

Ada User Journal Volume 37, Number 1, March 2016

ADA
USER
JOURNAL

Volume 37

Number 1

March 2016

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 22

Forthcoming Events 28

Press Release

“Ada 2012 Language Standard Corrigendum Approved by ISO” 31

Special Contribution

 J. G. P. Barnes

“Update for Ada 2012” 35

Overview of the 17
th

 International Real-Time Ada Workshop (IRTAW 2015) 51

 A. Burns and J. A. de la Puente

“Session Summary: Conformance Issues” 52

 L. M. Pinho, S. Michell and B. Moore

“Session Summary: Fine-grained Parallelism” 53

 A. Wellings and J. Real

“Session Summary: Language Abstractions” 57

Article (reprint)

 P. Burgio, C. Alvarez, E. Ayguadé, A. Filgueras, D. Jiménez-González, X. Martorell,

N. Navarro and R. Giorgi

“Simulating Next-Generation Cyber-Physical Computing Platforms" 59

Ada-Europe Associate Members (National Ada Organizations) 64

Ada-Europe Sponsors Inside Back Cover

2

Volume 37, Number 1, March 2016 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for

the international Ada Community — is

published by Ada-Europe. It appears

four times a year, on the last days of

March, June, September and

December. Copy date is the last day of

the month of publication.

Aims

Ada User Journal aims to inform

readers of developments in the Ada

programming language and its use,

general Ada-related software engine-

ering issues and Ada-related activities.

The language of the journal is English.

Although the title of the Journal refers

to the Ada language, related topics,

such as reliable software technologies,

are welcome. More information on the

scope of the Journal is available on its

website at www.ada-europe.org/auj.

The Journal publishes the following

types of material:

 Refereed original articles on

technical matters concerning Ada

and related topics.

 Invited papers on Ada and the Ada

standardization process.

 Proceedings of workshops and

panels on topics relevant to the

Journal.

 Reprints of articles published

elsewhere that deserve a wider

audience.

 News and miscellany of interest to

the Ada community.

 Commentaries on matters relating

to Ada and software engineering.

 Announcements and reports of

conferences and workshops.

 Announcements regarding

standards concerning Ada.

 Reviews of publications in the

field of software engineering.

Further details on our approach to

these are given below. More complete

information is available in the website

at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in

accordance with the submission

guidelines (below).

All original technical contributions are

submitted to refereeing by at least two

people. Names of referees will be kept

confidential, but their comments will

be relayed to the authors at the

discretion of the Editor.

The first named author will receive a

complimentary copy of the issue of the

Journal in which their paper appears.

By submitting a manuscript, authors

grant Ada-Europe an unlimited license

to publish (and, if appropriate,

republish) it, if and when the article is

accepted for publication. We do not

require that authors assign copyright to

the Journal.

Unless the authors state explicitly

otherwise, submission of an article is

taken to imply that it represents

original, unpublished work, not under

consideration for publication else-

where.

Proceedings and Special Issues

The Ada User Journal is open to

consider the publication of proceedings

of workshops or panels related to the

Journal's aims and scope, as well as

Special Issues on relevant topics.

Interested proponents are invited to

contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in

which people find out what is going on

in the Ada community. Our readers

need not surf the web or news groups

to find out what is going on in the Ada

world and in the neighbouring and/or

competing communities. We will

reprint or report on items that may be

of interest to them.

Reprinted Articles

While original material is our first

priority, we are willing to reprint (with

the permission of the copyright holder)

material previously submitted

elsewhere if it is appropriate to give it

a wider audience. This includes papers

published in North America that are

not easily available in Europe.

We have a reciprocal approach in

granting permission for other

publications to reprint papers originally

published in Ada User Journal.

Commentaries

We publish commentaries on Ada and

software engineering topics. These

may represent the views either of

individuals or of organisations. Such

articles can be of any length –

inclusion is at the discretion of the

Editor.

Opinions expressed within the Ada

User Journal do not necessarily

represent the views of the Editor, Ada-

Europe or its directors.

Announcements and Reports

We are happy to publicise and report

on events that may be of interest to our

readers.

Reviews

Inclusion of any review in the Journal

is at the discretion of the Editor. A

reviewer will be selected by the Editor

to review any book or other publication

sent to us. We are also prepared to

print reviews submitted from

elsewhere at the discretion of the

Editor.

Submission Guidelines

All material for publication should be

sent electronically. Authors are invited

to contact the Editor-in-Chief by

electronic mail to determine the best

format for submission. The language of

the journal is English.

Our refereeing process aims to be

rapid. Currently, accepted papers

submitted electronically are typically

published 3-6 months after submission.

Items of topical interest will normally

appear in the next edition. There is no

limitation on the length of papers,

though a paper longer than 10,000

words would be regarded as

exceptional.

 3

Ada User Journal Volume 37, Number 1, March 2016

Editorial

In this first issue of 2016, I would like to point out to the reader the recent update to the Ada 2012 language standard. The

update (Technical Corrigendum 1 to ISO/IEC 8652:2012), has been approved and officially published by ISO, and includes a

variety of clarifications and minor corrections coming from implementation and user experience. Therefore, the first

contribution of this issue of the Ada User Journal is an article by John Barnes, explaining the rationale for the changes.

Afterwards, and approximately at the same time that the 18th International Real-Time Ada Workshop (IRTAW) meets in

Benicàssim, Spain (11-14 April 2016), the journal publishes the overview of the previous workshop, which took place last

year in Bennington, Vermont, USA (hosted by Robert Dewar in one of his recurrent contributions to the Ada community).

IRTAW is a forum which explores approaches and solutions for Ada’s support to concurrent and real-time systems, having

contributed to Ada evolutions in areas such as tasking features, real-time and high-integrity annexes, and the Ravenscar

Profile. We expect to be able soon to publish also the results of the 2016 workshop, which for sure will give indications on

the future of the language in these areas.

In this issue of the Journal, the reader will also find the usual News, Calendar and Forthcoming Events sections. The latter in

particular with the advance information of the 21st International Conference on Reliable Software Technologies – Ada-

Europe 2016, next June in Pisa, Italy. The conference will provide a strong and diverse program, with three keynote talks, 12

refereed scientific papers and 8 industrial presentations, a rich set of tutorials, and the special Ada & Parallelism session. The

program of the conference is complemented with presentations from projects and students from the ITS EASY Post Graduate

School, co-located with the conference, and the 3rd workshop on Challenges and new Approaches for Dependable and

Cyber-Physical Systems Engineering (De-CPS 2016). Reasons more than enough for Ada and reliable software practitioners

to attend this year’s Ada-Europe conference!

Finally, the reader will find a reprint of an article which was published in the last December issue of the Ada User Journal.

Unfortunately, a printer problem caused some of the copies of that issue of the Journal to have a blank page instead of what

should be page 260. We only detected this problem after the copies being mailed, for which we apologize. To mitigate the

inconvenience, we are making the issue available already in the online archive, as well as reprinting the article in this issue.

We are also taking the necessary steps with the printer to guarantee that the problem does not happen again.

 Luís Miguel Pinho

Porto

March 2016

 Email: AUJ_Editor@Ada-Europe.org

4

Volume 37, Number 1, March 2016 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organisations 4
Ada-related Events 5
Ada Semantic Interface

Specification 8
Ada-related Resources 8
Ada-related Tools 10
Ada-related Products 17
Ada and Operating Systems 17
Ada Inside 19
Ada in Context 19

Ada-related
Organisations

Ada 2012 Language
Standard Corrigendum
Approved by ISO

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Tue, 23 Feb 2016 07:33:36 -0000
Subject: Ada 2012 Language Standard

Corrigendum Approved by ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FOR IMMEDIATE RELEASE

Ada 2012 Language Standard
Corrigendum Approved by ISO

Milestone marks smooth continuation of
Ada language standardization process

[See the full announcement in the Press
Release section of this issue. —sparre]

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-Europe 2016 in Pisa

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Mon, 14 Dec 2015 01:27:25 -0000
Subject: 2nd CfP Ada-Europe 2016

Conference, Pisa, Italy
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[The Call for Participation of Ada-Europe
2016 is included in the Forthcoming
Events Section —sparre]

FOSDEM 2016

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Wed, 20 Jan 2016 22:09:06 -0000
Subject: FOSDEM 2016 - Ada Developer

Room - Sat 30 Jan 2016 - Brussels
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Ada-Belgium is pleased to announce the
program for its

Ada Developer Room at FOSDEM 2016

on Saturday 30 January 2016

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.124

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organised in cooperation with
Ada-Europe

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/16/

160130-fosdem.html

http://fosdem.org/2016/
schedule/track/ada

FOSDEM, the Free and Open source
Software Developers' European Meeting,
is a non-commercial two-day weekend
event organised early each year in
Brussels, Belgium. It is highly developer-
oriented and brings together 5000+
participants from all over the world. The
goal is to provide open source developers
and communities a place to meet with
other developers and projects, to be
informed about the latest developments in
the open source world, to attend
interesting talks and presentations on
various topics by open source project
leaders and committers, and to promote
the development and the benefits of open
source solutions. The 2016 edition takes
place on Saturday 30 and Sunday 31
January. It is free to attend and no
registration is necessary.

In this edition, Ada-Belgium organises
once more a series of presentations related
to Ada and Free or Open Software in a
s.c. Developer Room. The "Ada
DevRoom" at FOSDEM 2016 is held on
the first day of the event, Saturday 30
January 2016.

Ada is a general-purpose programming
language originally designed for safety-
and mission-critical software engineering.
It is used extensively in air traffic control,
rail transportation, aerospace, nuclear,
financial services, medical devices, etc. It
is also perfectly suited for open source
development. The latest Ada standard was
published by ISO in December 2012. As
with the prior Ada 1995 and Ada 2005
standards, the first full implementation of
the new Ada 2012 standard was made
available in the GNU Compiler Collection
(GNAT).

The Ada DevRoom aims to present the
capabilities offered by the Ada language
(such as object-oriented, multicore, or
embedded programming) as well as some
of the many exciting tools and projects
using Ada.

Ada Developer Room Presentations
(AW1.124, 59 seats)

The presentations in the Ada DevRoom
start after the opening FOSDEM keynote.
The program runs from 10:30 to 19:00,
and consists of 7 hours with 11
talks/demos by 9 presenters from 5
different countries, plus 3 half-hour
breaks with informal discussions.

10:30-11:00 - Arrival & Informal
Discussions

Feel free to arrive early, to start the day
with some informal discussions while the
set-up of the DevRoom is finished.

11:00-11:05 - Welcome
 by Dirk Craeynest - Ada-Belgium

Welcome to the Ada Developer Room at
FOSDEM 2016, which is organised by
Ada-Belgium in cooperation with Ada-
Europe. Ada-Belgium and Ada-Europe
are non-profit organisations set up to
promote the use of the Ada programming
language and related technology, and to
disseminate knowledge and experience
into academia, research and industry in
Belgium and Europe, resp. Ada-Europe
has member-organisations, such as Ada-
Belgium, in various countries. More
information on this DevRoom is available
on the Ada-Belgium web-site (see URL
above).

11:05-11:55 - An Intro to Ada for
Beginning and Experienced Programmers
 by Jean-Pierre Rosen - Adalog

An overview of the main features of the
Ada language, with special emphasis on
those features that make it especially
attractive for free software development.
Ada is a feature-rich language, but what

Ada Semantic Inter face Specif icat ion 5

Ada User Journal Volume 37, Number 1, March 2016

really makes Ada stand-out is that the
features are nicely integrated towards
serving the goals of software engineering.
If you prefer to spend your time on
designing elegant solutions rather than on
low-level debugging, if you think that
software should not fail, if you like to
build programs from readily available
components that you can trust, you should
really consider Ada!

12:00-12:50 - Make with Ada - Small
Projects to Have Fun with Ada!
 by Fabien Chouteau - AdaCore

In this talk I will present the first 4
projects of the "Make with Ada" blog post
series: a solenoid engine, an Apollo lunar
lander simulator, a software synthesizer
framework, and a formally proven
smartwatch app. I will also explain the
motivation behind this series, where we
want to go, and the feedback we've got
from it.

13:00-13:25 - Adopting an Ada Program -
the Experience of Whitaker's Words
 by Martin Keegan - Unipart &
 Open Book Publishers

I present my experiences of adopting the
maintenance of Whitaker's Words, a Latin
dictionary written in Ada by Col William
Whitaker, who was deeply involved in the
creation of Ada itself. This will be the
perspective of someone from outside the
Ada community who found he really liked
the language, and the challenges I faced
learning Ada from online materials,
converting the Words source code to more
idiomatic (post Ada-83) forms, adopting
the tooling, accessing community support,
finding collaborators, making Ada play
nicely with the Web, and so on.
Whitaker's Words may be one of the most
widely-used pieces of Ada software, and a
quick Twitter search suggests it plays a
key role in helping students cheat on their
Latin translation homework. As a linguist
and hacker, what really interests me is the
use of Ada's type system to encode Latin's
grammar.

13:30-13:55 - Creating a 3D Game
Engine in Windows - Lessons Learned
from Doom 3 BFG
 by Justin Squirek

 Ada Doom 3 is an open source project
created as both an experiment and as a
serious attempt at making a Windows
game engine capable of fully rendering
Doom 3 assets. Engineering a complete
OS media layer and 3D engine that
facilitates multiple platforms presents
many unique challenges. These
challenges and solutions will be
discussed. I will also cover how Ada
aided in the process of reverse
engineering the half million line Doom 3
BFG (Id Tech 4 BFG) code base and how
its typing system helped steer the
development of Ada Doom 3 to its current
state.

14:00-14:30 - Informal Discussions

A half-hour slot has been reserved for
much needed interaction and informal
discussion among Ada DevRoom
participants and anyone potentially
interested in Ada.

14:30-14:55 - Heterogeneous Parallel
Computing with Ada Tasking
 by Jan Verschelde - University of
 Illinois at Chicago

Consider the organisation of parallel
heterogeneous computations. The
sequential version runs in two stages: the
first stage produces jobs that can be
computed independently from each other
in the second stage. The producer in the
first stage is executed by one task, while
the other tasks compute the jobs from the
second stage, as the jobs are managed by
a queue, implemented by a thread safe
package. This design will be illustrated
with an application that involves the
refactoring of code in the free and open
source package PHCpack, a package to
solve polynomial systems by polynomial
homotopy continuation.

15:00-15:50 - Micro- and Macro-
Optimising a Distributed System
 by Philippe Waroquiers - Eurocontrol

Or how to upload a 30000 flights
simulation in 15 seconds. The Eurocontrol
Flow Management System provides a
simulation functionality to evaluate air
traffic flow management measures (such
as delay assignments or reroutings) before
applying them operationally. This implies
to upload a day worth of traffic in a
simulation environment. This talk will
describe various techniques and tools
used to optimise the simulation startup
time, and will discuss the gains reached
via micro-optimisation (among others
using Valgrind) or via macro-optimisation
(such as using parallelism features of
Ada).

16:00-16:25 - Controlling a Train Model
w. GNAT GPL for Raspberry Pi 2
 by Tristan Gingold - AdaCore

The GNAT GPL 2015 release by
AdaCore includes a cross-compiler for a
new platform: Raspberry Pi 2. We have
used this platform to drive and control a
real model train in Ada. SPARK was used
to prove absence of collisions. I will
present the hardware part as well as the
software part, and show a video of the
model train in action.

16:30-16:55 - CrazyFlie Drone Software
in SPARK Ada
 by Tristan Gingold - AdaCore

An AdaCore intern has rewritten the
CrazyFlie drone software, originally in C,
into SPARK. In addition to fixing some
bugs, this allowed to prove absence of
runtime errors. I will present the various
techniques used to achieve that result, and
plan to do a live demo of free fall
detection.

17:00-17:50 - Memory Management with
Ada 2012
 by Jean-Pierre Rosen - Adalog

Dynamic memory management has
always been a source of trouble, and
garbage collection is just a way to
overcome the lack of proper memory
management in many languages. This
presentation shows how Ada addresses
this issue in several original ways: first by
requiring much less dynamic memory
than other languages, and then by
providing powerful tools for controlling
allocation and deallocation when it is
necessary.

18:00-18:25 - A Command-Line Driver
Generator
 by Jacob Sparre Andersen - JSA
 Research & Innovation

A tool, which can take an Ada package
specification, and generate a command-
line driver for calling the procedures
declared in the package. Which of the
procedures is called is controlled by the
names of the arguments passed to the
driver program. The presentation will
cover: how to use the tool; and some
details of how the tool works - using the
Ada Semantic Interface Standard (ASIS).

18:30-19:00 - Informal Discussions &
Closing

Informal discussion on ideas and
proposals for future events.

More information on Ada DevRoom

Speakers bios, pointers to relevant
information, links to the FOSDEM site,
etc., are available on the Ada-Belgium
site at <http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/16/160130-
fosdem.html>

We invite you to attend some or all of the
presentations: they will be given in
English. Everybody interested can attend
FOSDEM 2016; no registration is
necessary.

We hope to see many of you there!

Ada Semantic Interface
Specification (ASIS)

Getting Started with ASIS

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 15 Dec 2015 08:42:07 +0100
Subject: Re: ASIS "housekeeping"
Newsgroups: comp.lang.ada

> I want to work with ASIS and can't
figure how/where to start.

Ptree is a small utility that comes with
AdaControl and helps you understand the
ASIS view of an Ada program. Quite
useful when you are starting with ASIS,
and studying the source of Ptree is a good

6 Ada-related Tools

Volume 37, Number 1, March 2016 Ada User Journal

way to start, it is a quite simple use of
ASIS.

If you want more sophisticated examples,
you can study the code of AdaControl
itself, but be aware that it is one of the
most demanding applications for ASIS...
Some rules are fairly simple, other need a
deep understanding of the Ada language
itself.

[...]

Ada-related Resources

Mascot Sightings

From: David Botton <david@botton.com>
Date: Tue, 9 Feb 2016 16:31:38 -0800
Subject: New Ada Mascot Sighting Added
Newsgroups: comp.lang.ada

I've been busy but the Ada Mascot keeps
flying :) http://joinadanow.com/#mascot

Tons of people are showing off their
mugs (no profits on products)

Latest sighting added from the Ada PDF
Writer Demo. Contact me if your use of
the Ada Mascot is not listed.

 http://joinadanow.com/#sightings

[See also “Join Ada Now”, AUJ 36-3, p.
121. —sparre]

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon Feb 29 2016
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn[1]: 2_374 members

- Reddit[2]: 818 readers

- Google+[3]: 619 members

- StackOverflow[4]: 327 followers

- Twitter[5]: 5 tweeters

[1] https://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] https://twitter.com/search?f=realtime
&q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
36-4, p. 201. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon Feb 29 2016
Subject: Repositories of Open Source

software

GitHub: 1_192 repositories [1]

 301 developers [1]

 791 issues [1]

Rosetta Code: 625 examples [2]

 30 developers [3]

 0 issues [4]

Sourceforge: 246 repositories [5]

BlackDuck OpenHUB: 214 projects [6]

Bitbucket: 74 repositories [7]

OpenDO Forge: 24 projects [8]

 481 developers [8]

Codelabs: 14 repositories [9]

AdaForge: 8 repositories [10]

Assembla: 5 projects [11]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] http://rosettacode.org/wiki/Category:
Ada_examples_needing_attention

[5] http://sourceforge.net/directory/
language%3Aada/

[6] https://www.openhub.net/tags?
names=ada

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://forge.open-do.org/

[9] http://git.codelabs.ch/

[10] http://forge.ada-ru.org/adaforge

[11] https://www.assembla.com/tag/ada

[See also “Repositories of Open Source
Software”, AUJ 36-4, p. 201. —sparre]

Ada-related Tools

GNAT Bareboard Drivers

From: Pat Rogers <rogers@adacore.com>
Date: Fri Oct 9 2015
URL: https://github.com/AdaCore/

bareboard

1. Introduction

This repository contains Ada source code
and complete sample GNAT projects for
selected bare-board platforms supported
by GNAT. Initially the repository
contains software for ARM platforms
from a specific vendor, but we intend this
to be a location for both AdaCore and the
community in general to contribute
support for additional processors,
platforms, and vendors.

2. License

All files are provided under a non-
restrictive Berkeley Software Distribution
(BSD) license. As such, and within the
conditions required by the license, the

files are available both for proprietary
("commercial") and non-proprietary use.

For details, see the "License" section in
the release notes accompanying the HAL
drivers provided by ST Microelectronics.

3. Requirements

The software is written in Ada 2012 and
uses, for example, preconditions,
postconditions, and the high-level iterator
form of for-loops.

In addition, a GNAT implementation-
defined pragma is used extensively. This
pragma makes it possible to avoid explicit
temporary copies when assigning
components of types representing
hardware registers requiring full word or
full half-word accesses. The pragma is
named Volatile_Full_Access. Those
persons wishing to submit additions to the
library should see the GNAT Reference
Manual for details.

Therefore, building with the sources
requires a compiler supporting both Ada
2012 and the GNAT-defined pragma
Volatile_Full_Access. The "GNAT GPL
2015" compiler for ARM (ELF) is one
such compiler. A recent GNAT Pro
compiler for that target will also suffice.

4. Content

Initial provision is for the hardware in the
STM32F4 family of 32-bit MCUs, as
defined in the "RM0090 Reference
Manual" (Doc ID 018909 Rev 6, Feb
2014) by STMicroelectronics and made
available on the "STM32F4 Discovery"
and the "STM32F429 Discovery" kit
boards.

Specifically, there are low-level device
drivers, higher-level component drivers,
small demonstration programs for the
drivers, and larger example applications.
"Component" drivers are those that are
implemented using the lower-level device
drivers (e.g., SPI or GPIO), such as the
gyroscope and accelerometer on the
Discovery boards.

The small driver demonstration programs
and the larger applications programs are
provided as full projects, including GNAT
project files, and are ready to build either
within GPS or on the command-line.

Not all devices defined by the Reference
Manual are supported, and not all those
supported are complete. We encourage
contributions of corrections,
enhancements, and new drivers.

GnatDroid

From: John Marino
<dragonlace.cla@marino.st>

Date: Mon, 30 Nov 2015 03:28:04 -0800
Subject: ANN: GnatDroid for Android-x86
Newsgroups: comp.lang.ada

The GNAT-to-Android/ARM cross-
compiler known as GnatDroid-ARMv7
has been available on FreeBSD and

Ada-related Tools 7

Ada User Journal Volume 37, Number 1, March 2016

DragonFly since even before it was
officially supported in GCC.

I've produced a second cross-compiler,
GnatDroid-x86 which targets the 32-bit
Android/x86 platform. The nice thing
about Android/x86 is that it can be
installed on a virtual machine like
VirtualBox, so it can be easier to test
programs without actual hardware that
GnatDroid-ARMv7.

GnatDroid is only available on FreeBSD
and DragonFly BSD, although somebody
could replicate the effort for other
platforms if so desired:

http://www.freshports.org/lang/
gnatdroid-x86

NBAda

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Mon, 21 Dec 2015 11:13:34 -0800
Subject: NBAda (A library of lock-free data

structures and algorithms for Ada) has
never been mentioned here.

Newsgroups: comp.lang.ada

For info and reference:

http://www.gidenstam.org/Ada/
Non-Blocking/

From: Anders Gidenstam
<anders.gidenstam@gmail.com>

Date: Mon, 21 Dec 2015 23:54:30 -0800
Subject: Re: NBAda (A library of lock-free

data structures and algorithms for Ada)
has never been mentioned here.

Newsgroups: comp.lang.ada

> [...]

IIRC, it has been mentioned here before,
but that was probably 10+ years ago. I
used to be a regular reader (but maybe not
a so frequent poster) of this news group
back in the last years of the 1990s and the
early 2000s.

I will consider adding the GM GPL
exception, if there is interest for that. [...]

Also note that this is long stagnant code
from the days of Ada 95, and it is also far
down my TODO list for the rather small
amount of spare time I have. Though,
never say never..

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Mon, 21 Dec 2015 11:55:11 -0800
Subject: Re: NBAda (A library of lock-free

data structures and algorithms for Ada)
has never been mentioned here.

Newsgroups: comp.lang.ada

> [...] where are the sources?

http://www.gidenstam.org/Ada/
Non-Blocking/src/
NBAda-0.1.0-pre0.tar.gz

or

https://github.com/andgi/NBAda

> P.S. It is not GM GPL, only GPL, right?

COPYING file mentions GNU
GENERAL PUBLIC LICENSE Version 2

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 21 Dec 2015 21:23:52 +0100
Subject: Re: NBAda (A library of lock-free

data structures and algorithms for Ada)
has never been mentioned here.

Newsgroups: comp.lang.ada

[...]

It looks that the implementation uses
machine code insertions. Starting with gcc
4.7 (or something) that should not be
necessary any more. Assuming the
compiler is GNAT, of course.

[...]

PDF_Out

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 12 Jan 2016 09:59:30 -0800
Subject: Ann: Ada PDF Writer v.001
Newsgroups: comp.lang.ada

I am pleased to announce the first release
of Ada PDF Writer. With the PDF_Out
package you can write easily PDF files
with text (there are Text_IO-like
commands), vector graphics, images
(JPEG). Headers and footers can be
programmed. You can produce
automatically reports, invoices, tickets,
charts, maps etc. from your Ada program.
You can also use PDF_Out as a simple
device-independent medium for plotting a
graph, without fighting with windows,
buttons, GUI toolkits, etc.

The Ada PDF Writer library code is
unconditionally portable (independent of
compiler and of target machine's OS or
CPU). No external toolkit or resource is
needed.

Ada PDF Writer is free and open-source.

URL: http://apdf.sf.net/

Gnoga

From: Pascal Pignard <p.p11@orange.fr>
Date: Sun, 17 Jan 2016 11:10:45 +0100
Subject: Gnoga internationalization support

with Zanyblue.
Newsgroups: comp.lang.ada

Gnoga now supports internationalization
with the help of Zanyblue.

 http://sourceforge.net/projects/zanyblue/

Also included JLokalize GUI tool
managing language properties.

 http://jlokalize.sourceforge.net

Both in deps directory.

Connect Four demo has been localized.
Update Gnoga with GIT and do 'make
connect_four'.

For now, in addition to original English,
only French language is present. The
language displayed is set based on
browser localization, so French is

displayed with a French running browser
;-)

Feel free to propose other localizations.

[See also “Gnoga”, AUJ 36-2, p. 63.
—sparre]

Traceback Wrapper

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 19 Jan 2016 08:52:02 -0800
Subject: Re: Re-write a file in Ada
Newsgroups: comp.lang.ada

> [...]

There is a way that doesn't need calling
post-mortem addr2line: wrap your main
procedure with the TB_Wrap generic
procedure below, by instantiating the
wrapper like this:

 with TB_Wrap, To_BMP;

 pragma Elaborate_All(TB_Wrap);

 procedure TB_To_BMP is

 new TB_Wrap(To_BMP);

 -- File: TB_Wrap.ads

 -- Description: Trace-back wrapper for

 -- GNAT 3.13p+ (spec.)

--

generic

 with procedure My_Main_Procedure;

procedure TB_Wrap;

--

 -- File: TB_Wrap.adb

 -- Description: Trace-back wrapper for

 -- GNAT 3.13p+ (body)

with GNAT.Traceback.Symbolic;

with Ada.Exceptions, Ada.Text_IO;

procedure TB_Wrap is

 -- pragma Compiler_Options ("-g");

 -- pragma Binder_Options ("-E");

use Ada.Exceptions, Ada.Text_IO;

use GNAT.Traceback.Symbolic;

begin

 My_Main_Procedure;

exception

 when E : others =>

 New_Line (Standard_Error);

 Put_Line (Standard_Error,"-----------------

 [Unhandled exception]---------------");

 Put_Line (Standard_Error, " >

 Name of exception: " &

 Ada.Exceptions.Exception_Name

 (E));

 Put_Line (Standard_Error, " >

 Message for exception . . .: " &

 Ada.Exceptions.

 Exception_Message (E));

 Put_Line (Standard_Error, " >

 Trace-back of call stack: ");

 Put_Line (Standard_Error,

 GNAT.Traceback.Symbolic.

 Symbolic_Traceback (E));

 end TB_Wrap;

8 Ada-related Tools

Volume 37, Number 1, March 2016 Ada User Journal

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 23 Jan 2016 18:11:11 -0600
Subject: 5.1.9 available in Gnu ELPA
Newsgroups: gmane.comp.lang.ada.emacs

ada-mode 5.1.9 is now available in Gnu
ELPA

[See also “Emacs Ada Mode”, AUJ 36-2,
p. 64. —sparre]

Generic Library for
Algorithms and Containers

From: Emmanuel Briot
<briot@adacore.com>

Date: Tue Jan 26 2016
URL: https://github.com/AdaCore/ada-

traits-containers

Generic Ada Library for Algorithms and
Containers

Goals

This library is another containers library
for Ada. Although it provides containers
that do not exist in the standard Ada
runtime (graphs for instance), it is more
interesting for the flexibility it proposes:

- Bounded/Unbounded containers and
even more variants suitable for use with
the SPARK language.

- Finite/Indefinite elements, and even
more specialized variants optimized for
specific types

- Pre and Post conditions, compatible with
SPARK, so that some variants of the
containers can be proven.

- Highly efficient; the user has full control
over memory allocations, checks, locks,
...

All this flexibility is done via the
intensive use of generic packages,
themselves used to instantiate other
generic packages.

Check the documentation for more details
on the design of the API, and its current
usage.

Compiling

The library itself is pure Ada code, and
only requires a working Ada compiler to
be available in your environment.

This library comes with a test suite which
measures the performance of the various
variants of the containers, and compares
them with C++ equivalent (or near
equivalents). This test suite generates a
nice interactive HTML file.

Compiling and running the test suite
requires that you also have a C++
compiler in your environment. In
addition, you must install the Boost Graph
Library (http://www.boost.org).

You must also download and install the
GNAT Components Collection.

Once this is done, modify the shared.gpr
file. Set the variable ```Boost_Include''' to
point to the install prefix for Boost:

 Boost_Include := "/usr/include";

Finally, compile and run the test with

 make

and finally open the file index.html in a
browser to view the performance
comparison.

Package Registry Discussion

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Thu, 28 Jan 2016 17:13:19 -0800
Subject: Ada package registry?
Newsgroups: comp.lang.ada

Anyone thought about doing something
similar to DUB, the D package registry
(http://code.dlang.org/) ... for Ada?

(I know there are other projects for other
languages but I also know for a fact that
the D community did an exhaustive
overview about these techs before
committing to theirs)

In my opinion this is a silver bullet for the
adoption/recruiting of new users to the
language. It is also a silver bullet to speed
up lib and application
complexity/diversity. Just look at the
amount/diversity of packages available at
code.dlang.org. All this happened in about
two years.

1. It centralises libs/applications existence
knowledge. ('Ah there is a generic
Markov chain library I was not aware
of... why not undertake my next model-
based multivariable control system using
Markov chains in Ada. Cool.')

2. It centralises libs/applications efforts.
(Huge impact when it comes to
collaboration and reducing 'duplicate
half-dead efforts' concerning specific
tech: 'Ah there is a generic Markov
chain library I was not aware of... why
not help this person improve the lib as I
am a Markov Chain specialist. Cool.')

3. You get improved code for free and
automatically. Dependencies updates are
retrieved on command.

4. It eases complex application build
setup and maintenance.

For sure, at the moment, Ada initiatives
are not gathered properly. For example,
were you aware of the existence of a lean
Ada library for generating UUIDs? No
you did not and maybe this is why you
did your own 'kind-ish' version at your job
or on your free time to fulfil the
requirements of another project.

An Ada package registry would have
informed you of its existence. From there
you could have decided to use this lib,
improve this lib, propose a new one
and/or decide to start that new application
that was waiting for that specialised work

of implementing UUIDs to be lifted for
you. My two cents.

Comments? Thoughts?

How would you do it... or not/why not?

P.S. Before we get there... the fact that
many Wikipedia articles are of poor
quality does not affect its tremendous
usefulness.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 29 Jan 2016 16:27:39 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> For sure, at the moment, Ada initiatives
are not gathered properly.

Definitely false. I've been maintaining
lists of sources of Ada packages and the
Ada-wide search engine ever since we
took over maintenance of AdaIC. For
specific requirements, definitely try the
Ada-wide search engine.
(http://www.adaic.org/ada-resources/ada-
on-the-web/). If there's an Ada-related site
that's not included in that, it's either
because the owner asked us not to include
it, or we don't know about it at all. (In the
latter case, send a message to
news@adaic.com and it will get included
in a future listing.)

(I don't recommend using the raw listing
of libraries for searching for particular
libraries, simply because that doesn't look
inside of the various repositories [those
are listed as single listing], the search
engine does.)

> For example, were you aware of the
existence of a lean Ada library for
generating UUIDs? [...]

When I stuck "UUID" into the Ada-wide
search engine, I got 6 (!) hits. Not sure
that any of them are relevant, but if not
that's because there is no such library
that's ever been announced here or sent to
AdaIC. In which case, it doesn't exist
(practically). [The primary reason I read
this newsgroup daily is to pick up
announcements for AdaIC.]

P.S. I'm skeptical that any such repository
would be kept very current. After the
organizers initially populate it, I think it's
not very likely that much updating would
get done. After all, all library authors
have to do to get on the AdaIC is send us
a link -- I do all of the rest of the work.
Yet hardly anyone does that. To have
some sort of automated repository would
require authors to do more: mirror their
work somewhere they're not used to, or
write a complex description for the
repository, or more. (What are the odds
that such a repository could figure out
how to pull files from the version control
on RRSoftware.Com and Ada-Auth.org,
for instance? It could surely be done, but
it would require some custom coding and
I can't see how that would happen. In the
absence of that, one is clearly going to
have a subset of offerings...)

Ada-related Tools 9

Ada User Journal Volume 37, Number 1, March 2016

From: Olivier Henley
<olivier.henley@gmail.com>

Date: Sun, 31 Jan 2016 11:10:09 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> Definitely false. I've been maintaining
lists of sources of Ada packages and the
Ada-wide search engine ever since we
took over maintenance of AdaIC.

First, thank you for the effort and
reference. I was not aware of the
relevance of AdaIC. But...

1. The fact that a new user is not
"naturally" directed to AdaIC is a good
sign the community is not properly
organised... in comparison with other
flourishing communities.

2. I do not mean to break the party but
some links are dead or leads to dead
ends e.g. code removed from page. Not
to mention that some referenced website
"are yelling" 1997 abandoned
code/project. I know we should not and
cannot judge code by its packaging but
we also know how presentation is
important. Unity3D may be crappy code
inside, I dont know, but look how they
present it to you : https://unity3d.com/.
Millions of people are jumping on their
bandwagon. So redirecting to too old
and weird websites, sharing their code,
is not a good idea when your goal is to
promote the idea that Ada is "actually
relevant".

> When I stuck "UUID" into the Ada-
wide search engine, I got 6 (!) hits. Not
sure that any of them are relevant ...

Well that is the main goal, to find relevant
packages. I did the exercise too and
AdaID did not come up so we are not in
business ... yet.
https://github.com/anthony-arnold/AdaID

> P.S. I'm skeptical that any such
repository would be kept very current.
[...]

Yes it would. I think you underestimate
what is meant by package repository
and/or package manager, at least like
DUB:

1. There is a website, e.g code.dlang.org,
wiki style with limited editing power;
enough to add your package infos, e.g
JSON file with all infos, authors, name,
dependencies etc.

2. Every package code base has to reside
on some "handled" version control
system ecosystem like github, bitbucket
etc.

3. On your machine you need an
executable e.g dub.exe

Using this executable, dub.exe, you can
fetch code dependencies, generate
solutions and build libs and application
with simple commands. Other commands
let you control all kind of stuff like the
particular code version of one of your lib
dependencies.

a. Every time a lib/app owner commit
new code to its repo (github, bitbucket
etc) it is "automatically" maintained at
code.dlang.org because this server only
needs to know where to check for a
particular package.

b. Dub.exe, on your machine, talks to this
server and is capable of issuing git
commands. Dub asks for some package,
server gives infos and from there
dub.exe drives git to fetch code, to a
particular version, and then generate
solutions and build if needs be.

c. Once in that loop, you can share your
package that reference package that
reference package that refer...

> To have some sort of automated
repository would require authors to do
more: mirror their work somewhere
they're not used to,

To use github/bitbucket/etc is mandatory.
I would not hire a guy that does not know
or is not interested to learn git/mercurial
and use github/bitbucket/etc. Not being
aware of these as a programmer, in 2016,
only demonstrate serious lack of curiosity
and competencies deprecation.

> What are the odds that such a repository
could figure out how to pull files from
the version control on
RRSoftware.Com and Ada-Auth.org,
for instance?

It does not matter if not ALL sources are
listed. It's a tool for the future, a
community policy: new packages should
be setup this way so we can build more
effectively, together.

On Sunday, January 31, 2016 at 10:56:07
AM UTC-5, Mart van de Wege wrote:

> [...] In both cases a hard build
dependency on a working gcc
environment exists; it is the end-user's
responsibility to make sure it does exist
and that the proper header files for the
dependencies are installed.

Yeah, its common practice to mention
external dependencies in the README
and/or by deduction. I would go even
further, like special entries in the JSON
that explicitly mentions the need for alien
stuff. With DUB for example, you find a
generic line like -> "libs": ["sqlite3"]
inside the json config file... but we
say/label "lib" for any piece of code that
is not meant to be use as an end-user
application, be it coded in the native
language or another one. Maybe -> "alien-
libs": ["sqlite3"] would be clear enough,
at least to consult the doc for the meaning
of alien-libs. :)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 1 Feb 2016 18:44:47 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

>1. The fact that a new user is not
"naturally" directed to AdaIC [...]

I'd agree with that, but there's nothing
new about that. If you like herding
cats...try an Ada community initiative.
Not recommended for the faint of heart...

[...]

>Not to mention that some referenced
website "are yelling" 1997 abandoned
code/project.

So what? Good Ada code doesn't
suddenly become useless because it's old.
Good libraries don't NEED any
maintenance, and Ada's been around since
the early 1980s. Obviously, it depends on
what you're looking for; if it is something
relatively new or changeable, dead is not
good. If it's an FTP library, it probably
doesn't matter when it was created.

I'm not going to try to judge "goodness"
of code, 'cause very little of it meets MY
standards.

> [...]

People who are over-interested in
"presentation" are not likely to be
interested in Ada, IMHO.

> [...]

I think you overestimate the effort that
most Ada programmers will put into such
things...after all, we've had AdaHome,
AdaPower, AdaIC, and probably others
which such things, and they've all (except
AdaIC) died from neglect.

>1. There is a website, [...]

Which requires the author to do
something; many of them can't even be
bothered to post about their libraries here
(like AdaID) or send a link to AdaIC?
Why do you think they would use some
more complex website?

>2. Every package code base has to reside
on some "handled" version control
system ecosystem [...]

Most likely, only one or two. Much too
hard to create something that works with
everything, and like as not the volunteers
will run out of energy long before.

>3. On your machine you need an
executable e.g dub.exe

One would hope that this would be
handled by Gnoga and not something that
has to be installed. As you as you require
a program, you're limited to Windows and
Linux and maybe Mac, and someone has
to fix that program every time there is an
OS update.

> [...]

In order words, yet another tool to learn.
One of the reasons I have so much trouble
with Linux is that you have to figure out
the various package managers before you
can do anything -- but I usually just want
to get whatever I need done and move on.

...

BTW, this is *exactly* what I thought
you meant. I find it a combination of
overkill and likely harm to the Ada

10 Ada-related Tools

Volume 37, Number 1, March 2016 Ada User Journal

community (by excluding large portions
of, by the extra work involved at a
minimum).

[...]

>It does not matter if not ALL sources are
listed.

Actually, it does. A tool that includes
30% of the available source will make the
listing on AdaIC look robust!

> Its a tool for the future, a community
policy: new packages should be setup
this way so we can build more
effectively, together.

Don't buy it. Especially once whatever it
does becomes obsolete (and change for
the sake of change, the mantra of this
century, will make that sooner rather than
later).

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 2 Feb 2016 10:45:04 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...] many of them can't even be
bothered to post about their libraries
here (like AdaID) or send a link to
AdaIC? Why do you think they would
use some more complex website?

Well, to be fair "posting about their
libraries here" *IS* requiring the authors
to be doing something.

A good tool, IMO, would handle checking
and submitting. Probably without much
more difficulty than something like
PowerArchiver for creating ZIP archives.

> [...]

If the "submission tool" ensures that
anything submitted is compilable, we
could process/store it in a DB. The
hardest part would probably be going
from the intermediate-representation to
the DB, something like that could be done
by a tool that reads the type definitions,
creates the tables, and stores all the
objects.

[...]

But we don't need to expand the scope to
include non-Ada portions of the
dependencies; this would mean we
wouldn't have to worry about binaries and
OSes.

Naturally, having some sort of way to link
to binaries/installers would be nice, but
it's not requisite.

[...]

All of those systems could, in theory, be
tied into (or handled by) the "submission
tool" -- where an author could click an
"update and build" which would sync his
environment with the VCS and build then,
if successful, push the new version onto
the Ada-specific repository.

[...]

Couldn't we handle these cases if we did it
ourselves? I mean we don't need to have

the package-manager itself handle
building and installing, instead provide an
API for those specific tools to do that, so
we could limit what we're interested in to
what all an Ada project needs.

[...]

> Don't buy it. [...]

I think I could buy it -- the biggest issue, I
think, seems to be a method for specifying
the project (things like alternate bodies,
etc), if we could do that then the rest is
essentially protocol details, right?

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 2 Feb 2016 12:46:49 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

True; my point was that while we can't
really have a system agnostic tool that
requires no human action, we can make
things easy.

[...]

> Why not use an Ada package for
building an Ada package registry ?...

This is the ides I would advocate (making
it as much self-hosting as possible);
however, I don't think that it's a good idea
to tie ourselves to a file-system or build-
tool (those being sufficiently outside the
scope of package management, as well as
introducing their own problems [e.g. case-
sensitive FS vs case-insensitive]).

I think having an IR amenable to DB-
storage would fit quite well here -- we
could use the DB itself to help ensure
consistency; we could also use it to
provide some VCS functionality.
(Thinking of programs as 'text' [and 'files']
is going to work against the level of
sophistication we can put in our tools.)

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 2 Feb 2016 13:32:14 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

So perhaps you are thinking about a
specialized archive manager (for instance
a special version of AZip, to stay with
Ada stuff :-)), which would grab
packages or libraries from an Ada-centric
repository, running on the programmer's
computer ?

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 2 Feb 2016 20:21:49 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

Closer but not quite.

The way I envision it would be essentially
three programs:

(1) the 'server', which contains the library,
stored in an IR;

(2) the 'client', which pulls the info from
the library and inserts it into the Ada
environment,

(3) the 'project-manager', which takes the
library/module on the hosting computer,
compiles it, and submits it to the 'server'.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 3 Feb 2016 10:39:04 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

(2a) the 'client', which also produces a
library archive ready for pushing, one that
follows a simple "standard".

The setup is easier when there is a small,
agreed-upon set of requirements, I think,
such as

- P, by default, can be built with

 pragma Restrictions

 (No_Implementation_*)

- [optional] P is a leaf, it can be built with

 pragma Restrictions (No_Dependence)

- there are test/example programs for P
which can be built after P has been added
to the normal Ada library

Note that the first item has "by default",
which is an opportunity for vendors to put
incentives into non-default editions
(think: edition for Win32, edition for
proprietary OS, ...).

If this scheme is simple, then, still,
complexity may be seen as an opportunity
by sales personnel, since the technical
staff is payed for handling that complexity
on behalf of the vendor's customers. No
other vendor can handle the same instance
of complexity. Which will be different
when it is an instance of simplicity. Yet,
the is a "by default" edition, mentioned
earlier, for a freemium library, maybe.

At all costs, avoid the complexity of
Linux style package management
whenever there is a chance of it becoming
Ubuntu style package management.
("How to force a dense graph of half-
maintained packages, even when
'Recommended' dependences are turned
off.") Unless, of course, you can sell
Ubuntu, too.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 2 Feb 2016 16:51:20 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> Well, to be fair "posting about their
libraries here" *IS* requiring the
authors to be doing something.

Surely. But sending a link here or to
AdaIC is about the minimum something I
can imagine (anything less and you don't
really want to make the library public in
the first place -- which is irrelevant to this
discussion).

> [...]

Ada-related Tools 11

Ada User Journal Volume 37, Number 1, March 2016

Harm from two things:

(1) Working only with a limited number
of Ada implementations (most likely
one);

(2) Only having a limited subset of code
available;

Both of these could be fixed, but it would
be very difficult to do. (A similar example
was the job posting site that the AdaIC
used to have. It was underpopulated
enough so as to be more harmful than
valuable, giving the impression of a lack
of jobs. We finally got rid of it.)

[...]

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 2 Feb 2016 20:16:53 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

> (2) Only having a limited subset of code
available;

>

> [...]

The second can be ameliorated by the
aforementioned "packaging tool", I think,
and the first needn't be a problem at all:
we don't need to tie ourselves to a
particular Ada-implementation or build-
system and could easily consider those to
be outside the scope of such a project.

[...]

From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 1 Feb 2016 09:30:47 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> Anyone thought about doing something
similar to DUB, the D package registry
(http://code.dlang.org/) ... for Ada?

IMHO we should look to Haskell and
how that community have solved this
exact problem:

http://docs.haskellstack.org/en/stable/
README.html

https://hackage.haskell.org/

It. Just. Works. Compiler and everything.

It is extremely well done.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Mon, 1 Feb 2016 10:32:37 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

It does seem to work as a collector of
solutions. [...] CPAN and PyPI are similar
in this respect, and many will appreciate
some evaluation procedure that tells them
which of these results will just work for
them.

Could you say something about
portability across implementations of
Haskell?

There is the Ada-wide search engine at

http://www.adaic.org/ada-resources/
ada-on-the-web/

What if this search engine knew about
some Ada specific markup which authors
of packages could add to the web pages
describing packages so that these tags
inform the search engine about Ada
packages, specifically?

For reference, that are: Facebook style
Open Graph markup for <head>, or "data-
..." attributes of HTML5, or Dublin Core
meta information,

From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 2 Feb 2016 09:54:16 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> Could you say something about
portability across implementations of
Haskell?

The stack tool is, to my knowledge,
heavily focused on the GHC compiler
right now, but that is to be expected as
GHC is by far the most commonly used
Haskell compiler - some would perhaps
even argue that it is THE Haskell
compiler.

But using stack does not in any way keep
you from building your project with
UHC, if you're so inclined. Stack doesn't
enforce building with stack, it just enables
you to do so.

What you get with stack is a dead simple
way to make sure that packages _always_
build, even very complicated and large
packages. It enables you to define
compiler version/dependencies, and be
comfortable in knowing that stack will
handle those dependencies for you and
other stack users.

It provides for a very lean and reliable
approach for making and maintaining
Haskell projects.

I've used it on Linux, Windows and OSX,
and it just works.

> There is the Ada-wide search engine
[...]

The problem is that this does not help
building complicated libraries / projects.
The fact that I can find project X does not
necessarily make it straightforward for me
to use X, and moving across operating
systems this problem becomes pretty
huge.

Stack and stack-like tools solve that
problem.

I'm under no illusion that this is a simple
task to mimic for Ada - I'm just saying
that it works exceedingly well for
Haskell.

From: Justin Squirek
<jsquirek@gmail.com>

Date: Tue, 2 Feb 2016 06:51:48 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

I think the biggest problem facing the
community is the actual portability of

many of the most useful libraries and not
on locating them. [...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 2 Feb 2016 17:06:13 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> The problem is that this does not help
building complicated libraries /
projects. The fact that I can find project
X does not necessarily make it
straightforward for me to use X, and
moving across operating systems this
problem becomes pretty huge.

Well, for the sorts of projects I'm
interested in, finding them is 90% of the
battle. Building an Ada library almost
never requires more than dumping the
source code into a directory and running
the compiler's build tool (gnatmake,
corder, or whatever). If it's more
complicated than that, someone's
overthought the whole thing and I most
likely will forget that library. (After all,
the reason I want an Ada library in the
first place is so that I can fix it, include it
in the source managed by Ada tools, and
the like. If that's impractical, it's not
helping.)

I realize that when libraries are bindings
on third-party components, the situation
gets more complex. But that also goes
against my overall goal (if possible, write
it or get it in Ada, and if not, try to go
without).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 8 Feb 2016 18:05:14 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

[...]

I agree with you that Ada needs better
publicity of the available tools and the
like. The search engine would have gotten
more mind-share if I could have come up
with a snappy name for it -- but that's
been beyond my capabilities. Since it
doesn't have a snappy name, there's
nothing to look for in Google. (And I'm
not sure another search engine is the best
place to look for our search engine
anyway.)

Constructive suggestions are always
welcome.

> [...]

My vision of Ada is of a language in
which to construct code that is portable
across implementations and across
targets. To the extent that a tool, no matter
how well-intentioned, interfers with that,
then it is harmful to the future of Ada.
GNAT /= Ada! What I heard being
discussed only seemed to make sense
within the context of GNAT on Linux,
because that's the only place where
"package managers" make sense. Perhaps
I over-reacted a bit; I don't think there is
much benefit to such a system, but it

12 Ada-related Tools

Volume 37, Number 1, March 2016 Ada User Journal

wouldn't hurt so long as it is not tied to a
particular implementation or target. In
particular, the setup Tero described would
not bother me (I'd still be worried about it
providing an image of relatively inactive
community by not having much in it, but
that might be a risk worth taking if
enough of you care).

> [...]

Building complicated tools to do things
that aren't really needed for Ada doesn't
make it a "sensible proposition". If the
"young people" need too much
handholding, they're not really ready to
engineer software with a professional tool
like Ada. (How they get anything done in
C++ is beyond me!) They'd be better off
with Python or some such language.

[...]

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Mon, 8 Feb 2016 19:50:51 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> My vision of Ada is of a language in
which to construct code that is portable
across implementations and across
targets. [...]

I don't think anyone here wants to
interfere with that vision. Especially
considering that it is generally agreed that
the single free implementation (GNAT)
isn't good for Ada.

> GNAT /= Ada!!

Agreed.

And most here don't think that it would be
good if it were.

> What I heard being discussed only
seemed to make sense within the
context of GNAT on Linux, because
that's the only place where "package
managers" make sense.

I think that it depends on what the
definition is. Given that early on in the
thread the perl package manager (CPAN)
was cited, it seems that the Linux idea of
package manager was not intended -- the
subject of the thread concurs -- I think
what is being talked about could be
described as an "online library".

If that is the case, I would recommend:

1) an internal representation, instead of
text, which can be verified as
consistant/compiled. [This may require a
standard way to define an Ada project.]

2) a method (header-field?) marking the
license(s) that the contained sources are
under [to help w/ filtering, as well as
making it feasible for non open source
distribution].

3) a method for marking dependencies.
(Also a header field?)

4) versioning. (To include changes
impacting #2 & #3)

5) that building be handled separately.

(Though a standard method for
describing an Ada project could
definitely help here.)

6) that any installation (of non-Ada items)
be handled separately.

While something like integrated tests
would be nice, I think they might be a bit
beyond the scope of the project. (#5 and
#6 are there to both reduce the complexity
and the scope of such a repository.)

> In particular, the setup Tero described
would not bother me (I'd still be
worried about it providing an image of
relatively inactive community by not
having much in it, but that might be a
risk worth taking if enough of you
care).

I think any new system would have this
problem. The initial populating would be
the sticking point... but, arguably, the
current situation is worse. (That being the
exact impetus for suggesting such a
repository.)

> [...]

Does your opinion change if what is being
talked about is a library/dependency
manager (as described above) rather than
the Linux idea of "package manager"?

From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 9 Feb 2016 09:04:31 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

Package managers make sense on all
operating systems I'm aware of. The fact
that some don't have a package manager
does not mean that they can't or shouldn't
have one. I've installed and used the
Haskell Stack tool on Windows, OS X
and Linux, and it works equally well on
all three.

I urge you to take a look at how the
Haskell community have solved this
particular "challenge". Stack / Cabal /
Hackage are wonderful tools, created and
maintained by a fairly small community.

http://docs.haskellstack.org/en/stable/
README.html

I'm quite sure the Ada community could
adapt those tools to match the needs of
Ada in the 21st. century. I don't think we
have to reinvent the wheel in order to gain
the benefits of a proper package manager.

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Tue, 9 Feb 2016 14:33:55 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...] I urge you to take a look at how the
Haskell community have solved this
particular "challenge". [...] I don't think
we have to reinvent the wheel in order
to gain the benefits of a proper package
manager.

I'm totally behind the idea. Alas, time is
as scarce as ever.

Also, I think we're witnessing a new case
of 'perfect is the enemy of the good'.
Should really a submitted library compile
in every OS ever, with every compiler
ever, using the most complex
dependencies there to be found? Just mark
what works and what doesn't and let the
Ada masses (:-)) improve on that.

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 9 Feb 2016 06:58:57 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> Should really a submitted library
compile in every OS ever, with every
compiler ever, using the most complex
dependencies there to be found?

Given that Ada has always allowed the
compiler to reject programs dependant
upon implementation limits, I think that's
a poor argument. However, it can be
argued that compiling should not be part
of the package manager's job. (OTOH, it
makes sense to ensure that no invalid
[non-compilable due to syntax or other
detectable error] is accepted into the
repository.

Dependencies also ought to be
indicated/managed so as to allow a
"recursive" retrieval -- but, again, this
should be limited to only the Ada side of
things. (E.G. installing Firebird for a
firebird-binding can properly be the
responsibility of the user.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 10 Feb 2016 19:46:48 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...] Should really a submitted library
compile in every OS ever, with every
compiler ever, [...]

No, but it should be crystal clear what
assumptions it is making of compilers,
target OSes, and hardware. That's where
such a repository could be a significant
improvement over the current situation. I
don't want to start depending on stuff that
only works in one situation, but it's pretty
hard to tell that for most of the libraries
that I've linked to. And even if you only
want to work on Linux GNAT, you
probably would want to avoid stuff that
only works on Windows. And so on.
Putting that into some sort of common
format would be a worthwhile goal.

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Wed, 10 Feb 2016 21:19:58 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...] crystal clear what assumptions it is
making [...]

You're absolutely right. This is why I
think that a standard Ada-project format is
in order: we would get a standard way to
indicate system-dependencies,*
multiple/variant bodies, and could use

Ada-related Tools 13

Ada User Journal Volume 37, Number 1, March 2016

THAT in the repository to indicate those
parameters.

There is, of course the problem of having
a library add/drop support for a system
(e.g. Lumen & Windows), but that can be
handled by the version-control aspect of
the system.

* My Ada Project Manager takes the idea
of Ada's generics as the basis for handling
parameters, so depending on project-x
transitively applies the parameter.
Creating a standard "root" project for the
repository-system would ensure that all
the requisite parameters are extant.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 9 Feb 2016 11:08:36 -0700
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

"stack is a project of the Commercial
Haskell group, spearheaded by FP
Complete. ... While stack itself has been
around since June of 2015, it is based on
codebases used by FP Complete for its
corporate customers and internally for
years prior."

In other words, the initial version of stack
was created by developers who were paid
for their effort. While I have no problem
with the idea, I doubt if any Ada company
is going to be able to fund such a project.
We could perhaps just modify stack for
our purposes, but I doubt if we have
enough Haskell expertise for that. Many
of us are willing to contribute, but without
funding or an existing system to adapt it
seems unlikely to happen.

From: Edward R. Fish
<onewingedshark@gmail.com>

Date: Tue, 9 Feb 2016 13:00:06 -0800
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> Many of us are willing to contribute,
but without funding or an existing
system to adapt it seems unlikely to
happen.

I don't know about that. I think that with
the amount of willingness shown on the
thread we're close to the 'crystalization
point' -- I think the biggest things holding
is back is a solid well thought plan.

I am somewhat against using an extant
(and presumably general purpose) system,
precisely because the real power/utility
will come from properties a generalized
system is ill-suited for. (Consider how
diff is hampered in programmongs by
being about text and not semantic
differences.)

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Fri, 12 Feb 2016 17:05:47 +0100
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...]

What say the people interested in such a
thing move the discussion to a place
where things could start rolling? Just as a
suggestion:

 https://github.com/mosteo/alire/issues/1

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 1 Feb 2016 17:22:28 -0600
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> People using other programming
languages have managed to create these
package repositories, so it is a shame if
Ada programmers cannot manage to do
the same.

Not really. People using other
programming language
implementations have managed it. I see
no evidence that it is possible to build
such a thing that works with multiple
implementations, running on multiple
host and target systems, with different
policies for installation, different project
management facilities, and so on.

> You of course need to solve many
problems related to this domain, but
they are already solved by others, so
one should be able to copy the design
and just do the Ada implementation.

That wouldn't be an *Ada* repository. It
would be a *GNAT* repository! There
might be use to such a thing, but call a
spade a spade here: don't insult those who
use Ada, but don't exclusively use GNAT,
by calling such a thing an *Ada* tool.

> [...]

Which was my previous point: in order
for that to work, you have to insist on
package authors in using a specific
version control system, specific
installation tools, and most likely a single
Ada implementation. A lot of authors are
not likely to change their methods of
working to use such a system (or have the
time to develop complex installation
schemes), so you're going to end up with
a (smallish) subtest of available libraries.
Which would be actively harmful for the
future of Ada (or GNAT, if you prefer) -
it would appear that there is a lot less
available than there really is.

I note that for "simple" libraries: those
that use just Ada and/or target OS
facilities, distribution simply by source
code works well. For instance, we
distributed Claw that way -- we provided
a special main program that was designed
to ensure that an Ada compiler's build tool
would completely construct the library.
Use gnatmake or corder or whatever did
the trick. If one wanted to set up a
separate project, one would use the tools
of the implementation to do that (but it's
not necessary). (If the user doesn't
understand how to use the compiler's
build tool, they need to understand that
before doing anything in any case, they're
not ready to build *anything* in Ada.)

For more complex systems that need other
libraries, I doubt there is any sensible
solution. Unless you're planning to
abandon Ada's portability between
implementations -- not of much value,
IMHO.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 5 Feb 2016 21:52:44 +0200
Subject: Re: Ada package registry?
Newsgroups: comp.lang.ada

> [...] I see no evidence that it is possible
to build such a thing that works with
multiple implementations, running on
multiple host and target systems, [...]

NetBSD's pkgsrc should run on multiple
platforms (all *BSDs, most Linux
distributions, not sure about OS X or
Windows) and support multiple
programming languages/build systems.
And if you want to support multiple host
and target systems you could always
check how OpenEmbedded/Yocto/bitbake
combo is doing things.

[...]

> That wouldn't be an *Ada* repository.
It would be a *GNAT* repository!
There might be use to such a thing, but
call a spade a spade here: don't insult
those who use Ada, but don't
exclusively use GNAT, by calling such
a thing an *Ada* tool.

I think you are forgetting who you are
replying right now. :)

Most of my Ada software compiles nicely
with other Ada compilers (Janus/Ada,
ICCAda) and I don't think it would be
impossible to add Janus/Ada or ICCAda
support to the package repository tool.
You just need to make sure you don't try
to compile Ada 2005/2012 code with
Janus/Ada, which supports only Ada 95.

> [...]

The package repository/tool which I am
thinking about, would be only for open
source projects/libraries/applications.
Open source developers usually use only
open source version control systems (cvs,
subversion, mercurial, git, darcs,
monotone, and fossil) and there are
existing practices how to interface with
them. Also, old-fashioned zip/tgz release
package (fetched over http/https) is easy
to support.

What comes to installation methods, the
$language community usually provides
enough pressure and shaming to make the
rogue project to follow the rules or to
provide an installation method which is
easy enough to integrate into the package
management system.

> For more complex systems that need
other libraries, I doubt there is any
sensible solution. Unless you're
planning to abandon Ada's portability
between implementations -- not of
much value, IMHO.

14 Ada-related Tools

Volume 37, Number 1, March 2016 Ada User Journal

Not sure what sort of complexity you are
thinking about. Just iterate through the
dependency chain and build one
dependency at time using the selected
Ada compiler. When building one
package, link the dependencies, and be
happy.

If there are C language libraries involved,
call gcc or Visual C, and continue as
usual.

Building the package repository and
related tool might take a lot of wall clock
time, since the amount of volunteer Ada
programmers with free time is limited, but
I don't really see any blocking technical
problems. And if there are any, I think
then it is time to start making adjustments
to the next Ada (or Ada compiler
implementation) version!

PragmAda Reusable
Components

From: PragmAda Software Engineering
 <pragmada@pragmada.x10hosting.com>
Date: Sat, 30 Jan 2016 16:20:50 -0700
Subject: PragmARCs on GitHub
Newsgroups: comp.lang.ada

The PragmAda Reusable Components are
now available through GitHub, as well as
by downloading a .zip file from the
PragmAda web site.

https://github.com/jrcarter/PragmARC.git

The default branch is Ada-07, which is
the beta version that uses features of
ISO/IEC 8652:2007. Branch master is the
Ada-95 version.

[See also “PragmAda Reusable
Components”, AUJ 35-3, p. 154.
—sparre]

Miscellaneous Libraries

From: darkestkhan
<darkestkhan@gmail.com>

Date: Wed, 3 Feb 2016 14:49:55 -0800
Subject: ANN: Libraries and bindings.
Newsgroups: comp.lang.ada

Since Randy brought it up that we should
post here about our projects if we want
more people to know about them I will do
just that. This is not particularly long list
but nonetheless some of you may find
something from this quite useful. IIRC
everything (or almost everything) is
licensed under BSD/ISC license. All
projects build with gprbuild just fine
(didn't test building them

 https://github.com/darkestkhan/vt100

"This is wrapper library for vt100 calls in
Ada." [why code yet another? only print
calls are not bound]

 https://github.com/darkestkhan/imago

"Ada binding to DevIL library. This
library tries to be as close to original API
as possible, while using Ada types
whenever possible"

DevIL library supports loading/saving
image files (and changing data formats) -
most formats are supported [including
some more obscure ones] (BMP, JPEG,
...).

 https://github.com/darkestkhan/oto

Binding to OpenAL. Follows original
API.

 https://github.com/darkestkhan/xdg

"A small library that should make it at
least slightly easier to follow XDG
guidelines." [
http://standards.freedesktop.org/basedir-
spec/basedir-spec-0.7.html]

 https://github.com/darkestkhan/cbap

"A small library providing simple
callback-based parser for program
arguments. This library is meant to be
simple to use, and as such doesn't possess
any particularly advanced features (like
argument combining) that may result in
complicating its use (or implementation)."

 https://github.com/darkestkhan/lumen2

A fork of lumen - basically my changes
and additions went quite far so I couldn't
keep it any more at a branch. e.g.
Windows support is cut-out due to
licensing issues (it was under AGPL
instead of ISC), more calls are bound to,
etc. [Windows support (in fact binding to
entire win api) is on my todo list - but it is
impossible ATM for me due to lack of
Windows machine]

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 5 Feb 2016 17:25:17 +0200
Subject: Re: ANN: Libraries and bindings.
Newsgroups: comp.lang.ada

> [...]

Here my (hobby) projects. Like
darkestkhan's libraries, most of my
projects are distributed under permissive
open source ISC license:

Ahven, unit test framework for Ada
95/2005/2012

- http://www.ahven-framework.com/
 (web site)

- https://bitbucket.org/tkoskine/ahven
(mercurial repository)

- works with Janus/Ada, ICCAda, GNAT

- mature library, users around Europe/US
Jdaughter, JSON parser/generator for
Ada 95

- https://bitbucket.org/tkoskine/jdaughter

- works with Janus/Ada, ICCAda, GNAT

- under development (no official release)
Ladybird, Twitter library/command line
client (Ada 95)

- https://bitbucket.org/tkoskine/ladybird

- works with Janus/Ada, ICCAda, GNAT

- under development (no official release)
AVR-Ada + Arduino blog

- http://arduino.ada-language.com/

- a blog, not a library

- example code at
https://bitbucket.org/tkoskine/arduino-
blog

Portable SQLite3 bindings for Ada 95

- https://bitbucket.org/tkoskine/sqlite3-ada

- works with Janus/Ada, ICCAda, GNAT

- under development (no official release)

NFC+PN532 driver for AVR-Ada

- https://bitbucket.org/tkoskine/arduino-
pn532

- Reads Mifare Classic tags and NFC type
2/4 tags

- Writes NFC type 2/4 tags

- Emulates NFC type 4 tags

- under development, needs AVR-Ada
(avr-gnat)

- I plan to do Raspberry Pi + Linux +
native GNAT version at some point

Not Claw Sockets (NC.Sockets) for
x86_64 Linux

- https://bitbucket.org/tkoskine/not-claw-
sockets-linux-x86

- development has been stalled since 2013

 (no time because of other Ada projects)

In addition, I do contributions to AVR-
Ada occasionally

- http://sourceforge.net/projects/avr-ada/

Length-Limited Huffman
Coding

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 6 Feb 2016 12:57:06 -0800
Subject: Length-Limited Huffman Coding
Newsgroups: comp.lang.ada

Does someone here knows of an Ada
implementation of length-limited
Huffman coding ? Basically it is the
construction of a Huffman tree with a
constraint of a limited tree depth (or code
length, if you consider the code formed by
walking through the tree). References
seem to point to two algorithms [1] and
[2] which reduces the memory space
needed, compared to [1]. Actually [1]
would already be OK for my needs
("Dynamic Deflate" compression in Zip-
Ada).

[1] A Fast Algorithm for Optimal Length-
Limited Huffman Codes Larmore &
Hirschberg

[2] A Fast and Space-Economical
Algorithm for Length-Limited Coding
Katajainen, Moffat & Turpin

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon, 8 Feb 2016 13:20:00 -0800
Subject: Re: Length-Limited Huffman

Coding
Newsgroups: comp.lang.ada

Ada-related Tools 15

Ada User Journal Volume 37, Number 1, March 2016

No need to search, there is an
implementation now, translated from
katajainen.c (Zopfli project):

http://sf.net/p/unzip-ada/code/HEAD/
tree/zip_lib/length_limited_huffman_code
_lengths.ads

http://sf.net/p/unzip-ada/code/HEAD/
tree/zip_lib/length_limited_huffman_code
_lengths.adb

There is an independent test procedure:

http://sf.net/p/unzip-ada/code/HEAD/
tree/test/test_llhc.adb

and a minor sighting (so far...) in
Zip.Compress.Deflate.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu, 11 Feb 2016 20:44:03 +0200
Subject: Re: Length-Limited Huffman

Coding
Newsgroups: comp.lang.ada

> [...]

I am not Randy, but I tested the code with
Janus/Ada 3.1.2c (on Windows 10) and it
compiled and ran fine:

[...]

Although, Janus/Ada gave one warning:

In File
C:\Work\gautier\llhc\LENGTH_LIMITE
D_HUFFMAN_CODE_LENGTHS.ADB

at line 54

 53: type Index_pair is
array(Index_type'(0)..1) of Index_type;

 54: lists: array(0..Index_type(max_bits-
1)) of Index_pair;

--^

WARNING This component has a non-
simple type (6.5.2)

%%%%%%%

Cortex GNAT Run Time
Systems

From: Simon Wright
<simon@pushface.org>

Date: Sun, 07 Feb 2016 22:45:08 +0000
Subject: ANN: Cortex GNAT RTS 20160207
Newsgroups: comp.lang.ada

This release is at Sourceforge[1].

This release includes an RTS for the
Arduino Due, arduino-due, and a minimal
BSP, arduino-due-bsp.

For the STM32F429I-DISCO, there is one
RTS, stm32f429i-disco-rtos, and one
BSP, stm32f429i-disco-bsp.

In this release,

- The Containers support generalized
iteration ("for all E of C loop"). Note,
this is achieved by removing tampering
checks. While tampering errors are rare,
it would be as well to check algorithms

using a fully-featured desktop compiler.

- FreeRTOS is configured to detect stack
overflow (if it is detected, the RTS loops
inside
vApplicationStackOverflowHook()).

The standard packages included (there are
more, implementation-specific, ones) are:

- Ada

- Ada.Containers

- Ada.Containers.Bounded_Hashed_Maps

- Ada.Containers.Bounded_Vectors

- Ada.Exceptions

- Ada.IO_Exceptions

- Ada.Interrupts

- Ada.Interrupts.Names

- Ada.Iterator_Interfaces

- Ada.Real_Time

- Ada.Streams

- Ada.Synchronous_Task_Control

- Ada.Tags

- Ada.Task_Identification

- Interfaces

- Interfaces.C

- Interfaces.C.Strings

- System

- System.Assertions

- System.
Address_To_Access_Conversions

- System.Storage_Elements

- GNAT

- GNAT.Source_Info

The software is supplied built with for
debugging (-g) and with suitable
optimisation (-Og), using GNAT GPL
2015 on Mac OS X (it should work out of
the box with a Linux-hosted GNAT GPL
2015 cross-compiler, but will need
recompiling for another compiler
version).

[1] https://sourceforge.net/projects/
cortex-gnat-rts/files/20160207/

[See also “Cortex GNAT Run Time
Systems”, AUJ 36-3, p. 123. —sparre]

PragmARC.Text_IO

From: PragmAda Software Engineering
 <pragmada@pragmada.x10hosting.com>
Date: Sun, 7 Feb 2016 21:50:52 -0700
Subject: Line-Terminator-Independent Text

I/O (Mostly)
Newsgroups: comp.lang.ada

The version of the PragmAda Reusable
Components for ISO/IEC 8652:2007 now
contains PragmARC.Text_IO, a simple
text I/O package that can read files with
DOS/Windows (CR-LF), Mac (CR), and
Unix (LF) line terminators. It can also
write files with any of those line
terminators.

The PragmARCs are available from the
PragmAda website at

https://pragmada.x10hosting.com/pragmar
c.htm

or from the GitHub repository at

 https://github.com/jrcarter/PragmARC.git

From: PragmAda Software Engineering
 <pragmada@pragmada.x10hosting.com>
Date: Sun, 21 Feb 2016 22:49:37 -0700
Subject: New Version of

PragmARC.Text_IO
Newsgroups: comp.lang.ada

The initial version of this was adding an
extra (native) EOL to files when they
were closed. This has now been corrected.
The package specification has changed
somewhat in the process.

The PragmAda Reusable Components are
available from the PragmAda web site or
from

https://github.com/jrcarter/PragmARC

[See also “PragmAda Reusable
Components”, AUJ 35-3, p. 154.
—sparre]

Open Z Wave

From: Tony G. <tonythegair@gmail.com>
Date: Mon, 15 Feb 2016 04:31:05 -0800
Subject: Ada Open Zwave
Newsgroups: comp.lang.ada

Here is a binding to the c++ open zwave
binding at www.openzwave.com

The license is the GNAT Modified GPL.

The binding is at
https://github.com/tonygair/
ada_open_zwave

I am using it to create a home heating /
lighting efficiency application to run on a
raspberry pi B. The hardware also
including a AEON Z2 Stick and Stella Z
radio valves.

I am also using POLYORB, the Ada
distributed systems annex
implementation, and David Botton's truly
fantastic GNOGA to make it.

So far it works on the PI and on PC's in
Debian and Raspbian Jessie but don't
forget to add your the ID you are using it
under to the group DIALOUT.

i.e. sudo adduser tony dialout

The heating application will also be
released soonish also under the GMGPL
license.

I hope it's useful! and improvements to its
setup will be gratefully received!

From: Tony G. <tonythegair@gmail.com>
Date: Tue, 16 Feb 2016 02:19:56 -0800
Subject: Re: Ada Open Zwave
Newsgroups: comp.lang.ada

This library was commissioned by myself
and designed and implemented by Jeffrey
R Carter. Dave Botton also provided

16 Ada-related Products

Volume 37, Number 1, March 2016 Ada User Journal

some good advice at the start of the
project.

Jeffrey R Carter did an excellent job in a
difficult project and was a pleasure to
work with. I highly recommend his
services to other people who also require
work done at the limits of the possible.

[See also “Job: Writing a Binding to Open
Z Wave”, AUJ 36-2, p. 71. —sparre]

Remote Control of Light
Bulbs

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Mon, 15 Feb 2016 21:28:00 +0100
Subject: ANN A-LIFX
Newsgroups: comp.lang.ada

Finally I got the interface package for the
LIFX-Bulbs http://www.lifx.com/ in
fairly stable shape.

https://github.com/persan/A-LIFX

Wave Files

From: Gustavo <gusthoff.ada@gmail.com>
Date: Sun, 28 Feb 2016 12:42:29 -0800
Subject: Wavefile Reader & Writer Package
Newsgroups: comp.lang.ada

I've been working in my free time on the
implementation of a wavefile reader &
writer in Ada. Maybe this could be useful
for some of you:

 https://github.com/gusthoff/wavefiles/

Comments are, of course, welcome!

[See also “Sound recording API for
Linux”, AUJ 33-3, p. 144. —sparre]

Stream Tools

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Mon, 29 Feb 2016 07:43:11 +0100
Subject: [ANN] a-tream-tools-1.0.4
Newsgroups: comp.lang.ada

https://github.com/persan/a-stream-
tools/releases/tag/a-stream-tools-1.0.4-
2016-02-29

News in this release:

- Added send_socket for better integration
with gnat_socket.

- Added the capability to read all the
remaining elements in the stream
without getting End_Error.

[See also “Stream Tools”, AUJ 36-2, p.
64. —sparre]

Ada-related Products

GNAT Pro

From: AdaCore Press Center
Date: Sat Jan 23 2016
Subject: AdaCore Releases GNAT Pro 7.4
URL: http://www.adacore.com/press/gnat-

pro-7-4/

New version of Ada Development
Environment highlights annual major
release of company product line

EMBEDDED WORLD 2016,
Nuremberg, Germany, February 23, 2016
— AdaCore, a company offering
development and verification tools for
reliable, safe and secure software, today
released the latest version of its flagship
GNAT Pro Ada Development
Environment. GNAT Pro 7.4 incorporates
new functionality, a number of
performance improvements, additional
platform support including several new
embedded targets, and many other
enhancements. GNAT Pro is part of the
company’s annual major release cycle for
its products, and Q1 2016 will also see
new versions of the CodePeer deep static
analysis tool for Ada, the SPARK Pro
verification environment for high-
integrity software, and the QGen model-
based development and verification tool
for Simulink® and Stateflow® models.

GNAT Pro includes a full Ada compiler,
Integrated Development Environments –
the GNAT Programming Studio (GPS)
and the Eclipse-based GNATbench – a
comprehensive toolset including a visual
debugger, and an extensive set of libraries
and bindings.

GNAT Pro 7.4 continues to build upon
the strong foundation of gcc 4.9 while
upgrading to the gdb 7.10 debugger
technology. It supports Windows 10 as
well as several new target platforms, in
particular VxWorks 7 (ARM, e500v2,
PPC, x86_64), VxWorks 653 3.0, and
PikeOS (PowerPC). Among the more than
120 new features are the following
enhancements:

- Generating C headers from Ada package
specifications, which complements the
existing facility (-fdump-ada-spec) for
deriving Ada package specs from C
header files

- Detecting invalid memory access via
libsanitizer on Linux

- Enabling SSE floating point extensions
by default on all x86 native ports

- Better performance for the
Ada.Containers library, for example in
the implementation of "for...of" loops
and iterations

- New pragmas to support low-level
programming on bareboard targets

- New pragmas to ease porting existing
codebases from other Ada compiler
environments

“As we do each year with GNAT Pro, this
new release brings a wide assortment of
new features,” said Cyrille Comar,
AdaCore President. “It also makes many
existing tools more robust or easier to use,
and these are worth mentioning. One
example is the GNATtest utility, which
automatically generates ready-to-use unit
test frameworks. And I’d also like to

highlight the distributed feature of
GPRbuild, which can now take advantage
of server farms as well as multicores.
Advanced users have reported incredible
savings in build time for huge
applications through this enhancement.”

[See also “GNAT Pro”, AUJ 36-2, p. 65.
—sparre]

QGen

From: AdaCore Press Center
Date: Sat Jan 23 2016
Subject: AdaCore Releases QGen 2.1
URL: http://www.adacore.com/press/qgen-

2-1/

New version of model-based development
and verification toolset brings improved
performance, new features

EMBEDDED WORLD 2016,
Nuremberg, Germany, February 23, 2016
— AdaCore, a company offering
development and verification tools for
reliable, safe, and secure software, today
released the latest version of its model-
based development and verification
toolset, QGen. QGen provides a
qualifiable and customizable code
generator from Simulink® and
Stateflow® models to the safety-oriented
programming languages SPARK (a
formally analyzable Ada subset) and
MISRA C. QGen 2.1 supports essentially
all constructs used for modeling safety-
critical control systems. In addition,
QGen 2.1 offers a number of other
enhancements including optimization of
code for switch blocks, the ability to add
external code for Lookup tables and
Prelookup blocks, support for
commented-out / commented-through
blocks, and factoring of code for
reference models and model libraries.
QGen 2.1 is compatible with MATLAB
versions 2008b through 2015b.

As a prototype capability, initial support
for model-level debugging is available as
a supplement to QGen 2.1. Using the
GNAT Programming Studio (GPS) IDE,
developers can debug both “pure”
Simulink®/Stateflow® models and
applications that combine manually
prepared code with the auto-generated
code. At the start of a debug session, side-
by-side views of the model and the
corresponding generated SPARK/Ada or
MISRA C code are displayed. The
developer can set breakpoints on
individual blocks, which will
automatically set breakpoints at the
corresponding points in the generated
code. Other capabilities include stepping
execution one block at a time, viewing the
values of signal variables, and stepping
into or out of model subsystems. Host
(native) debugging, and cross-debugging
with any target supported by GDB, will
be provided in a subsequent release.

“We designed QGen from the start to
support qualified code generation directly

Ada-related Products 17

Ada User Journal Volume 37, Number 1, March 2016

from Simulink® and Stateflow® models,”
said Tucker Taft, Product Architect for
QGen, “and this has struck a responsive
chord with our customers in the
automotive and aerospace industries and
other safety-critical software-intensive
domains. QGen 2.1 will help reduce the
effort in model-based development and
verification, and future releases will
continue to broaden the QGen product
line. Among the planned enhancements is
support for transforming high-level
requirements into executable and
verifiable assertions at the model and
code levels.”

[See also “QGen”, AUJ 36-2, p. 66.
—sparre]

SPARK Pro

From: AdaCore Press Center
Date: Wed Jan 27 2016
Subject: AdaCore Releases SPARK Pro 16
URL:

http://www.adacore.com/press/adacore-
releases-spark-pro-16/

Formal verification toolset helps reduce
certification effort for safety-critical and
high-security systems

ERTS2 2016, Toulouse, France, January
27, 2016 - AdaCore today announced the
latest release of its SPARK Pro integrated
development and verification
environment, bringing a sound and
mathematics-based static analysis
technology to the challenges of software
verification for high-assurance systems.
SPARK Pro 16 provides enhanced
coverage of SPARK 2014 language
features and now supports the Ravenscar
tasking profile, thus extending the
benefits of formal verification methods to
a safe subset of Ada 2012 concurrent
programming features. As another
improvement SPARK Pro 16 can generate
counterexamples to verification
conditions that cannot be proved, thus
making it easier for developers to find
defects in the functional code or in the
supplied contracts. SPARK Pro 16 also
improves the handling of bitwise
(modular) operations, and the product’s
proof engine now includes the Z3 SMT
solver.

The SPARK Pro technology, which has
been jointly developed by AdaCore and
its partner Altran, can prove SPARK
program properties ranging from absence
of run-time errors (exceptions) to
compliance with a formally defined
requirements specification. SPARK Pro
thereby helps reduce the cost of software
verification and simplifies the task of
certifying the software against safety or
security standards. The technology is
sound; that is, there are no “false
negatives”: if SPARK Pro reports that a
program is free of a certain kind of error,
then that error cannot occur. It also has a
very low “false positive” rate, which is

important in practice, and its efficient
SMT solver technology scales up for
usage in large projects. The SPARK
language and toolset can be used from the
outset on new projects or introduced
incrementally into an existing project,
allowing a “hybrid” verification approach
that combines formal methods with
traditional testing techniques.

“With this new version of the SPARK Pro
toolset, we get one step closer to our goal:
to make it easy for software engineers to
start relying heavily on static verification
and formal proofs without needing
expertise in mathematical logic,” said
Cyrille Comar, AdaCore President. “Not
only are most of the needed proofs
conducted completely automatically, but
many language restrictions usually
associated with such proof capabilities
have been lifted. This makes the writing
of proven software both efficient and
pleasant”.

About SPARK Pro

SPARK Pro provides the foremost
language, toolset, and design discipline
for engineering high-assurance software.
It combines the SPARK language and
verification tools with AdaCore’s GNAT
Programming Studio (GPS) and
GNATbench Integrated Development
Environments.

The SPARK Pro toolset offers static
verification that is unrivalled in terms of
its soundness, low false-alarm rate, depth
and efficiency. The toolset generates
evidence for correctness, including proofs
of the absence of run-time errors, which
can then be used to meet the requirements
of safety and security certification
schemes, such as DO-178B and DO-178C
(airborne systems), EN 50128 (railway
systems), and the Common Criteria.
SPARK Pro is especially applicable in the
context of the Formal Methods
supplement to DO-178C.

About SPARK 2014

SPARK 2014 is a formally analyzable
programming language especially suited
for developing ultra-low defect software
in critical applications, for example where
safety and/or security are key
requirements. The SPARK language has a
solid industrial track record with a 25+
year history of successful usage
worldwide in a range of industrial
applications including civil and military
avionics, railway signaling, cryptography,
and cross-domain solutions. SPARK 2014
is the next generation of this leading
software technology, offering key benefits
such as support for hybrid verification
(combining formal methods with
traditional testing), executable contracts, a
larger Ada language subset (for example
including generic units), and convergence
with Ada 2012 syntax (making it easier to
combine Ada and SPARK components).
An on-line interactive course on SPARK

2014, part of the AdaCore University
curriculum, is available at
http://university.adacore.com/courses/spar
k-2014/.

[See also “SPARK Pro”, AUJ 35-2, p. 81.
—sparre]

Apex Ada, Object Ada and
Ada World

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 10 Feb 2016 17:30:08 +0100
Subject: PTC Ada products
Newsgroups: comp.lang.ada

Short summary of PTC Ada Group's
presentation of today. [PTC has acquired
Atego (recursively), also former
Rational/IBM Ada products.]

Some emphasized words:

- recommitted [sic] to Ada products after
integration with PTC, focused

- licensing is moving towards subscription

- support portal

Three Ada products:

- Apex Ada (Ada 2005, v.5.0)

- Object Ada (Ada 2005, v.9.1+)

- Ada World (Ada 83, limited support,
legacy)

- 3rd party additions like ASIS based Ada
analyzer

IDEs:

- Linux (Motif), Eclipse, Win32 IDE, ...

- Debugger can now handle DLLs [Note:
this is a programmable debugger]

About hosts/targets:

- VxWorks, Solaris, LynxOS, Linux (incl
64 bit), Windows 7+, ...

- Ravenscar

- bare exec

- mostly Intel, Sparc, PowerPC; native
and X-compilers

- updates for RTOSs, including support
for new ones, are based on customers'
requirements, and funding

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Wed, 10 Feb 2016 20:07:59 +0200
Subject: Re: PTC Ada products
Newsgroups: comp.lang.ada

> [...]

> - licensing is moving towards
subscription

I asked about ObjectAda from Atego
some years ago.

At that time there were two problems:

1) Subscription based licensing, you lose
the right to use the compiler when the
subscription ends.

18 Ada Inside

Volume 37, Number 1, March 2016 Ada User Journal

2) They only deal with other companies
and have no processes how to deal with
invidual people

As a Northern European person with a
day job, it makes no sense for me to
create a company. I also could pay
somewhat largish price for perpetual
license with 1y support contract, but it
makes no sense (for hobbyist) if I cannot
use the compiler after that one year.

It was also interesting that one largish
client of Atego asked if Atego could
simply give me a license for one of their
Ada compiler, but that wasn't possible
since I did not have that company. (The
problem was not money if I understood
correctly.)

It would be nice if merge to PTC has
brought some changes to this, but I
haven't had time to ask about it
personally.

Ada and Operating
Systems

Mac OS X: GCC for ARM-
EABI

From: Simon Wright
<simon@pushface.org>

Date: Tue, 26 Jan 2016 17:48:34 +0000
Subject: ANN: GCC 5.2.1 arm-eabi for OS

X El Capitan
Newsgroups: comp.lang.ada

This release is on Sourceforge[0].

It must be installed over GCC 5.2.0 (or
5.2.1 if you've built one ...)

This is GCC 5.2.1 for arm-eabi from GCC
ARM Launchpad[1], tested on the Cortex-
M3 as found on the Arduino Due[2] and
the Cortex-M4 as found on the
STMicroelectronics[3] STM32F4
Discovery and STM32F429I Discovery
boards.

The processors supported are Cortex-M3,
Cortex-M4, Cortex-M0+, Cortex-M7,
Cortex-R4, Cortex-R5 and Cortex-R7.

The compiler comes with no Ada
Runtime System (RTS). See the Cortex
GNAT Run Time Systems project[4] for
candidates.

The compiler is known to run on El
Capitan; it may not run on earlier OS X
releases.

[0] https://sourceforge.net/projects/
gnuada/files/GNAT_GCC%20Mac%20O
S%20X/5.2.0/arm-eabi/

[1] https://launchpad.net/
gcc-arm-embedded (gcc-arm-none-eabi-
5_2-2015q4-20151219 release)

[2] http://www.arduino.com

[3] http://www.st.com

[4] https://sourceforge.net/projects/
cortex-gnat-rts/)

[See also “Mac OS X: GCC”, AUJ 36-4,
p. 206. —sparre]

Ada Inside

POSIX Shell for Windows

From: AdaCore Press Center
Date: Wed Dec 9 2015
Subject: AdaCore/gsh
URL: https://github.com/AdaCore/gsh

GSH - A POSIX shell for Windows

General Information

GSH is an implementation of a POSIX
shell developed for the Windows
platform.

The aim of the project is to provide an
efficient UNIX shell instantiation for
Windows, for non interactive usage.

GSH can be used to compile projects
depending on autotools, UNIX make,...
As it targets specifically Windows
platform, GSH differs significantly from
the most used ones such as bash, zsh.
Among others, its implementation does
not depend on the 'fork system call' and
doesn't emulate that system call (as it's
done on Cygwin). This allows better
compiling performance (the build times
can be up to 3 or 4 times faster than builds
performed by projects such as Cygwin).

[...]

Mine Detector

From: PragmAda Software Engineering
 <pragmada@pragmada.x10hosting.com>
Date: Thu, 4 Feb 2016 11:51:49 -0700
Subject: Mine Detector for GtkAda 3
Newsgroups: comp.lang.ada

Thanks to Pascal Malaise, there is now a
version of Mine Detector that works with
GtkAda 3 available from

https://pragmada.x10hosting.com/
mindet.html

[See also “Mine Detector”, AUJ 36-1, p.
19. —sparre]

LinXtris

From: Pascal Pignard <p.p11@orange.fr>
Date: Mon, 8 Feb 2016 21:49:56 +0100
Subject: LinXtris with Gnoga.
Newsgroups: gmane.comp.lang.ada.gnoga

First port to Gnoga of LinXtris version
0.1a2 from GTKAda
(http://sourceforge.net/projects/linxtris).

GTKAda source lines has been left as
comments in code to show the translation.

Instructions:

$ make linxtris

$ bin/linxtris -data_dir demo/linxtris/

Note: option "continuous movement" is
quite bad on my computer, maybe some
rework is needed on image display.

Muen Separation Kernel

From: Reto Buerki <reet@codelabs.ch>
Date: Mon, 22 Feb 2016 11:52:44 -0000
Subject: [ANN] Muen development version

0.7 released
Newsgroups: comp.lang.ada

We are proud to announce the availability
of Muen version 0.7.

The following major features and
improvements have been implemented
since the last announcement:

Support for Genode VM subjects

Through the close collaboration with
Genodelabs in Dresden [1], the Genode
OS framework has been ported to run as
subject on top of the Muen separation
kernel. This allows the robust
combination of the static, low-complexity
Muen SK with the feature-rich and
extensive Genode ecosystem. The result is
a flexible platform for the construction of
component-based high-assurance systems.

For more information about our work in
this area see the Genode release notes [2].

Subject time mechanism

Giving untrusted subjects access to high-
resolution time sources is often
problematic from a security perspective as
it makes way to measure subtle timing
differences in execution behavior,
enabling side-channel attacks. One
mechanism to make such attacks harder is
to provide only coarse grained time
sources to untrusted code. To this end we
implemented a time virtualization
mechanism by providing a timeserver
component in SPARK 2014, which
exports time information with
microsecond granularity via shared
memory. Only the timeserver has access
to the TSC high-resolution timer of the
CPU and the Real-Time Clock
(CMOS/RTC).

Other subjects derive the absolute and
relative time from the exported values
without the need to access hardware time
sources. For Linux, we implemented a
paravirtualized TSC driver and
CMOS/RTC emulation in the associated
subject monitor (SM).

Hardware and platform policy
abstractions

The XML system policy has been
augmented with hardware resource and
platform description abstractions.

The hardware section describes the
hardware resources provided by the target
machine and can be automatically
generated using the mugenhwcfg [3] tool.
By providing an automated mechanism
for hardware information collection, the
process of supporting new target
hardware has been greatly simplified.

Using the platform layer, an unified view
of the hardware resources across different

Ada in Context 19

Ada User Journal Volume 37, Number 1, March 2016

physical machines can be achieved. This
enables integrators to deploy the same
system policy across a wide range of
hardware targets.

Linux virtual filesystem and network
interface drivers

The muenfs [4] Linux kernel module
implements a virtual file system that
facilitates user-space access to inter-
subject memory channels. Filesystem
operations are used to exchange data with
other subjects.

The muennet [5] Linux kernel module
implements a virtual network interface
driver which sends and receives data via
shared memory channels. From the
perspective of a Linux user-space
application, a network interface created
using the muennet kernel module behaves
just like an ordinary network interface.

These new modules enable applications
running on Linux to conveniently
communicate and interact with other
subjects of a component-based system
running on Muen.

Further changes and improvements
include:

- Support for Message Signaled Interrupts
(MSI)

- Debug server subject written in Ada
2012

- VT subject written in Ada 2012

- Various toolchain improvements and
optimizations

One particularly exciting aspect of our
work related to the aforementioned
Genode framework is that we were able to
utilize the base-hw x86_64_muen kernel
port to execute 32-bit Windows (7-10)
guest VMs using the Genode VirtualBox
support on top of Muen. To achieve this,
we implemented a VirtualBox hardware
execution layer for hw_x86_64_muen.
We plan to pursue this line of work in
order to properly integrate Windows VM
support as a feature of Muen.

The mugenhwcfg tool for automated
generation of hardware configuration is
the result of a 12-week internship by
Chen Chin Jieh, a student from the
Nanyang Technological University
Singapore. We are very happy with the
result and would like to thank him for his
contribution to the Muen project.

Further information about Muen is
available on the project website [6] and
the git repository can be found at [7].

Please feel free to give the latest
development version of Muen a try.
Feedback is much appreciated!

[1] - http://genode-labs.com/

[2] - http://genode.org/documentation/
release-notes/15.08

[3] - http://git.codelabs.ch/?p=muen/
mugenhwcfg.git

[4] - http://git.codelabs.ch/?p=muen/linux/
muenfs.git

[5] - http://git.codelabs.ch/?p=muen/linux/
muennet.git

[6] - http://muen.codelabs.ch/

[7] - http://git.codelabs.ch/?p=muen.git

[See also “Muen Separation Kernel”, AUJ
36-1, p. 16. —sparre]

Ada in Context

Iterators for Directories and
Environment Variables

From: Yuta Tomino <aghia05@gmail.com>
Date: Fri, 27 Nov 2015 07:25:57 -0800
Subject: Two approaches of iterators for the

key-value pairs
Newsgroups: comp.lang.ada

Hello, I'm reading AI12-0009-1 "Iterators
for Directories and
Environment_Variables" [1]. And there is
interesting difference between the new
iterator of Ada.Environment_Variables
and the existing iterators. [...]

A loop for Ada.Environment_Variables
would be like below, according to this AI:

 for E *of*

 Ada.Environment_Variables.All_Variables

loop

 -- E is Iterator_Element

 (Name_Value_Pair_Type)

 Name (E) -- key

 Value (E) -- value

 end loop;

On the other hand, as we already know, a
loop for Ada.Containers.Hashed_Maps/
Ordered_Maps:

 for I *in* The_Map_Object.Iterate loop

 -- I is Cursor

 Key (E) -- key

 Element (E), Reference (E).Element.all

 -- value

 end loop;

If you create new iterator for some key-
value pairs, which approach do you like?

[1] http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai12s/ai12-0009-1.txt?rev=1.4

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 27 Nov 2015 17:30:17 +0100
Subject: Re: Two approaches of iterators for

the key-value pairs
Newsgroups: comp.lang.ada

> [...]

>

> If you create new iterator for some key-
value pairs, which approach do you like?

Rather this:

 for Variable in All_Variables loop

 Put_Line (Variable.Name & "=" &

 Variable.Value);

 end loop;

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Fri, 27 Nov 2015 14:52:05 -0800
Subject: Re: Two approaches of iterators for

the key-value pairs
Newsgroups: comp.lang.ada

> [...]

My initial implementation of this was as
an Iterator, rather than an Iterable
container, and in my implementation, I
got things to work this way without the
Cursor being a tagged type.

My "proof of concept" implementation
was for Ada.Directories, but the same
approach would also work for
Ada.Environment_Variables.

For Ada.Directories, I declared the Cursor
type as:

 type Cursor (Directory_Entry : not null

access constant Directory_Entry_Type) is

private

 with Implicit_Dereference =>

 Directory_Entry;

The Implicit_Dereference aspect was
added to Ada 2012.

For Ada.Environment_Variables, I would
have declared something like:

 type Cursor (Name_Value_Pair : not null

access constant Name_Value_Pair_Type)

is private

 with Implicit_Dereference =>

 Name_Value_Pair;

And

 function Has_Element (Name_Value_Pair

 : Cursor) return Boolean;

 package Environment_Variable_

 Iterator_Interfaces is new

 Ada.Iterator_Interfaces (

 Cursor => Cursor,

 Has_Element => Has_Element);

 function All_Variables return

Environment_Variable_Iterator_Interfaces.

Forward_Iterator'Class;

Then one would be able to write;

 for Variable in All_Variables loop

 Put_Line (Variable.Name & "=" &

 Variable.Value);

 end loop;

Exactly as Dmitry had requested...

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Fri, 27 Nov 2015 15:11:44 -0800
Subject: Re: Two approaches of iterators for

the key-value pairs
Newsgroups: comp.lang.ada

[...]

Getting feedback on the preferences of
people could influence the direction that
the AI takes, and ultimately we want to
make the best decisions, so it's good to
hear the feedback.

[...]

20 Ada in Context

Volume 37, Number 1, March 2016 Ada User Journal

My sense is that if you don't need a
container as part of the abstraction, then
perhaps it's better to just provide an
Iterator type. All the existing containers
already were containers, so for those it
made sense to make them Iterable
containers. Ada.Directories and
Ada.Environment_Variables do not
currently have Containers associated with
them, so perhaps an argument can be
made that they should be Iterators, rather
than concoct a Container type so that
Iterable container syntax can be used.

Volatile Full Access

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 7 Dec 2015 20:11:15 -0600
Subject: Re: STM32F4 GNAT Run Time

System - roadmap
Newsgroups: comp.lang.ada

> [...]

The ARG has decided on a different
direction to fix the problem addressed by
Volatile_Full_Access; essentially,
accesses to non-volatile components of
atomic objects have to be accessed with a
read-modify-write cycle. (See AI12-0128-
1.) Various parts of Annex C will be
rewritten to make that make sense.

I think someone here originally proposed
that (or at least something like it); it took
us quite a while to come around to that
view, mainly because of compatibility
concerns. But there is also the concern of
doing something unexpected.

Anyway, I don't expect that there is much
use of that GNAT-specific aspect once the
changes are approved (probably will
happen next year at our next meeting).

Everything You Know
About Storage Space is
Wrong

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 26 Dec 2015 17:37:04 -0700
Subject: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

When I started out in S/W development, I
learned some rules, such as, "Integer math
is much faster than floating point," and,
"Memory is scarce."

In the 90s, processors began to typically
have an FPU, and floating-point math
became as fast as integer, and in some
cases, since it could proceed in parallel
with the CPU, faster.

When computers began to commonly
have RAM in quantities measured in GB
rather than KB or MB, memory ceased to
be scarce, and things that were previously
laughable, such as

 type Int_Set is array (Integer) of Boolean;

 for Int_Set'Component_Size use

 Boolean'Size;

became possible (for a 32-bit Integer,
Int_Set'Size would be 512 MB). What I
knew is wrong.

Today we learn that memory is much
faster than persistent storage. That may
soon be wrong, too. I've been reading
about non-volatile memory research, and
it seems that in a few years NV RAM will
be available as fast current RAM and as
persistent and durable as current disks.

This will no doubt revolutionize computer
architectures and programming languages.
Instead of computers with distinct
memory and storage, there will probably
be computers with lots of NV RAM (1-10
TB?) but no disk.

People will no doubt still want a
hierarchical naming system for data
stored in that memory, but presumably
S/W will map variables onto these "files".
So instead of the current "open, loop over
read/modify/write, close" paradigm, we
might have something like

 type R is record ...

 type L is array (Positive range <>) of R;

 F : mapped L with File_Name => "name";

 All_Records : for I in F'range loop

 -- or "of F"

where the bounds of F will be determined
from "name". A mechanism will be
needed for collections of heterogeneous
data as well. F would be equivalent to a
Direct_IO file with in-out mode.

I would think that the Ada 2X project
should be thinking about these things, and
wonder what others here think about
them.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sun, 27 Dec 2015 08:55:38 +0100
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

> [...]

Time to resurrect Multics?

(For the education of the young
generation: Multics was an OS of the 60s-
70s, where everything was organized as
"segments" of virtual memory. There was
a command to list "named segments"
(equivalent of files), which was naturally
named... "ls".)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 27 Dec 2015 09:46:31 +0100
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

> [...]

There will be no files and no I/O.

The idea of a memory-mapped object-
oriented system is nothing new. On the
contrary, it is more than 20 years old.

BTW, we always will have multiple speed
memory. When the memory of each
computer will get a unique place in the
global address space and thus networking
I/O will be eliminated, remote memory

mapping will remain much slower than
the local one. Similarly, locally shared
writable memory will always be slower
than the single-ported one and that slower
than cache etc.

> [...]

> F : mapped L with File_Name =>
"name";

> [...] F would be equivalent to a
Direct_IO file with in-out mode.

No, it will be equivalent to a container
library.

BTW, Direct_IO stems from block-
oriented devices, namely disks. Once
there will be no I/O there will be no need
to slice data into same sized blocks.

> [...]

Well, long ago I wrote here about
requirements the language must have in
order to support such persistent memory.
The most important one is getting away
from the trusted model. E.g. operations of
a persistent protected object must go
through the supervisor mode in order to
keep protected members out of the caller's
memory space. And you won't get
anywhere without proper interfaces and
an elaborated type system.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sun, 27 Dec 2015 10:36:59 -0700
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

[...]

> No, it will be equivalent to a container
library.

Yes, thinking more about the idea, when
current S/W writes a file, it often has no
idea how big that file will be until it's
finished. The equivalent would seem to be
a memory-mapped unbounded container
that persists, with a name, after the
program ends.

Another thought I've had is the need to
wipe non-mapped objects at program
termination for security.

From: Alejandro R. Mosteo
<alejandro@mosteo.com>

Date: Mon, 4 Jan 2016 15:44:57 +0100
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

[...] And we'll have problems with the
fact that rebooting will not be tabula
rasa ;) New jokes ahead?

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Mon, 28 Dec 2015 10:57:16 +0100
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

> [...]

Maybe the word "distributed" needs to
include more features of the language and
its library.

Considering economy, the increase in
resources does not seem to always entail

Ada in Context 21

Ada User Journal Volume 37, Number 1, March 2016

new algorithms or corresponding new
features of languages(*). I have seen it
simplify scaling when we could just reuse
the same program in a larger address
space.

A program system that serves many
instead of one will save the cost of a few
computers or their parts, so virtualization
covers some use cases already, without
programs needing to change.

[...]

(*) “We don’t have better algorithms. We
just have more data.” -- P. Norvig

From: Bruce B.
<brbarkstrom@gmail.com>

Date: Tue, 5 Jan 2016 05:52:07 -0800
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

There are a three articles in the new
Comm. ACM that pick up on this theme:

- Greengard, S.: Better Memory,
pp. 23-25

- Mamavati, M., Schwazkopf, M., and
Warfield, A.: Non-Volatile Storage

- Helland, P.: Immutability Changes
Everything

The first two of these are on NVRAM and
architectural changes that are similar to
the comments in this thread. The last one
deals more with database design when
you don't have to worry so much about
versions because you can just store
everything.

This thread might also want to pick up on
the security implications of using block
ciphers instead of just the usual
encryption.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 29 Feb 2016 13:14:08 +0100
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

> [...]

Some of the rules which (apparently)
aren't wrong yet:

http://www.cse.msu.edu/~cse320/
Documents/FloatingPoint.pdf

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 29 Feb 2016 13:27:36 +0100
Subject: Re: Everything You Know Is Wrong
Newsgroups: comp.lang.ada

> [...]

> F : mapped L with File_Name =>
"name";

> [...]

>

> I would think that the Ada 2X project
should be thinking about these things,
and wonder what others here think
about them.

I think it looks somewhat similar to some
of my experiments on simplified
persistence in Ada:

http://www.jacob-sparre.dk/persistence/
ae2010-slides.pdf

http://www.jacob-sparre.dk/programming/
persistent_containers-2015-paper.pdf

Considering the difficulties of
implementing persistence in a simple way
with a library, I think it is worthwhile
experimenting with something like this -
and considering it for the next major
revision of Ada.

22

Volume 37, Number 1, March 2016 Ada User Journal

Conference Calendar
Dirk Craeynest

KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2016

April 02-08 19th European Joint Conferences on Theory and Practice of Software (ETAPS'2016), Eindhoven,

the Netherlands. Events include: ESOP (European Symposium on Programming), FASE (Fundamental

Approaches to Software Engineering), FOSSACS (Foundations of Software Science and Computation

Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the

Construction and Analysis of Systems).

April 03 13th International Workshop on Formal Engineering approaches to Software

Components and Architectures (FESCA'2016). Topics include: (semi-)formal

techniques and their application that aid analysis, design and implementation of software

applications; formal modelling of component-based, timed and hybrid systems; temporal

properties and their formal verification; interface compliance and contractual use of

components; static and dynamic analysis; industrial case studies and experience reports;

etc.

April 04-08 31st ACM Symposium on Applied Computing (SAC'2016), Pisa, Italy.

April 03-08 Track on Software Verification and Testing (SVT'2016). Topics include: new results

in formal verification and testing, technologies to improve the usability of formal

methods in software engineering, applications of mechanical verification to large scale

software, etc.

April 03-08 Track on Software Engineering (SE'2016). Topics include: software architecture, and

software design patterns; standards; maintenance and reverse engineering; quality

assurance; verification, validation, testing, and analysis; safety, security, and risk

management; dependability and reliability; fault tolerance and availability; formal

methods and theories; component-based development and reuse; empirical studies, and

industrial best practices; applications and tools; distributed, embedded, real-time, high-

performance, highly dependable systems; etc.

 April 04-08 Track on Programming Languages (PL'2016). Topics include: compiling techniques,

domain-specific languages, garbage collection, language design and implementation,

languages for modeling, model-driven development, new programming language ideas

and concepts, practical experiences with programming languages, program analysis and

verification, programming languages from all paradigms, etc.

 April 04-08 Track on Multicore Software Engineering, Performance, Applications and Tools

(MUSEPAT'2016). Topics include: software engineering for multicore (CPU or GPU);

specification and modeling of multicore systems; programming models, languages,

compiler techniques and development tools for multicore; parallel and distributed testing

and debugging; evolving sequential software to leverage multicore and manycore

hardware; performance and optimization of multicore software; domain- and platform-

specific multicore software issues (e.g., issues in scientific computing); etc.

 April 04-08 Track on Object-Oriented Programming Languages and Systems (OOPS'2016).

Topics include: aspects and components; code generation and optimization; distribution

and concurrency; formal verification; integration with other paradigms; interoperability,

Conference Calendar 23

Ada User Journal Volume 37, Number 1, March 2016

versioning and software evolution and adaptation; language design and implementation;

modular and generic programming; runtime verification; secure and dependable

software; static analysis; testing and debugging; type systems; etc.

April 05-08 13th Working IEEE/IFIP Conference on Software Architecture (WICSA'2016), Venice, Italy. Topics

include: re-factoring and evolving architecture design decisions and solutions; techniques and tools for

technical debt management; managing architecture risk over the life cycle of a system; architecture

description languages and model driven architecture; software architecture modelling, analysis methods

and tools; software architecture for legacy systems and systems integration; open architectures, product-

line architectures, software ecosystems, systems of systems; software architects' roles and

responsibilities; training, education, and certification of software architects; industrial experiments and

case studies; etc.

April 05-08 10th Conference for Component-Based Software Architectures (CompArch'2016), Venice, Italy.

Topics include: re-factoring and evolving architecture design decisions and solutions; techniques and

tools for technical debt management; managing architecture risk over the life cycle of a system;

architecture description languages and model driven architecture; software architecture modelling,

analysis methods and tools; software architecture for legacy systems and systems integration; open

architectures, product-line architectures, software ecosystems, systems of systems; software architects'

roles and responsibilities; training, education, and certification of software architects; industrial

experiments and case studies; etc.

April 06-08 8th International Symposium on Engineering Secure Software and Systems (ESSoS'2016), London,

UK. Topics include: automated techniques for vulnerability discovery and analysis; programming

paradigms, models, and domain-specific languages for security; verification techniques for security

properties; security by design; static and dynamic code analysis for security; processes for the

development of secure software and systems; embedded software security; etc. Includes paper:

"Progress-Sensitive Security for SPARK".

April 10-15 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'2016),

Chicago, Illinois, USA. Topics include: security testing, embedded software testing, testing concurrent

software, testing large-scale distributed systems, testing in multi-core environments, quality assurance,

model checking, testing of open source and third-party software, software reliability, formal verification,

experience reports, etc.

April 11-13 18th International Real-Time Ada Workshop (IRTAW'2016), Benicàssim, Spain.
In cooperation with Ada-Europe.

April 27-28 11th International Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE'2016), Rome, Italy. Topics include: comparing novel approaches with established traditional

practices and evaluating them against software quality criteria, software and systems development

methodologies, software process improvement, software product line engineering, architectural design

and frameworks, software quality management, software change and configuration management,

application integration technologies, geographically distributed software engineering, formal methods,

model-driven engineering, etc.

April 27-29 XIX Iberoamerican Conference on Software Engineering (CIbSE'2016), Quito, Ecuador. Topics

include: languages, methods, processes, and tools; reverse engineering and software system

modernization; software evolution and maintenance; model-driven engineering; proof, verification, and

validation; quality, measurement, and assessment of products and processes; formal methods applied to

software engineering; software product families and variability; software reuse; etc.

 May 14-22 38th International Conference on Software Engineering (ICSE'2016), Austin, Texas, USA. Deadline

for early registration: April 4, 2016.

May 15 4th FME Workshop on Formal Methods in Software Engineering (FormaliSE'2016).

Topics include: integration of FMs in the software development life cycle, ability of

formal methods to handle real-world problems, formal methods in a certification

context, "lightweight" or usable FMs, application experiences, formal approaches to

safety and security related issues, cyber physical systems, scalability of FM applications,

rigorous software engineering approaches and their tool support, formal approaches to

safety and security related issues, case studies developed/analyzed with formal

approaches, etc.

24 Conference Calendar

Volume 37, Number 1, March 2016 Ada User Journal

 May 17-20 19th IEEE International Symposium On Real-Time Computing (ISORC'2016), York, UK. Topics

include: object/component/service-oriented real-time distributed computing (ORC) technology;

programming and system engineering (ORC paradigms, languages, model-maintenance, time-

predictable systems, ...), system software (real-time kernels, middleware support for ORC, extensibility,

synchronization, scheduling, fault tolerance, security, ...), applications (medical devices, intelligent

transportation systems, industrial automation systems, embedded systems, ...), system evaluation

(timing, dependability, fault detection and recovery time, ...), cyber-physical systems, etc.

May 23-27 30th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2016), Chicago,

Illinois, USA.

May 30 - Jun 02 12th International Conference on Open Source Systems (OSS'2016), Gothenburg, Sweden. Topics

include: adoption, use, acceptance of FLOSS; expanding scientific research and technology

development methods through openness; security of FLOSS; interoperability, portability, scalability of

FLOSS; open standards; reuse in FLOSS; FLOSS for education; FLOSS in the public sector; etc.

June 01-03 20th International Conference on Evaluation and Assessment in Software Engineering

(EASE'2016), Limerick, Ireland. Topics include: any aspect of empirical software engineering.

June 01-05 12th International Conference on integrated Formal Methods (iFM'2016), Reykjavík, Iceland.

Topics include: hybrid approaches to formal modelling and analysis; i.e., the combination of (formal

and semi-formal) methods for system development, regarding modelling and analysis, and covering all

aspects from language design through verification and analysis techniques to tools and their integration

into software engineering practice.

June 05-07 15th International Conference on Software Reuse (ICSR'2016), Limassol, Cyprus. Topics include:

COTS-based development and reuse of open source assets; generative development; domain-specific

languages; software composition and modularization; model-driven development; reengineering for

reuse; software product line techniques; quality assurance for software reuse, such as testing and

verification; reuse of non-code artifacts (process, experience, etc.); transition to software reuse;

industrial experience with reuse; software evolution and reuse; etc.

June 07-09 8th NASA Formal Methods Symposium (NFM'2016), Minneapolis, Minnesota, USA. Topics include:

identifying challenges and providing solutions to achieving assurance in mission- and safety-critical

systems; model checking; static analysis; model-based development; design for verification and correct-

by-design techniques; applications of formal methods in the development of autonomous systems cyber-

physical, embedded, and hybrid systems, ...; use of formal methods in: assurance cases, automated

testing and verification, ...; etc.

June 10-14 40th Annual IEEE Computer Software and Applications Conference (COMPSAC'2016), Atlanta,

Georgia, USA. Event includes: symposiums on Computer Education and Learning Technologies

(CELT), Embedded & Cyber-Physical Environments (ECPE), IT in Practice (ITIP), Novel Applications

& Technology Advances in Computing (NATA), Security, Privacy and Trust in Computing (SEPT),

Software Engineering Technology and Applications (SETA), etc.

 June 13-17 21st International Conference on Reliable Software Technologies - Ada-

Europe'2016. Pisa, Italy. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA).

June 17 3rd International Workshop on Challenges and new Approaches for Dependable

and Cyber-Physical Systems Engineering (De-CPS 2016). Topics include: Industrial

challenges and experience reports on co-engineering for multiple dependability concerns

in CPS engineering; modeling and analysis of Cyber-Physical Systems (CPS) and IoT;

tools and methodologies to guarantee dependability-related properties, including real-

time and mixed-criticality cohabitation; challenges posed for CPS design and

verification by multi-core processors; smart factoring, industry 4.x; platforms for IoT -

CPS. Deadline for submissions: April 30, 2016.

June 13-17 ACM Conference on Programming Language Design and Implementation (PLDI'2016), Santa

Barbara, California, USA. Topics include: all areas of programming language research, including the

design, implementation, theory, and efficient use of languages.

 June 19-23 ISC2016 - Workshop on Exascale Multi/Many Core Computing Systems (MuCoCoS'2016),

Frankfurt, Germany. Topics include: multi/many core languages, system software and architectural

Conference Calendar 25

Ada User Journal Volume 37, Number 1, March 2016

solutions for extreme-scale systems towards Exascale; methods and tools for preparing applications for

Exascale; adaptive run-time systems for extreme-scale; etc.

 June 28-30 International Conference on Reliability, Safety and Security of Railway Systems (RSSR'2016),

Paris, France. Topics include: safety in development processes and safety management; combined

approaches to safety and security; system and software safety analysis; formal modelling and

verification techniques; system reliability; validation according to the standards; tool and model

integration, toolchains; domain-specific languages and modelling frameworks; model reuse for

reliability, safety and security; etc. Deadline for submissions: May 1, 2016 (posters).

July 04-08 Software Technologies: Applications and Foundations (STAF'2016), Vienna, Austria. Successor of

the TOOLS federated event. Topics include: practical and foundational advances in software

technology, including formal foundations of software technology, testing and formal analysis, graph

transformations and model transformations, model driven engineering, and tools. Deadline for

submissions: April 15, 2016 (doctoral symposium), May 2, 2016 (project showcases).

July 05-07 10th International Conference on Tests And Proofs (TAP'2016). Topics include:

many aspects of verification technology, including foundational work, tool

development, and empirical research; the connection between proofs (and other static

techniques) and testing (and other dynamic techniques); verification and analysis

techniques combining proofs and tests; program proving with the aid of testing

techniques; deductive techniques to support testing: generating testing inputs and

oracles, supporting coverage criteria, and so on; program analysis techniques combining

static and dynamic analysis; testing and runtime analysis of formal specifications;

model-based testing and verification; using model checking to generate test cases;

testing of verification tools and environments; applications of testing and proving to new

domains, such as security, configuration management, and language-based techniques;

case studies, tool and framework descriptions, and experience reports about combining

tests and proofs; etc.

July 5-8 28th Euromicro Conference on Real-Time Systems (ECRTS 2016), Toulouse, France. Topics

include: middleware; operating systems; runtime environments; virtualization and temporal isolation;

software architecture; programming language & compiler support; component-based approaches;

modelling and formal methods; probabilistic analysis; quality of service support; reliability, security and

survivability; mixed-criticality systems; scheduling and schedulability analysis; worst-case execution

time analysis; validation and verification techniques.

July 17-19 10th International Symposium on Theoretical Aspects of Software Engineering (TASE'2016),

Shanghai, China. Topics include: theoretical aspects of software engineering, such as abstract

interpretation, component-based systems, cyber-physical systems, distributed and concurrent systems,

embedded and real-time systems, formal verification and program semantics, integration of formal

methods, language design, model checking and theorem proving, object-oriented systems, run-time

verification and monitoring, software architecture, software testing and quality assurance, software

security and reliability, static analysis of programs, type systems and behavioural typing, tools

exploiting theoretical results, etc.

July 17-23 28th International Conference on Computer Aided Verification (CAV'2016), Toronto, Ontario,

Canada. Topics include: theory and practice of computer-aided formal analysis methods for hardware

and software systems, algorithms and tools for verifying models and implementations, program analysis

and software verification, verification methods for parallel and concurrent systems, testing and run-time

analysis based on verification technology, applications and case studies in verification, verification in

industrial practice, formal models and methods for security, etc.

 July 18-22 30th European Conference on Object-Oriented Programming (ECOOP'2016), Rome, Italy. Topics

include: theory, design, implementation, optimization, and analysis of programming languages that

enable or enforce abstractions across various programming styles, from object-orientation to reactivity

to spreadsheets; innovative and creative solutions to real problems; evaluations of existing solutions in

ways that shed new insights; etc. Deadline for submissions: April 11 - May 10, 2016 (workshop papers),

May 20, 2016 (doctoral symposium).

 July 17 1st Workshop on Programming Models and Languages for Distributed Computing

(PMLDC'2016). Topics include: new approaches to distributed programming that

26 Conference Calendar

Volume 37, Number 1, March 2016 Ada User Journal

provide efficient execution and the elimination of accidental nondeterminism resulting

from concurrency and partial failure. Deadline for paper submissions: May 6, 2016.

 July 18 11th Workshop on Implementation, Compilation, Optimization of OO Languages,

Programs and Systems (ICOOOLPS'2016). Topics include: techniques for the

implementation and optimization of a wide range of languages including but not limited

to object-oriented ones; implementation and optimization of fundamental languages

features (from automatic memory management to zero-overhead metaprogramming);

runtime systems technology; compilers (intermediate representations, offline and online

optimizations, ...); empirical studies on language usage; resource-sensitive systems (real-

time, low power, mobile, cloud); tooling support, debuggability and observability of

languages as well as their implementations; etc. Deadline for submissions: April 11,

2016 (abstracts), April 15 (papers).

July 24-26 11th International Joint Conference on Software Technologies (ICSOFT'2016), Lisbon, Portugal.

Topics include: all areas that are either related to new software paradigm trends or to mainstream

software engineering and applications, such as software metrics, agile methodologies, risk management,

quality control and assurance, software standards and certification, software and systems integration,

software testing and maintenance, model-driven engineering, software and systems quality, software and

information security, formal methods, programming languages, middleware technologies, parallel and

high performance computing, etc. Deadline for submissions: April 21, 2016 (position papers), May 20,

2016 (Doctoral Consortium papers).

August 01-03 IEEE International Conference on Software Quality, Reliability and Security (QRS'2016), Vienna,

Austria. Merger of SERE (International Conference on Software Security and Reliability) and QSIC

(International Conference on Quality Software). Topics include: reliability, security, availability, and

safety of software systems; software testing, verification and validation; metrics, measurements, and

analysis; software vulnerabilities; formal methods; benchmark, tools, and empirical studies; etc.

Includes IEEE International Workshop on Safety and Security in Cyber-Physical Systems (SSCPS), on

Trustworthy Computing (TC), etc. Deadline for submissions: April 22, 2016 (workshop papers, student

papers), April 29, 2016 (fast abstracts).

August 02-05 11th IEEE International Conference on Global Software Engineering (ICGSE'2016), Orange

County, California, USA. Theme: "Software Bridging Distances Between People". Topics include:

industrial offshoring and outsourcing experiences, lean and agile development, methods and processes,

mining software repositories and software analytics, open source software communities, security and

privacy, software evolution and maintenance, strategic issues in distributed development, tools and

infrastructure support, etc.

Aug 31- Sep 02 42nd Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2016),

Limassol, Cyprus. Topics include: information technology for software-intensive systems; embedded

software engineering (ESE); model-based development, components and services (MOCS); software

process and product improvement (SPPI); teaching, education and training for dependable embedded

and cyberphysical systems (TET-DEC); cyber-physical systems (CPS).

September 12-14 5th International Conference on Intelligent Software Methodologies, Tools and Techniques

(SoMeT'2016), Larnaca, Cyprus. Topics include: state-of-art and new trends on software methodologies,

tools and techniques; software methodologies and tools for robust, reliable, non-fragile software design;

software development techniques for legacy systems; software evolution techniques; agile software and

lean methods; formal methods for software design; software maintenance; software security tools and

techniques; formal techniques for software representation, software testing and validation; object-

oriented, aspect-oriented, component-based and generic programming, multi-agent technology; Model

Driven Development (DVD), code centric to model centric software engineering; etc.

 September 26-29 21st International Workshop on Formal Methods for Industrial Critical Systems & 16th

International Workshop on Automated Verification of Critical Systems (FMICS-AVoCS'2016),

Pisa, Italy. Topics include: design, specification, refinement, code generation and testing of critical

systems based on formal methods; methods, techniques and tools to support automated analysis,

certification, debugging, learning, optimization and transformation of critical systems, in particular

distributed, real-time systems and embedded systems; automated verification (model checking, theorem

proving, SAT/SMT constraint solving, abstract interpretation, etc.) of critical systems; verification and

validation methods that address shortcomings of existing methods with respect to their industrial

applicability (e.g., scalability and usability issues); tools for the development of formal design

Conference Calendar 27

Ada User Journal Volume 37, Number 1, March 2016

descriptions; case studies and experience reports on industrial applications of formal methods, focusing

on lessons learned or identification of new research directions; impact of the adoption of formal

methods on the development process and associated costs; application of formal methods in

standardization and industrial forums. Deadline for submissions: April 18 (abstracts), April 25 (papers).

October 19-21 24th International Conference on Real-Time Networks and Systems (RTNS 2016), Brest, France.

Topics include: real-time system design and analysis: task and message scheduling, modelling,

verification, evaluation, model-driven development, worst-case execution time estimation, distributed

systems, fault tolerance, quality of service, security; infrastructure and hardware for real-time systems:

wired and wireless communication networks, fieldbuses, networked control systems, control/computing

co-design, sensor networks, power-aware techniques; software technologies for real-time systems:

compilers, programming languages, middleware and component-based technologies, operating systems,

databases; applications: automotive, avionics, space, railways, telecommunications, process control,

multimedia. Deadline for submissions: July 25, 2016.

 Oct 30-Nov 04 ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH'2016), Amsterdam, the Netherlands. Topics include: all aspects of software

construction, at the intersection of programming, languages, systems, and software engineering.

Deadline for submissions: April 1, 2016 (Onward! research papers and essays), June 10, 2016 (DLS -

Dynamic Languages Symposium), June 17, 2016 (abstracts SLE - Software Language Engineering and

GPCE - Generative Programming: Concepts & Experiences), June 24, 2016 (papers SLE and GPCE),

June 30, 2016 (doctoral symposium), July 8, 2016 (posters).

Nov 29-Dec 2 37th IEEE Real-Time Systems Symposium (RTSS 2016), Porto, Portugal. Topics include: operating

systems, networks, middleware, compilers, tools, scheduling, QoS support, resource management,

testing and debugging, design and verification, modeling, WCET analysis, performance analysis, fault

tolerance, security, power and thermal management, embedded platforms, and system experimentation

and deployment experiences. Deadline for submissions: May 4, 2016.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Advance Information

The 21st International Conference on Reliable Software Technologies (Ada-Europe 2016) will take place in Pisa,

Italy. This conference is the latest in a series of annual international conferences started in the early 80's, under

the auspices of, and organization by, Ada-Europe, the international organization that promotes the knowledge

and use of Ada and Reliable Software in general into academia, research and industry.

Ada-Europe 2016 provides a unique opportunity for dialogue and collaboration between academics and industrial

practitioners interesting in reliable software.

The conference will span a full week, including tutorials and a central three-day technical program with the latest

advances in reliable software technologies and Ada. The core program features 3 keynote talks, 12 refereed

scientific papers, 8 industrial presentations and one special session on Ada and Parallelism. The program of the

conference is complemented with presentations from projects and the “ITS EASY Post Graduate School”, co-

located with the conference, and the workshop on “Challenges and new Approaches for Dependable and Cyber-

Physical Systems Engineering”. Half-day and full-day tutorials will be provided on Monday and Friday.

Week Overview

Monday Tuesday Wednesday Thursday Friday

Tutorials

Keynote Talk

Alan Burns

Keynote Talk

Valerio Giorgetta

Keynote Talk

Marc Duranton

Tutorials

&

Workshop

Regular session

Concurrency &

Parallelism

Industrial session

Use of Ada

Industrial session

Reliable Software

Vendor Session

Presentations

ITS EASY Post

Graduate School

& Projects

Regular session

Program

Correctness &

Robustness

Special session

Ada & Parallelism

Regular session

Testing &

Verification

Regular session

Real-Time Systems

Ada-Europe

General Assembly

Welcome cocktail
Conference

banquet

Best paper award

Best presentation

award

Closing session

\http://www.ada-europe.org/conference2016

Keynote talks

Each day of the core program will be opened a keynote talk delivered by one the following eminent speakers:

· Alan Burns, University of York, UK, “Why the Expressive Power of Languages such as Ada is needed for

Future Cyber Physical Systems”

· Valerio Giorgetta, Magneti Marelli, Italy, “Challenges for the Automotive Platform of the Future”

· Marc Duranton, CEA, France, “The HiPEAC Vision”

Tutorials

Bracketing the conference on Monday and Tuesday, the program includes eight tutorials:

· A Semi-formal Approach to Software Development, W. Bail, Monday morning

· Ada 2012 (Sub)types and Subprogram Contracts in Practice, J. Sparre-Andersen, Monday morning

· Software Test and Verification Techniques for Dependable Systems, W. Bail, Monday afternoon

· Towards Energy Awareness and Predictability in the Linux Kernel, J. Lelli, Monday afternoon

· Embedded ARM Programming with Ada 2012, P. Rogers, Monday full day

· Access Types and Memory Management in Ada 2012, J.P. Rosen, Friday monrning

· Using Gnoga for Desktop/Mobile GUI and Web development in Ada, J.P. Rosen, Friday afternoon

· Parallelism in Ada, C, Java and C#, Today and Tomorrow, B. Moore & S. Michell, Friday full day

Co-Located Workshop

The conference week features the third International Workshop on Challenges and new Approaches for

Dependable and Cyber-Physical Systems Engineering (De-CPS 2016), following the success of the inaugural

workshop in 2014 and of its second edition in Madrid in 2015.

The workshop will take place Friday, June 17th, from 09:30 to 17:30.

About the Venue

Pisa is located in Tuscany, close to the coast and just 80 km from Florence. It is a

university city with a population of nearly 100,000. Once a Marine Republic, Pisa

stretches along the shores of the Arno River, and occupies a place of honour

amongst the most exclusive of art cities. Its glorious past offers authentic wonders

to the tourist, and there is a lot more to see than just the leaning Tower of Pisa, its

most popular 'product'.

June is full of events in Pisa, including in the conference week the Saint Patron's

festivities (San Ranieri) with the Luminara on the night of June 16. This is definitely

worth seeing! Book your hotel in advance - highly recommended as hotels will be

in short supply.

The conference will be hosted at the Scuola Superiore Sant'Anna,

located in the heart of Pisa, just a walk away from Campo dei

Miracoli.

http://www.ada-europe.org/conference2016

1 2

Organization

Conference Chair

Giorgio Buttazzo

Scuola Superiore Sant’Anna

Program Co-Chairs

Marko Bertogna

Univ. of Modena and Reggio Emilia

Luís Miguel Pinho

CISTER/INESC-TEC, ISEP

Special Session Chair

Eduardo Quiñones

Barcelona Supercomputing Center

Tutorial and Workshop Chair

Jorge Real

Universitat Politècnica de València

Industrial Co-Chairs

Marco Di Natale

Scuola Superiore Sant’Anna

Tullio Vardanega

Università di Padova

Publication Chair

Geoffrey Nelissen

CISTER Research Centre/ISEP

Exhibition Co-Chairs

Paolo Gai

Evidence Srl

Ahlan Marriott

White Elephant GmbH

Publicity Co-Chairs

Mauro Marinoni

Scuola Superiore Sant’Anna

Dirk Craeynest

Ada-Belgium & KU Leuven

Local Chair

Ettore Ricciardi

ISTI-CNR, Pisa

Program Committee

Mario Aldea (Universidad de Cantabria), Ted Baker (NSF), Marko Bertogna (University of Modena and Reggio Emilia), Johann

Blieberger, (Technische Universität Wien), Bernd Burgstaller (Yonsei University), Albert Cohen (INRIA), Juan A. de la Puente

(Universidad Politécnica de Madrid), Michael González Harbour (Universidad de Cantabria), J. Javier Gutiérrez (Universidad de
Cantabria), Jérôme Hugues (ISAE), Raimund Kirner (University of Hertfordshire), Albert Llemosí (Universitat de les Illes Balears),
Franco Mazzanti (ISTI-CNR), Stephen Michell (Maurya Software), Jürgen Mottok (Regensburg University of Applied Sciences),
Laurent Pautet (Telecom ParisTech), Luís Miguel Pinho (CISTER/ISEP), Erhard Plödereder (University of Stuttgart), Eduardo

Quinoñes (Barcelona Supercomputing Center), Jorge Real (Universitat Politècnica de València), Christine Rochange

(IRIT/University of Toulouse), José Ruiz (AdaCore), Sergio Sáez (Universitat Politècnica de Valencia), Martin Schoeberl

(Technical University of Denmark), Tucker Taft (AdaCore), Theodor Tempelmeier (University of Applied Sciences Rosenheim),
Elena Troubitsyna (Åbo Akademi), Santiago Urueña (GMV), Tullio Vardanega (Università di Padova).

Industrial Committee

Ian Broster (Rapita Systems), Jørgen Bundgaard (Ramboll), Dirk Craeynest (Ada-Belgium & KU Leuven), Arne Hamann (Bosch),
Ismael Lafoz (Airbus Defence & Space), Ahlan Marriott (White Elephant), Paolo Panaroni (Intecs), Paul Parkinson (Wind River),
Eric Perlade (AdaCore), Jean-Pierre Rosen (Adalog), Jacob Sparre Andersen (JSA Consulting), Claus Stellwag (Elektrobit AG),
Jean-Loup Terraillon (European Space Agency), Sergey Tverdyshev (SysGO), Rod White (MBDA).

Sponsors

The conference is supported

and sponsored by

In Cooperation with:

 Ada Resource Association

http://www.ada-europe.org/conference2016

Press Release 31

 Volume 37, Number 1, March 2016

FOR IMMEDIATE RELEASE

Ada 2012 Language Standard Corrigendum Approved by ISO

Milestone marks smooth continuation of Ada language standardization process

EMBEDDED WORLD 2016, Nuremberg, Germany, February 23, 2016 – The Ada

Resource Association (ARA) and Ada-Europe today announced that an update to the

Ada 2012 language standard, formally known as Technical Corrigendum 1 to ISO/IEC

8652:2012, has been approved and officially published by the Geneva-based

International Organization for Standardization (ISO). Comprising a variety of

clarifications and minor corrections driven by implementation and user experience, the

Corrigendum was developed under the auspices of Working Group ISO/IEC

JTC1/SC22/WG9, in particular by WG9’s Ada Rapporteur Group (ARG), and was

issued on February 1, 2016. This work was supported in part by the ARA and Ada-

Europe.

The publication of the Corrigendum highlights the steady and orderly evolution of the

Ada programming language. New versions of the standard are published by ISO at

roughly ten-year intervals. Between releases, the ARG reviews the standard for

completeness, correctness, and unambiguity, and also considers and analyzes

proposed updates ranging from minor wording changes to the addition of major new

features. Especially in the case of new features, the ARG performs a careful analysis of

the tradeoffs among the design choices, taking into account the requirements of all the

stakeholders (existing Ada users, potential new users, compiler implementors, third-

party tool providers, educators and researchers, etc.) This process has worked

successfully since the language’s inception more than thirty years ago, resulting in

precisely defined standards that are issued in a timely fashion and that meet the

evolving needs of the Ada community.

A consolidated Ada 2012 Language Reference Manual, consisting of the Ada 2012

standard as updated by changes from the Corrigendum, is available online:

www.ada-auth.org/standards/ada12_w_tc1.html/.

“In this phase of the language standardization process, the focus is on attention to

detail, so the Corrigendum has ‘fine-tuned’ the wording to make sure that the standard

is correct,” said Dr. Joyce Tokar, WG9 Convenor. “It has also enhanced the control

provided by contract-based programming, so the Ada programmer can not only specify

the preconditions and predicates that apply to inputs, but also identify which particular

exceptions should be raised when a precondition or predicate fails. The preconditions

32 Press Release

Volume 37, Number 1, March 2016

and predicates can thus fully specify an API’s requirements, and the consequences of

failure when these requirements are not met. The Corrigendum represents an

important contribution to the Ada community.”

About Ada 2012

Ada 2012 has brought significant enhancements to Ada, most notably in the area of

“contract-based programming.” Features here include the ability to specify

preconditions and postconditions for subprograms, and invariants for private

(encapsulated) types. These take the form of Boolean expressions that can be

interpreted (under programmer control) as run-time conditions to be checked. The

contract-based programming features fit in smoothly with Ada’s Object-Oriented

Programming model, and support the type substitutability guidance supplied in the

Object-Oriented Technologies and Related Techniques Supplement (DO-332) to the

avionics software safety standard DO-178C / ED-12C.

Other Ada 2012 improvements include enhancements to the containers library,

increased expressiveness through features such as conditional expressions and more

powerful iterators, and support for multicore platforms (task affinities, and the extension

of the Ravenscar profile – standardized in Ada 2005 as an efficient and predictable

tasking subset for high-integrity real-time systems – to multiprocessor and multicore

environments).

A technical summary of Ada 2012, together with an explanation of the language’s

benefits and a set of links to further information, is available at www.ada2012.org, a

website maintained by the Ada Resource Association.

About the Ada Resource Association

The Ada Resource Association (ARA) is a non-profit organization chartered to support

the continued evolution of the Ada language and its infrastructure, to serve as a source

of information about Ada and its usage, and to promote Ada as a language for effective

software engineering. To these ends, the ARA maintains the Ada Information

Clearinghouse website www.adaic.org and has provided funding for the development and

maintenance of the Ada language standard and the Ada Conformance Assessment

Test Suite. For information about the ARA, including sponsorship opportunities, please

visit www.adaresource.com. The ARA is headquartered in Oakton, VA (US).

About Ada-Europe

Ada-Europe is the international non-profit organization that promotes the knowledge

and use of the Ada programming language in academia, research and industry in

Europe. Its flagship event is the annual international conference on reliable software

technologies, a high-quality technical and scientific event that has been successfully

running in the current format for the last 20 years. Ada-Europe has member

organizations all over the continent, in Belgium, Denmark, France, Germany, Spain,

Sweden, and Switzerland, as well as individual members in many other countries.

Press Release 33

 Volume 37, Number 1, March 2016

For information about Ada-Europe, its charter, activities and sponsors, please visit:

www.ada-europe.org. Ada-Europe is headquartered in Brussels, Belgium.

Organization Contacts

Ada Resource Association

Ben Brosgol, ARA President

brosgol@adacore.com

Ada-Europe

Tullio Vardanega, Ada-Europe President

president@ada-europe.org

Press Contacts

Ada Resource Association

Jenna Beaucage

Rainier Communications

Tel: +1-508-475-0025 x124

jbeaucage@rainierco.com

Ada-Europe

Dirk Craeynest, Ada-Europe Vice-president

c/o KU Leuven, Department of Computer Science

dirk.craeynest@cs.kuleuven.be

 35

 Volume 37, Number 1, March 2016

Update for Ada 2012
John Barnes

John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:

jgpb@jbinfo.demon.co.uk

Abstract

This paper describes the rationale for the changes
made to Ada 2012 as a consequence of a review
carried out in 2015.

Keywords: rationale, Ada 2012, corrigendum.

1 Introduction

The first version of Ada (Ada 83) was developed by a team

led by the late Jean Ichbiah and funded by the USDoD. The

development of Ada 95 was done under the leadership of

Tucker Taft and also funded by the USDoD. Then came

Ada 2005 and Ada 2012 [1, 2] which were developed on a

more modest scale and largely done by voluntary effort

with support from within the industry itself by bodies such

as the Ada Resource Association and Ada-Europe.

The Ada Rapporteur Group (ARG) is a team of experts

nominated by the national bodies represented on WG9

(ISO/IEC JTC 1/SC22/WG9, the working group for Ada)

and the two liaison organizations, ACM SIGAda and Ada-

Europe. In the case of Ada 2005, the ARG was originally

led by Erhard Plödereder and then by Pascal Leroy. For

Ada 2012, it was led by Ed Schonberg. Since the Ada 2012

standard was issued the ARG has been led by Jeff Cousins.

The editor, who at the end of the day actually writes the

words of the standard, continues to be the indefatigable

Randy Brukardt and the convenor of WG9 is Joyce Tokar.

The changes made to Ada 2012 by the update are presented

in the same areas as in the Ada 2012 Rationale [3] to ease

any comparison. In each area the relevant Ada Issues (AIs)

are listed and this is then followed by a brief discussion. It

will be observed that many issues concern corner cases

which will not be of much interest to the average user.

Moreover, the changes are usually corrections to the

descriptive text. But just occasionally we get the

excitement of a new aspect, a new type or subprogram and

even a new bit of syntax!

Note that some Ada Issues were mentioned in the

Postscript section of the Ada 2012 Rationale published

after the standard was approved (and in Programming in

Ada 2012 [4] by the author). They are given here for

completeness and are marked with *. But note that they

might have changed again since the Rationale was written.

The updated version of Ada 2012 was approved by WG 9

in June 2015, by SC 22 in December 2015, and published

by ISO in February 2016. It is formally ISO/IEC

8652:2012/Cor 1:2016, entitled Technical Corrigendum 1

for Ada 2012, or TC1 for short.

2 Contracts and aspects

This is perhaps the most exciting area of Ada 2012 and

covers matters such as the new notation for aspects which

replaces many uses of pragmas and also the introduction of

contracts. Contracts include pre- and postconditions, type

invariants, and subtype predicates.

The following Ada issues cover this area:

 32 Questions on 'Old

 41 Type_Invariant'Class for interface types

 42 Type invariant checking rules

 44* Calling visible functions from type invariant

expressions

 45* Pre- and Postconditions are allowed for generic

subprograms

 49 Invariants need to be checked on the initialization of

deferred constants

 54* Aspect Predicate_Failure

 68 Predicates and the current instance of a subtype

 71* Order of evaluation when multiple predicates apply

 77 Has_Same_Storage on objects of size zero

 96 The exception raised when a subtype conversion fails

a predicate check

 99 Wording problems with predicates

104 Overriding an aspect is undefined

105 Pre and Post are not allowed on any subprogram

completion

113 Class-wide preconditions and statically bound calls

116 Private types and predicates

131 Inherited Pre'Class when unspecified on initial

subprogram

133 Type invariants and default initialized objects

149 Type invariants are checked for functions returning

access-to-type

150 Class-wide type invariants and statically bound calls

154 Aspects of library units

These changes can be grouped as follows.

There are a number of clarifications on pre- and

postconditions in general (45, 105), some additional rules

36 Update for Ada 2012

Volume 37, Number 1, March 2016

on the use of the aspect Old (32), and a trivial omission on

the aspect Has_Same_Storage (77).

There are also clarifications regarding types and the use of

class wide conditions and invariants (113, 150).

A number of additional rules are required describing the

places where type invariants are checked (41, 42, 44, 49,

133, 149).

A new aspect Predicate_Failure and rules concerning

checking order are added (54, 71, 96). A number of

clarifications to the rules for predicates are added (68, 99,

116).

Finally, there are minor clarifications regarding aspects in

general (104, 154).

===

AI-45 notes that pre-and postconditions (both specific and

classwide) are allowed on generic programs but they are

not allowed on instances of generic subprograms. This

avoids awkward maintenance problems that might arise if

such conditions were allowed on both a generic and an

instance. On a similar matter, it was the intent that pre- and

postconditions should always be visible to the user and so

go on specifications and not bodies which are completions.

However, the wording forgot to mention the new

expression functions which as well as standing alone can

also be completions (see the example of Non_Zero in AI-49

below). Such expression functions and null procedures

acting as completions cannot have pre- and postconditions

either (AI-105).

The attribute 'Old which is used in a postcondition to

indicate the initial value of a parameter (or maybe a global)

is a bit tricky. AI-32 adds some more (fairly obvious) detail

such as that X and X'Old have the same type even if it is

anonymous.

A trivial point about the aspect Has_Same_Storage which

is useful in preconditions is that the expression

X'Has_Same_Storage(Y) returns False if X or Y or both

occupy zero bits. (AI-77).

AI-131 concerns Pre'Class. If the initial definition of a

subprogram does not specify Pre'Class then the

corresponding subprograms of derived types just inherit

True as one would expect. It also notes that one cannot

specify Pre'Class for an overriding subprogram of a type

unless Pre'Class is specified for some ancestor. This is

because it would be ored with True and thus have no effect.

AI-113 and AI-150 address a problem with Pre'Class,

Post'Class and Type_Invariant'Class and parameters.

Typically we might have something like

procedure P(S: in out T; ...)

 with Pre'Class => expression involving S

where T is a tagged type. The procedure P can be called

with a statically bound parameter or indeed with a

dynamically bound classwide parameter. The wording is

clarified that the actual types of the actual parameters are

always used. The reader is referred to the text of the Ada

Issues which have a large example which should be helpful.

It is well-known that type invariants are not intended to be

foolproof but to be helpful in catching many flaws (unlike

pre- and postconditions which are meant to be perfect). As

time has passed more little quirks have been found

regarding when type invariants should or should not be

checked. Remember that invariants apply to private types.

When we have a full view of the type (as in a subprogram

in the body of the package declaring the type) then we can

change an object of the type temporarily to a state where

the invariant does not apply (this is often necessary for

intermediate stages in manipulation). However, when we

leave the full view by for example returning from a

subprogram in the package body then checks are applied on

parameters and so on.

AI-44 states that type invariants are not checked on in

parameters of functions but are checked on in parameters of

procedures. This is necessary to avoid infinite recursion

which would arise if an invariant itself calls a function with

a parameter of the type. Moreover, a classwide invariant

could not be used at all without this modification.

AI-49 adds that invariants need to be checked on the

initialization of deferred constants (other initializations

were already covered). An example is as follows

package R is

 type T is private

 with Type_Invariant => Non_Zero(T);

 function Non_Zero(X: T) return Boolean;

 Zero: constant T;

private

 type T is new Integer;

 function Non_Zero(X: T) return Boolean is

 (X /= 0);

 Zero: constant T := 0;

end R;

Currently, this is not caught but the declaration of Zero

should raise Assertion_Error. Note the neat use of an

expression function for the completion of Non_Zero.

AI-133 concerns default initializations and type invariants.

Remember that initialization by default occurs in various

circumstances. If a record type has components with an

initial value as in

type R is

 record

 C: Integer := 99;

 end record;

then when we declare an object of type R without any

initialization thus

X: R;

then we are assured that X.C will have the value 99.

Moreover, in Ada 2012 we can give default values for other

types by the new aspects Default_Value and

Default_Component_Value (these are discussed in Section

3). But we cannot give defaults for existing predefined

J. G. P. Barnes 37

 Volume 37, Number 1, March 2016

types such as Integer since we can only give the default

when the type is declared.

The question arises as to whether or not the rule about

default initializations being checked for the type invariant

applies to an object declared inside the package body.

Normally, of course, we can do what we like inside the

body so we might expect such initializations not to be

checked. However, since the default initialization

mechanism is the same for clients outside the body as it is

for the writer of the body, it was felt that it would be better

if they were all checked for consistency and simplicity. An

error might thus be detected earlier.

But there is an exception. If the partial view of the type has

unknown discriminants then the user cannot declare objects

of the type anyway and so no check could be performed

externally. For uniformity no check is performed internally

either.

AI-149 adds checks for functions whose return type is an

access type with a designated type having a part of the type

concerned (parameters were already covered). Further

similar checks are added by AI-42 concerning type

extensions. It is all a bit subtle and maybe other problems

are lurking. One is tempted to quote a wee bonny poem of

Sir Walter Scott

 O what a tangled web we weave,

When first we practise to deceive!

A more exciting change (AI-41) is to allow

Type_Invariant'Class on interface types. This can be used to

ensure that any type derived from the interface satisfies

certain properties. The following example is given

type Window is interface

 with Type_Invariant'Class =>

 Window.Width * Window.Height = 100;

function Width(W: Window) return Integer is abstract;

function Height(W: Window) return Integer is abstract;

This ensures that any type derived from the interface

Window will provide functions giving the height and width

of the windows such that their product is exactly 100. This

is a display window of 100 pixels (poor quality I fear).

If we derive a type from several such interfaces then the

Type_Invariant'Class is of course the conjunction of the

individual invariants.

A new aspect Predicate_Failure is introduced by AI-54

(with a wording correction in AI-96). A related issue

concerning the order of evaluation of predicates is

discussed in AI-71. These were discussed in detail in the

Ada 2012 Rationale and in Section 16.5 of Programming in

Ada 2012. A short extract will suffice here.

The expected type of the expression defined by the aspect

Predicate_Failure is String and gives the message to be

associated with a failure. So we can write

subtype Open_File_Type is File_Type

 with

 Dynamic_Predicate => Is_Open(Open_File_Type),

 Predicate_Failure => "File not open";

If the predicate fails then Assertion_Error is raised with the

message "File not open".

We can also use a raise expression (see AI-22 in the next

section) and thereby ensure that a more appropriate

exception is raised. If we write

 Predicate_Failure =>

 raise Status_Error with "File not open";

then Status_Error is raised rather than Assertion_Error with

the given message. We could of course explicitly mention

Assertion_Error thus by writing

 Predicate_Failure =>

 raise Assertion_Error with "A message";

Finally, we could omit any message and just write

 Predicate_Failure => raise Status_Error;

in which case the message is null.

A related issue is discussed in AI-71. If several predicates

apply to a subtype which has been declared by a refined

sequence then the predicates are evaluated in the order in

which they occur. This is especially important if different

exceptions are specified by the use of Predicate_Failure

since without this rule the wrong exception might be raised.

The same applies to a combination of predicates, null

exclusions and old-fashioned subtypes.

There are a number of minor wording omissions and

corrections with the description of predicates. AI-116 notes

that one cannot give a specification of an aspect such as

Dynamic_Predicate to both the full view and private view

of a type (there is such a rule for most aspects but it was

forgotten for predicates). A subtle point covered by AI-68

is that within a predicate the current instance (such as T in

the expression Non_Zero(T) in the example of AI-49) acts

like a value rather than an object. (This prevents certain

undesirable uses of T such as applying a number of object

attributes.) AI-99 confirms that not is an allowed operation

in a Static_Predicate and also corrects some wording in

relation to tasks and protected objects.

An interesting topic is addressed by AI-154. It may be

recalled that rather than writing

package P is

 pragma Pure(P);

...

we can instead write

package P

 with Pure is

...

or more pedantically even

package P

 with Pure => True is

...

38 Update for Ada 2012

Volume 37, Number 1, March 2016

or really foolishly

package P

 with Pure => False is

...

Using a pragma rather than an aspect specification is the

preferred style for library unit pragmas. But there might be

some benefit in using an aspect specification since one

could change the state of a whole group of packages in one

blow by a structure such as

package State_Control is

 Purity: constant Boolean := True;

 ...

end State_Control;

...

with State_Control;

package P

 with Pure => State_Control.Purity is

 ...

end P;

... -- and so on for several packages

We could then make Purity false for adding some

debugging material during development and then set it to

true for final production.

Observe that AI-154 illustrates that one could be silly

enough to try to write

package P with Pure => Purity is

 ...

 Purity: constant Boolean := True; -- illegal

end P;

which raises the question of when is the wretched static

expression Purity evaluated. The answer is immediately of

course just like the pragma and so the example is illegal

because Purity has not yet been elaborated. Note that

aspects such as type invariants in

type Stack is private

 with Type_Invariant => Is_Unduplicated(Stack);

require the elaboration to be deferred. But this cannot be

done with Pure because it controls the application of some

Legality Rules.

The final AI-104 regarding aspects simply replaces a

confusing sentence by a (confusing?) user note. Aspects

such as Constant_Indexing can be inherited; the aspects

themselves cannot be redefined but the functions they

denote can be modified by overriding or by overloading.

3 Expressions

The introduction of contracts triggered the need for more

flexible forms of expressions in Ada 2012. These are

conditional expressions (if and case), quantified

expressions, and expression functions. In addition

membership tests were made much more flexible.

The following Ada issues cover this area:

22* Raise expressions

 39* Ambiguity in syntax for membership expression

removed

 40 Resolving the selected_expression of a

case_expression

 50 Conformance of quantified expressions

 62 Raise expression with failing string function

 84 Box expressions in array aggregates

100 A qualified expression makes a predicate check

103 Expression functions that are completions in package

specifications

141 Add raise expression to Introduction

147 Expression functions and null procedures can be

declared in a protected_body

152 Eliminate ambiguities in raise expression and derived

type syntax

157 Missing rules for expression functions

158 Definition of quantified expressions

These changes can be grouped as follows.

The most important change in this update is perhaps the

introduction of raise expressions (22, 62, 141, 152); it is

convenient to discuss a change to the syntax for

membership test at the same time (39).

A number of changes relate to expression functions (103,

147, 157). There are also some clarifications regarding

quantified expressions (50, 158).

There are miscellaneous changes to qualified expressions

(100), case expressions (40), and array aggregates (84).

===

The introduction of raise expressions by AI-22 was deemed

important enough to be mentioned in the Introduction to the

revised RM. It was discussed in some detail in the

postscript section of the Ada 2012 Rationale which was

written after the Ada 2012 standard was published.

However, the discussion there needs updating since the

syntax rules have been modified as a consequence of

ambiguities mentioned in AI-39 and AI-152. So here is a

more integrated description.

The raise expression, is added by analogy with if

statements and the raise statement. Thus as well as

if X < Y then

 Z := +1;

elsif X > Y then

 Z := –1;

else

 raise Error;

end if;

we can also write

Z := (if X<Y then 1 elsif X>Y then –1 else raise Error);

J. G. P. Barnes 39

 Volume 37, Number 1, March 2016

The syntax for raise expression is now as follows

raise_expression ::=

 raise exception_name [with string_simple_expression]

Note that unlike in a raise statement, the string expression

has to be a simple_expression rather than an expression in

order to avoid ambiguities involving logical operations.

A raise expression is a new form of relation (as will be seen

in the syntax in a moment) and has the same precedence

and so will need to be in parentheses in some contexts. But

as illustrated above it does not need parentheses when used

in a conditional expression which itself will have

parentheses.

Raise expressions will be found useful with pre- and

postconditions. Thus if we have

procedure Push(S: in out Stack; X: in Item)

 with

 Pre => not Is_Full(S);

and the precondition is false then Assertion _Error is raised.

But we can now alternatively write

procedure Push(S: in out Stack; X: in Item)

 with

 Pre => not Is_Full(S) or else raise Stack_Error;

and of course we can also add a message thus

 Pre => not Is_Full(S) or else

 raise Stack_Error with "wretched stack is full";

Another issue concerns what happens if the string

expression in a raise expression (or indeed in a raise

statement) itself raises an exception; it could be a function

call which returns the string. The answer is that the one

caused by the string expression is propagated instead of the

one given in the raise expression or statement (AI-62).

On a closely related topic the syntax for membership tests

has been found to cause ambiguities (AI-39).

Thus

A in B and C

could be interpreted as either of the following

(A in B) and C -- or

A in (B and C)

This is cured by changing the syntax for relation to

relation ::=

 simple_expression [relational_operator simple_expression]

| tested_simple_expression [not] in membership_choice_list

| raise_expression

and changing membership choice to use simple_expression

as well thereby requiring that we have to insert parentheses

in the above example

membership_choice ::=

 choice_simple_expression | range | subtype_mark

Thus a membership_choice no longer uses a

choice_expression. However, the form choice_expression

is still used in discrete_choice.

When first written, AI-22 showed the syntax for a raise

expression using string_expression just as in raise

statement. However, this caused ambiguities as mentioned

earlier so it was changed to string_simple_expression by

AI-152. Curiously enough it was also necessary to change

the syntax of digits constraint and delta constraint to use

simple expression as well. The AI has the following bizarre

example

Atomic: String := "Gotcha";

type Fun is new My_Decimal_Type digits

 raise TBD_Error with Atomic;

This could be parsed as either

type Fun is new My_Decimal_Type digits

 (raise TBD_Error with Atomic);

or

type Fun is new My_Decimal_Type digits

 (raise TBD_Error) with Atomic;

So we now have

digits_constraint ::=

 digits static_simple_expression [range_constraint]

delta_constraint ::=

 delta static_simple_expression [range_constraint]

It seems cruel to have to change delta constraint which one

might have thought was peacefully buried in Annex J for

obsolescent features.

These potential ambiguities are unlikely to impact the

normal user. If the compiler complains then the judicious

insertion of some parentheses will undoubtedly cure the

problem.

Expression functions were added in Ada 2012. Remember

that an expression function takes the form

function F (...) return T is

 (expression of subtype T);

A good example was given earlier thus

 function Non_Zero(X: T) return Boolean is

 (X /= 0);

Remember that such functions can act as a complete

function or as a completion of a traditional function

specification.

A number of points were overlooked in the definition of

Ada 2012. One has already been mentioned namely that

function expressions acting as completions cannot have

pre- and postconditions (see AI-105 in Section 2).

Another point is that expression functions and indeed null

procedures can be used in the body of a protected type as a

completion of a protected function (AI-147). This requires

a modification to the syntax which becomes

40 Update for Ada 2012

Volume 37, Number 1, March 2016

protected_operation_item ::=

 subprogram_declaration

 | subprogram_body

 | null_procedure_declaration

 | expression_function_declaration

 | entry_body

 | aspect_clause

An interesting situation arises if the result expression of an

expression function can be written as an aggregate as for

example

function Conjugate (C: Complex) return Complex is

 ((C.Rl, –C.Im)); -- double parens

Remember that the conjugate of a complex number C has

the same real part but the imaginary part changes sign so

that the conjugate point in the Argand plane is the

reflection of C in the real axis.

The original rules say that the expression of an expression

function is simply an expression in parentheses. However,

this is ugly if the expression already has parentheses as

occurs with an aggregate as above. Now Ada dislikes

double parentheses so we have rules for if expressions that

they have to be in parentheses unless the context already

supplies parentheses as in the case of a subprogram call

with a single parameter. Consequently, AI-157 concludes

that the second lot of parentheses are unnecessary so we

can just write

function Conjugate (C: Complex) return Complex is

 (C.Rl, –C.Im); -- single parens

As a result the syntax is revised to

expression_function_declaration ::=

 [overriding _indicator]

 function_specification is

 (expression)

 [aspect_specification] ;

 | [overriding _indicator]

 function_specification is

 aggregate

 [aspect_specification] ;

The above example shows a record aggregate. The same

applies to array aggregates in parentheses. But of course if

the result is given as a string then the parentheses are

necessary. So we can have either of

function Piggy return String is

 ('P', 'I', 'G');

function Piggy return String is

 ("PIG");

There are also changes to the freezing rules which will

probably leave the reader cold. These are in AI-157 and AI-

103. A simple one is that expression functions acting as

completions only freeze the expression and nothing else

and null procedures never freeze anything.

There are a couple of minor points regarding quantified

expressions.

AI-158 clarifies the result of a quantified expression where

the array concerned has zero elements. In the case of the

existential qualifier for some, the result is False whereas in

the case of the universal qualifier for all, the result is True.

So consider

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every element of A is zero. If A

doesn't have any elements then the result is still true.

Similarly

B := (for some K in A'Range => A(K) = 0);

assigns true to B provided at least one element of A is zero.

If A doesn't have any elements then the answer is false.

This all seems pretty obvious but the wording was deemed

to require clarification for those not having a Fields Medal

in mathematics.

Another quirk is discussed by AI-50 which is concerned

with conformance. Remember that the parameters in the

specification and body of a subprogram have to conform.

The introduction of quantified expressions means that such

an expression could occur as the default value in a

subprogram specification; thus using the example above we

might have

procedure P(B : Boolean :=

 (for all K in A'Range => A(K) = 0));

The corresponding text in the procedure body has to

conform and additional rules are required to ensure this.

The new thing is that quantified expressions introduce

declarations such as that of K in the parameter list and we

have to say that these two (technically different)

declarations are the same in specification and body and

specifically that the two defining identifiers are the same

and are used in the same way.

A minor omission concerns qualified expressions (AI-100).

Remember the difference between a qualified expression

and a conversion. Qualification (which takes a quote) just

states that an expression has the given (sub)type and is

often used for resolving ambiguities. Conversion (which

does not have a quote) actually changes the type (if

necessary). Qualification also checks any relevant subtype

properties. But on the addition of subtype predicates,

although it was added that they were checked on type

conversions, it was forgotten to add that any subtype

predicates should also be checked on qualification.

A very minor omission is covered by AI-40 which says that

case expressions and case statements resolve in exactly the

same way – that is have the same rules for type matching.

Finally, AI-84 concerns the use of the box notation <> in

array aggregates. This was added in Ada 2005 and indicates

that a component takes its default value which is the same

as the default value for a stand-alone object.

However, Ada 2012 added the aspects Default_Value and

Default_Component_Value. So we might write

type My_Integer is new Integer

 with Default_Value =>888;

J. G. P. Barnes 41

 Volume 37, Number 1, March 2016

type My_Array is array (Integer range <>) of My_Integer

 with Default_Component_Value => 777;

If we declare

X: My_Array(1 .. 10);

then the value of X(1) will be 777 of course using the aspect

Default_Component_Value.

But if we write

X: My_Array(1..10) := (others => <>);

then very surprisingly X(1) was 888 rather than 777. The

rules for <> were not updated to note that if the

Default_Component_Value has been given then that applies

rather than the stand-alone value. This is put right by AI-84

so that the value is now 777 in both cases.

4 Structure and visibility

One of the most dramatic changes in Ada 2012 concerns

subprogram parameters and is that functions can have

parameters of all modes. Other areas covered here include

incomplete types and discriminants.

The following Ada Issues cover this area:

 65 Descendants of incomplete views

 74 View conversions and out parameters passed by copy

 94 An access definition should be a declarative region

 95 Generic formal types and constrained partial views

 97 Tag of the return object of a simple return expression

101 Incompatibility of hidden untagged record equality

109 Representation of untagged derived types.

132 Freezing of renames-as-body

137 Incomplete views and access to class wide types

These changes can be grouped as follows.

A number of issues concern views. There are clarifications

of incomplete views (65, 137) and omissions concerning

view conversions (74) and constrained views (95).

An amusing issue concerns the definition of a declarative

region (94).

Miscellaneous issues concern renaming (132), untagged

record equality (101), untagged derived types (109), and

the tag of return objects (97).

===

An odd situation is discussed by AI-65. A type T3 can be a

descendant of T1 but yet inherits no characteristics of T1

because of an intervening type T2. Consider

package P is

 type T1 is private; -- partial view

...C: constant: T1;

private

 type T1 is new Integer; -- complete view

 C: constant := 37; -- my favourite number

end P;

with P;

package Q is

 type T2 is new P.T1;

end Q;

with Q;

package P.Child is

 type T3 is new Q.T2;

private

 -- what can we do with T3 here?

end P.Child;

In this example T3 is derived from T2 and T2 is derived

from T1. The fact that T2 is derived from Integer is not

visible to the declaration of T3. Nevertheless the

conversion rules allow a value of type T1 to be converted to

T3 in the private part of the child package. But the fact that

T3 is an integer type is not visible.

We say that T3 is effectively a descendant of an incomplete

view of T1. (Note "effectively"; it's not technically an

incomplete view but behaves in some ways as if it were.)

So we can convert C but not 73 to type T3 in the private

part of C.Child.

...X: T3 := T3(P.C) -- OK

 Y: T3 := T3(73); -- No, T3 is not visibly numeric!

It was meant to be like this in Ada 95; Ada 2005 meddled

with it and Ada 2012 made a confusing "improvement".

Hopefully the clarifications made now will be the end of

the story.

It is helpful to remember the distinction between a partial

view and an incomplete view.

 A partial view is the view given by a private type

declaration in contrast to the full view given by the full

declaration in the private part. As in type T1 above.

 An incomplete view is the view given by an incomplete

declaration such as occurs with access types. Thus

type Cell; -- incomplete view

type Link is access Cell:

type Cell is -- completion

 record

 Next: Link;

 ...

 end record;

The use of the concept of incomplete views was much

extended in Ada 2005 by the introduction of the limited

with clause. It was extended again in Ada 2012 by allowing

incomplete types to be completed by types other than

access types and allowing incomplete views as parameters.

There are many rules concerning access types that

designate incomplete views. AI-137 clarifies that they also

apply to access to class wide types.

AI-95 concerns an omission/confusion with regard to

generic untagged formal types and partial views. Briefly,

within a generic body we assume the worst as to whether or

42 Update for Ada 2012

Volume 37, Number 1, March 2016

not a formal subtype has a constrained partial view. In

particular we assume that untagged formal private and

derived types do indeed have a constrained partial view.

As Ada has grown there have been further lexical

amusements such as functions returning access to

functions. Thus we can now have

type T is

 access function(...) return

 access function(...) return

 access function(...) return ...

ad infinitum. To be more specific the rules seem to prohibit

type T is

 access function(A: Integer) return

 access function(A: Float) return Boolean;

because here we have two instances of A in the declarative

region for T. There is no real reason why this should not be

permitted so the definition of declarative region is extended

to include an access definition (AI-94).

A somewhat different topic is addressed by AI-74 and

concerns parameters of mode out which have always been

the source of troubles. The basic problem is that such

parameters can become undefined. Consider this simple

procedure to find the two roots of a quadratic equation

procedure Quadratic(A, B, C: in Real;

 Root_1, Root_2: out Real; OK: out Boolean) is

 D: constant Real := B**2 – 4.0*A*C;

begin

 if D < 0.0 or A = 0.0 then

 OK := False; return;

 end if;

 Root_1 := (–B + Sqrt(D)) / (2.0*A);

 Root_2 := (–B – Sqrt(D)) / (2.0*A);

 OK := True;

end Quadratic;

If the equation has complex roots then no values are

assigned to Root_1 and Root_2 so they are likely to contain

rubbish. So if we call Quadratic thus

Quadratic(AA, BB, CC, R1, R2, State);

then because of the copy in and out rules for parameters of

elementary types, the variables R1 and R2 which might

have had respectable values will now contain rubbish.

Of course if we had made the parameters Root_1 and

Root_2 of mode in out then the original values of R1 and

R2 would have been retained if no assignments were made

to Root_1 and Root_2.

However, if we had been wise and used the Default_Value

aspect introduced in Ada 2012 thus

type Real is new Float

 with Default_Value := 0.0;

then the behaviour is different. In this case Root_1 and

Root_2 will behave essentially as if they were of mode in

out and will remain unchanged. Note carefully that they

will not take the default values of 0.0 and so the existing

values of R1 and R2 will not be disturbed. Of course if we

had declared a local variable R_Temp of type Real then it

would take the initial value of 0.0.

This technique of initially copying in parameters of mode

out has existed in Ada for access types since Ada 83.

Remember that access types always have a default initial

value of null and so this copying in behaviour is identical.

Incidentally, this copying in is done "in the raw" without

making any subtype checks such as range constraints; again

this follows the behaviour of access types. Note also that

the whole purpose of an out parameter is to give it some

value without concern for the original value of the actual

parameter and so gratuitously checking the original value

of the actual could be irritating if it raised an exception.

Another point is that the default value applies to the type

and not to the subtype.

However, do remember that we cannot give a default value

to the predefined types such as Float so this is a good

reason for declaring our own types.

Other problems arise when an actual parameter is a view

conversion and this is the real topic of AI-74. Consider the

following simple example

procedure Inc(X: in out Integer) is

begin

 X := X + 1;

end Inc;

...

F: Float;

...

F := 3.14;

Inc(Integer(F));

Remember that the behaviour is that the value of F is

converted to type Integer (and thus becomes 3) and this is

the initial value of the parameter X which is then

incremented to 4 and finally converted to 4.0 and copied

back into F. This is as in Ada 83.

But problems arise if the parameter is an out parameter and

not an in out parameter. Consider

procedure P(X: out My_Integer) is ...

...

Y: Long_Float;

...

P(My_Integer(Y));

Now suppose we have given Default_Value for My_Integer.

An important goal of Default_Value is to ensure that junk

values do not arise. This is done by treating out parameters

essentially as in out parameters as illustrated by Quadratic.

But now we are in trouble because we are unlikely to be

able to convert the giant floating value Y to the type

My_Integer.

This problem is overcome by saying that if the aspect

Default_Value is given for the type of the formal parameter

then there must be an ancestor of both the target type and

the operand type of the view conversion and the operand

J. G. P. Barnes 43

 Volume 37, Number 1, March 2016

type itself must also have the aspect Default_Value. The

conversion is then bound to work.

AI-132 concerns expression functions and freezing again

(see the brief mention of AI-103 in the previous Section). If

we have an expression function such as

function F(...) return T is

 (expression of subtype T);

then it can occur in a renaming as body thus

function G(...) return T renames F;

This AI points out that this renaming freezes the expression

of the expression function F.

The redefining of equality has always been a bother.

Originally there were different rules for composition of

tagged and untagged types. The difference was removed in

Ada 2012 in order to make composition more uniform.

However, a quirk in the rules meant that a hidden definition

of equality for an untagged record type as in

package P is

 type PT is private;

private

 type PT is record ... end record; -- untagged

 function "=" (L, R: PT) return Boolean;

end P;

was not permitted. This was a mistake and accordingly this

restriction is removed by AI-101.

There are omissions regarding aspect specifications and

derived types. One of the advantages of the introduction of

aspect specifications is that they occur with the entity to

which they apply. This means that the traditional linear

elaboration does not always apply because the aspect might

refer to things that have not yet been declared. AI-109

clarifies the situation with regard to the freezing of the

representation of untagged types.

Finally, AI-97 addresses a minor error in the description of

the tag of an object in a return statement. The introduction

of the extended return statement where we have

return R: T do

 ...

end return;

needed clarification because T might not be identical to the

return type given in the function specification (it might be a

subtype; perhaps the function has an indefinite type and the

return is definite, perhaps classwide and specific, and so

on). So the rules were rewritten to cover the extended

return. Unfortunately the rules were written in a way that

was incorrect for an old-fashioned return statement. This is

now put right.

5 Tasking and real-time facilities

The major topic in this area is providing features for

multiprocessors and increasing control for scheduling.

The following Ada Issues cover this area:

 1 Independence and representation clauses for atomic

objects

 33* Sets of CPUs when defining dispatching domains

 48 Default behavior of tasks on a multiprocessor with a

specified dispatching policy

 51 The Priority aspect can be specified when Attach_

Handler is specified

 52 Implicit objects are considered overlapping

 55 All properties of a usage profile are defined by

pragmas

 73 Synchronous Barriers are not allowed with Ravenscar

 81 Real-time aspects need to specify when they are

evaluated

 82 Definition of "dispatching domain"

 90 Pre- and postconditions and requeues

 98 Problematic examples for ATC

107 A prefixed view of a By_Protected_Procedure

interface has convention protected

114 Overlapping objects designated by access parameters

are not thread-safe

117 Restriction No_Tasks_Unassigned_To_CPU

129 Make protected objects more protecting

These changes can be grouped as follows.

First there are some clarifications and additions to

dispatching domains which were added in 2012 (33, 48,

82). There are also some changes to the definition of the

Ravenscar profile (55, 73, 117) and clarifications to some

real-time aspects (51, 81). These are all in the Real-Time

Systems annex (D).

The examples of the use of ATC (asynchronous transfer of

control) need further explanation (98).

The question of being thread-safe in the face of overlapping

objects has always been tricky and the text in the opening

part of Annex A is modified (52, 114).

There are some improvements to the ability to control

concurrent access in the core language (107, 129).

The required support for aspects such as Pack and their

interactions with atomicity is rationalized (1). Note that this

AI is a hangover from Ada 2005.

Finally, there are changes to the core language regarding

pre- and postconditions and requeue (90).

===

As defined in Ada 2012 a dispatching domain consists of a

set of processors whose CPU values are contiguous.

However, this is unrealistic since CPUs are often grouped

together in other ways. Accordingly, AI-33 adds a type

CPU_Set and two functions to the package

System.Multiprocessors.Dispatching_Domains thus

44 Update for Ada 2012

Volume 37, Number 1, March 2016

type CPU_Set is array (CPU range <>) of Boolean;

function Create(Set: CPU_Set)

 return Dispatching_Domain;

function Get_CPU_Set(Domain: Dispatching_Domain)

 return CPU_Set;

Moreover, the original functions Create and Get_Last_CPU

are modified to be

function Create(First: CPU; Last: CPU_Range)

 return Dispatching_Domain;

function Get_Last_CPU(Domain: Dispatching_Domain)

 return CPU_Range;

The changes enable Last to be zero thereby allowing for

null domains. Remember that the type CPU_Range has

lower bound of zero whereas the subtype CPU has lower

bound of one. If a domain is empty then Get_Last_CPU

returns zero and Get_First_CPU returns one.

A minor editorial change is that many instances of

Dispatching_Domain (which is a type name) are changed to

dispatching domain (the concept) by AI-82. An important

clarification concerns the behaviour in the absence of any

use of CPU and dispatching domains. The summary of AI-

48 says that in the absence of any setting of the CPU of a

task and the creation of any dispatching domains, a

partition that specifies a language-defined dispatching

policy will allow all tasks to run on all processors.

With regard to Ravenscar, the whole essence of its

intention is to enable the use of a very simple runtime

system. Accordingly, the newly added synchronous barriers

should not be allowed and so the additional restriction

No_Dependence => Ada.Synchronous_Barriers

is added to the definition of the Ravenscar profile by AI-73.

Furthermore, in the case of multiprocessors, in order to

permit analysis we need to ensure that all tasks (including

the environment task) are assigned to a specific CPU and

especially that no task is assigned zero which indicates

Not_A_Specific_CPU. So a new restriction is introduced,

namely

No_Tasks_Unassigned_To_CPU

and this is also added to the definition of the Ravenscar

profile (AI-117). Moreover, Ravenscar requires that the

CPUs are denoted statically so another restriction is

introduced

No_Dynamic_CPU_Assignment

and this is also added to Ravenscar (AI-55).

There are some clarifications concerning aspects in the

Real-Time annex. One is simply to say that the real-time

aspects of a type are evaluated when an object of the task

type is actually declared (AI-81). This applies to the aspects

Priority and Interrupt_Priority and also to CPU. Remember

that the aspects do not necessarily have to be static, in

particular they could be discriminants of the type and

different for different objects. Thus

task type Slave(N: CPU_Range)

 with CPU => N;

Tom: Slave(1); Dick: Slave(2); Harry: Slave(3);

It is easy to be confused regarding priorities and interrupt

priorities. Typically, a protected procedure used as an

interrupt handler would have aspects giving the priority and

interrupt to be handled thus

procedure Handler

 with Attach_Handler => Some_Interrupt,

 Interrupt_Priority => Hot_Priority;

However, if the procedure Handler is in a protected type

Monitor then the priority could be given on Monitor itself

using the aspects Priority or Interrupt_Priority. If no interrupt

priority or priority aspect is specified, the priority is

implementation-defined but in the range of interrupt

priority (AI-51).

The mechanism for Asynchronous Transfer of Control

(ATC) uses a form of select statement thus

select

 delay ... ; -- triggering alternative

 ...

then abort

 Do_Something; -- abortable part

end select;

This depends upon there being places in the abortable part

that are abort completion points. The examples given in the

RM in 9.7.4 rely upon this and some extra explanation is

added (AI-98).

There has always been "boilerplate" in paragraph 3 of

Appendix A about reentrancy. The obvious example is that

task T1 is

begin

 Put(A_File, "Text");

end T1;

task T2 is

begin

 Put(A_File, "More Text");

end T2;

is not required to work (being unsafe use of a shared

variable, namely A_File). But if we change T2 to

task T2 is

begin

 Put(B_File, "More Text");

end T2;

then it is required to work provided A_File and B_File are

indeed truly different files. The wording in paragraph 3 is

improved to be more explicit with regard to parameter

passing (52, 114). It now becomes

"The implementation shall ensure that each language-

defined subprogram is reentrant in the sense that concurrent

calls on any language-defined subprogram perform as

specified, so long as all objects that are denoted by

parameters that could be passed by reference or designated

by parameters of an access type are nonoverlapping."

J. G. P. Barnes 45

 Volume 37, Number 1, March 2016

An important difference between protected functions and

protected procedures (and entries) is that protected

functions can be accessed concurrently. The principle is

that such functions should be used for interrogating state

and not to change it. However, in the case of calling

functions inside a container, they do often change state.

Accordingly, to enable containers to be used by parallel

tasks and to impose control of access by protected objects,

it is necessary to be able to make protected functions

behave like protected procedures and so prevent multiple

access. This can be done by a new aspect

Exclusive_Functions which can be given for a protected

type or a single protected object. Thus we write

protected type PT

 with Exclusive_Functions;

 ...

and then all protected functions declared within PT have

exclusive access. Note carefully that the aspect is not

permitted on individual protected functions but on the

protected type (or object) as a whole (AI-129).

The usual convention for a prefixed view of a subprogram

is Intrinsic which means that 'Access cannot be applied.

However, an awkward situation has been discovered in the

case of a subprogram with aspect Synchronization being

By_Protected_Procedure. (Remember that the possible

values for the aspect Synchronization are By_Entry,

By_Protected_Procedure, and Optional.) In that case the

convention is deemed to be protected so that Access can be

applied (AI-107).

AI-1 is a hangover from Ada 2005. The essence of the

problem is that the language is inconsistent regarding the

pragma (now aspect) Pack. On the one hand the text of the

RM regarding packing says that entities have to be

squeezed up really tightly. On the other hand alignment

properties, atomicity and so on ought to be respected. The

revised text clarifies that Pack should not do anything that

violates other requirements.

Finally, a bother with requeue is addressed by AI-90

(requeue has been the source of many bothers in the past so

another one is not unexpected). This time the problem

concerns pre- and postconditions. Suppose we have entries

E1 and E2 with pre- and postconditions. And suppose that

E1 does a requeue onto E2. The current text is unclear as to

what exactly is checked and when. Do we avoid checking

any postcondition on E1 and do we bypass any

precondition on E2? Certainly not is the brief answer.

Basically we require that the postcondition on E2 implies

that on E1 by saying that they must fully conform. And

moreover any precondition on E2 is indeed checked when

the call is requeued. Remember that parameters are passed

on unchanged and that the requeue statement does not have

any explicit parameters itself.

6 Iterators, pools, etc.

This area covers the new iterators introduced in Ada 2012

plus access types and storage pools but also various

miscellaneous features.

The following Ada Issues cover this area:

 3 Specifying the standard storage pool

 27 Access values should never designate unaliased

components

 36 The actual for an untagged formal derived type cannot

be tagged

 38 Shared_Passive package restrictions

 43 Details of the storage pool used when Storage_Size is

specified

 46 Enforcing legality for anonymous access components

in record aggregates

 47 Generalized iterators and discriminant-dependent

components

 67 Accessibility of explicitly aliased parameters of

procedures and entries

 70 9.3(2) does not work for anonymous access types

 72 Missing rules for Discard_Names aspect

 76 Variable state in pure packages

 85 Missing aspect cases for Remote_Types

 89 Accessibility rules need to take into account that a

generic function is not a function

 93 Iterator with indefinite cursor

120 Legality and exceptions of generalized loop iteration

124 Add Object'Image

136 Language-defined packages and aspect

Default_Storage_Pool

138 Iterators of formal derived types

142 Bad subpool implementations

145 Pool_of_Subpool returns null when called too early

148 Dangling references

151 Meaning of subtype_indication in array component

iterators

These changes can be grouped as follows.

A number of issues concern default and standard storage

pools in general (3, 43, 138) and some issues concern the

newly introduced subpools (142, 145, 148).

Several issues concern clarifications and omissions

regarding generalized iterators (47, 93, 120, 138, 151).

As ever there are issues regarding accessibility rules,

anonymous access types and related topics (27, 46, 67, 70,

89).

There are some clarifications and omissions about package

state such as Pure and Shared_Passive (38, 76, 85).

Finally, there are miscellaneous issues on derived types

(36), Discard_Names (72), and Object'Image (124).

46 Update for Ada 2012

Volume 37, Number 1, March 2016

===

Remember that when we declare an access type we can

specify which storage pool it is to use. If we do not specify

one then the default is used. Originally this default was just

the "standard pool". The pragma Default_Storage_Pool was

introduced in Ada 2012. It enables the user to specify

which pool is to be used by default if none is specified for

the access type. Thus we might write

pragma Default_Storage_Pool(My_Pool);

Moreover, the parameter can be null thus

pragma Default_Storage_Pool(null);

which ensures that we must always specify the pool to be

used and prevents any allocation by default. AI-3 enables

us to go back to the standard pool by writing

pragma Default_Storage_Pool(Standard);

This additional argument means that there is a minor syntax

change thus

storage_pool_indicator ::=

 storage_pool_name | null | Standard

Note that the indicator Standard has nothing to do with the

package Standard as such.

AI-43 makes subtle changes to the behaviour of the aspect

Storage_Size as applied to storage pools. Briefly, the pool

used by an access type that has Storage_Size given must

not allocate additional storage when the original amount is

exhausted and no other type can use the same pool unless

requested. So we might have

type T is access ...

for T'Storage_Size use 1000;

type S is access ...

for S'Storage_Pool use T'Storage_Pool; -- share pools

Note that if we do give the aspect Storage_Size for a type

then that implies the (implementation-defined) storage pool

for the type and so we cannot also give the aspect

Storage_Pool for that type. Contrariwise if we do give the

pool explicitly by for example

for T'Storage_Pool use My_Pool;

then the storage size is determined by the behaviour of

My_Pool and the aspect Storage_Size cannot be given

explicitly (the writer of the pool will have had to declare a

function Storage_Size as part of the implementation of the

pool and that will act as the attribute.)

AI-136 concerns the use of default storage pools with

language defined generic units. After some discussion it is

concluded that the effect of specifying the aspect

Default_Storage_Pool on an instance of a language-defined

generic unit is implementation-defined. One consequence

of this is that one cannot rely upon using the aspect

Default_Storage_Pool to change the storage pool used by a

container such as a linked list if the container is an instance

of the language-defined container Doubly_Linked_List.

Three AIs concern subpools which were introduced in Ada

2012 and clarify a number of omissions. AI-142 simply

says that Allocate_From_Subpool could be erroneous if not

implemented in accordance with the given rules. AI-145

says that the function Pool_Of_Subpool returns null if

called before calling the procedure Set_Pool_Of_Subpool

(pretty obvious). AI-148 tidies up the loose wording

regarding what happens when we deallocate subpools (all

objects that were in them cease to exist of course so beware

dangling references as usual).

There are some omissions regarding iterators which were

added in Ada 2012. AI-138 concerns the inheritance of

aspects such as Constant_Indexing and Iterator_Element.

Remember that a type such as List in Doubly_Linked_Lists

has aspects thus

type List is tagged private

 with Constant_Indexing => Constant_Reference,

 Variable_Indexing => Reference,

 Default_Iterator => Iterate,

 Iterator_Element => Element_Type;

If we derive a type from List then we cannot change

Iterator_Element into something other than Element_Type.

We say that these aspects are non-overridable (they could

be confirmed).

The other AIs in this group (47, 93, 120, 151) concern the

new generalized iterators and address a number of curious

omissions.

It might be recalled that if we have an array of type T thus

type ATT is array (1 .. N) of T;

The_Array: ATT;

then rather than express iteration as

for I in The_Array'Range loop

 The_Array(I) := 99; -- do something to The_Array(I)

end loop;

we can more briefly use of rather than in and write

for E of The_Array loop

 E := 99; -- do something to component E

end loop;

Optionally we can give the subtype of E thus

for E: T of The_Array loop ...

AI-151 says that any subtype given must statically match

that of the component of the array (obvious really). Adding

T is essentially a comment to aid the reader but the kindly

compiler checks that it is correct.

The other AIs of this group essentially come down to the

same thing. Generalized iteration enables us to write

something in a shorthand way. When the shorthand is

expanded, what is done using the resulting long form must

not be illegal. For example AI-47 shows how we might

appear to make the array object vanish, AI-93 says that

exceptions might be raised and AI-120 covers problems

with limitedness and constantness.

J. G. P. Barnes 47

 Volume 37, Number 1, March 2016

Access types and particularly the anonymous access types

introduced in Ada 2005 are often a source of problems. AI-

27 clarifies the behaviour of value conversions of

composite objects. AI-67 clarifies the accessibility of

explicitly aliased parameters. AI-46 addresses the issue of

the legality of record components of anonymous access

types. AI-70 covers issues of the master of tasks created by

anonymous access types.

AI-89 is more interesting. It suggests that Ada

programmers should carefully remember the golden rules

"a generic function is not a function", "a generic procedure

is not a procedure", and "a generic package is not a

package". The details of the AI are a bit elusive but revolve

around the above rules.

Another group of issues concern matters such as the state of

packages. AI-76 shows how an apparently pure package

could seem to have its state changed via tricks such as

using a self-referential type. Such trickery is deemed

erroneous.

AI-85 notes that we cannot permit giving the aspects

Storage_Size or Storage_Pool for remote access to class

wide types which are given in a package with the aspect

Remote_Types.

AI-38 concerns packages that are Shared_Passive. Various

rules concerning the misuse of access types are

strengthened.

A curious error in the matching rules for generic

parameters has long been overlooked and is corrected by

AI-36. If a formal parameter of a generic unit is derived

untagged, then a corresponding actual parameter must also

be untagged. Thus if we have

generic

 type T is private;

 type TT is new T;

package P ...

then we cannot instantiate P with a tagged type for TT. This

has been wrong ever since Ada 95.

The pragma Discard_Names was introduced in Ada 95. It

tells the compiler to throw away tedious tables of names at

runtime associated with things such as Image and Value.

AI-72 points out that Ada 2012 forgot to say that

Discard_Names is now an aspect and can be given as such.

So if we have an enumeration type with lots of long

identifiers such as

type Greek is (alpha, beta, gamma, ... , omega);

then rather than separately giving

pragma Discard_Names(Greek);

we can add the aspect when the type is declared thus

type Greek is (alpha, beta, gamma, ... , omega)

 with Discard_Names;

Finally, AI-124 proudly announces the extension of the

attribute Image to apply to objects as well as to types.

At the moment if a slovenly programmer wants to avoid the

majesty of the full might of Integer_Text_IO to print out the

value of N of some integer type such as

My_Nice_Integer_Type (perhaps for diagnostic purposes)

then they write

Put(My_Nice_Integer_Type'Image(N));

And now thanks to AI-124, this becomes

Put(N'Image);

Note that GNAT users have been writing N'Img for a long

time.

7 Predefined library

The main improvements in the standard library in Ada

2012 concern containers and these are addressed in the next

section. There were also other additions such as UTF

encoding packages, extensions to directories and the

package Locales.

The following Ada Issues cover this area:

 28* Import of variadic C functions

 30 Formal derived types and stream attribute availability

 31 All_Calls_Remote and indirect calls

 34 Remote stream attribute calls

 37* New types in Ada.Locales cannot be converted

to/from strings

 88 UTF_Encoding.Conversions and overlong characters

on input

102 Stream_IO.File_Type has Preelaborable_Initialization

106 Write'Class attribute

121 Stream-oriented aspects

130 All I/O packages should have Flush

135 Enumeration types should be eligible for convention C

146 Should say stream-oriented attribute

These changes can be grouped as follows.

A number of issues concern streams, their aspects and

attributes (30, 34, 102, 106, 121, 146).

Two issues concern interfacing to the C language (28, 135).

Minor issues concern I/O packages and Flush (130), the

aspect All_Calls_Remote (31), and UTF_Encoding (88).

Finally, there is a major revision to the new package

Ada.Locales (37).

===

AI-121 points out that the stream-oriented attributes such as

'Read and 'Write can be given using an aspect specification

as well as by an attribute definition clause. Thus for a type

Date we can declare a procedure Date_Write and associate

them using

for Date'Write use Date_Write;

48 Update for Ada 2012

Volume 37, Number 1, March 2016

Alternatively, we can declare Date as

type Date is record ... end record

 with Write => Date_Write, ... ;

and then declare the procedure Date_Write.

AI-146 just corrects a bit of wording; strictly we always

talk about stream-oriented attributes and not stream

attributes. AI-30 clarifies the use of stream-oriented

attributes with untagged formal derived types but ironically

refers to them as stream attributes. AI-34 concerns the use

of streams and Remote_Types packages; in summary,

dereferencing a remote access-to-classwide type to make a

dispatching call to a stream-oriented attribute such as 'Write

is not allowed.

AI-106 clarifies the way in which a class wide stream-

oriented aspect is given. For example

type My_Type is abstract tagged null record

 with Write'Class => My_Write;

AI-102 adds the pragma Preelaborable_Initialization to the

type File_Type in the package Ada.Streams.Stream_IO. It

points out that the package was made preelaborable in Ada

2012 so that it was more useful but the corresponding

change to the private type File_Type was forgotten.

Two issues concern interfacing to C. AI-28 discusses the

import of variadic C functions (that is functions with a

variable number of parameters). In Ada 95, it was expected

that such functions would use the same calling conventions

as normal C functions; however, that is not true for some

targets today. Accordingly, this AI adds additional

conventions to describe variadic C functions so that the

Ada compiler can compile the correct calling sequence.

The other issue (AI-135) concerns enumeration types and

makes them eligible for convention C provided certain

range conditions are satisfied.

With regard to input-output in general AI-130 adds the

procedure Flush to the packages Sequential_IO and

Direct_IO so that any internal buffers can be flushed in the

same way as in Text_IO and Stream_IO.

A rather specialized change is made by AI-31 concerning

the aspect All_Calls_Remote. It states that the aspect

applies to all indirect or dispatching remote subprogram

calls to the RCI (remote call interface unit) as well as to

direct calls from outside. All indirect or dispatching calls

should go through the PCS (partition communication

subsystem).

A number of packages for UTF encoding were added in

Ada 2012. AI-88 addresses a minor issue regarding

overlong characters on input, that is as a parameter to a

function Encode or Convert. It confirms that such overlong

encodings do not raise Encoding_Error.

Finally, AI-37 discusses a curious difficulty found in

attempting to use the seemingly innocuous new package

Ada.Locales. It was mentioned in the Ada 2012 Rationale

which we repeat.

The types Language_Code and Country_Code were

originally declared as

type Language_Code is array (1 .. 3) of Character

 range 'a' .. 'z';

type Country_Code is array (1 .. 2) of Character

 range 'A' .. 'Z';

The problem is that a value of these types is not a string

and cannot easily be converted into a string because of the

range constraints and so cannot be a simple parameter of a

subprogram such as Put. If LC is of type Language_Code

then we have to write something tedious such as

Put(LC(1)); Put(LC(2)); Put(LC(3));

Accordingly, these types are changed so that they are

derived from the type String and the constraints on the

letters are then imposed by dynamic predicates. So we have

type Language_Code is new String(1 .. 3)

 with Dynamic_Predicate =>

 (for all E of Language_Code => E in 'a' .. 'z';

with a similar construction for Country_Code.

Readers might like to continue to contemplate whether this

is an excellent illustration of some of the new features of

Ada 2012 or simply an illustration of static strong or maybe

string typing going astray.

8 Containers

The container library was considerably enhanced in Ada

2012. A few issues have arisen since.

The following Ada Issues cover this area:

 35 Accessibility checks for indefinite elements of

containers

 69 Inconsistency in Tree container definition

 78 Definition of node for tree container is confusing

110 Tampering checks are performed first

These changes can be grouped as follows.

AI-69 and AI-78 both address the same issue regarding the

fact that the root node of a tree has no element.

AI-35 concerns problems with accessibility checks

necessary to prevent dangling references when using the

indefinite containers.

AI-110 addresses the question of when tampering checks

are performed.

===

It is fundamental to the organization of trees that each node

of the tree has an associated element containing a value

except the root node which has no such associated element.

Both AI-69 and AI-78 make various corrections to the

wording such as to point out that an iterator never visits the

root node.

AI-35 addresses the question of accessibility checks when

manipulating indefinite containers (these containers were

J. G. P. Barnes 49

 Volume 37, Number 1, March 2016

introduced in Ada 2005). Certain operations of instances of

the indefinite container packages require accessibility

checks to prevent dangling references. The term "perform

indefinite insertion" is defined and then this is used in the

description of the various operations. Thus in the case of

Indefinite_Doubly_Linked_Lists we are told that Append,

Insert, Prepend, and Replace_Element that have a

parameter of the Element_Type perform indefinite

insertion.

AI-110 concerns the order of making various checks. The

conclusion is that tampering checks are always performed

before any other checks such as that for capacity.

9 Conclusions

A number of presentation AIs (56, 80, 134, 159) which

cover mostly trivial typos have not been discussed. One

amusing example will suffice. Paragraph 10 of clause

A.18.25 on bounded multiway trees says that the function

Copy is declared as

function Copy(Source: Tree; Capacity: Count_Type := 0)

 return List;

Clearly List is an alternative spelling for Tree!

Altogether, the changes made by the update are relatively

minor. There is no need to feel that your valuable copies of

the Ada 2012 Reference Manual., the Ada 2012 Rationale

or indeed Programming in Ada 2012 are somehow now

useless. If you stumble across any of these minor blemishes

then the Ada compiler will undoubtedly be your guide.

Finally, I need to thank all those who have helped in the

preparation of this paper and especially Randy Brukardt,

Dirk Craeynest, Jeff Cousins and Joyce Tokar.

References

[1] ISO/IEC 8652: 2012E, Ada Reference Manual.

[2] S. T. Taft et al (eds.) (2012) Ada 2012 Reference

Manual, LNCS 8339, Springer-Verlag.

[3] John Barnes (2013), Ada 2012 Rationale, LNCS 8338,

Springer-Verlag

[4] John Barnes (2014), Programming in Ada 2012,

Cambridge University Press.

© 2016 John Barnes Informatics.

 51

Ada User Journal Volume 37, Number 1, March 2016

Overview of the 17
th

 International Real-Time Ada Workshop

20-22 April 2015

Bennington, Vermont, USA

Contents *

Workshop Session Summaries

- A. Burns and J. A. de la Puente, "Session Summary: Conformance Issues"

- L. M. Pinho, S. Michell and B. Moore, "Session Summary: Fine-grained

Parallelism”

- A. Wellings and J. Real, " Session Summary: Language Abstractions"

Program Committee

Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns, Michael González Harbour, José Javier
Gutiérrez, Stephen Michell, Brad Moore, Luís Miguel Pinho, Juan Antonio de la Puente, Jorge Real, Jose
F. Ruiz, Joyce Tokar, Tullio Vardanega, Andy Wellings (Program Chair) and Rod White.

Workshop Participants

Mario Aldea Rivas, University of Cantabria, Spain
Patrick Bernardi, Australian National University, Australia
Alan Burns, University of York, UK
Carl Brandon, Vermont Tech, USA
Robert Dewar, AdaCore, USA
Tristan Gingold, AdaCore, USA
Michael González Harbour, University of Cantabria, Spain
Stephen Michell, Maurya Software, Canada
Brad Moore, General Dynamics, Canada
Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal
Juan Antonio de la Puente, Technical University of Madrid, Spain
Jorge Real, Universitat Politècnica de València, Spain
Pat Rogers, AdaCore, USA
José Ruiz, AdaCore, France
Sergio Sáez, Universitat Politècnica de València, Spain
Joyce Tokar, Pyrrhus Software, USA
Tullio Vardanega, University of Padua, Italy
Andy Wellings, University of York, UK
Juan Zamorano, Technical University of Madrid, Spain

Sponsors

* The Proceedings of the 17th International Real-Time Ada Workshop are published in the April 2015 issue of ACM Ada Letters.

52

Session Summary: Conformance Issues
Chair: Alan Burns
Rapporteur: Juan Antonio de la Puente

1 Introduction

The aim of the session was to discuss the role of the IRTAW

group in generating test cases for Ada real-time support and

updating the ISO/IEC technical reports related to high in-

tegrity systems and vulnerabilities in Ada.

2 Conformance tests

The basis for the discussion was the paper by Alan Burns

and Andy Wellings on Testing Conformity to the Real-Time

Annex [2]. Alan Burns started by recalling the requirement

from the Ada Rapporteur Group (ARG) to extend the current

tests in ACATS (Ada Conformity Assessment Test Suite) [1]

in order to properly cover the real-time features defined in

Annex D of the Ada 2012 standard. His presentation went on

with a summary of the current status of the ACTS tests, and

the need to complete those related to the real-time annex.

The group agreed that it is its responsibility to provide tests

for the Annex D features, even though some of them may not

be amenable to being tested. An example is the requirement

of an efficient implementation when tasking restrictions are

used.

A recommendation that all future proposals of new features

should be provided with a test case was also agreed upon. The

test case should be designed after the ARG initially considers

the issue and starts working on the details.

As a practical approach to writing the tests, an attempt will be

made to hold a seminar on test writing for interested people.

Ada-Europe will set up a web page with information about

the process, and AdaCore offered to provide an environment

where participants can collaborate in the development of new

tests.

3 Technical reports

The second part of the session was motivated by Joyce Tokar’s

position paper on updating ISO/IEC TR 15942 [6]. She

started the discussion by widening the topic to the follow-

ing three ISO/IEC technical reports that may need updating:

• TR 15942 — Guide for the use of the Ada programming

language in high integrity systems [3];

• TR 24718 — Guide for the use of the Ada Ravenscar

profile in high integrity systems [4];

• TR 24772 — Guidance to avoiding vulnerabilities in

programming languages through language selection and

use. Annex C. Vulnerability descriptions for the lan-

guage Ada [5].

After a detailed account of the origins and history of the first

two documents, a discussion followed on the effort required

for updating them. Since the need for this effort was not clear,

it was decided to start a survey in order to decide if such an

update is important to industrial users, and in this case try to

find volunteers to do the job.

The group also agreed on continuing support to the work

of WG9 on the Ada annex to the vulnerabilities report

(TR 24772).

4 Conclusions

In summary, the group concluded that updating the ACATS

tests and contributing to the Ada annex to the vulnerabilities

report are the most urgent tasks in the standards area. On

the other hand, the availability of resources for updating the

high-integrity reports and the interest of the work itself need

further clarification.

References

[1] Ada Conformity Assessment Authority (2014), Ada con-

formity assessment test suite (ACATS). URL http://

www.ada-auth.org/acats.html.

[2] A. Burns and A. Wellings (2015), Testing conformity to

the real-time annex, In Ada Letters vol.35 (1), pp. 17-25,

ACM.

[3] ISO/IEC (2000), TR15942:2000 — Information Technol-

ogy — Programming Languages — Guide for the Use of

the Ada Programming Language in High Integrity Sys-

tems.

[4] ISO/IEC (2005), TR 24718:2005 — Information Technol-

ogy — Programming Languages — Guide for the use of

the Ada Ravenscar profile in high integrity systems.

[5] ISO/IEC (2014), TR 24772 — Information Technology —

Programming Languages — Guidance to avoiding vul-

nerabilities in programming languages through language

selection and use. Draft 3rd ed.

[6] J. Tokar (2015), Update of ISO/IEC TR 15942, program-

ming languages — Guide for the use of the Ada program-

ming language in high integrity systems, In Ada Letters

vol.35 (1), pp. 93-94, ACM.

Volume 37, Number 1, March 16 Ada User Jour na l

 53

Ada User Journal Volume 37, Number 1, March 2016

Session Summary: Fine-grained Parallelism

Chairs: Luis Miguel Pinho and Stephen Michell

Rapporteur: Brad Moore

Session Goals

The main goals of this session were to:

 Present an overview of a model for fine-grained

parallelism in Ada based on the notion of tasklets;

 Present and discuss a general execution model

that would support parallelism constructs being

considered for possible inclusion in a future

version of the Ada standard;

 Present and discuss a real-time model that

provides consistency with the general model while

providing enough flexibility to accommodate a

wide range of real-time systems with the intent of

supporting real-time analysis and maintaining or

improving the safety features of the language.

1 Real-Time Fine-Grained Parallelism in
Ada

This session presented a model for fine grained parallelism

that could integrate into the existing Ada real-time tasking

model to extend capabilities to provide better support for

multicore parallelism. Luís Miguel Pinho gave the

presentation which covered this broad topic, and identified

various issues that the model was designed to address,

while also highlighting open issues for further discussion

and research.

The model extends the existing Ada tasking model in some

significant ways, and thus new terminology was needed to

facilitate understanding. In particular, the notion of tasklets

was introduced which allows an Ada task to potentially

contain many light weight threads of execution. These light

weight threads provide parallelism using fully strict fork-

join constructs. The concept is that tasklets may be created

explicitly using parallelism syntax constructs, or implicitly

by the compiler, when the compiler has sufficient

knowledge of the semantics of the code to allow this to

happen.

An important point is that an Ada task with no parallelism,

is itself still considered to be a tasklet. In other words, all

executing Ada code is considered to be carried out by

tasklets. Tasklets are a logical entity only, and not visible in

the text of an Ada program.

Miguel presented two main parallelism syntactic

constructs, parallel blocks, and parallel loops, which

together provide a good coverage of the needs that one

encounters when looking for improved performance for

multicore systems. To provide the compiler with better

knowledge for avoiding data races, Miguel then described

two new aspects, Global and Potentially_Blocking that

together point out where such data races can exist. The idea

being that if the compiler can know where sections of code

exist that are free from data races, the compiler can

generate implicit parallelism to make better use of the

available cores.

Next, Miguel went on to describe the Executor model,

where Executors are the agents of execution that carry out

the underlying tasklets of an application. Miguel mentioned

that it can help to think of Executors as OS threads,

although the model allows for other mechanisms to be used

or developed.

A problematic area involves allowing potentially blocking

calls to be allowed in tasklets. To accommodate this,

Miguel then introduced the notion of progress guarantees.

Three forms of progress guarantee were described:

Immediate Progress, Eventual Progress, and Limited

Progress, which can be mapped to implementation

strategies with regard to Executor allocation. At a basic

level, executors are either allocated immediately as needed,

eventually if not immediately, or analysis is needed to

ensure that the number of executors planned for the

execution is sufficient to prevent deadlock.

Other issues raised with respect to real-time centred around

the topics of priority and other real-time task attributes. In

particular, tasklets execute at the priority (or deadline) of

the associated task. Boosts in priority resulting from

protected actions only affect the tasklets that are within the

protected action, and all other tasklets of the same task

continue at the base priority/deadline of the associated task.

Another concern is in dealing with how parent tasklets wait

for child tasklets to complete. The model suggests that the

parent should execute child tasklets if available, while

waiting for children to complete, and then if child tasklets

are not available, the parent should spin as if executing the

parent tasklet.

A number of possible restrictions and controls were then

identified which would allow a real-time programmer to

control and understand the underlying parallelism, which

would be needed to facilitate analysis. During the

presentation, a number of open issues were presented and

discussed which are described below.

54 Session Summary: Fine-grained Paral le l ism

Volume 37, Number 1, March 2016 Ada User Journal

2 Discussions

Availability to General Programmer

One of the first discussion points was whether parallelism

constructs should be made available to general

programmers. If Ada is to be serving the safety critical

niche, would adding new parallelism capabilities provide

too many ways for a general programmer to introduce logic

errors and data races, and generally weaken Ada's position

in this market? If the compiler is given better capabilities to

determine where parallelism can be generated implicitly,

would there still be a need for explicit parallelism?

It was pointed out that parallelism is needed for certain

algorithms, and many such algorithms need to be rewritten

to accommodate parallelism. Compilers will not be able to

implicitly generate such parallelism for all of these

algorithms. It was mentioned that another need is

specifically for real-time. The real-time programmer will

need control and understand the parallelism in order to

provide better real-time analysis. Real-time control may be

needed to force the implementation to deviate from the

default behaviour as different analysis methods may work

better with different run-time behaviours. Steve Michell

also noted that there is a trend towards higher levels of

complexity in real-time systems. He gave the example of

vehicle braking systems and collision avoidance systems,

which require input from vision systems or sensor

networks, highlighting the fact that the need is a growing

one. Even where parallelism can be implicitly generated, it

is beneficial to be able to explicitly state the parallelism as

a design intention by the programmer. Thus both explicit

and implicit parallelism is needed. Andy Wellings

suggested that the area of parallelism could involve a fair

bit of academic work, as it would be desirable to ensure

that worthwhile features are added to the language without

introducing undesirable features. It is not an all or nothing

set of capabilities.

Syntax for Specifying Parallel Constructs

Another discussion point asked the question whether

parallelism capabilities should be confined to approaches

involving libraries, or whether the Ada language should be

extended with new syntax to accommodate this parallelism.

On the one hand, it is desirable to avoid adding further

complexity to the language, but on the other hand, the

amount of new syntax needed seems to be relatively small,

yet provides better safety and appears to be less error prone

than relying on libraries. In particular, it was noted that

safety is increased since the compiler can interpret the

usage of parallelism and verify the semantics and indicate

problems with the programmer code, such as pointing out

problems with data races. It was generally agreed that

adding parallelism support to the language using a model

and syntactic constructs such as those presented would be

useful and important for current multicore platforms as well

as provide better support for the future where the number of

available cores is expected to increase as many-core

platforms become more prevalent. Andy Wellings felt that

the need for parallel loops was clear, but wondered if the

need for parallel blocks was as important, or could be

omitted if necessary. It was noted that the parallel block

construct does provide capabilities that are difficult to

accomplish with loops, such as recursive parallelism.

Joyce Tokar raised a question about whether guidance

should be provided in some form to help programmers

work with and understand the new concepts. She noted that

slicing parallelism across arrays can be dangerous and

difficult to get right if there are too many options, and there

can be too many ways for a programmer to introduce logic

errors and data races, or introduce behaviours that worsen

instead of improve performance. It was generally agreed

that guidance in some form would be helpful for

programmers.

Exception Propagation

On the topic of exception propagation, the question was

raised whether the choice of propagation should be well

defined, or arbitrary. For example, in the case of a parallel

block construct that is being executed sequentially, what

should happen if an exception occurs in the first block? Are

the other blocks expected to execute? Miguel's response

indicated that there is no expectation for the subsequent

blocks to begin execution. If blocks have already begun

execution, then it would be allowed that they would

execute until completion, but an implementation could

choose to abort those tasklets early if an exception was

raised in one of the blocks, as it was noted that all parallel

execution is considered failed if an exception occurs. Andy

Wellings at first did not like that behaviour (see discussion

below on model of parallelism), but after discussion

warmed to the idea. Pat Rogers asked whether if it might be

desirable to propagate all exceptions raised in some sort of

aggregate form, rather than only propagating only one of

them. The group eventually agreed that the choice of

exception to be propagated when multiple blocks generate

exceptions should be arbitrary, and up to the

implementation. Michael González Harbour asked about

other forms of transfer of control. For example, what

happens if a return statement occurs first, and then an

exception occurs in another tasklet as work is finished? The

group generally felt that the same approach would be

applied and the choice of transfer mechanism out of the

parallelism construct would be chosen arbitrarily. While it

was agreed that arbitrary propagation is likely a good

solution, more research would be needed to determine if a

better solution is possible. It was noted that transfer of

control was expected to be allowed to leave a parallelism

construct, but a transfer of control could not be used to

enter a parallelism construct, which is consistent with how

transfers of control are currently defined with respect to

blocks statements in Ada.

Model of Parallelism

One topic that generated a fair amount of philosophical

discussion was whether the parallelism constructs represent

sequential code that is being parallelized, or whether the

constructs indicate that parallel code is being written. The

answer to this question is important in understanding the

L. M. Pinho, S. Michel l , B. Moore 55

Ada User Journal Volume 37, Number 1, March 2016

models. While to some extent this applied to both parallel

loops and parallel blocks, it was felt that it mostly applied

to parallel blocks. Andy Wellings initially felt that if it is

sequential code being parallelized, then he was not happy

with the use of the parallel keyword in the construct. In

languages such as Parasail, parallelism is the default, and

you need to specify where the code needs to be sequential.

The model in Ada is the other way round. He initially

suggested that “parallelizable” would be a more accurate

description. Miguel noted that other frameworks in other

languages already use the “parallel” keyword in a similar

manner as being proposed, so it shouldn't be too difficult

for people to understand. It was also mentioned that

“parallelizable” would be awkward to both say and write.

After discussion, Andy Welling's concerns were mostly

addressed and he mentioned he felt comfortable going

forward with “parallel” as a keyword.

Executor Model

The next topics of discussion were centred around the

Executor model. A number of interesting questions were

raised. The first being, can a task rendezvous with itself?

This led into the part of the presentation describing the

three progression models: immediate progress, eventual

progress, and limited progress. It was explained that the

progress models allowed this to occur safely, since

potentially blocking operations result in the tasklet making

the attempt to rendezvous to be processed by a separate

executor. This guarantees that the executor performing the

accept is not the same one that is requesting the

rendezvous, thus avoiding deadlock. Ada already has the

notion of the same task attempting multiple rendezvous in

parallel on the same entry. This can occur with the

asynchronous transfer of control capability.

Some clarification was needed to understand the progress

models. For immediate progression, it was unclear what

was meant if no cores were available. It was explained that

availability of a core means that it is idle or executing

lower priority tasklets. Making progress means that a

tasklet can compete for scheduling. It does not mean that it

can execute. In other words, it means that the tasklet has an

executor allocated to it. Miguel explained that immediate

progress is essentially global scheduling. Andy Wellings

felt that “progress” is the wrong word to describe the intent.

It really means availability of an executor. Tullio

Vardanega suggested that it may be helpful to consider and

describe how bounded vs unbounded executor pools map to

the progress models. Miguel said he would revisit the use

of terminology to see if there are possible improvements

that could be made.

Miguel presented an example of a loop where one of the

iterations in the loop releases a protected object that cause

other iterations of the loop to block. The model as

presented, suggested that the example would succeed if

executing in parallel but deadlock if sequential. Therefore,

it was asked if the code deadlocks when executing

sequentially, should it be expected to work when executing

in parallel? This was another philosophical question, which

was deemed an open issue. Tullio Vardanega had concerns

about the limited progress model. In particular, he felt that

being able to determine the number of executors needed for

a system is not going to be an easy thing to do. Static

determination of executor counts needed for limited

progress remains an open issue.

Accept Statements in Parallel Constructs

It was then asked whether accept statements would be

allowed in tasklets. What should happen if each block of a

parallel block construct in a task has an accept statement on

the same entry? This was a situation that hadn't been

considered, but after discussion, the group felt that accept

statements should probably not be allowed from inside

parallel constructs, as there were both safety concerns and

implementation difficulty concerns about supporting a

feature with questionable usefulness. This should be

relatively easy to enforce since accept statement cannot

occur inside procedure bodies, and are only allowed in the

main task body.

Andy Wellings asked whether tasklet interaction would be

allowed in abort-deferred regions. This required more

deliberation, and after regrouping the group arrived at the

conclusion that adding parallelism within abort-deferred

regions should probably be disallowed. The main problem

being that a protected object has a lock to prevent data

races within the protected object. If generating parallelism

within the protected object were allowed, then another lock

could eventually be needed to protect the variables inside

the protected object. The main concerns here were of

introducing too much complexity for implementers to

support.

Potentially Blocking Operations in Tasklets

Andy Wellings asked whether both parallel loops and

parallel blocks have needs to support potentially blocking

scenarios. The cumulative sum problem was given as an

example where parallelism using potentially blocking

operations could be useful. While an example for parallel

blocks was not given, it should be noted that I/O is another

case where potentially blocking operations are needed,

which can be generally useful both within parallel loops

and parallel blocks.

Real Time Controls

A number of real-time controls were identified to allow

programmers to better analyze the run-time behaviour. It

was noted that No_Implicit_Parallelism cannot eliminate

parallelism at the hardware level, so it should be described

as applying only to software parallelism generated by the

compiler. It was also asked whether all the controls were

necessary. Is it necessary to be able to control both the

number of tasklets as well as the number of executors? It

was explained that both can play a role towards providing

analyzability of the run-time behaviour. In the case of

parallel loops for example, one needs to know both the

number of chunks (i.e., tasklets) that were generated for the

loop, as well as how many executors are assigned to

execute those chunks.

56 Session Summary: Fine-grained Paral le l ism

Volume 37, Number 1, March 2016 Ada User Journal

Task Attributes in Tasklets

Another area of consideration was with regard to priorities,

task deadlines, and other task attributes. It was generally

felt that assigning priorities and deadlines at the tasklet

level would be too onerous and cumbersome. The task

attributes generally are shared among all tasklets associated

with a given task. This led to questions about what should

happen if two tasklets of the same task call Set_Priority, or

modify other task attributes. Once again, it was felt that the

choice of which modification should ultimately take place

should be chosen arbitrarily by the implementation.

Set_Priority in particular was noted as being problematic,

and different alternatives were considered. Currently in

Ada, Set_Priority does not always immediately take effect,

so it may make sense to postpone the effect until non-

parallel code, or restrict the call to be disallowed within

parallelism constructs. Another alternative would be to

provide guidance to suggest that Set_Priority should not be

called from within parallel code. Andy Wellings disagreed,

as you cannot specify programmers not do stupid things.

Rather he felt we should just state what happens when the

call is made from within parallelism constructs. It was

noted that having the compiler reorder the calls to

Set_Priority should not be allowed because the compiler is

not supposed to generate implicit parallelism if there is no

visible effect, and reordering calls to Set_Priority would

have this effect. It was generally felt that deferring the call

or disallowing it when executing in a parallel setting would

make the most sense. Treatment of the Set_Priority call

remains an open issue though. Jorge Real asked how it

would be possible to determine if one was within a

parallelism construct. This may not be easy to determine if

nested subprogram calls are involved, and making such a

determination should not significantly impact performance

which would defeat the purpose. More thought is needed in

this area, which is another open issue.

Timers and Interrupts

Yet another set of issues raised was with regard to

interrupts and timer events. Should it be possible to create

parallelism tasklets from within an interrupt handler or

timer event? Suppose ten timing events are created which

expire at the same time. Can these events execute in

parallel? While this is likely an implementation specific

capability, the proposed model does not disallow such

possibilities. Execution timers in particular are problematic

however. Currently there is one execution budget per task.

If the task executes in parallel, how can the execution time

be tracked? One possible solution would be to only update

the execution time at the end of the parallel activity. So far

this deferred model seems to be the only viable solution

that wouldn't have significant impact on performance, but

clearly more research is needed in this area. Another

possibility would be to have a set of budget values per core,

but Tullio thought this would lead to too much complexity.

If the parent tasklet is spinning, then you have a mechanism

to determine how much time is spent in the core. While that

might be a useful technique used in developing a solution,

more thought is needed.

Other model variants

While the real-time models presented provide a fair amount

of flexibility, it was acknowledged that other sensible

models may be possible, or other variations of the

presented model may also be viable. Examples given

include other preemptive models where preemption doesn't

occur if child tasklets are executing, or where preemption is

deferred until the end of the parallelism.

3 Summary

The following summarizes the positions taken by the

workshop during this session:

 There was general agreement that support for

parallelism features should be added to the language in

the form of parallelism constructs involving syntax for

parallel loops and parallel blocks, but that some form

of guidance document would also be needed to help

programmers make the best use of the available cores

and avoid various pitfalls.

 The parallel keyword is likely the best choice to use in

defining the syntax for these new parallelism

constructs.

 When multiple transfers of control occur in parallel,

likely the choice of transfer should be arbitrarily

chosen by the implementation.

 Parallelism constructs should probably be disallowed

within abort-deferred regions.

 Parallelism constructs should probably disallow accept

statements within the construct.

 More thought and research is needed to address the

open issues described in [1] and above. In particular;

Multiple parallel updates to task attributes need to be

worked out;

- The choice of arbitrary selection for transfer of

control out of parallel constructs should be further

scrutinized to see if the behaviour should be more

well-defined;

- The terminology used for describing the progress

models should be revisited to see if better

terminology can be used, to facilitate

understanding of the concepts; Efficient

mechanisms to determine if code is executing in

parallel should be investigated, particularly if

parallelism constructs are to be disallowed within

abort-deferred regions;

- Methods to efficiently track and implement

execution timers should be explored.

References

[1] L. M. Pinho, B. Moore, S. Michell, S. T. Taft (2015),

Real-Time Fine Grained Parallelism in Ada, In Ada Letters

vol. 35 (1), pp. 46-58.

57

Session Summary: Language Abstractions
Chair: Andy Wellings
Rapporteur: Jorge Real

1 Introduction

This session reviewed the support for two classes of language

abstractions for which position papers had been submitted.

The workshop first considered the ability to monitor and con-

trol the affinity of protected handlers for both interrupts and

timing events, based on the ideas and results presented in pa-

pers [5] and [3]. Then we considered the incorporation of the

concept of cyclic tasks directly into the language, according

to the proposal in [1].

2 Support for event-handler affinity

The session chair set the context of the issues at hand. There

is a lack of support in Ada for controlling the affinity of event

handlers (namely timing-event, execution-time and group-

budget handlers) [5]. Similarly, interrupt handlers cannot

currently have their dispatching domains set either.

Implementation of the required support for these facilities

is highly dependent on the type of the underlying execution

platform. Andy identified four possible scenarios:

Bare machine There is no operating system as such: the Ada

run-time environment has full control over interrupts and

devices.

Real-time kernel In this case, the kernel, run-time and ap-

plication all run in the same address space, with same

privileges.

Real-time kernel with loadable kernel modules Here all

or part of the application can run as a kernel module,

hence sharing address space and privileges with the ker-

nel.

User-mode application on top of a real-time kernel The

Ada run-time environment and the application run in

separate address space to the kernel and run with limited

privileges.

The chances for a particular implementation to efficiently

support event-handler affinity will very much depend on the

ability to control the underlying hardware resources. This

support is generally limited when the run-time relies on an

existing OS kernel, but on real-time embedded systems, pro-

grammers should have control over (or at least knowledge

about) which processor will execute which handlers, so that

the associated interference can be bound and properly consid-

ered in the schedulability analysis.

The Ada Real-Time Annex philosophy is to allow the specifi-

cation of packages which, since the Annex is optional, may or

may not be supported on all systems. Examples of these are

asynchronous task control, EDF scheduling or group budgets.

So encouraging development and implementation of essential

real-time programming abstractions seems like a reasonable

goal.

So the core issue is whether or not the language should define

different acceptable implementation approaches so that there

is more commonality on the various execution platforms.

This would probably only apply to low-level features, such as

interrupts, event handlers or representation aspects.

Currently a function exists in package Ada.Interrupts

to obtain the CPU to which an interrupt is connected. The pro-

posal from Wellings and Burns [5] suggests that, in order to

control the execution of interrupt handlers on a multiprocessor

system, this package should also provide mechanisms to set

the dispatching domain (and potentially an individual proces-

sor) for an interrupt. A standard exception should be raised

if the operation is not supported on a particular platform. In

addition, the package Ada.Interrupts.Names should

declare standard names for all the reserved interrupts required

by the Ada run-time system. For example, clock interrupts

that service timing events and those that allow tasks to be

released when a delay expires (either relative or absolute).

The implementation should also document which reserved

interrupts result in which of the event handlers being exe-

cuted. And for those implementations where extra tasks are

introduced to execute the event handlers, those tasks should

have the same affinity as the associated interrupt.

The position paper submitted by Sáez et al [3] showed the

implementation of timing-event affinities for a particular im-

plementation of Ada on top of Linux. In that implementa-

tion, the run-time introduces tasks to execute timing-event

handlers. Even though this is not in line with the spirit of

timing event handlers, which should ideally be executed by

the clock interrupt handler, the proposed experimental im-

plementation takes advantage of this by using one task per

processor (using task affinities) so that they execute on a

known CPU. In this manner, there is a degree of control about

where (on which CPU) the interference of the handler will

occur. The paper [3] gives an alternative implementation

for Ada.Real_Time.Timing_Events to support this

feature.

2.1 Summary of Workshop position

The Workshop’s conclusions after discussion of this part of

the session were:

• Ada interrupt handlers should be able to have dispatch-

ing domain (or individual processor) set, with raising a

standard exception if this feature is not supportable by

the underlying platform.

Ada User Jour na l Vo lume 37, Number 1, March 16

58 Sess ion Summar y: Language Abst rac t ions

• It was considered that reserved interrupts could still be

invisible, but documentation should indicate which dis-

patching domain is in charge of executing their handlers.

There was however no consensus around this aspect.

• It was agreed that Ada should include mechanisms to

set the dispatching domain or processor where a timing-

event handler executes. There was no consensus however

regarding execution-time and group-budget handlers.

• We need to work on the motivation and vision of the

issue, towards the production of a related Ada Issue for

its consideration by the Ada Rapporteur Group.

3 Support for the concept of cyclic tasks

Cyclic tasks (both periodic and aperiodic) are fundamental

patterns in real-time and embedded systems. There are how-

ever no abstractions in Ada to model them, and therefore pro-

grammers need to care not only about the logic of their tasks,

but also about their particular release mechanisms. There

have been contributions in this regard in the last few years.

Previous editions of this workshop have considered different

versions of a library of standard real-time utilities to capture

these patterns. An initial version was proposed in [6], which

was later extended to cover multi-moded systems [2]. More

recent work, in the context of the Ada-Europe International

Conference on Reliable Software Technologies, elaborated

on this basis to adapt the library to multiprocessor systems

[4]. But until today, the IRTAW has been wary of suggesting

language changes in this regard.

The second half of this session aimed at revisiting this lan-

guage constraint, based on the position paper by Patrick

Bernardi [1]. In that paper, Bernardi proposes a cyclic task

syntax, which can be either time- or event-triggered. Cyclic

tasks may also specify how to handle deadline-miss and

budget-exhaustion events by means of exceptions.

3.1 Summary of Workshop position

Upon examination of Bernardi’s proposal, the workshop

agreed that, after some rework and refinement, this could

be a good starting point for a proposal to the Ada Rapporteur

Group. Points in favour are the the proposal makes more

about the cyclic nature of real-time systems, takes advan-

tage of implementation experience, and naturally resolves

initialisation issues, since cyclic tasks can be released after

their initialisation phase. The workshop, however, identified

several outstanding issues that need clarification or further

consideration:

• The proposal suggests that a deadline-miss exception

should be raised in a tardy task. This would be an asyn-

chronous exception, which is not supported in Ada.

• The proposal does not cover the handling of minimum

inter-arrival time violations for sporadic tasks.

• Need to clarify whether deadlines relate to the design’s

release time or to the actual release time of the tasks.

• Need to revisit and refine the syntax for releasing an

aperiodic or sporadic task.

• Need to consider the situation of a program trying to

release a task with periodic behaviour.

• In its current state, the proposal does not allow to identify

that a task is cyclic from its specification: one has to

read the body.

• Need to assess the flexibility of the model, making sure

that all aspects are covered.

The workshop agreed on the need to generate an Ada Issue

from a revised version of [1] covering these open issues.

References

[1] P. Bernardi (2015), Incorporating Cyclic Task Behaviour

into Ada Tasks, Ada Letters vol. 35 (1), pp. 59-73, ACM.

[2] J. Real and A. Crespo (2010), Incorporating Operating

Modes to an Ada Real-Time Framework, Ada Letters vol.

30 (1), pp. 73-85, ACM.

[3] S. Sáez, J. Real, and A. Crespo (2015), Implementation

of Timing-Event Affinities in Ada/Linux, Ada Letters vol.

35 (1), pp. 80-92, ACM.

[4] S. Sáez, S. Terrasa, and A. Crespo (2011), A Real-

Time Framework for Multiprocessor Platforms Using Ada

2012, In S. Romanovsky and T. Vardanega, editors, 16th

International Conference on Reliable Software technolo-

gies – Ada-Europe 2011, volume 6652, Springer.

[5] A. Wellings and A. Burns (2015), Interrupts, Timing

Events and Dispatching Domains, Ada Letters vol. 35

(1), pp. 26-31, ACM.

[6] A. J. Wellings and A. Burns (2007), A Framework for

Real-Time Utilities for Ada 2005, Ada Letters vol. 27 (2),

pp. 41-47, ACM.

Volume 37, Number 1, March 16 Ada User Jour na l

59

Simulating Next-Generation Cyber-Physical
Computing Platforms

Paolo Burgio
University of Modena and Reggio Emilia, Italy; email : paolo.burgio@unimore.it
Carlos Alvarez, Eduard Ayguadé, Antonio Filgueras, Daniel Jimenez-Gonzalez, Xavier Martorell and Nacho
Navarro
Barcelona Supercomputing Center, Spain; email : {name.surname}@bsc.es
Roberto Giorgi
University of Siena, Italy; email : giorgi@dii.unisi.it

Abstract

In specific domains, such as cyber-physical systems,
platforms are quickly evolving to include multiple
(many-) cores and programmable logic in a single
system-on-chip, while including interfaces to commodity
sensors/actuators. Programmable Logic (e.g., FPGA)
allows for greater flexibility and dependability. However,
the task of extracting the performance/watt potential of
heterogeneous many-cores is often demanded at the ap-
plication level, and this has strong implication on the
HW/SW co-design process. Enabling fast prototyping
of a board being designed is paramount to enable low
time-to-market for applications running on it, and ulti-
mately, for the whole platform: programmers must be
provided with accurate hardware models, to support the
software development cycle at the very early stages of
the design process. Virtual platforms fulfill this need,
providing that they can be in turn efficiently developed
and tested in a few months timespan. In this position
paper we will share our experience in the sphere of the
AXIOM project, identifying key properties that virtual
platforms modeling next-generation cyber-physical sys-
tems should have to quickly enable simulation-based
software development for a these platforms.

1 Introduction

As the technological scaling for semiconductors predicted
by Moore’s law hit the so-called power wall, and energy
consumption became a primary concern for the market of
electronic devices, computing platforms shifted to many-
core heterogeneous designs [1, 2, 3, 4]. These platforms
are perfectly suited to meet the requirements especially of
next-generation cyber-physical systems (CPS), where a huge
number of peripherals interacting with the surrounding envi-
ronment are coupled to a computing board delivering high
performance/watt through many-core SMPs and hardware
accelerators. Sensors and actuators will be integrated in the
design through ad-hoc bridges/circuits, or more flexible re-
programmable logic (e.g., FPGAs), composing a system made
of several communicating nodes with one or more centralized
controllers running on general purpose SMP cores. Hardware
accelerators are application-specific circuits which increase
the power efficiency of portions (kernels) of applications by
orders of magnitude. The consequence is that, today, soft-
ware developers must write code that runs on multiple cores
and uses the hardware resources available in the platform,

in a productive and effective manner: extracting the tremen-
dous performance/watt potential of such a complex platform
essentially becomes also a software development problem.
Dependability is also improved when adopting programmable
logic: for example, systems based on programmable logic can
execute a function in a deterministic way, without the need of
a continuous push-pull to/from caches. Most systems based
on caches tend to offer a good average performance but may
fail to respect a hard deadline in the worst case. Moreover,
if the specific architecture fails, reconfiguration of the FPGA
can help. Concepts like Data-Flow Threads (DF-Threads)
[5, 6] can enable the repetition of the execution of a failed
thread.

Virtual platforms are the key to fight this problem, as they
enable fast software prototyping at the very early stages of
the design cycle of a board, where hardware is not yet 100%
available. Computer architects are well aware of this, and
in recent years a number of simulator infrastructures have
been developed [7, 8, 9], and eventually commercialized, that
model a generic or specialized computing fabric with also
high accuracy (e.g., cycle-accurate [9, 10]). Unfortunately,
correctly modeling the behavior of an hardware platform is
time-costly: fully cycle-accurate simulators1 can be orders of
magnitude slower than the corresponding hardware counter-
parts [11]. For this reason, recently, some virtual platforms
were proposed (such as Qemu [11]), for pure functional simu-
lation. They can be successfully adopted in an initial phase
to enable functional testing/debugging of the alpha versions
of applications, and to quickly exploring the hardware/soft-
ware partitioning of applications into kernels. Then, software
developers might resort to slower and fully cycle-accurate
simulators in advanced stages of debugging, until the first
prototypes of the board are available.

In this position paper we describe our preliminary analysis
on building a virtual platform for simulating cyber-physical
systems, in the context of the AXIOM project [12]. AX-
IOM explores energy-efficient, many-core platforms for next-
generation cyber-physical systems. We will briefly describe
the guidelines that drive the development of the AXIOM
board, in section 2. In section 3 we decompose a simulator
for many-core heterogeneous platforms in its basic building
blocks, and for each of them we discuss in detail the main
issues in simulating it, and how it can (should) be accurately
modeled in the quickest way possible. We will do this bring-
ing our expertise on already existing simulation platforms,

1cycle accurate virtual platforms mimic the behavior of each component
of a system at every clock cycle

Ada User Jour na l Vo lume 37, Number 1, March 2016

60 Simula t ing Next -Generat ion Cyber-Phys ica l Comput ing Pla t for ms

both industry [7, 8] and academical solutions [10]. Finally,
section 4 draws some conclusions.

2 Requirements for a cyber-physical sys-
tem: The Axiom project

We are entering the cyber-physical age, where both objects
and people will become nodes of the same digital network
for exchanging information. This vision is also referred to
as “Internet of Things” (IoT) becauses the general expec-
tation is that “things” or systems will become somewhat
smart as people, allowing a tight system-to-human and device-
to-environment interaction. As a consequence, we expect
that such cyber-physical systems (CPS) will at least react in
real-times, consume the least possible energy for a given
task, scale up through modularity, and allow for an easy
programmability across performance scaling. The whole
set of these expectations impose scientific and technological
challenges that AXIOM project (Agile, eXtensible, fast I/O
Module[12, 13]) tries to address, exploring new hardware/-
software architectures for CPSs.

Communities [14, 15, 16] that are using CPSs are devising
more and more the need for more powerful embedded plat-
forms that could be: i) easy programmable through an almost
standard software toolchain; ii) be customizable with pro-
grammable logic (i.e., FPGAs), iii) be extensible to one or
more boards (e.g., two robotic arms that need to be closely
synchronized toward a single real-time task); iv) provide an
easy way to integrate sensors (e.g., through widely available
Arduino [15] shields). Current solutions providing enough
energy-efficient computational power for fulfilling this needs
are starting to rely more and more on multi- and many-core
architectures (e.g., UDOO [14] and RaspberryPi2 [16] rely on
a quad-core and GPUs) . For example, some current research
projects (such as ADEPT [17] or FP7 P-SOCRATES [18])
are already investigating how to join efforts from the high-
performance computing (HPC) and the embedded computing
domains, which are both focused on high power efficiency,
while GPUs and new dataflow platforms such as Maxeler’s
[19], or in general FPGAs, are claimed as the most energy
efficient.

AXIOM research mainly targets designs coupling power-
efficient multiple cores, such as ARM ones, and FPGA accel-
erators on the same die as in the Xilinx Zynq [1], and produce
prototypes of single-board computers, similar to UDOO [14],
Arduino [15] and RaspberryPi [16]. This architecture in-
cludes capability to high-speed board-to-board interconnects
and controllers for commodity CPS peripherals such as Ar-
duino Shields. AXIOM partners will start the development
using a virtual platform: this paper reports the preliminary
results of such investigations. At the same time, the tested
parts, when ready, are progressively migrated on the FPGA
prototype (a Xilinx ZC-706). As a consequence, the AXIOM
project requires a virtual platform which simulates general-
purpose cores, programmable logic (for accelerators), and
peripherals ASIC circuits that integrate sensors and actua-
tors. Figure 1 shows the scheme of a computing platform
including two general-purpose cores, FPGA logics and a few
peripherals/sensors connected to it.

From the software viewpoint, the AXIOM system will inter-
act with and react to the surrounding environment by properly
managing actions in real-time through an operating system
(such as Linux), a well-known parallel programming model:

Other

Board

INTERCONNECTION

P
E

R
IP

H
E

R
A

L
B

U
SPeripheral

Controller

Peripheral

Controller

Arduino

Shield

“So!” (FPGA)

Components

“Hard”

components

Off-Chip

Components

FPGA

Hardware

Accelerators

Sensor

Controller

DRAM

MEM-CTRL

Sensor,

Actuator

CORE

ARM Mul#-Core

Subsystem

CORE

$ $

System

Image

(OS)

High-Speed

Board-to-Board

interconnect

Camera Streaming

interface

B

O

A

R

D

Figure 1: Heterogeneous computing platform with sensors

OmpSs [20]. By using OmpSs, applications will be hard-
ware/software partitioned, i.e., decomposed in parallel tasks
that can be mapped on multiple software execution units (OS
threads) and/or hardware execution units, e.g. the accelera-
tors in the FPGA. This provides a huge number of options
for mapping tasks to resources, considering the device on
which a task is mapped, the size of the input data, the data
transfer time, or the different speed of the devices in execut-
ing the task. Tools and techniques for quickly finding the
optimal HW/SW partitioning of applications according to
performance and power metrics, and to validate them against
real-time constraints, are therefore crucial for the project. The
issue is that, when all tasks are mapped either on hardware
or software, a complete FPGA synthesis flow for hardware
accelerators can spend from hours to days, depending on the
size of the computational kernels to process. With virtual
platforms, on the contrary, new accelerator elements can be
quickly added in the simulation environment, and we can run
a timing accurate full system simulation of the applications
partitioned on the SMP cores and FPGA accelerators in a
matter of minutes to few hours.

3 Virtual Platform requirements

This section describes how to build a virtual platform for a
computing system such as the one targeted by AXIOM. Start-
ing from AXIOM specifications, we will first describe its ba-
sic building blocks, and discuss how a proper design for each
of them will enable fast prototyping of the target board. We
will bring our expertise, previously gained using/developing
two simulator for heterogeneous systems, namely COTSon
[7] in the TERAFLUX project [21, 22], and a prototype built
after the open-source academical VirtualSoC [9] by Univer-
sity of Bologna: HC-VSoC [10, 23]. We will also refer to
other existing simulator infrastructure of potential interest.

From AXIOM specifications, the simulator must enable quick
software prototyping of a system whose hardware architec-
ture is not 100% defined at early stages of the project. We
identify these four key requirements:

1)immediate availability of at least a first functional version
of the simulator, to let the software development cycle start;
2) possibility of defining architectures and their timing model
for cycle accurate evaluations, to be selectively used in com-
bination with functional models;

Volume 37, Number 1, March 2016 Ada User Jour na l

P. Burg io et a l . 61

3) the virtual platform must be capable of integrating multi-
ple modules (such as proximity sensors), that generate/simu-
late events coming from the surrounding environment, hence
whose behavior must be random, or driven by user/parametriz-
able;
4) we must be capable of easily putting new hardware models
in the design, and to replace (fast and inaccurate) behavioral
models of its components, e.g., sensors and actuators, with
more timing-accurate (and slower) versions.

Requirements 1) and 2) match the experience of the COT-
Son [7] simulator, while requirements 3) and 4) match the
experience of the HC-VSoC [10, 23] simulator, which mod-
els platforms with user-defined hardware accelerators called
HWPUs, i.e., whose functionality is defined by the end-user.
HC-VSoC architects reduce the problem complexity by speci-
fying a clearly-defined common communication contract and
infrastructure for all the blocks modeled in the systems. SMP
cores and HWPUs are equipped with a memory shell that
supports that communication protocol. Also the COTSon [7]
virtual platform, whose primary design requirement was to
build a highly scalable architecture, employs a similar solu-
tion, providing a well-defined communication API.

This brings us to the first component of a virtual platform, the
simulation engine, which supports/simulates the interaction
between modeled blocks. A number of tools for this exist,
both coming from industry and academia, and the most known
is probably SystemC [24] by Accelera. The SystemC package
is a very flexible macro library (C++ language) and a simu-
lation engine, to simulate the behavior of hardware blocks
with different levels of abstraction and accuracy, from RTL-
to cycle-accurate, to transactional-level modeling. Higly-
scalable infrastructures (such as – as explained before – COT-
Son [7], or OVP [8]) expose a very simple API to integrate
hardware blocks in their engines, and come with a few pre-
built architecture models. These are the best solution if the
architecture models included in these packages partially or
totally match the one being developed.

An second component that must be carefully designed at
early stages is the interconnection, which emulates on- or
off-chip connectivity. Designing an interconnection infras-
tructure with acceptable good tradeoff of simulation speed,
scalability, and timing accuracy is not trivial and it is probably
the most time-consuming part in developing virtual platforms.
In addition, in AXIOM, the interconnection must enable fast
integration of the future versions of the hardware models,
to meet requirement 4). An example of scalable communi-
cation medium is the one connecting multiple COTSon [7]
nodes, or the one of HC-VSoC [23], whose protocol is called
PINOUT. The difference between them is in the way they
are implemented: in the former it is exposed as a pluggable
model rigorously decoupled as a functional model and a tim-
ing model. Hence the simulated hardware blocks access to the
interconnection by directly invoking a simple given API. The
latter is itself an instantiated as a SystemC modules with its
own model of hardware ports, and a timing accuracy given by
design. An amenable property of a simulated interconnection
(although not a critical requirement for AXIOM), is that it
should be possible to customize its internals and the modeled
communication delay should be driven, e.g., via simulator pa-
rameters or configuration files. An example of configuration
files for a simulator is shown in Figure 2. It was developed in
the PREDATOR FP7 project [25].

Rows and columns in the figure simulate a hierarchical cross-
bar by specifying the communication delay among each mas-

Input to VP

(e.g., text file)

1 1 0

1 1

1 0

90

90

Slave ports

M
a

st
e

r
p

o
rt

s

0 -> No connec!on

N -> N cycles delay

…

…

…

0 1 M-1

0

1

N-1

Figure 2: Parametrizable interconnection model

ter port (e.g., SMP cores) and each slave ports (memories and
peripherals), respectively. In this example, we are modeling
an N-to-M crossbar with user-defined delay for each master-
to-slave (core-to-mem bank) path: for instance, we note that
the M-th slave implements the controller for an off-chip DDR,
because the delay that each master “sees” to get to it (speci-
fied in the last column) are significantly higher than for other
memories.

General Purpose cores are the most complex component
of a simulator, as they must correctly mimic the functional
behavior, e.g., of modern superscalar cores, with branch-
prediction units and multiple deep pipelines, or the complex
hierarchical shared cache systems and prefetch buffers of
next-generation many-core architectures. Luckily, the choice
of the instruction-set architecture (ISA) and core model to
adopt is usually made at the very beginning of the project,
and it does not change in the following. Moreover, most of
the simulation infrastructures provide a portfolio of processor
models, which is often freely available as a library (see for
instance OVP [8]).

The key point in integrating core models in a bigger design
is that, in order to support the development of software, each
core model must come with the required toolchain for compil-
ing the code of applications, deploying them on the simulator
and – possibly – to support debugging to do what ultimately
is the main purpose of a virtual platform: support software
development. In AXIOM, this is reflected in requirement 1).

A few examples can be:

• COTSon [7], which includes x86_64 processor models
together with the associated toolchain;

• The HC-VSoC package [10, 23] targets for ARM-based
embedded systems, and it comes with a “standard” GNU
Compiler Collection (GCC [26]) cross-compiled for it;

• Open Virtual Platforms by Imperas [8] provides a wide
portfolio of core models, including ARM (32 and 64
bit), Imagination MIPS (32 and 64 bit), PowerPC, Xilinx
Microblaze, and many more.

A project can also adopt a proprietary ISA from a specific
provider: they also usually come with a library/software pack-
age that simulates a single processing core, using “open” sim-
ulation engines (e.g., SystemC), or again with in-house en-
gines or define ISEs (ISA Extensions).

Due to its complexity, the processor model is usually the
component from which the development of a virtual platform
starts, together with the simulating engine. For this reason,
the preliminary version of the platform provided to program-
mers typically embeds only one or multiple SMP cores, the
interconnection model, and a few memories, with limited set

Ada User Jour na l Vo lume 37, Number 1, March 2016

62 Simula t ing Next -Generat ion Cyber-Phys ica l Comput ing Pla t for ms

of peripherals. Using this, software developers for an het-
erogeneous platform (such as AXIOM’s) can immediately
compile, deploy and test the “host/SMP part” of their code.

Programmable logic and peripherals (and sensors/actua-
tors). The platform template targeted by AXIOM embeds
on-chip programmable logic, as well as a number of periph-
erals controllers to interact, e.g., with sensors or Arduino
shields. Once the communication infrastructure has been set,
and a scalable model of the on-chip interconnection imple-
mented as explained before, it is extremely easy to include in
the simulator in-house customized models for peripherals and
hardware accelerators. For instance, the PINOUT interface
in [23] is implemented in the so-called COMU of HC-VSoC
HWPUs. Internally, each of HWPU model can be imple-
mented with a different simulation speed/timing accuracy
tradeoff, as required by project specification.

Integration with external components. In the AXIOM
project, peripheral components will either interact with the
surrounding environment, or connect the board to COTS com-
ponents or 3rd party subsystems such as the Arduino Shields,
and the virtual platform will simulate these behaviors. In the
first case, we can employ parameters or proper input files for
the simulator that mimic the surrounding environment. For
instance, the behavior of temperature sensors can be easily
defined via simple input text files describing the variation of
the temperature in time. The second scenario, in turn, has
a great impact on the simulation infrastructure, and raises a
potential problem. Simulator developers might need to in-
tegrate pre-existing models of the two platforms (e.g., the
core model running on SystemC, and the model of an Ar-
duino running on a proprietary simulation engine), which
are potentially not designed to communicate each other, or
can even be written in different programming language. This
possible incompatibility in the communication between sim-
ulator models, may require to implement stub functions to
transform the information between formats understood by the
two components.

Memories. In current virtual platforms, typically memories
are implemented as “wrappers” that simply add a delay for
accessing big arrays of data modeling the memory banks. For
this reason, it is not uncommon that virtual platform devel-
opers create their in-house simulation models of memories,
when possible. More complex or “fancy” memory models,
such as smart memories, can be easily implemented starting
from these components.

Support software libraries Applications running on the sim-
ulator might employ specific standard libraries, such as libc
and libsdtc++, or custom runtimes, such as nanos++
[27], or libhwpu (in HC-VSoC) to do their work. This is
also the case of AXIOM. In this case, the simulator infrastruc-
ture must support the same set of required APIs as the “real”
board, to ensure code portability.

4 Conclusions

We presented in this paper the approach used by the AX-
IOM project for flexibly simulating a realistic Cyber-Physical
System, soon to be implemented as single board computer.
Mainly, besides a FPGA prototype, we developed the pre-
liminary steps through virtual platforms. In particular two
platforms had been selected: COTSon and HC-VSoC as they
can provide the best support for our design needs. In par-
ticular, the inclusion of FPGA in the simulation toolchain
provides support for exploring dependability options.

5 Acknowledgment

This work is supported by the AXIOM project, funded by
EU H2020 program (grant ICT-01-2014 GA 645496), the
Spanish Government, through the Severo Ochoa program
(grant SEV-2011-00067) the Spanish Ministry of Science
and Technology (TIN2012-34557) and the Generalitat de
Catalunya (MPEXPAR, 2014-SGR-1051). Authors would
also like to thank the anonymous reviewers for their precious
feedback.

References

[1] Xilinx Inc., Zynq Series.

[2] G. Kyriazis (2012), Heterogeneous System Architecture:
A Technical Review.

[3] AMD, The AMD Fusion Family of APUs.

[4] R. Giorgi (2015), Scalable embedded systems: Towards
the convergence of high-performance and embedded
computing, in Proceedings of the 13th IEEE/IFIP In-
ternational Conference on Embedded and Ubiquitous
Computing.

[5] R. Giorgi and P. Faraboschi (2014), An Introduction
to DF-Threads and their Execution Model, in IEEE
Proceedings of MPP-2014, (Paris, France), pp. 60–65.

[6] S. Weis, A. Garbade, B. Fechner, A. Mendelson,
R. Giorgi, and T. Ungerer (2014), Architectural sup-
port for fault tolerance in a teradevice dataflow system,
Springer International Journal of Parallel Programming,
pp. 1–25.

[7] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero,
and D. Ortega (2009), COTSon: Infrastructure for Full
System Simulation, SIGOPS Oper. Syst. Rev., vol. 43,
pp. 52–61.

[8] Imperas Software, OVP – Open Virtual Platforms.

[9] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, and
L. Benini (2013), VirtualSoC: A Full-System Simula-
tion Environment for Massively Parallel Heterogeneous
System-on-Chip, in Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013
IEEE 27th International, pp. 2182–2187.

[10] P. Burgio, A. Marongiu, D. Heller, C. Chavet, P. Coussy,
and L. Benini (2012), OpenMP-based Synergistic Par-
allelization and HW Acceleration for On-Chip Shared-
Memory Clusters, in 15th Euromicro Conference on Dig-
ital System Design, DSD 2012, Cesme, Izmir, Turkey,
pp. 751–758.

[11] F. Bellard (2005), QEMU, a Fast and Portable Dynamic
Translator, in Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
(Berkeley, CA, USA), pp. 41–41, USENIX Association.

[12] D. Theodoropoulos et al. (2015), The AXIOM project
(agile, extensible, fast i/o module), in IEEE Proceedings
of the 15th International Conference on Embedded Com-
puter Systems: Architecture, MOdeling and Simulation.

[13] C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras,
D. Jimenez-Gonzalez, X. Martorell, N. Navarro,
D. Theodoropoulos, D. N. Pnevmatikatos, C. Scordino,
P. Gai, C. Segura, C. Fernandez, D. Oro, J. R. Saeta,
P. Passera, A. Pomella, A. Rizzo, and R. Giorgi (2015),
The AXIOM software layers, IEEE Proceedings of the
18th EUROMICRO-DSD, pp. 117–124.

Volume 37, Number 1, March 2016 Ada User Jour na l

P. Burg io et a l . 63

[14] UDOO, Android Linux Arduino in a tiny single-board
computer.

[15] M. Banzi (2008), Getting Started with Arduino. Se-
bastopol, CA: Make Books - Imprint of: O’Reilly Me-
dia.

[16] The Raspberry Pi Foundation., The Raspberry Pi Board.

[17] The ADEPT Consortium, ADEPT – Addressing En-
ergy in Parallel Tehcnologies. [Online]. Available:
http://www.adept-project.eu/.

[18] L. M. Pinho, V. Nélis, P. M. Yomsi, E. Quiñones,
M. Bertogna, P. Burgio, A. Marongiu, C. Scordino,
P. Gai, M. Ramponi, and M. Mardiak (2015), P-
SOCRATES: a Parallel Software Framework for Time-
Critical Many-Core Systems, Microprocess. Microsyst.,
vol. 39, no. 8, pp. 1190–1203. [Online]. Available:
http://dx.doi.org/10.1016/j.micpro.2015.06.004.

[19] Maxeler Technologies, MPT Hardware.

[20] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Mar-
torell, R. M. Badia, E. Ayguade, and J. Labarta (2011),
Productive Cluster Programming with OmpSs, in Pro-
ceedings of the 17th International Conference on Par-
allel Processing - Volume Part I, Euro-Par’11, (Berlin,
Heidelberg), pp. 555–566, Springer-Verlag.

[21] R. Giorgi et al. (2014), TERAFLUX: Harnessing
dataflow in next generation teradevices, Microproces-
sors and Microsystems, vol. 38, no. 8, Part B, pp. 976 –
990.

[22] R. Giorgi and A. Scionti (2015), A scalable thread
scheduling co-processor based on data-flow princi-
ples, ELSEVIER Future Generation Computer Systems,
pp. 1–10.

[23] P. Burgio, A. Marongiu, P. Coussy, and L. Benini (2014),
A HLS-Based Toolflow to Design Next-Generation Het-
erogeneous Many-Core Platforms with Shared Memory,
in 12th IEEE International Conference on Embedded
and Ubiquitous Computing, EUC 2014, Milano, Italy,
pp. 130–137.

[24] Accelerat Systems Initatives, SystemC.

[25] P. Burgio, M. Ruggiero, and L. Benini (2010), Simu-
lating Future Automotive Systems, tech. rep., DEIS -
University of Bologna.

[26] The Free Software Foundation, GCC – The Gnu Com-
piler Collection.

[27] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Mar-
tinell, X. Martorell, and J. Planas (2011), OmpSs: A
proposal for programming heterogeneous multi-core ar-
chitectures, Parallel Processing Letters, vol. 21, pp. 173–
193.

Ada User Jour na l Vo lume 37, Number 1, March 2016

64

Volume 37, Number 1, March 2016 Ada User Journal

National Ada Organizations

Ada-Belgium

attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark

attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland

Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France

attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain

attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden

attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland

c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

