

Ada User Journal Volume 39, Number 2, June 2018

ADA
USER
JOURNAL

Volume 39

Number 2

June 2018

Contents
Page

Editorial Policy for Ada User Journal 60

Editorial 61

Quarterly News Digest 62

Conference Calendar 75

Forthcoming Events 81

Proceedings of the 19th
 International Real-Time Ada Workshop (IRTAW 2018) 86

 Overall Summary 87

 Session Summaries 91

 Papers 107

 L. M. Pinho, E. Quiñones and S. Royuela, “Combining the Tasklet Model with OpenMP” 107

 B. Moore, “Synchronous Signals: An Abstraction for Interleaving Sequential and Parallel Code” 110

 J. Garrido, J. Zamorano and J. A. de la Puente, “On Protocols for Accessing Protected Objects on
Multiprocessors” 116

 M. Aldea and H. Pérez-Tijero, “Proposal for a New Ada Profile for Small Microcontrollers” 119

 P. Carletto and T. Vardanega, “Ravenscar-EDF: Further Results from Improved Comparative
Benchmarking” 123

 J. Real, S. Sáez and A. Crespo, “Ravenscar Support for Time-Triggered Scheduling” 124

 K. N. Gregertsen, “Position Paper: Clock Support in Ada” 133

Ada-Europe Associate Members (National Ada Organizations) 136

Ada-Europe Sponsors Inside Back Cover

60

Volume 39, Number 2, June 2018 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 61

Ada User Journal Volume 39, Number 2, June 2018

Editorial

This issue of the Ada User Journal marks an important milestone in the life of the Journal and the relation with its sibling
publication in the USA, Ada Letters, as both simultaneously publish the proceedings of the International Real-Time Ada
Workshop (IRTAW 2018), which took place last April. This is the result of a general agreement made between Ada-Europe
and ACM SIGAda to strengthen the ties between both publications, both allowing joint publication of contents, as well as
facilitating to Ada Letters the material that the AUJ usually publishes. This agreement was first put into place last December,
when Ada Letters re-published three papers from the Industrial Track of Ada-Europe 2017, which had been published by the
AUJ during 2017. Together with this joint publication, these are important steps which will strengthen both publications, and,
consequently, the communities they serve.

As for the contents themselves. The IRTAW series of workshops is the primer forum for discussion on Ada’s concurrency
model and real-time capabilities, discussing not only the available Ada support in these topics, but mainly future evolutions
of the language. It is thus a very rich discussion forum, where papers are not presented, but challenged and discussed.
Therefore, the proceedings include not only the papers of the workshop, but also the summaries of the held discussions,
around the topics of Parallel Programming, Multiprocessor Locking, Language Profiles, Time Triggered Scheduling,
Deadline Floor Protocol, Ada 202X Language Issues and Clock support. The reader will find the summaries of these
discussions in the first part of the proceedings.

The workshop contents then continue with the set of position papers. First, a paper from Luis Miguel Pinho, of the
Polytechnic Institute of Porto, Portugal, and Eduardo Quiñones and Sara Royuela, from Barcelona Supercomputing Centre,
Spain, proposing the integration of the parallel model of tasklets with OpenMP. Afterwards, Brad Moore, from General
Dynamics Canada, discussing a new synchronous signals abstraction. The third paper, from Jorge Garrido, Juan Zamorano
and Juan A. de la Puente, of Universidad Politécnica de Madrid, Spain, discusses protocols for accessing protected objects on
multiprocessors platforms. This is followed by a proposal for a new Ada concurrency profile for small microcontrollers, from
Mario Aldea-Rivas and Héctor Pérez-Tijero, of Universidad de Cantabria, Spain, and a study on Ravenscar and EDF, from
Paolo Carletto and Tullio Vardanega, of the University of Padua, Italy. The next paper is from Jorge Real, Sergio Sáez, and
Alfons Crespo, of the Universitat Politècnica de València, Spain, discussing issues on time-triggered scheduling under
Ravenscar, and the workshop papers close with a paper from Kristoff Gregertsen, of SINTEF, Norway, on the clock support
in Ada.

I definitely recommend the reading of the papers, and the summaries of discussion. Not only these provide important
information on the current and potential future mechanisms to support concurrency (and parallelism), as well as real-time
execution, in Ada, but also identify future topics of interest, to be analyzed in future workshops (next one provisionally
planned for 2020).

As for the other contents of this issue of the AUJ, a special note to the announcement of the ACM SIGAda High Integrity
Language Technology workshop, which will take place 5-6 November, in Boston, USA, co-located with the ACM SPLASH
conference, and obviously, the announce of Ada-Europe 2019: the 24th International Conference on Reliable Software
Technologies, which will take place 10-14 June 2019, in Warsaw, Poland, with the local organization of the Engineering
Design Center (EDC), a partnership between General Electric (GE) Poland and the Polish Institute of Aviation, one of the
largest engineering institutions in Europe. I hope to see you there!

And as usual, the reader will also encounter the information provided in the News Digest and Calendar sections, prepared by
Jacob Sparre Andersen and Dirk Craeynest, their respective editors.

 Luís Miguel Pinho
Porto

June 2018
 Email: AUJ_Editor@Ada-Europe.org

62

Volume 39, Number 2, June 2018 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organisations 64
Ada-related Events 64
Ada-related Resources 65
Ada-related Tools 66
Ada-related Products 69
Ada and Operating Systems 71
References to Publications 71
Ada in Context 71

Ada-related
Organisations

AdaCore French Connection

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sat, 5 May 2018 23:44:11 +0200
Subject: Adacore French connection
Newsgroups: comp.lang.ada

Luke Guest asked:

> AdaCore was "spun out of NYU" and I
still have no clue how it became a
French company.

Around 1982, Philippe Kruchten was a
professor at ENST (French engineering
school), and had translated the
(preliminary) ARM in French, so he had
some connection with the people at NYU.
He was invited to a sabbatical there.

I was also professor at ENST, so after 6
months he pulled me there too.

When we returned to France, the link was
established, and we regularly sent
professors for sabbatical and students as
interns to NYU.

Some of them were the ones who founded
the French branch of AdaCore when they
returned home...

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-Europe 2018 in Lisbon

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 1 Apr 2018 05:46:08 -0000
Subject: 23rd Int.Conf. Reliable Software

Technologies, Ada-Europe 2018
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Call for Participation

*** PROGRAM SUMMARY ***

23rd International Conference on Reliable
Software Technologies

- Ada-Europe 2018

18-22 June 2018, Lisbon, Portugal

http://www.ada-europe.org/
conference2018

Organized by Univ. Lisboa and
Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN and the

Ada Resource Association (ARA)

*** Online registration open ***

Early registration discount until May 14

*** Extensive info available on
conference web site ***

*** Highly recommended to book your
hotel ASAP ***

The 23rd International Conference on
Reliable Software Technologies - Ada-
Europe 2018 will take place in Lisbon,
Portugal, from June 18 to 22. As per its
traditional style, the conference will span
a full week, including, from Tuesday to
Thursday, three days of scientific,
technical and industrial programs, along
with tutorials and workshops on Monday
and Friday.

The Ada-Europe series of conferences has
over the years become a leading
international forum for providers,
practitioners and researchers in reliable
software technologies. These events
highlight the increased relevance of Ada
in general and in safety- and security-
critical systems in particular, and provide
a unique opportunity for interaction and
collaboration between academics and
industrial practitioners.

Extensive information is available on the
conference web site, such as an overview
of the program, the list of accepted papers
and industrial presentations, and
descriptions of workshops, tutorials,
keynote presentations, and social events.

Also check the conference web site for
registration, accommodation and travel
information. The 16-page Advance
Program brochure will shortly be
available on the conference web site as
well.

Quick overview

- Mon 18 & Fri 22: tutorials + workshops

- Tue 19 - Thu 21: core program

Proceedings

- published by Springer

- volume 10873 in Lecture Notes in
Computer Science series

- will be available at conference

Program Chair

- António Casimiro, LASIGE/U. Lisboa,
Portugal
casim at ciencias.ulisboa.pt

Keynote speakers

- Paulo Esteves-Veríssimo, University of
Luxembourg, Luxembourg, "Security
and Dependability Challenges of IT/OT
Integration"

- Carl Brandon, Vermont Technical
College, USA, "From Physicist to
Rocket Scientist, and how to make a
CubeSat that works"

- 3rd speaker to be confirmed

Workshops (full day)

- "Runtime Verification and Monitoring
Technologies for Embedded Systems"
Workshop (RUME 2018)

- 5th International Workshop on
"Challenges and new Approaches for
Dependable and Cyber-Physical
Systems Engineering" (DeCPS 2018)

Tutorials (full day)

- "Recent Developments in SPARK
2014", Peter Chapin, Vermont Technical
College, USA

- "Scheduling analysis of AADL
architecture models", Frank Singhoff,
Lab-STICC/UBO, France and Pierre
Dissaux, Ellidiss Technologies, France

Tutorials (half day)

- "Access types and memory management
in Ada 2012", Jean-Pierre Rosen,
Adalog, France

- "Design and architecture guidelines for
trustworthy systems", William Bail, The
MITRE Corporation, USA

Ada-related Resources 63

Ada User Journal Volume 39, Number 2, June 2018

- "Numerics for the Non-Numerical
Analyst", Jean-Pierre Rosen, Adalog,
France

- "Requirements development for safety
and security critical systems", William
Bail, The MITRE Corporation, USA

- "Writing Contracts in Ada", Jacob
Sparre Andersen, JSA Research &
Innovation

- "Introduction to Libadalang", Raphaël
Amiard and Pierre-Marie de Rodat,
AdaCore, France

- "Unit-testing with Ahven", Jacob Sparre
Andersen, JSA Research & Innovation

- "Frama-C, a Framework for Analysing
C Code", Julien Signoles, CEA LIST,
France

Papers and Presentations

- 10 refereed technical papers and 4
presentations in sessions on Safety and
Security, Ada 202X, Handling Implicit
Overhead, Real-time Scheduling, New
Application Domains

- 12 industrial presentations and
experience reports in sessions on Ada in
Industry, Space Systems, V&V of
Safety-Cricital Software, Software
Methodologies

- submissions by authors from 19
countries, and accepted contributions
from Austria, France, Germany, Italy,
Norway Poland, Portugal, South Korea,
Spain, Sweden, Switzerland, UK, USA

Vendor exhibition and networking area

- area features exhibitor booths, project
posters, reserved vendor tables, and
general networking options

- several companies already committed;
others expected to confirm soon

- vendor presentation sessions in core
program

Social events

- each day: coffee breaks in the exhibition
space and sit-down lunches offer ample
time for interaction and networking

- Tuesday evening: Ada-Europe General
Assembly, followed by Welcome
Reception; location will be announced in
April

- Wednesday evening: transportation to
restaurant "A Casa do Bacalhau", for the
traditional Ada-Europe Conference
Banquet; the name means "The House of
the Codfish", so it is not too difficult to
guess what is their speciality

- Best Paper and Best Presentation awards
will be handed out

Registration

- online registration is open at
<http://www.ada-europe.org/
conference2018/registration.html>

- early registration discount up to Monday
May 14, 2018

- additional discount for academia, Ada-
Europe, ACM SIGAda, SIGBED and
SIGPLAN members

- student discounts are available

- registration includes copy of printed
proceedings at event

- includes coffee breaks and lunches

- three day conference registration
includes all social events

- tutorial fees reduced when taken
together with 3-day conference

- payment possible by credit card or bank
transfer

- see registration page for all details

Promotion

- recommended Twitter hashtags:
#AdaEurope and/or #AdaEurope2018

- 16-page Advance Program brochure
soon available online

- support Ada-Europe 2018 with
promotional poster available at
<http://www.ada-europe.org/
conference2018/posters/
AE2018_poster.png>

Please make sure you book
accommodation as soon as possible.

Lisbon will be very busy in that week.

For more info and latest updates see the
conference web site at
<http://www.ada-europe.org/
conference2018>.

We look forward to seeing you in Lisbon
in June 2018!

[See also “Ada-Europe 2018 in Lisbon”,
AUJ 39-1, p. 8. —sparre]

Ada-related Resources

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri May 4 2018
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn: 2_706 members [1]

- Reddit: 1_825 readera [2]

- StackOverflow: 1_000 followers [3]

- Google+: 764 members [4]

- Freenode 88 participants [5]

- Gitter: 55 people [6]

- Twitter: 10 tweeters [7]

[1] https://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/
questions/tagged/ada

[4] https://plus.google.com/communities/
102688015980369378804

[5] #Ada on irc.freenode.net

[6] https://gitter.im/ada-lang

[7] https://twitter.com/search?f=realtime
&q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
39-1, p. 9. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri May 4 2018
Subject: Repositories of Open Source

software

GitHub: 2_018 repositories [1]

 503 developers [2]

 2_013 issues [3]

Rosetta Code: 645 examples [4]

 33 developers [5]

 0 issues [6]

Sourceforge: 265 projects [7]

BlackDuck OpenHUB: 206 projects [8]

Bitbucket: 94 repositories [9]

Codelabs: 45 repositories [10]

AdaForge: 8 repositories [11]

[1] https://github.com/search?q=
language%3AAda&type=Repositories

[2] https://github.com/search?
q=language%3AAda&type=Users

[3] https://github.com/search?
q=language%3AAda&type=Issues

[4] http://rosettacode.org/wiki/
Category:Ada

[5] http://rosettacode.org/wiki/
Category:Ada_User

[6] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[7] http://sourceforge.net/directory/
language%3Aada/

[8] https://www.openhub.net/
tags?names=ada

[9] https://bitbucket.org/repo/
all?name=ada&language=ada

[10] http://git.codelabs.ch/

[11] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 39-1, p. 9. —sparre]

Ada and Software
Engineering Library

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 8 May 2018 17:02:55 -0000
Subject: Re: How to Download From PAL ?
Newsgroups: comp.lang.ada

> [...]
http://archive.adaic.com/ase/index.html

64 Ada-related Tools

Volume 39, Number 2, June 2018 Ada User Journal

[...]

A blast from the past... ;-)

What's on the AdaIC is a later version of
the "Public Ada Library (PAL)" under it's
(then) newer name of "Ada and Software
Engineering Library Version 2 (ASE2)"
from October 2000.

Randy fetched the copy for the AdaIC
from the Ada-Belgium FTP server where
we had put it up for everyone interested.
IIRC, it is the final version of the "PAL"
that was made.

I still have a box with most PAL versions
on CD-ROM: Ada-Belgium did order
many to be handed out to participants at
our events at the time...

FWIW, the Ada-Belgium ftp server is
long gone, but the original ASE directory
is still available at:
http://www.cs.kuleuven.be/~dirk/ada-
belgium/archive/ase/

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 8 May 2018 15:22:02 -0500
Subject: Re: How to Download From PAL ?
Newsgroups: comp.lang.ada

> [...]

Everything that the ARA got from AJPO
has been on-line in the AdaIC archives
since 1998 (see http://archive.adaic.com).
We didn't get *everything*; some stuff
not on the AdaIC site seems to have not
been saved.

In any case, if you truly find this
important, you might consider becoming
an ARA contributor to help with the
expenses associated with it.

Ada-related Tools

Mathpaqs

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 13 Mar 2018 09:39:47 -0700
Subject: Mathpaqs release 13-Mar-2018
Newsgroups: comp.lang.ada

Mathpaqs is a collection of mathematical
packages in the Ada programming
language.

What's new:

- Added special functions Beta and Phi in
the numerics part (Beta_function,
Test_Beta, Phi_function)

- Added the Beta distribution in the
random distribution part
(Generic_Random_Functions)

More information here:
http://mathpaqs.sf.net/

[See also “Mathpaqs”, AUJ 36-3, p. 121.
—sparre]

From: Vincent Diemunsch

<vincent.diemunsch@gmail.com>
Date: Wed, 14 Mar 2018 07:54:13 -0700
Subject: Re: Mathpaqs release 13-Mar-2018
Newsgroups: comp.lang.ada

[...]

Just a few questions :

- why not use the standard Generic Real
Arrays ?

- Are the G_Matrices stored in Fortran
convention, i.e. Column Major Order ?

- Are they compatible with Blas &
Lapack ?

- Are the SparseB matrices compatible
with Matlab matrices (i.e. CSC matrices)

- Are both format interoperable ?

- Are they interchangeable, i.e. is there a
common class type to manipulate them?

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Fri, 16 Mar 2018 10:59:51 -0700
Subject: Re: Mathpaqs release 13-Mar-2018
Newsgroups: comp.lang.ada

> - why not use the standard Generic Real
Arrays ?

Good point! I'll update the web site with a
remark from g_matrices.ads: "NB: For
Ada 2005+ and real numbers
implemented as floating-point numbers, it
is better to use
Ada.Numerics.Generic_Real_Arrays
instead.". An usage of G_Matrices can be
for complex, rational, "bignum"-rationals,
etc. ...

> - Are the G_Matrices stored in Fortran
convention, i.e. Column Major Order ?

By default not, but you can add a pragma
Convention.

> - Are they compatible with Blas &
Lapack ?

Some stuff in the lin_alg area is, but
frankly it is a bit rusty (in my head)...

> - Are the SparseB matrices compatible
with Matlab matrices (i.e. CSC
matrices)

SparseB is just a helper for Sparse
package (I did it in Ada 83 around end
1990's, it would be a private child
package now (tbd)...). There are two
bodies for sparseb: one standalone, one
using Blas (sparseb.blas.adb)

> - Are both format interoperable ?

> - Are they interchangeable, i.e. is there
a common class type to manipulate
them?

I've used for research purposes,
interchangeably:

- plain matrices,

- band matrices (a matrix with zeroes
outside diagonals and the cells just
above and below) and

- sparse matrices.

I did it through generics.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Mar 2018 14:27:19 -0700
Subject: Ann: Mathpaqs release 27-Mar-

2018
Newsgroups: comp.lang.ada

[...]

What's new:

- Discrete_Random_Simulation: after
linear - O(n) - and dichotomic (binary) -
O(log(n)) - searches, added the alias
method which is O(1). Concretely, the
simulation of a discrete, finite random
variable of any number of states is as
fast as simulating a flip-or-coin !...

- Added
Test_Discrete_Random_Simulation with
timing and error measurement.

AdaYaml

From: Felix Krause <contact@flyx.org>
Date: Sat, 17 Mar 2018 10:51:18 +0100
Subject: Re: YAML parser?
Newsgroups: comp.lang.ada

> Thank you, everyone. I'll try to get in
touch with the maintainer of the YAML
web site to see if they can update the
pate (I do not know if there are
constraints of maturity)

You can ask me right here if you have
concerns :).

Concerning the maturity, AdaYaml is
tested with the comprehensive test suite of
the YAML project. The suite is still in
development, but has far above 200 tests.
AdaYaml passes all of the test cases
relevant for a user, with failures in details
where we are trying to change things for
the better in upcoming YAML 1.3.

The API is mostly mature, except for a
possible minor change in tag handling that
may happen depending on or decision
process on 1.3. You can assume that
AdaYaml parses all „real“ YAML 1.2
documents (i.e. not depending on a few
edge cases not found anywhere in the
wild) and the biggest incompatibility with
1.2 is currently that verbatim tags are not
allowed:

 !<tag:yaml.org,2002:str> # fails with
lexer error

 !!str #identical semantics, parses fine

The second „incompatibility“ is that '@' is
no longer reserved, but parsed as
„annotation“. This will not break any
existing documents as the character was
previously reserved. Annotations are
currently little more than a proof-of-
concept and should not concern you – if
you just reject any annotation tokens, you
have a normal 1.2 structure. All my
experimental code is in yaml-
annotation_processor.gpr so if you just
import yaml.gpr, you won't import
experimental code.

Ada-related Tools 65

Ada User Journal Volume 39, Number 2, June 2018

I am always a bit lazy on crafting new
releases. As I know now that there is
interest in using this library again, I will
wrap up the current state into a new
release, as there have been some bug fixes
since the last one.

From: Felix Krause <contact@flyx.org>
Date: Thu, 22 Mar 2018 21:38:13 +0100
Subject: ANN: AdaYaml 0.3.0
Newsgroups: comp.lang.ada

I have just released AdaYaml 0.3.0. As
always, documentation is found on the
website [1] and the release is available as
tag of the GitHub repository [2].

The reason for this release is mainly that
development is currently stagnant, but I
wanted the new DOM API to be available
in a release since it is pretty stable.
Shortly after development, the DOM API
has been tested with fuzzing by Lionel
Matias [3]. Findings of these tests have
been addressed.

This release fixes some bugs in the
previous release and there are no breaking
changes.

[1]: https://ada.yaml.io

[2]: https://github.com/yaml/
AdaYaml/tags

[3]: https://blog.adacore.com/running-
american-fuzzy-lop-on-your-ada-code

[See also “AdaYaml”, AUJ 38-4, p. 176.
—sparre]

Gnoga

From: Pascal Pignard <p.p14@orange.fr>
Date: Sat, 17 Mar 2018 11:05:29 +0100
Subject: Sprite support with events.
Newsgroups: gmane.comp.lang.ada.gnoga

I've pushed on dev_1.4 branch more API
to sprites:

- add Angle_Limit API for Sprites (it sets
sprite angle limit for rotation with
special effect: null, bounce or loop).

- add new sprite effects for events:
 - Inside_Event_Effect is sent when

sprite is inside frame or angles limits
and resets when fired.

 - Outside_Event_Effect is sent when
sprite is outside frame or angles limits
and resets when fired.

- Add new API: Fire_On_Frame,
Frame_Effect, Fire_On_Angle,
Angle_Effect, On_Message.

It's a very first version committed to
request comments, tested API are
included in test/pixi_sprite_test.adb.

Feel free to send code review:

https://sourceforge.net/p/gnoga/code/ci/
dev_1.4/tree/components/pixi/src/

Spite possibilities are wide, I'll add API
step by step, feel free to point out some
API you want to be available.

[See also “Gnoga”, AUJ 38-3, p. 118.
—sparre]

Ada_GUI

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sun, 18 Mar 2018 14:33:24 +0100
Subject: Ada-Oriented GUI
Newsgroups: comp.lang.ada

I've written on here before that I think the
traditional register-callbacks-and-call-a-
procedure GUI interface is a hack only
suitable for sequential languages, and
attempted to describe my idea of how a
GUI for a concurrent language like Ada
should work. Some have expressed the
opinion that such an interface is not
possible.

I've now written a very minimal GUI
interface embodying my concepts. It
implements text boxes and buttons, as that
is the minimum for an example that
actually does something faintly
interesting. For an example, I've used the
Random_Int demo from Gnoga.

I've also made a quick and dirty
implementation of the interface on top of
Gnoga, and a version of Random_Int
using the interface. Though the Gnoga
version of Random_Int is very simple and
fairly easy to understand, this version is
easier to understand.

Those interested can find Ada_GUI at

https://github.com/jrcarter/Ada_GUI

Those who like programming by
extension won't like it.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 21 Mar 2018 09:25:10 +0100
Subject: Re: Ada-Oriented GUI
Newsgroups: comp.lang.ada

> [...]

Why do you believe that event-loop
architecture is better than callback one? In
the latter there at least no need to have an
explicit loop and more importantly it can
be made type safe if callback are
primitive operations of interfaces.

As Randy already mentioned, your design
is quite close to Windows GDK, but very
different from other architectures.

In any case I do not see how this responds
to major challenges of GUI design, e.g.
structured filtering of events (widgets
swallow events and re-emit higher-level
ones) or inversion when a button emits
events, but it is the handler that must
process them, so the case-statement or
dispatching choice constrained by button
interface must be in the handler code, not
in the button or its descendant.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 20 Mar 2018 16:34:56 -0500
Subject: Re: Ada-Oriented GUI
Newsgroups: comp.lang.ada

> [...]

I can't speak to all such systems, but the
above is definitely not true of Windows
Win32. The GUI can be on any thread
that it likes, the restriction is that one
needs to use a single thread to create
windows and receive messages. (Any
thread can do other operations.) We took
advantage of this in the design of Claw,
where there is a separate Ada task created
solely for the purpose of managing the
GUI. On top of this we built a fairly
conventional OOP design where the GUI
task dispatches to appropriate
subprograms. This allows Ada programs
fairly free access to the GUI from any
task. (It also has the downside of bringing
in tasking issues into any Claw program,
even if there aren't any explicit tasks.)

It would be easy for Jeff to build his GUI
design on top of Win32, it would be
organized somewhat like Claw internally
but using a different interface to interact
with it.

PHCpack

From: gerdien.de.kruyf@gmail.com
Date: Fri, 30 Mar 2018 14:25:57 -0700
Subject: Re: how to copy complete column

(or row) of matrix to another?
Newsgroups: comp.lang.ada

> [...]

There are lots of interesting Ada maths
packages in here:

https://github.com/janverschelde/
PHCpack

WinRT Bindings

From: alby.gamper@gmail.com
Date: Fri, 13 Apr 2018 02:05:39 -0700
Subject: Ada-WinRT bindings - Alpha

release
Newsgroups: comp.lang.ada

I am pleased to announce the initial alpha
release of the WinRt bindings for Ada.

It is available on GitHub at the following
URL

https://github.com/Alex-Gamper/
Ada-WinRT

Please feel free to raise
issues/question/recommendations for
improvements either via GitHub or here
on comp.lang.ada.

AdaBase

From: John Marino
<dragonlace.cla@marino.st>

Date: Sun, 15 Apr 2018 09:08:24 -0700
Subject: Re: libgnadeodbc
Newsgroups: comp.lang.ada

(Just picking a post to reply to)

Well, nobody mentioned my database
interface project, so I'll just post the links
again:

http://jrmarino.github.io/AdaBase/

66 Ada-related Tools

Volume 39, Number 2, June 2018 Ada User Journal

https://github.com/jrmarino/AdaBase

It supports MySQL, PostgreSQL and
SQLite well. In less complex use cases, it
should be possible to have an application
use any backend rather than be locked to a
specific database (if abstraction
capabilities are used).

[See also “AdaBase”, AUJ 37-2, p. 74.
—sparre]

PolyORB

From: Thomas Quinot
<quinot@adacore.com>

Date: Wed, 18 Apr 2018 10:43:38 -0700
Subject: PolyORB now lives on Github
Newsgroups: comp.lang.ada

I am pleased to announce that PolyORB,
AdaCore's versatile distribution
middleware, now lives on Github. While
it remains a fully supported AdaCore
product, its source repository now lives
under our Github org at
https://github.com/AdaCore/polyorb

AdaCore has always been committed to
involving the user community in the
development of PolyORB. Over the past
15 years, many contributions from
industrial as well as hobbyist users have
been integrated, and community releases
were previously made available in
conjunction with GNAT GPL.

Today we are pleased to further this
community engagement and renew our
commitment to an open development
process by making the PolyORB
repository (including full history)
available on Github. This will allow users
of GNAT GPL to benefit from the latest
developments and contribute fixes and
improvements.

We look forward to seeing your issues
and pull requests on this repository!

Formal Methods Toolkit

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Sun, 22 Apr 2018 23:42:29 -0700
Subject: Formal Methods Toolkit
Newsgroups: comp.lang.ada

I'm pleased to announce the availability of
new tool:

http://inspirel.com/fmt/

FMT is a set of extension packages that
turn Mathematica into software
engineering IDE allowing to design
models, analyze, visualize, verify and
generate formally-proven Ada [*] source
code.

[*] for those who cannot resist the
temptation ;-), C and C++ are targeted,
too.

Please check the gallery of screenshots to
see some samples of what is possible:

http://inspirel.com/fmt/gallery.html

FMT is open-source and free.

LEA

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Thu, 26 Apr 2018 01:50:05 -0700
Subject: LEA - Lightweight Editor for Ada -

Binary release v 0.65
Newsgroups: comp.lang.ada

LEA is a Lightweight Editor for Ada.

What's new:

- Find & Replace box is now fully
functional

- First binary distribution with an
integrated mini-compiler (HAC)

Features:

- multi-document

- multiple undo's & redo's

- multi-line edit, rectangular selections

- color themes, easy to switch

- duplication of lines and selections

- syntax highlighting

- parenthesis matching

- bookmarks

Currently available on Windows. Gtk or
other implementations are possible: the
LEA_Common[.*] packages are pure
Ada, as well as HAC.

URL: https://sourceforge.net/
projects/l-e-a/

[See also “LEA”, AUJ 38-4, p. 178.
—sparre]

Cortex GNAT RTS

From: Simon Wright
<simon@pushface.org>

Date: Sat, 28 Apr 2018 17:13:12 +0100
Subject: ANN: Cortex GNAT RTS 20180419
Newsgroups: comp.lang.ada

There are three parallel releases at
Github[1], for

- GNAT GPL 2016/GCC 6

- GCC 7

- GNAT GPL 2017

(three, because of changes to the interface
between the compiler and the RTS).

There's not much user-visible change
from the last GCC 7 release[2], except
that all but 2k of free store is available for
the heap (the 2k is used for startup and
interrupt stack).

[1] https://github.com/simonjwright/
cortex-gnat-rts/releases

[2] https://github.com/simonjwright/
cortex-gnat-rts/releases/tag/r20171016

[See also “Cortex GNAT RTS”, AUJ 38-
3, p. 119. —sparre]

Simple Components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 2 May 2018 18:51:02 +0200
Subject: Inter-process communication in

Ada with Simple Components v 4.28
Newsgroups: comp.lang.ada

The latest version 4.28 of Simple
Components introduces inter-process
communication primitives. The
implementation does not rely networking
and is based on shared memory and OS
primitives available. Both Linux and
Windows are supported. No configuration
is required, no source code generation is
used either. The interface packages are
OS-independent.

The following synchronization and
communication primitives are provided:

- Manual set/reset event;

- Pulse event;

- Re-entrant mutex. A mutex that can be
seized by the same task several times
without blocking;

- Shared object that can be accessed from
different processes;

- FIFO, first-in, first-out queue with the
ends in different processes;

- Blackboard for publishing updates in a
way that do not block the publisher;

- Inter-process stream with the end points
in different processes;

- Shared memory pool which can be
allocated and freed from different
processes. The pool supports references
which can be converted forth and back
access type. The pool reference can be
exchanged between processes and stored
in the shared memory;

- Process call service, that provides
remote procedure call facilities. Both
synchronous and asynchronous remote
calls are supported. Synchronous calls
can return back results or update
arguments. Exceptions propagated at the
callee's side are reported back to the
caller and re-raised at the call point.

- Manager of the process call services that
allow processes involving in RPC
exchange to come and go dynamically.

The configuration of primitives is based
on introspection of the Ada type that
describes the shared environment. The
primitives are merely components of the
shared environment object. The coherence
of the shared environment is checked
when the process joins other processes.

The intended audience is Ada developers
of servers, e.g. Gnoga users. Bug reports
and feature requests are welcome.

P.S. The Distributed Systems Annex E
can be supported if there is demand,
provided some help with configuring
GNAT to respect the pragma Remote Call

Ada-related Products 67

Ada User Journal Volume 39, Number 2, June 2018

Interface and use the custom
System.RPC.

[See also “Simple Components”, AUJ 38-
4, p. 176. —sparre]

Ada Drivers Library:
STM32l4xx Nucleo Support?

From: John McCabe
<john@mccabe.org.uk>

Date: Sat, 5 May 2018 03:01:45 -0700
Subject: stm32l4xx nucleo and Ada Drivers

Library.
Newsgroups: comp.lang.ada

I'm looking at using a NUCLEO-L476RG
board, with some attachments, for a
prototyping exercise. As it's a work thing
it'll probably be coded in C++ but, as
these boards are so cheap, I thought I
might try to investigate replicating (at
least) some of the functionality in Ada at
home. Looking at the Ada Drivers
Library, there seems to be a few STM32F
devices and associated DISCOVERY
boards supported, but no specific mention
of the L series or NUCLEO.

This is the first time I'll have used the
STM32 series, so I wondered if anyone
with more experience might be able to
give me some brief guidance on getting
going. For example, would copying one
of the STM32F device folders and trying
to tweak it for the device I'm using be a
sane starting point? (Although, when I say
starting point, I imagine I'd just try to get
a noddy do nothing program up and
running before trying anything clever!)

PDF_Out

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun, 6 May 2018 01:21:11 -0700
Subject: Ann: Ada PDF Writer v.004
Newsgroups: comp.lang.ada

PDF_Out is an Ada package for
producing easily and automatically PDF
files, from an Ada program, with text,
vector graphics, images (JPEG). You can
produce automatically reports, invoices,
tickets, charts, maps etc. from your Ada
program. The Ada PDF Writer is free and
open-source.

What's new:

- A fix by G. Cannone was integrated.
PDF documents produced by PDF_Out
pass now an online PDF validation test.

More information here: http://apdf.sf.net/

[See also “PDF_Out”, AUJ 37-2, p. 74.
—sparre]

AUnit

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 10 May 2018 13:39:00 -0700
Subject: Re: Ada aunit examples
Newsgroups: comp.lang.ada

> Does anyone here have a good example
of a project that uses AUnit? [...]

SAL (http://www.stephe-
leake.org/ada/sal.html) has AUnit tests. It
also has an aunit extension package
Checks that makes it easier to write AUnit
tests.

Ada-related Products

RVS^Acad

From: Rapita Systems
Date: Tue, 10 Apr 2018 09:14:37 +0000
Subject: RapiTimes Newsletter April 2018

[...]

Rapita in academia and RVS^Acad

At Rapita, we've always had strong ties
with the academic environment. Building
on our roots as a spin-off company from
the University of York, we remain
actively involved in research activities
including collaboration with universities
worldwide.

To extend our range of software
verification solutions to meet the needs
(and budget) of the academic
environment, we've recently launched
RVS^Acad, an academic version of the
Rapita Verification Suite that is offered at
a greatly discounted rate compared to the
commercial version.

[...]

[See also “Rapita Verification Suite”,
AUJ 37-2, p. 77. —sparre]

VectorCAST

From: Vector Software
Date: Tue Apr 24 2018
Subject: Vector Software Announces New

Release of the VectorCAST 2018 Test
Automation Platform

URL: https://www.vectorcast.com/news
/vector-software-press-releases/2018/
vector-software-announces-new-release-
vectorcast-2018-test

Providence, RI USA, 2018-APR-24 –
Vector Software, now part of Vector
Informatik, the leading manufacturer of
software tools, embedded components,
and leading provider of services for the
development of electronic systems,
announced today the release of
VectorCAST 2018. This latest release of
VectorCAST contains many new features
as well as numerous enhancements to
existing functionality. For example, the
user benefits from increased user-
friendliness, testing efficiency, and
collaboration between team members.

The VectorCAST embedded software
testing platform is a family of products
that automates testing activities across the
software development lifecycle. The new
product release of VectorCAST 2018,
using the new Probe Point functionality,

provides a simple way to dynamically
instrument a complete application with
blocks of code (Probe Points). This
enables white-box testing, injection of
faults and debugging of hard to repeat
race conditions. The user gains access to
an intuitive graphical editor, which
enables him to extend his existing tool
chain to create and manage VectorCAST
Probe Points.

The new Component Coverage
functionality supports customers with
limited target resources by allowing users
to break their application into multiple
logical components and instrument each
component in isolation. This feature is
integrated with the system test automation
features of VectorCAST/QA which
automatically runs all tests against each
component and combines the coverage
results into a single report.

VectorCAST 2018 provides full support
for the coupling analysis and verification
required by the DO-178B and C standards
for avionics certification. Static analysis is
performed to identify the couples that
exist in the implementation, and source
code instrumentation is performed to
ensure that each of the identified couples
is tested. Additionally, a simple to use
graphical component editor allows user to
easily create a component definition that
matches the application’s architecture.

VectorCAST 2018 enables test
collaboration across the whole enterprise,
through the introduction of many new
extensions. The user profits of newly
developed functions for test artifact
sharing and maintenance, real-time
analytics, and improved test automation.

For additional details about the release of
VectorCAST 2018, please visit:
www.vectorcast.com/vectorcast-2018.

From: Vector Software
Date: Tue May 1 2018
Subject: Vector Software Launches New

Product Editions of its Award-Winning
VectorCAST Test Automation Platform

URL: https://www.vectorcast.com/news/
vector-software-press-releases/2018/
vector-software-launches-new-product-
editions-its-award

Providence, RI USA, 2018-MAY-1 –
With the release of VectorCAST 2018,
two editions, Professional and Enterprise,
are now available to meet the specific
needs of smaller and larger teams and
projects. Vector Software is now part of
Vector Informatik, the leading
manufacturer of software tools and
embedded components for the
development of electronic systems.

With the two new Editions, the automated
test platform VectorCAST 2018 is able to
better adapt to the individual conditions of
each customer, who, from now on, may
choose between “Professional” and
“Enterprise” editions.

68 Ada-related Products

Volume 39, Number 2, June 2018 Ada User Journal

VectorCAST 2018 Professionals intended
for single users and small workgroups
working on projects that require
automated black-box and white-box unit
and integration testing, as well as code
coverage analysis.

VectorCAST 2018 Enterprise includes all
of the features of VectorCAST 2018
Professional plus enterprise test
management, testing multiple code
configurations, covered by analysis
(CBA), probe points, change-based
testing, and analytics.

Vector Software’s award-winning
VectorCAST embedded software testing
platform is a family of products that
automates testing activities across the
software development lifecycle and
supports C, C++, and Ada. The
VectorCAST/C++ and VectorCAST/Ada
applications are used for Unit and
Integration Testing, while
VectorCAST/QA is used for System Test
Automation and Code Coverage Analysis.

[See also “VectorCast for Deos”, AUJ 38-
3, p. 119. —sparre]

Possibility of Janus/Ada for
Linux

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 30 Apr 2018 21:32:01 -0500
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> Could RR Software make a crowd-
funding/pre-pay deal on a Linux
version of Janus/Ada? How many
licenses would you need to sell, to be
ready to commit to deliver a Linux
version of Janus/Ada?

Probably not that many (surely more than
20, probably less than 100), but I'm pretty
booked until Ada 2020 is in the bag
(summer 2019). So I wouldn't want to
promise something that I couldn't
complete. [I've thought about this project
in the past, it probably wouldn't be too
hard of a conversion -- we had SCO Unix
compiler back in the day, so the front-end
has needed case-insensitive file support.]

[See also “State of the Compiler Market”,
AUJ 38-2, p. 75. —sparre]

GNAT Pro Common Code
Generator

From: AdaCore Press Center
Date: Fri May 4 2018
Subject: GNAT Pro Common Code

Generator User's Guide Supplement
19.0w documentation

URL: http://docs.adacore.com/live/wave/
gnat_ccg/html/gnatccg_ug/gnat_ccg/
gnat_ccg.html

[...]

GNAT Pro Common Code Generator
(also known as GNAT Pro CCG) is a
compiler based on the GNAT Pro
technology that takes a subset of Ada
source code as input and generates
corresponding C source code with the
same semantics, suitable for compilation
by any target C compiler. In other words,
a subset of C is used as a high-level and
portable assembly to compile Ada source
code.

[...]

You need to run using gprbuild and
specify the special “c” target, either via
the --target command line switch, or via
the Target project file attribute:

 $ gprbuild -p --target=c -Pmy_project

or:

 project My_Project is

- for Target use "c";

- [...]

[...]

Here is a list of constructs supported and
not supported by this technology:

- Support for constructs that do not
require runtime support:

 o packages (including child, separate,
and generic packages)

 o subprograms (including separate,
generic, nested, and overloaded
subprograms)

 o most Ada types and subtypes,
including:

 * scalar types (integer, enumeration)

 * floating point types

 * fixed point types

 * access types

 * constrained and unconstrained arrays

 * Note that support for
multidimensional unconstrained arrays
requires a C99 compatible C compiler. If
the target C compiler only supports
earlier versions of the C standard, then
only one-dimensional unconstrained
arrays can be used.

 * Array indices have to be within the
bounds of the size_t C type, in other
words you cannot use e.g. array indices
of more than 2**31-1 on 32-bit targets.

 * record types

 * tagged types: Objects of tagged and
class-wide types may be declared.
Dispatching and class-wide subprograms
are supported (including the
object.operation notation).

 * private types

 * limited support for dynamically sized
record types: records with a single (last)
field whose size depends on a
discriminant. Note that this feature
builds on top of the C idiom “field[1];”
where field is actually a larger array

(allocated explicitly with sufficient
memory). This idiom was replaced by
flexible array declaration: “field[];” in
C99.

- Support for a minimal standard library
only

- delay until statement

- Representation clauses that map to C
bitfields only (records containing integer
types only, of 1 to 64 bits)

- Unsupported record representation
clauses will generate a warning
(unsupported representation clause,
assuming confirming) and the generated
code will ignore the unsupported
representation clause, assuming the
clause is simply confirming the default
layout. This assumption (and this
warning) need to be verified manually.

- Support for packed arrays (e.g. arrays of
booleans)

- Support for
assertions/preconditions/postconditions

- Raising an exception (explicitly or
implicitly via a runtime check or an
assertion failure) is mapped to a call to a
last chance handler subprogram. See
Exception Handling for more details.

- Support for most runtime checks: range,
access, index, divide-by-zero checks.

- Support for ‘Size is implemented via the
C sizeof() built-in.

- Support for ‘Valid on floating point
requires the C99 isfinite() function.

- No support for overflow checks

- No support for subprograms in generic
packages instantiated inside a
subprogram, or for runtime
pre/postconditions on subprograms in
generic packages.

- No support for the following constructs
requiring runtime:

 o tasking

 o controlled types

 o interface types

 o exception handling

 o storage pools

 o functions returning unconstrained
arrays or dynamically sized records

- No support for ‘Image on floating point
and fixed point types, only scalars

- No support for the following attributes:

 o Alignment

 o Component_Size

 o Rounding

 o Bit

 o Bit_Position

 o First_Bit

 o Last_Bit

 o Position

Ada in Context 69

Ada User Journal Volume 39, Number 2, June 2018

 o Constrained

 o Mechanism_Code

 o Null_Parameter

 o Passed_By_Reference

- No support for assembly insertion. If
you need to include assembly code, you
can do so by putting the assembly in a
separate assembly file.

Ada and Operating
Systems

Ravenports: AdaYaml

From: John Marino
<dragonlace.cla@marino.st>

Date: Sun, 15 Apr 2018 14:15:33 -0700
Subject: Re: ANN: AdaYaml 0.3.0
Newsgroups: comp.lang.ada

I've added AdaYaml to Ravenports.

[1]: http://www.ravenports.com/

[2]: http://www.ravenports.com/catalog/
bucket_1F/AdaYaml/standard/

As far as I can tell, it's the first time
AdaYaml is available in a package
repository. Thanks for the nice project.

[See also “AdaYaml” earlier in this issue.
—sparre]

MacOS: GCC

From: Simon Wright
<simon@pushface.org>

Date: Sat, 12 May 2018 16:05:09 +0100
Subject: ANN: GCC 8.1.0 for macOS
Newsgroups: comp.lang.ada

GCC 8.1.0 for macOS El Capitan and
High Sierra, built for C, C++, Ada,
Fortran, Objective-C, and Objective-C++,
and including

- ASIS, AUnit, GDB from GNAT GPL
2017

- Gprbuild, GNATColl, and XML/Ada
from Github repositories, see the
README

is available at

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
8.1.0/native-2017/

[See also “Mac OS X: GCC”, AUJ 38-2,
p. 77. —sparre]

References to
Publications

ARG Progress Report

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sun, 1 Apr 2018 22:32:47 -0500
Subject: Interesting article on ARG work
Newsgroups: comp.lang.ada

I just ran across an article about the
ARG's recent work. Read it at:
http://www.ada-auth.org/ai-
files/grab_bag/AAN-41.html

Ada in Context

Ada 2020 Parallelism
Constructs

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Sun, 1 Apr 2018 22:35:10 -0500
Subject: Re: Large number of tasks slows

down my program (using debian) - any
fix?

Newsgroups: comp.lang.ada

> [...]

The plan is for parallel blocks and loops,
and a parallel reduction operation. There's
more, but how much will get actually
finished by early next year is obviously a
question. The things I mentioned the are
most likely.

Conditional Compilation
and Program Variants

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 15 Apr 2018 16:07:45 +0300
Subject: Ada conditional compilation and

program variants
Newsgroups: comp.lang.ada

> [...]

Starting from the joke, the thread passed
on to consider several existing compiler
features, and serious suggestions, for
controlling which parts of the Ada source
code are used by the compiler, and for
what purposes, including

- the proposal for "ghost code" in Ada
2020

- other extensions to the "contract"
features of Ada

- the inconvenience, in current Ada, of
having to comment-in and comment-out
debugging code, when the static-
Boolean-conditional method does not
work (e.g. to include or exclude a "with"
clause)

- Janus/Ada conditional compilation, with
the "@" marker

- the risk that some combinations of the
conditions for conditional compilation
result in a variant of the source code that
is syntactically or semantically illegal,
with an example from Randy for "@"

- Dmitry's suggestions for changes to the
Janus/Ada "@" to reduce that risk by
requiring "@" to control only whole
syntactic constructs (i.e. to work on the
grammar level rather than the lexical
level)

- Dan'l's suggestions for using GLR
parsing, or related fork/merge parsing

methods, to ensure that all possible
variants of the source code are
syntactically legal, with a reference to an
implementation for C-with-preprocessor
that has successfully done this for the
Linux kernel code (with an interesting
connection to Dmitry's suggestion in
that one essential part of this
implementation is "ifdef-hoisting" where
the ifdef scopes are expanded to control
whole syntactic constructs).

It seems to me that a common question
for the above points is how to manage
"variants" of an Ada program (and, as
Dan'l commented, "aspects" might be
included, because they have a similar
need to be separated from the rest of the
program). Variants may be necessary to
support different target systems, or
different compilers, or just to choose
which optional features (such as
debugging or state-consistency checking)
should be included in a particular build of
the program.

The traditional solution is to use a
preprocessor to conditionally select or
transform the source code before the
compiler sees it. This however means that
the basic source code is not Ada, but Ada-
with-preprocessor, and it also leads to
differences between implementations, for
example Janus/Ada with "@" versus the
AdaCore/GNAT preprocessor commands.
And of course all the old arguments
against macro-based, text-oriented
preprocessors are still valid.

Barring preprocessors, a practical
solution, which I often use and which I
believe is widely used, is to isolate the
features and variant code into their own
packages (or separate subprograms), to
provide variant bodies for those packages
(e.g. for different targets, or to include or
omit debugging), and to guide the Ada
compiler to select the desired bodies
through some kind of search path (e.g.
ADA_INCLUDE_PATH for GNAT, or
the GNAT project files for gprbuild). This
often works well, but also often leads to
some amount of duplicated invariant code
in the various package bodies, because
isolating exactly and only the variant code
into packages would create a mess of very
many small packages, possibly conflicting
with the logical modular structure of the
program. Furthermore, just as for the
preprocessor method, this variant-bodies
method is not standardized and is
therefore supported in different ways by
different IDEs and compilers.

It further seems to me that this thread has
identified some desirable requirements for
an Ada conditional-compilation / variant-
support feature, including:

1. It should be defined in the Ada
standard, to ensure portability across
compilers and to make it easier for IDEs
to support it by e.g. hiding or colorizing
inactive parts of the source code.

70 Ada in Context

Volume 39, Number 2, June 2018 Ada User Journal

2. It should be a part of the Ada language
(the grammar), and should control whole
syntactic constructs, unlike macro-
based, text-oriented conditional
compilation directives or preprocessors.

3. It should allow implementations to use
GLR/FMLR-like parsing and analysis
methods that can process all possible
variants "at once" and check their
legality as far as possible.

The variant-bodies method provides all of
these, to some extent. It follows point 1
because all the source code is standard
Ada. It follows point 2 because the
boundaries of the variant code are
package or subprogram boundaries. It
follows point 3 because the static
conformance of each body variant with all
package declarations (and thus with any
variant body of any other package) can be
ensured by compiling each body variant
separately, without having to build the
whole program for all possible
combinations of variant bodies. (This
assumes that only bodies have variants,
and declarations are invariant;
unfortunately, declarations often need
variants, too.)

On the other hand, the variant-bodies
method fails to provide some aspects of
the above requirements: it fails on point 1
because the method of choosing a
particular variant of a body is not
standardized; it supports point 2 weakly,
because it is limited to variants that are
complete bodies, and usually requires a
dedicated source-code file for each
variant; and for point 3 it forces
implementations of the "all-variants-at-
once" processors to use compiler/builder-
specific methods for finding the possible
variants of each body.

At present, I don't have a suggestion for a
better method (than the variant-bodies
method), but I think it could be a fruitful
extension to Ada, especially if it could
support all three uses: variants (different
implementations of a non-optional feature
of the program), optional features, and
aspects (by which I mean the centralized
specification, at one point in the program,
of distributed actions taken at several,
appropriate points in the program).

In fact, I have one idea that could be part
of this Ada extension: "package
definitions". A package definition would
be a new kind of compilable unit (but
generating no code), usually in its own
source-code file, which would bear a
similar relation to a package declaration
as a package declaration currently bears to
the package body:

- A package declaration declares the
things that the corresponding package
body is required to implement.

- Analogously, a package definition
would define, or specify, the things that
the corresponding package declaration is
required to declare.

However, this definition would be on a
less specific level (more "generic") than
the actual declarations, and would
therefore allow different package
declarations (variants) to conform to the
same package definition.

For example, the definition of package A
could require package A to declare a type
T that is a discrete type, but the definition
might not require anything more of T.
Thus, one variant of package A might
declare T as an integer range, while
another could define T as an enumeration.

The package definition would be, for
example:

 package definition A is
 type T is (<>);
 procedure F (Item : in T);
 end A;

and a possible conforming package
declaration would be:

 package A is
 type T is (X, Y, Z);
 type S is new String;
 procedure Foo (Item : in T);
 procedure Bar (Item : in out T);
 end A;

The Ada RM is in fact full of package
definitions, because the declarations of
the predefined, standard packages shown
in the RM contain text like

 subtype Any_Priority is Integer range
 /implementation-defined/;

which a package definition would state as
(for example):

 subtype Any_Priority is Integer range <>;

Package definitions would be optional,
but if a package definition is present then
the package declaration must conform to
it. This would allow the "variant bodies"
method to be extended to allow also
variant declarations, as long as the
package definitions are invariant.

An interesting question is this: if package
declaration or body B uses package A,
and package A has a definition, how far
can a compiler check that B uses A in
legal ways if the compiler is allowed to
look only at the definition of A, but not at
the (or a) declaration of A?

If the compiler could check legality using
only the package definitions of server
packages, it would make it easier to
ensure that all program variants are legal,
by two separate and non-combinatorial
steps:

- checking each variant package
declaration against the (invariant)
package definition, and

- checking each variant package body
against the (invariant) package
definitions of all other packages (those
used by this body).

If checking the legality of how B uses A
requires looking at the declaration of A
(and not only at the definition of A), there
is again a risk of combinatorial explosion
in checking the legality of all (complete)
program variants when there are variant
package declarations.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 07 May 2018 10:41:48 +0200
Subject: Re: Ada conditional compilation

and program variants
Newsgroups: comp.lang.ada

> [...]

The only counter-examples I've been able
to come up with so far are run-time errors,
such as going beyond the range of a
numerical type.

What about enumeration types? Should it
be allowed to declare names for some, but
not all values of an enumeration type?
One could of course declare a function
returning a value of the type in the
package definition, and say that it can be
implemented in the package declaration
as an enumeration value. - Can't do that
for characters though, so maybe it is a bad
idea.

Termination and
Finalization of Library Level
Tasks

From: Egil Harald Høvik
<ehh.public@gmail.com>

Date: Sun, 15 Apr 2018 12:32:18 -0700
Subject: Re: Finalization of library level

tasks
Newsgroups: comp.lang.ada

Dmitry A. Kazakov wrote:

> Terminate alternative is almost always
useless because it cannot be mixed with
"else" or "delay". If there were a way to
check within the task if its completion
has been requested

For library level tasks:

 loop
 select
 accept Some_Rendezvous;
 or
 delay Some_Interval;
 end select;

 exit when not
 Ada.Task_Identification.Is_Callable
(Ada.Task_Identification.Environment_Task);
 end loop;

Map Iterators of the Trait
Based Containers

From: Jere <jhb.chat@gmail.com>
Date: Sat, 5 May 2018 09:03:53 -0700
Subject: Re: Trait based containers
Newsgroups: comp.lang.ada

Ada in Context 71

Ada User Journal Volume 39, Number 2, June 2018

[...] I hope they revert the changes to Map
iterators if they do add it to Ada202x. I'm
not sure why they changed it to iterate
over the keys instead as that seems like
the least useful way to iterate over a map,
and you could still access keys via the
cursor. Now the less useful way is the
default.

From: Emmanuel Briot
<briot@adacore.com>

Date: Mon, 7 May 2018 00:02:34 -0700
Subject: Re: Trait based containers
Newsgroups: comp.lang.ada

> [...]

One of the main principle in the design of
that library is that people could change
most of the details. For instance, if you do
not like the default iterator that returns a
key, you can easily derive your own that
returns an element instead.

Initially, I had wanted to return a tuple
(key, element) directly. This is really what
a cursor is. So instead of doing

 for A of Map loop

you do

 for C in Map.Iterate loop

and you get both key and element.

I prefer to return a key in the "for ... of ...
loop" case, because with a map you can
always go from key->element. The
opposite might not be true.

Trait Based Containers

From: Luke A. Guest
<laguest@archeia.com>

Date: Sat, 5 May 2018 09:43:39 +0100
Subject: Trait based containers
Newsgroups: comp.lang.ada

I thought this was being submitted for
inclusion into Ada 202X?

What’s happening with this?

From: Emmanuel Briot
<briot@adacore.com>

Date: Mon, 7 May 2018 00:00:10 -0700
Subject: Re: Trait based containers
Newsgroups: comp.lang.ada

> [...]

I am the original developer for those
experimental containers. This was mostly
a way to explore the use of generics in
various contexts, and they resulted in a
few (I believe 3, though I forgot exactly)
new AI submitted to the ARG. Those AI
are not about that library itself, but about
various improvements to the language to
better support this kind of generic
packages.

I don't think we ever wanted to integrate
them into the language. Indeed, Ada
already has its own set of containers, so it
would be a hard sell to provide a second
set of containers.

Instead, the intent was for AdaCore to
base its implementation of the standard
Ada containers on something like the
traits containers, for better code sharing
among other things, and maybe also to
provide the traits containers as an
independent library (I think this is better,
as someone else will come with a better
implementation/design at some point, so
better if it isn't hard-coded in the RM).

Then the SPARK people took interest in
those as well, since, as opposed to the
Ada containers, they provide a good basis
for SPARK-compatible containers. Claire
Dross did a huge amount of work to make
the containers provable (not proven, this
isn't the same thing).

There were quite a few limitations in Ada
that made those containers somewhat hard
to use for final users. In particular,
instantiating the containers is somewhat
tricky, especially if you want to control all
the details (if you use one of the high-
level packages, this is very similar to
instantiating Ada's own containers).

Then I left AdaCore...

At this point, I don't think there's anyone
working on those containers from the pure
Ada library standpoint. I hope that the
SPARK people still have an interest in a
subset of them, but I must admit I have no
internal knowledge of this.

In my new company, we use a lot of
similar constructs, and in the process
discovered a lot of compiler bugs, mostly
related to the use of constructs like
expression functions, for ... of loops, and
others.

It would be nice if there was still interest
in that library. The code is all accessible
on GitHub, and I believe the license is
GPL.

Object'Image

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 8 May 2018 22:24:58 +0200
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

[...]

Anyway, [Object'Image] is just a
minuscule improvement to writing, with
no new feature and no benefit in reading.

Use the good old' T'image(v), and don't
worry about versions.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Wed, 9 May 2018 11:27:50 +0200
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> Anyway, it's just a minuscule
improvement to writing, with no new
feature and no benefit in reading.

I disagree. It is more than that

I affects 'with' statements sometimes.

And it makes the code look better/easier
to read

Below an uncompiled example of

- old ways needs more 'withs' - which
may affect elaboration order

- makes the code harder to read

 package Core_Types is
 type Handling_Unit_System_Status_Type
 is (Auto, Semi_Auto, Out_Of_System);
 type Assignment_Result_Type is
 (Success, Failure, Severe_Failure);
 type Assignment_Identity_Type is
 1 .. 99_999;
 end Core_Types;

 with core_types;
 package Trp_Assignments is
 type Assignment_type is record
 Assignment_Identity :
 core_types.Assignment_Identity_Type ;
 Assignment_Result :
 core_types.Assignment_Result_Type;
 Handling_Unit_System_Status:
 core_types.
 Handling_Unit_System_Status_Type;
 end record;

 with core_types; -- ONLY NEEDED FOR
 -- do_stuff_old_way
 package body Transport_Handler is

 procedure do_stuff_old_way(Asm :
Trp_Assignments.Assignment_type) is
 begin
 -- NEED THE 'with core_types'
 log("id" & core_types.
 Assignment_Identity_Type'Image(
 Asm.Assignment_Identity)
 & " " &"result " & core_types.
 Assignment_Result_Type'image(
 Asm.Assignment_Result)
 & " " & "status " & core_types.
 Handling_Unit_System_
 Status_Type'Image(
 Asm.Handling_Unit_System_Status));
 end do_stuff_old_Way;

 procedure do_stuff_new_way(Asm :
 Trp_Assignments.Assignment_type) is
 begin
 -- DOES NOT NEED THE 'with
 -- core_types'
 log("id" &Asm.Assignment_Identity'Image
 & " " &"result " &
 Asm.Assignment_Result'Image
 & " " &"status " & Asm.
 Handling_Unit_System_Status'Image);
 end do_stuff_new_Way;

 end Trp_Assignments;

> Use the good old' T'image(v), and don't
worry about versions

Not when can be avoided - for me anyway

72 Ada in Context

Volume 39, Number 2, June 2018 Ada User Journal

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 9 May 2018 11:56:46 +0200
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> I affects 'with' statements sometimes.

That's a good point, however if you have
a variable of a type declared in another
package, I think it is extremely unlikely
that you don't need to "with" the package
for some other reason (like, in your
example, simply assigning a value to the
variable).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 9 May 2018 16:53:51 -0500
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> [...]

It should be noted that one can use
Obj'Image exclusively once it is available,
because the prefix can always be qualified
if necessary and that adds exactly one
character to the attribute reference (and
it's a lot shorter if qualification isn't
needed).

My plan (once I'm using a Janus/Ada that
supports it consistently, probably a few
years still even though it is supported in
the leading edge version now) is to
completely forget the subtype version
exists and use the object version
consistently.

(Note that J-P was one of the few people
that didn't support this extension, so it's
fair for him to be consistent - but he was
wrong then and he's wrong now. ;-)

Worst Features of Ada

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 9 May 2018 17:56:04 -0500
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

[...] that led to several of the worst
features of Ada. And those had no impact
on the uptake (or lack thereof) of Ada. I
surely hope that we've (the Ada
community) learned better by now.

From: Luke A. Guest
<laguest@archeia.com>

Date: Thu, 10 May 2018 00:55:33 +0100
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> [...]

What are they?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 10 May 2018 17:10:26 -0500
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> [...]

All of the stuff about anonymous access
types along with some other details.

Compiler Warnings about
Run-time Range Checks

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 11 May 2018 16:45:06 -0500
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

> [...]

Also note that in the common special case
of loop iteration, no checks are needed at
all, either at the generation of the index or
its use:

 for I in Arr'Range loop
 ... Arr(I) ...
 end loop;

I cannot be outside of its range by
construction, so no checks needed there
other than the usual loop termination
check, and that being the case, no checks
are needed on the array indexing, either.

For many of the Ada checks, the existence
of a check that can fail indicates poorly
written Ada code and/or a potential bug.
I'm working toward having the compiler
(optionally) identify these during
compilation, so that one can improve the
code to eliminate the danger *before*
testing.

Target Specific Bodies and
Version Control

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 11 May 2018 17:12:20 -0500
Subject: Re: AI12-0218: What is the

portable representation clause for
processing IETF packets on little-endian
machines?

Newsgroups: comp.lang.ada

> [...]

The best way to do this in Ada is with
different package bodies (and sometimes
specs) for each target. That's how
Janus/Ada is designed, and it works great.
I know the GNAT project system even
has facilities to make this happen
automatically (by selecting the unit to
compile based on a version id).

The problem is that existing version
control systems cannot handle such
designs properly. That was definitely true
in the late 1980's (so I designed a wrapper
around our version control to deal with
this), and I haven't seen any that deal with
it properly to date. (The main issue being
that when a bug is fixed in one such
package, you want a notification to check
if the same is needed for the other
versions. No version control that I'm
aware of can handle this - they all seem

focused on merging development for a
single end-product.)

Shortcomings in version control are way
outside of anything that the language can
control. And using a sub-optimal design
because ancillary tools are broken seems
to be letting the tail wag the dog.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Sat, 12 May 2018 12:33:18 +0200
Subject: Re: AI12-0218: What is the

portable representation clause for
processing IETF packets on little-endian
machines?

Newsgroups: comp.lang.ada

> The best way to do this in Ada is with
different package bodies (and
sometimes specs) for each target.

We do this too.

> The problem is that existing version
control systems cannot handle such
designs properly.

To get around that we have subdirectories
matching the target:

- w32_x86

- lnx_x64

- aix_ppc

Each of these directories would contain
the native body and spec for the platform.
Each directory and file is
version_controlled.

The build system (first homebrew, now
GPR) only includes the directory
matching the correct target. So when
building on AIX, the compiler never sees
the directories lnx_x64 and w32_x86.

Each platform tests on an environment
variable we set that has one of the above 3
values.

So in essence we limit the files the
compiler sees to the ones belonging to the
current platform.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 12 May 2018 14:08:04 +0100
Subject: Re: AI12-0218: What is the

portable representation clause for
processing IETF packets on little-endian
machines?

Newsgroups: comp.lang.ada

> [...]

I have to say that my experience at Cortex
GNAT RTS[1] is similar to Randy's.

At the moment I have 6 usable branches;
the gcc7* and gcc8* ones are live:

- gcc6 (FSF GCC 6, GNAT GPL 2016)

- gcc7 (FSF GCC 7)

- gcc-finalization (FSF GCC 7 +
finalization)

- gcc8 (FSF GCC 8)

- gcc-finalization (FSF GCC 8 +
finalization)

- gnat-gpl-2017

Ada in Context 73

Ada User Journal Volume 39, Number 2, June 2018

The reason for the distinction is that the
interface between the compiler and the
RTS changes; between gcc7 and gcc8 10
files changed, and between gcc8 and
gcc8-finalization 30 files changed (not
including tests).

The way I've "managed" this is to choose
a branch to develop a change on,
implement the changes, commit, then
checkout the other branch that the
development applies to and cherry-pick
the commit(s) (i.e. the changes) from the
first branch. This is error-prone, to say the
least. It'd be quite hard to do at all on my
previously preferred DVCS, Mercurial.

Your remarks about using directories for
this are very interesting, I'll be looking
into them. I suspect the problem of
"change a spec; apply matching changes
to all the variant package bodies" will
remain, though.

[1] https://github.com/simonjwright/
cortex-gnat-rts

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Sat, 12 May 2018 16:21:16 +0200
Subject: Re: AI12-0218: What is the

portable representation clause for
processing IETF packets on little-endian
machines?

Newsgroups: comp.lang.ada

> Your remarks about using directories
for this are very interesting, I'll be
looking into them.

It is a way of getting all files into version
handling.

> I suspect the problem of "change a spec;
apply matching changes to all the
variant package bodies" will remain,
though.

Unfortunately yes.

Agile Programming

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 14 May 2018 17:21:26 -0500
Subject: Re: How to get Ada to ?cross the

chasm??
Newsgroups: comp.lang.ada

[...]

Agile programming itself is simply a style
where one uses a relatively short
development cycle with the intent to have
a usable/testable version of the end
product as early and as continuously as
possible. This allows feedback from the
customer and from testing the product
itself.

I've *always* programmed in an agile
manner, long before anyone decided to
get rich giving it a name and pushing
high-priced seminars. IMHO, the lower-
case "agile" is the only sane way to
develop software.

Imagine building an Ada compiler using a
waterfall model. You'd spend a year
creating design documents. And for what:
a well-designed Ada package
specification is itself a fine design
document. I spend time (usually outside
of the office) thinking about the design of
new features, packages, and so forth, but I
rarely write any of that down until I
actually outline the package specifications
involved. (Sometimes these I'll write
down an outline, but that's mainly because
of the reality of my work these days (and
also advancing age!), when I might very
well go several weeks between
starting/designing a project and having
enough time to actually complete the
implementation. I won't remember the
design details without some notes.)

I also have a meta-rule that I try not to
write more code at a time than I can
write/compile/test in a single day. (Not
always practical, but I much prefer that.) I
try to break down each task into subtasks
that can be completed in a day and
preferably tested by itself. The basic idea
is to always have a working compiler
(that's critically important if a customer
needs an immediate fix -- doesn't happen
very often but you can be sure that it will
happen when the compiler isn't usable :-).
Whenever one has a working compiler,
it's possible to find regressions (a very
common problem in compiler work),
bugs, and some omissions via the test
suites (which are trivial to run; these days
I have them run by a batch file called "X";
can't get more trivial than that).

Ada works great for agile programming,
as Niklas said, because the compiler helps
make sure that you've made all of the
changes needed as part of a new feature.
It might make refactoring a bit harder, but
that's actually OK -- a lot of refactoring is
just churn - it might make the code look a
bit better, but it really doesn't help the
ultimate goal (getting a working product).
So it helps put a brake on the desire to
"simplify" everything; rather, one only
does it when there is really an important
reason (usually because code needs to be
generalized to support a new
requirement).

 75

Ada User Journal Volume 39, Number 2, June 2018

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2018
July 03-06 30th Euromicro Conference on Real-Time Systems (ECRTS'2018), Barcelona, Spain. Topics include:

all aspects of real-time systems, such as scheduling design and analysis, real-time operating systems,
hypervisors and middlewares, virtualization and timing isolation, mixed-criticality design & assurance,
worst-case execution time analysis, modelling and/or formal methods, industrial use-cases and real-time
applications, tools, compilers and benchmarks for embedded systems, etc. Event includes: Worst-Case
Execution Time analysis (WCET), Workshop on Analysis Tools and methodologies for Embedded and
Real-time Systems (WATERS).

July 03 9th International Real-Time Scheduling Open Problems Seminar (RTSOPS'2018).
Topics include: single-, multi- and many-core scheduling; new models for real-time
systems; scheduling in cyber-physical systems; mixed-criticality scheduling;
interactions between WCET (worst-case execution time) analysis and scheduling; etc.

 July 09-10 Workshop: Konstruktion von SafeWare - Construction of SafeWare (KSW'2018), Karlsruhe,
Germany. Co-organized by Ada-Deutschland.

July 14-17 30th International Conference on Computer-Aided Verification (CAV'2018), Oxford, UK. Topics
include: theory and practice of computer-aided formal analysis methods for hardware and software
systems, algorithms and tools for verifying models and implementations, specifications and correctness
criteria for programs and systems, deductive verification using proof assistants, program analysis and
software verification, formal methods for cyber-physical systems, verification methods for parallel and
concurrent systems, testing and run-time analysis based on verification technology, applications and
case studies in verification and synthesis, verification in industrial practice, formal models and methods
for security, etc.

July 15-17 22nd International Symposium on Formal Methods (FM'2018), Oxford, UK. Topics include: formal
methods for the engineering of computer-based systems and software; such as industrial applications of
formal methods; experience with formal methods in industry; tool usage reports; advances in automated
verification, model-checking, and testing with formal methods; tools integration; environments for
formal methods; development processes with formal methods; usage guidelines for formal methods; etc.

July 16-20 18th IEEE International Conference on Software Quality, Reliability and Security (QRS'2018),
Lisbon, Portugal. Topics include: reliability, security, availability, and safety of software systems;
software testing, verification and validation; program debugging and comprehension; fault tolerance for
software reliability improvement; modeling, prediction, simulation, and evaluation; metrics,
measurements, and analysis; software vulnerabilities; formal methods; benchmark, tools, and empirical
studies; etc.

 July16-22 32nd European Conference on Object-Oriented Programming (ECOOP'2018), Amsterdam, The
Netherlands.

July 23-27 42nd Annual IEEE Conference on Computer Software and Applications (COMPSAC'2018), Tokyo,
Japan.

July 25-28 37th ACM Symposium on Principles of Distributed Computing (PODC'2018), Royal Holloway,
University of London, UK.

76 Conference Calendar

Volume 39, Number 2, June 2018 Ada User Journal

 August 28-31 24th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2018), Hokkaido, Japan. Topics include: real-time operating systems, real-time
scheduling, timing analysis, programming languages and run-time systems, middleware systems, design
and analysis tools, multi-core embedded systems, operating systems and scheduling, embedded software
and compilers, fault tolerance and security, embedded systems and design methods for cyber-physical
systems, applications and case studies of IoT and CPS, cyber-physical co-design, etc.

August 29-31 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2018),
Prague, Czech Republic. Topics include: information technology for software-intensive systems;
conference tracks on DSLs and Model-Based Development (DSLMBD), Software Process and Product
Improvement (SPPI), etc.; tentative special sessions on Cyber-Physical Systems (CPS), Software
Engineering and Technical Debt (SEaTeD), Monitoring Large-Scale Software Systems (MoLS), etc.

August 29-31 12th International Symposium on Theoretical Aspects of Software Engineering (TASE'2018),
Guangzhou, China. Topics include: theoretical aspects of software engineering, such as abstract
interpretation, component-based software engineering, cyber-physical systems, distributed and
concurrent systems, embedded and real-time systems, formal verification and program semantics,
integration of formal methods, language design, model checking and theorem proving, model-driven
engineering, object-oriented systems, program analysis, reverse engineering and software maintenance,
run-time verification and monitoring, software architectures and design, software testing and quality
assurance, software safety, security and reliability, specification and verification, type systems, tools
exploiting theoretical results, etc.

September 03-07 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE'2018),
Montpellier, France. Topics include: foundations, techniques, and tools for automating the analysis,
design, implementation, testing, and maintenance of large software systems; maintenance and evolution;
model-driven development; reverse engineering and re-engineering; specification languages; software
analysis; software architecture and design; software product line engineering; software security and
trust; testing, verification, and validation; etc.

September 04-06 4th Symposium on Dependable Software Engineering: Theories, Tools and Applications
(SETTA'2018), Beijing, China. Topics include: formalisms for modeling, design and implementation;
model checking, theorem proving, and decision procedures; scalable approaches to formal system
analysis; integration of formal methods into software engineering practice; contract-based engineering
of components, systems, and systems of systems; formal and engineering aspects of software evolution
and maintenance; parallel and multicore programming; embedded, real-time, hybrid, and cyber-physical
systems; mixed-critical applications and systems; safety, reliability, robustness, and fault-tolerance;
applications and industrial experience reports; tool integration; etc.

September 05-07 14th International Conference on integrated Formal Methods (iFM'2018), Maynooth, Ireland.
Topics include: hybrid approaches to formal modeling and analysis; i.e., the combination of (formal and
semi-formal) methods for system development, regarding both modeling and analysis, and covering all
aspects from language design through verification and analysis techniques to tools and their integration
into software engineering practice.

September 09-12 Federated Conference on Computer Science and Information Systems (FedCSIS'2018), Poznan,
Poland. Event includes: 3rd International Workshop on Language Technologies and Applications
(LTA), Joint 38th IEEE Software Engineering Workshop and 5th International Workshop on Cyber-
Physical Systems (SEW & IWCPS), etc.

Sep 30 - Oct 05 Embedded Systems Week 2018 (ESWEEK'2018), Torino, Italy. Topics include: all aspects of
embedded systems and software. Includes CASES'2018 (International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems), CODES+ISSS'2018 (International Conference on
Hardware/Software Co-design and System Synthesis), EMSOFT'2018 (International Conference on
Embedded Software).

Sep 30 - Oct 05 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES'2018). Topics include: the latest advances in compilers and
architectures for high-performance, low-power embedded systems; leading edge
research in embedded processor, memory, interconnect, storage architectures and related
compiler techniques targeting performance, power, security, reliability, predictability
issues for both traditional and emerging application domains; innovative papers

Conference Calendar 77

Ada User Journal Volume 39, Number 2, June 2018

 addressing design, synthesis & optimization challenges in heterogeneous, accelerator-
rich architectures.

Sep 30 - Oct 05 ACM SIGBED International Conference on Embedded Software (EMSOFT'2018).
Topics include: the science, engineering, and technology of embedded software
development; research in the design and analysis of software that interacts with physical
processes; results on cyber-physical systems, which compose computation, networking,
and physical dynamics.

 October 10-12 26th International Conference on Real-Time Networks and Systems (RTNS'2018), Poitiers, France.
Topics include: real-time applications design and evaluation (automotive, avionics, space, railways,
telecommunications, process control, multimedia), real-time aspects of emerging smart systems (cyber-
physical systems and emerging applications, ...), real-time system design and analysis (real-time tasks
modeling, task/message scheduling, mixed-criticality systems, Worst-Case Execution Time (WCET)
analysis, ...), software technologies for real-time systems (model-driven engineering, programming
languages, compilers, WCET-aware compilation and parallelization strategies, middleware, Real-time
Operating Systems (RTOS), hypervisors), formal specification and verification, real-time distributed
systems (fault tolerance, task/messages allocation, ...), etc.

October 11-12 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM'2018), Oulu, Finland. Topics include: the strengths and weaknesses of software engineering
technologies and methods from a strong empirical viewpoint, including quantitative, qualitative, and
mixed studies; case studies, action research, and field studies; replication of empirical studies and
families of studies; mining software engineering repositories; empirically-based decision making;
assessing the benefits/costs associated with using certain development technologies; industrial
experience, software project experience, and knowledge management; software technology transfer to
industry; etc. Deadline for submissions: July 1, 2018 (Emerging Results, Vision papers), July 20, 2018
(industrial papers, posters), August 10, 2018 (Journal-First track).

October 15-18 29th IEEE International Symposium on Software Reliability Engineering (ISSRE'2018), Memphis,
Tennessee, USA. Topics include: innovative techniques and tools for assessing, predicting, and
improving the reliability, safety, and security of software products; reliability, availability and safety of
software systems; validation and verification; faults, errors, failures, defects, bugs; software quality and
productivity; software security; dependability, survivability, fault tolerance and resilience of software
systems; systems (hardware + software) reliability engineering; open source software reliability
engineering; supporting tools and automation; industry best practices; virtualization and software
reliability; empirical studies of any of the above topics; software standards; etc. Deadline for
submissions: July 1, 2018 (industry papers, industry abstracts/presentations, tutorials), July 21, 2018
(workshop papers, fast abstracts, doctoral symposium).

October 16-19 15th International Colloquium on Theoretical Aspects of Computing (ICTAC'2018), Stellenbosch,
South Africa. Topics include: semantics of programming languages; theories of concurrency; theories of
distributed computing; models of objects and components; timed, hybrid, embedded and cyber-physical
systems; static analysis; software verification; software testing; model checking and automated theorem
proving; verified software, formalized programming theory; etc.

 November 04-09 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2018), Boston, Massachusetts, USA. Topics include: all aspects of software
construction, at the intersection of programming, languages, and software engineering. Events include:
ACM SIGAda's HILT workshop (High Integrity Language Technology for Cybersecurity in Real-Time
and Safety-Critical Systems). Deadline for submissions: July 1, 2018 (DLS - Dynamic Languages
Symposium), July 6, 2018 (GPCE - Generative Programming: Concepts & Experiences, SLE - Software
Language Engineering), July 20, 2018 (Doctoral Symposium), July 27, 2018 (Student Research
Competition), August 17, 2018 (workshop papers), September 22, 2018 (posters), end of September
2018 (Student Volunteers applications).

Nov 05-06 11th ACM SIGPLAN International Conference on Software Language Engineering
(SLE'2018). Topics include: areas ranging from theoretical and conceptual
contributions, to tools, techniques, and frameworks in the domain of software language
engineering; generic aspects of software languages development rather than aspects of
engineering a specific language; software language design and implementation; software
language validation; software language integration and composition; software language
maintenance (software language reuse, language evolution, language families and

78 Conference Calendar

Volume 39, Number 2, June 2018 Ada User Journal

variability); domain-specific approaches for any aspects of SLE (design,
implementation, validation, maintenance); empirical evaluation and experience reports
of language engineering tools (user studies evaluating usability, performance
benchmarks, industrial applications); etc. Deadline for submissions: July 6, 2018
(papers), August 31, 2018 (artifacts).

November 04-09 12th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2018), Orlando, Florida, USA.
Topics include: architecture and design; components, services, and middleware; debugging;
dependability, safety, and reliability; development tools and environments; distributed, parallel, and
concurrent software; education; embedded and real-time software; empirical software engineering;
formal methods, including languages, methods, and tools; model-driven software engineering; processes
and workflows; program analysis; program comprehension and visualization; refactoring; reverse
engineering; safety-critical systems; scientific computing; security and privacy; software economics and
metrics; software evolution and maintenance; software modularity; software product lines; software
reuse; testing; traceability; etc. Deadline for submissions: July 22, 2018 (JPF workshop), July 27, 2018
(EnSEmble, A-TEST, SWAN, WASPI workshops), August 31, 2018 (NL4SE workshop).

 November 05-06 ACM SIGAda's High Integrity Language Technology International Workshop on Languages and
Tools for Ensuring Cyber-Resilience in Critical Software-Intensive Systems (HILT'2018), Boston,
Massachusetts, USA. Co-located with SPLASH 2018. Organized by ACM SIGAda. Topics include:
language features that can be used to build security and/or safety into software-intensive systems;
extending contract-based programming to specifying security resistance and resilience properties as well
as safety and/or correctness properties; modeling and/or programming language features and analysis
techniques that aid in code analysis and verification and that increase the level of abstraction and
expressiveness; language features that support continuous requirements maturation to support evolving
needs, particularly in cyber-physical systems, while ensuring that security and safety properties are
preserved; etc. Deadline for submissions: July 31, 2018 (papers, extended abstracts).

November 10-13 18th International Conference on Runtime Verification (RV'2018), Limassol, Cyprus. Topics
include: monitoring and analysis of the runtime behaviour of software and hardware systems.
Application areas include cyber-physical systems, safety/mission-critical systems, enterprise and
systems software, autonomous and reactive control systems, health management and diagnosis systems,
and system security and privacy.

November 28-30 19th International Conference on Product-Focused Software Process Improvement
(PROFES'2018), Wolfsburg, Germany. Topics include: experiences, ideas, innovations, as well as
concerns related to professional software development and process improvement driven by product and
service quality needs. Deadline for submissions: August 5, 2018 (short papers, tools, demos, posters).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 December 11-14 39th IEEE Real-Time Systems Symposium (RTSS'2018), Nashville, Tennesse, USA. Topics include:
all aspects of real-time systems, including theory, design, analysis, implementation, evaluation, and
experience. Deadline for submissions: September 19, 2018 (workshop papers).

2019
January 08-11 31st Conference on Software Engineering Education and Training (CSEET'2019), Grand Wailea,

Maui, USA. Topics include: curriculum development; empirical studies; personal or institutional
experience; team development; software assurance, quality, and reliability education; methodological
aspects of software engineering education; global and distributed software development; open source in
education; cooperation between industry and academia; etc.

January 15-18 11th Software Quality Days Conference (SWQD'2019), Vienna, Austria. Topics include:
improvement of software development methods and processes; testing and quality assurance of software
and software-intensive systems; domain specific quality issues such as embedded, medical, automotive
systems; novel trends in software quality; etc.

 April 01-04 International Conference on the Art, Science, and Engineering of Programming
(Programming'2019), Genova, Italy. Topics include: programming practice and experience; general-
purpose programming; distributed systems programming; parallel and multi-core programming; security
programming; interpreters, virtual machines and compilers; modularity and separation of concerns;

Conference Calendar 79

Ada User Journal Volume 39, Number 2, June 2018

model-based development; testing and debugging; program verification; programming education;
programming environments; etc. Deadline for submissions: July 1, 2018 (workshops, deadline 1),
September 1, 2018 (workshops, deadline 2).

April 6-12 22nd European Joint Conferences on Theory and Practice of Software (ETAPS'2019), Prague,
Czech Republic. Events include: ESOP (European Symposium on Programming), FASE (Fundamental
Approaches to Software Engineering), FoSSaCS (Foundations of Software Science and Computation
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the
Construction and Analysis of Systems).

April 08-12 34th ACM Symposium on Applied Computing (SAC'2019), Limassol, Cyprus. Deadline for
submissions: September 10, 2018 (papers), September 20, 2018 (tutorials).

 June 10-14 24th Ada-Europe 24th International Conference on Reliable Software
Technologies (Ada-Europe 2019), Warsaw, Poland. Sponsored by Ada-Europe, in
cooperation (pending) with ACM SIGAda, SIGBED, SIGPLAN, and the Ada Resource
Association (ARA).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Complete Ada Solutions for
Complex Mission-Critical Systems
• Fast, efficient code generation

• Native or embedded systems deployment

• Support for leading real-time operating systems or bare systems

• Full Ada tasking or deterministic real-time execution

Learn more by visiting: ptc.com/developer-tools

Forthcoming Events 81

Ada User Journal Volume 39, Number 2, June 2018

Call for papers and extended abstracts

HILT	2018

Workshop on Languages and Tools for Ensuring Cyber-Resilience in Critical
Software-Intensive Systems

As part of SPLASH 2018, November 5 & 6, 2018, Boston, MA, USA

Sponsored by ACM SIGAda

The High Integrity Language Technology (HILT) 2018 Workshop is focused on the
cyber-resilience needs of critical software systems, where such a system must be trusted
to maintain a continual delivery of services, as well as ensuring safety in its operations.
Such needs have common goals and shared strategies, tools, and techniques, recognizing
the multiple interactions between security and safety.

We encourage papers and extended abstracts relating to:

 Language features that can be used to build security and/or safety into software-
intensive systems;

 Approaches to apply effectively the emerging technologies of AI and Machine
Learning in critical software systems;

 Mechanisms that can be used to understand, certify, and manage systems that are
“data driven,” relying on “soft code,” where control flow and algorithms are
expressed using data rather than “hard code” expressed directly in programming
languages;

 Extending contract-based programming to specifying security resistance and
resilience properties as well as safety and/or correctness properties;

 Strategies to minimize risk when applying complex software requirements to
cyber-physical systems;

 Modeling and/or programming language features and analysis techniques that aid
in code analysis and verification and that increase the level of abstraction and
expressiveness;

 Language features that support continuous requirements maturation to support
evolving needs, particularly in cyber-physical systems, while ensuring that security
and safety properties are preserved.

82 Forthcoming Events

Volume 39, Number 2, June 2018 Ada User Journal

This workshop is designed as a forum for
communities of researchers and practitioners from
academic, industrial, and governmental settings, to
come together, share experiences, and forge
partnerships focused on integrating and deploying
tool and language combinations to address the
challenges of building cyber-resilient software-
intensive systems. The workshop will be a
combination of presentations and panel discussions,
with one or more invited speakers.

Attendees wishing to present at the workshop should
prepare full papers (approx. 6-8 pages), or extended
abstracts (approx. 2-4 pages) for their proposed
presentations, and the workshop program committee
will select presentations and organize them into
sessions. Other interested participants are welcome
to register for the HILT 2018 Workshop as part of
their SPLASH 2018 registration.

July 31: Papers or Extended abstracts due;
Aug 31: Notification of submissions accepted for presentation
Sep 30: Final submissions due
Nov 5&6: Workshop as part of SPLASH 2018

Please submit papers and extended abstracts, by July 31, 2018, by following the link
from: http://sigada.org/conf/hilt2018

Workshop Co-Chairs

 Bill Bail, MITRE
 Tucker Taft, AdaCore, Inc

Organizing Committee

 Dirk Craeynest, ACM SIGAda International Representative, KU Leuven
 Drew Hamilton, Chair, ACM SIGAda, Mississippi State University, CCI
 Clyde Roby, Secretary-Treasurer, ACM SIGAda, Institute for Defense Analyses
 Alok Srivastava, Editor, ACM Ada Letters, Engility Corp.
 Ricky E. Sward, Past Chair, ACM SIGAda, MITRE

URLs

 SPLASH 2018: http://www.splashcon.org
 HILT 2018: http://sigada.org/conf/hilt2018
 ACM SIGAda: http://sigada.org

Conference & Program Chair

Tullio Vardanega
University of Padova, Italy
tullio.vardanega@unipd.it

Educational Tutorial &
Workshop Chair

Dene Brown
SysAda Ltd, UK
dene.brown@sysada.co.uk

Industrial Chair

Maurizio Martignano
Spazio IT, Italy
maurizio.martignano@spazioit.com

Exhibition & Sponsorship Chair

Ahlan Marriott
White Elephant GmbH, Switzerland

software@white‐elephant.ch

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

Local Chair

Maciej Sobczak
GE Aviation – EDC Warsaw, Poland
maciej.sobczak@ge.com

General Information

Ada‐Europe is pleased to announce that its 24th International Conference on Reliable
Software Technologies (Ada‐Europe 2019) will take place in Warsaw, Poland. The
conference schedule at its fullest includes a three‐day technical program and vendor
exhibition from Tuesday to Thursday, and parallel tutorials and workshops on Monday
and Friday.

Schedule

Topics

The conference is a leading international forum for providers, practitioners and
researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and
maintenance of long‐lived, high‐quality software systems for a challenging variety of
application domains. The program will allow ample time for keynotes, Q&A sessions
and discussions, and social events. Participants include practitioners and researchers
from industry, academia and government organizations active in the promotion and
development of reliable software technologies.

The topics of interest for the conference include but are not limited to:

 Design and Implementation of Real‐Time and Embedded Systems,

 Design and Implementation of Mixed‐Criticality Systems,

 Theory and Practice of High‐Integrity Systems,

 Software Architectures for Reliable Systems,

 Methods and Techniques for Quality Software Development and Maintenance,

 Ada Language and Technologies,

 Mainstream and Emerging Applications with Reliability Requirements,

 Experience Reports on Reliable System Development,

 Experiences with Ada.

Refer to the conference website for the full list of topics.

Ada-Europe
24th International Conference on
Reliable Software Technologies

10-14 June 2019, Warsaw, Poland

14 January 2019 Submission of papers, industrial presentation outlines, tutorial
and workshop proposals

1 March 2019 Notification of acceptance to all authors
16 March 2019 Camera‐ready version of papers required
30 April 2019 Industrial presentations, tutorial and workshop material required

Call for Regular Papers

The regular papers submitted to the conference must be original and shall undergo anonymous peer review. The corresponding authors
shall submit their work by 14 January 2019. Such submissions shall be in PDF only and up to 16 LNCS‐style pages in length. The authors
shall use the EasyChair submission service at https://easychair.org/conferences/?conf=adaeurope2019.

The International Conference on Reliable Software Technologies is listed in the principal citation databases, including DBLP, Scopus,
Web of Science, and Google Scholar.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and will be available
at the conference, both online and in print. The authors of accepted regular papers shall prepare camera‐ready submissions in full
conformance with the LNCS style, strictly by 16 March 2019. For format and style guidelines, the authors should refer to
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register at least one author for the conference by that date
will prevent the paper from appearing in the proceedings.

Call for Industrial Presentations

The conference seeks industrial presentations that deliver insightful information value but may not sustain the strictness of the review
process required for regular papers. The authors of industrial presentations shall submit their proposals, of at least 1 page in length, by
14 January 2019, strictly in PDF, using the submission service at https://easychair.org/conferences/?conf=adaeurope2019.

The Industrial Committee will review the submissions anonymously and make recommendations for acceptance. The authors of
accepted contributions shall be requested to submit a 2‐page abstract by 30 April 2019, for inclusion in the conference booklet, and be
invited to deliver a 20‐minute talk at the conference. These authors will also be required to expand their contributions into articles for
publication in the Ada User Journal (http://www.ada‐europe.org/auj/), as part of the proceedings of the Industrial Program of the
Conference. For any further information, please contact the Industrial Chair directly.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Educational Tutorials

The conference is seeking tutorials in the form of educational seminars including hands‐on or practical demonstrations. Proposed
tutorials can be from any part of the reliable software domain, they may be purely academic or from an industrial base making use of
tools used in current software development environments. We are also interested in contemporary software topics, such as IoT and
artificial intelligence and their application to reliability and safety.

Tutorial proposals shall include a title, an abstract, a description of the topic, an outline of the presentation, the proposed duration
(half day or full day), and the intended level of the tutorial (introductory, intermediate, or advanced). All proposals should be submitted
by e‐mail to the Educational Tutorial Chair.

The authors of accepted full‐day tutorials will receive a complimentary conference registration. For half‐day tutorials, this benefit is
halved. The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half‐ or full‐day events,
to be scheduled at either end of the conference week. Workshop proposals should be submitted to the Workshop Chair. The workshop
organizer shall also commit to producing the proceedings of the event, for publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the core days of the main conference. Vendors and providers of software products and services
should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and time.

Special Registration Fees

Contributors to the conference and all students will enjoy reduced registration fees.

Venue

The conference will take place in Warsaw, the capital of Poland, at the facilities of the Engineering Design Center (EDC), a partnership

between General Electric (GE) Poland and the Institute of Aviation, one of the largest engineering institutions in Europe.

86

Volume 39, Number 2, June 2018 Ada User Journal

Proceedings of the 19th International Real-Time Ada Workshop

18-20 April 2018
Benicàssim, Spain

Contents

Overall Summary

Workshop Session Summaries

- L. M. Pinho and T. Vardanega, “Session Summary: Parallel Programming”
- J. A. de la Puente and A. Burns, “Session Summary: Multiprocessor Locking”
- M. Aldea-Rivas and K. N. Gregertsen, “Session Summary: Profiles”

- J. Real and B. Moore, “Session Summary: Time Triggered Scheduling in Ravenscar”
- A. Wellings and J. Real, “Session Summary: Deadline Floor Protocol”
- T. Vardanega and A. Wellings, “Session Summary: Language Issues”

- K. N. Gregertsen and L. M. Pinho, “Session Summary: Clock Issues”

Papers

- L. M. Pinho, E. Quiñones, “Position Paper: combining the tasklet model with OpenMP”

- B. Moore, “Synchronous Signals: An Abstraction for Interleaving Sequential and Parallel Code”
- J. Garrido, J. Zamorano, J. A. de la Puente, “On protocols for accessing protected objects on

multiprocessors”
- M. Aldea-Rivas, H. Pérez-Tijero, “Proposal for a new Ada profile for small microcontrollers”

- P. Carletto, T. Vardanega. Ravenscar-EDF, “Further Results from Improved Comparative
Benchmarking”

- J. Real, S. Sáez, A. Crespo, “Ravenscar Support for Time-Triggered Scheduling”
- K. Gregertsen, “Position paper: Clock support in Ada”

Program Committee

Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns, Michael González Harbour, Kristoffer
Gregertsen, José Javier Gutiérrez, Stephen Michell, Brad Moore (Program Chair), Luís Miguel Pinho,
Juan Antonio de la Puente, Jorge Real (Workshop Chair), Pat Rogers, José F. Ruiz, Sergio Sáez, Joyce
Tokar, Tullio Vardanega, Andy Wellings and Rod White.

Workshop Participants
Mario Aldea Rivas, Spain
Alan Burns, UK
Alfons Crespo, Spain
Jorge Garrido, Spain
Michael González Harbour, Spain
Francisco Gómez Molinero, Spain
Brad Moore, Canada
Kristoffer Nyborg Gregertsen, Norway
Luis Miguel Pinho, Portugal

Eduardo Quiñones, BSC, Spain
Juan Antonio de la Puente, Spain
Jorge Real, Spain
Sara Royuela, Spain
Sergio Sáez, Spain
Tullio Vardanega, Italy
Andy Wellings, UK
Juan Zamorano, Spain

Sponsors

87

Summary of the 19th International Real-Time Ada
Workshop

Brad Moore, Program Chair
General Dynamics Mission Systems-Canada, Canada; email: brad.moore@gd-ms.ca

Jorge Real, Workshop Chair
Universitat Politècnica de València, Spain; email: jorge@disca.upv.es

Abstract
Since the late Eighties, the International Real-Time Ada Work-
shop series has provided a forum for identifying issues with
real-time system support in Ada and for exploring possible ap-
proaches and solutions, and has attracted participation from
key members of research, user, and implementor communities
worldwide. Recent International Real-Time Ada workshops
have contributed to the Ada 2005 and Ada 2012 standards,
especially with respect to tasking features, the real-time and
high integrity systems annexes, and the standardisation of the
Ravenscar Tasking Profile.

The 19th International Real-Time Ada Workshop was held
in Benicàssim, near Valencia, Spain. The main focus of the
workshop was to build upon what is considered a key strength
and a core feature of Ada, which is tasking. Ada has always
been a premier language for tasking and real-time support.
The proposals and discussions of the workshop were all about
extending these capabilities to fit better with a wider variety of
target system architectures. In one sense, the notion of tasking
is expanded to fit larger scale systems including multicore and
heterogeneous systems with the addition of new parallelism
features. At the same time, the notion of tasking is minimal-
ized and restricted to fit better on highly resource-constrained
targets where previously multi-tasking was not considered a
good fit. Another related topic was about improving determin-
ism for Ada tasks that have more critical needs for timing and
accuracy, in terms of time triggered task scheduling and with
regard to clocks and synchronisation. For all these features,
consideration was given for use with the Ravenscar Profile,
which is a flexible yet minimalist runtime amenable to analy-
sis and schedulability. Finally, the discussion also covered a
new variant of the EDF task dispatching policy that uses the
Deadline Floor Protocol for controlling access to protected
objects, which is conceptually a simpler approach.

The workshop had great success in refining existing proposals
and in identifying important new ones. The delegates thor-
oughly enjoyed their time in the scenic setting, and are very
grateful to the organizers for all their efforts.

1 Introduction
The 19th International Real Time Ada Workshop (IRTAW)
was held in Benicàssim, Spain on April 18-20, 2018. The

following are the main set of topics were discussed at the
workshop:

• Parallel Programming issues;

• Multiprocessor Locking Issues;

• Language Profiles;

• Time Triggered Scheduling Issues;

• Deadline Floor Protocol Issues;

• Language Issues; and

• Clock Issues

The workshop was attended by participants from Canada,
Italy, Norway, Portugal, Spain, and the United Kingdom.
This paper provides a brief summary of the discussions and
decisions taken at the workshop. For further details on the
topics and discussions, the reader is referred to the workshop
proceedings, also published in this issue.

In this report, Sections 2 to 8 provide the high-level session
summaries of the workshop. Section 9 provides a list of AI’s
to be produced by the workshop. The plan for next meeting is
considered in section 10. Finally, section 11 concludes with
the closing of IRTAW-19.

2 Session: Parallel Programming
This session provided an overview of the new parallelism
features being proposed for Ada 202x, and then considered
how the OpenMP tasking model could be combined with
the Ada tasklet model, as well as provided the motivation
for doing so. Miguel Pinho started the workshop off by first
presenting the new parallelism features being proposed for
Ada 202x. An important point to mention is that because
potentially-blocking operations during parallelism are not
allowed in the current proposal, many complex problematic
issues were avoided. A concern was raised about the proposed
Associative aspect, and the suggestion was made to drop the
aspect from the proposal, since the compiler is generally
unable to determine the associativity of a function. Another
suggestion was to disallow the exception keyword directly
in a parallel block statement, due to confusion about where
the handler was being applied. It was also discussed whether
fine tuning controls of the parallelism should be added to

Ada User Jour na l Vo lume 39, Number 2, June 2018

88 Summar y of the 19th In ter nat iona l Real -T ime Ada Workshop

Figure 1: IRTAW-19 Participants: From Left to Right: Francisco Gómez-Molinero, Sergio Sáez, Alan Burns, Andy Wellings, Jorge
Real, Michael González Harbour, Jorge Garrido, Mario Aldea-Rivas, Tullio Vardanega, Brad Moore, Kristoffer Gregertsen, Luís
Miguel Pinho, Juan Zamorano, Alfons Crespo, Juan Antonio de la Puente, missing from photo: Sara Royuela, Eduardo Quiñones

the language. The consensus was the eventually such tuning
would be needed, but it is too premature to try to define for
Ada 202x.

Sara Royuela, and Eduardo Quiñones proceeded with a pre-
sentation based on the position paper of Pinho, Royuela,
and Quiñones entitled: "Combining the tasklet model with
OpenMP" [?]. The motivation for integrating the OpenMP
tasking model with Ada’s tasklet model, is that OpenMP
provides a broader set of capabilities than the standard is cur-
rently proposed to provide. In particular, OpenMP supports
unstructured parallelism which is useful for certain problems.
Furthermore, tools could be provided that automatically gen-
erate dependencies for parallelism, and there is a lot of ex-
perience behind the OpenMP standard that would appeal to
those familiar with the standard.

Brad Moore then presented the barrier-like abstraction he
calls a Synchronous Signal, described in his position paper
entitled: "Synchronous Signals: An Abstraction for Interleav-
ing Sequential and Parallel Code" [1], which is useful when
transitioning between parallel and sequential sections of code.
The synchronous signal abstraction works like a synchronous
barrier, except that it involves less synchronisation, which can
improve performance.

Kristoffer Gregertsen then made an industrial presentation
about his experience working on various projects involving
parallelism. The main point of his presentation is that seri-
ous parallelism is more commonly applied to heterogeneous
processor environments, rather than multicore environments.
It was mentioned that OpenMP now provides support in this
area, which is another reason to consider integrating Ada with
OpenMP.

3 Session: Multiprocessor Locking
Jorge Garrido provided a presentation on multiprocessor lock-
ing proposals currently being considered, as described in the

position paper of Garrido, Zamorano, and A. de la Puente
entitled "On protocols for accessing protected objects on
multiprocessors" [2]. In particular MrsP and MSRP were
compared. While it was felt by the group that it would be pre-
mature to look at standardising these protocols, it was noted
that most multiprocessor locking protocols, including these
two, specify that locks should be obtained in FIFO order, but
Ada currently does not specify any ordering for obtaining
access to protected objects. It was felt that this capability was
needed and was important enough to request inclusion in the
Ada 202x standard. This resulted in AI12-0276-1 (Admission
Policy Defined for Acquiring a Protected Object Resource)
being created and submitted to the ARG for consideration.

4 Session: Profiles

Mario Aldea presented a proposal to support Ada tasking
on devices with very limited memory, based on the position
paper of Aldea-Rivas and Pérez-Tijero entitled "Proposal for a
new Ada profile for small microcontrollers" [3]. The problem
to be overcome is that the memory needed for stacks in a set
of tasks collectively consumes too much memory resources.
The main idea behind the presentation was to invoke sufficient
restrictions so that all tasks could share the same stack space.
For example, tasks are not allowed to have local state. A
challenge remains in how to specify restrictions in a manner
that the compiler can verify if they are being honoured. Part
of the discussion was about whether Ada’s Non-Preemptive
scheduling can support this idea, or if it can be modified to
better support this. After reflecting on this, during the wrap
up session at the end of the workshop, it was decided that for
Non-Preemptive scheduling, Ada currently does not define
sufficient preemption points. To provide better determinism,
the preemption points should be defined in terms of initiating
potentially blocking operations rather than initiating blocking
operations. An AI was created to deal with this problem, and

Volume 39, Number 2, June 2018 Ada User Jour na l

B. Moore, J. Real 89

subsequently submitted to the ARG for consideration for Ada
202x.

Tullio Vardanega then made a presentation discussing ongo-
ing work associated with the position paper of Carletto and
Vardanega entitled "Ravenscar-EDF: Further Results from
Improved Comparative Benchmarking" [4] to review and pro-
vide better comparison data between EDF scheduling versus
Fixed Priority scheduling. The experimentation attempts to
achieve maximum fairness by involving the use of a Raven-
scar Fixed Priority scheduler for the Leon processor, against
a modified version of this runtime which replaces the Fixed
Priority components of this runtime with EDF components.
Early results confirm some of the held beliefs in comparing
EDF-FPS, but other findings contrast with earlier results.

5 Session: Time Triggered Scheduling
Jorge Real presented the proposal of Real, Sáez, and Crespo
entitled "Ravenscar Support for Time-Triggered Scheduling"
[5] which describes an implementation for Time-Triggered
scheduling for use with the Ravenscar Profile. The main idea
of the proposal is to allow a programmer to create a time
triggered cyclic plan of slots of various types and lengths of
time where each slot is associated with a task or allows other
priority based schedulers to execute priority based tasks. The
tasks of the TT scheduler need to execute at top priority in
the system. The proposal is flexible to handle many different
types of plans. Questions remain about whether this should
eventually be standardized, or instead treated as a framework
utility that could be applied to a partition.

Another outcome of this discussion is that it was mentioned
that the source code behind this presentation is available on
git-hub. It was suggested that contributions such as this should
be available in a common place, or organized in a package
hierarchy along with contributions from other people, such
as Brad Moore’s Paraffin source, or Kristoffer Gregertsen’s
clock and timer related libraries. It was mutually agreed that
a peer-reviewed repository under package XAda would be
good way to tie these together and bring the community to a
common place, as well as encourage people in the community
to contribute their own ideas.

6 Session: Deadline Floor Protocol
Alan Burns presented a proposal for refining the integration
of the Deadline Floor Protocol into Ada. The Deadline Floor
Protocol offers the key benefits of the SRP protocol but is con-
ceptually simpler. The work is of importance also because the
associated AI, (AI12-0230-1) is one of the AI’s selected for
inclusion in the Ada 202x standard, provided that the details
can be worked out in time. Alan has since progressed and
updated the AI and submitted to the ARG for consideration.

7 Session: Ada Issues for Ada 202x
Tullio Vardanega presented the list of AI’s being considered
for inclusion in Ada 202x, that are of interest to the real-time
community. It was mentioned that the AIs related to paral-
lelism are some of the higher priority items being considered
for standardisation, but in addition, three other AI’s were
mentioned to be of interest:

• AI12-0139-1 Thread Safe language-defined units

• AI12-0230-1 Deadline Floor Protocol

• AI12-0234-1 Compare and Swap for Atomic Objects

Brad Moore then went on to describe some possible directions
to consider for AI12-0234. After presenting, it was agreed
that a library of intrinsic calls should be provided that can be
mapped to hardware instructions for operations such as com-
pare and swap and atomic increment. In addition, the group
unanimously agreed that pragma CPU should be specifiable
for a protected object, which allows an implementation to
provide a simpler lock-free implementation for a protected
object if all tasks that use the protected object are assigned to
the same CPU.

8 Session: Clock Issues
Kristoffer Gregertsen presented issues related to clocks and
timers in Ada, as described in his position paper entitled
"Clock support in Ada" [6]. Kristoffer noted that Ada appears
to be falling behind other languages with regard to capabil-
ities in this area. Other languages uses an object oriented
approach, which Kristoffers feels would also be beneficial
for Ada. Various issues were raised, including the need for
better clock synchronisation, and availability of wall clock
support for Ravenscar applications. It was also suggested
that this could be another case for contributing to the XAda
package repository that was endorsed by the group in the
Time-Triggered Scheduling session.

9 Real-Time AIs to be considered for in-
clusion in Ada 202x

The IRTAW 19 workshop did have many good discussions
about various real-time issues, which resulted in the need to
create new AI’s or progress existing ones so that they may be
considered for inclusion in the Ada 202x standard. The list of
AI’s processed by the workshop are:

• AI12-0230-1 Deadline Floor Protocol

• AI12-0234-1 Compare and Swap for atomic objects

• AI12-0276-1 Admission Policy Defined for Acquiring a
Protected Object Resource

• AI12-0279-1 Nonpreemptive Dispatching Needs more
Dispatching Points

• AI12-028x-1 Need to Specify Atomic aspect on Generic
Formal types

• AI12-028y-1 Allow CPU aspect to be specified on Pro-
tected Object Declarations

The last two AIs were originally considered to be part of AI12-
0234-1, but the ARG asked these to be split into separate AIs
to better separate the issues. They have not yet been assigned
official AI numbers.

Alan Burns was assigned the Deadline Floor Protocol to work
on. Brad Moore was assigned AI12-0234-1, AI12-0276-1,
AI12-028x-1, and AI12-028y-1, and Tullio Vardanega was
assigned AI12-0179-1.

Ada User Jour na l Vo lume 39, Number 2, June 2018

90 Summar y of the 19th In ter nat iona l Real -T ime Ada Workshop

10 Conclusions and Next IRTAW
Deadlines were set for finalization of session reports, produc-
tion of final versions of the position papers, and writing of the
AIs to be sent to ARG. There was general agreement about the
need of future editions of IRTAW. The next edition, IRTAW
20 will be organized by Jorge Real returning to Benicàssim,
Spain on April 20, in 2020. The group noted that it would be
somehow appropriate to have the 20th IRTAW in 2020. Tullio
Vardanega will head the role of Program Committee Chair.

11 Closing
There being no other pending issues, Brad Moore closed
the session and the workshop. The workshop thanked the
presence of first-time participants. All thanked Jorge Real for
the splendid local arrangement in the scenic locale.

References
[1] L. M. Pinho, E. Quiñones (2018), Position Paper: com-

bining the tasklet model with OpenMP, This Issue.

[2] B. Moore (2018), Synchronous Signals: An Abstraction
for Interleaving Sequential and Parallel Code, This Issue.

[3] J. Garrido, J. Zamorano, J. A. de la Puente (2018), On pro-
tocols for accessing protected objects on multiprocessors,
This Issue.

[4] M. Aldea-Rivas, H. Pérez-Tijero (2018), . Proposal for a
new Ada profile for small microcontrollers, This Issue.

[5] P. Carletto, T. Vardanega (2018), Ravenscar-EDF: Fur-
ther Results from Improved Comparative Benchmarking,
This Issue.

[6] J. Real, S. Sáez, A. Crespo (2018), Ravenscar Support
for Time-Triggered Scheduling, This Issue.

[7] K. Gregertsen (2018), Position paper: Clock support in
Ada, This Issue.

Volume 39, Number 2, June 2018 Ada User Jour na l

91

Session Summary: Parallel Programming

Luis Miguel Pinho (Session Chair)
CISTER/ISEP, Portugal; email: lmp@isep.ipp.pt

Tullio Vardanega, (Rapporteur)
Università di Padova, Italy; email: tullio.vardanega@math.unipd.it

1 Introduction

The session centered on the discussion of three topics, each
brought forward by a corresponding submission, backed by
distinct participants in the Workshop:

1. Support for parallelism based on OpenMP, championed
by Sara Royuela, Eduardo Quiñones, and Luis Miguel
Pinho;

2. Synchronous signals, presented by Brad Moore;

3. Heterogeneous platforms, brought forward by Kristoffer
Nyborg Gregertsen.

Before discussing the individual topics, Miguel and Brad
provided a summary of the status quo for the model of paral-
lelism that emanated from past editions of this Workshop and
it is being considered by the Ada 202x language amendment
process via the AIs listed in Table 1.

The general model that underpins those AIs is that the appli-
cation code presents potential opportunities for parallelism
(POPs), the compiler generates executable code for exploit-
ing them, and the runtime schedules their execution. This
model requires refining the notion of task, when it includes
a parallel construct, to represent multiple logical threads of
control that can proceed in parallel. Each such thread of con-
trol within a task is termed an executor, and the execution
that it performs between synchronization points is termed
a tasklet. When a task distributes its execution to a set of
executors, it cannot proceed with its own execution until all
the corresponding tasklets have completed. Those tasklets
may synchronize by making protected operations, but cannot
call blocking operations. The new Global (cf. AI12-0079-1)
and Nonblocking (cf. AI12-0064-2) aspects may be used to
facilitate the detection of such calls at compile time.

At the previous IRTAW this conceptual model was examined
in the regard of the interaction of parallelism with tasking,
determining the following semantics:

• Changing task attributes should be deferred until outside
of the region of parallel execution;

• If parallel tasklets attempt to perform multiple changes
on the same task attribute, one of them is selected arbi-
trarily to take effect;

• If multiple distinct operations are deferred during a par-
allel execution (such as, for example, a task attribute
change and an exception), they should be applied as
close as possible to what prescribed for them in sequen-
tial Ada;

• Whereas a per-CPU execution-time accounting would be
desirable within parallel regions, the Workshop initially
proposed a simpler model that only provides a per-task
counter, which is updated at the end of the parallel re-
gion;

• Set_CPU and Get_CPU calls should be provided to
specify CPUs where the tasklets of a task should execute.

2 Supporting Ada’s parallelism with
OpenMP

After recapping the current situation with the Ada 2020x AIs
related with parallel programming, attention shifted to the
first topic of discussion in the session agenda, i.e., the viability
of supporting Ada’s parallelism with OpenMP.

OpenMP is a widely used in the HPC domain and it is now
also entering the embedded domain. The OpenMP solution
has three parts: annotations (pragmas) applied to the user code
to specify requirements for parallel execution; a compiler pass
that acts on those annotations generating calls to the OpenMP
runtime library; the runtime that manages parallel execution.

Guided in the discussion by Sara and Eduardo, the Work-
shop acknowledged that OpenMP’s tasking model (with its
unfortunate naming clash), when used in the classic fork-join
semantics, maps quite well to Ada’s tasklet model. In addi-
tion to that, however, OpenMP also allows for more flexible
approaches to parallel programming, called "unstructured
parallelism", which address scenarios where the progress of
some execution within a parallel region is dependent on cer-
tain data-driven conditions to be met. OpenMP provides the
pragma "task depend" to this end, to express out/in conditions
for a particular flow of execution: for example, task A out-
puts an ’a’ that task B uses, means that B cannot start before
A completes. An intuition of how OpenMP’s unstructured
parallelism relates to Ada’s strict fork-join model is depicted
in Figure 1.

The Workshop acknowledged that, while very interesting,
OpenMP’s unstructured parallelism falls much outside of
the scope of parallel programming in Ada 202x. With that

Ada User Jour na l Vo lume 39, Number 2, June 2018

92 Sess ion Summar y: Para l le l Programming

Table 1: Ada 202x AIs related with parallel programming

AI12-0119-1 Parallel blocks and loops
AI12-0242-1 Reduce/Parallel_Reduce attributes
AI12-0251-1 Explicit chunk index for parallel loops dependent on AI12-0119-1
AI12-0251-2 Manual chunking operations dependent on AI12-0119-1 and AI12-0266-1
AI12-0262-1 Map-reduce attributes dependent on AI12-0242-1 and AI12-0212-1
AI12-0266-1 Parallel container iterators dependent on AI12-0119-1
AI12-0267-1 Data race and blocking prevention dependent on AI12-0064-2, AI12-0079-1, and AI12-0119-1

notion in mind, the discussion moved on to the issue of
how OpenMP’s runtime could be delegated Ada’s tasklet
semantics, while staying under control of the Ada runtime
for scheduling. In particular, the Workshop discussed what
should happen when an Ada task executing a parallel region
within the OpenMP runtime would be preempted. The prob-
lem here is that, as OpenMP’s threads of control have no
notion of priority, as do OpenMP’s tasks, the Ada binding
should propagate priorities down to the underlying Operat-
ing System threads by means of (scarcely attractive) ad-hoc
extensions to the OpenMP runtime. Alternative mapping so-
lutions were explored, but none was found to be convincing,
especially when interaction with POs and task attributes were
to be contemplated.

The conclusion of this very interesting discussion was that
more work is needed to understand, from an OpenMP per-
spective, how to mix concurrency and parallelism. The
IRTAW group should seek the opportunity to discuss with
the OpenMP community about this matter and strive to inject
real-time concerns into it. There was consensus that this could
be an interesting avenue to explore in the future.

3 Synchronous signals for parallel-
sequential-parallel patterns of execution

Brad summarised the essence of his proposal on this point.
In analogy with current Ada’s Synchronous_Barriers li-
brary package added to the Real-Time Systems annex in
2012, Brad’s idea was to provide a low-cost mechanism,
named Synchronous_Signals, to allow sequential process-
ing, within a concurrent unit, to interleave with parallel pro-
cessing. One type of call to a Synchronous_Signals object
would manage the transition from parallel to sequential code,
and another call would manage the converse. In a region with

Figure 1: Ada’s strict fork-join model vs. OpenMP’s un-
structured parallelism (picture taken from joint work by Sara,
Miguel and Eduardo, presented at DATE 2018).

N threads of control, one designated caller of the former API
would wait until all other N − 1 had made the same call, and
then be able to proceed alone sequentially. On its call to the
latter API, all of the N threads of control would resume par-
allel execution. The intent of this mechanism is to minimize
the amount of synchronization in a parallel application and
make better use of the available CPUs.

The Workshop concurred that the "parallel-sequential-
parallel" sequence of execution is a common pattern in paral-
lelism, which justifies looking at this problem. On the merit of
Brad’s proposal, the sentiment of the Workshop was twofold.
On the one hand, it was felt that the naming of the mech-
anism was not appropriate, as the notion of signal is much
overloaded. On the other hand, as the intended application se-
mantics can be implemented with POs, it was felt that a faster
runtime implementation would be an insufficient argument
to justify a new language object, which instead would if HW
support existed for the intended semantics.

However, the opportunity of investigating support for this
feature via libraries (à-la Paraffin) was deemed useful and
interesting because it allows user exploration of possible uses
of the feature, while avoiding the need to define application-
level syntax for it and solve all problems of interaction of it
with tasklets. To this end, the Workshop recommended that
Brad’s Paraffin library should be updated with this and the
other recent features, be uploaded to a public repository, and
referenced from an Ada-Europe’s page for the benefit of the
general public.

4 Ada and heterogeneous processor archi-
tectures

The session concluded with Kristoffer reporting on his re-
cent work on heterogeneous processor architectures, and his
reflection on the role that Ada could have in them.

The first observation was that massive SMP architectures are
not common outside of HPC. Much more frequent, instead,
are heterogeneous architectures, where OpenCL, OpenACC
or CUDA are the dominant software platforms. To argue this
point Kristoffer presented a robotic use-case application that
an ESA-funded project currently is developing. The gist of
the argument was that it would be nice, in that systems con-
text, that an Ada application would be able to command and
control accelerators. The value added of it would be the better
safety and reliability associated with the quality of the lan-
guage. This integration might be achieved by a binding library,
which would wrap an accelerator kernel, suitably determined

Volume 39, Number 2, June 2018 Ada User Jour na l

L. M. Pinho, T. Vardanega 93

by the corresponding cross-compiler, send it off to the target
hardware, and eventually receive the result of that compu-
tation. Discussing possible implementation routes for this
ambit, the Workshop concurred that there would be two prin-
cipal options: to reuse existing support from e.g., OpenCL,
but giving up on certification; or else to re-implement it all

with Ada/SPARK. It is evident that the latter would be more
attractive, but also much more costly to achieve.

In wrapping the session up on discussion of the rising im-
portance of heterogeneous architectures, the Workshop noted
that OpenMP’s support for those types of systems increases
the interest of exploring ways to integrate Ada with it.

Ada User Jour na l Vo lume 39, Number 2, June 2018

94

Session Summary: Multiprocessor Locking

Juan A de la Puente (Session Chair)
Politecnica de Madrid (UPM), Spain; email: jpuete@dit.upm.es

Alan Burn (Rapporteur)
University of York, UK; email: alan.burns@york.ac.uk

There was one paper at the Workshop on this topic: On the
Protocols for Accessing Protected Objects on Multiprocessors
by Garrido, Zamorano and de la Puente.

Jorge Garrido gave a short presentation to introduce the issue
of locking on multiprocessor architectures. He introduced
the problems and briefly described a number of potential
solutions. He noted that most of these solutions utilise spin
locking and FIFO ordered queues.

With the current definition of Ada waiting to gain access to
a PO (protected object) is not a blocking operation. On a
single processor with priority ceiling locking any task calling
a PO should find the PO unoccupied unless there is an error
– so the issue of waiting to gain access does not apply. With
multiprocessors this is clearly not the case. The reference
manual (Section 9.5.1 Note 19) states:

"If two tasks both try to start a protected action on a protected
object, and at most one is calling a protected function, then
only one of the tasks can proceed. Although the other task
cannot proceed, it is not considered blocked, and it might be
consuming processing resources while it awaits its turn. There
is no language-defined ordering or queuing presumed for tasks
competing to start a protected action — on a multiprocessor
such tasks might use busy-waiting . . . "

The meeting felt that this wording was no longer appropriate,
there is a need to allow the program to specify a queuing

discipline. Although it was felt premature to attempt to incor-
porate an existing complete protocol such as MrsP or MSRP
into Ada, there was agreement that basic support for the mul-
tiprocessor case was now required.

The meeting agreed unanimously that:

• Ada should allow a queueing discipline to be defined;

• That this discipline should be based on spinning (busy-
waiting); and

• That one allowed approach should be defined in Ada:
FIFO spinning at the protected object’s ceiling priority.

A possible name for this queuing discipline is Admittance_-
Policy; a name for the one defined policy could be FIFO_-
Spinning.

By spinning at the protected object’s (PO’s) ceiling this task
prevents any other task on the same processor from calling
this PO. The FIFO discipline is favoured as it helps to bound
the maximum size of the queue and the time it takes for a
lower priority task to gain access into the PO.

One example of using this facility is in a Ravenscar context.
Here all tasks are statically allocated to processors. If each PO
used by tasks on different processors is given a high ceiling
priority then the blocking time for each task can be computed.

Volume 39, Number 2, June 2018 Ada User Jour na l

95

Session Summary: Profiles

Mario Aldea-Rivas, Session Chair
Universidad de Cantabria, Spain; email: mario.aldea@unican.es

Kristoffer Nyborg Gregertsen, Rapporteur
SINTEF Digital, Norway; email: kristoffer.gregertsen@sintef.no

1 Introduction

The goal of this session was to discuss different profile related
aspects of Ada. Two position papers were discussed in the
session: Tulio Vardanega presented work and performance
testing of EDF for Ravenscar [3], while Mario Aldea-Rivas
presented the work on a profile for very small run-times [1].

2 EDF with the Ravenscar profile

In the “Judgment day paper” of Giorgio Buttazzo, strong
claims are presented about the efficiency of EDF scheduling
compared to FPS [2]. The presented work of Paolo Carletto
and Tulio Vardanega seeks to test these claims by implement-
ing EDF scheduling on a Ravenscar run-time for LEON, and
performing extensive testing to compare the EDF scheduling
scheme with FPS for a large number of task sets.

To be as fair as possible, when comparing the two scheduling
schemes, only the run-time environment is modified while the
application code remains the same. There is no need to set a
deadline explicitly as the run-time gets the deadline as a task
attribute. No major changes were needed to implement EDF
in the Ravenscar run-time environment, as the whole run-time
kernel is at about 1000 statements. EDF was implemented
with a simple queue, without queue insertion optimization.
However, for smaller task sets (i.e. queue lengths) this inser-
tion scheme is also optimal. If the task suspends itself, its
deadline will be adjusted when it is resumed. For interrupt
handling, if the first task on the queue handles an interrupt,
the rest of the queue is frozen until the handler has completed.

The EDF and FPS run-time environments were tested on
open-source version of the LEON emulator. About 5500
different tasks sets with differing numbers of tasks (up to
40) were explored. The system is overloaded at up to 130%
for some of the task sets. In the “judgment day” paper it
was claimed that the number of pre-emptions for EDF will
decrease with an increasing number of tasks. This was not
found by work associated with the position paper, which
instead noted that the number pre-emptions are about the same
as for FPS. It was noted that the other paper implemented EDF
on a fixed priority system, which might have been a factor.
Furthermore it does not provide details on the used tasks set,
so it is not repeatable. The ongoing work associated with the
presented paper does not yet show any obvious benefits of
EDF compared against FPS.

Another issue with EDF is that if the system temporarily goes
over 100% utilization, EDF has cascading loss of deadlines.
EDF performs worse in overload situations, and it is hard to
say which tasks suffers most in overload. The author of the
“judgment day” paper has argued that tasks should be aban-
doned on deadline overrun as in ERIKA. It could however be
an issue to identify overrun situations and know which task
to abort. In a mixed priority system, how can one avoid the
most critical tasks missing their deadlines? Alan Burns, Andy
Wellings and Michael Gonzales-Harbour gave some options
on how to handle this. It could for instance be an option
to change scheduling to FPS in case of overruns. However,
this would require a shadow-queue, which would double the
overhead of queue-handling. Questions were raised on how to
make a ready-queue that eases the switch, and how to identify
the overrun situation. Execution-time monitoring or EDF
with priority levels are also possible. However, Tullio argues
that we need a mapping to priority as an invertible function.

Alan asked if it is mostly the theoretical behaviour, or if the
implementation details contribute much to the performance re-
sults as well. Tullio replies that both the theoretical behaviour
and the implementation contribute. The EDF implementation
spends more execution-time on insertion and removal because
the time type is larger in size than the priority type. Time is
implemented as a record on the LEON, and is more complex
than the short integer used for priorities.

The authors of the presented paper are now abandoning the
LEON run-time environment and are moving to the ARM for
more testing. The workshop participants looks forward to the
results of this work.

3 Profile for small run-times
Mario Aldea-Rivas presented a proposal for a new profile for
small microcontrollers, such as the Arduino Uno that uses the
ATmega328P from Microchip (previously Atmel). This is a
typical small and inexpensive microcontroller with 32 KiB of
program memory and only 2048 Bytes of SRAM. Such small
MCU’s have a large market share, but are mostly dominated
by the C programming language. There are some Ada tool-
chains for the AVR architecture such as AVR-Ada and AVR
GNAT 2012 for Windows hosts. Common for all these are
that they use zero footprint (ZFP) run-time environments
that do not support tasking. There are Ravenscar run-time
environments for small ARM Cortex M microcontrollers, and
also for the Microchip/Atmel AVR32 UC3 microcontroller.

Ada User Jour na l Vo lume 39, Number 2, June 2018

96 Sess ion Summar y: Prof i les

Also there is one for 8-bit AVR Ravenscar implemented by
one of Miguel Pinho’s students.

The problem when porting Ravenscar to small MCU’s is
the stack size. For example, the default stack size for tasks
(4 KiB) is larger than the entire SRAM memory for many
MCU’s. The minimum stack size is in the range of 200B
and 500B in FreeRTOS, and it also allows for stack sharing
for so-called “one-shot” tasks. These are tasks that do not
keep state on the stack between activations, and therefore
need to store all their internal state in global variables. Pre-
emptive stack sharing could need a big stack, depending on
task priorities. Non-preemptive scheduling does not have this
problem. The question is how to define a new profile with
the necessary restrictions to support a shared stack, similar to
how the Ravenscar Profile defines restrictions for a simpler
tasking runtime?

The proposal is to define “one-shot tasks” where:

• Local state is stored in global variables that could be of
any type;

• No other local state is shared between invocations;

• There is a dispatching point on every activation (entry
or delay until);

• Non-preemptive scheduling is applied;

• No suspension between the preemption points; and

• No classical context switches are allowed where registers
are stored on the stack etc.

There is a preliminary implementation of one-shot tasks in
M2OS. Three boards are supported, Arduino Uno, Raspberry
Pi, STM32F. A tool analyses the code (output from GNAT)
and detects violation of the required pattern needed for the
one-shot tasks. The program memory footprint is very low at
about 4 KiB and the stack usage for the example programs is
less than 100 Bytes.

Tullio Vardanega asked if it would not be just as easy to use a
pre-defined task implementation for this, such as a real-time
utility framework. Andy Wellings suggested for that case, one
could allow tasking only in the package implementing this
task with the restrictions needed for one-shot tasks. Michael
Gonzáles Harbour noted that one also needs the ability to
block on entry calls, in addition to the periodic blocking.
Alan Burns reminded the group that profiles are collections of
restrictions for tasking, and that it would not be easy to have
a restriction that enforces the required task pattern. Jorge
Real asked if it would be better to have a library package,
providing access types for the activation object, global data,
and the code to be executed. Juan Zamorano indicated for
that case, one would need to specify the Nonblocking aspect
for the formal parameters associated with the code passed to
the library, as well as possibly the formal types if the library
is a generic. Tullio added that it might be useful if there
were a GUI or tool/library to ease the usage for developers.
Sergio Sáez, who lectures about Arduino at the University
of Valencia, mentioned that there they use state machines
implemented for program logic, which is easier to understand

than tasking. A question was raised about the use of class-
wide types for this abstraction. The concern was whether the
Nonblocking aspect could be proven in that case. It turns out
this is likely not an issue, since the Nonblocking aspect is
inherited for dispatching operations.

A conclusion of the discussion was that the pattern cannot eas-
ily be defined as a set of restrictions, however, the workshop
is supportive of the work. It also needs to be evaluated if it is
better to have a standard package with tasking implementing
the pattern, instead of a set of restrictions possibly associated
with a new profile.

The point was also raised that Ada’s non-preemptive dis-
patching policy would be a good fit for this pattern, but that
there are some issues with the definition of this policy that
would be problematic. Specifically, there is a more general
issue with the wording in the language standard to support
non-preemptive scheduling for one-shot tasks. Section D.2.4
states that:

For this policy, blocking or termination of a task, a
delay_statement , a call to Yield_To_Higher, and a call to
Yield_To_Same_Or_Higher or Yield are the only task dispatch-
ing points (see D.2.1).

The issue, as later stated by Michael González Harbour and
captured in the subsequently produced AI, is that:

In non-preemptive dispatching it is necessary to have
controlled points in the code where preemption is enabled,
as a mechanism to keep the non-preemptive sections short
and reduce blocking time for higher priority tasks. Unlike
the preemptive case, these preemption points need to
be predictable, always under the programmer’s control.
The current wording in the standard mentions "blocking
of a task" as a preemption point. This can happen for
instance when calling a closed entry or suspension object.
However, if the entry or suspension objects are open there
is no preemption point, which introduces uncertainty in
the fact that a preemption point is reached, and therefore
on the blocking time for higher priority tasks.

The solution to this unpredictability is to declare all po-
tentially blocking operations to be preemption points.
In this case all calls to an entry or wait operations on
a suspension point are preemption points regardless of
whether they are open or not. This change would make
non-preemptive dispatching more predictable.

A new AI (AI12-0279-1) was subsequently created by Tullio
Vardanega to address the issue raised by the IRTAW workshop
to look at replacing the meaning of “blocking” to “potentially
blocking”.

References
[1] M. Aldea-Rivas and H. Pérez-Tijero (2018), Proposal for

a new Ada profile for small microcontrollers, This issue.

[2] G. C. Buttazzo (2005), Rate Monotonic vs. EDF: Judg-
ment Day, Real-Time Systems, 29(1):5–26.

[3] P. Carletto and T. Vardanega (2018), Ravenscar-EDF :
Further Results from Improved Comparative Benchmark-
ing, This issue.

Volume 39, Number 2, June 2018 Ada User Jour na l

97

Session Summary: Time Triggered Scheduling in
Ravenscar

Jorge Real (Session Chair)
Universitat Politècnica de València, Spain; email: jorge@disca.upv.es

Brad Moore (Rapporteur)
General Dynamics Mission Systems-Canada, Canada; email: brad.moore@gd-ms.ca

1 Introduction

The goal of this session was to discuss a proposal and imple-
mentation of a TT (Time Triggered) scheduler suitable for use
with the Ravenscar Profile. The proposal extends a previous
model that was intended for use with full-Ada, which was
integrated with a PB (Priority-Based), preemptive scheduler.
Jorge Real presented the proposal, which was based on an
IRTAW paper [?] contributed by three authors, Jorge Real,
Sergio Sáez, and Alfons Crespo, all of whom were present
for the discussion.

2 Time Triggered Scheduling

Jorge first described the main idea behind the proposal. The
idea is to combine a TT scheduling solution for tasks execut-
ing at the highest priority level, and then use a PB scheduler
for the rest of the system. The proposal provides flexibility
in choosing a suitable PB scheduler. For example an EDF
scheduler might be chosen.

The original proposal presented at the previous IRTAW work-
shop showed how such a solution could work in the context
of full Ada. The discussion for this session was focused on
how to apply that strategy to the Ravenscar Profile. The TT
scheduler is associated with an execution plan, which con-
sists of a sequence of non-overlapping time slots or windows
where each window corresponds to a task in the system, and
each time slot can have independent durations. The plan is
a cyclic plan that repeats over and over while the system is
running.

Jorge described 5 different types of time slots that could be
used in a plan:

• Regular — considered to have sufficient duration for TT
actions

• Optional — Similar to Regular, but can be omitted

• Continuation

• Mode Change

• Empty

For a Regular time slot, a processing overrun is treated as an
error (A Program_Error would be raised as an exception by
the scheduler). A task must also be ready to use its allocated
Regular time slot in the plan, otherwise Program_Error would
be raised.

An optional time slot however, is a time slot that may or may
not be used, and it is not an error if the optional time slot is
not taken if a task is not ready to execute when the slot is
started. In this case, the slot is made available for use by tasks
managed by the PB scheduler. An optional slot is useful for
cases such as sporadic tasks or communication tasks when
there is nothing to communicate.

For a Continuation slot, there is no overrun check. A hold/re-
sume mechanism is applied such that if a task overruns a
Continuation slot, it is held until another Continuation slot
or Regular slot occurs in the plan, at which point the task is
resumed. A Regular slot is always used as a terminal slot for
a set of Continuation slots for a given task.

The hold/resume mechanism is not currently implemented in
existing runtimes, so the runtime would need to be modified
to support this capability. It was noted that Ada does define
the package, Ada.Asynchronous_Task_Control, which could
be used for this purpose, but the package was not available
for the target platform of interest. Jorge explained that one
point to note was that only the scheduler would be allowed to
make calls to Hold/Resume. It is important that user tasks not
be given this capability, otherwise it makes it very difficult to
analyse and schedule a plan, since the scheduler cannot know
when a task would decide to resume.

If a task finishes earlier than the time allotted to a time slot,
then the remaining time in the slot is available for tasks run-
ning under the PB scheduler. A question was asked, what
happens if a task finishes before its terminal slot is started?
It was explained that a propagation flag is applied where
the early termination is propagated to the next slot. Multiple
propagations may occur until it reaches the terminal slot. Con-
tinuation slots are useful for breaking up long time triggered
processing in such a manner that is transparent to the system.

An Empty slot is a slot in which no time triggered action
is processed. This is useful for planning gaps in processing
where PB tasks can be guaranteed to execute.

Ada User Jour na l Vo lume 39, Number 2, June 2018

98 Sess ion Summar y: T ime Tr iggered Schedul ing in Ravenscar

A Mode Change slot is also a slot where there is no time
triggered action to be processed. This is useful for performing
actions such as changing the time triggered plan to a new plan.

Issues and Comments
It was mentioned that a hold operation of a Continuation slot
could be a problem if it occurs in the middle of a protected
action. The proposed solution is to have the Ceiling Priority
of the protected object set to Interrupt_Priority’Last, which
implies that protected operations should be very short. The
holding needs to be done at a higher priority than the sched-
uler, and every PO in the time triggered scheduler needs to
have the Ceiling Priority set to Interrupt_Priority’Last. This
is necessary because a Continuation being held in a protected
object is eating into the next time slot.

Michael González Harbour asked if there should be checks for
overruns in this case. He suggested that the Ceiling Priority
should be System_Priority’Last, not Interrupt_Priority’Last.
Jorge explained that the Time Triggered scheduler is running
at Interrupt_Priority, which is why Interrupt_Priority’Last
was chosen.

Alan Burns raised a question about what the effect would be
of a timing event goes off during a Hold. Jorge answered that
in the current implementation, Hold does not check anything,
even if in a protected action, so the simplest way to deal with
this is to have the scheduler run at interrupt priority.

Tullio Vardanega commented that stating protected objects
must be short is difficult to enforce, since "short" is a qualita-
tive term. Tullio then suggests that the advice to keep things
short is generally understood, but then asks if the framework
able to protect against long operations. He further claims that
saying that the run time doesn’t check is not good.

Sergio Sáez responded and said that they would look into this,
but then asks the group about how this could be improved. He
added that the amount stolen from the next slot needs to be
bounded, and as long as that bound is not overrun, that might
be the best that can be done.

Alan Burns commented that he thought a hold should be a
deferred operation, until after a protected action completes.
An overrun is thus a timing_error. The thought was that
this would make the scheduler more robust. A question was
asked on how to make the scheduler treat this as a deferred
operation?. Alan explained that there could be two timer
events. One that says the slot is finished, and another that
says you had better be out by this time. The second timer
event would get canceled if you exit your slot. Alan Burns
explains this is needed for robustness.

It was suggested that a protocol could be devised, such that
before going into a non-interruptable section of code, a check
would be made to see that you have enough time to complete
the code. The protocol would decide to finish early if there
were doubts in there being enough time for a non-interruptable
event.

The discussion returned to the topic of using the Hold and
Continue facilities of Ada.Asynchronous_Task_Control. Ser-
gio commented that the package cannot be used with the

Ravenscar Profile because the profile explicitly states that the
package is not allowed. Tullio Vardanega commented that
there should be things that the scheduler is allowed to do, but
that the application cannot. Ada doesn’t currently have this
notion.

Michael commented that a new policy could be devised that
would allow whatever rules are needed.

Tullio asked, for safety critical systems, can the runtime be
trusted, but not the user? This is a question that cannot be
answered offhand, but deserves more thought and analysis.

Andy Wellings changes the topic towards distinguishing be-
tween masking interrupts. In particular, he was interested in
the case of inhibiting all interrupts except the timer interrupt,
as the problem seems to be more about inhibiting interrupts
than priority control. He adds that some interrupts are non-
maskable, and the model of priorities may be too simplistic
for interrupt handling.

We then resume to Jorge’s slides. Jorge presents various
patterns for time triggered plans which demonstrates that the
model is very flexible and can accommodate a wide variety
of possible plans and situations.

With regard to Continuation propagatation, Michael asks, why
not number the slots with an Id, and then wait for the Id, rather
than propagate continuations until reaching a terminal slot?
Jorge answered that they had considered that, but they chose
the current approach, as they felt it was a better approach
requiring only boolean flags, rather than slot identifiers.

Jorge then presented a task pattern including a non-TT part,
scheduled by the PB scheduler, and an Optional slot in the
TT plan (it could also be Regular). The task normally runs
in competition with other PB tasks, but it has a part that runs
in sync with the plan (e.g., for timely data exchange with the
TT part). This pattern requires this mixed task to run at two
priorities, which in Ravenscar can only be enforced from the
runtime. This pattern effectively uses dynamic priorities in
Ravenscar, but in a restricted manner:

• A task lowers its own priority (by calling
Leave_TT_Level) and raises it again by calling
Wait_For_Activation.

• Priority changes only between TT and base priority lev-
els

• Conceptually, it is like a "ceiling" inherited while a task
runs its TT part.

Michael asks if data can be shared between TT and non-TT
tasks, or if such communication could potentially spoil the
plan. In particular, he was concerned about checking that
there is progress, and whether there it was possible if the
system could get out of sync, and if so, what mechanisms
were there to bring the system back into sync.

There was some discussion about whether this would be a
system issue or an application issue.

Jorge explained that the full Ada version has different mecha-
nisms for these problems, but Ravenscar is a different game.

Volume 39, Number 2, June 2018 Ada User Jour na l

J. Real , B. Moore 99

He noted that the pattern could be changed to re-sync ev-
ery time it executed at the TT level, making this more an
application issue than a system issue.

Tullio thinks it is good that the solution was brought to Raven-
scar. A disadvantage might be a loss of control, but if it is
rare, perhaps it is not so bad.

Another issue raised was the concern that TT scheduling
appears not to be as flexible as other schedulers in that it
requires reserving priority’last, and therefore needs to run
at higher priorities than other schedulers. Andy commented
that nowhere else in Ada do we say things only work at a
certain priority level. For this model, we cannot apply it down
at lower levels. In other schedulers, you can have bands of
scheduling, and you can define where things go. Andy adds,
What happens if I run time slicing at Priority’First? You’ll
probably get Program_Error on first overrun.

Andy suggested, Instead of Round_Robin within priority,
perhaps it should be called TT at top priority. Michaels sug-
gestion was to instead consider it as a policy by itself, which
doesn’t work with the priority bands. Andy said he liked that
idea a lot better.

Alan commented by saying that he didn’t think its a funda-
mental problem. Its unfortunate, but thats life. There is a way
of using time triggered, and it involves reserving a priority
for the scheduling.

Tullio reemphasised that the other dispatching policies were
meant to coexist, but then Jorge noted that non-preemptive
dispatching is another scheduler has similar issues coexisting
with other schedulers.

Tullio ponders whether this is a framework that can be applied
to a partition, or if should it be considered to be a language
element. He suggested that the IRTAW group should reflect
on this question. If it is an application utility, you are free to
use it in any way. If it is a language element, it is a bigger
issue.

Alan then raised a concern about seemingly putting things
into Ravenscar that are not part of Ravenscar, which is another
question that is left for future consideration.

Towards An IRTAW Common Repository

Jorge mentions that the source code for the runtime can be
found in github.

Andy comments that there should be an IRTAW website with
links to projects such as this, Brad’s Paraffin parallelism li-
braries, the clock utilities proposed by Kristoffer Gregertsen,
and other contributions coming from IRTAW or the real time
community. Everyone agrees.

Andy notes that the proposed packages of this presentation
are child packages of Ada, but it is not currently part of the
standard, which would make it more difficult for others to use.
He noted that if the goal is to have others use this, it should
be under a different parent package. Perhaps something like
Ada_Extensions, or XAda. After some discussion, if was felt
that the XAda top-level package name would be the better

choice, for it would be easier to distinguish from the standard
"Ada.*" files, that would start with "a-*.ad?" in GNAT. This
way, extensions would be named "x-*.ad?". The top level
XAda parent package could be simply defined as; package
XAda is pragma Pure; end XAda;

The group reached a consensus that such a naming frame-
work would be good for unifying various contributions from
the open source community. The group further mentioned
that contributions should be peer-reviewed to gain acceptance
before being added to this repository. There should be an offi-
cial web-page on Ada-Europe, or similar, where information
about these extensions are available, for instance hosted on
GitHub.

In Summary

Jorge then summarises his presentation. He admits he is not
fond of relying on Interrupt_Priority in the model, but it did
solve problems. Some other remaining issues and questions
are;

• Reserving priority for Priority’Last for the TT level
might be seen as an issue. However, this is needed
to ensure that PB tasks do not interfere with the plan.
This is inherent and it was noted as such. Having re-
strictions on how to use scheduling policies is natural
and the application has to be prepared for that. Failing
to comply with this restriction would be like failing to
assign task priorities correctly.

• Reserving Interrupt_Priority’Last as the ceiling of POs
used by sliced TT tasks (i.e., those that can be held at
the end of continuation slots) might be seen as an is-
sue. This is not inherent with the proposal, but just a
mechanism to ensure that the scheduler is not going
to hold a sliced task in the middle of a protected ac-
tion. This raised concerns about the difficulty to enforce
"short" protected actions and the effectiveness of using
Interrupt_Priority’Last in the presence non-maskable
interrupts. Jorge later mentioned that there are other
alternatives, such as forbidding the use of POs during a
sliced sequence (this can be checked by the runtime); or
adding empty slots at the end of continuation slots, to
absorb the potential protected overrun; or to look into
implementing a deferred Hold.

• Should delays be forbidden, or checked in TT Tasks?

• Should mode changes be forbidden or checked if they
are in the middle of sliced sequences?

• Should this proposal be proposed for standardization?

• Is there no other way to get the benefits of this proposal?

• Are extensions needed to Ravenscar in order to integrate
TT scheduling?

• Should a new profile instead be invented for this pur-
pose?

• Should a new Task_Dispatching_Policy be created for
this?

Ada User Jour na l Vo lume 39, Number 2, June 2018

100 Sess ion Summar y: T ime Tr iggered Schedul ing in Ravenscar

• Should this be considered a partition framework or a
language element?

• With Ravenscar, can the runtime be trusted or allowed
to make certain calls such as Hold/Resume while not
allowing the application to make such calls?

Overall the group felt that the proposal provides important

capabilities and continued work to improve the solution where
possible would be worthwhile.

References
[1] J. Real, S. Sáez, A. Crespo (2018), Ravenscar Support

for Time-Triggered Scheduling, This Issue.

Volume 39, Number 2, June 2018 Ada User Jour na l

101

Volume 39, Number 2, June 2018 Ada User Journal

Session Summary: Deadline Floor Protocol
Andy Wellings (Session Chair)
University of York, UK; email:andy.wellings@york.ac.uk

Jorge Real (Rapporteur)
Universitat Politècnica de València, Spain; email: jorge@disca.upv.es

1 Introduction

This session tackled the definition of a new variant of the
EDF task dispatching policy. The current EDF Across
Priorities task dispatching policy combines an EDF
scheduler with the Stack Resource Protocol (SRP) [1] for
controlling the access to protected objects. There is a
proposal on the table to replace SRP with the Deadline
Floor Protocol (DFP) [2], hence leading to a new task
dispatching policy combining EDF and DFP. DFP has all
the key properties of SRP, but it is conceptually simpler.
The proposal is supported by the ARG, but there is no
wording yet for an Ada Issue. The purpose of this session
was to agree on the details of an Ada Issue on this topic,
to be submitted for consideration towards Ada 202X.

Alan Burns presented the details of the protocol,
including a description of DFP and aspects to consider
towards embedding the protocol in Ada. Alan also listed
some open issues to receive feedback from the workshop
towards the writing of a related Ada Issue. The following
sections summarise the proposal and reflect the results of
the discussion.

2 Deadline Floor Proposal

Alan first summarised DFP. Under DFP, every protected
object (PO) has a relative deadline equal to the shortest
relative deadline of any task that uses it. This is called the
deadline floor of the PO. The idea behind DFP is that the
absolute deadline of a task (as used for EDF scheduling)
can be temporarily shortened while accessing a PO.

Given a task with absolute deadline d that accesses a
resource with deadline floor F at time t, the absolute
deadline of the task is (potentially) reduced according to
new d ← min(old d, t + F) while holding the PO. The
action of the protocol on a single processor with tasks that
do not self-suspend results in a single blocking per task,
deadlock-free execution, and the protocol works for
nested calls on POs as well.

Whilst a task accesses a PO, its deadline is reduced so that
no newly released tasks can preempt it and then access the
PO. Under a single processor platform, and for tasks that
do not self-suspend and have the correct relationship
between relative and absolute deadline, this property
means that a lock is not strictly required to grant mutual
exclusion in the access to POs. However, due to the
common use of multiprocessors, a lightweight mutex lock
is proposed for DFP.

2.1 Embedding DFP in Ada
Alan then went on with the details of embedding the DFP
into the language. With EDF, a task has:

 a last release time, r, when the task was last made
ready for execution;

 a relative deadline, D;

 and an absolute deadline, d

When a task is released, its absolute deadline is obtained
as d = r + D. And when a task accesses a PO with
deadline floor F it must hold that F ≤ D (or F ≤ d − r).
Alan then distinguished two use cases for the protocol,
with regard to general runtime requirements:

Hard real-time systems Here the program sets only the
relative deadline, D, either statically or dynamically.
Tasks do not self-suspend, except to wait for a new
release. The runtime knows the task release time r
and computes the absolute deadline d whenever the
task is made ready. For this case, on entry to a PO,
the runtime is just required to check that F ≤ D —
otherwise, it would be a floor violation.

Soft real-time systems In this case, the program directly
manipulates the absolute deadline, d. The task can
suspend itself more than once in a single iteration and
may not bother with a fixed notion of relative
deadline, D — but we still need to have a minimum
value for D when computing the floor value for a PO.
For this use case, on entry to a PO, the runtime check
to make is F ≤ d − r, hence the runtime needs to
retain the release time of the task r (or d − r).

Alan then listed the general requirements to embed DFP
in Ada:

 All tasks have a relative deadline (the base deadline)
assigned via an aspect or a routine defined in a library
package.

 Protected objects must have also a relative deadline
(floor) assigned via an aspect.

 Default relative deadline values must be defined for
tasks and protected objects (and their types).

 The rules for EDF scheduling must be extended to
include a new locking policy: Deadline Floor
Locking (or just Floor Locking).

 The rules for EDF scheduling need simplifying to
remove the across priorities feature of the current
definition, since DFP does not need to support the
SRP concept of preemption levels.

102 Session Summary: Deadl ine Floor Protocol

Volume 39, Number 2, June 2018 Ada User Journal

 For completeness (and parity with priority ceilings)
means of modifying the relative deadline at- tribute
of tasks and protected objects should be defined.

 Each PO needs a Deadline Floor attribute that can be
set on the creation of a PO by an aspect.

The Relative Deadline aspect already exists, so it can be
reused to set the deadline floors. Note that this is identical
to the way that the priority aspect is used both for task
priority and PO ceiling priority.

2.2 Run-time rules
All these requirements considered, the rules to enforce
DFP at run time are:

1. Whenever a task is executing outside a protected
action, its active deadline is equal to its base
deadline.

2. When a task executes a protected action its active
deadline will be reduced to (if it is currently greater
than) Now (the current time) plus the deadline floor
of the corresponding protected object. Now is
obtained via use of the real-time clock.

3. When a task completes a protected action its active
deadline returns to the value it had on entry.

4. When a task calls a protected operation, a check is
made that (absolute deadline - last release time) of
the task is not less than the deadline floor of the
object. Program Error is raised if this check fails.

5. When a task is resumed having been suspended on a
protected entry call, its active deadline should be no
greater than Now + F, where Now is the value of the
real-time clock when the task entered the PO, and F
is the deadline floor of the PO.

3 Issues considered

Having defined the major aspects of the protocol, Alan
then introduced other considerations and raised open
issues to be discussed in the AI.

Dynamic deadline floor In the same way that a protected
object can contain code to change its own ceiling
priority, it can have its minimum deadline floor
updated by an assignment to the Relative Deadline
attribute under DFP. A task can also change its
relative deadline. As with ceiling changes under
Ceiling Locking, the change takes effect when the
calling task exits the protected object. This was
supported by the workshop.

Sporadic tasks With sporadic tasks, the deadline depends
on the occurrence of its release event. With clock-
triggered releases, there is the Delay Until And Set
Deadline operation that can be used to delay and set a
new deadline in an atomic operation. But this
approach is not feasible for sporadically released
tasks as the releaser may be unaware of the releasee’s
deadline. It was noted that there is the Suspend Until
True And Set Deadline operation, useful if the
sporadic is released by means of a suspension object,

but the issue is when the sporadic is released from an
entry.

 With EDF, Alan argued, it is probably acceptable to
leave the deadline unchanged by the synchronisation
operation (delay or entry call) and require the
released task itself to modify its deadline, as this code
will be executed with a high priority as the current
active deadline will be very short (if not in the past).
However, this approach may take extra context
switches. If the sporadic is released from a PO entry,
changing the task’s deadline in the entry body works.

 But in the hard real-time use case, the reliable
approach is to let the runtime automatically calculate
the deadlines of sporadic tasks, depending on their
release time and relative deadline. The workshop
consensus was for a configuration aspect to have the
absolute deadline automatically adjusted by the
runtime upon calls to delay, delay until, suspension
objects or entry calls.

Checking for DFP violations Setting a wrong (too large)
floor on a PO can be caught at run time by a check on
entry to the PO, pretty much in the way it is done
under Ceiling Locking in FIFO Within Priorities. But
with EDF and DFP this check requires the last release
time of a task to be maintained by the runtime. This is
the last time the state of the tasks changed from
suspended to runnable.

Last release time The issue here was whether the
workshop supported the idea of providing a routine so
that a task could obtain its last release time. This
would be useful to let the program tasks make
decisions about their own timing. The idea was well
received as a function call to the runtime.

 Combination of Floor Locking and Ceiling Locking
Both policies could be used at the same time and
hence the existing rules for Ceiling Locking should
be slightly modified. Perhaps the policy should be
named Ceiling And Floor Locking, or say that Floor
it would come implicitly with Ceiling. This aspect
was left for Alan to reflect in the AI.

Name of EDF policy Since the concept of preemption
levels needs not be supported under DFP, the
EDF/DFP dispatching policy should be named EDF
Within Priorities (not across).

Deadline inheritance It was agreed that deadlines should
be inherited anywhere where priorities are inherited
in the language (such as in a rendezvous).

References
[1] T. P. Baker (1991), Stack-based scheduling of

realtime processes, Real Time Systems, 3(1).

[2] A. Burns, M. Gutiérrez, M. Aldea, and Michael
González-Harbour (2015), A Deadline-Floor
Inheritance Protocol for EDF Scheduled Embedded
Real-Time Systems with Resource Sharing, IEEE
Transactions on Computers, 64(5):1241–1253.

103

Session Summary: Language Issues

Tullio Vardanega (Session Chair)
Università di Padova, Italy; email: tullio.vardanega@math.unipd.it

Andy Wellings (Rapporteur)
University of York, UK; email: andy.wellings@york.ac.uk

1 Introduction
The goal of this session was to discuss the Ada 202x proposed
changes and focus on those that have not been addressed
elsewhere in the Workshop. Tullio Vardanega first gave an
overview of the Ada 202x language revision process, which,
in ISO speak, is termed an amendment. This introduction was
followed by a presentation by Brad Moore on the background
and motivation for Lock-Free Programming.

2 Ada 202x
Tullio gave an overview of the current status of the Ada 202x
amendment proposal. The update to the language is being
undertaken under the auspices of ISO/IEC JTC1/SC 22/WG 9
(WG 9 in the sequel). Within WG 9, the Ada Rapporteur
Group (ARG) is instituted, which handles comments on the
Ada standard (and related standards, such as ASIS) from the
general public.

WG 9 instructions to the ARG on the Ada 202x amendment
have resulted in Ada Issues (AIs) focusing on:

• Support for parallelism — along the lines proposed by
the previous IRTAWs and discussed elsewhere in these
proceedings,

• Improved support for contracts — not discussed by the
Workshop other than to note that there currently is no
direct contract support for real-time or concurrency,

• Improved support for containers — not discussed by the
Workshop, and

• Improved support for Unicode and refinements on pre-
defined libraries — not discussed by the Workshop.

As part of the process, however, several other AIs have
emerged on a range of other topics, some of which gener-
ated from the ARG itself. The three such AIs that are most of
interest to the real-time community are:

• AI12-0139-1 — Thread-safe language-defined units,
which add variants of the standard libraries that are
thread-safe. This addresses the problem that concur-
rency/parallelism in application software is becoming
the normal case, not a specialised one. However, the
Ada standard libraries are not required to be thread-safe.
Members of the Workshop were pleased to see that this
issue was being addressed.

• AI12-0230-1 — Deadline floor protocol, which was gen-
erated by the previous IRTAW, see the session summary
on the Deadline Floor Protocol in these proceedings.

• AI12-0234-1 — Compare-and-swap for atomic objects,
which provides general support for lock-free structures
(see Section 3).

The details of the AIs can be found at http:
//www.ada-auth.org/ai-files/grab_bag/
2020-Amendments.html. The process is well advanced
and WG 9’s aim is to agree the scope of the language
amendment in June this year (2018). Hence, Tullio stressed
that there is no time left for new significant issues to be
raised, but small important issues might still be taken on
board.

At the time of this workshop, the AIs being considered are at
various levels of maturity, which the ARG editor had repre-
sented at the cited URL, using the following colour code:

• Black — if ARG approved,

• Green — if wording is proposed (but still may need final
approval),

• Orange — if a consensus solution has been described,

• Red – otherwise.

The current status of the AIs of particular interest to the
workshop is summarised in Table 1. Note that, although
some of these are classified as RED, they were all considered
important issues and their respective champions within the
ARG were aware of the need to progress the AIs rapidly to at
least the Orange status, if they are to make the June cutoff.

Table 1: AIs Status

AI12-0119-1 Parallel blocks and loops Green
AI12-0242-1 Reduce/Parallel_Reduce attributes Green
AI12-0251-1 Explicit chunk index for parallel loops Red
AI12-0251-2 Manual chunking operations Red
AI12-0262-1 Map-reduce attributes Red
AI12-0266-1 Parallel container iterators Green
AI12-0267-1 Data race and blocking prevention Red
AI12-0139-1 Thread-safe language-defined units Orange
AI12-0230-1 Deadline floor protocol Red
AI12-0234-1 Compare-and-swap for atomic objects Red

Ada User Jour na l Vo lume 39, Number 2, June 2018

104 Sess ion Summar y: Language Issues

3 Lock-Free Programming
Brad indicated that current Ada was lacking in the area of
low-level synchronisation primitives such as those needed to
support lock-free algorithms, which are important in parallel
programming. He presented three approaches by which lock-
free programming could be supported by Ada 202x.

• Provide a Lock_Free aspect that can be applied to pro-
tected objects — a version of this is already implemented
by AdaCore.

• Provide an interface to atomic primitives similar to the
gcc API for C and C++ — this is an existing API and
perhaps more general than needed by Ada.

• For Ravenscar, allow the CPU aspect to be applied to
protected objects, to indicate that all users of that PO
are on the same core, and therefore could do away with
locks because of the priority-ceiling protocol being in
force locally — this is a scheduling-based solution which
obviously cannot be used to support communication
between tasks on different processors.

The workshop considered each of these in term.

Lock-Free Protected Actions
The workshop distinguished between two approaches for
achieving lock-free protected actions. Both required certain
restrictions to be placed on the Ada application code. In the
first approach, the goal was to only support those restrictions
that would facilitate an implementation using transactional
memory technology or a data replication approach. This ap-
proach was unanimously rejected by the Workshop because it
complicated timing analysis and memory usage analysis.

The second approach required severe restrictions so that each
protected action could be mapped to a single atomic machine

operation. Again this was unanimously rejected by the Work-
shop because it was felt that the approach was too limited.

An interface to the atomic primitives provided by
the gcc API

The Workshop briefly discussed the fact that there was a wide
range of “lock-free” semantics (wait-free, loop-free etc), and
that lock-free approaches tended to focus on lock-free data
structures (queue, lists, etc). Therefore, there was unanimous
agreement that lock-free algorithms were best supported by
providing direct access to the primitive atomic operations. It
was also felt that this solution made the code more visible and
the corresponding timing properties more apparent.

A CPU aspect for Protected Objects

Although originally proposed for the Ravenscar profile, the
Workshop unanimously supported a new aspect specification,
valid for all applications, to indicate to the compiler that a
particular PO would only be accessed from tasks resident
on a single CPU. Since this constraint cannot be asserted
at compile time, a run-time check would be required for it
during execution.

This issue also led to a general discussion on whether it should
be possible to indicate that a PO would only be accessed from
a single dispatching domain. This possibility was unani-
mously rejected by the Workshop because it was felt it didn’t
provide any more guarantees that the current approach. Also
it was noted that, in the session on multiprocessors, the Work-
shop had decided that all queuing for admissions into a PO
should be FIFO so as to facilitate timing analysis.

Brad agreed to progress the associated AI (AI12-0234-1) to
reflect the Workshop’s view on this topic.

Volume 39, Number 2, June 2018 Ada User Jour na l

 105

Ada User Journal Volume 39, Number 2, June 2018

Session Summary: Clock Issues
Kristoffer Nyborg Gregertsen (Session Chair)
SINTEF Digital, Trondheim, Norway; email: kristoffer.gregertsen@sintef.no

Luis Miguel Pinho (Rapporteur)
CISTER/ISEP, Portual; email: lmp@isep.ipp.pt

1 Introduction

The session was based on a position paper by Kristoffer
Nyborg Gregertsen [1], on clock support in Ada.
Kristoffer started by providing a brief overview of time
and clocks, presenting issues such as resolution, precision,
accuracy and drift. The presentation continued with some
examples, which led to motivate the need to support high-
precision distributed time:

 Time synchronized events in distributed control
systems;

 Sensors with high-precision timestamps for
monitoring physical processes;

 Applications in robotics, process automation, smart
grid applications, etc.

Kristoffer then summarized the support for calendar and
clock in Ada

 The Calendar package, implemented by the system
clock;

 Then real-time clocks, which are required to be
monotonic with documented drift;

 And execution-time clocks and timers, for CPU time,
tasks and interrupts.

At this point, Kristoffer raised the issue that there is no
support to dynamic clock rates or different rates on CPU
cores. Michael González Harbour noted that they had
already faced this problem and had to disable dynamic
clock rates, so a solution for this issue would be
important. Michael also noted that Ada allows
implementations to add additional time types as an
extension that can be used in delay statements.

2 Issues Discussed

Kristoffer presented a few difficulties with clocks and
timers in Ada, for which he would like to propose
changes:

 There is no standard way of acquiring high-precision
timestamps;

 It is not possible to relate the real-time monotonic
clock to UTC/TAI;

 The Calendar package is not synchronized with UTC;

 Calendar is not allowed in Ravenscar systems;

 There are no explicit clock types with common
interface, only clock functions for different time
types;

 Timer are defined as tagged types, but have no
common interface and have subtle differences (e.g.
timing event, timer and group budgets).

Michael noted that implementation can actually
implement a real-time clock that synchronizes to TAI and
a calendar that synchronizes with UTC, although not
forced to. Then, Andy Wellings put forward that
applications can also do this synchronization with a high-
priority task doing time synchronization. Nevertheless,
Kristoffer considers that there should be a standard way,
even to know the discrepancy between clocks.

Concerning Ravenscar, Calendar is not allowed, which
means that in Ravenscar it is not possible to reason on
wall time. Kristoffer provided an example of a smart grid
system, where it could be required to open a switch at a
specific time instance in the day.

There was also some discussion on the fact that there are
no explicit clock types and the interfaces of timers are
different, which makes it difficult to provide a common
hierarchy. Time could be a root type, where other time
types derive (they are private). But the finer details still
need to be looked at (e.g. Calendar Duration and real-time
Time_Span are different types for referring to a time
interval).

Afterwards, the workshop discussed the issue of
execution-time timers for interrupts, a theme recurrent
from previous workshops. The existing possibilities were
reviewed, but no further solutions were considered. There
was also some discussion on execution time and
parallelism: having the possibility to know post-fact the
execution time of parallel computation could be
interesting. Not so much, the ability to fire event handlers
on execution-time overruns.

At this point, Kristoffer proposed to have coherent clock
and timers in Ada, where clocks could be defined as
explicit tagged types with a shared interface. This would
make it easier to understand rather than having subtle
differences, other clocks could be defined with special
properties such as UTC or TAI and tailored clocks for
particular systems or applications. Kristoffer also
compared with the support to clocks and timers in C++11
and 20 and RTSJ 2.0, noting the advances provided in
these languages.

106 Session Summary: Clock Issues

Volume 39, Number 2, June 2018 Ada User Journal

In the discussion it was also raised that it would be
important at least to be able to detect loss of
synchronization with a time source (e.g. NTP or GPS),
either with an interface where this could be queried or the
possibility to raise an exception if the program tried to use
a clock which has lost synchronization.

At the end of the session it was generally agreed that it
would be important for Ada to have more advanced
support for dealing with time, as the premier real-time
language. An argument was made that if Ada lags behind
in important things where other languages are advancing
it will be difficult to attract programmers.

Nevertheless, due to the time-lag in standardization,
having a non-standard peer-reviewed library would be

interesting as an incubator for new ideas before going to
the Ada Rapporteur Group (ARG). It was generally
agreed that the proposed extensions should be provided
first under the “XAda” package hierarchy that the
workshop decided to endorse in the Time Triggered
Scheduling session [2].

References
[1] K. N. Gregertsen (2018), Position paper: Clock

support in Ada, This Issue.

[2] J. Real, B. Moore, Session Summary: Time Triggered
Scheduling in Ravenscar, This Issue.

 107

Ada User Journal Volume 39, Number 2, June 2018

Combining the tasklet model with OpenMP
Luis Miguel Pinho
CISTER/ISEP, Portugal; email:lmp@isep.ipp.pt

Eduardo Quiñones, Sara Royuela
BSC, Spain; email:{eduardo.quinones,sara.royuela}@bsc.es

Abstract

Previous workshops have discussed a proposal to
augment Ada with fine-grained parallelism, based
on the notion of tasklets, a lightweight parallel
entity. Recent works have shown the convergence of
this model with the OpenMP tasking model and have
proposed their coexistence. In this paper we provide
a status of the existent works, and describe how
these models could be combined.

1 The Tasklet Model

The existent proposal to extend Ada with a fine-grained
parallelism model is based on the notion of tasklets [1],
lightweight computation units, which would allow the
specification of potential parallelism, not fully controlled
by the programmer, but under the control of the compiler
and the runtime. In that regard, the tasklet model follows
the same principle of other parallel tasking models used in
the general purpose and high-performance domains, in
which the programmer uses special syntax to indicate
where parallelism opportunities occur in the code, whilst
the compiler and runtime co-operate to provide parallel
execution, when possible.

In the tasklet model, each Ada task is a graph of multiple
tasklets using a fully-strict fork-join model [2] (Figure 1).
Tasklets can be spawned by other tasklets (fork), and need
to synchronize with the spawning tasklet (join). Tasklets
as defined are orthogonal to Ada tasks and execute within
the semantic context of the task from which they have
been spawned, whilst inheriting the properties of the task
such as identification, priority and deadline. The concept

is that the model allows a complete graph of potential
parallel execution to be extracted during the compilation
phase.

Together with the Global aspects proposed in [3], it is
thus possible to manage the mapping of tasklets and data
allocation, as well as prevent unprotected parallel access
to shared variables. Although not a topic addressed in [3],
the work considers that issues such as data allocation and
contention for hardware resources are key challenges for
parallel systems, and therefore compilers and tools must
have more information on the dependencies between the
parallel computations, as well as data, to be able to
generate more efficient programs.

The tasklet execution model (Figure 2) is based on the
notion of abstract executors [4], which carry the actual
execution of Ada tasks in the platform, under different

Figure 2. Tasklet execution model [4]

A

B C

F G

D E

Figure 1. Task DAG example following a fork-join
model [4]

tasklet

Core

Executor Executor

tasklet

tasklettasklet

tasklet

tasklet

tasklettasklet

tasklet

…

…

Core Core

Application Task

Executor Executor

Application

Runtime

Platform

Application Task

108 Combining the Tasklet Model wi th OpenMP

Volume 39, Number 2, June 2018 Ada User Journal

progress guarantees that the compiler and runtime need to
provide to the parallel execution. The model also specifies
that calls by different tasklets of the same task into the
same protected object are treated as different calls
resulting in distinct protected actions, enabling to
synchronize tasklets with protected operations [4].

The tasklet model is being currently considered for
standardization, with a set of Ada Issues (AI) being
discussed within the Ada Rapporteur Group (ARG). The
tasklet model itself, as well as the Ada constructs for
parallel execution, are specified in AI12-0119-1 [5]. A
relevant difference to the model proposed in [4] is that
tasklets are not allowed to perform potentially blocking
operations.

2 Combining the OpenMP Tasking
Model and the Tasklet Model

Recently, a work [6] has analysed the similarities of the
tasklet model with the OpenMP tasking model [7]. In this
work, the term task in OpenMP is not related to Ada tasks
but to tasklets, as OpenMP tasks are lightweight parts of
the code that can be executed in parallel by worker
threads. The tasking model appears in OpenMP 3.0 from
the need of efficiently and easily implementing certain
types of parallelism: unbounded loops, recursion,
unstructured parallelism, etc., which clearly complement
the structured parallelism approach of the tasklet model.

The OpenMP tasking model follows the same principle of
the tasklet model, where the compiler and the runtime
system are the ones responsible for generating and
executing the OpenMP tasks, based on specific OpenMP
constraints (e.g. control-flow or data-flow dependencies)
and thread availability. As shown in [8], the forms of
parallelism defined by OpenMP are compatible with those
proposed for Ada tasklets. Furthermore, the relaxed fork-
join model defined in OpenMP, in front of the strict
model defined for Ada tasklets, allows for a more flexible
execution, as spawn and distribution operations are not
done at the same point of the execution (Figure 3). That
is, in Ada, the same parallel statement, i.e., parallel do and
parallel loop, is in charge of spawning and distributing the
computation among the executors (Figure 3a). OpenMP,

instead, defines the parallel construct to spawn work, and
several constructs (e.g., for, task, taskloop) to distribute
this work among threads (Figure 3b shows how two
parallel loops can run in parallel with each other).

Interestingly, the work in [8] allowed verifying that the
execution model and the memory model of both OpenMP
and Ada tasklets are compatible, hence enabling the
OpenMP runtime to be used to implement the Ada tasklet
model, as well as to introduce additional functionalities,
in particular for unstructured fine-grained parallelism
(with fine-grained synchronization mechanisms such as
task dependences) and heterogeneity (with the target
construct for offloading synchronous and asynchronous
tasks). Furthermore, [8] proves that the use of OpenMP
functionalities not provided in the tasklet model allow
enhancing the performance possibilities of non-
embarrassingly parallel applications.

More recently this work has been extended [9] to show
that compiler techniques can identify race conditions that
can potentially appear in Ada programs parallelized with
both OpenMP and/or Ada tasks. Moreover, this works can
be used for checking the correctness of the OpenMP
directives regarding dependence clauses and data-sharing
attributes. Overall, this work enables to ensure safety in
the presence of parallel computation.

To sum up, it has been proven that it is possible to
provide Ada with two separate, but compatible, models:

 The tasklet model, to be used for homogenous regular
parallelism, and that is included in the language core,
as a key mechanism for parallelism.

 OpenMP, as an external model to the language,
which can be used both as a runtime to support the
tasklet model, as well as a complementary parallel
programming model, providing more complex and
flexible parallelism, and the support for
heterogeneity.

For the latter, the integration of OpenMP and Ada would
not be done in the Ada standard, but preferably as an
additional language in the OpenMP specification.

 (a) (b)

Figure 3. Tasklet (a) and OpenMP(b) forms of parallelism [8]

parallel

single
taskgroup

taskloop
taskloop

sp
aw

n

barrier

d
is
tr
ib
u
te

jo
in

parallel
loop

end loop

end loop

parallel
loop

sp
aw

n
 &

d
is
tr
ib
u
te

jo
in

sp
aw

n
 &

d
is
tr
ib
u
te

jo
in

L. M. Pinho, E. Quiñones, S. Royuela 109

Ada User Journal Volume 39, Number 2, June 2018

Nevertheless, the integration of the Ada runtime with the
OpenMP library requires understanding and controlling
the interaction between Ada tasks and OpenMP threads,
which raises several challenges [5]:

 Scheduling decisions. For instance, when an Ada task
executing parallel code within the OpenMP runtime
is preempted, the parallel computation should be also
preempted, but OpenMP threads do not have the
concept of priority (this concept is attributed to the
tasks, in OpenMP). A mechanism needs to be
provided that allows for communication between the
two worlds.

 Protected objects access. An Ada tasklet, being
executed by the OpenMP runtime, can access
Protected Objects (POs), which requires the OpenMP
library to be aware of the use of POs.

 Access to task attributes. Calls to Ada Task attributes
need to use the context of the Ada Task, but can be
made from within OpenMP threads.

Another aspect analyzed in [8] is the possibility of
blocking and preempting Ada tasklets and hence OpenMP
tasks. That work shows how OpenMP enables to mimic
the use of blocking operations within tasklets by means of
introducing task scheduling points (moments at which a
thread can stop executing a specific task and start
executing a different one). Nevertheless, the current
proposal for the Ada standard [5] does not allow the use
of blocking operations within parallel blocks (thus
disabling preemption), so this is no longer an issue.

It is worth mentioning that there are ongoing discussions
within the OpenMP community regarding the use of
OpenMP in safety critical environments [10], and in
particular the tasking model, which could be a good
application domain for this integration.

Acknowledgements

This work was supported by National Funds through FCT
(Portuguese Foundation for Science and Technology),
within the CISTER Research Unit (CEC/04234), the
European Union’s Horizon 2020 research and innovation
programme under the grant agreement No 780622, and
the Spanish Ministry of Science and Innovation under
contract TIN2015-65316-P.

References
[1] S. Michell, B. Moore, L. M. Pinho (2013), Tasklettes

– a Fine Grained Parallelism for Ada on Multicores,
International Conference on Reliable Software

Technologies – Ada-Europe 2013, LNCS 7896,
Springer.

[2] L. M. Pinho, B. Moore, S. Michell (2014),
Parallelism in Ada: status and prospects,
International Conference on Reliable Software
Technologies – Ada-Europe 2014, LNCS 8454,
Springer.

[3] S. T. Taft, B. Moore, L. M. Pinho, S. Michell (2014),
Safe Parallel Programming in Ada with Language
Extensions, Proceedings of the 2014 ACM SIGAda
annual conference on High integrity language
technology (HILT '14). ACM, New York.

[4] L. M. Pinho, B. Moore, S. Michell, S. T. Taft (2015),
An Execution Model for Fine-Grained Parallelism in
Ada, Proceedings of the 20th Ada-Europe
International Conference on Reliable Software
Technologies, Madrid Spain. http://dx.doi.org/
10.1007/978-3-319-19584-1_13.

[5] AI12-0119-1/08, Parallel operations, http://www.ada-
auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0119-1.txt,
last accessed April 2018

[6] S. Royuela, C. Martorell, X, E. Quiñones, L. M.
Pinho (2017), OpenMP tasking model for Ada: safety
and correctness, 22nd International Conference on
Reliable Software Technologies (Ada-Europe 2017).
12 to 16, Jun, 2017, pp 184-200. Vienna, Austria.
DOI: 10.1007/978-3-319-60588-3_12.

[7] OpenMP Architecture Review Board (2018),
OpenMP Application Program Interface, Version
4.5, November 2015, available at
http://www.openmp.org/mp-documents/
openmp-4.5.pdf, last accessed January 2018.

[8] S. Royuela, L. M. Pinho, E. Quinones (2018),
Converging Safety and High-performance Domains:
Integrating OpenMP into Ada, In the Design,
Automation, and Test in Europe conference (DATE).
Dresden (Germany), March 19-23.

[9] S. Royuela, X. Martorell, E. Quiñones, L. M. Pinho
(2018), Safe Parallelism: Compiler Analysis
Techniques for Ada and OpenMP, 23rd International
Conference on Reliable Software Technologies (Ada-
Europe 2018),Lisbon, Portugal.

[10] S. Royuela, A. Duran, M. A. Serrano, E. Quiñones,
X. Martorell (2017), A functional safety OpenMP for
critical real-time embedded systems, In the 13th
International Workshop on OpenMP (IWOMP), New
York (USA).

110

Volume 39, Number 2, June 2018 Ada User Journal

Synchronous Signals: An Abstraction for
Interleaving Sequential and Parallel Code
Brad Moore
General Dynamics, Canada; email:brad.moore@gdcanada.com

Abstract
In Ada 2012, the language expanded its support for
concurrency with the addition of the Synchronous
Barriers library package to the Real-Time Systems
annex[1]. This package provides a mechanism to
synchronize a group of tasks after the number of
blocked tasks reaches a specified count value. One
use for this feature is to interleave sequential
processing with concurrent or parallel processing.
For this usage, two synchronous barrier objects can
be utilized where one barrier manages the transition
from parallel to sequential code, and the other
barrier manages the transition back from sequential
to parallel code. In general, performance can be
improved by minimizing the amount of
synchronization in an application. The more that
threads of execution can proceed independently
without interference with other threads, the more
likely that the available CPUs can focus on
completing the independent tasks rather than
spending time synchronizing with the other threads.
A Synchronous Signal is a synchronization primitive
that provides a similar abstraction as a Synchronous
Barrier, except it can reduce the amount of
synchronization needed by a factor of two. In
addition, only one object is needed, to manage both
transitions instead of two. In this paper, the
abstraction is explored and an interface to use the
abstraction is presented. Two forms of the
abstraction are considered; a blocking form and a
non-blocking form, and the performance
measurements are reported and compared against
Synchronous Barriers usage. Finally, these
examples are also compared and considered for use
in a Ravenscar environment.

1 Introduction

There exist certain algorithms that involve parallel or
concurrent processing, but where sequential processing is
also needed during certain points of the processing. That
is, a single thread of execution is needed perhaps to
provide some summarization or preparation for the next
round of concurrency.

In this scenario, typically synchronization is needed to
ensure that the sequential processing does not proceed
until the preceding concurrent processing has completed.
Similarly, the concurrency should not be restarted until
the sequential processing is complete.

Ada 2012 provides a standard library package,
Ada.Synchronous_Barriers, that can be used to provide
the needed synchronization. This can be accomplished by
declaring two barrier objects, one that manages the
transition from concurrent to sequential processing, and
the other that manages the transition from sequential back
to concurrent processing.

For example, consider a basic weather prediction
simulation system where the current time is advanced in
small increments, and the state for that time is then
computed.

procedure Weather_Prediction is
 ...
 Barr1, Barr2 : Synchronous_Barrier
 (Release_Threshold =>
 Number_Of_Weather_Stations);

 task type Weather_Station;

 task body Weather_Station is
 Notified : Boolean;
 begin
 Simulation_Loop : loop
 Update_Local_Weather;
 -- Computationally expensive done in parallel

 -- Transition to sequential
 Ada.Synchronous_Barriers.Wait_For_Release
 (The_Barrier => Barr1, Notified => Notified);
 if Notified then
 Current_Time := Current_Time +
 Simulation_Time_Increment;
 Generate_Weather_Map (Current_Time);

 if Current_Time >= End_Time then
 Done := True;
 end if;
 end if;

 -- Transition back to parallel processing
 Ada.Synchronous_Barriers.Wait_For_Release
 (The_Barrier => Barr2, Notified => Notified);
 exit Simulation_Loop when Done;

 end loop Simulation_Loop;
 end Weather_Station;
begin -- Weather_Prediction
 declare

B. Moore 111

Ada User Journal Volume 39, Number 2, June 2018

 Weather_Stations :
 array (1 .. Number_Of_Weather_Stations) of
 Weather_Station;
 begin
 null;
 end;
 ...
end Weather_Prediction;

In this example, we see that there are N * 2 task
synchronizations in each iteration of the
Simulation_Loop, since all N tasks must synchronize
before entering the sequential processing and again after
leaving the sequential processing.

It is desirable to reduce the number of synchronizations if
possible to make this work.

This paper proposes a Synchronous_Signals abstraction
that can reduce the number of synchronizations to N,
thereby reducing the synchronization count by 50%. In
addition only one synchronization object is needed to
manage both transitions, instead of two.

The paper describes a few algorithms where this pattern
can be applied to improve performance on multicore
architecture, then evaluates the performance against the
existing package Ada.Synchronized_Barriers. It then
considers whether non-blocking forms can further
improve performance, and finally assesses whether the
construct could be applied to Ravenscar compliant
applications.

An open source reference implementation of these
interfaces can be found in Paraffin[8], a suite of generics
adapted to the Ada 2012 standard. Note that “Signal” may
not be the most appropriate name for this abstraction, as it
can apply to a broader category of synchronization
utilities, such as transient signals [3] in which a signaller
can signal any number of waiting signalees.

2 Synchronous Signals Interface

A Synchronous_Signal object is similar to a
Synchronous_Barrier in that its purpose is to
synchronously release a group of tasks after the number
of blocked tasks reaches a specified count value, except
that the release occurs after sequential processing has
been applied instead of before.

Unlike Synchronous_Barriers, only a single
Synchronous_Signals object is needed to manage two
transitions, where the first transition is from parallel to
sequential execution, and the second transition is from
sequential back to parallel execution. With
Synchronous_Barriers, two objects are needed, one for
each transition.

The package providing this interface is as follows;

package Synchronous_Signals is

 subtype Synchronous_Task_Count is Natural;

 type Synchronous_Signal

 (Task_Count : Signal_Limit) is limited private;

 procedure Send_And_Wait_For_Reset
 (The_Signal : in out Synchronous_Signal;
 Id : Worker_Id);

 procedure Wait_For_Release
 (The_Signal : in out Synchronous_Signal);

 procedure Reset
 (The_Signal : in out Synchronous_Signal);

private
 ...
end Synchronous_Signals;

The Task_Count discriminant corresponds to the
Release_Threshold discriminant of the
Synchronous_Barriers package. It identifies the number
of tasks that are interacting with the Synchronous_Signal
object.

Each task associated with the Synchronous_Signal object
is expected to be assigned a unique index number in the
range of 1 .. Task_Count. All tasks with an index number
less than Task_Count are expected to be the “signallers”,
and the task with unique index value equal to Task_Count
is expected to be the “signalee”. When transitioning from
parallel execution to sequential execution, the “signalee”
is expected to call Wait_For_Release, which blocks until
all the “signallers” have each issued the call to
Send_And_Wait_For_Reset. The “Signallee” is then
responsible for performing any sequential processing that
needs to be completed, then signals the “signallers” by
calling Reset, which releases the “Signallers” to resume
parallel execution, and since Reset is not a blocking call,
the “Signalee” also continues parallel execution with the
other tasks without blocking or acquiring a lock.

The act of signalling other tasks is a lightweight operation
that does not involve synchronisation on the part of the
task sending the signal. Sending a signal essentially
involves just setting a Boolean flag associated with the
signal sender that can be read by the other tasks.

On the first transition from parallel to sequential, only one
task, the “signalee”, blocks while waiting for all the
“signalers” to report in. On the second transition from
sequential to parallel, Task_Count – 1 tasks block as all
the “signallers” block waiting for the “signalee” to call
Reset.

For both transitions, the total number of synchronizations
is N (Task_Count), whereas for Synchronous_Barriers
there are 2N (Release_Threshold * 2) synchronizations
since all tasks need to synchronize on both transition
points.

3 Applications of Use

The Synchronous_Signals abstraction is useful in
situations typically where there a parallel loop requires
sequential processing inside the loop, or when there is an

112 Synchronous Signals: An Abstract ion for Inter leaving Sequential and Paral le l Code

Volume 39, Number 2, June 2018 Ada User Journal

outer loop that cannot be executed in parallel, but contains
an inner nested loop that needs to be executed in parallel.

This second case is a bit more complex, as it typically
involves enclosing the loops with a parallel loop, and
using synchronous signals to transition between
sequential and parallel processing, instead of making the
innermost loop the parallel loop.

The reason for doing this is because there is overhead
associated with starting up the parallelism, and for the
parallelism to be worthwhile, the processing of the loop
needs to be significantly more time consuming than the
amount of processing associated with the startup
overhead. By having the parallel loop nested inside a
sequential loop, the parallelism overhead is multiplied by
the number of iterations of the sequential loop. By
enclosing two loops with a parallel loop, this reduces the
number of occurrences of parallelism overhead to just
one, while using synchronous signals to transition
between sequential and parallel processing inside the
inner loops is generally lighter weight than the startup
parallelism overhead.

The Weather simulation example above is one such
example of this situation. A sequential version of that
application might have started with an outer sequential
loop that updates the current time, then calls an inner loop
to update the current weather at all weather stations based
on the current map, and the time increment into the future.
By rearranging the source so that the forking of parallel
processing occurs outside the outer loop, and the
sequential processing for the next iteration occurs at a
lower level, the overhead of starting up the workers for all
the weather stations only occurs once.

To see how the previous example looks after replacing the
use of Synchronous_Barriers with Synchronous_Signals,
we see;

procedure Weather_Prediction is
 ...
 Signal : Synchronous_Signals.Synchronous_Signal
 (Task_Count => Number_Of_Weather_Stations);

 task type Weather_Station (Worker_Index :
 Worker_Id := Worker_Id'First);

 task body Weather_Station is
 begin
 Simulation_Loop : loop
 Update_Local_Weather;
 -- Computationally expensive done in parallel

 if Worker_Index < Number_Of_Weather_Stations
then

Synchronous_Signals.Send_And_Wait_For_Reset
 (The_Signal => Signal,
 Id => Worker_Index);
 else
 -- Sequential Section

 Parallel.Synchronous_Signals.
 Wait_For_Release (Signal);
 Current_Time := Current_Time +
 Simulation_Time_Increment;
 Generate_Weather_Map (Current_Time);

 if Current_Time >= End_Time then
 Done := True;
 end if;

 Synchronous_Signals.Reset (Signal);
 end if;
 exit Simulation_Loop when Done;

 end loop Simulation_Loop;
 end Weather_Station;
begin -- Weather_Prediction
 declare
 Weather_Stations :
 array (1 .. Number_Of_Weather_Stations)
 of Weather_Station;
 begin
 null;
 end;
 ...
end Weather_Prediction;

This pattern is likely fairly common for simulation work.
Another example is the n-body simulations in physics and
astronomy where particle locations are updated based on
physical forces such as gravity.

The outer loop for such simulations involves stepping the
current time into the future using small time increments.
This typically cannot be a parallel loop, since the state for
the next point in time for all the particles depends on the
state from the previous time increment. The process of
updating the state of all the particles however that needs
to happen for each time increment can be parallelized
since the new location of the particle is based entirely on
the state of the particles from the previous time increment.

Another example of this pattern is applying parallelism to
matrix solving using Gaussian Elimination. In that
algorithm, the outer loop involves iterating through the
columns of the matrix looking for so called “pivots” but
that loop must be a sequential loop since one cannot
proceed to the next column until the pivot has been
determined and the row operations applied to progress
towards row-echelon form. Similarly, the use of
Synchronous Signals can be applied so that the outer loop
is divided into row chunks, and the iteration through
columns happens as an internal loop during sequential
processing phase of the Signal.

Yet another example for use is prefix scan, or cumulative
sum of an array of values. However, there are many ways
that parallelism could be applied to solve that problem,
some of which are perhaps simpler to understand and do
not involve the use of barriers or signals, so that it is only
mentioned here in passing.

B. Moore 113

Ada User Journal Volume 39, Number 2, June 2018

4 Performance Measurement

It is important to provide measurements that validate the
assertions that using less synchronization via
Synchronous Signals should result in better performance
than using Synchronous Barriers.

4.1 Matrix Solving using Gaussian
Elimination

For this purpose, we will examine the times to solve
matrices using Gaussian Elimination, as well as Nbody
simulation, where the only differences in approach is the
implementation of thread synchronization. Firstly,
consider the matrix solving problem. We show the time
taken to execute the algorithm using sequential
processing, then we show the time using a blocking
Signals implementation, followed by a blocking Barriers
application, and then followed using the GNAT
implementation of Synchronous_Barriers. Finally we
show the times using a spinlock Barriers implementation
followed with a spinlock Signals implementation, where
the synchronization involves a busy wait instead of task
suspension.

************* Parallel Framework Test *************
 Physical Processors= 4
 Workers = 0
 Effective_Workers = 4

(- Matrix Tests -)

Sequential Gauss Jordan
wall time= 0.839479000 seconds, N= 1000,
processors=1, maxerr:= 1.26004E-04

Work Sharing Signals Gauss Jordan
wall time= 0.455542000 seconds, N= 1000,
processors= 4, workers= 4, maxerr:= 1.35404E-03

Work Sharing Barriers Gauss Jordan
wall time= 0.431885000 seconds, N= 1000,
processors= 4, workers= 4, maxerr:= 2.14815E-04

Work Sharing Ada Barriers Gauss Jordan
wall time= 0.395343000 seconds, N= 1000,
processors= 4, workers= 4, maxerr:= 7.20087E-04

Spinlock Barriers Work Sharing Gauss Jordan
wall time= 0.344413000 seconds, N= 1000,
processors= 4, workers= 4, maxerr:= 1.11427E-04

Spinlock Signals Work Sharing Gauss Jordan
wall time= 0.337744000 seconds, N= 1000,
processors= 4, workers= 4, maxerr:= 4.19378E-04

This shows a typical execution. After numerous
repetitions of execution, the Blocking Synchronous
signals implementation was slightly behind the Blocking
Synchronous_Barriers implementation more often than
not. Both implementations use a protected object to
manage the synchronization. The GNAT

Synchronous_Signals implementation was consistently
better than both of the blocking implementations,
however both spinlock implementations were consistently
better than the GNAT implementation. The
Spinlock_Signals implementation consistently had the
best performance.

This suggests that for this problem at least, the most
significant performance gains are based on avoiding
protected operations entirely, but also that there appears
to be a more modest performance gain through the use of
the Synchronous_Signals over the Synchronous_Barriers,
but only if protected operations are avoided.

4.2 Discrete N-Body Event Simulation

For this problem, a parallel implementation of Nbody
simulation involving 20 particles projecting their
locations in three dimensional space forward in time for
100_000 iterations. The following execution times were
collected, dividing the work evenly between 4 worker
tasks.

 The first attempt tried applying 16 worker tasks to 4 CPU
cores. This took extremely long for the spinlock
implementations. For example, while the blocking
implementations were executing around the 40 seconds
mark, the spinlock signal implementation had to be
dropped from 100_000 iterations to 2_000, and even then
the execution time was 62.57 seconds.

It was then realized that the problem was due to having 16
workers, but only 4 cores. Having more workers than
cores means that there are multiple workers on the same
core, and when a worker completes its task, its busy wait
is using CPU that would be better served by the remaining
workers who are doing real work. Reducing the number
of workers to match the number of cores gave a
remarkable speedup. With 100_000 iterations, the
execution time is 5.08 seconds.

Sequential (1 core): 18.37 seconds
Ada.Synchronous_Barriers: 8.16 seconds
Paraffin.Synchronous_Barriers: 9.39 seconds
Paraffin.Synchronous_Blocking_Signals: 9.22 seconds
Paraffin.Synchronous_Spinlock_Barriers: 4.88 seconds
Paraffin.Synchronous_Spinlock_Signals: 5.08 seconds.

Here the results are mostly comparable to the matrix
results. Using a spinlock implementation provided
significantly better results than the blocking
implementations. The use of barriers vs signal was not
much of a distinguishing factor, however. The GNAT
implementation of Synchronous_Barriers appears to be
marginally better than the blocking protected object
implementations but had significantly higher execution
times than the spinlock versions. It might be worth
considering if it would be worthwhile to add additional
synchronization mechanisms to the standard, or to at least
provide some configuration pragmas or aspects to tune the
synchronizations for optimal performance.

114 Synchronous Signals: An Abstract ion for Inter leaving Sequential and Paral le l Code

Volume 39, Number 2, June 2018 Ada User Journal

5 Ravenscar Consideration

The Ravenscar profile in Ada applies a set of tasking
restrictions to the Ada runtime to provide a simpler
tasking model[10] that better facilitates analysis for
properties such as schedulability. Parallelism libraries can
be written for the Ravenscar runtime, and
implementations do exist, such as Paraffin. One of the
restrictions of the Ravenscar Profile is that there not
allowed to be any dependence or usage of the package
Ada.Synchronous_Barriers[2]. For the testing above, I
used the Paraffin implementation for the
Synchronous_Barrier package, so in theory one could use
such a package to get around the Ravenscar restriction.
However, that being said, other Ravenscar restrictions
prevented the use of the Paraffin blocking
Synchronous_Signals and Synchronout_Barriers libraries
with Ravenscar because they utilize protected objects that
are not declared at library level. However, the Ravenscar
profile does not restrict the use of other forms of
synchronization such as the use of atomic or volatile
variables. The spinlock versions of the barrier and signal
libraries thus can be applied to Ravenscar applications,
while remaining compliant with the profile. Furthermore,
a spinlock approach might be desired in Ravenscar
anyway, if the parallelism is to be considered processing
that occurs as part of the parent task. By spinning, the
parent task could spin while waiting for the results and
other cores associated with subtasks to the same task at
the same priority could be used to carry the parallel tasks
of the algorithm. Since all such tasks wouldn't block
during this synchronization, this might facilitate analysis,
since the whole processing does not involve blocking,
allowing for analysis such as commonly used for periodic
tasking to be applied. The following shows test results for
a Ravenscar compliant execution using a spinlock
Synchronous_Barrier implementation and a spinlock
Synchronous_Signal implementation.

************* Parallel Framework Test *************
 Physical Processors= 4

(- Matrix Tests -)

Sequential Gauss Jordan, Elapsed= 0.90, maxerr:=
1.26004E-04
Barriers Work Sharing Gauss Jordan, Elapsed= 0.67,
maxerr:= 1.35404E-03
Signals Wait Free Work Sharing Gauss Jordan,
Elapsed= 0.67, maxerr:= 2.14815E-04

In this case, both synchronization implementations were
approximately equivalent in terms of processing time.

6 A Possible Implementation

The following shows a potential implementation for the
spinlock version of the Synchronous_Signals package. As
can be seen, a simple implementation is possible.

package Synchronous_Spinlock_Signals is

 subtype Synchronous_Task_Count is Positive;

 type Synchronous_Signal
 (Task_Count : Synchronous_Task_Count) is limited
private;

 procedure Wait_For_Release
 (The_Signal : in out Synchronous_Signal);

 procedure Reset
 (The_Signal : in out Synchronous_Signal);

 procedure Send_And_Wait_For_Reset
 (The_Signal : in out Synchronous_Signal;
 Id : Worker_Id);

private

 type Worker_Progress_Array is array
 (Synchronous_Task_Count range <>)
 of Boolean;
 pragma Volatile_Components
 (Worker_Progress_Array);

 type Synchronous_Signal (Task_Count :
 Synchronous_Task_Count) is limited
 record
 Gate : Worker_Progress_Array (1 .. Task_Count)
 := (others => False);
 end record;

end Synchronous_Spinlock_Signals;

package body Synchronous_Spinlock_Signals is
 procedure Reset (The_Signal : in out
 Synchronous_Signal) is
 begin
 The_Signal.Gate := (others => False);
 end Reset;

 procedure Wait_For_Release (The_Signal : in out
 Synchronous_Signal) is
 begin
 Spinloop : loop
 <<Try_Again>>
 for I in 1 .. The_Signal.Gate'Last - 1 loop
 if not The_Signal.Gate (I) then
 goto Try_Again;
 end if;
 end loop;

 exit Spinloop;
 end loop Spinloop;
 end Wait_For_Release;

 procedure Send_And_Wait_For_Reset (
 The_Signal : in out Synchronous_Signal;
 Id : Worker_Id) is

B. Moore 115

Ada User Journal Volume 39, Number 2, June 2018

 begin
 The_Signal.Gate (Positive (Id)) := True;

 while The_Signal.Gate (Positive (Id)) loop
 null;
 end loop;
 end Send_And_Wait_For_Reset;

end Synchronous_Spinlock_Signals;

7 Conclusions

In this paper, a Synchronous_Signals abstraction was
presented and compared against the existing interfaces
provided the existing language defined
Ada.Synchronous_Barriers package. Testing of the
abstractions show that there is not a significant difference
in performance between Synchronous_Barrier
implementations and Synchronous_Signal
implementations, if both are implemented with the same
blocking strategy. However, the paper does show that
non-blocking busy-wait versions of these abstractions
performs significantly better than the blocking versions,
for the algorithms that were examined. There may be
value in providing a standard mechanism to specify
whether blocking or busy wait implementations should be
applied to a problem. Further, using a busy wait strategy
might better facilitate timing analysis for schedulability
concerns.

One important consideration for spinlock
implementations is that it is much more important that the
number of worker tasks not exceed the number of
available CPU, to avoid busy waits of idle tasks taking
CPU away from workers that are performing actual work.
It may be useful to provide a standard mechanism to
query to the system to determine how many of the
available CPU are idle, since CPU’s that are busy likely
should not be interfered with workers that perform busy
waits. The Linux OS for instance allows one to check the
current load on the CPU’s via the /proc/loadavg
filesystem.

Lastly, while there may be valid reasons for disallowing
the blocking forms of Synchronous_Barriers for use with
the Ravenscar Profile, it may be worth considering
whether busy wait implementations of the abstraction are
better suited for use with the Ravenscar Profile, and
whether the standard Synchronous_Barrier package
should be allowed if it could be configured to correspond
to such an implementation. It may be worth considering

whether a Synchronous Signal package should be added
to the set of language defined packages to increase the
synchronisation facilities at the disposal of the
programmer. On the other hand, it should be weighed to
assess how often such a feature might be used, as well as
whether it is trivial enough to let 3rd party library package
writers provide such facilities. It may be that the compiler
could provide extra safety guarantees that a compiler
writes would not be available to 3rd party library writers.
To justify that addition, likely it would mean finding an
example where a Synchronous_Signals implementation
has significantly better performance than a
Synchronous_Barrier implementation.

Another consideration is that the Synchronous_Signal
abstraction requires assigning a unique index value to
each of the participating worker tasks. While this can be
managed by the programmer, it might make sense to
provide a standard way to obtain such a worker id value.
The existing Synchronous_Barriers abstraction does not
have this need.

Finally, it might be worth considering whether finer
control such as whether to use spinlock synchronization
or blocking synchronization could be specified via a
configuration pragma or possibly an aspect, that could be
applied to uses of Synchronised_Barrier objects.

References
[1] ISO/IEC (2012), Ada Reference Manual, ISO/IEC

8652:2012(E).

[2] A. Burns, A.J. Wellings (2016), Synchronous Task
Control and Synchronous Barriers, ACM SIGAda
Letters, Volume 36 Issue 1.

[3] A. Burns, A.J. Wellings, Concurrent and Real-Time
Programming in Ada.

[4] B. Moore (2010), Parallelism Generics for Ada 2005
and Beyond., SIGAda'10 Proceedings of the ACM
SIGAda annual conference.

[5] B. Moore, Paraffin source libraries.
http://sourceforge.net/projects/paraffin/?source=direc
tory

[6] F. Chouteau, J. F. Ruiz (2011), Design and
Implementation of a Ravenscar Extension for
Multiprocessors, In: Reliable Software Technologies
– Ada-Europe 2011, pp 31-45.

116

Volume 39, Number 2, June 2018 Ada User Journal

On Protocols for Accessing Protected Objects on
Multiprocessors*
Jorge Garrido, Juan Zamorano, Juan A. de la Puente
Sistemas de Tiempo Real e Ingeniería de Servicios Telemáticos (STRAST), Information Processing and
Telecommunications Centre (IPTC), Universidad Politécnica de Madrid (UPM); email: jgarrido@dit.upm.es,
jzamora@datsi.fi.upm.es, jpuente@dit.upm.es

Abstract

This paper discusses different issues related to protected
object access in Ada. In particular, the influence of the
different approaches on the implementation and analysis
of real-time systems is addressed. Based on results from
previous and on-going work, some issues are discussed
and some proposals are made.

1 Introduction

The topic of scheduling real-time tasks on
multiprocessors has received a great deal of attention [7].
An important aspect in this context is communication and
synchronization with shared objects, and the use of
suitable access protocols for bounding the duration of
blocking introduced by priority inversion. On
uniprocessor systems, the Priority Ceiling Protocol (PCP)
[14] and the Stack Resource Policy (SRP) [3] are
generally accepted as the most appropriate access
protocols, as they exhibit some interesting properties:1

 Deadlock free execution.

 Only tasks of higher priority can preempt running
tasks and only if they do not share any locked
resource.

 Tasks of lower priority can only prevent the
execution of higher priority tasks as a result of having
locked a shared resource.

 The duration of the blocking is bounded by the
maximum execution time of an operation on the
resource invoked by a lower priority task.

Among the various access protocols that have been
proposed for multiprocessor systems, two ex- tensions of
SRP have raised a high interest in the context of the Ada
programming language: the Multiprocessor Stack
Resource Policy (MSRP) [8], and the Multiprocessor
resource sharing Protocol (MrsP) [4].

In the rest of the paper the properties of both protocols
will be discussed, and their suitability for implementing
real-time systems, as well as their relation with the Real-

* This work has been partially funded by the Spanish National R&D&I
plan (project M2C2, TIN2014-56158-C4-3-P).

Time Systems Annex [1, D], will be examined. The
related subject of protected entry dispatching will also be
discussed.

2 Multiprocessor resource sharing
protocols

2.1 Multiprocessor Stack Resource Policy
The Multiprocessor Stack Resource Policy (MSRP) [8]
extends SRP for multiprocessors. Under this policy,
operations on globally shared resources 2 are executed
non-preemptively. If an access request by a calling task
cannot be immediately granted because the resource is
locked by a task running on another processor, the calling
task waits on a spin loop until it can gain access to the
resource. The spin waiting is also executed non-
preemptively. If there are more than one task waiting for
the same resource, the requests are served in FIFO order.

The cost of accessing a shared resource is bounded thanks
to the FIFO order and the fact that operations on the
resource, including spin-waiting if necessary, cannot be
preempted. This mechanism ensures that at most one
request per processor is issued at a time.

This non-preemptive access policy, however, has the
notable drawback of potentially causing arrival blocking
to all local higher priority tasks, and not only those with
equal or lower priorities than the ceiling priority of the
resource.

2.2 Multiprocessor resource sharing Protocol
The Multiprocessor resource sharing Protocol (MrsP) [4]
addresses the above described drawback of MSRP by
executing the resource operation and the spin-waiting at
the ceiling priority of the resource, rather than non-
preemptively. This approach still presents the benefits of
SRP and, like MSRP, limits the number of concurrent
requests from the same processor to one.

However, contrary to MSRP, the access can be
interrupted due to a local preemption of the task holding
the lock. This interference does not only affect the
preempted task, but also remote tasks spin-waiting for the

2 Resources considered as globally shared are those accessed from more
than one processor, not necessarily from every processor in the system.

J. Garr ido, J. Zamorano, J. A. de la Puente 117

Ada User Journal Volume 39, Number 2, June 2018

resource, or even future requests, while the lock-holding
task remains preempted.

In order to mitigate this effect, MrsP includes an
innovative helping mechanism by which a remote task
can undertake the access of a locally preempted task. In
practice, this is implemented by migrating the preempted
task to a remote processor on which a task is spin-waiting
to access the same resource. The overhead caused by such
migrations can be calculated by analysing the release of
local tasks with base priority higher than the resource
ceiling priority and the cost of each migration.

An evaluation of this approach shows that in practice
MrsP can outperform MSRP, including the migration
overhead [16].

2.3 Discussion
MSRP can be implemented, at least partially, using
standard Ada and the Real-Time Systems Annex,
including the Ravenscar profile restrictions [1, D.13].
Non-preemptive access can be en- forced using
Locking_Policy (Ceiling_Locking), by assigning an
effectively non-preemptive ceiling priority to every
globally shared resource. The protocol does not require
migrations, and is thus compatible with the profile and the
current Ada 2020 draft [2], which clearly forbids
migrations. However, as identified in a previous position
paper [5], FIFO queuing and spin waiting are not covered
by the current standard. The revised Annex should take
care of these limitations, e.g. by extending the queueing
policies in D.4 to protected procedures and functions, as
these operations can also incur indirect blocking with
MSRP. Good practices on active waiting schemes could
also be addressed as implementation advices. The
Ravenscar profile definition should be updated to clearly
define the use of these mechanisms.

The implementation of MrsP poses bigger challenges.
While a clean pseudo-implementation is provided in [5],
in practice some issues are found, such as the support
required for the helping mechanism [6, 15], or support for
nested resource policies and transitive helping [6, 11]. It
has, however, been shown that this protocol can be used
to schedule complex task sets that could not be scheduled
under MSRP [10, 16]. Furthermore, while the
implementation of MrsP presents a higher complexity, it
has been successfully achieved for different RTOS. The
research conducted since MrsP was proposed in [4, 5] has
shown the feasibility and interest of incorporating
MRSP_Locking as new locking policy for general Ada,
while a Non_Preemptive_Locking could be the choice for
the Ravenscar profile [10]. It could also be used in the
extended profile that has been the object of several recent
proposals [12, 9, 13].

3 Ada entries

The protocols discussed in the previous section can be
used to properly access critical sections, i.e. protected
actions in Ada terms, so that mutual exclusion is
guaranteed and priority inversion is minimized. Ada

protected objects can also have entries, with barriers that
only allow the execution of the corresponding protected
action when open. Tasks invoking a protected entry with a
closed barrier are suspended on a queue associated to the
entry. Note that tasks requesting exclusive access to the
object are not suspended, and can even wait actively as
described above for MSRP and MrsP. The Ada standard
also specifies that while there are any pending requests
waiting on closed barriers in a protected object, no new
access requests to the same object can be granted. This is
known as the eggshell model. While the effect of these
particularities on the scheduling analysis is out of the
scope of this paper, their effects on system predictability
are addressed below.

As previously recalled, for uniprocessor systems, the
Priority Ceiling Protocol (PCP) and the Stack Resource
Policy (SRP) were widely adopted due to their
predictability. Systems built using PCP/SRP policies are
analysable from the timing behaviour perspective,
including protected entries: tasks re-dispatched after being
blocked on an entry can be modelled as different jobs of
the same task and, since entries are the only blocking
actions under PCP/SRP, their priority over other accesses
does not affect the proper system behaviour under such
policies (there cannot be any subprogram trying to access
a resource at the time that an entry is served).

In monoprocessors the so-called proxy model approach
has been widely accepted as the most convenient from the
runtime implementation and system efficiency
perspectives. Furthermore, from the real-time systems
perspective, it ensures that the benefits of the
Ceiling_Locking policy are preserved. In particular, only
one task can cause blocking on a higher priority task, at
most during the execution of one protected action. The
time needed for barriers evaluation be added to the
execution time of each protected action. If an action
causes one or more barriers to open, the cost of servicing
the queued entries must also be taken into account for the
access time and thus on the arrival blocking. It does not,
however, cause the execution of any other task in contrast
to a self-service approach, where tasks on opened entries
are to be dispatched to perform their accesses.

This effect is increased in multiprocessor systems. In
these systems, as stated above, not only entry calls but
any call can be blocked accessing a PO. This includes the
case in which a subprogram call can be blocked due to an
entry with an open barrier that is unable to perform its
access due to its host processor scheduling. This kind of
situations are already addressed by the scheduling
protocols definition (avoided in MSRP thanks to the non-
preemptive access and alleviated in MrsP thanks to the
helping mechanism). From our point of view, the proxy
model can better implement the Ceiling_Locking policy
and preserve its properties, including the expected
behaviour of MSRP and MrsP and thus should be
recommended as an implementation advice in the Real-
Time Systems Annex.

118 On Protocols for Accessing Protected Objects on Mult iprocessors

Volume 39, Number 2, June 2018 Ada User Journal

4 Conclusions

Recent and ongoing research results on Ada use on
multiprocessor platforms have been reviewed regarding
task synchronization using shared resources. In particular,
different aspects of Ada protected objects have been
discussed related to the analysis and implementation of
systems in Ada under two multiprocessor protocols.
Given their relevance, research maturity and interest
among the real-time systems and Ada community we
argue on the inclusion of the following items in the next
language revision:

 Locking_Profile(Non_Preemptive_Locking).

 Locking_Profile(MRSP_Locking).

 Protected object queueing policies.

 Implementation advice on good practices for the
active waiting on multiprocessors shared resources.

 Implementation advice on the use of the proxy model
for barrier evaluation and entry servicing.

References
[1] ISO/IEC (2012), ISO/IEC 8652:2012(E): Information

Technology — Programming Languages — Ada.

[2] ISO/IEC (2017), ARM2x. Ada Reference Manual
ISO/IEC 8652:202x(E), draft 12. Available at
http://www.ada-auth.org/standards/ada2x.html.

[3] T. P. Baker (1991), Stack-based scheduling for
realtime processes, Real-Time Systems, 3(1):67–99.

[4] A. Burns and A. J. Wellings (2013), A schedulability
compatible multiprocessor resource sharing
protocol–MrsP, In Real-Time Systems (ECRTS),
2013 25th Euromicro Conference on, pages 282–291.
IEEE.

[5] A. Burns and A. J. Wellings (2013), Locking policies
for multiprocessor Ada, Ada Letters, 33(2): 59–65.

[6] S. Catellani, L. Bonato, S. Huber, and E. Mezzetti
(2015), Challenges in the Implementation of MrsP,
pages 179–195. Springer International Publishing,
Cham.

[7] R. I. Davis and A. Burns (2011), A survey of hard
real-time scheduling algorithms and schedulability

analysis techniques for multiprocessor systems,
ACM Computing Surveys, 43(4).

[8] P. Gai, G. Lipari, and M. D. Natale (2001),
Minimizing memory utilization of real-time task sets
in single and multi-processor systems-on-a-chip, In
Proceedings of the 22nd IEEE Real-Time Systems
Symposium. IEEE Computer Society.

[9] J. Garrido, B. Lacruz, J. Zamorano, and J. A. de la
Puente (2016), In support of extending the ravenscar
profile, Ada Lett., 36(1):63–67.

[10] [J. Garrido, J. Zamorano, A. Alonso, and J. A. de la
Puente (2017), Evaluating MSRP and MrsP with the
multiprocessor Ravenscar profile, In J. Blieberger
and M. Bader, editors, Reliable Software
Technologies — Ada-Europe 2017, pages 3–17.
Springer.

[11] J. Garrido, S. Zhao, A. Burns, and A. Wellings
(2017), Supporting nested resources in MrsP, In J.
Blieberger and M. Bader, editors, Ada-Europe
International Conference on Reliable Software
Technologies, pages 73–86. Springer.

[12] P. Rogers, J. Ruiz, and T. Gingold (2015), Toward
extensions to the ravenscar profile, Ada Lett.
35(1):32–37.

[13] P. Rogers, J. Ruiz, T. Gingold, and P. Bernardi
(2017), A new profile based on Ravenscar, Ada
Europe 2017 Panel on The Future of Safety-Minded
Languages.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky (1990),
Priority inheritance protocols: An approach to real-
time synchronization, IEEE Tr. on Computers, 39(9).

[15] J. Shi, K.-H. Chen, S. Zhao, W.-H. Huang, J.-J.
Chen, and A. Wellings (2017), Implementation and
evaluation of multiprocessor resource
synchronization protocol (MrsP) on LITMUSRT,
13th Workshop on Operating Systems Platforms for
Embedded Real-Time Applications.

[16] S. Zhao, J. Garrido, A. Burns, and A. Wellings
(2017), New schedulability analysis for MrsP, In
Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2017 IEEE 23rd
International Conference on, pages 1–10. IEEE.

119

Proposal for a New Ada Profile for Small
Microcontrollers∗

Mario Aldea Rivas
Universidad de Cantabria, Spain; email: aldeam@unican.es
Héctor Pérez-Tijero
Universidad de Cantabria, Spain; email: perezh@unican.es

Abstract

This paper presents a proposal for a new Ada profile tar-
geted to microcontrollers with tight memory constraints.
The profile has the same restrictions that the Ravenscar
profile but includes a new scheduling policy based on
the “one-shot task” model that allows stack sharing
techniques to be applied to Ada tasks. A preliminary
implementation based on a small kernel, a modified
run-time system and an automatic code generation tool
has been developed. The initial tests bring promising
results, showing the profile is functionally correct and
has a small memory footprint.

1 Introduction
An important portion of the embedded system market is occu-
pied by small microcontroller units (MCU) with tight memory
constraints. According to [1], 8-bit and 16-bit MCUs are the
main processor in 21% of the embedded projects, and they
are also widely used as secondary processors in many other
embedded projects. In 2015, for instance, there were sold
three 8-bit microcontrollers for each 32-bit microcontroller
[2].

Microcontrollers with tight memory constraints are very pop-
ular in industry and among hobbyists. Examples of those pop-
ular devices are the Microchip Technology’s ATmega328P
(the core of the Arduino Uno), which is an 8-bit MCU that
features 32KB of Flash memory and 2KB of SRAM, and
the SAM series (also produced by Microchip) with an ARM
Cortex-M core and only 8KB of Flash memory and 4KB of
SRAM in the smallest models.

MCUs are mostly programmed in C, while the use of Ada is
marginal in this sector (under 1%) [1]. Despite the limited
resources of the small MCUs, there are quite a few Real-
time Operating Systems (RTOS) ported to these devices, such
as FreeRTOS1, ERIKA2 or SMX3. All these RTOSs usually
provide simple tasking primitives and scheduling policies
fitted to these memory-constrained devices.

∗This work was partially supported by the Spanish Government under
grant number TIN2014-56158-C4-2-P (M2C2).

1https://www.freertos.org/
2http://erika.tuxfamily.org/
3http://www.smxrtos.com/

We consider that the development of software for small MCUs
can benefit from the features of the Ada programming lan-
guage, like programming by contract, strong typing, represen-
tation clauses, static compiler checks and advanced tasking
primitives among others. At the same time, the availability of
Ada implementations for popular devices used by hobbyists
all around the world (e.g., Arduino Uno) can contribute to the
promotion of the Ada language.

In this paper we explore the possibility of defining a new Ada
profile that includes a simple form of tasking implementable
in microcontrollers with tight memory constraints.

2 Precedents
There are some Ada implementations for small microcon-
trollers (specially for MCUs of the AVR family) like the
AVR-Ada Project4 and the AVR GNAT GPL 2012 cross com-
piler (hosted on Windows). These implementations only pro-
vide the “Zero Footprint” run-time, a limited run-time system
without tasking support.

The Ada language offers to programmers a rich and powerful
set of tasking constructs which require a large run-time system
to support them. For example the footprint of an Ada tasking
application for MaRTE OS [3] is at least 200KB (this size
includes the GNAT run-time and the MaRTE kernel, but not
the tasks’ stack).

The tasking subset defined in the Ravenscar profile [4].D.13
requires a much smaller run-time system. According to [5]
the memory footprint of an Ada application using this profile
is around 10KB (excluding stacks). Its size makes Ravenscar
suitable for medium size MCUs, but not for the smallest
ones mainly due to the difficulty to apply “stack sharing”
techniques as we will see later on.

Tasks stacks are large memory consuming resources. For ex-
ample, the default stack size for the GNAT Ravenscar runtime
is 4KB, the minimum stack size in a relatively simple kernel
as FreeRTOS is between 200B and 500B depending on the
MCU architecture, and similar stack sizes can be seen in other
simple RTOS. In consequence, a relative low number of tasks
would rapidly exhaust the RAM available in a small MCU.

In order to limit the amount of memory allocated to tasks
stacks, RTOSs for memory constraint systems implement

4https://sourceforge.net/projects/avr-ada/

Ada User Jour na l Vo lume 39, Number 2, June 2018

120 Proposa l for a New Ada Prof i le for Smal l Microcont ro l le rs

mechanisms that allow some kind of “stack sharing” among
tasks. Most common stack sharing techniques require that
tasks behave as “one-shot tasks”, that is, tasks that do not
keep any local state in the stack between activations.

Each “one-shot task” is made of initialization instructions,
that are executed after the creation of the task, and task job
instructions. Task job instructions always should end with a
potentially blocking operation to wait for the next activation
event. Apart from this, no other blocking operations are
allowed in the task job instructions. After each arrival of the
activation event, the task job instructions are executed and,
according to this model, no local state is stored between task
job executions.

Several “one-shot tasks” can share the same stack if they exe-
cute in a nested fashion, i.e. a high priority task always ends
its job before all the tasks it has preempted. To verify this be-
havior, tasks can not block during the job (i.e. only blocking
at the end of the job is allowed) and an appropriate resource
protocol must be used. Examples of such resource protocols
are the Immediate Priority Ceiling (when task are scheduled
under a fixed-priority policy) and the Stack Resource Pro-
tocol [6] (when the scheduling policy is EDF). Even using
this approach the size of the stack can be large in the worst
case. For example, the maximum stack size for fixed-priority
scheduling will be equal to the sum of the maximum stack
sizes of all priority levels.

The maximum memory saving can be achieved when “one-
shot tasks” are used with a non-preemptive scheduling policy.
In such case, the same stack area can be used by all the tasks.

One of the most popular operating system standards for auto-
motive embedded systems, the OSEK/VDX5 (also included in
the AUTOSAR standard), allows stack sharing with its “basic
tasks” (which are an example of “one-shot tasks”) and the
Immediate Priority Ceiling. This standard also allows tasks
to be declared as “non-preemptive” to achieve the maximum
stack saving when desired.

In the case of the Ada language,
it is important to notice that the
Non_Preemptive_FIFO_Within_Priorities
dispatching policy [4].D.2.4 does not allow direct stack
sharing among tasks. The reason is that this policy is not
enough to implement the “one-shot tasks” model because: (a)
tasks status is kept in the stack between activations and (b)
tasks can block during the job.

3 Profile requirements
As stated in Section 2, the complexity of the full Ada tasking
is excessive to fit in a small MCU, and even the reduced
tasking subset defined in the Ravenscar profile is too large
for the smallest microcontrollers. For that reason, in this
paper we propose the definition of a new Ada profile that
can be used in MCUs with tight memory constraints. The
requirements for the proposed profile are:

5https://www.autosar.org/

Listing 1: One-shot task structure

task body One_Shot_Task is
One_Shot_Task_Local_Data;

begin
One_Shot_Task_Initialization ;
Wait_For_First_Activation_Event ; (optional)
loop

−− One shot task job
One_Shot_Task_Job_Body;
Wait_For_Next_Activation_Event;

end loop;
end One_Shot_Task;

• Allow the implementation of a simple run-time system
with a very small footprint (a size between 5KB and
10KB would be acceptable).

• Define a scheduling algorithm that allows using “stack
sharing” techniques by forcing Ada tasks to behave as
“one-shot tasks”.

• The language syntax should be maintained as close as
possible to original language syntax (ideally no syntax
changes should be required to support the profile).

• Introduce tasking restrictions identical (or very close) to
those imposed by the Ravescar profile.

• A program for this new profile can be compiled using
the Ravenscar profile or the full Ada tasking without
modifications.

4 Profile definition
The main objective of our proposal is to define a set of condi-
tions which allow Ada tasks to behave as “one-shot task”. To
achieve so, tasks’ body must have a structure similar to the
one shown in Listing 1.

Each “one-shot task” is made of a initialization part
(One_Shot_Task_Initialization) that is ex-
ecuted only once and an endless loop that wraps
the code executed in each task job. In turn, the
task job is made of the instructions that form the
task job body (One_Shot_Task_Job_Body)
and, as the last instruction, a potentially block-
ing operation to wait for the next activation event
(Wait_For_Next_Activation_Event).

Potentially blocking operations are only al-
lowed as final instruction of the task job
(Wait_For_Next_Activation_Event) and, op-
tionally, as the instruction just before the endless loop
(Wait_For_First_Activation_Event).

It is worth noting that the task structure shown in Listing
1 is, in fact, a typical structure for an Ada task. However,
other task structures allowed in full Ada or in Ravenscar
are not allowed in our proposal: no instructions are allowed
between Wait_For_First_Activation_Event
and the beginning of the endless loop nor between
Wait_For_Next_Activation_Event and the end of
the loop.

Volume 39, Number 2, June 2018 Ada User Jour na l

M. Aldea, H. Pérez 121

One task can wait for its next activation on any potentially
blocking operation defined in the Ravenscar profile. In Raven-
scar, such operations are limited to: a delay until, an entry of a
protected object or a language-defined subprogram that is po-
tentially blocking (for example blocking on a suspension ob-
ject by calling to Ada.Synchronous_Task_Control.
Suspend_Until_True). Since potentially blocking op-
erations are clearly defined in Ravenscar, the compiler can
detect if a task does not follow the expected structure.

As it can be deduced from Listing 1, the task executes its
job body after the arrival of any activation event. In or-
der to verify the “one-shot task” model, no local state is
present when the task job starts its execution. Local vari-
ables can be created in block statements inside the task’s
job body but these block statements cannot wrap the poten-
tially blocking operation at the end of the loop. In order
to keep the Ada semantics, task’s local variables (labeled
as One_Shot_Task_Local_Data in Listing 1) must be
created in global memory since they status must be preserved
between activations.

Similarly to regular tasks, the main task should have the same
structure that the “one-shot task” in Listing 1. Main task’s
local variables can be created in the stack or as global vari-
ables. In case they are created in the stack, at the beginning
of the main task body the position of the top of the stack is
stored. Stack is restored to that position at the beginning of
the execution of the body of any task.

We propose the definition of a new profile
(Stack_Sharing_Ravenscar) with all the restric-
tions of the Ravenscar profile plus a new one to force the
tasks to obey the “one-shot task” structure discussed earlier
in this chapter. The second difference between the proposed
profile and Ravenscar is the introduction of a new dispatch-
ing policy (Non_Preemptive_Stack_Sharing)
which behaves equal to
Non_Preemptive_FIFO_Within_Priorities
but defining all potentially blocking operations as a dis-
patching points regardless if the task actually blocks in the
operation or not. This allows to use any potentially blocking
operation as the activation mechanism of our “one-shot
tasks”: once the task ends its job a dispatching operation is
performed and the higher priority ready task is chosen to
execute.

When the scheduling policy is non-preemptive, there is not
need for using any primitive to ensure exclusive access to
resources. However, in the proposed profile we include the
use of protected objects (PO) for three main reasons: (a) POs
use improves code compatibility with full Ada and Ravenscar;
(b) POs clarify the code structure since they enclose a set of
related data that is intended to be shared among tasks; and
(c) PO entries are smart constructs intended to be used as
activation points of event-driven tasks.

The GNAT compiler implements POs using the “proxy model”
which fits perfectly our “one-shot task” model. In the “proxy
model” when, as a consequence of a protected operation, an
entry with a queued task is opened, the body of the entry is
executed by the task that is executing in the PO. It is only

at the end of the entry when the waiting task is activated.
Consequently, the activated task can start is new job execut-
ing directly its job’s body as dictated by our “one-shot task”
model.

5 Preliminary implementation
We have developed a preliminary implementation of the Ada
profile presented in this paper. It mainly consists on a small
kernel, a modified run-time system and an automatic code
generation tool:

• The kernel is the piece of code that provides support for
the “one-shot task” model and interacts with the hard-
ware. The current version supports three different boards:
Arduino Uno, Raspberry Pi 1 and STMicroelectronics
STM32F.

• The run-time system is based on the “Small Footprint”
Ravenscar run-time provided by the GNAT GPL 2017
cross-compiler for ARM bare boards7. In our modified
version of the run-time, the original bare board support
has been removed and replaced by invocations to the
kernel layer. Additionally, a small number of packages
have been modified, most of them with minor changes.
Mayor modifications have been required in the packages
involved in PO implementation and task creation.

• The automatic code generation tool is responsible for
adapting the application code to be run on top of the
kernel layer, as the one-shot task model imposes some
restrictions on the implementation and the structure of
Ada tasks. This process of adapting the source code
is transparent to the end-user, who can then focus on
writing Ravenscar-compliant source code as in other
platforms. To analyze and adapt the application code, the
tool relies on the Ada Semantic Interface Specification
for GNAT (ASIS)8.

In our initial tests, we have found promising results in relation
to the memory footprint. For the Arduino Uno board, a simple
application with two tasks and one protected object (one of
the tasks is periodic and the other is activated by a PO entry)
has a memory footprint of around 6KB, and the maximum
stack usage remains under 100B.

6 Conclusions and future work
We have presented a proposal of a new Ada profile that
includes a scheduling policy that enables the use of stack
sharing techniques. The key idea is to define the structure
expected for a task to behave as a “one-shot task”. The pro-
posed structure is versatile and similar to the usual patterns
for Ada tasks.

The initial tests with a preliminary implementation of the
profile indicate that it is functionally correct and the memory
footprint of the applications is small enough for the kind of
systems it is targeted to.

7https://www.adacore.com/community
8https://www.adacore.com/documentation/asis-for-gnat-users-guide

Ada User Jour na l Vo lume 39, Number 2, June 2018

122 Proposa l for a New Ada Prof i le for Smal l Microcont ro l le rs

Both, implementation and profile definition, require further
work. On the implementation side, the run-time system adap-
tation must be completed. The main aspect pending to be
implemented is the support for interrupt handlers as protected
procedures.

The profile definition could be extended in order to reduce the
detrimental effect of non-preemption on the schedulability of
the system. In this line, two alternatives are under considera-
tion, both implying a compromise between stack sharing and
responsiveness:

• Cooperative scheduling: allow tasks to be preempted
when they call a yield or a relative delay statement.

• Preemption thresholds [7]: this strategy allows to limit
the tasks able to preempt other task to those with priori-
ties above a given threshold.

References
[1] EETimes and Embedded.com (2017), Embedded Markets

Study Integrating IoT and Advanced Technology Designs,
Application Development & Processing Environments,
Technical report, 2017.

[2] Wayne Freeman (2016), 11 Myths About 8-Bit Microcon-
trollers, Technical report.

[3] M. Aldea Rivas and M. González Harbour(2001), MaRTE
OS: An ada kernel for real-time embedded applications,
Craeynest D., Strohmeier A. (eds) Reliable SoftwareTech-
nologies — Ada-Europe 2001. Ada-Europe 2001. Lecture
Notes in Computer Science, 2043:305–316.

[4] ISO/IEC (2016), Ada Reference Manual, ISO/IEC
8652:2012(E) with COR.1:2016.

[5] José F Ruiz (2005), GNAT pro for on-board misson-
critical space applications, Vardanega T., Wellings A.
(eds) Reliable Software Technology – Ada-Europe 2005.
Ada-Europe 2005. Lecture Notes in Computer Science,
3555(17360):248–259.

[6] T.P. Baker (1990), A stack-based resource allocation pol-
icy for realtime processes, In Proceedings 11th Real-Time
Systems Symposium, pages 191–200. IEEE.

[7] Yun Wang and M. Saksena (1999), ,Scheduling fixed-
priority tasks with preemption threshold, In Proceedings
Sixth International Conference on Real-Time Computing
Systems and Applications, pages 328–335. IEEE Comput.
Soc.

Volume 39, Number 2, June 2018 Ada User Jour na l

 123

Ada User Journal Volume 39, Number 2, June 2018

Ravenscar-EDF: Further Results from Improved
Comparative Benchmarking
Paolo Carletto and Tullio Vardanega
Department of Mathematics, University of Padua, IT-35121

Our project was motivated by the sense of incompleteness
in the EDF-to-FPS single-processor scheduling
comparison reflected in the relevant literature [1], [3].
What we deemed most unsatisfactory was that, while [1]
ignored runtime costs altogether – a common trait of
theoretical works –, [3] addressed performance
considerations making somewhat arbitrary assumptions
on the implementation solutions.

To pursue our goal of a more grounded comparison, we
created a fork from AdaCore’s original implementation of
the Ravenscar Profile FPS runtime for the Leon processor
(which “industrialized” UPM’s ORK [2]). To seek
maximum fairness, our fork simply replaced the FPS
components of the runtime, including support for the
Immediate Priority Ceiling Protocol (IPCP), with the
equivalent EDF components, which incorporated support
for the Deadline Floor Protocol. Every other part of the
runtime was left unchanged.

We created a test suite running on a trial version of the
TSIM LEON Simulator by Cobham Gaisler, which
yielded a good set of benchmark data that helped us to
experimentally confirm some held beliefs in the EDF-to-
FPS comparison, and to confute others.

Those experiments however suffered two important
limitations, which we set out to remove in the second,

unpublished, stage of our project. First, we removed the
bounded-duration constraint of the execution runs
(attached to the trial version of the simulator) so as to
remove any artificial constraints on the length of the
hyperperiod of the synthetic task sets included in our test
suite. Second, we implemented more sophisticated event
capture mechanisms to enable more accurate
discrimination between single events and recurring
behaviour, especially with regard to preemptions.

The data set we are capturing with our benchmarks should
enable us to contribute experimental evidence to answer
the question of how does the EDF runtime performance
relate to that of FPS, from the concreteness of an
implementation perspective.

References
[1] L. Liu and J. W. Layland (1973), Scheduling

Algorithms for Multiprogramming in a Hard Real-
Time Environment, Journal of the ACM, 20 (1):
4661.

[2] J. A. de la Puente, J. Zamorano and J. Lopez
(2009), GNATforLEON 2.1.0 / ORK+ 2008,
Universidad Politécnica de Madrid (UPM).

[3] G. Buttazzo (2005), Rate Monotonic vs EDF:
Judgment Day, Real-Time Systems, 29, 5-26.

124

Ravenscar Support for Time-Triggered Scheduling∗

Jorge Real
Instituto de Automática e Informática Industrial, Universitat Politècnica de València,
Spain; email: jorge@disca.upv.es
Sergio Sáez
Instituto Tecnológico de Informática, Universitat Politècnica de València, Spain; email: ssaez@disca.upv.es
Alfons Crespo
Instituto de Automática e Informática Industrial, Universitat Politècnica de València,
Spain; email: alfons@disca.upv.es

Abstract

This position paper follows from a previous proposal
to integrate a time-triggered scheduler in a priority-
based, preemptive scheduler such as that supported by
Ada’s task dispatching policy FIFO_Within_Priorities. The
resulting combined scheduling carries the advantages
of both time-triggered and priority-based scheduling,
and helps mitigating their drawbacks.

The paper presents a system model for the time-triggered
subsystem that extends the original proposal, and de-
scribes a Ravenscar implementation of the scheduler at
the run-time system level, in the form of a new package
Ada.Dispatching.TTS. Multiple programming patterns can
be implemented on top of this scheduler. With respect to
the previously proposed full-Ada implementation, only
patterns that implied the use of asynchronous transfer
of control have been excluded. On the other hand, the
extension of the original model enables new patterns,
not supported in our previous proposal, using the new
types of continuation and optional slots.

We hold that bringing the time-triggered paradigm to
Ravenscar is both feasible and convenient for the High-
Integrity and Embedded application domains.

Keywords: Real-Time Systems. Time-Triggered Scheduling.
Priority-Based Scheduling. Ravenscar Profile. High-Integrity Sys-
tems. Embedded Systems

1 Introduction
In the real-time systems domain, there are two major approaches
to scheduling real-time tasks. One is time-triggered scheduling
(TTS) whereby each task is executed during the exact time intervals
dictated by a fixed plan designed in advance. The other is priority-
based scheduling (PBS), in which the time intervals when a task
executes are decided at run time, based on the task’s priority. The
priority attribute of a task can in turn be static or dynamic, leading
to several variations of the idea.

∗This work has been partly supported by the Spanish Government’s
project M2C2 (TIN2014-56158-C4-1-P-AR) and the European Commis-
sion’s projects ENABLE-S3 and AQUAS (ECSEL-JU, Contracts 692455
and 737475).

There are pros and cons to both approaches. While TTS is superior
to PBS in terms of predictability and reduced jitter (i.e., precise
and rapid task release), a time-triggered schedule is difficult to
design for non-trivial cases – actually, it is an NP hard problem.
Another interesting property of TTS systems is that access to shared
resources is simpler, provided all tasks execute non-preemptively;
whereas PBS preemptive systems require mechanisms to enforce
mutual exclusion in the access to shared resources. A fundamental
advantage of PBS over TTS is that it keeps a convenient separation
of concerns between timing and functional requirements, making
PBS systems easier to modify and maintain.

In previous papers we have proposed an architecture supporting
the execution of applications that include a mix of TTS and PBS
workload [7, 6]. The idea was to divide the application into two
subsets of tasks, one scheduled according to a time-triggered plan,
and the other one scheduled by a priority-based scheduler. The
implementation of this architecture reserves the highest priority of
a priority-based scheduler to the TTS subset of tasks, and lets the
PBS subset execute during the spare time left by the time-triggered
workload, using the rest of priority levels. The time-triggered sched-
ule is driven by an Ada timing event handler (like a timer interrupt
handler), which allows the system to react promptly to the arrival of
time events, hence keeping a reduced release jitter for TTS tasks.

Combining both scheduling approaches helps mitigating their draw-
backs and taking advantage of their benefits. For example, the time-
triggered load can be reduced to just the set of more jitter-sensitive
tasks (such as control or communication tasks) and the rest of tasks
(logging, user interface, optimisation tasks,...) can benefit from a
priority-based scheduler. This mitigates the difficulty of designing
the TT schedule, since there are less tasks to consider. For the rest
of application tasks, scheduled by the PBS, the designer is relieved
from the burden of building an offline schedule for them. The price
to pay with this combined scheduling approach is that, ultimately,
the underlying scheduler is a PBS, which cannot be as efficient as a
TTS since it has to execute context switches between tasks.

In summary, combined scheduling (TTS-PBS) gives good results for
jitter control, slot-based communication and reuse of pre-designed
TT schedules. Our aim in this paper is to adapt the technique pro-
posed and implemented in [7, 6] to Ravenscar, towards facilitating
the adoption of this approach in High-Integrity, certifiable, real-time
and embedded systems, which is the target niche of the Ravenscar
profile.

The rest of this paper is organised as follows. Section 2 describes
the system model with regard to the time-triggered subset only,
given that our model does not modify the fixed-priority, preemptive

Volume 39, Number 2, June 2018 Ada User Jour na l

J. Real , S. Sáez, A. Crespo 125

Figure 1: A 12-slot time-triggered plan. Slots marked 2, 4 and 10 are regular slots for works 1 and 2, as indicated;
slots 0 and 6 are continuation slots for work 1; slot 8 is an optional slot for work 3; and slot11 is a mode change slot.
The rest are empty slots.

scheduling model already supported by the Ravenscar profile. Sec-
tion 3 proposes a variety of behavioural patterns for time-triggered
works that must be executed according to the TT plan, and in Sec-
tion 4 we describe design and Ravenscar implementation aspects
of the TT scheduler. We present some experimental results in Sec-
tion 5, focusing on jitter measurements obtained from running the TT
scheduler on an embedded board using ARM’s STM32F407VGT6
micro-controller unit. We finally present our conclusions in Sec-
tion 6.

2 System Model: the Time-Triggered Plan
Our system model combines two disjoint subsets of tasks: (i) a
subset scheduled according to an offline, static time-triggered plan;
and (ii) another subset of tasks scheduled under a priority-based,
preemptive scheduler. The two subsets run on a common priority-
based, preemptive scheduler, but the time-triggered workload always
takes precedence over the priority-based subset. Due to this reason,
the set of priority-scheduled tasks does not interfere the execution
of the TT plan.

Since we are aiming at implementing our model with the Ravenscar
tasking profile restrictions, the priority-based subset can only be
scheduled based on a fixed-priority scheme such as Rate Monotonic
or Deadline Monotonic [4, 3]; but nothing in our model precludes
the use of dynamic priority algorithms such as EDF [4] for this
second subset, or even a combination of schedulers using different
priority bands. For this reason, we will limit ourselves to describe
the system model for the time-triggered plan.

A time-triggered plan is a cyclic sequence of actions to be executed
at particular points in time. The plan is described by means of an
ordered list of time slots, each of its own slot duration. If a slot starts
at time t, its lifetime goes from t to t+Slot Duration. There are no
gaps between slots: each slot starts just at the end of the previous
slot in the plan. In other words, the duration of the plan is the sum
of slot durations.

Figure 1 shows a 12-slot example plan, with slots numbered from 0
to 11. Apart from its duration, each slot is characterised by the type
of actions to take during the slot lifetime. Each slot has a particular
mark indicating its type (digits and other symbols whose meaning
will be described in a moment). Using the time scale in milliseconds
at the bottom of the plan, it can be seen that the plan has a duration
of 80 ms, slot 0 has a duration of 5 ms, slot 11 takes 6 ms from time
74 ms to 80 ms, etc.

There are five possible types of slots in a plan:

• A regular slot defines a time interval reserved for the execution
of a time-triggered task (a work). It is denoted by a regular
Work_Id, a strictly positive integer value that identifies the
particular work to execute during the slot. In Figure 1, slots
2, 4 and 10 are regular slots corresponding to works 1 or 2 as
indicated. The underlying TT scheduler will make the work

start to execute as soon as feasible after the start time of the
slot.

The duration of a regular slot must be sufficient, by design,
to accommodate the worst-case execution time of the work it
serves. If a work overruns its regular slot then the scheduler
will resort to raising a Program_Error exception, since an
overrun violates the schedulability assumptions of TTS. If,
on the contrary, a work completes before the end of the slot
duration, then the rest of the slot remains available for PB tasks.
A TT task must always be ready to use its allocated regular slots
in the plan. Failing this, the scheduler will raise Program_Error
as well. The next type of slot is more permissive in this regard.

• An optional slot is like a regular slot except that it can be
omitted. A TT task may decide to use or not to use an assigned
slot in the plan. If it does use it (the task is ready to start
when the optional slot starts) then it has the same semantics
as a regular slot, including overrun control at the end of the
slot. But if the task is not ready at the start of the slot, it is
not considered an error and the slot duration is made available
for PB tasks. In Figure 1, slot 8 is an optional slot for work 3,
indicated with parentheses.

Optional slots are useful for tasks that may or may not require
to use their allocated slot, such as a communication task when
it has nothing to say; or a sporadic task whose activation event
has not occurred.

• A continuation slot can be regarded as a special kind of regular
slot, in the sense that it is associated to a particular Work_Id.
In Figure 1, slots 0 and 6 are continuation slots. They are
marked with a regular Work_Id plus a letter ‘c’, indicating
continuation.

What is special about these slots is that the work they host
does not need to be completed by the end of the slot; it can
be continued in future slots. Failing to finish by the end of a
continuation slot is not considered an overrun. Instead, the
work is held at the end of the slot and resumed at the start of the
next slot marked with its Work_Id. There may be a number of
consecutive continuation slots for a given work. Overrun will
only be checked when the plan reaches a regular slot for this
work. We will refer to the last, non-continuation slot of a series,
as a terminal slot. In Figure 1, slots 4 and 10 are terminal slots
for work 1, given that they are preceded by continuation slots
0 and 6 for work 1, respectively.

This type of slots are useful to split a large time-triggered task
into smaller pieces in a way that is essentially transparent to
the task code. We will visit this pattern in more depth in Sec-
tion 3. Continuation slots require asynchronously holding and
resuming a running task, which in turn requires support from
the runtime system. This is the reason why our implementation
of the TT scheduler (Section 4) is an extension of the runtime
system, in the form of a new package Ada.Dispatching.TTS.
The hold/release mechanism is indeed to be taken very care-
fully, specially with regard to its interaction with protected

Ada User Jour na l Vo lume 39, Number 2, June 2018

126 Ravenscar Suppor t for T ime-Tr iggered Schedul ing

Figure 2: Simple TT Pattern. The TT task uses Work_Id = 1. It just waits for the start of the next slot with that Work_Id
and then executes its application code.

actions1. But it is doable under certain restrictions as we will
show later.

The following two types of slots correspond to scheduler actions ex-
clusively and they have no associated time-triggered task to execute.

• An empty slot defines a time interval during which no TT
activity is planned. This is useful for inserting gaps in the plan
where they are needed, making the CPU available to priority
scheduled tasks. Note that, even though there is no application-
specific activity to execute during an empty slot, there will
be scheduler actions executed at the beginning of the slot, as
described in subsection 4. In Figure 1, slots 1, 3, 5, 7 and 9 are
empty slots.

• A mode-change slot is similar to an empty slot in the sense
that it has no associated work to execute. But additionally, it
defines the times in the plan where it is possible to substitute
the current plan with a new one. By placing mode change slots
in the plan, the designer determines the points where the system
can admit a mode change. At the start of a mode-change slot,
the TT scheduler will check whether there is a pending mode-
change request to process. If there is one, then the new plan
will start executing at the end of the mode-change slot. The
change will be immediate if the mode-change slot duration is
defined to be zero. The ability to change mode (substitute the
current plan with a new one at run time) introduces a degree
of flexibility that off-line, static schedules do not possess by
nature. In Figure 1), slot 11 is a mode change slot, indicated
with a curved arrow.

For comparison with the TT plan model we defined in previous
papers [7, 6], the model we have just defined introduces the new
types of continuation and optional slots. The former are motivated
by feedback received from participants at the 18th International Real-
Time Ada Workshop suggesting that “[...] one should be able to
divide a long-running time-triggered task into segments that would
be executed across several slots [so that] spreading the TT task
execution across several slots [would give] chances for other tasks
to execute in between these slots." [5]. With this type of slots we want
to give support to this concept, although it has relevant implications
that we will present in Section 3, in the context of patterns using this
type of slots.

Finally, note that in this model we are assuming that a plan is exe-
cuted on a single CPU: there are no overlapping slots. This assump-
tion will help us keep the rest of this paper as simple as possible.
However, note also that in a multiprocessor system, the model is
applicable provided that it is fully partitioned, i.e., there is only
one plan per processor and tasks are statically fixed to CPUs. With

1This difficulty alone can explain the general lack of support for the
standard package Ada.Asynchronous_Task_Control

careful synchronisation of plans, it is also conceivable to allow data
sharing between tasks running in different CPUs. Beyond this re-
strictive setup, we have also suggested to use controlled forms of
migration between plans, so that a task can alternate slots in plans
on different processors, to balance the overall TT workload [7]. But
we will assume a single processor platform for the rest of this paper,
except when explicitly mentioned otherwise.

3 Time-Triggered Task Patterns
The model described in the previous section grants time slots for the
execution of TT tasks, leaving time gaps to be used at lower priority
levels by PB tasks. The ability to use both regular and continuation
slots, opens the possibility to define a number of behavioural patterns
for the TT tasks using them. This section proposes a set of such
patterns. From some of these patterns we will derive requirements
for the design and implementation of the TT scheduler that will be
presented in Section 4.

3.1 Simple TT Task Pattern
The simplest pattern we can think of is a TT task that accommodates
all its execution time within the duration of one slot. The task
structure is simply an infinite loop where the task waits for the
arrival of its next slot and then executes its sequence of statements,
just before suspending itself again until the arrival of its next slot.

Figure 2 represents an example of this pattern, showing the execution
of three iterations of a simple TT task. The task uses Work_Id =
1 (for example) in a call to the scheduler to wait for the arrival of
the next slot marked with this Work_Id (Wait_For_Activation(1) in
the example). Slots assigned to a simple TT task must be all regular
slots. At the beginning of each slot, the scheduler releases the work
and lets it run at the highest priority among all application tasks.
The priority-based subset is therefore disabled to run, since it must
use strictly lower priorities than TT tasks. When the task completes
within the slot duration (first and second cases of the example in
Figure 2), it is suspended by a new call to Wait_For_Activation. The
time not used by the TT task becomes available for the lower-priority
PB tasks.

If, for whatever reason, the execution time of a simple TT task
exceeds the slot duration, this is considered a hard deadline violation
and Program_Error is raised. The TT scheduler is thus in charge of
making this check at the end of regular slots.

A simple TT task may have its own local state, which is kept across
successive releases. It can also share data with other simple TT tasks,
because this type of task executes in mutual exclusion with other
simple TT tasks (there are no overlapping slots). If the task needs to
share data with preemptable PB tasks (or sliced TT tasks, as we’ll
see later), then it needs to do it via protected objects. In such case,
the TT task may experience blocking that must be taken into account
when deciding the slot duration.

Volume 39, Number 2, June 2018 Ada User Jour na l

J. Real , S. Sáez, A. Crespo 127

Figure 3: Initial-Final Pattern.

Figure 4: Sliced Task Pattern. Like a simple TT task, it just calls Wait_For_Activation and then performs its work. But
execution of the work can be split accross several consecutive continuation slots.

3.2 Initial-Final Pattern (I-F)
The Initial-Final pattern (I-F, for short) is for TT tasks that can be
subdivided in two parts, both with strict jitter requirements. This
pattern can be easily obtained by sequential composition of two
simple TT patterns, as in Figure 3, which shows the execution of
two iterations of an I-F task. The loop is split in two parts, first
the initial and then the final, and both use the same Work_Id when
calling Wait_For_Activation – not necessarily as a restriction, but just
to keep the plan more human-readable. Note that the slots for the
initial and final parts need not have the same duration. Overrun must
be checked for both parts.

Regarding data sharing, the considerations we made about simple
TT tasks apply also to the case of an I-F task. Furthermore, commu-
nication between the initial and final part is straightforward, since
they are both the same task.

3.3 Initial-Mandatory-Final Patterns (I-M-F and
I-{M}-F)

This pattern (I-M-F, for short) uses three consecutive regular slots to
perform a logically related sequence of TT actions. This scheme is
typical in embedded control systems, where the initial part acquires
some environment data, the mandatory part does some calculations
with the acquired data, and the final part applies the results of the
mandatory part to actuators of the controlled system.

The logical structure is defined by three calls to Wait_For_Activation
using the same Work_Id, preceding the statements of the initial,
mandatory and final parts. The same considerations regarding over-
run detection and data sharing we made for simple and I-F tasks,
apply to I-M-F tasks: overrun is checked for each and every part of
the task.

Actually, this pattern can be generalised to a form I-{M}-F, where
there are one or more slots dedicated to execute parts of the manda-
tory section, each part with overrun control. If we do not want
overrun control in all the mandatory slots, then we need to use
continuation slots, as the following patterns do.

3.4 Sliced TT Task Pattern

This pattern allows one to break a long running TT task into
slices in a way that is transparent to the application code, i.e.,
it does not require the task to make successive explicit calls to
Wait_For_Activation at particular points of its execution. Slicing is
dynamic and occurs at run time, rather than statically hardcoded. The
TT scheduler will stop and restart the task at points dictated by the
plan. A sliced TT task requires the use of one or more continuation
slots, ending with a terminal, regular slot.

Figure 4 shows two iterations of execution of a sliced TT task. This
task can make use of up to three consecutive slots, which is reflected
in the plan as two continuation slots (marked ‘1c’) and one terminal,
regular slot (marked simply ‘1’). The task structure does not differ
in structure from the simple TT task described in Section 3.1, but the
semantics are totally different due to the use of continuation slots.
In other words, one needs to look at the plan to distinguish a simple
TT task from a sliced TT task.

In the two iterations shown in Figure 4, the task is held (by the TT
scheduler) at the end of exhausted continuation slots, and resumed
at the start of its next slot in the plan. Exceeding the lifetime of a
continuation slot is not an overrun situation. In the first iteration, the
task completes its work within its last slot (a regular slot). In the
second, it does not finish by the end of the regular slot, hence the
scheduler raises a Program_Error exception.

These two cases are relatively simple to consider, but we need to
look into more possible situations. Given the pattern structure, the
task will call Wait_For_Activation as soon as it is done with the
Do_My_Work_Sliced sequence of statements. This may well happen
during a continuation slot, before the terminal slot of the sequence.
The task may use up to three slots to complete, but it could take less.
If that is the case, then the scheduler needs to ignore the pending call
to Wait_For_Activation until the first slot of the next sliced sequence.
An early wait for activation must be therefore be propagated until
the next continuation slot after the next terminal slot, i.e., the next
start of a sliced sequence.

Ada User Jour na l Vo lume 39, Number 2, June 2018

128 Ravenscar Suppor t for T ime-Tr iggered Schedul ing

Figure 5: Two iterations of a three-slot sliced task completing before the terminal slot, requiring propagation of early
Wait_For_Activation calls.

Figure 6: Two variants of tasks with a sliced mandatory part: I-Ms-F and IMs-F.

Figure 5 shows the possible cases of early completion of a three-
slot sliced task. In the first case, the task completes in the second
slot of a three-slot sequence. When the terminal slot of this se-
quence arrives, the scheduler has to avoid waking up the task at the
start of the slot and checking for overrun at the end. The effect of
Wait_For_Activation must be postponed and the task must remain
blocked waiting for the start of a new sequence of slots. This is
marked as “Propagate" in Figure 5. In the second case, the task
completes even earlier, during the first slot of the sequence. The
effects of Wait_For_Activation must be propagated to the next two
slots. A new sequence of the sliced TT task starts after the next
regular (terminal) slot.

As indicated previously, the need to hold and resume a running
task has implications that must be taken into account. The problem
is specially relevant if the sliced task shares data with other TT
tasks or PB tasks. Since the task can be held asynchronously, this
data sharing can only be protected. But holding the task while it is
running a protected action is not acceptable, and letting it finish a
long protected action could enlarge the release jitter of the next slot.
To mitigate the effects of these two issues, at a cost, there are two
design aspects to consider:

1. A sliced task can only share data with other TT or PB tasks by
means of a protected object. To avoid holding the task while
it is running a protected action, the ceiling priority of such
protected object must be set at a level that effectively disables
interrupts. This is the only way to avoid the execution of the
(interrupt-driven) TT scheduler while a sliced task is executing
a protected action.

2. As a consequence of the previous point, protected actions in-
volving a sliced TT task must be as short as possible. Typically,
they should only involve word-sized data exchanges and per-
haps a simple condition evaluation. As few cycles as possible,
because we are meanwhile blocking interrupts. If the protected
action cannot be so short, then there are still alternatives. One

is to design the plan so that all continuation slots are followed
by empty slots of sufficient duration to absorb the potential
blocking time of the runtime system. If this is not possible,
because the data exchange required is large, then it is still pos-
sible to make use of multiple buffering techniques in order to
reduce the need for mutual exclusion to just the time to swap a
pointer.

A final consideration with continuation slots and their use by sliced
TT tasks has to do with mode changes: they are not allowed in
the middle of sliced sequences, because track of an ongoing sliced
sequence may be lost when switching from one plan to another. This
is easy to avoid by design, because the plan has to determine the
exact points when mode changes may occur, by explicitly including
mode change slots.

3.5 Initial-Mandatory_Sliced-Final Patterns
(I-Ms-F and IMs-F)

The I-Ms-F pattern is a variant of the I-M-F pattern (as described in
Section 3.3), where the mandatory part is sliced (as in Section 3.4).
The IMs-F pattern (note the missing dash between the ‘I’ and ‘M’
parts) is a slight modification of the former that allows the mandatory
part to start executing immediately after the initial part, without
waiting for the next slot in the plan. Both patterns have the same
representation in the plan, taking one regular slot for the initial part
(so that it is subject to overrun control), then several continuation
slots for the mandatory part, and one regular slot for the final part.

Note that the IMs-F pattern requires specific support from the TT
scheduler. Since IMs-F allows the mandatory sliced part to start as
soon as the initial part is done, during the first regular slot, we are
effectively transforming the semantics of this particular regular slot
into that of a continuation slot. The scheduler must therefore be
informed of the termination of the initial part so that, if the initial
part is not done by the end of the slot, then there is an overrun;
but if it has completed, then the slicing regime has started and the

Volume 39, Number 2, June 2018 Ada User Jour na l

J. Real , S. Sáez, A. Crespo 129

Figure 7: Example pattern of a task with a non-TT part: I-P-F (Initial-Priority_Based-Final)

hold/resume mechanism has to apply to the already started sliced
mandatory part.

Figure 6 shows these two patterns for a sliced mandatory part of two
slots. The top line represents the TT plan, common to both patterns.
The structures of the patterns are shown to the left. The middle row
represents a normal execution of an I-Ms-F task. After completing
the initial part before the end of the first slot, the task waits for the
next activation, hence delaying the start of the mandatory part to the
next slot. Since the first slot is regular, the initial part runs under
overrun control. The sliced mandatory part takes the next continu-
ation slot and a part of the second continuation slot and then waits
for the arrival of the terminal slot, which it uses to execute the final
part. In the IMs-F pattern in Figure 6, use of this scheduler service is
represented by the call to Continue_Sliced. If the scheduler has not
received this call by the end of the first slot, then the initial part has
overrun; otherwise, the initial part was completed during the first
slot and the running task is held/resumed as an sliced subsequence
of this pattern. The final part of the pattern requires a previous call
to Wait_For_Activation, as already described for other patterns with
a final part.

3.6 TT Patterns with Non-TT Parts

More than just one particular pattern, although we will be using one
as an example, this section introduces a scheduler mechanism that
makes it possible for a TT task to include parts that are executed in
the PB level, in competition with the priority-scheduled tasks subset.
The mechanism (Leave_TT_Level) allows a TT task to abandon the
TT level and continue execution under the PBS regime. This is useful
to execute parts that are not subject to strict jitter requirements and
that may be difficult to integrate in the TT plan.

As an example, consider a control task with jitter-sensitive initial and
final parts. These parts are used for reading the plant state and for
sending commands to actuators, respectively. After reading sensors,
the initial part rapidly calculates a first approximation to the control
output, to be later applied during the final part. Until that time arrives,
an intermediate part tries to improve this calculation by means of
an optimisation algorithm that may take disparate execution times,
depending on changing environment conditions (e.g., the number of
objects detected by a radar). If this middle part had to be included
in the TT plan, then the plan would have to provide sufficient slots
for the worst-case execution of the optimisation algorithm. But if
we could execute this optimisation part as any other PB task, with a
selected priority below the TT level, then it would not require slots
in the plan, hence keeping it simpler. At the end of the middle part,
the task would go back to the TT level to execute the final part with
minimal jitter and using the best output possible in the available
time.

Figure 7 shows the execution of such Initial-Priority_Based-Final
pattern, or I-P-F. The pattern requires just two regular slots in the
plan for the initial and final parts. In the figure, there is a regular
slot for another, unrelated work (Work_Id = 2) in between these
two slots of the I-P-F task, which uses Work_Id= 1. The initial
part executes during the first slot and, when completed, issues a call
Leave_TT_Level to inform the scheduler that the task continues with
the execution of the non-TT part at a priority in the PB region. From
that moment on, the PB part continues in competition with higher-
priority PB tasks and other TT tasks, such as that with Work_Id = 2.
The PB part eventually completes with a call to Wait_For_Activation,
which makes the task return to the TT level and wait for a slot to
execute the final part.

The implementation of the Leave_TT_Level mechanism requires
changing the priority of the TT task at runtime, which, at first sight,
appears to be in contradiction with the Ravenscar model of fixed
priorities. However, a Ravenscar runtime has to actually support a
limited form of dynamic priorities, because it is needed to implement
the Ceiling_Locking policy for protected objects. Handling PB
parts as required by Leave_TT_Level can be supported as well in
Ravenscar. Without going into the implementation details that we
will visit in Section 4, the problem of scheduling a task with TT
and PB parts can be seen as if the task had a base priority in the
PB level, at which it runs its PB phase, and an active priority at
the TT level when it runs in a TT slot. The mechanism does not
need to change the priority of a task other than the running task,
as for Ceiling_Locking case. And the changes between base and
active priorities occur only as a result of statements executed by the
same task that is affected by the priority changes, as is the case for
protected actions..

The Leave_TT_Level mechanism can also be used to compose other
interesting patterns. For example, a periodic PB task with one TT
phase, to be executed during a regular slot in the plan. This slot
could be used to synchronise the task with the arrival of slots in the
plan, for mutually exclusive communication or data exchange with
other tasks, or for accessing a shared resource in general, such as in
a slot-based communication protocol.

The P-[F] pattern described now, is another pattern using non-TT
parts and that also serves to illustrate the use of optional slots. This
pattern models a periodic, PB task, that may or may not use a TT
regular slot, for example to synchronise or timely communicate
with other TT or PB tasks. At the TT level, the task requires just a
sequence of optional slots conveniently spread across the plan. At
the PB level, the task executes as any other priority scheduled task.

Figure 8 shows three full iterations of a P-[F] task with a periodic
PB part. In the first iteration, the task completes the priority-based
part and ends up calling Wait_For_Activation, because the boolean
Needed happens to be True. As a result, the final part is executed at

Ada User Jour na l Vo lume 39, Number 2, June 2018

130 Ravenscar Suppor t for T ime-Tr iggered Schedul ing

Figure 8: The P-[F] pattern (Priority_Based-Optional_Final) combines the use of non-TT parts and optional slots.

the TT level at the start of the next (optional) slot for this work. In the
second iteration, Needed is False and hence the task skips the call
to Wait_For_Activation and re-enters the loop to execute the delay
sentence instead. Consequently, the task skips its next slot in the
plan. If the slot was regular, then this no-show situation would end
up in Program_Error. But because the slot is optional, the scheduler
knows that this absence of a task waiting for a just started slot is
intended and taken care of by the application. If required by the
application, synchronisation between time bases of the PB and TT
parts can be provided by a similar pattern that reads the clock during
the TT part to obtain a new value for Next.

3.7 Patterns: Looking back
As we mentioned in the introduction, our aim with this work was
to revisit our previously proposed model and implementation of
combined TT-PB scheduling [7, 6]. The goal was to make our imple-
mentation Ravenscar-compatible, and hence making it susceptible
for consideration in the High-Integrity domain. Given that Raven-
scar is a restrictive subset of the tasking model of Ada, one could
think that, a priory, something will need to be sacrificed. We have
found that this almost not true.

Looking back at the patterns we proposed in [7, 6], the only mecha-
nism we have not included is the self cancellation mechanism, which
requires the use of Ada’s asynchronous transfer of control, a feature
that is (wisely) absent in Ravenscar, because it is not an adequate
feature in a High-Integrity context, due to the indeterminism it in-
troduces. So this is a sacrifice that stems logically from our new
context assumptions.

But it is to be noticed that, despite the Ravenscar restrictions, we
have been able to replicate all the functionalities provided by the
full-Ada scheduler —the cancellation mechanism mentioned above
was implemented by the TT tasks, not the scheduler—. In addition,
we have extended the model to include continuation and optional
slots, which suggest a number of new patterns.

4 Design and Implementation Details
The time-triggered plan dictates the actions to be taken by the TT
scheduler at the start of each slot. The data structure that represents
the plan is an array of slot descriptors, each with one field to indicate
the slot duration and another three fields to characterise the slot as
follows:

• Work_Id - This field contains either a positive value identifying
a TT task, or an indication of empty slot or mode change slot,
two reserved non-positive values.

• Is_Continuation - A boolean that marks the slot as a continua-
tion slot.

• Is_Optional - A boolean indicating whether the slot is an op-
tional slot or not.

Another important source of information for the scheduler is the
status of all TT tasks. The scheduler uses the work status to de-
termine the actions to be taken during a slot switch. The status
of a TT work is determined by the following boolean fields of a
Work_Control_Block record:

• Has_Completed - Indicates if a single-slot work or an sliced
work does not require more time at TT level.

• Is_Waiting - Indicates whether the work task is waiting for a
new slot or not. This flag is set to True when the work calls
Wait_For_Activation.

• Is_Sliced - When this flag is True, it means that this work is
currently running sliced, hence it may need to be held/resumed.
This flag is set to False when the work is at the start of a
terminal slot.

In our implementation, the TT scheduler is the handler of a timing
event that is set to trigger at the start of each slot in the plan. Hence
it executes at the highest interrupt priority (ARM D.15 12/2 [2]).
Based on the slot and work descriptors, the scheduler decides the
actions to take during a slot switch. Table 1 describes some of these
actions, limited to the case of regular slot processing, for short.

The top part of Table 1 lists two cases of actions to take at the end
of a slot. These are Hold task, to hold the running TT task when
it exhausts a regular slot and must continue sliced in future slots;
and raise Program_Error when overrun is detected, i.e., the task
has not completed and it is not running sliced. To support Hold, our
implementation of Ada.Dispatching.TTS uses runtime operations to
suspend and extract from the ready queue the low-level thread behind
the TT task. This is why a sliced part can only use protected objects
with priority ceiling at the highest interrupt priority, as mentioned in
Section 3.4.

The bottom part of Table 1 lists scheduler actions related to the
immediately starting slot. The actions that are common to most
cases in this table (denoted CA) are to mark the work as sliced when
it enters a continuation slot, and to set the timing event handler to the
end of this starting slot. Transferring the Is_Continuation property of
the slot to the Is_Sliced attribute of the work effectively propagates
the sliced condition of the TT task until the terminal slot, for which
Is_Continuation will be False.

The scheduler must also perform some actions upon calls to its public
services. These may affect to the work status and to the priority of
the underlying threads. It is the task itself who changes its own work
status and priority, if needed, while running a scheduler protected

Volume 39, Number 2, June 2018 Ada User Jour na l

J. Real , S. Sáez, A. Crespo 131

Table 1: Some actions to be taken by the scheduler at a slot switch. Actions with regard to the exhausted slot (Actions
at END of slot) are shown in the top part, Actions related to the immediately starting slot (Actions at START of slot) take
the bottom part. These actions depend on work status and type of slot.

Work status Actions at
END of slotHas_Completed Is_Sliced

False True Hold task
False False Raise Program_Error

Work status Next Slot Actions at
START of slotHas_Completed Is_Sliced Is_Waiting Is_Optional

True True Common Actions (CA)*
True False True Release Task + CA*
True False False True CA*
True False False False Raise Program_Error
False True Resume Task + CA*

*Common Actions ≡Work.Is_Sliced← Slot.Is_Continuation; Set_Handler

Table 2: How and when the work status and TT task priority are modified by the scheduler.

Invoked procedure Changes to work status Changes to task prio
Has_Completed Is_Sliced Is_Waiting

Wait_For_Activation True True Priority’Last
Continue_Sliced True
Leave_TT_Level True Task’Base_Priority

operation. Table 2 summarises these update operations. For example,
when a TT task invokes Leave_TT_Level, its work status is marked
as completed and its priority demoted to the task’s base priority –
so the base priority of the task implementing the TT pattern must
be determined according to the required priority level when it runs
in the PB level. For readers interested in the full code of the TT
scheduler, it is available on GitHub [8].

5 Experimental Results
To evaluate the performance of the scheduler, mainly in terms of
jitter, we have used a workload similar to the one we used in [7]. In
this case, the hardware platform is a STM32F4 Discovery board at
168 MHz clock frequency, running a modified version of the GNAT
ravenscar-full runtime from AdaCore’s GNAT GPL 2017.

Apart from adding the Ada.Dispatching.TTS package to the runtime,
we have changed the timing event and delay resolution of the GNAT
runtime from the original 1 ms to 10 µs. We have measured an
additional overhead of 3.5% due to this modification.

Figure 9 shows the cumulative frequency histogram of measured
release jitters of three TT tasks (W1..W3), one simple and two I-F
tasks, and two PB tasks (T4 and T5). The jitter is measured with
respect to the theoretical activation time, i.e. the start of the next slot
for TT tasks or the time expression used in the delay statements of
the periodic PB tasks. As it happened with the previous full-Ada
implementation, the PB tasks suffer from quite disperse release jitter,
due to interference from TT tasks and higher priority PB tasks. Their
minimal jitter is however shorter than that of the TT tasks, due to
the TT scheduler overhead. Note that the jitter for TT tasks is not
only short but also very predictable, always within the range of 22
to 24 µs.

Taking this high predictability into account, we have tested an op-
timisation strategy that requires precise characterisation of the TT
scheduler overhead. The optimisation consists in reprogramming the

TT scheduler for the next slot time minus a fixed offset (20 µs in our
case) so that the TT scheduler overhead is not paid at the start, but
at the end of the TT slot. This overhead is unavoidable and has to be
taken into account when the plan is built, but moving it to the end of
the slot drastically improves the release jitter of the TT tasks. Figure
10 shows the release jitters obtained after applying this optimisation,
which now range from 3 to 4 µs. These results clearly outperform
those previously obtained with a full-Ada implementation using a
MarteOS [1] on a Pentium @ 800 MHz, that raged from 30 to 70 µs.

6 Conclusions
This paper has presented the results of transforming a full-Ada archi-
tecture for combined TT-PB scheduling [7, 6] to make it Ravenscar-
compatible. Our aim was to make this scheduling strategy compati-
ble with a more appropriate programming model for High-Integrity
systems. Our first efforts focused on a user-level library supporting
the scheduler, but we soon moved to a runtime library, so that the
scheduler could support continuation slots (via hold/resume) and
non-TT slots (via priority demotion), thus improving expressiveness
and making room for more possible patterns. We have also intro-
duced the concept of optional slot, and included provision for, now
tolerable, no-show situations.

In addition, we have made Ada.Dispatching.TTS a generic package,
where the number of regular work identifiers is a generic parameter.
This allows us to keep the size of data structures to the minimum
necessary for the number of TT tasks to be scheduled. The experi-
mental results are encouraging, even better than those obtained in
full-Ada with a much faster processor. No doubt, the simplicity of
the Ravenscar runtime has to do with these results.

References
[1] M. Aldea and M. González-Harbour (2001), MaRTE OS: An

Ada Kernel for Real-Time Embedded Applications, Reliable

Ada User Jour na l Vo lume 39, Number 2, June 2018

132 Ravenscar Suppor t for T ime-Tr iggered Schedul ing

Figure 9: Release jitter on a STM32F4 Discovery at 168 MHz

Figure 10: Release jitter with overhead anticipation

Software Technologies - Ada Europe 2001, Lecture Notesa in
Computer Science, 2043:305–316.

[2] ISO/IEC-JTC1-SC22-WG9 (2012), Ada Ref-
erence Manual ISO/IEC 8652:2012(E),
http://www.ada-europe.org/manuals/
LRM-2012.pdf.

[3] J. Leung and J. Whitehead (1982), On the complexity of fixed-
priority scheduling of periodic, real-time tasks, Performance
Evaluation (Netherlands), 2(4):237–250.

[4] C. Liu and J. Layland (1973), Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment, Journal of the
ACM, 20(1):46–61.

[5] J. Real and P. Rogers (2016), Session Summary: Experience,
Ada Letters, 36(1):101–102.

[6] J. Real, S. Sáez, and A. Crespo (2016), Combined scheduling
of time-triggeed plans and priority scheduled task sets, Ada
Letters, 36(1):68–76.

[7] J. Real, S. Sáez, and A. Crespo (2016), Combining time-
triggered plans with priority scheduled task sets, In M. Bertogna
and L. M. Pinho, editors, Reliable Software Technologies –
Ada-Europe 2016, volume 9695 of Lecture Notes in Computer
Sciencem, Springer.

[8] S. Sáez and J. Real (2018), TTS Ravenscar runtime,
https://doi.org/10.5281/zenodo.1168723.

Volume 39, Number 2, June 2018 Ada User Jour na l

133

Position Paper: Clock Support in Ada

Kristoffer Nyborg Gregertsen
SINTEF Digital, Norway; email: kristoffer.gregertsen@sintef.no

Abstract

This position paper briefly revises the clock support in
the Ada programming language, including execution
time clocks and timers for tasks and interrupts. It is ar-
gued that the standard library would benefit from a more
coherent handling of clocks, in particular with in the
lack of a shared interface for clocks and timers, and that
better support for high-precision real time (TAI/UTC)
should be provided.

1 Background
Most real-time control systems are of a distributed nature
and need to have a shared system time of sufficient precision
between nodes. Examples of such systems can be found
within aerospace, robotics and automation domains. Having a
shared system time allows measurements from different nodes
to be correctly time-stamped and correlated, and synchronous
events to be orchestrated. As all clocks have a certain drift
due to inaccuracies in the oscillators and temperature changes,
it is necessary to discipline them by distributing a time signal
to compensate for this drift.

The passing of time is defined by International Atomic Time
(TAI) reference, that is made up of a number of atomic clocks
around the world distributing time signals between them. The
measurements from these clocks are compensated for that
time passes at slightly different pace due to differences in
gravity. The TAI time reference is monotonic – it does not
have any jumps. UTC time is based on TAI, but is com-
pensated for the variances in earths rotation by adding an
occasional leap seconds at the end of the year. Leap seconds
are announced in advance, and special care needs to be taken
to handle them properly in systems that use UTC time. As
of May 2018, TAI is 37 seconds ahead of UTC due to leap
seconds.

For most purposes the Network Time Protocol is the most
convenient way of getting access to UTC. This protocol con-
tinuously retrieves time from time servers and estimates the
drift of the computers internal clock, continuously adjusting
it so to avoid abrupt changes. The precision of NTP is in the
millisecond range, but can be subjected to offset and jitter if
the latency of the network is not consistent. The Precision
Time Protocol (PTP) achieves sub-microsecond precision by
measuring the latency through the network, but also requires
special Ethernet switches and network cards. PTP is used
to keep distributed computer systems time synchronized, for
instance to acquire scientific measurements. For instance,

the White Rabbit Project [4] at CERN uses PTP and special
hardware to synchronize experiments over a large area.

To get access to a high-precision UTC signal that can be dis-
tributed in the local network it is most convenient to use a
GNSS receiver, listening to GPS/Galileo/GLOSNASS/Bei-
Dou satellites that distribute UTC time. Such clocks will
typically be synchronized with UTC at sub-microsecond off-
set, and distribute time signals with protocols such as PTP
or NTP. These protocols are supported by operating systems
such as GNU/Linux, Mac OSX, Windows, QNX and others.
It is also possible to add support in embedded systems such as
the Xilinx UltraScale+ MPSoC by using PTP IP cores, or by
using a combination of time messages and Pulse Per Second
(PPS) signals in embedded systems to correct the internal
oscillator.

2 UTC support in Ada
The package Ada.Calendar is the standard way of getting the
system time in Ada, and has been present since Ada 83. The
language defines the type Duration for time duration, and the
type Time for time instants that can be retrieved by the Clock
function, and functions for getting the year, month, day and
intra-day second of that time instants. The standard requires
that the value of Duration’Small should be no greater than 20
microseconds, but it could also be of nanosecond precision if
the implementation allows. The constant System.Tick gives the
duration of which the clock will return the same value. Sub-
packages of Ada.Calendar support time-zones, retrieval of UTC
offset, and time arithmetic including historical leap seconds.

For use in real-time systems, annex D of the standard has
had support for high-precision monotonic time since Ada 95.
This package has more stringent requirements for precision,
and also requires the clock to be monotonic with no abrupt
changes as this would lead to problems for real-time applica-
tions, for instance when using periodic tasks with delay until .
The package supports getting the unit for both time instants
and time spans, and the standard requires that these shall be
no greater than 20 microseconds. Also, it is required that the
tick of the real-time clock shall be no greater than 1 millisec-
onds. Implementations are required to document the metrics
of the clock compared to the TAI reference, such as drift and
maximal clock jumps. As stated before, a clock that is not dis-
ciplined by a time signal will drift over time, and this drift rate
will vary among individual clocks and with temperature. It
will thus be hard for implementations to give tight bounds on
the drift for undisciplined clocks, and for disciplined clocks
it would be more relevant to give a bound to the maximal
offset to UTC and information of how time is adjusted. For

Ada User Jour na l Vo lume 39, Number 2, June 2018

134 Posi t ion Paper : C lock Suppor t in Ada

general purpose operating systems like GNU/Linux, it would
of course be hard to document this at all as it depends on how
the system administrator has configured the system.

The developer should be able to know whether a reliable
clock synchronization is available or not. This is must be
done as a query at run-time, for instance using a routine as
Last_UTC_Synchronization to get the time point at which the clock
was last synchronized, or a function for querying the a more
general state of the clock synchronization. It does not suffice
to know that the the system supports time synchronization, as
this synchronization can be broken due to a range of different
errors that can not be predicted in advance, such as network
error or snow on the GNSS antenna. Also, it may take some
time at start-up to achieve time synchronization.

Furthermore, even though the real-time clock may be imple-
mented by a system clock that is kept in sync with TAI, there
is no standard way of retrieving an UTC timestamp from
the real-time clock. Such a timestamp could be made from
the calendar package, but even though the standard advises
that the two clocks could be transformations of each other,
there does not seem to be a straightforward way of doing
this transform. Also, the calendar package does not take leap
seconds into account, something that is needed for correct
UTC timestamps. Another problem for real-time applications
is that the much used Ravenscar profile disallows the use of
the calendar package, leaving no standard method of getting
absolute time.

It is argued that means should be provided for real-time appli-
cations to acquire high-precision UTC timestamps, given that
the implementations supports a clock that is disciplined rela-
tive to TAI, and that the metric of this time synchronization
should be documented. Specifically, a set of functions should
be provided to translate between UTC timestamps and the
Time type of Annex D. Such a feature would be of great value
to distributed systems that need to communicate correlated
measurements, and execute actions at specific points time.

3 Coherent clocks in Ada
Related to real-time clocks and timers, there should be a dis-
cussion of how to make these more coherently represented in
the language. In addition to the standard calendar and real-
time clock described earlier, Ada 2005 defined timing events
for the real-time clock, clocks and timers for the execution
time of tasks, and group execution time budgets for tasks.
Also, Ada 2012 addressed concerns about the accuracy of
execution time measurement for tasks, by adding support for
measuring the execution time of interrupts, both for individ-
ual interrupt ID’s and the total execution time for interrupt
handling. However, full execution time control for interrupts
is not possible as interrupt execution time timers and group
budgets are not supported. At IRTAW-16 the author proposed
to add execution time timers for interrupt handling as a new
type extending the existing task timers [3]. This non-standard
feature was earlier implemented on GNATforAVR32 [1, 2].
However, IRTAW-16 found that the proposal needed further
work, and that a more coherent type system with a new root

type should be specified [5]. At, IRTAW-18 the author pro-
posed a revised class hierarchy for timers and group budgets
to support interrupts in a more coherent way, and showed
how the deferrable server for interrupt handling could be im-
plemented with this feature. This proposal was rejected on
breaking backward compatibility by adding a root class for
Timer.

In the authors opinion, the different clocks and timers in
Ada are defined in a fragmented way, that does not allow
for reuse and abstraction through object-orientation. The
different clocks packages are defined in a similar way, but
have no common interface, and even though the timers and
timing events are quite similar and are defined as tagged
types, there is no common base class or shared interface that
allow them to be used in an object-oriented manner. It would
seem that the only real benefit of using tagged types for these
types is that it allows for dot notation on routine calls. By
redesigning the clock definitions using common interfaces, it
would be possible to have reuse of timing related functionality
such as time servers, and also to define bespoke clocks for
real-time systems if needed. Such as object-oriented design is
followed for the Real-Time Specification for Java (RTSJ) that
also allows custom clocks [6]. The new package <chrono> of
C++11 also supports different clocks as defined types, and the
coming C++20 will also support TAI, GPS and other clock
sources. As of now RTSJ and C++ seem ahead of Ada in
terms of advanced and coherent clock support, and it is argued
that the value of backward compatibility should be weighted
against the need to keep Ada at the forefront within real-time
systems.

References
[1] K. N. Gregertsen and A. Skavhaug (2010), Implementing

the new Ada 2005 timing event and execution time control
features on the AVR32 architecture, Journal of Systems
Architecture, 56(10):509–522.

[2] K. N. Gregertsen and A. Skavhaug (2011), Implementa-
tion and Usage of the new Ada 2012 Execution Time
Control Features,Ada User Journal, 32(4):265–275.

[3] K. N. Gregertsen and A. Skavhaug (2013), Execution
time timers for interrupt handling, ACM SIGAda Ada
Letters, 33(2):87–96.

[4] J. Serrano, M. Lipinski, T. Wlostowski, E. Gousiou,
E. van der Bij, M. Cattin, and G. Daniluk (2013), The
White Rabbit project, Proceedings of IBIC2013.

[5] T. Vardanega and R. White (2013), Session summary,
ACM SIGAda Ada Letters, 33(2):126–130.

[6] A. Wellings and M. Schoeberl (2011), User-Defined
Clocks in the Real-Time Specification for Java, Proceed-
ings of the 9th International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems - JTRES ’11,
page 74.

Volume 39, Number 2, June 2018 Ada User Jour na l

 135

Ada User Journal Volume 39, Number 2, June 2018

Ada User Journal

Call for Contributions

Topics: Ada, Programming Languages, Software
Engineering Issues and Reliable Software
Technologies in general.

Contributions: Refereed Original Articles, Invited
Papers, Proceedings of workshops and panels and
News and Information on Ada and reliable software
technologies.

More information available on the

Journal web page at

http://www.ada-europe.org/auj

Online archive of past issues at http://www.ada-europe.org/auj/archive/

136

Volume 39, Number 2, June 2018 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

