:07 AM, Randy Brukardt
wrote:
> So far as I can tell, no other language

has really tried to "get software
engineering right".

Precisely. It's important to remember that
separation of spec and body have been
part of Ada from the beginning, and Ada
was designed to support the way S/W
engineers think and work from the
beginning. Like many Ada features, S/W
engineers understand and like separation
of spec and body, and coders don't. For
me, much of this thread can be viewed
simply as people saying "I'm a S/W
engineer" or "I'm a coder".
From: John Perry <john.perry@usm.edu>
Date: Mon, 3 Jun 2019 06:37:43 -0700
Thanks to everyone for the replies.
Personally, I find three of them especially
compelling:
 "As a teacher, I keep fighting with

students who jump to writing bodies too
early."

[I know exactly what this is like.]
 "teams can work separated from each

other as needed, without the project
having to distribute all of the
implementation to everyone"

[Having separate specification files
against which one can *compile* would
be useful, not just convenient, though I
think it's arguable that one can do this in
Oberon, too, via .smb files and
documentation.]
 "convenience"
[not a direct quote, but several people
point to this, and until I read their
explanations I thought the convenience
ran in the other direction]
[...]
[Editor’s note: the author proposes to
follow-up with the impossibility of
generating unambiguous specifications
from bodies. If the conversation catches
up, this will be reported in the next issue.]

Issues with Fortran Calling
Convention
From: Chris M Moore

<zmower@ntlworld.com>
Subject: Making the same mistake as the

broken C interface to fortran
Date: Tue, 25 Jun 2019 00:33:39 +0100
Newsgroups: comp.lang.ada
Read this interesting article today:
https://lwn.net/SubscriberLink/791393/
41d57555202e8cdb/
Synopsis: C interfaces to Fortran makes
some assumptions about how to call
fortran ABIs (I don't need to pass the

hidden length parameter if it is a
character*1) but now Gfortran has
optimisations which assume a different
calling convention (Thou shalt pass the
hidden length).
There are work around (compile fortran
with ‑fno‑optimize‑sibling‑calls) but it
seems that the proper fix is to pass the
hidden length parameter.
I had a quick look at the LAPACK
bindings and they both seem to use Ada
characters. :/
 [Editor’s note: after some back and forth
discussion, it seems Ada may be affected
by the same issue. What follows is the last
post in the thread with an Ada
reproducer.]
From: Chris M Moore
<zmower@ntlworld.com>
Date: Sun, 7 Jul 2019 17:33:46 +0100
I spoke too soon when I said
> I'm sure GNAT does the right thing if

you're using Fortran_Character.
If I change callee.f to
 subroutine callee (c)
 character (len=*), intent (in) :: c
 print *, 'parameter c is ', c
 end

then STORAGE_ERROR is the order of
the day no matter the call used. Looking
at the assembler, this is because GNAT
does not pass the length of the string.
I compared it to fcall.f:
 program fcall
 call callee("OK")
 call callee("Oh noes")
 stop
 end

and this unsurprisingly does pass the
lengths.
I've used the webform on the Community
section of the GNAT website to provide
feedback. I've pointed out that the issue
also affects single character parameters.

Ada Practice
References vs. Access Types
From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>
Subject: References vs access types
Date: Fri, 31 May 2019 17:44:34 +0200
Newsgroups: comp.lang.ada
So, part of the point of reference types is
to be able to return an item "by reference"
without being able to store the pointer:
 type Item;
 type Item_Access is access Item;

 type Reference (Ptr : access Item) is
 limited null record;
 function Get (...) return Reference; -- (1)

140 Ada Pract ice

Volume 40, Number 3, September 2019 Ada User Journal

In Gem #107 this is said as advantageous
against, for example,
 function Get (...) return Item_Access;
 -- (2)

because "access discriminants are
unchangeable. The discriminant also
cannot be copied to a variable [like
Item_Access]" [1].
Now, without thinking much about it,
while fighting old bugs, I have sometimes
replaced a problematic Reference with
 function Get (...) return access Item;
 -- (3)

And here comes the question: besides
losing the ability to use aspects on the
Reference type, or using it for some fancy
refcounting, does (3) give the same
safeties wrt to copying as (1)? Are there
any other hidden traps in (3) (assuming
the pointee thread-safety/lifetime is
properly managed)?
Or, put it another way, is (1) always
preferable? Or may (3) suffice for simple
uses?
[1] https://www.adacore.com/gems

/gem-107-preventing-deallocation-for-
reference-counted-types/

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>
Date: Fri, 31 May 2019 18:55:53 +0200
My preferences list would be:
#1 - Never, visually ugly, semantically

questionable, lacking transparent access
to the target object and technically not a
reference at all, plus unstable with
GNAT compilers.

#2 - Construction of new stand-alone
objects (frequently class-wide),
implementation-dependent stuff.

#3 - Access to a component of an existing
object.

As for hidden traps, only #3 is safe upon
inheritance, if primitive operation and
thus covariant.
From: AdaMagica
 <christ-usch.grein@t-online.de>
Date: Fri, 31 May 2019 16:55:01 -0700
I'm quite opposed to Dmitry [‘s statement
about #1].
I admit that #1 is clumsy. But see Gem
123 to learn how this syntax may be
improved with some aspects.
(Compiler problems are never an
argument to avoid some feature forever.)
From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Fri, 31 May 2019 16:33:18 -0500
(1) and (3) have the same accessibility
rules, so they have the same safety from
copying (no more and no less). However,
since (3) is returning an access type, one
can directly assign the function result into
an access type, and that will work as the
function will then have the accessibility of

the access value. (But of course, you
might get an accessibility failure inside
the function in that case.)
An important part of the reference
mechanism is the use of aliased
parameters. For a function, those are
required to have the same accessibility as
the function result. This makes most
problematic calls illegal. For instance, in:
 function Get (Obj : aliased in out
 Some_Type) return access
 Some_Other_Type;

 Ptr : Some_Access_Type;

 procedure Whatever is
 Local: Some_Type;
 begin
 Ptr := Get (Local); -- Illegal.
 Get (Local).all := ...;
 end Whatever;

The first call to Get here is illegal as the
actual parameter is more nested than the
level of the function call (which is that of
Ptr). This prevents Get from keeping a
pointer longer than the object exists. The
second call to Get is legal because the
level of that call is local, and therefore the
object lives long enough.

Create and Append_File
From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>
Subject: Create and Append_File
Date: Thu, 6 Jun 2019 22:45:09 +0200
Newsgroups: comp.lang.ada
You can call Create with mode
Append_File. I'm trying to figure out
what that's supposed to do (as opposed to
what compilers do). I've read ARM A.7,
A.8.2, and A.10.2, and am still not sure.
It seems there are 2 likely interpretations:
1. Create creates a file, so this is the same

as using mode Out_File
2. Since mode Append_File was given, it

means to open the file in append mode
if it exists, or create it as for mode
Out_File if it doesn't

If 1., then why allow Append_File for
Create? A subtype excluding it could be
defined for Create.
Of course, you can also Create a file with
mode In_File, which I presume means to
create an empty file and open it for
reading, which doesn't seem very useful,
so maybe I shouldn't expect these to make
sense.
From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Thu, 6 Jun 2019 16:24:52 -0500
I believe it means the same as Out_File.
Other requirements in RM (not very clear
ones, I'm afraid) require the file opened
by Create to be empty, whether or not the
file previously existed. So, if Create
allows (re)creating an existing file (it

doesn't have to, it could raise Use_Error),
that file will be empty. In that case,
Out_File and Append_File are the same.
As you note, Create (In_File) is already
nonsense, so Create (Append_File) might
as well be nonsense as well (it's *less*
nonsense in any case, since a modeless
Reset preserves the mode, and the file
wouldn't necessarily be empty at that
point).
From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>
Date: Fri, 7 Jun 2019 17:59:39 +0200
On 6/7/19 10:01 AM, Simon Wright
wrote:
> I guess I should add this to my

StackOverflow answer which may have
been the trigger for this question. I have
No Idea why I thought it sensible to
Create the file in Append_File mode.

Yes, I saw Create with Append_File and
wondered what that should do. It seemed
reasonable that it would open the file in
append mode if it existed, and create it in
output mode otherwise, but that's not what
GNAT does, so here we are.

Conventions Applied to
Entity Views
From: Jere <jhb.chat@gmail.com>
Subject: Convention Question related to
access types
Date: Thu, 6 Jun 2019 18:51:29 -0700
Newsgroups: comp.lang.ada
The RM in section B.1 talks about Ada
Standard requirements for convention
compatibility. In it however it doesn't
mention anything about private types, full
views, etc.
Say you are wanting to bind to an opaque
type in C:
 package Bindings is
 type Opaque_Type(<>) is limited
 private;
 type Binding is access Opaque_Type
 with Convention => C;

procedure Some_Procedure(
Value : Binding) with Import,
Convention => C;

 private

 type Opaque_Base is limited null
 record with Convention => C;
 type Opaque_Type is new
 Opaque_Base;

 end Bindings;

GNAT happily accepts that, but I am
unsure if that is because of the "The
implementation permits T as an L-
compatible type." part or because
Opaque_Base is a proper convention
compatible type and Opaque_Type
derives from it and is thus convention

Ada Pract ice 141

Ada User Journal Volume 40, Number 3, September 2019

compatible as well, even though it is a
private type.
I couldn't find anything dictating whether
the convention compatibility rules applied
to the full view or the public view.

From: "Randy Brukardt"
<randy@rrsoftware.com>
Date: Sat, 8 Jun 2019 00:11:08 -0500
Conventions apply to *entities*. See
6.3.1(2/1): "a convention can be specified
for an entity". Views like a partial view is
of an entity, not an entity itself. Thus
there is only a single convention for a
type. Where it is specified doesn't matter

outside of Legality Rules. Thus the rules
in B.1 only need to talk about types, not
views.
I just had this argument about "entity"
with other ARG members vis-a-vis a
different topic (I lost :-), so I'm very
certain this is correct.

