

Ada User Journal Volume 37, Number 3, September 2016

ADA
USER
JOURNAL

Volume 37

Number 3

September 2016

Contents
Page

Editorial Policy for Ada User Journal 122

Editorial 123

Quarterly News Digest 124

Conference Calendar 135

Forthcoming Events 142

Articles from the Industrial Track of Ada-Europe 2016

 J-P. Rosen and J-C. Van-Den-Hende

“Using Ada's Visibility Rules and Static Analysis to Enforce Segregation of

Safety Critical Components” 146

 S. Mazzini, S. Puri and A. Russino

“Fitting the CHESS Approach to the AUTOSAR Development Flow” 150

 W. Godard and G. Nelissen

“Model-Based Design and Schedulability Analysis for Avionic Applications

on Multicore Platforms” 157

Overview of the 18
th

 International Real-Time Ada Workshop (IRTAW 2016) 163

 L. M. Pinho and S. Michell

“Session Summary: Parallel and Multicore Systems” 164

 A. Burns and A. Wellings

“Session Summary: Deadline Floor Protocol” 169

 M. González Harbour and M. Aldea

“Session Summary: Language Issues” 171

 T. Vardanega and P. Rogers

“Session Summary: Ada Language Profiles” 174

 J. Real and P. Rogers

“Session Summary: Experience” 176

 S. Michell and J. A. de la Puente

“Session Summary: Time Vulnerabilities” 178

Ada-Europe Associate Members (National Ada Organizations) 180

Ada-Europe Sponsors Inside Back Cover

122

Volume 37, Number 3, September 2016 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and

December. Copy date is the last day of

the month of publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics,

such as reliable software technologies,

are welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

 Refereed original articles on

technical matters concerning Ada

and related topics.

 Invited papers on Ada and the Ada

standardization process.

 Proceedings of workshops and

panels on topics relevant to the

Journal.

 Reprints of articles published

elsewhere that deserve a wider

audience.

 News and miscellany of interest to

the Ada community.

 Commentaries on matters relating

to Ada and software engineering.

 Announcements and reports of

conferences and workshops.

 Announcements regarding

standards concerning Ada.

 Reviews of publications in the

field of software engineering.

Further details on our approach to

these are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will

be relayed to the authors at the

discretion of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups

to find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be

of interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it

a wider audience. This includes papers

published in North America that are

not easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These

may represent the views either of

individuals or of organisations. Such

articles can be of any length –

inclusion is at the discretion of the

Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report

on events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal

is at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to

print reviews submitted from

elsewhere at the discretion of the

Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be

rapid. Currently, accepted papers

submitted electronically are typically

published 3-6 months after submission.

Items of topical interest will normally

appear in the next edition. There is no

limitation on the length of papers,

though a paper longer than 10,000

words would be regarded as

exceptional.

 123

Ada User Journal Volume 37, Number 3, September 2016

Editorial

In this issue of the Ada User Journal, we continue the publication of contributions from two important Ada events, which

took place this year.

First, we include a set of papers from the industrial track of the Ada-Europe 2016 conference, last June in Pisa, Italy. As

usual, the industrial track of the conference is an important component of the program, allowing the community to know how

Ada and reliable software technologies are being used in industrial settings. The first paper of the issue, by J-P. Rosen, of

Adalog and J-C. Van-Den-Hende of ALSTOM Transport, France, discusses how Ada’s visibility rules have been used to help

in the process of guaranteeing the required component segregation in systems with mixed criticality. Then, we have two

papers presenting results from the CONCERTO European project. Silvia Mazzini, Stefano Puri and Andrea Russino, from

Intecs, Italy, present how the CHESS modelling approach fits within the development of AUTOSAR systems, and Wenceslas

Godard, from Airbus Group Innovations, France, and Geoffrey Nelissen from CISTER, Portugal, discuss how model-based

design can be used to help in the integration of several components in the same platform, whilst guaranteeing their timing

requirements.

The second part of the issue is dedicated to the results of the International Real-Time Ada Workshop, last April in

Benicàssim, Spain. After publishing an overview of the workshop in the last June issue of the Journal, in this issue we

republish the summaries of the technical sessions. These summaries have been originally published in the June issue of Ada

Letters (together with the workshop position papers), and provide both the discussion as well as conclusions of the workshops

six sessions: Parallel and Multicore Systems, Deadline Floor Protocol, Language Issues, Ada Language Profiles, Experience

and Time Vulnerabilities.

In the remaining of the issue, a special note to the information provided in the News, Calendar and Forthcoming Events

sections. In particular, the latter provides the call for papers for the 22nd International Conference on Reliable Software

Technologies – Ada-Europe 2017, to take place June 2017 in Vienna, Austria. The deadline for contributions is January 15th

(it seems to be far away, but in reality it is around the corner). After the events section, the reader will also find a call for

contributions to the Ada User Journal. It is important that the community supports both the conference and the journal, both

by participating and reading, as well as by contributing!

And since we are talking about support, I would like to share with our readers a small, but relevant, news. For the first time

Ada-Europe counts with 20 sponsoring companies (you can find them in the inside back cover of the journal). This is indeed

something to be happy as it shows both a vibrant community and interest in the activities of the organization. Thank you all

for the support.

 Luís Miguel Pinho

Porto

September 2016

 Email: AUJ_Editor@Ada-Europe.org

124

Volume 37, Number 3, September 2016 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organisations 124
Ada-related Events 124
Ada-related Resources 125
Ada-related Tools 125
Ada and Operating Systems 128
References to Publications 129
Ada Inside 129
Ada in Context 130

Ada-related
Organisations

ACM SIGAda Award

From: ACM SIGAda
Date: Tue Jul 19 2016
Subject: ACM SIGAda Award for Ada

Community Contributions Named for
Late Ada Luminary Robert Dewar

URL: http://www.sigada.org/
SIGAdaAwardRenaming.pdf

NYU Professor Emeritus / AdaCore
founder played key role in Ada language
design and implementation.

NEW YORK, July 19, 2016 - ACM’s
Special Interest Group on Ada (SIGAda)
today announced that its annual award for
“broad, lasting contributions to Ada
technology and usage” has been named
the “Robert Dewar Award for
Outstanding Ada Community
Contributions”. Dr. Dewar, who passed
away in June 2015, received this award
himself in 1995 – it was then known as
SIGAda’s Ada Community Contributions
Award – in recognition of his innovative
technological achievements surrounding
the Ada language. Other past recipients of
this award include Jean Ichbiah, the head
of the design team for the original Ada
language; and Tucker Taft, the head of the
Ada 95 revision team. This year’s
recipient(s) of the Robert Dewar Award
for Outstanding Ada Community
Contributions will be announced at
SIGAda’s High-Integrity Language
Technology (HILT) workshop during
Embedded Systems Week in Pittsburgh in
October.

“It is hard to overestimate how Robert
Dewar shaped the Ada landscape
throughout his professional career,” said
Dr. David Cook, SIGAda Chair. “He was
an innovator, and an inspiration to many.
I personally compiled my first Ada
program in 1986 during a tutorial and

workshop taught by Robert. On behalf of
SIGAda, it is our honor to have our award
named after him.

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Highlights from Ada-Europe
2016

From: Ian Broster
Date: Wed 6 Jul 2016
Subject: Highlights from Ada Europe 2016
URL: https://www.rapitasystems.com/blog

/highlights-ada-europe-2016

I write this on the plane home from the
Ada Europe 2016 conference in sunny
Pisa, Italy. It's been a good week. Here
are a few highlights.

Ada

Firstly, it was good to see the key
industrial sponsors like AdaCore pushing
and supporting the Ada language itself.
PCT, Ansys and others seem to have
stepped up their Ada support too.

At Rapita we like Ada - it's a great way of
writing reliable software. Many of our
aerospace customers use Ada for that
reason: projects using Ada work, are more
cost effective and seem to come in on-
time and budget. Ada is a very valuable
language for now and the future, not just
for aerospace; the general embedded
industry could save a lot of effort by its
use. We hear story after story of how the
inappropriate use of C#, C, C++ has lead
to big problems in medical devices,
automotive and industrial automation.

Most of Rapita's software is written in
Ada using GNAT Pro, so we really
understand the language - this is one of
the reasons we provide the best and most
complete Ada language support in RVS
for coverage, timing and unit-test.

AdaCore have been instrumental in
supporting Ada, maintaining the GPL and
PRO compilers, books, education,
academic programs and the various
initiatives including the Make with Ada
competition launched this week. Do take
a look at this!

The Ada Pilot initiative is also a good
promotion of Ada - I finally met Jarno
Puff who is the key person pushing this
project forwards. The project aims to
build an open source Ada flight system
for drones, which people can use on their
own hobby projects or in commercial
situations. It promises to be a great way to
get the message out. Rapita is pleased to
support this initiative.

Multi-core and Many-core

Multi-core and parallel computation in
Ada was a recurring theme this week.
There are various language extensions
and parallel programming libraries
proposed, courtesy of Tucker Taft
(AdaCore) and Brad Moor (General
Dynamics). They have been looking at
ways to efficiently target Ada at many-
core platforms for high performance
computing. There were also a number of
papers presented on this topic.

Of course Ada already supports multi-
core processors through its language-level
concurrency, yet there is more exciting
work to come with fine-grained
parallelism opportunities on many-cores.
For example, the ability to automatically
parallelize iterations of a 'for loop' to
different processors.

The Ada Community

It was fantastic to meet new industrial
people at the conference this year - key
companies who use Ada such as Airbus,
BAE, Altran (and more) were represented
and it was good to meet top engineers
who really have experience of large
reliable systems development. However,
there were many industries that were not
represented, which is a missed
opportunity.

Speaking for the UK, I hope that we can
encourage more UK companies to get
involved through the formation of the new
Ada UK organization - thanks to Dene
Brown for setting this up - there are lots
of opportunities for community building,
collaboration and supporting a technology
that we all rely on. I encourage you to join
Ada UK - whether as a personal member
or as a corporate body. Everyone who
uses Ada should be a member - but we
need to transform this from a "charity
donation" mentality to something that
gives real benefit to its members: what
would you like to see Ada UK do? What
can Ada UK do for you? Answers via
LinkedIn.

Ada-related Tools 125

Ada User Journal Volume 37, Number 3, September 2016

I would also encourage the conference
organizers to think hard how to get more
engineers to the conference - perhaps that
means restructuring the conference a bit
to make it practical for industrial people
to continue to come - this of course needs
a joined-up approach, from targeting the
call for papers, understanding what
industrial people would get out of it, and
making sure that the logistics work.

Testing, Unit testing and Verification

Finally, it was a pleasure to receive the
prize for the best presentation for the
paper "Automated Testing of SPARK
Ada Contracts (AUTOSAC)" - this is a
nice piece of work, based on our RapiTest
Framework tool, in collaboration with
Altran and the University of Oxford and I
thank those who did the hard work in
preparing the technical work.

So, thanks to the organizers - great job
again - hope to see you in Vienna for next
year's conference.

Courses in Paris

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Mon, 18 Jul 2016 17:37:10 +0200
Subject: [Ann] Programme des formations

Adalog / 2ème semestre 2016
Newsgroups: comp.lang.ada

Formation "Ada cours complet" (6 jours):

Cette formation couvre tout Ada83+95, et
présente les points les plus importants
d'Ada 2005/2012.
Elle s'adresse à tous ceux qui sont amenés
à développer ou à s'occuper de projets en
Ada.

21 - 23 et 26 - 28 septembre 2016

05 - 07 et 12 - 14 décembre 2016

Seule la connaissance d'un autre langage
de programmation est requise.

[Introduction to Ada for experienced
programmers.]

Formation Ada 2005 et 2012 (3 jours):

Cette formation s'adresse à ceux qui
pratiquent déjà Ada95 et veulent
apprendre les nouvelles possibilités
offertes par la dernière version du
langage.

Du 15 au 17 novembre 2016

[Ada 2005 and 2012 course for Ada 95
programmers.]

Pour plus d'information, merci d'écrire à
info@adalog.fr, ou de visiter
http://www.adalog.fr/adaf1.html

FOSDEM 2017

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Fri, 9 Sep 2016 07:40:18 +0200
Subject: Ada at FOSDEM 2017 - proposal

submitted
To: ADAFOSDEM@LS.KULEUVEN.BE

As planned, I have submitted yesterday
evening a proposal for an Ada Developer
Room at FOSDEM 2017, similar to the
ones of past years.

The deadline was earlier this year (today
9 September) to give developer room
organisers more time to plan their own
schedules. One requirement for FOSDEM
2017 is that accepted DevRooms must
enter a complete schedule into their
conference system by 11 December,
which is also earlier than in the past.

All DevRoom proposals will now be
reviewed and we will be informed
whether ours is accepted or not via email
by 21 September.

Pending that decision, you might want to
keep the FOSDEM weekend free in your
agenda: Sat 4 - Sun 5 February 2017.

I will keep you all informed.

[...]

Ada-related Resources

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Sep 14 2016
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn: 2_481 members [1]

- Reddit: 889 readers [2]

- Google+: 686 members [3]

- StackOverflow: 585 followers [4]

- Freenode 74 participants [5]

- Twitter: 8 tweeters [6]

[1] https://www.linkedin.com/groups?
gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] #Ada on irc.freenode.net

[6] https://twitter.com/search?f=realtime&
q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
37-2, p. 70. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Sep 14 2016
Subject: Repositories of Open Source

software

GitHub: 1_424 repositories [1]

 281 developers [1]

 1_152 issues [1]

Rosetta Code: 627 examples [2]

 30 developers [3]

 1 issue [4]

Sourceforge: 252 repositories [5]

BlackDuck OpenHUB: 211 projects [6]

Bitbucket: 88 repositories [7]

OpenDO Forge: 24 projects [8]

 494 developers [8]

Codelabs: 19 repositories [9]

AdaForge: 8 repositories [10]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[5] http://sourceforge.net/directory/
language%3Aada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://forge.open-do.org/

[9] http://git.codelabs.ch/

[10] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 37-2, p. 70. —sparre]

Ada-related Tools

INI File Manager

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun 8 May 2016
Subject: Ini file manager
URL: https://sourceforge.net/projects/

ini-files/

Config is an Ada package for parsing
configuration files (.ini, .inf, .cfg, ...) and
retrieving keys of various types. New
values for single keys, or entire sections,
can be set. Standalone and
unconditionally portable code.

Features

- Pure Ada 95 (nothing compiler/system
specific)

- Standalone (no dependency on other
packages)

- Object oriented

GLOBE_3D

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 5 Jul 2016 18:54:38 -0700
Subject: Ann: GLOBE_3D Release 2016-07-

05 - "Blender edition"
Newsgroups: comp.lang.ada

126 Ada-related Tools

Volume 37, Number 3, September 2016 Ada User Journal

GLOBE_3D is a GL Object Based 3D
engine realized with the Ada
programming language.

URL: http://globe3d.sf.net

Latest additions:

- Use of Generic Image Decoder (GID) in
GL.IO; now most image formats are
supported for textures and other bitmaps
to be used with GLOBE_3D (or any GL
app)

- New Wavefront format (.obj / .mtl)
importer

- Doom 3 / Quake 4 map importer more
complete

- Unified GNAT project file (.gpr),
allowing to selected the target Operating
System (Windows, Linux, Mac) and
compilation mode (fast, debug, small)
for demos, tools, etc.

- Project file for ObjectAda 9.1+ updated

The first two points facilitate the import
of 3D models from software such as
Blender.

Here is an example:
http://globe3d.sf.net/g3d/futj.jpg

Coincidentally, the Wavefront file format
so simple that you can also write 3D
models "by hand" in that format.

An example made in an Excel sheet is
provided along with the importer, in the
./tools/wavefront directory.

[See also “GLOBE_3D”, AUJ 37-2, p. 76.
—sparre]

Gnoga

From: Pascal Pignard <p.p11@orange.fr>
Date: Wed, 13 Jul 2016 21:23:13 +0200
Subject: GNOGA 1.2 beta.
Newsgroups: gmane.comp.lang.ada.gnoga

No major changes in Gnoga since a while,
so Gnoga 1.2 state changes from alpha to
beta today in last SF commit today.

Volunteers are welcome to test it on their
own configuration. Mine is MacOS 10.11,
GNAT GPL 2016, Safari and Firefox.
Some testing on Windows and Linux
configuration will be appreciated.

Just get last today commit on
https://sourceforge.net/p/gnoga and do:

$ make gnoga

$ make demo

$ make tutorials

and for courageous:

$ make test

$ cd bin

and test.

Feel free to report detailed issue on this
list or create tickets on SF.

[See also “Gnoga”, AUJ 37-1, p. 7.
—sparre]

From: Pascal Pignard <p.p11@orange.fr>
Date: Sat, 9 Jul 2016 10:48:07 +0200
Subject: Tip of the day.
Newsgroups: gmane.comp.lang.ada.gnoga

If you want to browse through the Gnoga
API, generate them with gnatdoc:

$ make rm-docs

$ open docs/html/gnoga_rm/index.html

libsodium

From: John Marino
<dragonlace.cla@marino.st>

Date: Sun, 17 Jul 2016 17:50:13 -0700
Subject: ANN: Thick bindings for libsodium
Newsgroups: comp.lang.ada

I was unable to find any bindings for
libsodium
(https://github.com/jedisct1/libsodium) so
I created my own:

https://github.com/jrmarino/
libsodium-ada

I split them out of a private project I'm
working on because I found libsodium to
be highly useful and I suspect other Ada
users will feel the same way.

These bindings are thick and I've
committed the test cases I was using to
serve as examples. They cover the most of
the functionality of libsodium, but some
are missing the thick counterparts (e.g.
most of the detached versions have no
thick counterpart as I stuck with the
recommended "combined" variants).

However, feel free to improve what I have
via the github pull request mechanism.

Simple Components (et al.)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 25 Jul 2016 08:15:33 +0200
Subject: AICWL, GtkAda contributions,

Fuzzy sets, Units GtkAda 3.14 update
Newsgroups: comp.lang.ada

I upgraded all packages relying in part on
GtkAda to the version 3.14 as distributed
with GNAT GPL 2016. Here is the full
list:

http://www.dmitry-kazakov.de/ada/
aicwl.htm

http://www.dmitry-kazakov.de/ada/
fuzzy_ml.htm

http://www.dmitry-kazakov.de/ada/
fuzzy.htm

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

http://www.dmitry-kazakov.de/ada/
gps_installer.htm

http://www.dmitry-kazakov.de/ada/
max_home_automation.htm

http://www.dmitry-kazakov.de/ada/
units.htm

http://www.dmitry-kazakov.de/ada/
components.htm

Packaged GtkAda GPL 3.14.2 for Debian
and Fedora is here:

http://www.dmitry-kazakov.de/ada/
gtkada.htm

[See also “Simple Components”, AUJ 37-
2, p. 70. —sparre]

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 27 Jul 2016 14:56:16 -0500
Subject: ada-mode 5.2.0 released
Newsgroups: gmane.comp.lang.ada.emacs
To: emacs-ada-mode-3GsT/

cKSLGBCWfS9sVZFbQ@
public.gmane.org

ada-mode 5.2.0 is now available in Gnu
ELPA, and at http://stephe-
leake.org/emacs/ada-mode/emacs-ada-
mode.html

I'm still working on getting the Savannah
project set up.

[See also “Emacs Ada Mode”, AUJ 37-1,
p. 8. —sparre]

ASN.1

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Mon, 1 Aug 2016 01:15:21 -0700
Subject: ANN: Ada/SPARK ASN.1

implementation version 0.0.01
Newsgroups: comp.lang.ada

I'm making public my ASN.1 project
which aims to be a verified
implementation of ASN.1, which is used
in security-certificates, which is hopefully
the first step in a verified-TLS/-TLS -- the
project also aims to be [directly] usable in
DSA projects.

As of 0.0.01 the only portion
implemented is a pure big-number
package, and another currently shared-
passive unit for usability.

I would certainly appropriate comments,
criticism, and most especially
contributions

https://github.com/OneWingedShark/
ASN.1/

From: Thanassis Tsiodras
<ttsiodras@gmail.com>

Date: Tue, 2 Aug 2016 02:01:18 -0700
Subject: Re: ANN: Ada/SPARK ASN.1

implementation version 0.0.01
Newsgroups: comp.lang.ada

> [...]

I am not sure if it can be used with the
TLS ASN.1 grammar - but I think it's
worth checking out our own open-source
ASN.1 compiler, targeting both C and
Spark/Ada (developed under the auspices
of the European Space Agency, so
targeting the same kind of safety-critical
targets you probably have in mind).

Ada-related Tools 127

Ada User Journal Volume 37, Number 3, September 2016

The compiler is here:

 https://github.com/ttsiodras/asn1scc

And a crash-course in using it is here:

 https://www.thanassis.space/asn1.html

Note also that a new project has just
started that will add support for Spark
2014.

From: Thanassis Tsiodras
<ttsiodras@gmail.com>

Date: Wed, 3 Aug 2016 00:13:56 -0700
Subject: Re: ANN: Ada/SPARK ASN.1

implementation version 0.0.01
Newsgroups: comp.lang.ada

The project contract has just been signed,
and will kick-off after the summer
vacations. The expected duration of the
work is 12 months, with development
done in the open (in a branch on the
GitHub repo).

Based on past experiences, we anticipare
working versions (i.e. with SPARK 2014
support) a lot sooner than 12 months.

[See also “ASN.1”, AUJ 34-2, p. 69.
—sparre]

Zstd

From: John Marino
<dragonlace.cla@marino.st>

Date: Tue, 2 Aug 2016 07:14:49 -0700
Subject: ANN: Thick Ada bindings for Zstd

(Fast real-time compression algorithm)
Newsgroups: comp.lang.ada

The Zstandard compression algorithm just
reaching version 0.8.0 and it's nearly
stable. It has a wide range range of fast vs
high compression levels. At the fast
levels, it's much faster than gzip with the
same compression and it can approach xz
-6 levels of compression in a fraction of
the time. It's very nice and exactly what I
was looking for personally.

http://www.zstd.net

I spent some time creating some thicking
bindings for Ada:

https://github.com/jrmarino/zstd-ada

Those bindings cover the stable API.
What it does not cover is streaming
compression. That API is not yet stable
and not even available in the shared
library (only the static one). When the
streaming compression is stablized, I'll
probably update the bindings. As usual,
contributions via github are always
welcome.

ZanyBlue

From: Michael Rohan
<michael@zanyblue.com>

Date: Sat, 6 Aug 2016 19:46:30 -0700
Subject: ANN: ZanyBlue - 1.3.0b available
Newsgroups: comp.lang.ada

The ZanyBlue library and utils version
1.3.0b is available for download at

http://zanyblue.sourceforge.net

or directly from the download area:

https://sourceforge.net/projects/zanyblue/
files/

The changes since the last release are:

- Added a new utility zbinfo to query
built-in data. This was released as an
example previously (the dumplocale
example which has been dropped).

- Added encoding support to convert
Wide_String values to String based on
an encoding schema, e.g., UTF-8,
ISO8859-2, CP932, SHIFT_JIS, etc. To
fully use this functionality, narrow
accessors should be used which, when
printing, use Stream_IO to avoid
interaction between the Text_IO and
encoded values. The list of supported
encodings is available via zbinfo --list-
encodings.

- The default locale is now en_US.UTF-8
if no other locale can be determined
from the environment.

- Updated the documentation (and
website) to use the Sphinx
documentation system.

- Updated and expanded the
documentation. Additional
documentation is, however, needed.
Switch to gnatdoc from gnathtml to
generate the source code based
documentation.

- Restricted the usage of the -gnatW8
compilation option to just the source
files containing UTF-8 encoded strings:
the message pool file generated by the
zbmcompile utility.

- Added option to the zbmcompile utility
to generate ASCII only source files (-A
option).

- Added option to the zbmcompile utility
to define handling of non-Ada message
keys when generating accessors (the -X
option).

- Updated the build to use gprbuild
instead of gnatmake.

- Updated the build to use -gnat2012 in all
gpr files.

- Switched from AUnit to Ahven for unit
testing.

- Minor source code changes based on
stricter checks with GNAT 2016.

[See also “ZanyBlue”, AUJ 36-4, p. 202.
—sparre]

 Zip-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Fri, 26 Aug 2016 23:15:33 -0700
Subject: Ann: Zip-Ada v.51
Newsgroups: comp.lang.ada
URL: https://sf.net/projects/unzip-ada/

Changes in '51', 27-Aug-2016:

- LZMA.Encoding has been added; it is a
standalone compressor, see
lzma_enc.adb for an example of use.

- Zip.Compress provides now LZMA_1,
LZMA_2 methods. In other words, you
can use the LZMA compression with
Zip.Create.

- Zip.Compress has also a "Preselection"
method that selects a compression
method depending on hints like the
uncompressed size.

- Zip.Compress.Deflate: Deflate_1 ..
Deflate_3 compression is slightly better.

The LZMA format, new in Zip-Ada, is
especially good for compressing database
data - be it in binary or text forms. Don't
be surprised if the resulting archive
represent only a few percents of the
original data...

[See also “Zip-Ada”, AUJ 37-2, p. 71.
—sparre]

PragmAda Reusable
Components

From: PragmAda Software Engineering
<pragmada@
pragmada.x10hosting.com>

Date: Mon, 5 Sep 2016 12:04:30 -0700
Subject: Updated PragmAda Reusable

Components
Newsgroups: comp.lang.ada

There are some new components in the
beta version of the PragmARCs for
ISO/IEC 8652:2007:
PragmARC.Concurrent_Pipeline and
PragmARC.Holders.

Concurrent_Pipeline was inspired by
discussions of the Rx approach to
concurrency, such as RxJava, in which a
sequence of operations are chained
together from a source to a sink, the
operations being able to proceed in
parallel but only one execution of a given
operation at a time. If one ignores the Rx
syntax and concentrates on providing the
functionality in a way that's natural for
Ada, it becomes fairly simple:
Concurrent_Pipeline is 45 Ada terminator
semicolons.

I haven't looked at the Rx approach in
detail, so there may be differences
between it and Concurrent_Pipeline.

It's not clear that Concurrent_Pipeline
pipeline is needed; it seems the same
functionality could be achieved with
PragmARC.Job_Pools. It may be a more
natural approach for some problems,
though.

Holders provides variables for indefinite
types; something like it is needed to allow
the operations in a Concurrent_Pipeline to
proceed in parallel. It was also not strictly
needed, as the same functionality could be
obtained with an indefinite container that
is only used to store a single value.

128 Ada and Operat ing Systems

Volume 37, Number 3, September 2016 Ada User Journal

The PragmARCs may be obtained from
Github

https://github.com/jrcarter/PragmARC

or from the web site.

[See also “PragmAda Reusable
Components”, AUJ 37-2, p. 76. —sparre]

SPARK 2014 Tools

From: Claire Dross, AdaCore
Date: Wed 14 Sep 2016
Subject: P909-030 duplicate checks on split

scalar types
URL: https://github.com/AdaCore/

spark2014

SPARK 2014 is the new version of
SPARK, a software development
technology specifically designed for
engineering high-reliability applications.

[...]

This repository contains the source code
for the SPARK 2014 project. SPARK is a
software development technology
specifically designed for engineering
high-reliability applications. It consists of
a programming language, a verification
toolset and a design method which, taken
together, ensure that ultra-low defect
software can be deployed in application
domains where high-reliability must be
assured, for example where safety and
security are key requirements.

[See also “GNAT GPL and SPARK
GPL”, AUJ 37-2, p. 75. —sparre]

A-CUPS

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Thu 15 Sep 2016
Subject: Make the generated code private.
URL: https://github.com/persan/a-cups

An Ada binding to the CUPS printing
subsystem.

GNATColl

From: Emmanuel Briot
<briot@adacore.com>

Date: Thu 15 Sep 2016
Subject: The GNAT Collection Library.
URL: https://github.com/AdaCore/gnatcoll

The GNAT Components Collection

See the documentation in the docs/
directory for instructions on how to build,
install and use gnatcoll.

The documentation is either available as a
precompiled HTML file, or in the file
building.rst.

To test GNATCOLL itself, you should
run "make test" from the current
directory, after compiling and installing
GNATCOLL.

[See also “GNATColl.JSON Support
Packages”, AUJ 37-2, p. 75. —sparre]

Ada and Operating
Systems

Windows: GNAVI: GNU
Ada Visual Interface

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat 21 May 2016
Subject: GNAVI: GNU Ada Visual Interface
URL: https://sourceforge.net/projects/gnavi/

[...] The durable Open Source answer to
Delphi and VB.

Features

- Complete Windows framework

- Pure Ada code, standalone

- Object-Oriented

- Code generator (GWenerator)

[See also “GWindows Setup”, AUJ 35-3,
p. 153. —sparre]

Debian and Fedora: GtkAda

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 24 Jul 2016 09:28:18 +0200
Subject: GtkAda 3.14 GPL packages for

Debian and Fedora
Newsgroups: comp.lang.ada

I packaged GtkAda 3.14 from GNAT
GPL for Debian and Fedora

http://www.dmitry-kazakov.de/ada/
gtkada.htm

You can use them until GtkAda
maintainers catch up.

P.S. There are some changes coming with
3.14 that will break legacy code, e.g.
Signal_Name is no more a subtype of
String. I also found that some operations
do not work anymore, e.g. Load_Icon,
though there are variants of that do. OK,
if you are using GTK, you know what to
expect (:-()

[See also “Debian and Fedora: GtkAda”,
AUJ 36-3, p. 127. —sparre]

Mac OS X: XNAdaLib

From: Pascal Pignard <p.p11@orange.fr>
Date: Fri, 2 Sep 2016 21:46:30 +0200
Subject: [ANN] XNAdaLib 2016 binaries for

El Capitan including GTKAda and more.
Newsgroups: gmane.comp.lang.ada.macosx

This is XNAdaLib 2016 built on MacOS
X 10.11 El Capitan for Native Quartz
including:

- GTK Ada GPL 2016 with GTK+ 3.20.3
complete,

- Glade 3.18.3,

- GnatColl GPL 2016,

- Florist GPL 2016,

- AdaCurses 20110404,

- Gate 3-05-b,- Components 4.15,

- AICWL 3.15,

- Zanyblue 1.3.0b,

- PragmARC 07-2016-08,

- GNOGA 1.2-beta,

- AdaControl 1.18b4,

- Adadep 1.3r3

and as side libraries:

- Template Parser,

- gtksourceview 3.14.3,

- GNUTLS 3.3.12,

- ASIS GPL 2016.

to be installed (mandatory) at /usr/local:

$ cd /usr/local

$ sudo tar xzf xnadalib-gpl-2016-quartz-

x86_64-apple-darwin14.5.0-bin.tgz

Update your PATH to include gtkada-
config, glade, gate3.sh and other
executables in it:

$ PATH=/usr/local/xnadalib-2016/bin:$PATH

Update your GPR_PROJECT_PATH to
include gtkada.gpr, adacurses.gpr,
florist.gpr, gnatcoll.gpr, gtkada_aicwl.gpr,
gnoga.gpr and other projects in it:

$ export GPR_PROJECT_PATH=/usr/local/

xnadalib-2016/lib/gnat:/usr/local/xnadalib-

2016/share/gpr:$GPR_PROJECT_PATH

Set XDG_DATA_DIRS for GNOME
apps:

$ export XDG_DATA_DIRS=/usr/local/

xnadalib-2016/share

Glade and GPS applications in apps
directory must stay in this directory unless
you modify the script inside apps.

Then see documentation and examples in
share directory and enjoy.

Here are the instructions I used to build
XNAdaLib on MacOS (in French):
http://blady.pagesperso-
orange.fr/telechargements/gtkada/Install-
GTKAda-Quartz_wf.pdf

Here are the modifications I made:
http://blady.pagesperso-
orange.fr/telechargements/gtkada/xadalib-
2016-diff.tgz

XNAdaLib binaries have been posted on
SourceForge:
https://sourceforge.net/projects/gnuada/fil
es/GNAT_GPL%20Mac%20OS%20X/20
16-el-capitan/

From: Pascal Pignard <p.p11@orange.fr>
Date: Sun, 11 Sep 2016 13:26:01 +0200
Subject: Re: [ANN] XNAdaLib 2016

binaries for El Capitan including
GTKAda and more.

Newsgroups: gmane.comp.lang.ada.macosx

I built XNAdaLib 2016 again taking care
to dependences with old versions.

Ada Inside 129

Ada User Journal Volume 37, Number 3, September 2016

The new archive xnadalib-gpl-2016a-
quartz-x86_64-apple-darwin14.5.0-
bin.tgz is on SF:

https://sourceforge.net/projects/gnuada/fil
es/GNAT_GPL%20Mac%20OS%20X/20
16-el-capitan

By the way PragmARC has been updated.

My apologies for troubles if any, please
let have a try and keep me informed.

[See also “Mac OS X: XNAdaLib”, AUJ
36-4, p. 204. —sparre]

References to
Publications

Booklet on EN 50128

From: AdaCore Press Center
Date: Tue 28 Jun 2016
Subject: Free Booklet Shows How

AdaCore’s Technologies Can Help
Railway Software Developers Meet EN
50128 Objectives

URL: http://www.adacore.com/press
/en50128-booklet-help-railway-
developers/

New 70-page report explains how to
reduce safety certification effort through
Ada language and qualified AdaCore
tools

RSRR 2016, PARIS, June 28, 2016 -
AdaCore today announced the publication
of AdaCore Technologies for CENELEC
EN 50128:2011. Authored by AdaCore
expert Quentin Ochem and CERTIFER
safety assessor Jean-Louis Boulanger, this
booklet summarizes the EN 50128
railway software standard and explains
how the Ada programming language and
AdaCore’s products can be used to meet
its requirements throughout the software
life cycle.

The new booklet presents the following
technologies in the context of EN 50128:

- The Ada 2012 language, including its
contract-based programming features

- The SPARK 2014 language (a formally
verifiable subset of Ada 2012) and its
supporting tools, which allow
mathematical demonstration of program
properties such as absence of run-time
errors

- The GNAT Ada compiler, including
run-time libraries that have been
certified at the SIL 3 and SIL 4 levels

- Static analysis tools

 o CodePeer, an advanced static analysis
tool for code review and verification

 o GNATmetric, a metric computation
tool

 o GNATcheck, a coding standard
checker

 o GNATdashboard, a platform for
integrating and managing information
from various analysis tools

- Dynamic analysis tools

 o GNATtest, a unit testing framework
generator

 o GNATemulator, a host-resident target
processor emulator

 o GNATcoverage, a structural code
coverage analyzer

- The QGen model-based development
and verification tool, which translates
from Simulink® and Stateflow® models
into SPARK or MISRA-C

These tools fit into the “V” software life
cycle [...]

The booklet has the following contents:

- A summary of the CENELEC EN 50128
standard

- An overview of the relevant AdaCore
tools and technologies

- An explanation of AdaCore’s
contributions towards the Software
Quality Assurance Plan

- A technology usage guide keyed to
various requirements in EN 50128, such
as Analyzable Programs and Boundary
Value Analysis, showing how these
requirements are met by AdaCore tools
and technologies

- A technology annex, summarizing the
qualification status of the various tools
and showing how they relate to specific
Annex D sections

“Certification requirements are getting
more and more complex,” said Quentin
Ochem, Lead of Business Development
and Technical Account Management at
AdaCore. “In order to stay competitive, it
is crucial yet difficult for railway system
developers to fully understand how and
where software tools can help. AdaCore’s
new booklet answers this need and
provides a clear mapping between
technology capabilities and railway safety
requirements.”

AdaCore products have been used in a
variety of safety-critical railway systems
and, as explained in the booklet, various
tools have been qualified as T2 or T3
tools, and several run-time libraries have
been certified at SIL-3 / SIL-4 levels,
under EN 50128.

Availability

The AdaCore Technologies for
CENELEC EN 50128:2011 booklet is
available now, at no cost. To obtain a
copy please contact info@adacore.com; it
is also available for download from
http://adacore.com/en-50128.

Ada Inside

AdaGate

From: FastRgv Development
Date: Sun Mar 20 2016
Subject: AdaGate
URL: https://directory.fsf.org/wiki/AdaGate

A combination of Portal and Sokoban,
AdaGate is a great example of OpenGL
programming using the Ada language. It
is Open Source, of course.

While exploring a remote south-seas
island you make a startling historical
discovery. But before you can report your
findings, an operational stargate
transports you into a curious sequence of
dungeons. Your escape will require the
logical rearrangement of weird power
cells, called Zero Point Modules (ZPMs),
that can roll in only two directions.

[...]

[Download from
https://github.com/fastrgv/AdaGate/blob/
master/adagate-src-only-snapshot.tar.gz
—sparre]

ExoMars

From: AdaCore Press Center
Date: Tue 19 Jul 2016
Subject: Ada on Board: GNAT Pro Helps

ExoMars Get to the Red Planet
URL: http://www.adacore.com/press/

ada-on-board-gnat-pro-helps-exomars-
get-to-the-red-planet/

Thales Alenia Space implements critical
spacecraft software in Ada

CANNES, France & TORINO, Italy &
PARIS & NEW YORK, July 19, 2016 -
AdaCore today announced that its GNAT
Pro Ada cross compilation environment
has been successfully used by Thales
Alenia Space to develop and verify the
critical software embedded on the
ExoMars program. Thales Alenia Space
implemented in Ada two ExoMars On-
Board Software (OBSW) components:
one for the Trace Gas Orbiter (TGO) on
an ERC32 target, and one for the Entry,
Descent and Landing Demonstrator
Module (EDM) on a LEON2 target.

Both TGO and EDM OBSW are hosted
on their respective centralized hardware
platforms. Each OBSW component is a
self-contained piece of software handling
all Platform applications and performing
Payload interface management functions,
which are necessary to fulfill the mission
objectives under the satellite-specific
operational conditions. The OBSW has
been developed following a layered and
modular architecture to facilitate an
incremental development and verification
process, to improve the management of
multi-team development, to maximize
reuse and to ease maintenance.

130 Ada Inside

Volume 37, Number 3, September 2016 Ada User Journal

Thales Alenia Space also uses Ada for its
internal real-time kernel product used to
ensure a higher safety-critical level with a
small memory footprint and good
performance.

The development process has been
performed according to the European
Space Agency (ESA) ECSS standards,
reaching compliance with criticality level
B.

In addition to the compilation tools,
several AdaCore tools were successfully
used, including the GNAT Programming
Studio (GPS) Integrated Development
Environment (IDE) and the static analysis
tool GNATstack.

The ExoMars program marks a
continuation of GNAT Pro and Ada’s
long and successful history in space
applications, helping software developers
to achieve the high reliability required in
that domain.

“We are very pleased to have helped
Thales Alenia Space go to the Red Planet
thanks to our high-integrity tools for the
Green Language,” said Cyrille Comar,
AdaCore President. “Long-term space
projects such as ExoMars gain particular
benefits -- higher assurance with lower
development and verification cost -- from
our open-source tools and libraries that
have been adapted to meet the most
stringent certification requirements.”

“AdaCore has a longstanding business
relationship with Thales Alenia Space,”
said Laurent Scarfo, Thales Alenia Space
OBSW project manager. “We started
working together in 2007 with OBSW
embedded in a satellites constellation.
Now, AdaCore is flying successfully to
Mars!”

DAB Decoder

From: Jan van Katwijk
<j.vankatwijk@gmail.com>

Date: Thu, 18 Aug 2016 02:00:00 -0700
Subject: feedback asked on dab-decoder

software in Ada
Newsgroups: comp.lang.ada

Last years I did some programming in
C++ on SDR-type software. One of the
programs is a decoder for DAB(+)
signals. This summer I wanted to learn
Ada (again, after a period of well over 20
years) and I made a reimplementation of
the DAB software in Ada.

The resulting Ada program is limited
compared to the C++ one in that it is not
possible to change dynamically device
and DAB mode, and the GUI - I used
GtkAda - is pretty limited. It does work
however fine. Supported input devices are
the common dabsticks, the SDRplay
device and the airspy. Output is currently
using a "default" output channel on the
PC.

I would like to get some feedback on the
use of the Ada language. I am using
bindings to C (some libraries are in C),
callbacks from C libraries and quite some
tasking.

The sources are available on github:

 git clone

https://github.com/JvanKatwijk/ada-dab

Any feedback and suggestions for
improvement (it definitely runs slower
than the C++ version) is welcome

SparForte

From: Ken O. Burtch
<koburtch@gmail.com>

Date: Sat 3 Sep 2016
Subject: sparforte 2.0 release candidate
URL: https://github.com/kburtch/SparForte

Shell, web engine, scripting language
mission-critical, scalable projects.

[...]

Ken O. Burtch is the author of "Linux
Shell Scripting with Bash" and former IT
Architect with the "Webkinz" brand
websites. With nearly 20 years experience
in the IT business, including many years
with multi-billion dollar companies, Ken
was concerned over hard to scale, hard to
maintain scripting languages, he created
SparForte as a tool to solve real business
problems. Based on a ISO standard
proven effective for large, mission-critical
projects, SparForte is designed for fast
development of large projects while, at
the same time, providing easier
maintenance and bug removal.

[See also “SparForte”, AUJ 35-4, p. 220.
—sparre]

Steam Sky

From: Bartek Jasicki <thindil@laeran.pl>
Date: Thu 15 Sep 2016
Subject: show only tradeable items on list
URL: https://github.com/thindil/steamsky

Roguelike in sky with steampunk theme

General Info

Steam Sky is an Open Source roguelike
steampunk game. Your role is to
command flying ship with crew in the
sky, traveling between floating bases,
fighting with enemies, trade in goods, etc.
The game is in a very early stage of
development, so at this moment most
functions are not implemented yet. For
now the game has only been tested 64-bit
Linux systems.

Build game

To build it, you need:

- Any Ada language compiler, for
example GCC with enabled Ada support
or GNAT:
http://libre.adacore.com/download/

- ncurses Ada binding (should be
available in most distributions or with
ncurses package or as standalone
package). If not, you can download it
from: http://invisible-
island.net/ncurses/ncurses-Ada95.html

- optional, but highly recommended:
gprbuild program - should be available
in most distributions, if not, download
from:
http://libre.adacore.com/download/

If you have all, in main source code
directory type:

- if you don't have gprbuild: gnatmake -j0
-P steamsky.gpr for debug build or for
release version: gnatmake -j0 -P
steamsky.gpr -XMode=release

- if you have gprbuild: gprbuild -j0
steamsky.gpr for debug mode build or
for release mode: gprbuild -j0
steamsky.gpr -XMode=release

Running game

To run game need only ncurses library,
available in all Linux distribution. Enter
bin directory (if you build game from
sources) or in main game directory (if you
use released binary) and type ./steamsky.
Game works only in terminal.

Note: If you build game from source,
copy license file COPYING to bin
directory.

That's all for now, as usual, probably I
forgot about something important ;)

x_Cleaner

From: George J <ivanov_george@list.ru>
Date: Tue, 23 Aug 2016 01:18:52 -0700
Subject: x_Cleaner v1.2 available
Newsgroups: comp.lang.ada

It's my first opensource project, so I don't
fully understand, how to do it right) and I
want only say that it's x_Cleaner, realized
with Ada using Win32Ada and
GWindows modules, licensed with GPL
v3.

x_Cleaner is Win32 based app. It can
erase data from storage with next
algorithms (at this moment):

1. Britain HMG IS5 - Base (one pass
writing 0x0)

2. Britain HMG IS5 - Extended (1-st pass
0x0, 2-nd pass 0x1 and 3-d pass -
random values)

3. Russian GOST R-50739-95 (1-st pass
0x0, 2-nd pass-random values)

4. Bruce Schneier's algorithm (1-st pass
0x1, 2-nd pass 0x0, 3-7 passes -
random values)

Download path:

https://sourceforge.net/projects/x-cleaner/

BTW I want to thank especially Dmitry
A. Kazakov, Gautier de Montmollin,
Aurele, Simon Wright, Remy Lebeau,
Mark Hall, @andlabs!

Ada in Context 131

Ada User Journal Volume 37, Number 3, September 2016

And thanks to all for the help! Hope it
will be useful to somebody!

From: George J <ivanov_george@list.ru>
Date: Tue, 30 Aug 2016 02:14:35 -0700
Subject: x_Cleaner v 1.2.2 available
Newsgroups: comp.lang.ada

[...]

From: George J <ivanov_george@list.ru>
Date: Fri, 9 Sep 2016 01:30:27 -0700
Subject: x_Cleaner v 1.2.3 available.
Newsgroups: comp.lang.ada

x_Cleaner erases stored data using the
following algorithms*:

1. Britain HMG IS5 - Base (one pass of
writing 0x0)

2. Britain HMG IS5 - Enhanced (1-st pass
0x0, 2-nd pass 0x1 and 3-d pass -
random values)

3. Russian GOST R-50739-95 (1-st pass
0x0, 2-nd pass-random values)

4. US DoD 5220.22-M(E) (1-st pass 0x0,
2-nd pass 0x1 and 3-d pass - random
values)

5. Bruce Schneier's algorithm (1-st pass
0x1, 2-nd pass 0x0, 3-7 passes -
random values)

x_Cleaner works for Windows XP,
Vista,7 and later versions.

Important!

Run x_Cleaner with administrative rights
in order to clean non-remo

Download path:
https://sourceforge.net/projects/x-cleaner/

Changelog:

Version 1.2.1 :

1. Improved writing methods (inlining in
task).

Version 1.2.2 :

1. Improved progress bars and added
support to Windows Vista,Seven and
newer with using UXTHEME.DLL for
progress bar themes.

Version 1.2.2.1 :

1. Improved progress bars not to appear if
0 % value.

Version 1.2.3 :

1. Released US DoD 5220.22-M(E) data
sanitization method.

2. Corrected algorithm name "HMG IS5
(Enhanced)".

Ada in Context

A Universal_Integer Trick

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 19 Jul 2016 18:04:15 +0200
Subject: Re: Generic formals and Aspects
Newsgroups: comp.lang.ada

> Long_Long_Integer
(Destination_Type'First)

> >= Long_Long_Integer
(Source_Type'First)

> and Long_Long_Integer
(Destination_Type'Last)

> <= Long_Long_Integer
(Source_Type'Last);

Tip: you don't need to convert to
Long_Long_Integer here (non portable,
etc...). Use:

Destination_Type'Pos

 (Destination_Type'First)

 >= Source_Type'Pos

 (Source_Type'First)

 and Destination_Type'Pos

 (Destination_Type'Last)

 <= Source_Type'Pos

 (Source_Type'Last);

Since 'Pos returns Universal_Integer, you
can compare values of different types.
Generic Formals and Aspects

From: Oliver Kellogg
<olivermkellogg@gmail.com>

Date: Tue, 19 Jul 2016 08:49:30 -0700
Subject: Re: Generic formals and Aspects
Newsgroups: comp.lang.ada

[...]

Here is my use case:

with Interfaces;

generic

 type Discrete_Type_16_or_32_or_64 is

 (<>); -- CANDIDATE

package Big_Endian_Integer_Buffer is

 function Get return

 Discrete_Type_16_or_32_or_64;

 procedure Set (Value :

 Discrete_Type_16_or_32_or_64);

 Size_In_Bytes : constant Positive :=

 Discrete_Type_16_or_32_or_64'Size / 8;

 type Buffer_Type is array

 (1 .. Size_In_Bytes) of

 Interfaces.Unsigned_8;

 for Buffer_Type'Component_Size use 8;

 Buffer : aliased Buffer_Type :=

 (others => 0);

end Big_Endian_Integer_Buffer;

At the line marked CANDIDATE, I
would have liked to write something like

 type Discrete_Type_16_or_32_or_64 is

 (<>)

 with Static_Predicate =>

 Discrete_Type_16_or_32_or_64'Size

 in 16 | 32 | 64;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 19 Jul 2016 14:23:31 -0500
Subject: Re: Generic formals and Aspects
Newsgroups: comp.lang.ada

>> [...]

>> type Internal is new Discrete_Type

>> with Static_Predicate => Internal'Size
in 16 | 32 | 64;

You could use a subtype here, if you don't
want a new type:

 subtype Internal is Discrete_Type

 with Dynamic_Predicate => Internal'Size

 in 16 | 32 | 64;

BUT:

'Size shouldn't be allowed in either of
these predicates, because "Internal" is a
value (the value of the "current instance"
of the subtype), while Size is the attribute
of a subtype or object. (See AI12-0068-1.)
This is necessary so that the properties of
the object can't be queried in a predicate;
that wasn't the purpose of predicates and
it would allow some truly bizarre uses.
(See "Zoofable" in the question of that
AI.) Specifically, 8.6(17.1/4) says:

 Within an aspect_specification for a type
or subtype, the current instance represents
a value of the type; it is not an object. The
nominal subtype of this value is given by
the subtype itself (the first subtype in the
case of a type_declaration), prior to
applying any predicate specified directly
on the type or subtype. If the type or
subtype is by-reference, the associated
object with the value is the object
associated (see 6.2) with the execution of
the usage name.

 AARM Ramification: For the purposes
of Legality Rules, the current instance
acts as a value within an
aspect_specification. It might really be an
object (and has to be for a by-reference
type), but that isn't discoverable by direct
use of the name of the current instance.

Looks like an ACATS test is needed.

[...]

> However, it runs without failure. (I
would have expected a failure on the
Fail instantiation.)

Did you remember to enable assertions?
GNAT has the Assertion_Policy as Ignore
by default. (This is implementation-
defined in the Standard, mainly because
we didn't have enough votes to make
GNAT change.) If you're depending on
assertions (like a predicate), you always
need to appropriately place a
Assertion_Policy pragma (or the
equivalent command-line option,
whatever it is).

A Bit of History

From: Robert I. Eachus
<rieachus@comcast.net>

Date: Mon, 22 Aug 2016 16:14:50 -0700
Subject: Re: Could you write a BSD like os

in ADA?
Newsgroups: comp.lang.ada

[...]

132 Ada in Context

Volume 37, Number 3, September 2016 Ada User Journal

What is really relevant to this group is
that Ada would not have existed without
Multics (and e-mail). The Ada language
was developed on several Multics
machines, and as a result all Ada
developers knew the Multics way of
thinking.

The most important thing (IMHO) that
Ada got from Multics was the idea that
the OS or compiler should do all the work
of maintaining a consistent source tree. I
never got used to linkers, writing make
files, etc. (Multics did not require linking.
If you ran an executable, and it called
another unit it would dynamically link it
in. If it didn't exist? Multics would tell
you and allow you to write it, compile it,
resume your program and it would use the
unit you just created.)

Why wasn't there an Ada compiler for
Multics? At Honeywell Small Systems
(and other names) where I worked we
were tracking the development of Ada
with a compiler that ran on Multics and
generated code for DPS6 and other small
systems. The problem was that our
compiler was intended as a systems
development tool. As a result it could ride
roughshod over the OS. Not only did it
"know" how to access the OS internals, it
was used to develop things like the e-mail
system. All OS internal calls could be
made from within Ada/SIL (for systems
implementation language).

We arranged for Dansk Datamatik to port
their compiler to our system, and we
validated it. Large systems decided to also
port the DDC compiler, but to GCOS-8,
not Multics. I never found out if they
finished, but it was years late...

Address Overlays

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Wed, 31 Aug 2016 06:01:36 -0700
Subject: for X'Address use - and Volatile
Newsgroups: comp.lang.ada

Consider:

 X : Integer;

 Y : Integer;

 for Y'Address use X'Address;

The above is a simple overlay, typically
used for under-the-table type conversions.

AARM 13.3 says:

"If the Address of an object is specified
[...], then the implementation should not
perform optimizations based on
assumptions of no aliases."

Interestingly, in the above example there
are two objects involved in the overlay,
yet only one (Y) is affected by this rule
(because Address is *specified* only for
Y, not for X).

Let's assume that this is an
omission and that the intent is that both
object (X and Y) should be excluded from

such optimizations, otherwise it will not
work.

The question is - do we need pragma
Volatile on these objects as well?

C.6 (16c/3):

"If for a shared variable X, a read of X
occurs sequentially after an update of X,
then the read will return the updated value
if X is volatile or atomic, but may or may
not return the updated value if X is
nonvolatile."

My understanding is that Volatile is *not*
needed to ensure proper working of this
overlay, even though C.6 seems to imply
otherwise. My feeling is that C.6 focuses
on data sharing between tasks only and in
the case of overlays, the lack of non-
aliasing optimizations is enough.

The question comes from analyzing of the
code which contains such an overlay
together with pragma Volatile. This is a
single-tasking program.

My feeling is that Volatile is superfluous -
unless there are other reasons for it, for
example related to I/O register mapping,
etc.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 31 Aug 2016 14:36:24 -0500
Subject: Re: for X'Address use - and

Volatile
Newsgroups: comp.lang.ada

> [...]

Ada does not now, nor ever has, officially
supported overlays. Such code might
work on a particular implementation, but
it's not portable (even to another version
of the same compiler).

Indeed, address clauses ought to be
avoided for all but their intended purpose
(mapping to hardware registers); for other
purposes, better solutions exist
(Unchecked_Conversion,
Address_to_Access_Conversions, etc.)

In addition, since you didn't declare these
objects aliased, the compiler is allowed to
optimize them completely away.

> [...]

[...] You ignored the important rule,
13.3(13/3):

If an Address is specified, it is the
programmer's responsibility to ensure that
the address is valid and appropriate for
the entity and its use; otherwise, program
execution is erroneous.

The associated AARM note says that
"Appropriate for the entity and its use"
covers cases like "addresses which would
force objects that are supposed to be
independently addressable to not be".
Since X and Y are independently
addressable and there is no way to avoid
that, this case *always* will cause
erroneous execution.

 Compilers (obviously) don't have to
protect against that, so any optimization
on X is allowed.

Indeed, since X isn't aliased, it's not even
required that X'Address is meaningful (it
could be in a machine register).

These things *might* work on a particular
implementation, but no guarantees.

The correct way to do this is something
like:

 package A2A is new

System.Address_to_Access_Conversions

(Integer);

 X : aliased Integer;

 Y : A2A.Object_Pointer :=

 A2A.To_Pointer (X'Address);

or better still, avoid Address altogther:

 type Acc_Int is access all Integer;

 X : aliased Integer;

 Y : Acc_Int := X'Access; -- Or

 -- 'Unchecked_Access if accessibility

 -- is an issue.

(You need the former if the types are
different, the latter if not. But Ada doesn't
really allow the case with the types being
different to be portable in any case -
Unchecked_Conversion is needed, and
even that isn't certain to be portable
depending on the types involved.)

[...]

P.S. Yes, you hit two of my pet peeves
about the way some people use Ada. Most
compilers (but not Janus/Ada 95) try to
support the overlay case because it was
common in Ada 83 code -- both of the
better alternatives didn't exist until Ada
95. Similarly with the use of Aliased on
any stand-alone object that you're
planning to take the 'Address of.

Trying to support these things makes Ada
optimization many times more complex
and substantially less effective than it
otherwise could be. I suppose GNAT gets
away with it since C has these issues
many times worse and thus there already
is support for that in the GCC backend.
People not using a C backend have no
such (dis?)advantage. Grrrrr.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Thu, 1 Sep 2016 10:12:28 +0200
Subject: Re: for X'Address use - and

Volatile
Newsgroups: comp.lang.ada

> [...] Indeed, address clauses ought to be
avoided for all but their intended
purpose [...]

Shameless plug:

and this can be detected in AdaControl:

check representation_clauses (overlay);

Ada in Context 133

Ada User Journal Volume 37, Number 3, September 2016

More Danish Ada
Developers

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Wed Sep 7 2016
IRC-channel: #Ada
IRC-network: Freenode

 * sparre has been teaching Ada all day.
:-)

< joakim> sparre: great! :-)

< sparre> Yes.

< sparre> Three new engineers at my
customer.

< sparre> All with Delphi experience.

< charlie5> nice

< sparre> We started out with "hello
world" in parallel. ;-)

[See http://www.consafelogistics.com/
our-offer/warehousing/sattstore-wms for
information about the product they are
going to work on. —sparre]

Complete Ada Solutions for

Complex Mission-Critical Systems
•

•

•

•

 135

Ada User Journal Volume 37, Number 3, September 2016

Conference Calendar
Dirk Craeynest

KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2016

October 02-10 32nd IEEE International Conference on Software Maintenance and Evolution (ICSME'2016),

Raleigh, North Carolina, USA. Topics include: reverse engineering and re-engineering, software

refactoring and restructuring, software migration and renovation, software and system comprehension,

software repository analysis and mining, software testing, maintenance and evolution processes,

software quality assessment, continuous integration/deployment, etc.

October 03-06 16th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2016),

Mountain View, California, USA. Topics include: theory and applications of formal methods in

hardware and system verification; synthesis and compilation for computer system descriptions,

modeling, specification, and implementation languages, model-based design, correct-by-construction

methods; experience with the application of formal and semi-formal methods to industrial-scale designs;

etc.

October 06 6th International Workshop on Design, Modeling and Evaluation of Cyber Physical Systems

(CyPhy'2016), Pittsburgh, Pennsylvania, USA. In conjunction with ESWEEK 2016. Topics include:

development of industrial or research-oriented cyber-physical systems in domains such as robotics,

smart systems (homes, vehicles, buildings), medical and healthcare devices, future generation networks;

evaluation of novel research tools; comparisons of state of the art tools in industrial practice; etc.

 October 06-07 ACM SIGAda's High Integrity Language Technology International Workshop on Model-Based

Development and Contract-Based Programming (HILT'2016), Pittsburgh, Pennsylvania, USA.

Sponsored by ACM SIGAda. Co-located with EMSOFT 2016 (ACM SIGBED's International

Conference on Embedded Software), part of ESWEEK 2016 (Embedded Systems Week). Topics

include: automated analysis and code generation targeting verification-oriented tools and/or

programming language subsets (such as SPARK/Ada, ...); contributions linking modeling and contracts

to the topics associated with the co-located EMSOFT conference (such as model- and component-based

software design and analysis, software technologies for safety-critical and mixed-critical systems, robust

implementation of control systems, ...); etc.

October 17-20 14th International Symposium on Automated Technology for Verification and Analysis

(ATVA'2016), Chiba, Japan. Topics include: program analysis and software verification; analytical

techniques for safety, security, and dependability; testing and runtime analysis based on verification

technology; analysis and verification of parallel and concurrent hardware/software systems; verification

in industrial practice; applications and case studies; etc.

October 19-21 24th International Conference on Real-Time Networks and Systems (RTNS’2016), Brest, France.

Topics include: real-time system design and analysis: task and message scheduling, modelling,

verification, evaluation, model-driven development, timing analysis, worst-case execution time

estimation, distributed systems, fault tolerance, quality of service, security; software technologies for

real-time systems: compilers, programming languages, middleware and component-based technologies,

operating systems, databases; etc.

October 23-27 27th IEEE International Symposium on Software Reliability Engineering (ISSRE'2016), Ottawa,

Canada. Topics include: reliability, availability and safety of software systems; validation and

136 Conferecen Calendar

Volume 37, Number 3, September 2016 Ada User Journal

verification; software quality and productivity; software security; dependability, survivability, fault

tolerance and resilience of software systems; systems (hardware + software) reliability engineering;

supporting tools and automation; industry best practices; software standards; etc.

October 24-31 13th International Colloquium on Theoretical Aspects of Computing (ICTAC'2016), Taipei,

Taiwan, Republic of China. Topics include: principles and semantics of programming languages;

relationship between software requirements, models and code; program static and dynamic analysis and

verification; software specification, refinement, verification and testing; model checking and theorem

proving; integration of theories, formal methods and tools for engineering computing systems; models

of concurrency, security, and mobility; real-time, embedded, hybrid and cyber-physical systems; case

studies, theories, tools and experiments of verified systems; etc.

October 29-30 5th International Conference on Software Engineering and Applications (SEAS'2016), Vienna,

Austria. Topics include: software engineering practice, quality management, advanced topics in

software engineering, software maintenance and testing, languages and formal methods, software

engineering decision making, etc.

 Oct 30 - Nov 4 ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH'2016), Amsterdam, the Netherlands. Topics include: all aspects of software

construction, at the intersection of programming, languages, systems, and software engineering.

 October 30 7th Workshop on Evaluation and Usability of Programming Languages and Tools

(PLATEAU'2016). Topics include: methods, metrics and techniques for evaluating the

usability of languages and language tools; making programs easier to read, write, and

maintain; allowing programmers to write more flexible and powerful programs;

restricting programs to make them more safe and secure; empirical studies of

programming languages; methodologies and philosophies behind language and tool

evaluation; software design metrics and their relations to the underlying language; user

studies of language features and software engineering tools; critical comparisons of

programming paradigms; tools to support evaluating programming languages; etc.

October 31 1st Workshop on ReUsable and Modular Programming Language Ecosystems

(RUMPLE'2016). Topics include: reusable implementation of runtime components;

static and dynamic compiler techniques for different languages; multi-language runtimes

and mechanisms for cross-language interoperability between different languages;

tooling support for different languages (e.g. debugging, profiling, etc.); modular

language implementations that use existing frameworks and systems; case studies of

existing language implementations, virtual machines, and runtime components; etc.

Oct 31-Nov 1 9th ACM SIGPLAN International Conference on Software Language Engineering

(SLE'2016). Topics include: the application of systematic, disciplined, and measurable

approaches to the development, use, deployment, and maintenance of software

languages, including general-purpose programming languages, domain-specific

languages, modeling and metamodeling languages, etc.; language design and

implementation, language validation, language integration, language maintenance

(software language reuse, language evolution, language families and variability),

empirical evaluation and experience reports of language engineering tools; etc.

 November 01 High Integrity Software Conference (HIS'2016), Bristol, UK.

November 06-08 21st International Conference on Engineering of Complex Computer Systems (ICECCS'2016),

Dubai, United Arab Emirates. Topics include: verification and validation, security and privacy of

complex systems, model-driven development, reverse engineering and refactoring, design by contract,

agile methods, safety-critical & fault-tolerant architectures, real-time and embedded systems, cyber-

physical systems and Internet of Things (IoT), tools and tool integration, past reflections and future

outlooks, industrial case studies, etc.

November 07-11 21st International Symposium on Formal Methods (FM'2016), Limassol, Cyprus. Topics include:

interdisciplinary formal methods (techniques, tools and experiences demonstrating formal methods in

interdisciplinary frameworks); formal methods in practice (industrial applications of formal methods,

experience with introducing formal methods in industry, tool usage reports, etc); tools for formal

methods (advances in automated verification and model-checking, tools integration, environments for

formal methods, etc); role of formal methods in software and systems engineering (development

processes with formal methods, usage guidelines for formal methods, method integration, qualitative or

 137

Ada User Journal Volume 37, Number 3, September 2016

quantitative improvements); theoretical foundations (all aspects of theory related to specification,

verification, refinement, and static and dynamic analysis). Deadline for early registration: October 6,

2016.

November 09-11 Symposium on Dependable Software Engineering: Theories, Tools and Applications

(SETTA'2016), Beijing, China. Topics include: formalisms for modeling, design and implementation;

model checking, theorem proving, and decision procedures; scalable approaches to formal system

analysis; integration of formal methods into software engineering practice; contract-based engineering

of components, systems, and systems of systems; formal and engineering aspects of software evolution

and maintenance; parallel and multicore programming; embedded, real-time, hybrid, and cyber-physical

systems; mixed-critical applications and systems; safety, reliability, robustness, and fault-tolerance;

applications and industrial experience reports; tool integration; etc. Deadline for early registration:

October 10, 2016.

November 13-19 24th ACM SIGSOFT International Symposium on the Foundations of Software Engineering

(FSE'2016), Seattle, Washington, USA. Topics include: architecture and design; components, services,

and middleware; debugging; dependability, safety, and reliability; development tools and environments;

distributed, parallel, and concurrent software; education; embedded and real-time software; formal

methods; model-driven software engineering; policy and ethics; program analysis; programming

languages; refactoring; reverse engineering; safety-critical systems; scientific computing; software

evolution and maintenance; software product lines; software reuse; specification and verification; etc.

November 14-18 18th International Conference on Formal Engineering Methods (ICFEM'2016), Tokyo, Japan.

Topics include: abstraction, refinement and evolution; program analysis; formal verification; model

checking; formal methods for object-oriented systems, for component-based systems, for concurrent and

real-time systems, for cyber-physical systems, for software safety, security, reliability and

dependability; tool development, integration and experiments involving verified systems; formal

methods used in certifying products under international standards; formal model-based development and

code generation; etc.

November 16-17 Ada-France at Paris Open Source Summit. Paris, France.

November 21-23 14th Asian Symposium on Programming Languages and Systems (APLAS'2016), Hanoi, Vietnam.

Topics include: foundational and practical issues in programming languages and systems, such as

semantics, design of languages and type systems, domain-specific languages, compilers, interpreters,

abstract machines, program analysis, verification, model-checking, software security, concurrency and

parallelism, tools and environments for programming and implementation, etc.

November 22-24 17th International Conference on Product Focused Software Process Improvement

(PROFES'2016), Trondheim, Norway. Topics include: the challenges of improving software

development within the different practice areas such as requirements, design, construction, testing,

maintenance, process, methods, management, etc.; research papers based on empirical evidence ranging

from controlled experiments to case studies and from quantitative to qualitative studies; etc.

Nov 29 - Dec 02 37th IEEE Real-Time Systems Symposium (RTSS'2016), Porto, Portugal. Topics include: all aspects

of real-time systems theory, design, analysis, implementation, evaluation, and experiences.

 Nov 29 4th IEEE International Workshop on Real-Time Computing and Distributed

systems in Emerging Applications (REACTION'2016). Topics include: integration of

real-time computing and distributed systems in the context of reliable software

technologies, real-time middleware, system modeling and component technology,

technologies for modeling and programming distributed real-time systems and CPS, etc.

Nov 29 4th International Workshop on Mixed Criticality Systems (WMC’2016). Topics

include: Task and system models for MCS on single-core, multi-core, and many-core

platforms; MCS models (Vestal, DAL / IMA, SIL / AUTOSAR, …); Scheduling

schemes and analyses for MCS; operating systems, hypervisors, run-time environments;

certification issues of MCS on multi-core and many-core platforms; Safety and fault-

tolerance mechanisms for real-time MCS systems; etc.

Nov 29 1st Workshop on Security and Dependability of Critical Embedded Real-Time

Systems (CERTS’2016). Topics include: Security and dependability of cyber-physical

and other real-time and embedded systems; vulnerabilities and protective measures of

CPS infrastructure; fault and intrusion tolerant distributed real-time systems; system

138 Conference Calendar

Volume 37, Number 3, September 2016 Ada User Journal

architectures encompassing combinations of distribution, security, dependability and

timeliness; etc.

December 06-09 23rd Asia-Pacific Software Engineering Conference (APSEC'2016), Hamilton, New Zealand. Topics

include: component-based software engineering; debugging, fault localization, and repair; embedded

real-time systems; formal methods; model-driven engineering; parallel, distributed, and concurrent

systems; product-line software engineering; programming languages and systems; refactoring; reverse

engineering; security, reliability, and privacy; software architecture, modelling and design; software

engineering environments and tools; software reuse; testing, verification, and validation; tools and

environments; etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 12-16 17th ACM/IFIP/USENIX International Middleware Conference (Middleware'2016), Trento, Italy.

Topics include: design, implementation, deployment, and evaluation of distributed system platforms and

architectures for computing, storage, and communication environments; reliability and fault tolerance;

real-time solutions and quality of service; scalability and performance; methodologies and tools for

middleware design, implementation, verification, and evaluation; retrospective reviews of middleware

paradigms; etc.

2017

January 12-14 18th IEEE International Symposium on High Assurance Systems Engineering (HASE'2017),

Singapore. Topics include: model-driven engineering, design languages, formal methods, domain

specific languages, evolution and change, verification and validation, security and privacy, reliability

and safety, tools for high assurance systems, etc. Systems of interest include: cyber-physical systems,

distributed systems, embedded systems, autonomous vehicles, robot swarms, etc.

January 17-20 9th Software Quality Days Conference (SWQD'2017), Vienna, Austria. Topics include: improvement

of software development methods and processes; testing and quality assurance of software and software-

intensive systems; domain specific quality issues such as embedded, medical, automotive systems; novel

trends in software quality; etc.

 January 18-20 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL'2017), Paris,

France. Topics include: all aspects of programming languages and programming systems.

January 22-25 22nd IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'2017),

Christchurch, New Zealand. Topics include: architecture and system design for dependability;

dependability issues in parallel and distributed systems; dependability issues in real-time systems;

dependability issues in cyber-physical systems; dependability measurement, modeling, evaluation, and

tools; software and hardware reliability; safety-critical systems and software; etc.

January 23-25 12th European Network on High Performance and Embedded Architecture and Compilation

conference (HiPEAC’2017), Stockholm, Sweden. Topics include: parallel, multi-core and

heterogeneous systems; architectural support for programming productivity; reliability and real-time

support in processors, compilers and run-time systems; architectural and run-time support for

programming languages; programming models, frameworks and environments for exploiting

parallelism; compiler techniques; etc.

February 01-03 11th International Workshop on Variability Modelling of Software-intensive Systems

(VaMoS'2017), Eindhoven, the Netherlands. Topics include: variability across the software life cycle;

architecture and design of variable software systems; formal verification, testing, and debugging of

variable software systems; refactoring and evolution of variable software systems; reverse engineering

of variability; formal reasoning and automated analysis on variability; software economic aspects of

variability; etc. Deadline for submissions: October 28, 2016 (abstracts), November 4, 2016 (papers).

February 05-06 26th International Conference on Compiler Construction (CC'2017), Austin, Texas, USA. Topics

include: work on processing programs in the most general sense, such as compilation and interpretation

techniques, run-time techniques (memory management, virtual machines, ...), programming tools

(refactoring editors, checkers, verifiers, compilers, debuggers, profilers), techniques for specific

domains (secure, parallel, distributed, embedded, ... environments), design and implementation of novel

language constructs and programming models, etc. Deadline for submissions: November 1, 2016

(abstracts), November 8, 2016 (papers).

Conference Calendar 139

Ada User Journal Volume 37, Number 3, September 2016

February 19-21 5th International Conference on Model-Driven Engineering and Software Development

(MODELSWARD'2017), Porto, Portugal. Topics include: domain-specific modeling, general-purpose

modeling languages and standards, syntax and semantics of modeling languages, model-based testing

and validation, model execution and simulation, model quality, component-based software engineering,

software factories and software product lines, etc. Deadline for submissions: October 7, 2016 (regular

papers), November 10, 2016 (workshops), November 11, 2016 (position papers), November 28, 2016

(special session), December 14, 2016 (doctoral consortium), January 3, 2017 (tutorials, demos, panels).

February 20-24 24th IEEE International Conference on Software Analysis, Evolution, and Reengineering

(SANER'2017), Klagenfurt, Austria. Topics include: software analysis, parsing, and fact extraction;

software reverse engineering and reengineering; program comprehension; software evolution analysis;

software architecture recovery and reverse architecting; program transformation and refactoring; mining

software repositories and software analytics; software maintenance and evolution; experience reports;

education; tools and methods; etc. Deadline for submissions: October 12, 2016 (research abstracts),

October 17, 2016 (research papers), November 21, 2016 (industrial abstracts), November 26, 2016

(industrial papers), November 28, 2016 (early research achievements abstracts, tool abstracts),

December 2, 2016 (early research achievements papers, tool papers), January 8, 2017 (posters).

March 13-18 10th IEEE International Conference on Software Testing, Verification and Validation (ICST'2017),

Tokyo, Japan. Topics include: formal verification and testing, such as model checking; software

reliability, security, safety, and trustworthiness; embedded software testing; testing concurrent software;

testing large-scale distributed systems; testing real-time systems; testing in multi-core environments;

security testing; conformance and interoperability testing; static analysis, code reviews and inspections;

testing of open source and third-party software; testing and analysis tools; quality assurance; experience

reports; etc. Deadline for submissions: October 7, 2016 (workshops), December 1, 2016 (testing tools

papers), December 2, 2016 (doctoral symposium), December 23, 2016 (industry track papers), January

12, 2017 (tool demos), January 29, 2017 (posters).

 April 03-06 The Art, Science, and Engineering of Programming Conference (Programming'2016), Brussels,

Belgium. A new conference, with an associated gold open access journal, created with the goal of

placing the art of programming in the map of scholarly works. Topics include: The Art (knowledge and

technical skills acquired through practice and personal experiences; examples include libraries,

frameworks, languages, APIs, programming models and styles, programming pearls, and essays about

programming); Science - empirical (knowledge and technical skills acquired through experiments and

systematic observations; examples include user studies and programming-related data mining); Science

- theoretical (knowledge and technical skills acquired through mathematical formalisms; examples

include formal programming models and proofs); Engineering (knowledge and technical skills acquired

through designing and building large systems and through calculated application of principles in

building those systems; examples include measurements of artifacts' properties, development processes

and tools, and quality assurance methods). Areas include: general-purpose programming, distributed

systems programming, parallel and multi-core programming, security programming, interpreters, virtual

machines and compilers, modeling and modularity, testing and debugging, program verification,

programming education, programming environments, etc. Deadline for submissions: December 1, 2016.

April 03-07 32nd ACM Symposium on Applied Computing (SAC'2017), Marrakech, Morocco.

 April 03-07 Track on Object-Oriented Programming Languages and Systems (OOPS'2017).

Topics include: aspects and components; code generation, and optimization; distribution

and concurrency; formal verification; integration with other paradigms; interoperability,

versioning and software evolution and adaptation; language design and implementation;

modular and generic programming; runtime verification; secure and dependable

software; static analysis; testing and debugging; type systems; virtual machines; etc.

 April 03-07 Track on Programming Languages (PL'2017). Topics include: compiling techniques,

domain-specific languages, garbage collection, language design and implementation,

languages for modeling, model-driven development, new programming language ideas

and concepts, practical experiences with programming languages, program analysis and

verification, programming languages from all paradigms, etc.

April 03-07 Track on Software Verification and Testing (SVT'2017). Topics include: new results

in formal verification and testing, technologies to improve the usability of formal

methods in software engineering, applications of mechanical verification to large scale

software, model checking, correct by construction development, static and run-time

140 Conference Calendar

Volume 37, Number 3, September 2016 Ada User Journal

analysis, analysis methods for dependable systems, software certification and proof

carrying code, real world applications and case studies applying software verification,

etc.

April 05-07 IEEE International Conference on Software Architecture (ICSA'2017), Gothenburg, Sweden. Topics

include: model driven engineering for continuous architecting; component based software engineering

and architecture design; re-factoring and evolving architecture design decisions and solutions;

architecture frameworks and architecture description languages; preserving architecture quality

throughout the system lifetime; software architecture for legacy systems and systems integration;

architecting families of products; software architects roles and responsibilities; training, education, and

certification of software architects; industrial experiments and case studies; etc. Deadline for

submissions: November 14, 2016 (workshops), December 2, 2016 (tutorials), January 5, 2017 (technical

paper abstracts), January 10, 2017 (technical papers), February 18, 2017 (abstracts for industry track,

tool papers, New and Emerging Ideas, and Young Researchers Forum), February 23, 2017 (industry

track, tool papers, New and Emerging Ideas, Young Researchers Forum, workshop papers).

April 18-21 23rd IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

Pittsburgh, USA. Topics include: applications, tools, and run-time software for real-time systems;

methodologies, algorithms, and analyses that are applied to real systems to solve specific problems;

hardware/software co-design, integration methodologies, design-time tools and architectures for modern

embedded systems for real-time applications; etc. Deadline for submissions: October 13, 2016 (strict).

April 18-21 8th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS’2017), Pittsburgh,

USA. In conjunction with CPSWEEK 2016. Topics include: mechanism design for CPS; model-based

design and verification of CPS; etc. Deadline for submissions: October 6, 2016 (abstracts), October 13,

2016 (papers).

April 22-29 20th European Joint Conferences on Theory and Practice of Software (ETAPS'2017), Uppsala,

Sweden. Events include: ESOP (European Symposium on Programming), FASE (Fundamental

Approaches to Software Engineering), FOSSACS (Foundations of Software Science and Computation

Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the

Construction and Analysis of Systems), SV-COMP (Competition on Software Verification). Deadline

for submissions: October 14, 2016 (abstracts), October 21, 2016 (full papers).

April 28-29 12th International Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE'2017), Porto, Portugal. Topics include: application integration technologies, architectural

design and frameworks, component-based software engineering, formal methods, model-driven

engineering, reverse software engineering, software and system complexity, software and systems

development methodologies, software and system quality management, software patterns and

refactoring, software product line engineering, software process improvement, etc. Deadline for

submissions: November 30, 2016 (regular papers), January 12, 2017 (workshops), January 19, 2017

(position papers), January 30, 2017 (special sessions), February 13, 2017 (special session papers),

March 1, 2017 (doctoral consortium papers, open communications papers), March 6, 2017 (tutorials,

demos, panels).

May 16-18 9th NASA Formal Methods Symposium (NFM'2017), Moffett Field, California, USA. Topics include:

identify challenges and provide solutions for achieving assurance for critical systems; model checking;

static analysis; model-based development; software and system testing; safety assurance; fault tolerance;

compositional verification; design for verification and correct-by-design techniques; applications of

formal methods in the development of autonomous systems, cyber-physical, embedded, and hybrid

systems, ...; use of formal methods in assurance cases, automated testing and verification, ...; etc.

Deadline for submissions: November 28, 2016 (abstracts), December 5, 2016 (papers).

 May 20-28 39th International Conference on Software Engineering (ICSE'2017), Buenos Aires, Argentina.

Deadline for submissions: October 7, 2016 (workshop proposals); October 26, 2016 (Software

Engineering in Practice, Software Engineering Education & Training, New Ideas and Emerging Results,

Software Engineering in Society); November 18, 2016 (formal demonstrations, technical briefings,

Doctoral Symposium); December 28, 2016 (Student Research Competition); January 9, 2017 (posters).

May 29 - Jun 02 31st IEEE International Parallel and Distributed Processing Symposium (IPDPS'2017), Orlando,

Florida, USA.

Conference Calendar 141

Ada User Journal Volume 37, Number 3, September 2016

 June 12-16 22nd International Conference on Reliable Software Technologies - Ada-
Europe'2017. Vienna, Austria. Topics include but are not limited to: Real-Time and
Embedded Systems, Mixed Criticality Systems, Theory and Practice of High-Integrity

Systems, Software Architectures, Methods and Techniques for Software Development
and Maintenance, Formal Methods, Ada Language and Technologies, Software Quality,
Mainstream and Emerging Applications, Experience Reports in Reliable System
Development, Experiences with Ada. Sponsored by Ada-Europe. This edition of Ada-

Europe also features a focused Special Session on Reliable and Safe Robotics.
Deadline for submissions: January 15, 2017 (papers, tutorials, workshops, industrial
presentations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

������������	
��

���������	�
���
�������������
���

����
������	
���

���������������
�����������������������

�������������
���

���������������
������������������������ ����

���������	
��
�����
����

�����
�����������	
��

!�"�
�����
��"�
������������������

�������������
���

������
��
��������	����	
��

������
���
��
��������������

������

��������
���	
��

������# �������
��
$�����$����%
 ����"

���
�������
�
���������
������

��	��������	
��

������!�����
������ �!��"�����#��

$����
%��&���
'�()�
�!��"�����

�����������	
��

&�"�'��(��
�
&�"�'��(��
���
�"����������

�� *��+�,�
�
-�
.�,����
*��+�,�

 ��
���	
��

!�"�
�����
��"�
������������������

/�
0�����
�,����

!����
��������
���

/��
""��� ������
���
� � ���������� � �� � #���
��� � ��$%
�� � ���	������� � & � '�
�

�������"()*
!���
���
&���
��
0�����
�,����#
1����!��+
���
��������
������
���

���2������
!���
 �&�

 2,��
!����
 ����,���+

 ����� ��
 ��������
&��+��
��

������
 �3��(����
 2���
/,����
 ��
 /�,�����
 ���+
!���
&�����
 �,������
 ��

!������&�
��
4����
��
1����#

��	�����

56
��,��
7859 �,(�������
�2
&&����
���,�����
&����������
�,�����
��

!������&
&��&����#

7:
1�(�,��
7859 ;��<����
�2
���&����
��
��
,�����

5=
4���
7859 ���� ����
�������
�2
&&���
��>,����

?8
�&���
7859 ���,�����
&�����������
�,������
��
!������&
������
��>,����

������

/��
 ���2������
 ��
 ����
 ���
 ����
 (�����

 �����+
 ����������
 2��,�
 2��

&���������
 &���������
 ��
 ����������
 ��
 ����(��
 ��@!��
 ��������+���#
 /��

���2������
&����������
!���
���,�����
�,�����
!���
��
���
������
��
&�����
�2

���
����+��
 ������&����
��
���������
�2
 ���+ ������
��+� >,����
 ��@!��

�������
2��

������+��+
������
�2
&&������
������#
/��
&��+��
!���
���!

�&��
 ���
 2��
 ���������
 A��
 ��������
 ��
 ����,�������
 ��
 �����
 ������#

�����&���
����,��
&���������
��
����������
��&�������+
���,�����
�����

��
 +���������
 ��+��"����
 ����
 ��
 ���
 &�������
 ��
 ������&����
 �2

����(��
��@!��
��������+���#

/���
������
�2
�� %,��&�
2��,���

2��,���
�����
�������������#���
����
����
��

#������#
1����!��+
���
��������+
�����
�2
��(���
�������
��
���,�����
��
&,(���

������������
 ��
 ��
����
 ��
����
 ��&�����
 ��
 ������
 ��@!��
 �������
 ��

�������
 ,������,�
 ��������#
 /���
 �&����
 ��&��
 ����,����
 ���,��
 ��+����+

������+��+
&��(����
 ��
 ���
<���
�2
,������,�
���+���
��
������
 2,����#

/�&���
 ����,��
B(,�
��
���
 �������
��CD
+�
��%���� ������������, ���
�����
��

���������������,�
��%����
�������
����
�����������
�����
����#

1��
���
����
� ���
����� ��	�������������
 ��&���
�2
 ��������
 ����,��
(,�
��
���

�������
 ��
 B2,��
 ����
 ��
 ���
!�(����CD
��� /���
��
%�(�����
��������
4�3��

���������
 ��������
 /�����
 ��
 ������
 �2
)�+� ����+����
 ��������
 ��@!��

���������,����
 4������
 ��
 /�����>,��
 2��
 ��@!��
 ������&����
 ��

4���������
1����
4�������
��
.�+,+�
��
/�������+����
��@!��
A,�����

4�������
��
%���+��+
�&&��������
 %3&�������
��&����
 ��
����(��
 ������

������&�����
%3&��������
!���
��#

����������	
����������	������	���������	��

���������	�
�
������������������������
����������	�������
��
��������
�������������������������� ������!�"#$%&������
������������������������	������������������������'����������
�����
������� � ����� � ������ � ����� ���' � ��� �(���$���� � �� ����
�)**�������������*���	�������*+���	,�������
������ � -�� � 	����� � 	��
����������������������./�

-���0�������������$��	����������1��������%�	�����-������������������'������������������$21(����'��������3������	����������
%����������������������
�������	������	�����������
����������������������-������	��������������������.4"�5�%$2�6%�����7��
�	�%�������$��	�������������������$������������ 5��������������

����		��
�

$��	�������
������������������
����������������"�������#��������$��
�����%�������8"#$%9�����������%
������5�����������
��������������������	��������$�����&����������
����
�
�������������������������:�3����������8	�����������������������������
����������	�����������9��/�������������
�������������������	����������	������������������������
�����������
�
���	�����

������
�������
����������

���������������������	�	��������

-������	����������'�������������
��;����������������
�������	����������

�
�������������������������������������
���������������������	�� ��������
����������������������������������%����������������
������������(���$�����	���������������'����
�)**�������������*���	�������*+���	,�������
�������-���	������	�������������
�����������./�

-���0����������$���'�����������������-������������	����������
������������������

��
��� � � � ;��� � ����� � �������� � ��� � ������ � �� � �� � <� ��
��� � ����5 � ������ � �� � � � ��&������ � ���'� � -�� � ������� � �	 � ����
���

������������ ���� � �� � ������� � �� � ������ � ������
������ ��������� � 	�� �
���������� � �� � ��� ��������� � 	
����� � 8���
)**����&
����
�����*��=*95��������� ����������
������������	�����0�������������������	�����$��	��������/�������	���������	��������

������������������0����������$���������������

�����

���&(���
�������>������������������	��������������������
�
����������������
������������

������������������

-���������������������������=����������	�����������������
���	��������	������������������
��
������������������	&����	���&���
�����������
������������� ���������������5������������5���������
������	�������
��5���������������������	�����
�����������5��
������
������	�����
��������?�������������
������������������������������
��
�������
������
���������5�����
��
�������������
8���	��������	�������95���������������������	��������������8������������5�������������5������������95�������������������������
�
���������������'������5������������������	�������������	�����������������
������������������������������&�����������
-��������$������-������������	�����
����	���&�������������������������������
�������������	��������������������������������	��
	���������
������
������
�������� ������	��@�	������	&�������������5�����������;������������������������������-��� ��������
	
������8���
)**����&����
�����*��=*9������>����
����	�������
������������	������������	���������
��������������

������������������

7��'���
�����������������	�����������������	����������
���������
��
���������
�����������������������	������	&����	���&���
������5��������������������������������	��������	���������'��7��'���
�
��
���������������������������������7��'���

$����� �-�����'���
�������A�������� ����������������
��
������
�����������	����������
����������������� ���������� 	
����
8���
)**����&����
�����*��=*9�

�������������������

-��������������� ��������������
�������������������	�������������	��������B�����������
����������	���	�����
�����������
����������������������������(���������$�����	�����	�������������	��������������������
���������	������ ����������
�������
�����

������������	��	����	��� 		�

������������������	��
���������������	�����������	��������
����������������������	����������������������'���������������
���	���������������������$�����������$��	�������$�����	�����������

!	��	

-������	�������������'��
���������������(����������8���������������95���������������	�B�����5���������

144

Volume 37, Number 3, September 2016 Ada User Journal

Ada User Journal

The journal for the international Ada community

Call for Contributions

Ada User Journal — The Journal for the international Ada Community — is published by Ada-Europe.

It appears four times a year, on the last days of March, June, September and December.

Aims

The Ada User Journal aims to inform readers of developments in the Ada programming language and

its use, general Ada-related software engineering issues and Ada-related activities in Europe and other

parts of the world. The language of the journal is English.

Although the title of the Journal refers to the Ada language, any related topics are welcome. In particular

papers in areas related to reliable software technologies.

The Journal publishes the following types of material:

 Refereed original articles on technical matters concerning

Ada and related topics.

 Invited papers on Ada and the Ada standardization

process.

 Proceedings of workshops and panels on topics relevant to

the Journal.

 Reprints of articles published elsewhere that deserve a

wider audience.

 News and miscellany of interest to the Ada community.

 Commentaries on matters relating to Ada and software

engineering.

 Announcements and reports of conferences and

workshops.

 Information regarding standards concerning Ada.

 Reviews of publications in the field of software

engineering.

Submission Guidelines

All material for publication should be sent to the Editor, preferably in electronic format. Prospective

authors are encouraged to contact the Editor (Luís Miguel Pinho <AUJ_EDITOR@ADA-EUROPE.ORG>) to

determine the best format for submission.

http://www.ada-europe.org/auj/home

Online

Archive

available

146

Volume 37, Number 3, September 2016 Ada User Journal

Using Ada's Visibility Rules and Static Analysis to

Enforce Segregation of Safety Critical Components

Jean-Pierre Rosen

Adalog, 2 rue du Docteur Lombard, 92441 Issy les Moulineaux CEDEX, France;

email: rosen@adalog.fr

Jean-Christophe Van-Den-Hende

ALSTOM Transport, 48, rue Albert Dhalenne, 93482 SAINT-OUEN CEDEX, France;

email: jean-christophe.van-den-hende@transport.alstom.com

Abstract

Segregation of components is required in mixed
criticality systems, where different safety integrity
levels apply to various components. This paper
presents a solution where appropriate organization
of the project into child units and proper usage of
Ada's visibility rules complemented with simple
static analysis are sufficient to ensure that all
violations of segregation rules will be rejected at
compile time.

This paper provides some explanations about the
Ada mechanisms used to that effect, in order to make
it understandable by those who are not familiar with
the Ada language.

1 The need for segregation

ALSTOM Transport is a leading provider of ground and

embedded railway systems. In order to minimize costs as

well as to maximize safety, it is developing a new,

components based, architecture in Ada that would

maximize the possibility of reusing components between

various systems.

Railway safety is highly dependent on software; although

it is true that a train can stop in an emergency situation

(unlike planes), stopping a high speed train (such as the

French TGV) with emergency breaking requires three

minutes and 3300 meter distance. This is far too much to

avoid an accident that would be caused by a software

failure, and no manual action of the driver can

compensate for a software fault. Therefore, railway

systems are subject to very strict rules ensuring

correctness of the software.

Railway software is governed by the safety standard EN-

50128 [1], which defines five Safety Integrity Levels

(SIL), ranging from SIL0 (lowest criticality) to SIL4

(highest criticality). This is similar to the "levels" E to A

of DO178C [2] for avionics systems. As can be expected,

the cost of developing, checking, and certifying SIL4

software is much higher than the one of lower SILs. The

necessity of reducing development costs implies that only

truly critical parts be subject to the highest criticality

checks.

1.1 Mixed criticality systems

In a complex system such as those that ensure safety and

correct operation of trains, only a relatively small subset

of the functions (and hence associated components) is of a

SIL4 level. However, the lower criticality components

(considered SIL0 for short) run on the same computer and

are part of the same main program as the SIL4

components.

Such systems where components with different safety

requirements are running together are called mixed

criticality systems, whether the components are several

applications running on the same computer, or a single

application that mixes various software components.

Of course, the difficulty with mixed criticality systems is

that a defect in a SIL0 component could adversely affect

the behaviour of a SIL4 component. The traditional

approach to addressing this issue is to submit all

components to the same safety process as required by the

highest criticality component in the system - in practice

the SIL4 process. While this has the benefit of ensuring

the highest confidence in the system as a whole, it has an

enormous cost, since the vast majority of components

must suffer a costly validation and certification process

that goes far beyond what is required for their own

criticality.

1.2 Segregation

This cost can be dramatically reduced through

segregation, i.e. if it can be proven that SIL0 components

are independent from SIL4 ones, and that the behaviour of

no SIL4 component depends on a SIL0 component. Such

a segregation can be achieved through hardware or

software control.

For example, in avionics systems (which have similar

issues), the ARINC-653 [3] standard has been designed to

ensure hardware segregation of components of different

levels: the standard ensures that components of different

criticalities have different address spaces, and a MMU

ensures that each component can access only its own

address space. Communications between components are

performed through a dedicated bus, etc. Note however

that hardware segregation prevents corruption by an

incorrect low criticality component at execution time, but

does not ensure that the software is free from such errors.

J-P. Rosen, J-C. Van-Den-Hende 147

Ada User Journal Volume 37, Number 3, September 2016

On the other hand, software proofs and other static

verification techniques can be used to demonstrate that by

design, no low criticality component performs dangerous

or incorrect actions that could jeopardize the safety of

high criticality components. Of course, to be effective and

economical, such proof systems have to be much cheaper

than the usual SIL4 validation process.

2 The study and its requirements

ALSTOM wanted to evaluate various solutions to ensure

segregation of components, and asked Novasys [4] (part

of the Pacte-Novation group) to conduct two studies on

solutions using hardware and software segregation

respectively. The hardware solution was studied directly

by Novasys, while the software solution, which is the

purpose of this paper, was conducted by Adalog [5], a

subsidiary of Novasys specialized in Ada consultancy,

expertise, and training.

2.1 Requirements

A SIL4 component is one which is responsible for actions

that can compromise safety, like setting the speed of the

train, controlling the opening of the doors, etc. Such

components must not only be checked for their own

correctness; it is also important to check that they do not

use unsafe operations, that their provided operations are

not called in an incorrect manner and that they do not

operate on incorrect data.

Therefore, the following rules were established as a basis

for the software segregation study:

 Data passed from SIL0 to SIL4 components are

deemed unreliable; it is up to the SIL4 component to

assess the validity of the data.

 Except for the dedicated zones for data exchange, no

SIL0 component is allowed to access SIL4 data.

 Some utility components that do not perform any

safety critical function can be called by SIL0 as well

as SIL4 components; however, since they are used by

SIL4 components, they are classified as SIL4.

 If a SIL0 component needs to be called by a SIL4

component, this can be done only through a dedicated

SIL4 component that will perform all required

checking.

 Except for the special cases above, no SIL4

component or functionality can be used by a SIL0

component.

In addition, low level features of Ada, unchecked

programming, and removal of language checks are not

allowed in SIL0 components, in order to guarantee

memory integrity of the system (see below).

3 A software architecture for statically
checking segregation rules

The software study goal was to find a convincing (and

economical) way of enforcing the above rules. The study

proposed an architecture of the software that would allow

checking of the segregation rules by the compiler. In other

words, a program that would not obey by the rules would

simply not compile. This was made possible by using

Ada's visibility rules related to packages and child

packages.

3.1 Ada packages and visibility rules

In Ada a package is a logical module that gathers a set of

logically related elements (types, constants,

subprograms…). Like all Ada units, a package has a

specification and a body. The specification exposes the

elements that are usable outside of the package, while the

body contains the implementation of the services

announced in the specification. The specification is

furthermore divided into a visible part and a private part;

actually, only elements from the visible part are made

available to the outside units. This part can contain

private types that are announced without revealing their

internal structure. The private part of the package serves

to give the compiler the full declaration of these types,

without making it visible to the users. This allows the

definition of abstract data types, where only the type

name and its operations are made visible, all

implementation details being hidden in the private part

and in the body. Of course, the body of a package sees the

private part, including the full declaration of abstract data

types.

The typical structure of a package is shown in the

following example:

package Example is -- specification

 type T is private; -- a private type

 procedure P (X : T); -- operation

private -- beginning of private part

 type T is -- full declaration of T

 record

 Compo: Compo_Type; -- Components…

 end record;

end Example;

package body Example is -- body

 procedure P (X : T) is -- body of P

 …

 end P;

end Example;

Figure 1 Structure of a package

Packages can be organized as a hierarchy of parent/child

units. A child package is simply a package whose name is

prefixed by the name of its parent. A child package can be

either public or private.

 A public child can be accessed normally by the rest of

the system; however its visible part has only access to

the visible part of its parent 1 . For implementation

purposes, its own private part and its body see the

private part of the parent.

1 Consequently, a public child cannot reveal declarations hidden in the

private part of its parent.

148 Using Ada's Vis ibi l i ty Rules and Stat ic Analys is to Enforce Segregation

Volume 37, Number 3, September 2016 Ada User Journal

 A private child is available only to the bodies of its

parent and siblings (and descendants). A parent,

together with its private children, defines a subsystem,

where only the parent interface is available outside the

subsystem.

The following example illustrates the declaration

(specification) of public and private child packages:

-- public child package

package Parent.Pack1 is

 …

end Parent.Pack1;

-- private child package

private package Parent.Pack2 is

 …

end Parent.Pack2;

Figure 2 Child packages

3.2 The architecture

As exposed above, Ada features a sophisticated system

for controlling visibilities, and therefore the allowed calls

between separately compiled modules. The idea of the

study was to use these features to provide compile-time

enforcement of the segregation rules.

The proposed structure followed the overall general

framework exemplified by the following figure:

In this example, "Safe_Components" and

"Unsafe_Components" are empty packages that serve as

roots to the SIL4 and SIL0 hierarchies, respectively.

"Shared_Services" and "Components_Manager", which

are callable from SIL0 components, are public children of

"Safe_Components" (thus visible and callable by all

components), while SIL4 components are private children

(therefore visible and callable only from within the SIL4

hierarchy): with this structure, it is impossible for SIL0

components to call SIL4 components, except for the

dedicated and easily identifiable shared components.

Similarly, SIL0 components are private children of

"Unsafe_Components", thus preventing them from being

called by SIL4 components. On the other hand, the

dedicated area for exchange of data ("X-Memory"), which

is classified as SIL0 but usable from SIL4 components, is

declared as a public child of "Unsafe_Components".

In the few cases where a SIL0 component would need to

call a functionality from a SIL4 component, it would do

so through an exported service of "Shared_Services", that

would either perform the required validation of data, or, if

there is no safety issue, simply be a renaming of the

underlying (hidden) SIL4 service that remains private.

As far as data are concerned, except for the exchange area

("X-Memory"), no SIL0 variable should be accessible

from SIL4 components, and conversely. This is easily

obtained by forbidding the declaration of any variable in

the visible part of packages (which is, in addition, a

generally accepted coding rule, independently of any

segregation issue). Possible data shared between

components of the same level are placed in private

children of "Safe_Components" and

"Unsafe_Components".

3.3 Tracing the integrity level of components

In a mixed criticality system, it is important to trace the

integrity level of each element, in order to perform checks

appropriate to each level. This requires generally extra

documentation, check lists, special comments, etc.

Another benefit of this structure is that the classification

(SIL4 or SIL0) of components shows directly from the

structure of the software; there is no need of maintaining

manually a list of components with their assigned safety

level. The level of the component appears directly from

its Ada name; for example, the full name of the "Safe_1"

component, the one given in its declaration, would be

"Safe_Components.Safe_1", thus immediately showing

that it is a SIL4 component. The list of SIL0 components

is simply obtained by filtering all components whose

name start with "Unsafe_Components.".2

2 A common convention is to name a file containing a unit with the name

of the unit (with some substitutions, like replacing "." with "-"). Some

popular compilers enforce this convention. In such a case, obtaining the

list of files containing SIL0 units is as simple as using the Unix

command "ls unsafe_components-*".

Components_Manager

Safe_Components

(SIL4)

Safe_1 Safe_2

Unsafe_Components

(SIL0)

Unsafe_1 Unsafe_2

Shared_Services X-Memory

Public

child

Private

child

Figure 3 Architecture of the application

J-P. Rosen, J-C. Van-Den-Hende 149

Ada User Journal Volume 37, Number 3, September 2016

Conversely, the simple fact that a component's name

starts with "Safe_Components." or

"Unsafe_Components." will automatically enforce the

corresponding segregation rules.

3.4 Alternative possible architectures

The above described architecture was optimized

according to the requirements of Alstom. But many

variations on this basic principle of architecture are

possible, depending on the constraints of the project. For

example, shared component could constitute a hierarchy

of their own rather than being under the

"Safe_Components" tree3.

In summary, the basic principles used for achieving

segregation, and that Ada rules can enforce, are:

 Every segregated subsystem constitutes a single tree,

with an empty root and where every module (except

for communication modules) are private child units.

 Communication between modules of different

criticality is achieved through public child units.

Every communication module needs to be certified at

the highest integrity level among its own level and the

level of all possible callers.

4 Other necessary checks

Because it is sometimes necessary to escape from

common programming rules, often in connection with low

level programming such as direct management of

hardware, Ada provides so-called unsafe programming

features. These features include special packages to

overcome normal type checking and provide direct access

to memory, and pragmas for the removal of mandatory

compiler checks (such as array overflow control).

Malicious use of these features could be used to defeat the

controls provided by the above structure, therefore their

use is not allowed in SIL0 components4.

In a safety critical system, it is not sufficient to have a

programming standard that forbids such features; it must

be proven that they are effectively not used. In Ada, any

compilation unit that requires the use of a package must

name it in a special clause (a with clause), therefore

ensuring that any dependency between units is explicitly

stated – and this applies to predefined packages as well.

Removal of language checks requires the use of special

pragmas. Therefore, it is sufficient to make sure that there

is no with clause naming one of the unsafe programming

packages and no use of the special pragmas to ensure that

the safety features of the language are effective.

Checking these rules is easily achieved with static

analysis tools. One of these tools is Adalog's AdaControl

3 This possibility was not retained because Alstom wanted to have all

units requiring SIL4 verification under the same root.

4 They are allowed in SIL4 components, since those are subject to

extensive reviews to make sure that the features are used only

appropriately.

tool [6][7][8], a free static rule checking tool whose rich

set of rules covers all the necessary restrictions.

Finally, some constructs that are normally allowed by the

language were forbidden by the constraints of the project,

such as the declaration of variables in the visible part of

packages. This can be checked by manual inspection;

however AdaControl is also able to check these

automatically, which is always preferable to human (and

therefore fallible) inspection.

In addition, the study analyzed (existing) ALSTOM's

coding standard to determine which SIL4 rules were

applicable to SIL0 components in order to allow

cohabitation, and all applicable rules were also found

checkable with AdaControl.

Conclusion

In conclusion, the appropriate use of visibility rules

related to public and private children allowed the

definition of a structure where segregation rules are

enforced by the compiler.

The remaining safety constraints were checked

automatically by a static analysis tool (AdaControl), thus

allowing cohabitation of SIL4 and SIL0 components

without loss of safety, and with a considerable economic

gain compared to solutions that involve hardware

segregation, or full certification at SIL4 level of SIL0

components.

As an additional benefit, the structure allows easy tracing

of the integrity level of each component.

References

[1] CENELEC (2011), EN50128:2011 Railway

Applications -Communications, signaling and

processing systems.

[2] DO-178B: Software Considerations in Airborne

Systems and Equipment Certification (1992).

[3] ARINC 653 - Avionics Application Software

Standard Interface (2010).

[4] http://www.novasys-ingenierie.com/

[5] http://www.adalog.fr/en/

[6] J-P. Rosen (2005), On the benefits for industrials of

sponsoring free software development, Ada User

Journal, Volume 26, n° 4.

[7] J-P. Rosen (2006), AdaControl: a free ASIS based

tool, presentation at FOSDEM, Brussels, Belgium.

[8] M. Jemli and J-P. Rosen (2010), A Methodology for

Avoiding Known Compiler Problems Using Static

Analysis, in Proc. of the ACM SIGAda Annual

International Conference (SIGAda 2010), ACM

Press, ACM order number 825100, Fairfax, USA.

150

Volume 37, Number 3, September 2016 Ada User Journal

Fitting the CHESS Approach to the AUTOSAR

Development Flow

Silvia Mazzini, Stefano Puri, Andrea Russino

Intecs, via Umberto Forti, 5 Montacchiello – I-56121 Pisa, Italy;

email: silvia.mazzini@intecs.it, andrea.russino@intecs.it, stefano.puri@intecs.it

Abstract

Enabling early validation of extra functional properties

can play an important role in the development process of

reliable and safe cyber physical systems (CPS); this is

particularly relevant in the automotive industry where the

ever-increasing need to reduce electronic control unit

(ECU) production development cost, enhance quality, and

shorten the development cycle time is a crucial aspect.

Building on the results of the recently ended CONCERTO

project, CHESS pursues this objective by proposing a

methodology and technology which fits into the well-

defined AUTOSAR workflow.

Keywords: AUTOSAR, model-based, real-time, safety,

component-based, correctness-by-construction,

separation of concerns, CPS, schedulability analysis,

multi-core.

1 Introduction

Being able to develop critical dependable software

systems in the face of the speedup of technological

progress and of time to market in the automotive domain

is a quite complex task.

The fulfilment of extra-functional properties of the

software architecture is a very important goal in the

automotive domain, where for instance execution time of

control loops or end-to-end scenarios must be bounded in

order to guarantee the safety properties of the system.

The approach of ensuring extra-functional constraints

through testing and corrections is resource-consuming and

not exhaustive, and may easily become impractical with

the increase of systems complexity and heterogeneity.

Schedulability analysis for example is a common practice

which makes it possible to statically estimate worst case

response time of the software applications running on a

given execution platform. Schedulability analysis can be

applied at different abstraction levels; in particular, the

application of schedulability analysis in the early phase of

the design makes it possible to avoid late discovery of bad

software and architectural design choices and thus to

avoid high costs of redesign and delay of the product

availability.

Early analysis support fits well in the context of the model

driven engineering (MDE) approach, the latter providing

formal and semantically grounded support for the design

of the system, capable of capturing the overall

characteristics as well as detailed properties of all its

composing parts.

One of the main challenges in MDE is to ensure that the

analysis model can be automatically derived starting from

the modelled system; moreover the approach should

guarantee that the assumptions made by the analyzed

model at a given step of the design are preserved during

automatic model refinements, thus implementing a

correct-by-construction development process.

AUTOSAR (AUTomotive Open System ARchitecture)

[1] is an open and standardized software architecture and

methodology for automotive applications, jointly

developed by automobile manufacturers, suppliers and

tool developers with the following aspects in mind:

scalability to different vehicle and platform variants,

integration of functional modules from multiple suppliers,

maintainability, and transferability of functions

throughout network.

CHESS is a methodology and supporting toolset which is

the principal result of several R&D projects, starting from

the original CHESS (Composition with Guarantees for

High-integrity Embedded Software Components

Assembly) ARTEMIS JU Call 2008 project [2], to

provide a model-based solution to address the challenges

of developing critical real-time and embedded software

systems, by adopting a component-based approach, across

several domains of interest.

A distinct and publicly acknowledged limitation of the

AUTOSAR workflow is the treatment of extra-functional

requirements [2][4].

Interestingly, CHESS extends Model-Driven Engineering

practices and technologies specifically to address extra-

functional concerns, and it does so in a manner that

promotes a correct-by construction approach to software

production.

The above observations prompted the exploration of

whether and how the CHESS development method and

technology would fit into AUTOSAR, and provide

benefits to it.

1.2 Outline

In this paper first we introduce the relevant aspects of the

AUTOSAR and CHESS approaches. Then we discuss

commonalities and differences between the two modelling

languages, with the purpose of defining a suitable

S. Mazzini , S. Pur i , A. Russino 151

Ada User Journal Volume 37, Number 3, September 2016

integration between the two workflows. The feasibility of

our investigation is then evaluated through a case study.

2 Background

2.1 AUTOSAR

All the overarching AUTOSAR objectives are met with a

well-defined workflow, which provides, in a stepwise

fashion, the appropriate level of abstraction to system

construction, starting from the definition of the software

architecture, proceeding with the definition and

configuration of the specific system architecture, the

implementation, and finally the generation of the software

executables. The decoupling of the application

architecture from the target hardware, and the flexibility

to integrate multiple applications (possibly produced by

different suppliers) on one and the same electronic control

unit (ECU) are central aspects of AUTOSAR.

The AUTOSAR methodology comprises the following

steps:

Application Configuration: During this phase, the

application is specified in terms of the software

architecture: software components, interfaces, ports and

connectors. The platform is specified in terms of

hardware resources: electronic control units and their

interconnection topology, i.e. physical ECUs

interconnection through buses or dedicated links,

peripherals, sensors and actuators. The mapping of

software components on ECUs is not done during this

phase, but constraints on this mapping can be specified at

this level. The Application Configuration models are

exchanged through an XML artefact called System

Configuration Input, which actually serves as input for the

following phase.

System Configuration: During this phase the mapping of

the software architecture into the hardware architecture is

performed. Software components are mapped into ECUs,

and application messages are mapped into bus frames.

The artefact to be produced at the end of this phase is

called System Configuration Description, which serves as

input for the following phase.

ECU specific information extraction: During this phase,

information specific to each ECU is automatically

extracted, and a first layer of run time environment (RTE)

is automatically generated. The artefact to be produced at

the end of this phase is called Extract of System

Configuration Description, which serves as input for the

following phase.

ECU configuration: During this phase, the basic services

of the platform are configured on each ECU. The most

important step lies in the specification of the mapping of

runnable entities into operating system (OS) tasks. The

artefact to be produced at the end of this phase is the ECU

Configuration Description. This artefact is used for the

generation of binary code.

2.2 CHESS

CHESS is a cross-domain model-based methodology and

toolset for developing, analysis and implementation of

critical real-time and dependable embedded software

systems [13]. The correctness-by-construction principle is

one of the key foundations of the CHESS methodology

[14]. This principle allows for early assertion and

verification (predictability) of system non-functional

properties, like timing, at model level, assuring also fully

automated code generation with guarantees for property

preservation and monitoring of these asserted properties

at run time.

The modelling language of CHESS [17] is implemented

as a UML [12], MARTE [8] and SysML [9] profile. The

profile comes with the set of constraints which makes it

possible to support the CHESS model driven

methodology. Few stereotypes extending UML entities

have been introduced to support the CHESS component

model, while a couple of stereotypes (CHRtSpecification

and CHRtFeature) extending MARTE entities

(RtSpecification and RtFeature) have been defined to

allow deployment of timing contracts on UML provided

ports of the component instances. Regarding

dependability, a dedicated profile has been defined in

CHESS as an extension of UML entities to basically

allow modelling of failure modes for components, their

propagation inter and intra components and their

qualitative and quantitative aspects.

The modelling language makes it possible to define: the

user model, which corresponds to a platform independent

model, PIM, in the jargon of the model-driven

architecture initiative; the description of the hardware

platform; and the platform specific model, PSM, which

represents the model-level description of the

implementation of the PIM on the given platform. The

design space supports the creation of the user model

through several design views and with the aid of model

validation.

The software is modelled by using a specific component

model, built around the concepts of components,

containers and connectors, that supports the separation of

concerns principle, strictly separating the functional

aspects of a component from the non-functional ones.

According to this model, a component represents a purely

functional unit, whereas the non-functional aspects

regarding dependability and timing concerns are in charge

of the component’s infrastructure and delegated to the

container, while connectors are responsible for the

communication between containers.

From the interaction perspective, components are

considered as black boxes that only expose their provided

and required interfaces. Non-functional attributes are

specified by decorating the provided UML ports (i.e.

interfaces) of the components instances with non-

functional properties (e.g., for real-time concerns, a real-

time activation pattern for an operation).

152 F i t t ing the CHESS Approach to the AUTOSAR Development Flow

Volume 37, Number 3, September 2016 Ada User Journal

The declarative specification of non-functional attributes

of a component, together with its communication

concerns, declared by the user at the PIM level, are used

in CHESS for the automated generation of the containers

and connectors that embody the system’s infrastructure, at

the PSM level. The design space supports also automated

model transformations from the PSM to the model-based

analysis tools, and the code generation to create a

property-preserving implementation of the system and the

properties asserted at design level.

One of the aspects of the CHESS methodology is that the

PSM is read-only and conforms to the same modelling

language of the PIM: the user is allowed to explore it but

not to modify the properties defined at PIM level so as to

jeopardize the property preservation principle that is one

of the pillars of the CHESS methodology.

The user then can trigger the execution of various model-

based analyses, in particular dependability and timing

analysis, at PIM or PSM level. Depending on the analysis,

the model is transformed through a series of

transformations into a proper input for the analysis tool of

choice. The results of the analysis tool are then

propagated back to the PIM user model by means of back-

propagation transformations that use traces generated by

the source transformations.

For schedulability analysis, the PSM includes the

schedulability analysis model (SAM). The analysis is

executed by using the open source tool MAST, a

scheduling and timing analysis tool developed and

maintained by the Universidad de Cantabria [5]; in

particular an extension of MAST has been implemented

in CONCERTO to allow analysis of software allocated on

multi-core architectures. When the user requests timing

analysis, automatic model transformation from CHESS

SAM to the semantically equivalent MAST analysis

model and the execution of the MAST analysis are

automatically performed.

With respect to dependability analysis, CHESS supports

quantitative state based analysis, performed via

integration with the DEEM server [15], and qualitative

failure logic analysis [16].

Once the results of the analyses are satisfactory, the user

can trigger the code generation from the PSM for a

specific platform and industrial domain. The code

generation follows the component model approach:

components address only functional and algorithmic

concerns and originate from the specification at design

level; containers address extra-functional concerns, in

particular those related to concurrency; the connectors

that implement interactions among components through a

mediated communication among containers; containers

and connectors pertain only to the implementation space.

Containers expose the same provided and required

interfaces of the enclosed components, through an

interface promotion that creates delegation and subsume

relationships from the operations of the component to the

equivalent operations on the container. This approach

promotes the isolation of components so they need to

know only the required interfaces to interact with other

components. Moreover, extra-functional concerns are

dealt with only by containers, connectors and the

execution platform (via containers). Code generation

produces infrastructural code and/or functional code: the

infrastructural code contains all but the functional

implementation of components. The infrastructural code

can later be complemented with handwritten functional

code.

CHESS has been recently improved in the CONCERTO1

project (ARTEMIS JU Call 2012) [7] which has

consolidated and extended the CHESS component-based

language, methodology and related tool support for the

modelling and development of high-integrity multi-core

systems. In particular CONCERTO investigated and

realized specific support for petroleum, telecare, avionics

and automotive domains, the latter discussed in this paper.

CHESS and CONCERTO results are currently hosted in

the Eclipse PolarSys open source ecosystem [6].

3 CHESS and AUTOSAR comparison

In order to investigate similarities and differences

between CHESS and AUTOSAR, we first defined a

mapping between the entities defined in the CHESS

component model and modelling language to semantically

equivalent entities available in AUTOSAR.

This allowed us to identify feasible integration between

CHESS and AUTOSAR workflows.

3.1 Software Components

CHESS supports a domain-neutral component model,

which enables hierarchical composition of components,

and interaction among them via ports that implement

interfaces. Analogous concepts exist in the AUTOSAR

component model, although with slightly different and

(obviously) highly domain-specific interpretations.

In both CHESS and AUTOSAR approaches, the

description of a software-component is the sum of

different but inter-related parts: hierarchical structure,

ports and interfaces, internal behaviour, implementation

(object code or source code).

AUTOSAR defines the concept of composite component:

as it holds in CHESS, a composite component can only

act as container of internal (composite or atomic)

components. In other words, the composite component

has to delegate all the declared implementation to the

internals. The concept of composite component of

AUTOSAR is covered by the CHESS component entity;

in fact, the CHESS modelling language does not provide

explicit constructs to represent atomic or composite

components.

1 “Guaranteed Component Assembly with Round Trip Analysis for

Energy Efficient High-integrity Multi-core Systems”

S. Mazzini , S. Pur i , A. Russino 153

Ada User Journal Volume 37, Number 3, September 2016

As in CHESS, AUTOSAR defines assembly and

delegation connectors; in both CHESS and AUTOSAR,

connectors must connect component ports.

AUTOSAR software components, whether atomic or

composite, can only communicate through ports

independently of their physical allocation (i.e. whether

they are on the same ECU or on different ECUs), as it

holds in CHESS; in AUTOSAR this is allowed thanks to

the notion of the Virtual Functional Bus (VFB) provided

by the run-time environment. The run-time environment

has the responsibility to provide a uniform environment to

AUTOSAR software components to make the

implementation of the software components independent

from communication mechanisms: the notion of run-time

environment is captured in CHESS under the umbrella

term PSM, which encompasses all implementation

artefacts and concerns, including the run-time support.

In summary, we may conclude that even if different

support is available in AUTOSAR and CHESS to

represent components, their definition, implementation

and instantiation, the CHESS component entities, at type

and instance level, provide sufficient coverage of the

semantics of the AUTOSAR software component.

3.2 Software components interactions

AUTOSAR and CHESS share the same concept of

component ports; in fact, in both languages a port belongs

to exactly one software component and represents a point

of interaction of that component.

In AUTOSAR, the kind of interaction that can occur

through a given port is defined by the AUTOSAR

interface that is declared to be provided or required by the

port itself. The AUTOSAR interface can be client-server,

sender-receiver or mode-switch; in the UML/MARTE

implementation of CHESS, the data ports and operations

ports are distinct constructs available in the modelling

language.

Sender-receive interactions in AUTOSAR represent data

flow based interactions.

CHESS does not allow for data flow between components

to be realized through flow ports. Data flow ports are

allowed for a given component only to represent the

sending/receiving of events to/from the run-time

environment. This is however a minor point, as inter-

component data flow can be realized through operation

calls, although with a slightly different behaviour2.

Client-server ports in AUTOSAR correspond to CHESS

interface ports. AUTOSAR allows both synchronous and

asynchronous communication between client and server,

while in CHESS, concerning threaded operations, only

2 In case of sender-receiver ports, the runnable in charge to receive the

data is always triggered by the run-time environment, while in CHESS

this holds only when the service called in the target component has been

tagged as sporadic.

asynchronous invocation of operations is allowed; this is

an important constraint to allow the application of the

theories allowing timing analysis.

AUTOSAR and CHESS equally support the concept of

operational modes. In AUTOSAR, a mode switch

interface represents an interface through which mode

switch requests can occur. Mode switch interactions are

available in CHESS by reusing MARTE support, in

particular by using data flow or operations ports; in

CHESS, the arrival of events to data flow ports (event

receiver ports), or the arrival of messages to interface

ports can be used to trigger changes in operational modes.

Hence, the (tiny) difference between CHESS and

AUTOSAR in this regard is that in CHESS the kind of

port through which requests for mode switches can occur

is not defined at language level.

3.3 Component Internal Behaviour

An AUTOSAR application component

(ApplicationSWComponentType) comes with one or

more internal behaviours (SwcInternalBehavior). An

internal behaviour represents an implementation of a

given atomic (i.e. not decomposed) software component;

however, the internal behaviour does not describe the

detailed functional behaviour of the component.

The internal behaviour describes the dynamic

functionalities of an application software component, in

the functional and timing dimension; as further elaborated

in the following subsections, we can state that AUTOSAR

SwcInternalBehavior is sufficiently covered by the

CHESS component.

3.3.1Runnables

AUTOSAR runnable is the smallest unit that can be

scheduled and executed by the OS; it corresponds to a

component operation in CHESS.

4.3.2 Run-time environment (RTE) events

Run-time environment (RTE) events represent conditions

to start or resume the execution of a runnable. The RTE

event must have:

 A type (data received, data receive error, data send

completed, operation invoked, asynchronous server

call returns, mode switch, an ack to a mode, timing);

 An associated runnable (only one);

 Time period, data element, event message, operation

(only one) depending on the type of the RTE event.

In CHESS, the analogous information discussed here for

RTE events is embedded in timing decoration of the

provided operations. CONCERTO has extended CHESS

to allow decorating private operations as protected or

unprotected. Unlike AUTOSAR, CHESS does not allow

private operations to be decorated periodic or sporadic.

The rationale for this constraint has a methodological

nature. By using the CHESS methodology, in fact, the

“main” operations of the software functional design must

be first defined at interface level, and then realized at

154 F i t t ing the CHESS Approach to the AUTOSAR Development Flow

Volume 37, Number 3, September 2016 Ada User Journal

component level. In this way, the resulting component-

based design approach increases the ability to reuse the

corresponding functionality. The main operations appear

in the provided interface of the component, whereby their

visibility has to be public. At instance level, the functional

operations can be decorated with timing attributes. For the

software architectures of interest to CHESS, the main

operations are periodic or sporadic, which makes those

two attributes distinct features of main operation.

Allowing them to be used for private operations would

violate the CHESS methodology principle that associates

the component behaviour to the attribute set to its public

operations.

3.3.3 Data access

While modelling internal behaviour AUTOSAR allows

specifying that a Runnable needs read-access or write-

access to the data elements of a required or provided

sender/receive port. CHESS does not allow having data

flow between components realized through flow ports.

3.3.4 Interrunnable variables

AUTOSAR allows the user to model variables shared by

runnables defined in the same component. In particular,

AUTOSAR allows specifying how runnables can access

this shared state in a manner that makes it thread-safe.

CHESS currently does not support this feature, although

adaptations to this end have been experimented with in a

study funded by the European Space Agency. The

solution explored in that side study provided access to the

shared data through get/set provided operations, decorated

with protected or unprotected access. This would be a

viable solution in CHESS, whose implementation is left

as a future extension.

3.3.5 Exclusive Areas

In AUTOSAR, runnable entity can be declared to have

the ability to enter an exclusive area; therefore the

runtime environment has to ensure synchronized access to

it. The modelling of exclusive areas are available in

CHESS for operation invocation, in particular through

protected decoration of operation calls.

3.3.6 Wait points

In AUTOSAR, the runtime environment provides "wait-

points" that allow a runnable to block until an event in a

set of events occurs; in CHESS these wait points are

automatically derived starting from the timing decoration

of the provided operations. In CHESS, a given threaded

operation can actually wait on a single "WaitPoint" for

being scheduled.

3.4 Execution platform

CHESS allows the modelling of the target executing

platform by importing the MARTE support for processing

resources modelling; only information useful to perform

timing analysis is actually of interest in CHESS and thus

information about multi-core processors and their

interconnections. AUTOSAR allows specifying the ECUs

used in the system together with their connection

properties; in particular strong support is available in

AUTOSAR to model details of the communication

between the ECUs, so regarding FlexRay and CAN bus

configuration; this support is not available in CHESS.

3.5 Software to hardware allocation

CHESS allows the modeller to define the mapping of PIM

component operations decorated as threaded (i.e. cyclic or

sporadic) to cores; the allocation of component operations

to tasks and then the allocation of tasks to cores is

automatically performed in the PSM. Equivalent

modelling features, but with different methodological and

automatic support, are available in AUTOSAR to map

Runnable Entities to tasks and then to map tasks to ECUs.

4 The approach

According to the mapping presented in the previous

sections, and so related to the CHESS support for

software components modelling, hardware processing

resources modelling and software to hardware allocation,

we can state that the CHESS methodology and toolset

sufficiently cover the initial steps of the AUTOSAR

methodology, while adding the possibility to perform

early validation of the software applicative level; in

particular CHESS supports the Application, System and

ECU configuration steps in the AUTOSAR development

process.

Schedulability analysis for single and multicore and end-

to-end response can be applied, with back propagation of

analysis results in the user modelling space, allowing

early validation of safety software requirements. Timing

analysis could be refined taking into account delays

originating from the CAN bus connecting the two ECU’s.

CHESS toolset can be used for validation of timing

properties, for instance to calculate the constraints to be

applied to threads and tasks based on the end-to-end

response time analysis on the modelled SW and HW.

To enforce the applicability of the integration between the

AUTOSAR and CHESS workflows, we were able to

devise sound model transformations from CHESS to

AUTOSAR by using the CHESS and AUTOSAR

component models mapping. The corresponding

AUTOSAR representation of the information modelled in

CHESS can be automatically represented in the

AUTOSAR exchange format, i.e., the ARXML

(AUTOSAR XML) file is automatically derived by model

transformation.

The automatic generation of the AUTOSAR model

starting from the CHESS model allows easy integration

with external AUTOSAR tools, where the latter can then

be used for automatic generation of the AUTOSAR run-

time environment to be executed on top of the target

AUTOSAR platform, together with the application layer.

The opposite direction from AUTOSAR to CHESS was a

problem, however, as the AUTOSAR component model

is considerably richer in constructs and in “modelling

freedom” than CHESS. The net consequence is that not

S. Mazzini , S. Pur i , A. Russino 155

Ada User Journal Volume 37, Number 3, September 2016

all AUTOSAR models find correspondence in a legal

CHESS model, for syntax and for semantics. This taught

us that AUTOSAR pays less attention than CHESS in

fostering correctness-by-construction (CbyC) by means of

constraints placed on what to model, how to model it, and

when in the development flow. One particular exemplar

of this difference in intent is worth recalling here. CHESS

sets restrictions on the component model (directly in the

modelling language and modelling actions availed to the

user) to ensure that the chosen forms of feasibility

analysis can always be performed soundly on the user

model that is decorated with sufficient information

attributes. This is necessary to ensure that the model

transformation that uses the user model to feed the

analysis can be proven correct by construction, i.e., such

that the semantic meaning of each analysis artefact and

analysis operation corresponds to the semantic meaning

of the modelling artefact and decoration attribute in the

user model. For instance, in CHESS, a provided operation

that is attached to a thread at run time, can only receive

release events from a single source (a clock, an external

interrupt, another thread, etc.). This restriction causes the

run-time semantics of that operation to conform to the

abstraction of thread in feasibility analysis. AUTOSAR

lifts that restriction, so that the run-time semantics of

operations specified in the user model is not guaranteed,

by construction, to be statically analysable for feasibility.

The bottom line of the experiment is that a complete (for

process coverage and for automation) bi-directional

integration between CHESS and AUTOSAR is presently

not possible without unsatisfactory compromises. This is

a product of the confrontation between the rigidity of

seeking adhesion to the CbyC principles (manifest in

CHESS), and the permissiveness of wanting to assist

without imposing too much perceived burden on the user

(manifest in AUTOSAR).

5 Case Study

In the context of the CONCERTO project, the CHESS

support for AUTOSAR workflow integration has been

evaluated; a cruise control software application has been

modelled in CHESS first. Timing analysis has been

applied to investigate the benefit of using a multi-core

processor with respect to a single-core one. It is worth

saying here that CHESS supports an explicit design step

that provides the user with guidance on recommended

task-to-core allocations, which achieve adequate system

utilization; this feature makes it possible to avoid

inefficient utilization of the system resources that can

arise when performing manual allocation of tasks to

cores.

Once the design of the functional component and the

evaluation of the timing requirements reached a

satisfactory level, the CHESS to AUTOSAR model

transformation has been applied.

In the case study the MentorGraphics VSx tool has been

used to import the ARXML model produced by CHESS.

Because of some limits in the expressivity of CHESS with

respect to the richer AUTOSAR concepts, the imported

model needed some refinements before being furthermore

processed in the AUTOSAR workflow, as for example

the specification of inter-runnable variables. Moreover,

the models developed within CHESS are more strictly

constrained: for example, the usage of flow ports is not

allowed among internal software components. The

possibility to automatically export tasks definition in the

ARXML representation is currently missing and had to be

reported by hand in the AUTOSAR model; this is an

important step that should be covered in the future in

order to be sure that the properties assumed for the timing

analysis are preserved while moving to the AUTOSAR

process.

6 Related Work

The possibility to allow schedulability analysis in the

AUTOSAR context has already been the subject of

previous interesting researches.

Anssi et al [10] present a comparison of AUTOSAR and

MARTE; in particular they discuss some crucial

specification capabilities that need to be satisfied by

modelling languages to enable timing analysis in

automotive applications. While both languages seem to be

expressive enough to enable schedulability analysis, the

authors note the fact that more expressive languages

require additional effort to define methodological

frameworks and tools well suited to allow analysability,

which is the focus of our objective.

Anssi et al. [11] shows that it is possible to perform

scheduling analysis implemented in common open source

tools for AUTOSAR systems, but without focusing on the

definition of a proper methodology that helps the designer

to assure the analysability of the designed system.

7 Conclusions and Future Work

The study performed in CONCERTO has shown that the

AUTOSAR and the CHESS component models have

significant commonalities, which enables a sound

integration of the two respective methodologies. In its

intent to pursue correctness by construction, however, the

CHESS component model enacts more constraints on the

way components can be built and how they can interact.

In the same vein, the CHESS methodology disallows

some modelling capabilities that are available in

AUTOSAR (e.g. the decoration of private operations as

periodic of sporadic), presumably in the intent of

favouring more liberal reuse. Closer and fuller adherence

to AUTOSAR – hence reaching up to methodological

considerations – would require:

1. Numerous minor extensions to the attribute and

feature set provided for by the CHESS component

model, which would be strictly specific to

AUTOSAR and not relevant to other domains.

2. The implementation of important “gateway” like

instruments to allow the user to transition seamlessly

from and to CHESS.

156 F i t t ing the CHESS Approach to the AUTOSAR Development Flow

Volume 37, Number 3, September 2016 Ada User Journal

The CHESS response time analysis and back propagation,

when fully connected with current commercial

AUTOSAR tools, allow elevating the level of abstraction

in the design for both single and multicore platforms,

keeping trace of timing requirements across all the

development cycles with early validation and “correct-by-

construction” approach, in contrast to the current and

costly practice that is “correct-by-correction”. Non-

compliances with respect to these requirements are

usually discovered with testing, late simulations or even

when deployed in costly prototyping stages. Our feedback

from the automotive industry says that the positive impact

would result in reducing the related reworking time and

cost by an estimated 20% and the development cycles by

an estimated 15%.

As our future work, we plan to extend the CHESS

component model to achieve stricter compliance with

AUTOSAR, e.g. regarding inter-runnable variables

support. The CHESS model should be extended to allow

modelling of the AUTOSAR basic software entities in

order to allow schedulability analysis at a lower

abstraction layer. Also ECU’s bus, i.e. their relevant

properties, should be modelled in CHESS and so

considered during the analysis step to allow better

estimation of the end-to-end response time of the

application software.

Regarding the integration with the AUTOSAR workflow,

CHESS tool support will be extended to allow automatic

extraction of task definition from CHESS to AUTOSAR

model.

Acknowledgements

The authors are grateful to Tullio Vardanega from the

University of Padua for his support for the definition of

the CHESS to AUTOSAR component models mapping.

This work is based on the results of the CONCERTO

ARTEMIS-JU project.

References

[1] AUTOSAR Partnership, http://www.autosar.org

[2] CHESS ARTEMIS project website,

www.chess-project.org/

[3] M. Peraldi-Frati, H. Blom, D. Karlsson, S. Kuntz

(2012), Timing modeling with AUTOSAR: current

state and future directions, Proceedings of the

Conference on Design, Automation and Test in

Europe, pp. 805-809 .

[4] O. Scheickl, C. Ainhauser, and P. Gliwa (2012), Tool

Support for Seamless System Development based on

AUTOSAR Timing Extensions, Proceedings of

Embedded Real-Time Software Congress (ERTS).

[5] Universidad de Cantabria, Mast: Modeling and

Analysis Suite for Real-Time Applications,

http://mast.unican.es/

[6] CHESS Polarsys website,

https://www.polarsys.org/chess/

[7] CONCERTO ARTEMIS project website,

http://www.concerto-project.org/

[8] MARTE website, http://www.omgmarte.org

[9] SysML website, http://www.omgsysml.org

[10] S. Anssi, S. Gérard, S. Kuntz, and F. Terrier (2011),

AUTOSAR vs. MARTE for Enabling Timing Analysis

of Automotive Applications, I. Ober and I. Ober

(Eds.): SDL 2011, LNCS 7083, pp. 262–275.

[11] S. Anssi, S. Tucci-Piergiovanni, S. Kuntz, S. Gérard,

François Terrier (2011), Enabling Scheduling

Analysis for AUTOSAR Systems, 14th IEEE

International Symposium on Object/Component/

Service-Oriented Real-Time Distributed Computing

[12] UML website, www.omg.org/spec/UML/

[13] S. Mazzini, S. Puri G. Veran, T. Vardanega, M.

Panunzio, C. Santamaria, A. Zovi (2011), Model-

Driven and Component-Based Engineering with the

CHESS Methodology, Proc. of DASIA Conference.

[14] L. Baracchi L., S. Mazzini, S. Puri, T. Vardanega

(2016), Lessons Learned in a Journey toward

Correct-by-Construction Model-Based Development,

Proc of 21st International Conference on Reliable

Software Technologies- Ada-Europe 2016, Pisa.

[15] DEEM: DEpendability Modeling and Evaluation of

Multiple Phased Systems [Online], Available:

http://rcl.dsi.unifi.it/projects/tools [Accessed: May

14, 2015].

[16] B. Gallina and E. Sefer (2014), Towards Safety Risk

Assessment of Socio-technical Systems via Failure

Logic Analysis, submitted to RISK 2014.

[17] CHESS Modelling Language,

https://www.polarsys.org/chess/publis/

CHESSMLprofile.pdf.

 157

Ada User Journal Volume 37, Number 3, September 2016

Model-Based Design and Schedulability Analysis

for Avionic Applications on Multicore Platforms

Wenceslas Godard

Airbus Group Innovations, Toulouse; email: Wenceslas.godard@airbus.com

Geoffrey Nelissen

CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal; email; grrpn@isep.ipp.pt

Abstract

This paper presents a component-based approach

tailored for the modelling of avionic systems. The

system is defined as a set of applications developed

following time partitioning principle. The toolset

provides means to help the designer configure the

system and compute a partition schedule for each

available processing unit. The model and the

generated schedule can then be used as inputs for a

response-time analysis engine that calculates the

worst-case response time of each task and therefore,

assesses the overall system schedulability.

Keywords: Schedulability analysis, Integrated
Modular Avionics, IMA, ARINC-653, Component-
based, Multicore.

1 Introduction

For aircraft manufacturers, the growing number of software

applications to embed on-board along with their increasing

size, results in a more and more challenging problem. Their

goal is to minimize the weight of the embedded hardware,

by maximizing the number of applications sharing a same

resource processing, while guaranteeing that no unexpected

behaviour will ever occur. The problem complexity partly

originates from the hierarchical aspect of Integrated

Modular Avionics (IMA) schedulers (see Figure 1) as

defined in the ARINC-653 standard [1]. Partitions are

scheduled according to statically allocated time windows,

and processes are assigned to partitions and scheduled

according to a fixed priority scheduling policy inside each

partition. This hierarchical structure necessitates the

definition of a partition schedule stating when partitions

start executing and for how long, as well as setting the

relative priorities between the different processes.

Operating systems support these parameters, but it is the

duty of the system integrator to set them up, in a most

efficient way.

In an attempt to reduce costs, aircraft manufacturers have

deployed increasing efforts during the last years to integrate

the latest processor technologies in their products. The

potential benefits are especially evident when considering

modern multicore processors. For a same amount of

workload, the power consumption as well as the number of

hardware components can be reduced in comparison to

older technologies. Furthermore, integrating the latest

technologies in new aircraft helps limit the costly problem

of hardware obsolescence. Indeed, the current regulation

imposes to manufacturers to buy and stock large amounts

of older and obsolete components to ensure the aircraft

maintenance for several decades. Yet, safety and security

remain the most important concerns for avionic systems.

Therefore, embedding new hardware technologies is

acceptable only if correct run-time behaviour can be

demonstrated.

In that context, this paper presents a framework tailored to

facilitate the integration process of several applications on

the same computing resource. It is important to note here

that the parameters that are generated to configure the

system are sound-by-construction, meaning that they are

verified at the same time that they are produced, so as to

ensure that the timing properties are respected. This

framework supports not only the modelling of software

application, but also the target processor, including

multicore processors. The presented work has been

conducted in the frame of an ARTEMIS project named

CONCERTO [2][3]. It has been integrated in the CHESS

[4] modelling environment and is being released under the

PolarSys initiative [5].

Figure 1: The IMA hierarchical scheduling policy

158 Model-Based Design and Schedulabi l i ty Analys is for Avionic Appl icat ions

Volume 37, Number 3, September 2016 Ada User Journal

2 State of Practice

Avionics producers traditionally follow the Integrated

Modular Avionics (IMA) approach to improve the

reliability of the system and ease the development and

integration of several applications on a same execution

platform. In IMA systems, multiple applications can share a

same processing resource (e.g., a single-core processor).

Applications are assigned to partitions and partitions are

allocated to specific time slots during which they can

execute at run-time (see Figure 1). This time slot allocation,

also referred to as the partition scheduling table, is

performed offline by the system integrator. This

segregation between applications is very important because

it makes possible to perform verification of each

application separately. One can then prove the correctness

of the overall system by simply ensuring the robustness of

the partitioning mechanisms. In order to determine a

schedule that makes an efficient usage of the processing

resource, many system properties and constraints have to

be taken into account. Applications are composed of

processes, and processes comprise operations. These

operations, also referred to as functions, are defined by

their own period which is either equal to the period of their

belonging process, or a multiple of it. Each operation has

an execution time, which can be estimated by

experimentations or formally computed by a static analysis

tool such as AiT [6], OTAWA [7], or RapiTime [8].

Operations may also be involved in precedence

relationships that designate groups of operations to be

executed sequentially. As for the processes, they come with

their priority, period or minimum inter-arrival time, and

deadline.

Efficiently using this information, the integrator may assign

offsets to functions in order to distribute the resource usage

evenly over time. The integrator must also generate the

partition scheduling table so as to ensure that all processes

will always complete their execution by their deadline.

Currently these operations are done by hand and rely

mainly on the experience of the system integrator.

The approach presented in this paper uses an abstract

model of the overall system in order to semi-automate the

generation of the data required (1) to configure the different

functions and (2) to produce the partition scheduling table.

It enables an early validation and performance estimation

for new projects. It is also suitable whenever an existing

project, has to be modified, updated or redeployed. Indeed,

only information from the modified element has to be

spread into the CHESS model. A new system configuration

can then be automatically generated. In the particular case

of a re-deployment, a very useful feature of CHESS is the

support of multicore processor targets. Details about the

advantages and limitations related to the multicore support

are given in section 4.

3 Toolset Description

The toolset discussed in this paper has been integrated in

the CHESS environment [4]. CHESS is a component-based

design methodology and language articulated around

multiple views treating of different aspects of the system

design (e.g., functional against non-functional properties,

and application versus execution environment) [9]. CHESS

proposes domain specific features tailored for a given

application domain. In its latest version, CHESS was

extended to support the design of avionic systems. New

meta-model entities modelling different elements of a

typical IMA architecture as well as semi-automated

configuration and analysis tools are now available.

Starting from higher level requirements such as periodicity,

deadline and priority, and information about ARINC-653

processes and their implementation, the proposed toolset

can be used to deploy, configure and analyse the

schedulability (i.e., the capability for all functions

composing the system to always respect their deadlines) of

the overall system in a mostly automatic way.

The CHESS methodology for avionic systems consists of

the following four successive steps:

 Modelling the ARINC-653 processes, the logical

partitions and the execution platform;

 Partitioning (i.e., assigning processes to partitions and

partitions to processor cores);

 Configuring the system (i.e., priority and offset

assignment, generation of the partition scheduling

table);

 Analysing the worst-case response time of each

function and the overall system schedulability. Figure 2: Class diagram in the component view

Figure 3: Composite Structure diagram

W. Godard, G. Nel issen 159

Ada User Journal Volume 37, Number 3, September 2016

3.1 System Model

The CHESS platform is composed of different views that

are used to model the software (using the “Component

View”), model the hardware (using the “Deployment

View”) and perform the analysis (using the

“RealTimeAnalysis View”). CHESS imports the UML

support for component-based design with some limitations;

in particular, limitations are applied to avoid the UML-way

of modelling real-time information. The latter being better

supported by the UML profile for Modelling and Analysis

of Real-Time Embedded Systems (MARTE) [10], adopted

and integrated in CHESS.

In the “Component View”, CHESS uses Class diagrams to

model the processes and their allocated functions (see

Figure 2), and Composite Structure diagrams to model the

functional interactions between instances of those

components (see Figure 3). Information on the run-time

behaviour and timing properties of each process and

function can also be associated with the components using

an “Instance View”. As for the “Deployment View”, it

provides support for the modelling of the information

related to the deployment of software components on the

hardware platform. Using this view, the user is able to

represent the hardware entities and their relevant properties,

in particular by using the MARTE specific stereotypes

defined in the Hardware Resource Modelling (HRM) sub-

profile. Finally, the “RealTimeAnalysis View” is used to

store the entities derived by model transformations which

are needed to perform the system schedulability analysis.

3.1.1 ARINC-653 processes modelling

Each CHESS component implementation modelling an

ARINC-653 component is associated with a specific

stereotype called ARINCComponentImpl (see Figure 2). It

allows modelling ARINC-653 processes and their

functional and extra-functional properties. Each

ARINCComponentImpl is assigned one public operation

modelling an ARINCProcess, and a collection of private

ARINCFunctions modelling the different functions

composing the process associated with that component (see

Figure 2).

Using the “Instance View”, extra-functional properties (i.e.,

priority, deadline, release offset and release period or

minimum inter-arrival time) can be added to the process

specification (see Figure 4).

The WCET of each function can be specified in a similar

manner.

Finally, so as to accurately model the run-time behaviour of

the processes, the system designer can specify “rate

dividers”, precedence and exclusion constraints over

functions of a same process. Rate dividers allow the system

designer to model the fact that not all functions must be

executed at the same period than their corresponding

process. Assigning a rate divider of value (where is a

natural number larger than 0) to a function associated to a

process , means that executes once every activations

of .

Precedence constraints between functions of a same

process allow to define an order of execution between those

functions. Precedence constraints are specified using the

“FollowedBy” attribute of each function (see Figure 2).

Exclusion constraints are used to define groups of

operations that can or cannot compete for processing

resources. If and are two groups comprised of

different functions, an exclusion constraints between

and means that all the functions in must have

completed their execution when those of start running,

and inversely, all the functions of must have completed

before those of start executing. Such grouping

mechanism may be used, for example, to better distribute

the execution load over time, or to avoid functions

competing between themselves (otherwise using a locking

protocol) when they access the same resources. In CHESS,

function groups and their exclusion constraints are

specified using the “OperationGroups” attribute of the

appropriate process (see Figure 2).

3.1.2 Partition modelling

IMA partitions are modelled as “functional partitions” in

CHESS. Instances of ARINC-653 components can be

manually assigned to those partitions. Processes linked to a

partition are isolated in the time and space domain from

all processes that are not assigned to , meaning that a

timing misbehaviour or a data corruption caused by a

process that is not in cannot propagate to those in

partition .

Partitioning is of key importance for the IMA methodology

as it allows for the independent development and

verification of applications. Furthermore, such a design

approach also permits to integrate applications of different

criticalities on a same execution platform.

3.1.3 Execution platform modelling

The processing platform is modelled in the “Deployment

View”. CHESS supports multicore processors where each

core is identical in capabilities and performances to the

other cores.

Functional partitions can be manually (using a graphical

interface as shown on Figure 5 or automatically (using the

tools discussed in Section 3.2) assigned to those cores.

Note that a process is assigned to at most one partition, and

a partition to at most one core. A partition can execute

Figure 4: Instance view

160 Model-Based Design and Schedulabi l i ty Analys is for Avionic Appl icat ions

Volume 37, Number 3, September 2016 Ada User Journal

only on the core to which it is assigned, that is, the

processes allocated to cannot migrate or execute in

parallel on different processor cores.

3.2 Configuration Tools

During the CONCERTO project, CHESS has been

enhanced with tools automatically or semi-automatically

configuring IMA compliant avionic systems. After the

modelling of the system architecture, properties and run-

time behaviour using the modelling features described in

the previous section, CHESS automatically dimensions the

partitions, proposes a partition-to-core mapping, and

computes a partition scheduling table for each core. It also

assigns relative priorities and release offsets to functions so

as to enforce the precedence and exclusion constraints

specified in the model, and attempt to better distribute the

execution resources accesses over time. The automatic

system configuration process is made of four successive

steps:

1. First, the precedence and exclusion constraints together

with the timing properties of each function are extracted

from the model. Based on that information, a priority,

an activation period, release offset and deadline is

computed for each function, so as to respect the model

specifications and distribute the execution load over

time.

2. Then, the period of activation and execution budget of

each partition is calculated so as to ensure that all the

functions assigned to that partition will respect their

timing constraints.

3. Once properly dimensioned, the partitions are

automatically assigned to processor cores. Two rules

are used to guide the partition-to-core mapping phase.

First, any mapping preference specified in the model by

the tool user (see Section 3.1.3) is respected. Second,

the execution load is balanced as much as possible

between the available cores.

4. Finally, the partition schedule is generated. The Minor

Frame (MIF), Major Frame (MAF), and execution

windows of each partition are computed for each

processor core. The generated partition schedule

ensures that all the functions and processes will respect

their timing constraints.

Every solution proposed by the toolset is back-propagated

to the model and can be adapted by the user. Those highly

critical and time consuming development tasks are

therefore drastically simplified and accelerated for the

system integrator.

3.3 Analysis Tools

Whenever a partition schedule has been computed for all

cores, a model transformation is triggered so as to perform

a response time analysis. The analysis is performed using

an extension of the MAST analysis tool [11] developed

during the CONCERTO project. This extension is able to

compute the exact worst-case response time of each

function executed in the generated IMA partition schedule

and thus provides useful performance indicators to the

system integrator with respect to the system

implementation and configuration.

The timing information provided by the timing analysis

tool are back-propagated to the CHESS modelling

environment and can be used during an early design phase

to better dimension the execution platform or the amount of

execution resources associated to each process. It can also

serve as indicators to help the system integrator refine its

system deployment decisions in a later phase of the project.

4 Support for Multicore

The emergence on the market of multicore processors is

expected to come along with many advantages for the

avionics industry, since embedding more applications on a

single chip means less weight, less power consumption and

fewer parts to stock for maintenance purposes. IMA was

defined at a time where multicore processors were not

foreseen as a viable solution for avionic systems. There is

therefore a need to propose new software development

processes adapted to safety critical applications targeting a

multicore execution environment. Supporting multicore

deployment was consequently expressed as a requirement

of the CONCERTO project. Although results of the project

are not numerous enough to precisely assess the

performance gains that can be brought by the latest

processors, our work contributes to solving challenges that

are presented in deeper details in the rest of this section.

First, with respect to the deployment strategy, it is

important to note that the choice to only support a static

one-to-one partition-to-core mapping has been made. In

other words, a partition is allocated to one and only one

core by the schedule generation step, and no migration is

allowed. Of course the allocation can be achieved manually

by the user; but if no such information is provided then the

toolset automatically assigns a feasible allocation of

partitions to cores. Therefore, at the end of the system

configuration process, each core gets a set of partitions

allocated to it, and a partition scheduling table. For this

purpose, a new engine for the schedule generation had to be

designed, with an extension to the schedulability tool

plugged in the toolset. This extension of schedulability

analysis tool able to return response times for all functions

of a two-level scheduler system deployed on a multicore

target has been a major outcome of our work. However,

Figure 5: Partition to core assignment

W. Godard, G. Nel issen 161

Ada User Journal Volume 37, Number 3, September 2016

some limitations do exist in the current status of the

presented approach, especially in order to take into account

extra delays that are generated by the interferences

introduced by multicore processors. Such interferences are

introduced by hardware resources such as memories, buses

and caches, shared by tasks running on different cores [12].

As a reminder, in CHESS, the worst case execution times

are assumed to be provided as inputs to the model and are

used in order to compute the partition schedule. Whereas in

the single-core case the WCET can be fairly accurately

computed with static analysis tools, in the multicore case,

several functions can run at the same time on different

cores leading to delays that static analysis tools cannot

currently soundly estimate without excessive pessimism.

Consequently, the timing bounds cannot be guaranteed,

which makes the overall process inefficient. Fortunately,

some recently published research results are compatible

with CHESS’ goal and their results could later be

integrated in the toolset. Among those solutions, the one

presented in [13] offers the basis for a theoretical

framework for building a solution. Besides, a description of

an implementation of it, completed with experimental

results, can be found in [14].

5 Conclusion

In this paper, we have presented a toolset dedicated to the

development of avionic systems. A meta-model has been

defined for the modelling of avionic applications and IMA

partitions. The proposed toolset helps the integration

process of several applications on the same computing

platform by semi-automatically configuring the system and

generating a partition schedule. The toolset allows

precedence and exclusion constraints to be annotated to the

application model. Those constraints are then considered by

the toolset in order to automatically compute a system

configuration enforcing the constraints at runtime. Another

piece of automatically generated information is the table

that defines the time windows regulating the execution of

each partition. In the case of multicore, the configuration

engine also generates a mapping of partition to cores. In

this case, each core has a completely independent table for

the time windows. Further extensions related to multicore

are already being considered and have been identified so as

to make the tool able to deliver results that can be

considered as formal proofs and thus be quoted as such for

the certification process. The release of the platform under

Polarsys will facilitate the toolset maintenance and updates

with new features.

References

[1] ARINC (2005), Avionics Application Software

Standard Interface PART 1 – Required Services,

ARINC Specification 653-2.

[2] Mazzini, S. (2015), The CONCERTO Project: an Open

Source Methodology for Designing, Deploying, and

Operating Reliable and Safe CPS Systems, Ada User

Journal, vol 36 no 4, pp 264-267.

[3] CONCERTO project, online: http://www.concerto-

project.org

[4] CHESS, online:

https://www.eclipse.org/proposals/polarsys.chess/

[5] PolarSys, Open Source Solutions for Embedded

Systems, online: https://www.polarsys.org/

[6] AbsInt, aiT WCET Analyzers, online:

https://www.absint.com/ait/index.htm

[7] OTAWA, online: http://www.otawa.fr/

[8] RAPITA Systems ltd, RapitTime, online:

https://www.rapitasystems.com/products/rapitime

[9] Cicchetti, A., Ciccozzi, F., Mazzini, S., Puri, S.,

Panunzio, M., Zovi, A., Vardanega, T. (2012), CHESS:

a model-driven engineering tool environment for

aiding the development of complex industrial systems,

In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering

(ASE), pp. 362-365, IEEE.

[10] Object Management Group (2011), MARTE A UML

Profile for MARTE: Modeling and Analysis of Real-

Time Embedded systems, v.1.1, online:

http://www.omg.org/spec/MARTE/1.1

[11] Universidad de Cantabria, MAST: Modeling and

Analysis Suite for Real-Time Applications, online:

http://mast.unican.es/

[12] Dasari, D., Akesson, B., Nelis, V., Awan, M. A.,

Petters, S. M. (2013), Identifying the sources of

unpredictability in COTS-based multicore systems, In

8th IEEE International Symposium on Industrial

Embedded Systems (SIES), pp. 39-48, IEEE.

[13] Kim, H., de Niz, D., Andersson, B., Klein, M., Mutlu,

O., Rajkumar, R. (2014), Bounding memory

interference delay in COTS-based multi-core systems,

In IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS), pp. 145-154,

IEEE.

[14] M'sirdi, S., Godard, W., Pantel, M., Stilkerich, S.,

(2016), Improved Resource-Efficient Allocation of

IMA Applications to Multi-Cores, In IEEE/AIAA 35th

Digital Avionics Systems Conference (DASC).

 163

Ada User Journal Volume 37, Number 3, September 2016

Overview of the 18
th

 International Real-Time Ada Workshop

11-13 April 2016

Benicàssim, Spain

Contents *

Workshop Session Summaries

- L. M. Pinho and S. Michell, “Session Summary: Parallel and Multicore Systems”

- A. Burns and A. Wellings, “Session Summary: Deadline Floor Protocol”

- M. González Harbour and M. Aldea, “Session Summary: Language Issues”

- T. Vardanega and P. Rogers, “Session Summary: Ada Language Profiles”

- J. Real and P. Rogers, “Session Summary: Experience”

- S. Michell and J. A. de la Puente, “Session Summary: Time Vulnerabilities”

Program Committee

Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns, Michael González Harbour, José Javier

Gutiérrez, Stephen Michell (Program Chair), Brad Moore, Luís Miguel Pinho, Juan Antonio de la Puente,

Jorge Real, José F. Ruiz, Sergio Sáez, Joyce Tokar, Tullio Vardanega, Andy Wellings and Rod White.

Workshop Participants

Mario Aldea Rivas, University of Cantabria, Spain

Alan Burns, University of York, UK

Alfons Crespo, Universitat Politècnica de València, Spain

Jorge Garrido, Technical University of Madrid, Spain

Michael González Harbour, University of Cantabria, Spain

Kristoffer Nyborg Gregertsen, SINTEF ICT Trondheim, Norway

Stephen Michell (Program Chair), Maurya Software, Canada

Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal

Juan Antonio de la Puente, Technical University of Madrid, Spain

Jorge Real (Workshop Chair), Universitat Politècnica de València, Spain

Pat Rogers, AdaCore, USA

Sergio Sáez, Universitat Politècnica de València, Spain

Tullio Vardanega, University of Padua, Italy

Andy Wellings, University of York, UK

Juan Zamorano, Technical University of Madrid, Spain

Sponsors

* The Proceedings of the 18th International Real-Time Ada Workshop are published in the June 2016 issue of ACM Ada Letters.

164

Volume 37, Number 3, September 2016 Ada User Journal

Session Summary: Parallel and Multicore Systems

Chair: Luis Miguel Pinho

Rapporteur: Stephen Michell

Abstract

The first session of the 18th International Real Time
Ada Workshop discussed two aspects of parallel
programming in real-time systems, the use of
executors in parallel systems, and syntax to guide the
reduction of parallel computations to return a correct
single answer. This report captures the discussions
held and the decisions and recommendations of the
workshop on these topics.

1 Introduction

The Multicore/Parallel Processing session examined issues

associated with the addition of syntax to Ada to effectively

manage parallel computation on multicore processors. The

papers considered were:

 Michell, Pinho, Moore, Taft, “Constraints on the Use

of Executors in Real-time Systems” [4].

 Taft, Moore, Pinho, Michell, “Reduction of parallel

computation in the parallel model for Ada”[5].

2 Discussion

2.1 Executors

The use of executors was introduced at IRTAW 2015 in [1]

to map the execution of tasklets in a directed acyclic graph

(DAG) to the underlying processors of a multicore

processor. Many issues were discussed in IRTAW 2015,

but some of the fundamental questions were not concluded,

and some other were not discussed. This session addressed

those issues as follows.

Changing Task Base Priorities or other attributes

Changing a task priority while a task is executing a parallel

opportunity could result in

a) multiple tasklets executing the same priority changing

(but possibly with different values of base priority); or

b) some tasklets having priority boosted and others not

boosted.

It was generally agreed that the results of changing a tasks

base priority inside a POP may be ineffective and even

problematic, but cannot in general be statically flagged as

an error.

It was agreed that although setting a task’s priority from

within a POP should be disallowed, it could be eventually

difficult to check. There was a strong sentiment that such

priority setting should be at worst a bounded error, not

erroneous. There was also a discussion if it should be a

different behaviour when the call to change priority was

executed by the tasks code (when executing in a parallel

region) or of it was a call from a different task (which was

performed while the affected task was in a parallel region).

It was noted that Ada already has rules for the immediacy

of Set_Priority for the same task and for other tasks on

single-CPU and multiple CPU hardware, as well as the

definition of abort-deferred regions. The Ada language

already provides a notion of base_priority and

active_priority. Changing the Pase_Priority of a task only

changes its active priority when the next synchronization

point is reached for the task whose priority is being

changed.

Due to these issues, the general agreement was that the

effects of the call should be deferred. It was proposed and

accepted that POP’s should be abort-deferred regions, and

that the current rules of Set_Priority should apply as

currently written.

For setting the priority of a task, if multiple tasklets make

the same call, it is not specified which one will succeed.

The discussion also considered if multiple different actions

are pending during a POP, what happens when returning

from the parallel region. For instance, an exception is

raised by code executing in a tasklet whilst another tasklet

changes the priority to the task.

The general consensus was that the different actions should

be applied, and the same behaviour as per similar situations

in the tasking model. In the example, the task priority

would be changed before the exception handler being

executed.

Timing Events

The next discussion was on the use of timing events from

within a POP. In the general model, tasklets can self-

suspend in order to communicate with other tasklets, but in

the RT model, tasklets should not self- suspend.

To show the requirement for tasklet suspension, Miguel

showed the following example:

for I in parallel 1..N loop

 Do_something; Barrier;

 Do_Something_Else;

end loop;

This could be broken into two POP’s, but a significant part

of the performance improvement from parallelization

derives from the localization of data, and having the same

tasklet and executor retain the data that it processed in

Do_Something to further process it in Do_Something_Else.

L. M. Pinho, S. Michel l 165

Ada User Journal Volume 37, Number 3, September 2016

The blocking in question could be a variant of synchronous

barriers, or could be entries. Since Ada already supports

asynchronous transfer of control, the mechanisms to permit

the queuing of code fragments is already in Ada, and can be

leveraged for tasklets.

The workshop discussed delaying one or more tasklets on a

timer, and decided that calls to delay, delay until or calls to

suspend on execution timers should not be permitted within

a POP. Since tasklets can call subprograms, in general it is

not decidable if a such a call is within a POP, so it must be

a bounded error.

It was noted that some subprograms may not be safe to call

from within a POP (such as ones that have an internal

suspension). There was a strong desire to be able to mark

the specification of subprograms as non-blocking, and to

have an aspect or a pragma such as H.5’s pragma

Detect_Blocking. Such a contract would be transitive, in

that a subprogram that was marked as non-blocking could

only call subprograms that were non-blocking.

It was decided that it would be useful to create parallel

regions (likely the region that is marked by the parallel

keyword). Parallel regions could then be used to forbid

certain operations, such as setting event handlers.

A side discussion was held about the expression of

concurrency within a program. Some members had a strong

sentiment for a construct such as :

parallel over I in 1..N

 Do_1

barrier

 Do_2

end_parallel;

Where parallel over would be the parallel loop construct.

Others pointed out that this would require significant code

rewrite to change sequential loops into parallel loops, and

would prohibit opportunistic parallel loop creation.

No decision was made on syntax.

Execution Time Timers

The workshop discussed how execution time timers can be

used in an environment with tasklets and with executors.

Execution time timers are applied at the task level, and

execution time timers are used to notify a task when its

execution time for the current work package has been

exceeded. There may be some benefit in subdividing a

tasks execution time budget into smaller budgets to manage

execution time at a finer granularity, but there are

significant issues with such a subdivision:

c) The executors that execute tasklet code are very simple

structures, and tracking their execution time

individually increases tasklet complexity and removes

some of the benefit of parallelization.

d) Modern processors are complex devices, with “lanes”

and pseudo cores. It is not clear that applying

execution time concepts to executors processing code

in a “lane” or in a hyper-threaded core is meaningful.

e) Tasklets are not individually identifiable as code

chunks, hence calls to set an execution timer or waiting

on an execution time timer are impractical.

The accounting of all time used by various tasklets and

charged to a task is straightforward, but when such time is

accounted can be an issue. The workshop accepted that

updates to the execution time of a task can happen at the

end of a POP, thus actually deferring potential overrun

actions. It would also be desirable to account for execution

time of each CPU or for each executor, and provide

facilities to handle per-CPU or per-executor overruns (to

isolate a misbehaving tasklet), but it was considered that a

simpler model should first be provided, and then

augmented.

Parallelizing inside interrupt/timing event handlers

Disallowing parallelization inside interrupt/timing event

handlers had been decided at IRTAW 17 In this workshop

it was discussed if interrupt handlers could/should also use

a pool of executors in a similar way as tasklets. It was

agreed that this would not be forbidden, but would be

implementation dependent.

Relation with Set_CPU/Get_CPU

Set_CPU

The Ada function Set_CPU locks a task to the CPU

identified as a parameter to the call. The question for the

workshop is to determine what effect Set_CPU has on

tasklets in a POP. Clearly it makes no sense to have a

model where a task calls Set_CPU and then enters a POP,

but all of the tasklets are restricted to a single CPU, thereby

defeating parallelism.

The workshop discussed the possibility of permitting the

tasklets to be executed on CPU’s that were within the

dispatching domain that contains the task’s CPU, or to

create a new Set_CPU to specify a set of CPUs within the

dispatching domains of the task, where the tasklets would

be able to execute.

The agreement was that a new Set_CPU should be

provided, to specify the set of CPUs where tasklets of the

task could execute. Calling this new function with a single

CPU would then force all tasklets to be executed in this

CPU (thus defeating parallelism).

 The current Set_CPU, if used for a task with tasklets,

would pin only the “master” tasklets, i.e., the one which is

executed when the task starts. Other tasklets are free to

execute in the dispatching domain that holds the parent

task. To achieve the behaviour that all tasklets run on the

same CPU, allocate the task to a dispatching domain that

contains only the single CPU.

Get_CPU

In addition to the current subprogram Get_CPU to return

the CPU that is executing the named task, there is a need to

determine the set of CPU’s that are executing tasklets for

that task. Therefore, a new call for Get_CPU is also

required with expanded semantics.

166 Session Summary: Paral le l and Mult icore Systems

Volume 37, Number 3, September 2016 Ada User Journal

Tasklet stealing

In the real-time model for parallel Ada, tasklets run-to-

completion in the same executor where they started

execution and parent stealing is disallowed, mainly because

analysis and predictability are extremely difficult to

impossible. It was noted, however, that for some

algorithms, parent stealing is significantly more efficient

than blocking the parent until all tasklets complete.

It was decided that work stealing or parent stealing should

not be forbidden, although it should be made clear that

currently there is no analysis for hard real-time systems.

Distinguishing between number of allowed and active

executors

For efficiencies sake, the number of executors in a system

will almost always be more than the number of cores by at

least a factor of two. There are also at least two different

notations for the number of executors – the number of

global executors available to an application, or the number

of active executors (i.e. running or ready-to-run. These two

numbers can differ, because executors can be allocated on a

per-task basis or globally. Depending upon system

configuration, either notion (global executors or active

executors) may be needed.

It was initially considered that the specification of the

number of active executors would be sufficient.

Nevertheless a second view of the problem identified a

situation where having both could be interesting. If a task

wants to restrict the level of parallelism but still have

“spare” executors in case some block, it might need to

provide different numbers to the available and allowed

simultaneous executors. Therefore the final decision was

that an interface to specify both should be provided.

Explicit control of executors

The workshop discussed the feasibility and desirability of

dynamically controlling the number and/or behaviour of

executors executing the tasklets in a POP. The workshop

agreed that, aside from allocating the number of executors

to the overall application or task (initial configuration), that

explicit control of executors is not desired.

Tasklet minimum execution time

The workshop discussed the cost of parallelism, in that the

creation of tasklets, the mapping of the algorithm onto

tasklets, reduction and reducing the partial results into a

final value set usually costs one or more orders of

magnitude processing than executing a single iteration or

branch of the algorithm. Hence, work is aggregated into

contiguous appropriately-sized chunks which are executed

in parallel with other chunks to maximize parallelism and

minimize work distribution overhead. For general systems

also, but in particular for real-time systems, the application

developer must be able to control the splitting of data into

chunks.

The workshop discussed mechanisms to configure this

chunking. A compiler option is a possibility, but there was

a preference for a language-defined aspect to control

chunking, either based upon the type or based on the object.

It was agreed that confirming pragmas or aspects would be

suitable in most situations.

It was discussed that it is currently impossible to use

aspects on loop bodies because of language restrictions, but

that this should be extended.

It was decided that, for real-time systems, that ability to

control tasklet configurations is a requirement. It was also

discussed if the programmer should be given control of the

minimum size of tasklets (e.g. instructions). It was

considered that this was better left to the compiler.

Relation with simpler runtimes

The subject of a simpler runtime for parallelism was

discussed in a separate session (about profiles). There was

general consensus that work should exist leading to the

proposal of a profile for efficient parallelism.

Other pre-emption models

An interesting model for highly parallel execution is where

pre-emptions are deferred to tasklet boundaries (when an

executor completes the tasklet it is executing when a pre-

emption is requested). This can improve data locality.

However, Ada current policies are either pre-emptive or

non-pre-emptive.

The workshop discussed the use of a non-pre-emptive

policy, together with careful use of Yeld as a potential

solution, but it would force non-pre-emptive even when no

parallel tasklets are being executed, or potentially introduce

large blocking in particular tasklets with large execution

time. There is also the issue that the main program is an

implicit tasklet, making the concept that tasklets are non-

preemptive too strict.

There was no decision taken on this subject.

Applicability to high-reliability hard real-time systems

It was discussed that there is currently insufficient analysis

to make parallel systems such as was proposed here and in

[1], [2] and [3] suitable for high reliability (critical) hard

real-time systems. This is mainly due to the timing

interference of highly parallel code, and its reflection in

current real-time analysis. At the present time, however,

systems that require such parallel processing should be

decoupled from the high- reliability system.

2.2 Parallelism Syntax

The session also discussed a second paper, about the

reduction of parallel computations in the proposed Ada

support for parallelism [5]. Miguel presented the situation

and the issues for discussion. Reduction of partial results

from multiple tasklets is relatively straightforward if the

reduction is done in the same order as the serial

computation would have occurred. But as tasklets complete

in arbitrary order this might not be the case. Waiting for all

tasklets to complete before the reduction can take place

may waste time and resources, therefore it is desirable to

support reductions in an arbitrary order, and even in

parallel. The addition of non-associative or non-

L. M. Pinho, S. Michel l 167

Ada User Journal Volume 37, Number 3, September 2016

commutative reduction operations further complicates how

one specifies reductions.

The workshop discussed alternatives for performing

reductions, as presented in the paper. The main approaches

discussed were the type-based approach and the reduction

based on hyper-objects.

This latter approach to reduction uses a set of generic Ada

packages, together with the proposed parallel loop syntax.

The programmer creates reduction objects, by instantiating

the package with the reduction type and operations.

However, the user is required also to program explicitly the

processing inside the parallel loop.

Pat noted that instead of a generic approach, a type-

extension approach could be explored.

In the type-based approach, a special reduction variable is

created to be used in the loop. This is an array, which

allows each parallel “chunk” to process an independent

value, which are then reduced at the end. The special box

(<>) notation is used to denote this special behaviour:

declare

 type Array_Type is new array(…) of float:

 Arr : Array_Type;

 type Partial_Array_Type is new array (parallel <>)

 of Float with Reducer => "+", Identity => 0.0;

 Partial_Sum : Partial_Array_Type := (others => 0.0);

 Sum : Float := 0.0;

begin

 for I in parallel Arr'Range loop

 Partial_Sum(<>) := Partial_Sum(<>) + Arr(I);

 end loop;

 Sum := Partial_Sum(<>)'Reduced;

 -- value is reduced either here or

 -- already during the parallel loop

 Put_Line("Sum over Arr = " & Float'Image (Sum));

end;

In this example, the array used for reduction (Partial_Sum)

is of a type that has reducer functions defined for the array

and the operation. The implementation is free to call the

reduction operation as tasklets complete their chunk of the

loop, or to reduce values when the Reduced aspect is used.

There was significant preference at the workshop for

syntax-based approaches to parallelism, including

reduction. The workshop considered that the proposed

approach binds too late the array being processed and the

reduction array, and that this binding is weak. It would be

necessary to connect both, in principle as soon as the

reduction variable is defined. Such as:

type Array_Type is new array(…) of float:

Arr : Array_Type;

type Partial_Array_Type is new array (parallel <>) of

Float

with Reducer => "+", Identity => 0.0;

Partial_Sum : Partial_Array_Type := (others => 0.0);

for Arr'Reducer use Partial_Sum;

Or

Partial_Sum : Partial_Array_Type

with Array => Arr;

There was a discussion on why the reduction variable is an

array. It could be a single variable (potentially of a

controlled type). However, there was a note that it could

eventually be interesting to be able to access specific partial

values (e.g. accessing the left and right chunks’ partial

values).

The group also briefly reviewed the ideas for parallel

iterators for containers, which were considered to fit well

(and to complement) the proposed type-based approach.

There was a general discussion about whether parallelism

support should be placed in the core language or placed in

specialised annexes. It was noted that parallelism are part

of the control flow of the program, and parallels were made

to other Ada features, such as tasking and priority, where

the model and basic capability is defined in the core of the

language and extra syntax, calls and restrictions are placed

in specialized annexes for real-time, distribution, and high

integrity systems. It was agreed that a similar approach for

parallel syntax would be desirable, with the basic syntax

placed in the core language and pragmas, aspects, libraries

and restrictions placed in the real-time annex for real-time

systems.

It was noted, that for real-time systems where the

application developer needs complete control over the

parallelism and the reduction operations, the programmer

may need to explicitly take control of chunking and

reduction, which should be allowed by the language. A

pragma No_Implicit_Parallelism could be also necessary.

3 Conclusions

The following summarizes the main positions taken by the

workshop during this session:

 Changing attributes of tasks should be deferred until

being out of any parallel execution. If parallel tasklets

perform multiple attribute changes, arbitrarily one is

selected;

 If multiple different operations are deferred during the

parallel execution (such as an attribute change and an

exception) all should be applied in a manner similar to

the current model for sequential Ada;

 The notion of parallel regions should be considered,

both for the previous behaviours, and also used to

forbid certain operations, such as setting handlers;

 Although a more accurate per CPU time accounting of

a task parallel execution is desirable, a simpler model

is initially proposed, which only provides a per task

single values, updated at the end of parallel regions;

 Set_CPU and Get_CPU calls should be also provided

to specify the group of CPUs where tasklets of a task

may execute;

168 Session Summary: Paral le l and Mult icore Systems

Volume 37, Number 3, September 2016 Ada User Journal

 Ada is a syntax-based language, and parallelism should

also follow the model. Parallelism introduces a

significant model extension to Ada which should be

specified in the core of the standard;

 For real-time systems, the programmer should be able

to take control of the parallelism decomposing and

operations in the program.

References

[1] Michell, S., Moore, B., Pinho, L.M (2013), Tasklettes

– a Fine-Grained Parallelism for Ada on Multicores,

Ada Europe 2013, Springer Publishing.

[2] Taft S.T., Moore B.J., Pinho L.M, Michell S.G. (2014),

Safe Parallel Programming in Ada with Language

Extensions, HILT/Sig Ada Conference 2014, ACM

New York.

[3] Pinho L.M., Michell S.G., Moore B.J., Taft, S.T.

(2015), Real-Time Fine-Grained Parallelism in Ada,

Proceedings of the 17th International Real Time Ada

Workshop, Ada Letters 2015, ACM New York.

[4] Michell S.G., Pinho L.M., Moore B., Taft T. (2016),

Constraints on the Use of Executors in Real-time

Systems, Proceedings of the 18th International Real

Time Ada Workshop, Ada Letters 2016, ACM New

York.

[5] Taft S.T., Moore B.J., Pinho L.M., Michell S.G.

(2016), Reduction of Parallel Computation in the

Parallel Model for Ada, Proceedings of the 18th

International Real Time Ada Workshop, Ada Letters

2016, ACM New York.

169

Session Summary: Deadline Floor Protocol
Chair: Alan Burns
Rapporteur: Andy Wellings

1 Introduction

At the 2013 IRTAW Workshop [1], it was accepted that the

Deadline Floor Protocol (DFP) has many advantages over

the Stack Resource Protocol (SRP), and that it should be

incorporated into a future version of the language, and that

ideally the support for SRP should be deprecated.

The overall goal of this session was to determine if the DFP

was now mature enough to be put forward as an AI.

2 Protocol Discussion

The workshop focused on two issues associated with the be-

haviour of the protocol, which had been previously identified

by Michael González Harbour. The first issue was that setting

the deadline floor of a protected object to be the minimum

relative deadline of the tasks that access it did not take into ac-

count release jitter. Release jitter is a property of the platform

and hence a program’s portability is undermined. However,

this is also the situation with the current SRP protocol. Unfor-

tunately, if the release jitter of a task is underestimated then

under DFP (on a single processor) mutual exclusion cannot

be assured and hence a lock is required. This is not the case

with the SRP. Given that a lock is required for both protocols

in a multiprocessor environment, the workshop agreed that

the DFP should require the lock. Of course, deadlocks can

occur if strict order of nested locks is not enforced.

The second issue discussed was that of a task (on a single

processor) self suspending within its release and the task

overrun its assumed worst case execution time. The following

code was considered to show that without a lock the DFP

protocol would be compromised. The example consists of

two tasks: T1 and T2 that share a critical section and T1 self

suspends.

task body T1 is

begin

Next_Time:=Clock

Set_Deadline(Next_Time+5ms)

loop

Action1_almost_5ms

Trigger D/A conversion

Wake_Up_Time:=Clock+5ms

delay_until_and_set_deadline(

wake_up_time, Next_Time+20ms)

Action2_5ms

Critical_Section_1ms

Action3_1ms

Next_Time:=Next_Time + . . .

Delay_Until_And_Set_Deadline(

Next_Time, Next_Time+5ms)

end loop;

end T1;

task body T2 is

begin

Next_Time:=Clock

Set_Deadline(Next_Time+30ms)

loop

Action1_4ms

Critical_Section_3ms

Action2_1ms

Next_Time:=Next_Time + . . .;

Delay_Until_And_Set_Deadline(

Next_Time, Next_Time+30ms)

end loop;

end T2;

Two scenarios were considered. In the first scenario, the task

T1 runs to its worst case (but no further). As illustrated in

Figure 1.

Here, the relative deadline of the tasks must be set carefully

to reflect its relative deadline following the self suspension.

If this is done then the DFP behaves as required.

The second scenario, shown in Figure 2 illustrates the be-

haviour of the protocol if T1 overruns its execution time. In

this scenario mutual exclusion is not assured.

The workshop discussed the pros and cons of the DFP and

SRP protocols and concluded that for the general case DFP

with Locks is still preferable to SR due to its simpler imple-

mentation and understandability.

Further, with the DFP it was possible to have a uniform two

level scheduling approach. At the top level is fixed prior-

ity scheduling. Within priority, FIFO, EDF or round-robin

scheduling can be used. This can be contrasted to having

EDF across priorities to support SRP. Further consideration

is needed as to whether, with a lock, trying to access a PO

becomes a dispatching point.

If when a task calls a PO it is suspended, then the task with

the lock could inherit the urgency of the suspended task. This

was, however, felt not to be a necessary property and the

workshop did not go as far as to recommend it.

3 Representation of Deadlines

The workshop discussed where to define the deadline types.

Two alternatives to the ones proposed in the Burns and

Wellings paper were considered. The first was to dep-

recate Ada.Dispatching.EDF and add the types to

Ada.Real_Time. The workshop felt that this sends the

wrong signal to the community. The second alternative was

preferred by the workshop, which was that of adding new

types to Ada.Dispatching.EDF Hence:

Ada User Jour na l Vo lume 37, Number 3, September 16

170 Sess ion Summar y: Deadl ine Floor Protoco l

Figure 1: First Scenario.

Figure 2: Second Scenario.

with Ada.Real_Time;

with Ada.Task_Identification;

package Ada.Dispatching.EDF is

.....

subtype Relative_Deadline is Real_Time.Time_Span;

Default_Relative_Deadline : constant

Relative_Deadline := Real_Time.Time_Span_Last;

procedure Set_Relative_Deadline

(D : in Relative_Deadline;

T : in Ada.Task_Identification.Task_Id :=

Ada.Task_Identification.Current_Task);

function Get_Relative_Deadline

(T : Ada.Task_Identification.Task_Id :=

Ada.Task_Identification.Current_Task)

return Relative_Deadline;

end Ada.Dispatching.EDF.Dynamic_Relative_Deadlines;

4 Deadline Aspect for PO

Each PO needs a deadline floor attribute what can be set on the

creation of a PO by as aspect. The relative_deadline

aspect already exists, so it was felt appropriate to reuse this

aspect to set the deadline floor. This is identical to the way

that the priority aspect is used both for task priority and

PO ceiling priority.

5 Summary of Workshop position

The Workshop’s position can be summarised as follows.

• There was unanimous support for developing an AI for

DFP.

• The AI should recommend the deprecation of the SRP

protocol.

• The AI should define the use of a mutex lock to obtain

mutual exclusion rather the relying on the correction of

the application in its setting of deadline floor.

References

[1] A. Wellings (2013), Session summary: Locking proto-

cols, ACM SIGAda Ada Letters, Proc. of IRTAW 16,

XXXIII(2):123–125.

Volume 37, Number 3, September 16 Ada User Jour na l

 171

Ada User Journal Volume 37, Number 3, September 2016

Session Summary: Language Issues

Chair: Michael González Harbour

Rapporteur: Mario Aldea Rivas

1 Introduction

The goal of this session was to discuss and, if appropriate,

generate Ada Interpretations for several language related

issues presented to the workshop:

 Extension of the Synchronous Task Control in order to

allow the use of Suspension Objects by concurrent

tasks.

 Inclusion of Synchronous Barriers in the Ravenscar

profile.

 Addition of execution timer and group budget support

for interrupt handlers.

 Issues on High-Integrity Dynamic Memory

Management.

2 Synchronous Task Control

The session chair summarized the issue presented in [1].

The original motivation of the Suspension Objects defined

in the Ada.Synchronous_Task_Control package is the

implementation of efficient suspend and resume

operations. They are intended to be used on a per-task

basis: each Suspension Object is dedicated to having just

one task to suspend upon it. In particular, Program_Error

is raised upon calling Suspend_Until_True if another task

is already waiting on that Suspension Object.

The ARG has asked the IRTAW community to consider the

extent to which Synchronous Task Control should be used

by concurrent tasks. This extension would allow the use of

Suspension Objects as general binary semaphores:

Suspend_Until_True(Sem);

 -- critical section

Set_True(Sem);

It is important to notice that with the current definition of

the Synchronous Task Control in the Reference Manual,

this use is not possible even with two tasks because

concurrent calls to are not defined to

be atomic with respect to each other. However,

would not be raised in this case as there

could only be one task suspended at any moment.

Three possible modifications could be made:

1. Disallow concurrent calls to Suspend_Until_True.

2. Allow concurrent calls, and define them to be atomic

(which would allow the use of Suspension Objects as

binary semaphores to be used by two tasks at most).

3. Allow concurrent calls, define them to be atomic and

remove the restriction as to there being at most one

suspended task per Suspension Object.

2.1 Discussions

There was little discussion on this issue since there was a

wide agreement on not changing the original semantics of

the Suspension Objects as a mechanism to implement

efficient suspend and resume operations on a per-task basis.

Consequently, modifications 2 and 3 were quickly

discarded.

During the discussion an issue was raised on whether or not

the Ravenscar profile should include the restriction “No

local suspension objects” (in Ravenscar a Suspension

Object local to a task would be useless since it would not

be visible to any other task in the system). The general

agreement was the new restriction was not worthy and a

compiler warning will be a coherent response to this

situation.

2.2 Conclusions

The main conclusion of this part of the session was to

support the modification number 1: maintain the original

semantics of the Suspension Objects and define as an

bounded error the situation where two tasks make

concurrent calls to Suspend_Until_True.

3 Synchronous Barriers

The issue presented in [1] was summarized by the session

chair. Synchronous barriers allow synchronously releasing

a group of tasks after the number of blocked tasks reaches a

specified count value. When synchronous barriers were

introduced into the language it was decided not to include

them in the Ravenscar profile.

As it is shown in [1] they can be implemented with

Ravenscar primitives (using protected objects and

suspension objects). But if the underlying platform directly

supports a barrier primitive then more efficient code can be

generated if they are directly supported by the language

The question for the IRTAW was whether this potential

efficiency gain is sufficient to warrant the inclusion of

synchronous barriers in Ravenscar.

3.1 Discussions

During the discussion, the workshop did not find objections

to including this functionality in Ravenscar but it was

noticed that there is no industrial experience on the use of

the Ravenscar profile for multiprocessors. AdaCore’s first

Ravenscar run-time for multiprocessor (for the Leon

architecture) is expected for this year.

172 Session Summary: Language Issues

Volume 37, Number 3, September 2016 Ada User Journal

3.2 Conclusions

The workshop did not have any objections to including this

functionality in Ravenscar. However, the general feeling

was that more extensive industrial experience on the use of

Ravenscar on multiprocessors would be desirable before

taking a strong opinion about including this functionality in

Ravenscar.

4 Execution time control for interrupt
handling

The session chair presented a brief overview of the

proposal made in [2]. Support for the separate accounting

of the execution time of interrupt handlers was included in

the 2012 revision of the Ada language but no mechanism

was included to control the execution time dedicated to

interrupt handling. In order to fill this gap, the proposal

argues for the inclusion of interrupt execution time timers

and group budgets.

Kristoffer Nyborg Gregertsen made a detailed description

of his proposal that is a refinement of a previous one

discussed at a previous IRTAW [3]. Several issues were

identified on that previous work [4] which are addressed in

the current proposal by defining a new tagged type

hierarchy that integrates execution time timers for tasks and

interrupts and another hierarchy to integrate group budgets

for tasks and interrupts.

These unified hierarchies allow a single implementation of

an execution time control policy, such as the deferrable

server, to work for both tasks and interrupts.

The main disadvantage of this approach is that the

proposed API is not backwards compatible with the current

Ada specification due to the modifications in the packages

Ada.Execution_Time.Timers and

Ada.Execution_Time.Group_Budgets, respectively replaced

by Ada.Execution_Time.Timers.Tasks and

Ada.Execution_Time.Group_Budgets.Tasks in the proposal.

4.1 Preliminary discussions

Discussions were centered on whether the uniformity

provided by the proposed hierarchies compensates the loss

of backwards compatibility. The workshop’s feeling was

that backwards compatibility should be maintained even at

the expense of jeopardizing the uniformity of the types.

An alternative approach briefly outlined in the same paper

[3] was also discussed. It is based on the definition of the

types Root_Timer and Root_Group_Budget in their own

packages. With this proposal the names of the packages

Ada.Execution_Time.Timers and

Ada.Execution_Time.Group_Budgets would be preserved.

This approach would require less changes to existing code

than the original proposal, but it is not fully backwards

compatible either.

Kristoffer Gregertsen was asked to present a revised

proposal that would preserve backwards compatibility.

4.2 Revised proposal

Kristoffer Gregertsen presented a revised proposal that

does not modify the Ada.Execution_Time.Timers and

Ada.Execution_Time.Group_Budgets packages and, in

consequence, is fully backwards compatible. The type

Interrupt_Timer is defined in a new package

Ada.Execution_Time.Interrupts.Timers. This type is

identical to the task timers type with exception that its

discriminant would be an interrupt ID.

 The same approach would be applied to group budgets.

4.3 Final discussions

Once the backwards compatibility problem was overcome,

the discussions centered on the usefulness and efficiency of

the proposal.

It was pointed out that the possible actions on a

misbehaving handler are very limited since the interrupt

can be disabled but the running handler cannot be aborted.

In consequence, the functionality provided by the interrupt

execution time timers could be achieved by the

programmer by measuring the interrupt clock at the end of

the handler and performing the appropriate actions if an

overrun is detected. Although this ad-hoc implementation is

feasible, the inclusion of the interrupt execution time timers

would ease the programmer’s task.

Some concerns were raised about the overhead introduced

by the implementation of the mechanism to control the

execution time of the interrupts. Kristoffer Gregertsen’s

experience with his implementation on the Atmel AVR32

architecture showed that the overhead is acceptable, and

could be further improved by using a specialized Time

Management Unit available for that architecture. Some

doubts remained about the possibility of implementing this

functionality efficiently on other architectures or in an Ada

run-time running on top of an operating system.

A vote was taken on whether the workshop considered the

proposal useful, with the result of 5 yes, 1 no and 9

abstentions.

The general opinion of the workshop was that the proposal

should integrate possible multiprocessor related issues.

During the discussion an observation was raised pointing

out that some advanced aspects of the language (notably

those defined in Annex D) are not implemented in the most

accessible Ada platforms, i.e., the compilers and run-times

for general purpose operating systems as Linux or

Windows. This fact could discourage some newcomers

who wanted to gain experience with these aspects of the

language. However these platforms are not designed for

real-time applications. It was suggested that new profiles

could be defined for this kind of systems in order to clarify

the functionality that a user can expect to find in these

environments.

4.4. Conclusions

The general opinion of the workshop was that Interrupt

Timers are an interesting functionality that deserves being

explored. For a full acceptance of this functionality the

M. González Harbour, M. Aldea Rivas 173

Ada User Journal Volume 37, Number 3, September 2016

multiprocessor implications must be understood. The

workshop encourages further research in this area in order

to be discussed at a future IRTAW.

5 High-Integrity Dynamic Memory
Management Issues

Andy Wellings presented the dynamic memory allocation

model used in Safety-Critical Java (SCJ) and his experience

with implementing this model in Ada [5]. SCJ supports an

application structure based on the notion of “missions”. An

application is a sequence of missions, each mission is

comprised of a set of real-time concurrent activities, and

each activity executes a sequence of jobs.

In SCJ, dynamic memory allocation can be performed in

different memory areas with different lifetimes:

 Immortal memory area: objects allocated in this area

will remain for the lifetime of the application.

 Mission memory area: objects can be allocated in this

area, but when the mission is finished all the memory

is reclaimed and the block reused by the subsequent

mission.

 Per-release memory area: memory area associated to

each real-time activity. Objects allocated here can only

be accessed by the owner real-time activity. The per-

release memory is cleared at the end of each release

 Private memory areas: they can be used to store objects

that have an even more limited lifetime, perhaps for

the lifetime of a method call.

Different Ada implementation models have been explored

based on global and local memory pools and Andy raised

several issues to be discussed.

5.1 Discussions

The first identified issue was related with the laxity of the

RM (Ada Reference Manual) about the automatic storage

reclamation: there is no requirement on an implementation

to cleanup the memory when an access types goes out of

scope. Of course, Unchecked_Deallocation can be used, but

this requires the program to keep track of all objects

created. It was noticed that real-time garbage collection has

improved a lot in the last years and nowadays it is plausible

to use it in real-time applications.

Another identified issue is the lack of control that an

application has on the allocation of the task stack. Two

limitations are detected: (a) there is no way specified in the

RM to monitor the size of the stack used by a task

(although AdaCore provides a non-standard API), (b) an

application can set the stack size of a task but there is no

way to control how the stacks are allocated, and

consequently no way that they can be integrated with

storage pools.

Finally, Andy Wellings noticed that, in order to correctly

implement the SCJ memory model in Ada, it would be

necessary to avoid the use of the default storage pool. It

was suggested that a new restriction could be added to the

language to force applications to behave in that way. A

finer granularity restriction, applicable to the package level,

was discarded by the workshop since it was considered

that, when needed, this should be checked using an external

tool.

5.2. Conclusions

The main conclusions of this part of the session were:

 It would be interesting that the language provided an

aspect for the access types in order to specify that the

memory allocated to dynamic objects of that access

type should be reclaimed when the type goes out of

scope. If the type has an associated storage pool then

the compiler would generate appropriate calls to the

deallocation operation. A tentative name for that aspect

could be “Reclaim”.

 The language (in its Systems Programming Annex)

should provide more control for stack allocation and

deallocation. Two alternatives could be acceptable:

1. The language should provide an aspect to force the

implementation to include the stack space in the

same pool than the access type of the task (of

course, only in case the access type of the task is

associated to a pool).

2. The language should provide an aspect to specify

a storage pool for allocating the stack of the tasks

of a given task type.

 The language (in its Systems Programming Annex)

should provide an API to dynamically get the current

stack size used and the maximum stack size used for a

task.

 There should there be a requirement for an

implementation to document where the stack space for

handling interrupts is allocated.

 A new restriction should be added

(No_Default_Storage_Pool_Allocation) to indicate that

dynamic allocation can only be done for objects whose

access-to-object type is associated to a user defined

storage pool.

References

[1] A. Burns and A.J. Wellings (2016), Synchronous Task

Control and Synchronous Barriers, In Ada Letters

36(1):35-38, ACM New York.

[2] K. N, Gregertsen, Revising the Ada timers and group

budgets to support execution time control for interrupt

handling, In Ada Letters 36(1), ACM New York.

[3] K. N. Gregertsen and A. Skavhaug (2013), Execution

time timers for interrupt handling, Ada Letters

33(2):87–96, A CM New York.

[4] T. Vardanega and R. White (2013), Session summary:

improvements to Ada, Ada Letters, 33(2):126–130,

ACM New York.

[5] A. J. Wellings, V. Cholpanov and A. Burns (2016),

Implementing Safety-Critical Java Missions in Ada, In

Ada Letters 36(1):51-62, ACM New York.

174

Volume 37, Number 3, September 2016 Ada User Journal

Session Summary: Ada Language Profiles

Chair: Tullio Vardanega

Rapporteur: Pat Rogers

Abstract

This session of the 18th International Real Time Ada
Workshop discussed the use of profiles in Ada, and
the possibility and desirability of adding additional
language profiles to Ada besides the Ravenscar
Tasking Profile.

1 Introduction

The “Profiles” session examined various profiles, official

and unofficial, that are used in Ada. The goal was to

determine the desirability of formalizing language profiles

as was done with great success for the Ravenscar Tasking

Profile.

2 Discussion

2.1 Ravenscar Tasking Profile

The session began with a summary provided by Tullio

recalling the history of the Ravenscar profile, emphasizing,

in particular, that Ravenscar has become a "brand" that we

want to ensure remains well-defined and viable. In short,

we should not "tamper" with the brand. This point was

particularly pertinent to the discussion regarding new

profiles based on the current definition of the Ravenscar

profile.

2.2 Zero Footprint

The workshop then entertained the question of whether we

should define a profile based on the Zero Foot Print (ZFP)

runtime "profile" separately provided by AdaCore [3] for

embedded systems running specialized kernels. The

consensus in the group was against doing so.

2.3 Linux Targets

There was a discussion on the feasibility and desirability of

having a profile specifically intended to run on Linux (for

reasons of wide availability on hardware platforms that

could be used for experiments, teaching, research). The

point of that effort would be to determine which

constructs/features in the language are problematic for

efficient implementation on Linux so that we could then

define a profile without those constructs/features (via

restriction policies). No decision was reached on that

discussion item.

2.4 Multicore/Parallelism

There was general agreement that multicore/parallelism

was an important new area, and that there was potential for

a profile to support multicore applications. The point was

made that we need a forum, or attention topic in some

community domain, in which our work will have high

visibility to, and interest from, the "non-Ada" (real-

time/embedded) community. Tullio suggested that

multiprocessing/parallelism is just such a forum and this

was widely agreed.

Regarding multiprocessing/parallelism, there was

consensus that in the future we should define a parallel

version of Ravenscar. Submissions to future workshops on

this topic would be welcomed.

2.5 Earliest Deadline First Scheduling and
Timing Analyzability

The workshop agreed that Earliest Deadline First

scheduling would also be a good candidate for our a profile

with analogous forum for our work. There was a question

of whether we want to define a subset of the sequential part

of the language for the sake of timing analysis. There was

no general support for doing so.

2.6 Candidates for a Profile

As part of figuring focal points of community attention, the

workshop discussed various topics without exploring them

deeply, including how to have mixed-criticality

applications on the same runtime (as opposed to a

partitioned OS with a distinct runtime per partition). The

attractiveness of asynchronous select statements for

resiliency was noted, although the problematic aspects of

that construct were recognized; what might be required for

parallelism, and so forth. There was general consensus that

this whole area has potential but needs deeper thinking. It

might be a valid discussion topic for the next workshop.

2.7 Extended Ravenscar Profile

The discussion moved on to the new profile under

development by AdaCore, which was presented at the

previous IRTAW [4]. As that profile allows for multiple

calls to queue on a protected entry (where Ravenscar

restricts that to at most one). A pertinent question that the

workshop identified was to determine whether or not the

Ada Reference Manual [2] requires open protected entries

(with pending calls) to be serviced in priority order within a

protected action. On scrutiny, no such requirement was

found in the manual, Yet, it was recalled that group

consensus at the previous meeting was that FIFO queuing

should be preferred, which puts the priority-ordering

question to sleep unless good reasons are found to revive it.

 As part of the discussion, the comment was made that an

AdaCore extended "Ravenscar" might possibly obviate the

current Ravenscar profile, in that no-one would want to use

the more restricted profile given access to a less restrictive

alternative. The AdaCore representative indicated that such

was definitely not the intention, and that they would

maintain the position that both profiles are appropriate.

Indeed, AdaCore's new profile does not preclude the use of

the canonical Ravenscar profile. Although the extended

T. Vardanega, P. Rogers 175

Ada User Journal Volume 37, Number 3, September 2016

profile is planned to be the default, programmers can

specify Ravenscar with the pragma Profile to get both the

canonical Ravenscar semantics and the other benefits, such

as maximized efficiency and analysis for protected entry

handling.

Although a program conformant to the canonical Ravenscar

profile would run successfully on the extended profile, the

new capabilities were thought to be sufficiently different in

"flavor" as to warrant a nonhierarchical profile name, i.e.,

one not including "Ravenscar" as part of the name.

By the end of the session, no decision was made for a name

for the new profile, however we took up the topic again on

Wednesday. At that time the name "Dewar" was proposed

and was agreed by the group to be a good suggestion.

AdaCore management will be consulted on this matter.

2.8 Hierarchical Names for New Profiles

The workshop took up the question of names for new

profiles. It was agreed that those profiles that are

sufficiently similar to an existing profile should use

hierarchical names, i.e., with the extended profile as the

parent name for an extension. In addition, consensus was

reached that a test for being "sufficiently similar" would be

whether a program conforming with the parent would run

successfully on the extension. Successfully passing that test

was agreed to be necessary for the name of the extension to

include the existing profile name. In particular, it was

agreed that one cannot remove functionality from an

existing profile and consider the result to be an extension of

that profile. This notion does not fully fit a possible EDF

version of the Ravenscar profile, which would in fact build

on exactly the same set of restrictions casting them to EDF

scheduling, combined with the Deadline Floor Protocol,

instead of fixed-priority scheduling, combined with the

priority ceiling protocol. The name that was contemplated

for that profile would likely still be Ravenscar-EDF. No

formal decision was made on this issue, however.

3 Conclusions

 The session was enjoyable and had active participation,

with lively discussions and decisions that will steer the path

of future work on Ada language profiles. The discussion

held were more strategic in nature than deeply technical. It

is likely – and it is in fact expected – that future editions of

the workshop will see authors table concrete technical

proposals for novel language profiles along the lines

anticipated in this session.

References

[1] Garrido J., Lacruz B., Zamorano J., de La Puente J.A.

(2016), In Support of Extending the Ravenscar Profile,

Ada Letters 36(1): 63-67, ACM New York.

[2] International Standards Organization (2012), ISO IEC

8652 “Information Technology – Programming

Languages – Ada”.

[3] AdaCore, Gnat Pro, Runtime Profiles,

http://www.adacore.com/gnatpro/toolsuite/runtimes/

[4] P. Rogers, J. Ruiz, T. Gingold (2015), Toward

Extensions to the Ravenscar Profile, Proceedings of

the 17th International Real-Time Ada Workshop, April

2015, Ada Letters 35(1):32-37, ACM New York.

176

Volume 37, Number 3, September 2016 Ada User Journal

Session Summary: Experience

Chair: Jorge Real

Rapporteur: Pat Rogers

1 Introduction

The Experience session examined the proposal [1] to

integrate time-triggered scheduling with priority based

scheduling.

2 Discussion

The session began with an overview of time-triggered (TT)

scheduling, in which tasks are scheduled using static,

predetermined "plans" in order to minimize release jitter.

After this overview, Jorge described a software architecture

and implementation that combines TT tasks with those

scheduled dynamically by priority (priority-based, PB

tasks). In particular, he presented the model for the

approach, the interface for the TT scheduler, and selected

implementation details. He closed with descriptions of

selected patterns combining TT and PB tasks and showed

experimental evidence of the results under MaRTE OS [2]

in bareboard configuration.

Jorge noted that TT tasks experience higher minimum jitter

than PB tasks, due to the TT scheduler overhead, but

overall the TT tasks experience much less jitter since they

are not subject to interference from higher priority tasks.

The presentation and approach were both very well

received.

During the presentation a number of points and questions

arose. The resulting discussions are presented in the

following paragraphs.

The implementation is not currently compatible with the

Ravenscar profile restrictions. For example, it uses

dynamic priorities to "demote" overrunning tasks or tasks

that explicitly leave the TT level. (Demoted tasks continue

to execute, but at a selectable, harmless priority level.)

Similarly, it uses timing events that are declared locally,

rather than at the library level, and entry families. That

said, it should be possible to rewrite the implementation to

be compatible.

The patterns combining time-triggered and priority-based

tasks received considerable attention, especially the

"Initial-Optional-Final" pattern because it suggests others.

For example, the "Optional" part could just as easily be

considered required, but since it is executed under priority-

based scheduling it would allow the benefits of priority-

based scheduling for that part of the plan while retaining

the benefits of time-triggered scheduling for the "Initial"

and "Final" parts.

The discussion led to the general point that one should be

able to divide a long-running time-triggered task into

segments that would be executed across several slots. A TT

task following this pattern and failing to complete in one

particular slot is not an overrun, provided that the plan

includes more slots in the future for the completion of the

TT task's activity. Spreading the TT task execution across

several slots gives chances for other tasks to execute in

between those slots. This enhancement was considered

important by the Workshop.

The issue of multiprocessor support was discussed again, as

it had been for essentially all other sessions. The current

implementation approach is to have one TT plan per

processor, with tasks fixed to processors, a reasonable

approach given that this is a static, off-line scheduling

regime. In a multiprocessor setup, there would be up to one

statically allocated plan per processor. In this context, it

was argued, it would be much convenient to be able to set

the affinity of timing events, as proposed in [3]. However

one could allow TT tasks to migrate across plans when a

sufficient TT slot is not available in the current plan but can

be found in a plan running on a different processor, thereby

migrating jobs across processors. This was considered a

valuable feature.

3 Conclusion and Follow-up

The session closed with a discussion of what to do next.

Should the implementation be part of a library, a new

profile, made publicly available as-is? No specific decision

was reached, but the proposed enhancements were re-

confirmed as valuable and additional directions and

refinements were proposed by the group. In particular:

 Explore the ability to break a long-running TT task

into segments, get some usage experience, and then

make the resulting facility available.

 Explore an integration with a real-time framework,

e.g., those in [4, 5, 6].

 Explore additional patterns, in particular an "Initial-

Required-Final" pattern as described above.

References

[1] J. Real, S. Sáez and A. Crespo (2016), Combined

Scheduling of Time-Triggered Plans & Priority

Scheduled Task Sets, Ada Letters 36(1):68-76, ACM

New York.

[2] M. Aldea, M. and M. González-Harbour (2001),

MaRTE OS: An Ada Kernel for Real-Time Embedded

Applications, Reliable Software Technologies - Ada

Europe 2001, LNCS 2043, pp. 305–316.

[3] S. Sáez, J. Real and A. Crespo (2015), Implementation

of Timing-Event Affinities in Ada/Linux, Ada Letters

35(1): 80-92, ACM New York.

J. Real, P. Rogers 177

Ada User Journal Volume 37, Number 3, September 2016

[4] A. J. Wellings and A. Burns (2007), A Framework for

Real-Time Utilities for Ada 2005, Ada Letters 27(2),

ACM New York.

[5] J. Real and A. Crespo (2010), Incorporating Operating

Modes to an Ada Real-Time Framework, Ada Letters

30(1) : 73–85, ACM New York.

[6] S. Sáez, J. Real and A. Crespo (2012), An Integrated

Framework for Multiprocessor, Multimoded Real-Time

Applications, In Proc. Reliable Software Technologies

-- Ada-Europe 2012. LNCS 7308, Springer.

178

Session Summary: Time Vulnerabilities
Chair: Stephen Michell
Rapporteur: Juan Antonio de la Puente

1 Introduction

The aim of the session was to identify and discuss time vul-

nerabilities in Ada at the request of ISO/IEC SC22 WG 23, in

order to update the Ada part in the TR 24722 document [1].

The basis for the discussion was the paper by Stephen Michell

on Time Issues in Programs Vulnerabilities for Programming

Languages and Systems [3]. The vulnerabilities identified in

the paper were discussed, as described in the next sections.

The reader is referred to the full paper for details on the def-

inition of the different vulnerabilities. The vulnerability on

’external visibility of usage parameters’ was not discussed as

it was not considered a time vulnerability.

The group agreed on grouping the time vulnerabilities de-

scribed in the paper as follows:

• Clock issues

• Resource consumption errors

• Missed events

The vulnerabilities are described in the next sections of this

report

2 Clock issues

This vulnerability is related to issues caused by clock han-

dling, such as synchronization between clocks, representation

of time as dispensed by a clock, and non-monotonic behaviour

of some clocks

2.1 Description of vulnerability

Errors in clock synchronization, time conversion, and clock

roll-over may result in incorrect behaviour in programs de-

pending on time, possibly leading to application failure.

Examples of such errors are:

Differing time bases. Multiple clocks are often available,

with different notions of time (e.g. calendar and time of

day, seconds from epoch, elapsed time, execution time) in

the same system. Different clocks usually have different

representations, scaling and semantics, which may give raise

to conversion, rounding and cumulative errors leading to

application failures.

Clock rollover. Time is usually represented using a fixed

length of bits. As a consequence, there is a possibility that a

clock rolls over, which may lead to application failure as time

values come back to a smaller value.

Synchronizity issues. Local clocks on multiprocessor sys-

tems will drift with respect to each other after some time.

The possible consequences are errors in time comparisons

and different time values in different parts of an application,

which in turn may give rise to missed events, lost deadlines

and communication errors, eventually resulting in potential

application failures. A further consequence of this issue is

that using time stamps to guarantee order is not reliable.

The key issue with respect to synchronizity is whether the pro-

gramming language (and the platform underneath) provides

clocks with bounded drift.

2.2 Possible mitigations

• Understand the differences between different time bases

and develop appropriate conversions.

In particular, always convert time values from the most

precise and stable time bases to less precise ones. For

instance, avoid converting from time-of-day clocks or

network time to real time clocks.

• Protect application code against clock rollover, e.g. by

detecting when a time value is near the highest possible

value and taking into account this possibility.

• Account for communication delays and relative clock

drift in communicating tasks across multiple CPUs.

• Measure drift between clocks periodically on multipro-

cessor platforms.

• Use only clocks with known synchronicity properties

3 Resource consumption issues

This vulnerability deals with issues of resource consumption

errors, including vulnerabilities associated with monitoring

resources, and vulnerabilities associated with changes to re-

source consumption due to issues such as virtualization, cache

effects and processor speed changes.

3.1 Description of vulnerability

Some applications depend on measurements of time associ-

ated with monitoring resource usage. Changes in clock rate,

processor speed, or errors related to execution time monitor-

ing may cause failures possibly leading to total application

failure. Some specific issues associated with this vulnerability

are:

Volume 37, Number 3, September 16 Ada User Jour na l

S. Miche l l , J. A. de la Puente 179

Virtualization issues. In a virtualized system, virtual

clocks are used instead of physical clocks. This may lead to

virtual clocks running faster than normal in order to catch up

with real time, which may result in synchronization errors

or events not being received. Another issue is possible inter-

ference from other applications with a high load generated

either accidentally or by external attackers. In this situation

the amount of available resources for a critical application

may not be enough for it to execute correctly.

Concurrent setting of real-time resources. Real-time sys-

tems must interact with low-level resources such as hardware

timers, interrupts, or external events. Errors can arise if calls

to system services related to these resources are not protected

against concurrent access, which may resulting in an incorrect

temporal behaviour of the system, possibly leading to system

failures.

Time accounting issues Time accounting may be affected

by system services, e.g. garbage collection, or by the presence

of multiple CPUs. Execution time inaccuracies, e.g. when

some operations are executed after reading the value of a

clock with an unknown effect.

3.2 Possible mitigations

• Take steps to guarantee that processors, memory and

time resources are locked to the application and not

shared with other virtual services.

• Do not virtualize critical applications.1

• Protect system-level operations on timers, interrupts, and

events against concurrent access.

• Validate any assumptions about time accounting mecha-

nisms.

4 Missed event issues

This vulnerability deals with issues arising from missed dead-

lines or events related to the scheduling and monitoring of

work based on time.

4.1 Description of vulnerability

Real-time systems must react to external events, or perform

actions at specific times, within specified deadlines. Failing

to do so, or to properly monitor the time behaviour of the

system, may lead to catastrophic failures.

Specific issues in this area include:

Missed deadlines. This is a typical vulnerability of systems

with a cyclic behaviour. If the work allocated to a cycle does

not end in time and overruns into the next cycle, the behaviour

of the system may be seriously compromised and possible

lead to an application failure.2

1It was noted that critical applications can be virtualized on specific

kernels such as XtratuM [2].
2It should be noted that this is a scheduling issue, rather than a clock or

time one, although it may be caused by clock errors.

Iteration scheduling. This issue is related to programming

the start time of the next iteration in a real-time system con-

sisting of periodic and sporadic tasks. If the start time is

computed using a non-real-time clock, or is based on the

completion time of the last iteration, jitter in the start time of

the task operations may arise, resulting in an improper time

behaviour.

4.2 Possible mitigations

• Improve analysis to detect potential overruns in cyclic

systems.

• Program using a more flexible, priority-based, schedul-

ing approach.

• Base next wake-up on previous programmed wake-up

time.

• Only use real time monotonic time clocks to schedule

events.

5 Conclusions

The group concluded that the above vulnerabilities should be

confirmed to WG23, with the comments on mitigations that

have been made in the meeting.

References

[1] International Standards Organization (2013), ISO/IEC.

TR 24772:2013 — Information Technology — Program-

ming Languages — Guidance to avoiding vulnerabilities

in programming languages through language selection

and use.

[2] M. Masmano, I. Ripoll, A. Crespo, and J. Metge (2009),

Xtratum: a hypervisor for safety critical embedded sys-

tems, In 11th Real-Time Linux Workshop, pages 263–

272.

[3] S. Michell (2016), Time issues in programs vulnera-

bilities for programming languages and systems, In

18th International Real-Time Ada Workshop, IRTAW-18,

Benicàssim, Spain.

Ada User Jour na l Vo lume 37, Number 3, September 16

180

Volume 37, Number 3, September 2016 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest

c/o KU Leuven

Dept. of Computer Science

Celestijnenlaan 200-A

B-3001 Leuven (Heverlee)

Belgium

Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard

Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller

Karlsruher Institut für Technologie (KIT)

Institut für Angewandte Informatik (IAI)

Campus Nord, Gebäude 445, Raum 243

Postfach 3640

76021 Karlsruhe

Germany

Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen

115, avenue du Maine

75014 Paris

France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez

DISCA-ETSINF-Edificio 1G

Universitat Politècnica de València

Camino de Vera s/n

E46022 Valencia

Spain

Phone: +34-963-877-007, Ext. 75741

Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden

attn. Rei Stråhle

Rimbogatan 18

SE-753 24 Uppsala

Sweden

Phone: +46 73 253 7998

Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland

c/o Ahlan Marriott

Altweg 5

8450 Andelfingen

Switzerland

Phone: +41 52 624 2939

e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

