

Ada User Journal Volume 34, Number 2, June 2013

ADA
USER
JOURNAL

Volume 34

Number 2

June 2013

Contents
Page

Editorial Policy for Ada User Journal 62

Editorial 63

Quarterly News Digest 64

Conference Calendar 79

Forthcoming Events 85

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: 6a Containers” 90

Overview of the 15th International Real-Time Ada Workshop (IRTAW 2011) 108

 J. Real, J.F. Ruiz
"Session Summary: Multiprocessor Issues, part 1" 109

 A. Wellings, L.M. Pinho
"Session Summary: Multiprocessor Issues, part 2 (resource control protocols)" 112

 A. Burns, T. Vardanega
"Session Summary: Language Profile and Application Frameworks" 117

 J.A. de la Puente, S. Michell
"Session Summary: Concurrency Issues" 120

Reports

 S. Robinson
“Ada Conference UK 2013” 125

Ada Gems 127

Ada-Europe Associate Members (National Ada Organizations) 132

Ada-Europe 2013 Sponsors Inside Back Cover

62

Volume 34, Number 2, June 2013 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 63

Ada User Journal Volume 34, Number 2, June 2013

Editorial

The June issue of the Ada User Journal is finalised shortly after the Ada-Europe 2013 conference, which took place in Berlin,
Germany, in the week of June 10 to 14. The organizers must be congratulated for a successful conference, with a rich
program, and a pleasant social and networking atmosphere. As announced during the conference, next year the Ada-Europe
conference will take place in Paris, France, in the week of 23-27 June, 2014. A great opportunity for Ada and Reliable
Software practitioners and enthusiasts to present their work and for the community to connect in an enjoyable scenario. You
can find the preliminary call for papers in the Forthcoming Events section of this issue. Note that the program of the
conference results from the contributions of the community, by means of the submission of papers, presentation, tutorials or
workshops. I would like to both encourage, and insist in asking for, your contribution!

Also in the Events section, the Journal provides the announcement and highlights of SIGAda HILT 2013, which will take
place this year in Pittsburgh, USA, in the week of November 10-14. As usual the News Digest and Calendar sections,
prepared by the respective Editors, Jacob Sparre Andersen and Dirk Craeynest, complete the first part of the issue.

As for the technical contents, the issue provides another chapter of the Ada 2012 Rationale, which is being written by John
Barnes. This chapter concludes the presentation of the predefined library, with the description of the improvements to
containers, also concluding the core chapters of the Rationale. In the September issue of the Journal we will publish the Ada
2012 Rationale epilogue.

The reader may remember a previous announcement and mention of the International Real-Time Ada Workshop (IRTAW
2013). The Journal will publish a report on this important event in the September issue, and there are plans to also publish
this year the summaries of the workshop sessions. In the meanwhile, we consider important to provide the readers with the
session summaries of the previous IRTAW (2011), which are being published this year. It is possible to note that many issues
which were open in 2011 are increasingly relevant, and so it is not a surprise that they were part of this year’s workshop
program.

The issue continues with a short summary about the one day Ada Conference UK 2013, that took place April 25 in
Birmingham, UK. To finalise, the Ada Gems section provides a gem on Characters and Encoding Schemes, by Emmanuel
Briot and the series of gems on Su(per)btypes in Ada 2012, by Yannick Moy, both with AdaCore, France.

 Luís Miguel Pinho
Porto

June 2013
 Email: AUJ_Editor@Ada-Europe.org

64

Volume 34, Number 2, June 2013 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Events 64
Ada and Education 64
Ada-related Resources 64
Ada-related Tools 65
Ada-related Products 69
Ada and GNU/Linux 70
Ada and MacOS X 71
Ada and Microsoft 72
References to Publications 72
Ada Inside 73
Ada in Context 74

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Ada-France at Solutions
Linux

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Mon, 18 Mar 2013 11:43:45 +0100
Subject: Ada-France au salon Solutions

Linux
To: liste ada-france

<ada-france@ada-france.org>

Comme l'anné dernière, Ada-France aura
son stand dans le village associatif, au
salon Solutions Linux qui aura lieu au
CNIT La Défense les 28 et 29 mai.

Toutes les bonnes volontés sont les
bienvenues! Par exemple:

- Venir staffer le stand quelques heures
(pas obligatoirement - mais bienvenu -
toute la journée). C'est sympa, on
rencontre des gens, et on leur fait
découvrir qu'Ada, ce n'est pas si ringard
que ça..

- Envoyer des jolies applications, démos,
etc, de préference attractives et
spectaculaires.

- Des posters, ou simplement de bonnes
idées pour faire la promo d'Ada…

[Ada-France will be present at Solutions
Linux in Paris, May 28th and 29th.
—sparre].

Ada and Education

Railway simulators

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue May 28 11:40:32 CEST 2013
Subject: Railway simulators

Looking through some of the Ada
repositories on GitHub [1], I noticed two
repositories related by their subjects:

- Railway simulators

- Course-work

The repositories are:

- morambro/TrainProject [2]

- rostgaard/railway-validator [3]

It appears that (at least some) students at
both the Technical University of Denmark
and the University of Padova get to
program in Ada.

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] https://github.com/morambro/
TrainProject

[3] https://github.com/rostgaard/
railway-validator

Ada-related Resources

Safe, dynamic task creation

From: R. Toyler Croy / agentdero
Date: Sat, 9 Mar 2013
Subject: Safe, Dynamic Task Creation in

Ada
URL: http://unethicalblogger.com/

2013/03/09/dynamic-tasks-in-ada.html

A few years ago, Ada become my
hobby/tinker programming language of
choice, for a number of reasons,
concurrency being one of them. In this
post I'd like to walk you through an
example of dynamic task creation in Ada,
which uses Ada.Task_Termination
handlers, a new feature in Ada 2005.

[…]

[A nice example of how to use
Ada.Task_Termination. —sparre].

Social Media Sites

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed Apr 17 2013
Subject: Highlighting Ada on Social Media

Sites

URL: http://www.adaic.org/2013/04/
highlighting-ada-on-social-media-sites/

Based on a discussion on comp.lang.ada,
we’ve created a new category on our
“Learning Materials” for social media
sites, and added links to the Ada groups
on a number of them:

- Stackoverflow – Questions and answers
for programmers [1]

- Google+ – Ada Programming
Community [2]

- LinkedIn – Ada Group [3]

All of these provide places to get help and
information about Ada from other Ada
users. We also added Planet Ada [4], a
news and information site, to the website
listings. These join the Reddit [5] and
Wikibooks [6] sites, along with the old
stand-by of the comp.lang.ada newsgroup,
as places to go for Ada information.

[1] http://stackoverflow.com/questions/
tagged/ada

[2] https://plus.google.com/u/0/
communities/
102688015980369378804

[3] http://www.linkedin.com/
groups?gid=114211

[4] http://planet.ada.cx/

[5] http://www.reddit.com/r/ada/

[6] http://en.wikibooks.org/wiki/
Ada_Programming

Updated Rationale available

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu May 16 2013
Subject: Updated Ada 2012 Rationale

available
URL: http://www.adaic.org/2013/05/

updated-ada-2012-rationale-available/

An updated edition of the Ada 2012
Rationale is available at:

http://www.ada-auth.org/standards/
rationale12.html

This edition of the Rationale combines the
first seven chapters of the Rationale into a
single document, fixes a number of errors,
adds an index, and adds discussion of
various details of Ada 2012 that were
changed since the original publication of
these chapters in the Ada User Journal.
We expect that additional chapters will be
added to this edition roughly every three
months.

The Rationale for Ada 2012 provides an
overview of new Ada 2012 features,

Ada-related Tools 65

Ada User Journal Volume 34, Number 2, June 2013

examples of their use, compatibility with
Ada 95 and 2005, and more. It was
written by John Barnes, and was
sponsored in part by the Ada Resource
Association. This is an unofficial
description of the language; refer to the
Ada 2012 standard for detailed language
rules.

Repositories of open source
software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue May 28 12:07:52 CEST 2013
Subject: Repositories of Open Source

software

- AdaForge: 7 repositories [1]

- Bitbucket: 48+ repositories [2,3]

- Codelabs: 10+ repositories [4]

- GitHub: 344 repositories [5]

 91 developers [6]

- Rosetta Code: 569 examples [7]

 25 developers [8]

- Sourceforge: 219 repositories [9]

[1] http://forge.ada-ru.org/adaforge

[2] https://bitbucket.org/repo/all/
relevance?name=binding&
language=ada

[3] https://bitbucket.org/repo/all/
relevance?name=ada&language=ada

[4] http://git.codelabs.ch/

[5] https://github.com/search?q=language
%3AAda&type=Repositories

[6] https://github.com/search?q=language
%3AAda&type=Users

[7] http://rosettacode.org/wiki/
Category:Ada

[8] http://rosettacode.org/wiki/
Category:Ada_User

[9] http://sourceforge.net/directory/
language%3Aada/

[An update to my overview in issue 33-4.
—sparre]

The #58 most popular
language on GitHub

From: GitHub
Date: Tue May 28 10:24:36 CEST 2013
Subject: Ada is the #58 most popular

language on GitHub
URL: https://github.com/languages/Ada

Most starred this month:

- AdaDoom3 / AdaDoom3 [1]

- cforler / Ada-Crypto-Library [2]

- rtyler / ada-playground [3]

- flyx86 / OpenGLAda [4]

- darkestkhan / lazyfoo [5]

Most starred overall:

- Lucretia / tamp [6]

- AdaDoom3 / AdaDoom3 [1]

- karakalo / old-lumen [7]

- cforler / Ada-Crypto-Library [2]

- ThomasLocke / yolk [8]

Most forked this month:

- AdaDoom3 / AdaDoom3 [1]

- Calvin-he / docclustering [9]

- rtyler / tinywm-ada [10]

- dsanson / Words [11]

Most forked overall:

- AdaDoom3 / AdaDoom3 [1]

- rtyler / tinywm-ada [10]

- AdaHeads / Alice [12]

- Lucretia / tamp [6]

- persan / zeromq-Ada [13]

[91 Ada developers are registered on
GitHub [14] and GitHub knows of 344
Ada projects [15]. —sparre]

References:

[1] https://github.com/AdaDoom3/
AdaDoom3

[2] https://github.com/cforler/
Ada-Crypto-Library

[3] https://github.com/rtyler/
ada-playground

[4] https://github.com/flyx86/
OpenGLAda

[5] https://github.com/darkestkhan/
lazyfoo

[6] https://github.com/Lucretia/tamp

[7] https://github.com/karakalo/old-lumen

[8] https://github.com/ThomasLocke/yolk

[9] https://github.com/Calvin-he/
docclustering

[10] https://github.com/rtyler/tinywm-ada

[11] https://github.com/dsanson/Words

[12] https://github.com/AdaHeads/Alice

[13] https://github.com/persan/
zeromq-Ada

[14] https://github.com/
search?q=language%3AAda&type=
Users&s=repositories

[15] https://github.com/
search?q=language%3AAda&type=
Repositories&s=updated

Ada-related Tools

Orto – more than just a
command line parser

From: Björn Persson
Date: Fri, 8 Mar 2013 10:02:07 +0100
Subject: Orto – more than just a command

line parser
URL: http://adacl.sourceforge.net/

pmwiki.php/Main/Orto

The problem

In principle, command line parameters of
a program work the same way as
parameters of a subprogram, but there is a
huge difference in the amount of work
required of the programmer. In a
subprogram you declare the parameters
with name and type, and to use the value
of a parameter you just write its name.
The compiler does the rest. Command
line parameters, on the other hand, are
just a list of strings. Before the program
can start its work it has to analyze the
command line carefully. It has to check
that all the required parameters are
present, that there aren't any unrecognized
parameters, and that there aren't multiple
instances of parameters that are only
meaningful to give once. It must interpret
the parameters as values of different types
and check that the values are within their
constraints. If anything is wrong it has to
print an informative error message.

Writing code to do all of this in each
program can be quite tedious, and it is
tempting to do it the easiest way possible.
This easily makes the command line
syntax unnecessarily strict or difficult to
learn, making the program harder to use.

Orto to the rescue

Orto takes care of most of this work and
makes command line parameters almost
as easy to work with as parameters of
subprograms. You declare your command
line parameters with name and type,
specify whether they are mandatory or
optional and whether they may occur
more than once, and maybe provide a
default value. Orto will then analyze the
command line, identify the parameters
and interpret them according to their
specified types. It checks that the
command line is in every way correct, and
prints error messages if any errors are
found. If all is correct you can then
retrieve the value of any parameter with a
simple function call, and it is delivered as
a value of its specified type, ready to use
without further translation.

For numeric parameters you can define a
unit that the value is measured in. Orto
will then understand and handle the
standard unit prefixes. If the unit is "m"
for meters, the user may type "5km" or
"98cm", and Orto will recognize the
prefix and multiply the value by the
corresponding factor.

Orto also prints help texts and version
numbers. The same parameter definitions
that rule how Orto interprets the
parameters are also used to generate the
help text, so there is no risk of
discrepancies between the help text and
how the program actually interprets the
command line.

Orto is therefore far more than a
command line parser; it's a complete
command line parameter handler.

66 Ada related Tools

Volume 34, Number 2, June 2013 Ada User Journal

PragmAda reusable
components

From: Jeffrey R. Carter
<pragmada@
pragmada.x10hosting.com>

Date: Mon, 11 Mar 2013 12:48:37 -0700
Subject: New Version of the PragmAda

Reusable Components Available
Newsgroups: comp.lang.ada

There is a new version of the PragmAda
Reusable Components (PragmARCs)
available at

http://pragmada.x10hosting.com/
pragmarc.htm

This version adds a parallel version of
quick sort to the components. Unit
PragmARC.Sort_Quick_In_Place has
changed from a procedure to a package
exporting two procedures; programs using
an older version of Sort_Quick_In_Place
will need to be modified to use the new
version.

There is also now available a beta version
of the components suitable for
compilation with a compiler that
implements Ada-95 as amended by
Amendment 1 (2007). There are a number
of differences between this version and
the Ada-95 version of the components,
most noticeably in the implementation of
the data structures. This version is not
backward compatible with the Ada-95
version.

As always, error reports, comments, and
suggestions are welcome from all users.

Simple components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 16 Mar 2013 09:46:17 +0100
Subject: ANN: Simple components v3.22

multiple connections servers support
Newsgroups: comp.lang.ada

This version provides support for
designing multiple connections TCP/IP
servers. The connections are handled by
one task. Although servers backed by a
pool of working tasks are supported too.
The server uses socket-select for socket
I/O (based on GNAT.Sockets).

Since programming a state machine
parsing incoming packets is difficult, the
library eases that. You simply put types
representing elements of the packet into
the custom connection type like this:

 type My_Protocol is new
 State_Machine is record
 Header : Big_Endian.Unsigneds.
 Usigned_16_Data_Item;
 Value : Big_Endian.Unsigneds.
 Usigned_32_Data_Item;
 …
 end record;
 overriding procedure Process_Packet
 (Client : in out My_Protocol);

The state machine will notify when all
items are received by calling
Process_Packet. The library provides
implementations of big- and little-endian
encoded integers, unsigneds, IEEE floats,
as well as null terminated strings and
equivalent of variant records.

A sample implementation of a fully
functional HTTP implementation is
included. It does not access host file
system, it does not allocate memory
dynamically on receipt unless at user
request. CGI and multipart bodies are
supported.

http://www.dmitry-kazakov.de/ada/
components.htm

[See also Ada User Journal volume 33
issue 4. —sparre]

From: Mário Alves
Date: Sat, 16 Mar 2013
Subject: Simple components v3.22 supports

multiple connections servers
URL: http://www.linkedin.com/

This is very good news.

The HTTP part is competing with
Adacore's AWS. A problem with AWS is
the difficulty to install and to build
applications with it. Requires makefiles
and GNAT projects. I have used DK's
Simple Components library in the past
and found it much easier to install and
build with it.

Displaying characters on
MOD-LCD3310 by using
Olimexino-328

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon, 18 Mar 2013
Subject: Displaying Characters on MOD-

LCD3310 by using Olimexino-328 with
Ada

URL: http://arduino.ada-language.com/
displaying-characters-on-mod-lcd3310-
by-using-olimexino-328-with-ada.html

MOD-LCD3310 is Nokia 3310 display
clone from Olimex. It provides black and
white screen with 84x48 resolution, which
is a great choice if 7-segment display or
2x16 LCD isn't enough.

MOD-LCD3310 uses UEXT connector
found from almost every Olimex board.
In case you don't have one, you can
follow the UEXT specification and just
connect the pins.

Like how I have done with Olinuxino-
imx233 micro board:

[As usual, Tero shows us how we can
have fun with hardware and Ada.
—sparre]

Ada 95 Booch components

From: Simon Wright
<simon@pushface.org>

Date: Fri, 22 Mar 2013 16:28:41 +0000

Subject: ANN: Ada 95 Booch Components
release 20130322

Newsgroups: comp.lang.ada

This release is available at Sourceforge
[1].

Minor changes only:

- Added
BC.Indefinite_Unmanaged_Containers.
Queues.Ordered.

- A problem with building any indefinite
dynamic form under GCC 4.7 has been
resolved.

- BC.Support.Indefinite_Dynamic was
missing.

- Includes a patch to allow use of bc.gpr
on Debian 6.

[1] https://sourceforge.net/projects/
booch95/files/booch95/20130322/

AVR-Ada

From: Rolf Ebert <rolf.ebert.gcc@gmx.de>
Date: Sat, 06 Apr 2013 01:03:56 +0200
Subject: [Avr-ada-devel] Essential

contribution to the build machinery
To: AVR-Ada <avr-ada-

devel@lists.sourceforge.net>

I want to let you know that "Jedi" (avr-
ada-devel@jedi.neoix.net) contributed a
major clean-up of the make machinery in
AVR-Ada.

I have just committed most of his
changes. The commit log is:

clean up of the build machinery
contributed by Jedi:

- clear structure of the Makefiles

- can build everything in avr tree without
having to install the rts (works again)

- rts doesn't have to rebuild everything
every time

- threads are now building

- "clean" only build tree

- "uninstall" implemented

- install explicitly installs directories and
files that are necessary

Thank you very much, Jedi. This clean up
was long overdue. It considerably lightens
the work of the AVR-Ada developers.

From: Rolf Ebert <rolf.ebert.gcc@gmx.de>
Date: Sat, 18 May 2013 22:18:03 +0200
Subject: V1.2.2
To: AVR-Ada <avr-ada-

devel@lists.sourceforge.net>

Changes in the V1.2.2 Release

- The **Run Time System** now has
optimized assembler code to generate
string images of integer variables. The
code is based on new code of the
upcoming avr libc 1.8.1. You can
directly access the function as
System.Int_Img.U32_Img.

Ada-related Tools 67

Ada User Journal Volume 34, Number 2, June 2013

- The **compile environment**
(Makefiles, gpr-files) received a long
due overhaul, contributed by Jedi.

- The **part specifications** for the
primary devices (attiny2313 atmega8
atmega168 atmega169 atmega32
atmega328p atmega644p atmega2560)
were regenerated from the latest
available AVR Studio 4 release XML
files.

- **AVR.Serial** is a drop in
replacement for the existing
AVR.UART. It actually is a renaming
of a generic instantiation of the new
AVR.Generic_Text_IO.

- **AVR.Generic_Text_IO** factors out
the reusable parts of the input and output
routines. You still have to provide
routines for sending and receiving single
bytes as generic parameters.

- **AVR.Strings.Text** is an adoption of
Dmitry Kazakov's
[Strings_Edit](http://www.dmitry-
kazakov.de/ada/strings_edit.htm)
packages for the small AVR processors.

- A new example shows the use of the
relatively cheap humidity sensors DHT.

- A command interpreter makes use of the
new support packages AVR.Serial and
AVR.Strings.Text.

From: Roland Gaudig
<roland.gaudig@gaudig.com>

Date: Mon, 20 May 2013 14:18:06 +0000
Subject: Experimental build AVR-Ada with

gcc-4.8.0
To: avr-ada-devel@lists.sourceforge.net

This weekend I tried to compile AVR-
Ada in combination with gcc-4.8.0
binutils-2.23.2 and avr-libc-1.8. The build
went quite smoothly. There is only one
conflict between gcc-4.8 and one patch
and there is a problem with gnatmake.

As actual Debian or Ubuntu distributions
are coming with gnat-gcc-4.6 I first
created my own gnat-gcc-2.8. For
building the avr-ada library also gprbuild
has to be compiled for gcc-4.8.

I had to apply the following patch on
gprbuild as gcc-4.8 complained about a
style error.

gprbuild.patch :

################################
--- src/gpr_version.ads.orig 2013-05-19
 19:33:24.182847154 +0000
+++src/gpr_version.ads 2013-05-19
 19:33:46.418847247 +0000
 <at> <at> -24,7 +24,7 <at> <at>

package GPR_Version is
- Gpr_Version: constant String := "2012";
+ Gpr_Version: constant String := "2012";
 -- Static string identifying this version
 function Gpr_Version_String return String;
################################
After this preparations I built the avr-gcc
toolchain. I used the stock binutils
without applying any patches.

On gcc-4.8 I applied the following
patches, with line numbers adapted:

23-gcc-4.7-ada-Makefile.patch

24-gcc-4.7-ada-gnattools.patch

71-gcc-4.7-ada-freestanding.patch

73-gcc-4.7-ada-gnat1_print_path.patch

with 72-gcc-4.7-ada-timebase.patch I
discovered a conflict inside
gcc/ada/switch-c.adb with the new gcc
version. Until gcc-4.7 avr-ada defined a -
gnatet switch, which is now occupied by
another function in gcc-4.8, so I had to
rename it. I chose -gnateT to solve this
conflict.

72-gcc-4.8.0-ada-timebase.patch :

[patch excerpt can be found in the original
post in the list archives at
https://lists.sourceforge.net/lists/listinfo/
avr-ada-devel —plm]

I omitted these patches, as they are
include in stock gcc-4.8:

25-gcc-4.7-ada-pr55243-nostamp.patch

no_25-gcc-4.7-ada-
gnattools_bug55243.patch

I left the avr-ada sources unchanged and
created just a symbolic link from gcc-4.7-
rts to gcc-4.8-rts. Building avr-gcc and
installing went fine without problems.

But compiling small examples fails,
gnatmake exits with an exception:

##################################

Exception name: STORAGE_ERROR
Message: stack overflow or erroneous
 memory access

Exception STORAGE_ERROR raised, while
 processing project file
avr-gnatmake: "hello.gpr" processing failed

##################################

The next days I have to further investigate
what the problem is.

This problem seems also be known to the
GCC project: http://gcc.gnu.org/ml/gcc-
testresults/2013-02/msg00112.html

By the way, the source code distribution
avr-ada-1.2.2.tar.bz2 lacks the configure
script. Therefore I used the one from the
git repository.

Paraffin and Paraffinalia

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sat, 06 Apr 2013 12:20:11 -0600
Subject: ANN: Paraffin 4.0 and Paraffinalia

for Ada 2012 with Ravenscar support
and task pools

Newsgroups: comp.lang.ada

I am pleased to announce a new major
release of Paraffin for Ada 2012.

Paraffin is a set of Ada 2012 generics that
may be used to add parallelism to iterative
loops and recursive code.

Paraffin now includes generics for both
Ravenscar and non-Ravenscar use. The
Ravenscar version utilizes static task
pools with dispatching domains suitable
for real-time programming.

Paraffin also includes Paraffinalia, which
is a suit of useful parallel utilities that
utilize the Paraffin generics. These
include generics for;

1) generic to integrating a function in
parallel.

2) generic to apply quicksort algorithm in
parallel to an array.

3) generic to apply fast fourier transform
to an array of data.

4) generic Red-Black tree container that
performs some operations in parallel.

5) function to solve matrices using Gauss-
Jordan Elimination.

6) generic to perform prefix sum
calculations.

The Ada 2012 version of the code is a
major change to the API, which is why
this is a major release. The 2005 version
still has the old interface, and currently is
treated as an archive, though the 2012
version of the API may eventually get
backported to 2005 at some point.

The latest stable release and older releases
may be downloaded from;

https://sourceforge.net/projects/
paraffin/files/

For those who want the current
development versions of the source they
can download using git (http://git-
scm.com/) by issuing the following
commands;

 mkdir sandbox
 cd sandbox
 git clone git://git.code.sf.net/p/paraffin/
 code paraffin-code

The current development version typically
will correspond to the latest stable release,
but may at times be unstable when new
features are being worked on.

Major New Features include:

- The new API is more unified between
parallel loops and parallel recursion. A
parallelism manager is declared at the
site of the Parallelism OPportunity
(POP).

- Ada 2012 support and use of Ada 2012
language features.

- Ravenscar generics added for parallel
real-time programming. The Ravenscar
generics require declaration of static
worker task pools, since all tasks have to
declared statically. The Ravenscar task
pools can interoperate with Ada 2012
dispatching domains.

- Exception handling added to worker
tasks which store the exception and
reraise it in the main task before

68 Ada related Tools

Volume 34, Number 2, June 2013 Ada User Journal

returning from the parallelism
opportunity

- Task pool versions also added for non-
ravenscar. It was thought that task pools
would introduce a performance benefit,
but on the tested platforms this appears
to not be the case, as creating tasks on
the fly is approximately the same
performance as reusing tasks from a task
pool. Further, for non-ravenscar, using a
bounded task pool introduces other
undesirable affects centered around the
case of handling when more tasks are
requested than exist in the pool.
Therefore, it is recommended for non-
ravenscar use that the non-pooled
versions of the generics be used. The
pooled versions are provided for
experimental purposes.

- No longer need to with target specific
packages to use barriers, or affinity,
since these are included in Ada 2012.
This simplifies use in GNAT project
files, since only the top level paraffin
folder needs to be mentioned, if that
folder is tagged to recursively pull in all
the sub-folders in the project file.

- Many other changes, including
improved folder structure.

GtkAda OpenGL
demonstration applications

From: Francois Fabien
<francois_fabien@hotmail.com>

Date: Fri, 12 Apr 2013 15:23:11 +0200
Subject: [gtkada] [ANN] OpenGL demos

with GtkAda
To: gtkada <gtkada@lists.adacore.com>

3 demos of OpenGL with GtkAda are
available for download:

- 2 lessons adapted from the NeHe tutorial

- a stand-alone penguin application,
adapted from testgtk with some bug fix.

Source code is available at:

https://sourceforge.net/projects/lorenz/

For folks with Windows that do not have
GtkAda installed, a bundle with all DLLs
is also provided.

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Tue, 16 Apr 2013 04:48:01 -0700
Subject: Announce : Qt5Ada version 5.0.2

release 16/04/2013 free edition
Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.0.2 final)
Qt5ada version 5.0.2 open source and
qt5c.dll(libqt5c.so) built with Microsoft
Visual Studio 2010 in Windows and gcc
x86 in Linux Package tested with gnat gpl
2012 ada compiler in Windows 32bit and
64bit and Linux x86 Fedora 17 It supports
GUI, SQL, Multimedia, Web, Network

and many others thinks. Qt5Ada for
Windows and Linux (Unix) is available
from
http://users1.jabry.com/adastudio/
index.html

My configuration script to build Qt5 is:
configure -opensource -release -nomake
tests -opengl desktop -plugin-sql-mysql -
plugin-sql-odbc -plugin-sql-oci -prefix
"e:/Qt/5.0"

Plugins for database connections and
DirectShow(needed for Camera example)
are included.

I added many new packages, demos and
small clip (10 min) in this release

Units of measurement

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 27 Apr 2013 15:23:03 +0200
Subject: ANN: Units of measurement v3.3
Newsgroups: comp.lang.ada

The library provides an implementation of
dimensioned values for Ada. Unit checks
are made at run-time, if not optimized out
by the compiler. SI and irregular
measurement units are supported. Shifted
units like degrees Celsius are supported
too. Conversions from and back to strings
are provided for all various irregular
units. An extensive set of GTK widgets
for dealing with dimensioned values is
included, though use of GTK is not
mandatory for the rest of the library.

http://www.dmitry-kazakov.de/
ada/units.htm

This release mixes minor bug in the
package Measures_Irregular (the constant
hp (Horsepower))

String clustering

From: Fumin <awawfumin@gmail.com>
Date: Mon Apr 29 22:28:05 CEST 2013
Subject: String clustering
URL: https://github.com/fumin/string-

clustering

Ada

- To build the main program: make. This
will create the executable "obj/main"

- Options of the program and how to run
it:

 - First option: path to the data file
(String).

 - Second option: number of classes
(Integer).

 - Third option: whether to recompute
the distance matrix (Boolean).

 - For example: obj/main
../sampled_keys_1000_over_1.txt 7 n

- To run tests: make test

[…]

Augusta

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Sun May 12 2013
Subject: Augusta
URL: https://github.com/pchapin/augusta

Augusta is an open source Ada 2012
compiler written in Scala that targets
LLVM. This document is a quick
description of how to build Augusta. For
more information see the documentation
in the 'doc' folder. The GitHub wiki for
the project also includes some additional
information for Augusta contributors.

Augusta is not even remotely usable at
this time. However I do intend to keep the
system in a buildable state so it should
always be possible to create the Augusta
jar file (and any associated files) as well
as execute whatever tests have been
written to date.

Augusta development is done on Linux
(64 bit) and testing is done on both
Windows 7 (64 bit) and Linux (64 bit). I
expect it would be possible to do Augusta
development on any system that supports
the prerequisites. Mostly that means any
system that supports Java and LLVM.

Adastudio

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Sun, 19 May 2013 01:16:22 -0700
Subject: ADASTUDIO 2013
Newsgroups: comp.lang.ada

Adastudio 2013 consists of two ISO files
and contains:

- Qt5Ada

- Vtk5Ada

- vad

- Prebuilt QT5 (win32,x86)

- Prebuilt VTK 5.10.1 with QT5
(win32,x86)

Downloads:

- https://rapidshare.com/files/
3231734174/Adastudio2013_1.iso

- https://rapidshare.com/files/
3110901306/adastudio2013_2.iso

Alarm Clock using Arduino,
DS1307, buzzer, and LCD

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Sun 19 May 2013
Subject: Alarm Clock using Arduino,

DS1307, buzzer, and LCD
URL: http://arduino.ada-

language.com/alarm-clock-using-
arduino-ds1307-buzzer-and-lcd.html

Writing this article took somewhat longer
than usual, since the scope expanded on
the way. Originally, I planned to only
show how to use a buzzer, but then I

Ada-related Products 69

Ada User Journal Volume 34, Number 2, June 2013

decided to add a DS1307 real-time clock
chip to it. And of course, you need a LCD
display for showing the time. But
unluckily, my previous LCD shield was
using conflicting pins with other stuff, so
I had to redo it also.

In the end, this was the result:

http://farm9.staticflickr.com/8539/868090
8563_c073efd99f.jpg

There are three shields in the picture:
buzzer shield, DS1307 shield, and LCD
shield. And below them is Olimexino-
328, an Arduino clone. You can also use
normal Arduino, but I had one
Olimexino-328 at hand, so I used it.

[Tero provides us with instructions and
source text for building an Arduino based
alarm clock. —sparre]

ASN.1

From: Manuel Gomez
<mgrojo@gmail.com>

Date: Wed, 22 May 2013 22:31:19 +0200
Subject: Re: ASN.1 to Ada?
Newsgroups: comp.lang.ada

> Are there any Open Source ASN.1 to
Ada compilers out there?

Have you looked at this? It seems to meet
your requirements, but I haven't used it
myself:

http://taste.tuxfamily.org/wiki/
index.php?title=ASN.1_generators

Ada-related Products

Atego ApexAda Developer
for Ada 2005

From: Atego Press Releases
Date: Tue Mar 12 2013
Subject: Atego Releases New Version of

Atego ApexAda Developer for Ada 2005
URL: http://www.atego.com/pressreleases/

pressitem/atego-releases-new-version-of-
atego-apexada-developer-for-ada-200

Atego ApexAda Developer 5.0 offers
complete support for Ada 2005 passing all
available Ada conformity assessment test
suite tests.

Atego™, the leading independent supplier
of industrial-grade, collaborative
development tools for engineering
complex, mission- and safety-critical
architectures, systems, software and
hardware, launches a new version of
Atego ApexAda™ Developer Enterprise
Edition with Ada 2005 support.

Atego ApexAda Developer 5.0 is a major
new release with complete support for the
language features in Ada 2005. It passes
all available Ada Conformity Assessment
Test Suite (ACATS) tests applicable for
native code compilation and execution.
The Atego ApexAda Developer product
provides a complete solution for editing,
compiling, debugging, testing, managing,

and executing even the most complex and
challenging Ada applications on UNIX
and Linux-based operating systems.

In addition to traditional compilation
features, Atego ApexAda Developer
incorporates a sophisticated architectural
and build control mechanism,
configuration management and version
control (CMVC) capabilities to help
development teams keep control of their
updates and manage changes to their
application code. Atego TestMate™ is
also included to provide automation of the
testing process, including regression
testing and coverage analysis. In addition
to being an integration and system testing
tool to help automate the software testing
process, Atego TestMate also allows
developers to easily compose test cases
into test suites that can be executed and
evaluated automatically.

For projects requiring support of the X-
Windows System’s network display
services and the OSF/Motif™ graphical
user interface (GUI), Atego provides
AXI™ Bindings for Atego ApexAda
Developer 5.0 as an add-on product. AXI
gives Ada programmers access to more
than 2,000 functions and types in the X
library, extensions and utilities, the Xt
toolkit and the Motif widget set and
resource manager.

“This release advances Atego’s long term
commitment to Ada its Ada customers
which continue to utilize Ada as an
invaluable asset in their development
arsenal,” stated Hedley Apperly, Atego’s
Vice-President of Product & Marketing.
“Atego will continue to invest in further
enhancements to the Atego ApexAda
Developer line with embedded and real-
time products for Ada 2005 now and in
the future.”

Shipping and Availability

Atego ApexAda Developer 5.0 is fully
released and immediately available for
native code development and execution
on Solaris/SPARC, Solaris/Intel,
Linux/Intel platforms. Atego ApexAda
Developer 5.0 supports RedHat, SUSE,
and other popular Linux distributions.
Special product license pricing is
available for existing Atego ApexAda
Developer users

AdaCore releases GNAT
Pro 7.1

From: AdaCore Press Center
Date: Tue Apr 23 2013
Subject: AdaCore Releases GNAT Pro 7.1
URL: http://www.adacore.com/press/

adacore-releases-gnat-pro-71/

Latest Ada development environment
brings full Ada 2012 support and other
enhancements.

SAN JOSE, Calif., NEW YORK and
PARIS, April 23, 2013 – Design West
Conference – AdaCore today announced

the availability of GNAT Pro 7.1, a major
new version of the company’s flagship
development environment. This release
incorporates a number of enhancements,
many based on user suggestions,
including several Ada language related
features, run-time improvements, and new
and enhanced tools. As with all AdaCore
products, GNAT Pro is Freely-Licensed
Open Source Software (FLOSS).

The language related features in GNAT
Pro 7.1 include updated and improved
support for the Ada 2012 language
revision, a new facility for automatic data
endianness conversion, and support for
dimensionality checking. Extended
overflow check support and lock-free
protected objects have been incorporated
as run-time improvements, and the
compiler technology has been migrated to
the GCC 4.7 back-end.

New and enhanced tools that aid in all
stages of the development of complex,
multi-language software are also a major
part of the GNAT Pro 7.1 release. These
include the powerful and easy to use
GPRBuild 2.0 tool that automates the
construction of multi-language software,
the GDB 7.5 debugger and new rules in
the GNATcheck coding standard
verification tool. GNAT Pro 7.1 also
includes a major new release of
AdaCore’s high-level graphical toolkit
GtkAda, which provides a secure, user-
friendly and extensible toolkit based on
Gtk+. GtkAda 3 brings new widgets, a
CSS based theming framework, and an
improved application programming
interface (API) that is more intuitive and
that incorporates a more homogenous
naming scheme.

“As usual, the new GNAT Pro release
brings a combination of advantages:
extreme stability for existing users,
support for an increasingly wider range of
platforms and targets, significant
performance enhancements, and a wealth
of new capabilities and features,” said
Cyrille Comar, Managing Director of
AdaCore. “The most striking new feature,
support for automatic data endianness
conversion, is already a customer favorite;
who said that silver bullets were
mythical?”

About GNAT Pro

The GNAT Pro development
environment, available on more platforms
than any other Ada toolset, is a full-
featured, multi-language development
environment complete with libraries,
bindings and a range of supplementary
tools. It provides a natural solution for
organizations that need to create reliable,
efficient and maintainable code. GNAT
Pro implements all three versions of the
Ada language standard – Ada 83, Ada 95,
and Ada 2005 – and the latest version of
GNAT Pro implements all new features in
Ada 2012. GNAT Pro is based on the
widely used GCC technology and is

70 Ada and GNU/Linux

Volume 34, Number 2, June 2013 Ada User Journal

backed by rapid and expert support
service.

Pricing and Availability

GNAT Pro 7.1 is available immediately
on most supported platforms. Please
contact AdaCore (sales@adacore.com)
for further details on pricing and
supported configurations.

AdaCore releases major new
version of CodePeer static
analysis tool

From: AdaCore Press Center
Date: Tue Apr 23 2013
Subject: AdaCore Releases Major New

Version of CodePeer Static Analysis
Tool

URL: http://www.adacore.com/press/
adacore-releases-major-new-version-of-
codepeer-static-analysis-tool/

SAN JOSE, Calif., NEW YORK and
PARIS, April 23, 2013 – Design West
Conference – AdaCore today announced
the release of CodePeer 2.2, the advanced
static analysis tool that helps developers
detect potential run-time and logic errors
in Ada programs. CodePeer is able to find
non-trivial problems by systematically
analyzing every possible input and path
through the program, and can be
employed very early in the development
cycle to identify defects when they are the
least costly to repair.

CodePeer is fully integrated into the
GNAT Pro development environment and
comes with a number of complementary
static analysis tools common to the
technology – a coding standard
verification tool (GNATcheck), a source
code metric generator (GNATmetric), a
semantic analyzer and a document
generator.

CodePeer 2.2 introduces many
improvements, driven by customer
feedback, including:

- Integration into GNATbench, the GNAT
Pro Ada plug-in for Eclipse and Wind
River Systems Workbench

- Full support for GNAT project files

- Message review from HTML reports

- New “–level” switch to easily tune
CodePeer messages and analysis time
for any kind of code base

- More accurate analysis of math
functions and floating point
computations

- Export of messages to spreadsheets

“CodePeer 2.2 brings users an extra level
of flexibility through interfaces to Eclipse,
spreadsheets, and full HTML
capabilities,” said Arnaud Charlet,
CodePeer Product Manager at AdaCore.
“This new release now provides solutions
for the full range of Ada projects,
including those with requirements for the

highest levels of integrity and
certification, as well as systems with large
and complex code bases.”

Demonstration

A pre-recorded demo presented by
Quentin Ochem introducing the latest
CodePeer 2.2 features is currently
available online. Please visit:
http://www.adacore.com/knowledge/dem
os/codepeer-2-2

About CodePeer

Serving as an efficient and accurate code
reviewer, CodePeer identifies constructs
that are likely to lead to run-time errors
such as buffer overflows, and it flags legal
but suspect code, typical of logic errors.
Going well beyond the capabilities of
typical static analysis tools, CodePeer also
produces a detailed analysis of each
subprogram, including pre- and post-
conditions. Such an analysis makes it
easier to find potential bugs and
vulnerabilities early: if the implicit
specification deduced by CodePeer does
not match the component’s requirements,
a reviewer is alerted immediately to a
likely logic error. During system
development, CodePeer can help prevent
errors from being introduced, and it can
also be used as part of a systematic code
review process to dramatically increase
the efficiency of human review.
Furthermore, CodePeer can be used
retrospectively on existing code, to detect
and remove latent bugs.

Pricing and Availability

CodePeer is immediately available. Please
contact AdaCore (sales@adacore.com)
for information on pricing and supported
configurations

Ada and GNU/Linux

AVR-Ada RPMs for Fedora

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri, 8 Mar 2013 22:20:41 +0200
Subject: Unofficial AVR-Ada RPMs for

Fedora 17 and 18 available
Newsgroups: comp.lang.ada

To make AVR-Ada installation easier, I
made AVR-Ada RPM packages for
Fedora 17 and 18. They are available for
i386 and x86_64 architectures.

To install them, run following commands:

sudo wget -O /etc/yum.repos.d/
fedora-adalanguage.repo http://fedora.ada-
language.com/
fedora-adalanguage.repo
sudo yum install --nogpgcheck avr-adalib

Package "avr-ada-lib" will get all
dependencies to be installed automatically
also.

If you have "avr-gcc" package installed,
please remove it first, since my "avr-gnat"

package conflicts with it (and provides
equal functionality).

The packages are based on AVR-Ada
repository revision 8586204ed, which is
AVR-Ada 1.2 + some patches. The source
tar ball of that revision can be found
inside source rpms[1].

And if you do not trust my binaries and
want to build the rpm packages by
yourself, you can get the .spec files from
my Mercurial repositories:

- https://bitbucket.org/tkoskine/fedora-
avr-ada-rts

- https://bitbucket.org/tkoskine/fedora-
avr-ada-lib

- https://bitbucket.org/tkoskine/fedora-
avr-gcc

To test the packages, you can use example
code from my arduino-hello-uart repo:

hg clone https://bitbucket.org/tkoskine/
arduino-hello-uart
cd arduino-hello-uart
make

At some point, I might try to get the
packages included to Fedora distribution,
but for now they are offered separately
from my servers.

Debian 7.0

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 20 May 2013
Subject: Ada applications, compilers and

libraries in Debian 7.0 Wheezy

Earlier this month Debian 7.0 Wheezy
was released. It provides the GNAT 4.6
Ada compiler for the platforms:

- amd64

- armel

- armhf

- hurd-i386

- i386

- ia64

- kfreebsd-amd64

- kfreebsd-i386

- mips

- mipsel

- powerpc

- ppc64

- s390

- sparc

The following add-ons for Ada
programmers are also provided:

- The Ada 2012 Reference Manual

- AdaBrowse 4.0.3

- AdaCGI 1.6

- AdaControl 1.12r3

- APQ 3.2

- AdaSockets 1.8.10

Ada and Mac OS X 71

Ada User Journal Volume 34, Number 2, June 2013

- Ahven 2.1

- Alog 0.4.1

- anet 0.1

- ASIS 2010

- AUnit 1.03

- AWS 2.10.2

- D-bus for Ada 0.2

- Florist 2011

- GDB 7.4.1

- GMPAda 0.0.20120331

- GNADE 1.6.2

- GPRBuild 2011

- GPS 5.0

- GtkAda 2.24.1

- Log4Ada 1.2

- Ncurses for Ada 5.9

- OpenToken 4.0b

- PC/SC Ada 0.7.1

- PolyORB 2.8 prerelease

- PLPlot 5.9.5

- SPARK 2011

- Templates Parser 11.6

- XML/Ada 4.1

- XML-EZ-out 1.06.1

Some included (non-software-
development) applications written in Ada:

- music123 -- command-line shell for
sound-file players.

- topal -- links Pine and GnuPG together.

Ada and Mac OS X

Calling Objective-C classes

From: Pascal <sur.pignard-@wannado.fr>
Date: Mon, 25 Mar 2013 22:14:44 +0100
Subject: XCode/Objective-C with

GNAT/Ada.
Newsgroups: gmane.comp.lang.ada.macosx

Hello, here is my first progress status of
calling Objective-C classes with Ada.

Since Apple had moved to Objective-C
version 2.0, the bindings Cocoa-Gnat
from Bill Greene have been no more
working on MacOS 10.8.
(http://code.google.com/p/cocoa-gnat)

Thus, I've changed of point of view in
order to simplify the problem: I've started
with XCode. I've written an Objective-C
class with instance variables, instance
methods and one class method. Then I've
built an extern Ada library with GNAT
containing an Ada sub-program taking an
Objective-C instance of my class as
parameter. Thanks to Apple runtime in C,
the Ada part calls instance and class
method via runtime functions.

See class interface:

 <at>interface Classe01 : NSObject
{
 int n;
 float factorielle;
}
 <at>property int n;
 <at>property float factorielle;
+ (void) quiSuisJe;
- (void) calculFactorielle;
 <at>end

See main program:

// insert code here...
/* First, elaborate the library before using it */
bibliinit (); -- GNAT init
Classe01 *calcul = [[Classe01 alloc] init];
[Classe01 quiSuisJe];
Class cl01 = objc_getClass("Classe01");
NSLog(<at>"Il s'agit de la classe %s",
 class_getName(cl01));
SEL swai = sel_registerName("quiSuisJe");
NSLog(<at>"Il s'agit du sélecteur %s",
 sel_getName(swai));
Method mwai = class_getClassMethod
 (cl01, swai);
IMP fwai = method_getImplementation
 (mwai);
fwai(cl01, swai);
[calcul setN:20];
[calcul calculFactorielle];
NSLog(<at>"Factorielle %d : %f", [calcul n],
 [calcul factorielle]);
/* Main program, using the library
 exported entities */
affiche (); -- Ada call
[calcul setN:10];
calcfact (calcul); -- Ada call
NSLog(<at>"Factorielle %d : %f", [calcul n],
 [calcul factorielle]);
calcfact2 (); -- Ada call
/* Library finalization at the end
 of the program */
biblifinal (); -- GNAT final

See Ada sub-programs:

procedure Affiche is
begin
 Put_Line ("Bibli1.Affiche");
end Affiche;
type SEL is new System.Address;
type Class is new System.Address;
type Method is new System.Address;
type IMP is access procedure (aClass :
 Class; aSelector : SEL);
pragma Convention (C, IMP);
function objc_getClass (name : chars_ptr)
 return Class;
pragma Import (C, objc_getClass,
 "objc_getClass");
function class_getName (cls : Class)
 return chars_ptr;
pragma Import (C, class_getName,
 "class_getName");
function class_getClassMethod
 (aClass : Class;
 aSelector : SEL)
 return Method;
pragma Import (C, class_getClassMethod,
 "class_getClassMethod");
function method_getImplementation
 (aMethod : Method) return IMP;
pragma Import (C,

 method_getImplementation,
 "method_getImplementation");
function object_getClassName (obj : id)
 return chars_ptr;
pragma Import (C, object_getClassName,
 "object_getClassName");
function sel_registerName (str : chars_ptr)
 return SEL;
pragma Import (C, sel_registerName,
 "sel_registerName");
function sel_getName (aSelector : SEL)
 return chars_ptr;
pragma Import (C, sel_getName,
 "sel_getName");
function objc_msgSend (theReceiver : id;
 theSelector : SEL) return id;
pragma Import (C, objc_msgSend,
 "objc_msgSend");

procedure CalcFact (This : id) is
 Dum_ID : id;
 begin
 Put_Line (System.Address_Image
 (System.Address (This)));
 Put_Line (Value (object_getClassName
 (This)));
 Put_Line(Value
 (sel_getName
 (sel_registerName (New_String
 ("calculFactorielle")))));
 Dum_ID := objc_msgSend(This,
 sel_registerName (New_String
 ("calculFactorielle")));
 end CalcFact;
procedure CalcFact2 is
 cl01 : constant Class := objc_getClass
 (New_String ("Classe01"));
 swai : constant SEL :=
 sel_registerName (New_String
 ("quiSuisJe"));
 mwai : constant Method :=
 class_getClassMethod (cl01, swai);
 -- attention conflit avec fwai de main.m
 fwai2 : constant IMP :=
 method_getImplementation (mwai);
begin
 Put_Line (Value (class_getName (cl01)));
 Put_Line (Value (sel_getName (swai)));
 fwai2 (cl01, swai);
end CalcFact2;

CalcFact calls instance method and
CalcFact2 calls class method.

Result:

2013-03-25 21:47:21.723
 Essai01[10062:303] Je suis la
 classe Classe01.
2013-03-25 21:47:21.726
 Essai01[10062:303] Il s'agit de la
 classe Classe01
2013-03-25 21:47:21.726
 Essai01[10062:303] Il s'agit du
 sélecteur quiSuisJe
2013-03-25 21:47:21.727
 Essai01[10062:303] Je suis la
 classe Classe01.
2013-03-25 21:47:21.727
 Essai01[10062:303] Factorielle 20 :
 2432902023163674624.00000

72 References to Publ icat ions

Volume 34, Number 2, June 2013 Ada User Journal

Bibli1.Affiche
00000001001082C0
Classe01
calculFactorielle
2013-03-25 21:47:21.728
 Essai01[10062:303] Factorielle 10 :
 3628800.000000
Classe01
quiSuisJe
2013-03-25 21:47:21.728
 Essai01[10062:303] Je suis la
 classe Classe01.

The result with Ada calls is the same as
with Objective-C calls ;-)

I find this really promising. Next steps are
to allocate a new instance from Ada, call
Cocoa classes...

GCC 4.8.0 for Mac OS X

From: Simon Wright
<simon@pushface.org>

Date: Mon, 15 Apr 2013 08:38:38 +0100
Subject: GCC 4.8.0 for Mac OS X
Newsgroups: comp.lang.ada

You can find this at

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
4.8.0/

The README says:

This is GCC 4.8.0 built for Mac OS X
Mountain Lion.

Includes ASIS, AUnit, GPRbuild,
XMLAda from GNAT GPL 2012.

Compilers included: Ada C C++ Fortran.

Target: x86_64-apple-darwin12

Configured with:

../gcc-4.8.0/configure \

 --prefix=/opt/gcc-4.8.0 \

 --disable-multilib \

 --enable-languages=c,ada,c++,fortran \

 --target=x86_64-apple-darwin12 \

 --build=x86_64-apple-darwin12

Thread model: posix

gcc version 4.8.0 (GCC)

Install by

 $ cd /

 $ sudo tar jxvf ~/Downloads/
gcc-4.8.0-x86_64-apple-darwin12.tar.bz2

and put /opt/gcc-4.8.0/bin first on your
PATH.

MD5 (gcc-4.8.0-x86_64-apple-
darwin12.tar.bz2) =
db2c8b196475faa648b8f40b66465692

From: Simon Wright
<simon@pushface.org>

Date: Tue, 30 Apr 2013
Subject: Building GCC 4.8.0
URL: http://forward-in-code.blogspot.co.uk/

2013/04/building-gcc-480.html

These notes describe building GCC 4.8.0
for Mac OS X, with Ada, C, C++,

Fortran, Objective C, Objective C++, and
various GNAT tools.

Build environment

I'm building on a 13" Macbook Pro with a
2.5 GHz Intel Core 2 i5 processor and 4
GB of RAM, running Mac OS X
Mountain Lion 10.8.3 (Darwin 12.3.0)
with Xcode 4.6.2.

[…]

[Simon gives detailed instructions on
building GCC 4.8.0 (including GNAT) on
Mac OS X. —sparre]

Ada and Microsoft

How to get screen size

From: Tom Moran <tmoran@acm.org>
Date: Sat, 6 Apr 2013 17:56:12 +0000
Subject: Re: How to get the screen size?
Newsgroups: comp.lang.ada

> To make my ada application program
suitable for more monitor sizes, I need
the Screen Size. Where the size is the
number of pixels. Is there a function or
procedure to get the screen width and
height?

CLAW (Class Library for Ada on
Windows) has Get_System_Metrics,
which basically calls Windows'
GetSystemMetrics with the right
parameter.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 7 Apr 2013 12:00:24 +0200
Subject: Re: How to get the screen size?
Newsgroups: comp.lang.ada> The OS is
Windows 7.

Anyway, if your application is limited to
Windows already, there is no reason not
to use Win32Ada.

You call GetDesktopWindow from the
package Win32.Winuser, which gives you
a handle to the desktop window. Then you
call GetWindowRect on that window. The
rectangle returned is one of the desktop.
For further information see MSDN:

http://msdn.microsoft.com/en-us/library/
windows/desktop/ms633504%28v=vs.85
%29.aspx

Note than Windows supports multiple
monitors. You could wish to enumerate
them. See GetMonitorInfo in MSDN.

References to
Publications

Optimization with Valgrind
Massif and Cachegrind

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: March 2 2013
Subject: Optimization with Valgrind Massif

and Cachegrind

URL: http://blog.vacs.fr/index.php?post/
2013/03/02/Optimization-with-Valgrind-
Massif-and-Cachegrind

Memory optimization reveals sometimes
some nice surprise. I was interested to
analyze the memory used by the Ada
Server Faces framework. For this I've
profiled the unit tests program. This
includes 130 tests that cover almost all the
features of the framework.

Memory analysis with Valgrind Massif

Massif is a Valgrind tool that is used for
heap analysis. It does not require the
application to be re-compiled and can be
used easily. The application is executed
by using Valgrind and its tool Massif.
[…]

The valgrind tool creates a file
massif.out.NNN which contains the
analysis. The massif-visualizer is a
graphical tool that reads the file and
allows you to analyze the results. […]

Introduction to AWS
(part 2)

From: Thomas Løcke <tl@ada-dk.org>
Date: March 10, 2013
Subject: Using the Ada Web Server (AWS),

part 2
URL: http://blogs.fsfe.org/thomaslocke/

2013/03/10/using-the-ada-web-server-
aws-part-2/

In the Using the Ada Web Server (AWS),
part 1 article I showed you how to setup a
simple Hello world! server powered by
the awesomeness that is the Ada Web
Server (AWS) project. In this second part
I will show you how to utilize the
Templates_Parser module to build your
HTML and I’ll also give a very short
example on how to serve a flat file to
visitors.

[…]

 “Programming in Ada
2012” expected in 2014

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 27 Mar 2013 13:58:45 -0500
Subject: Re: Ada 2005 vs Ada 2012
Newsgroups: comp.lang.ada

Here's the definitive answer from John
Barnes that he asked me to post:

“John is planning to write Programming
in Ada 2012 but he has not yet finalized
the contract with the publishers; he would
not expect it to be published before early
2014.”

He also said that he's planning to finish
the Rationale for Ada 2012 before starting
on a revision of the book. So it looks like
quite a wait for the book.

Ada Inside 73

Ada User Journal Volume 34, Number 2, June 2013

Dr.Dobb's: Ada With
Contracts

From: Robert Dewar
Date: Tue Apr 9 2013
Subject: Ada 2012: Ada With Contracts
URL: http://www.drdobbs.com/

architecture-and-design/ada-2012-ada-
with-contracts/240150569

The most important new feature in Ada
2012 is support for contract-based
programming, which adds more
validation of mission-critical code to a
language already famous for its focus on
reliability.

The most recent version of the Ada
standard, known as Ada 2012, brings
contract-based programming to a
mainstream language. Preconditions,
postconditions, type invariants, and
subtype predicates allow software
developers to specify their programs'
intent more clearly, in effect embedding
requirements into the source code. This
feature makes it easier to review and
understand the program, and it facilitates
verification by the compiler, static
analysis tools, and/or runtime checks.

[…]

Comparing YAMI4 and
ZeroMQ

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Tue, 23 Apr 2013 14:04:04 -0700
Subject: YAMI4 vs. ZeroMQ
Newsgroups: comp.distributed

The following article compares YAMI4 to
ZeroMQ:

http://www.inspirel.com/articles/
YAMI4_vs_ZeroMQ.html

Both libraries offer messaging solutions
for distributed system developers, but
they differ quite heavily on several
policies. The above article presents the
YAMI4 point of view, but with the
intention of being honest and accurate.

Static predicates

From: Thomas Løcke <tl@ada-dk.org>
Date: April 25, 2013
Subject: Su(per)btypes in Ada 2012 – Part 1
URL: http://ada-dk.org/2013/04/

superbtypes-in-ada-2012-part-1/

If you want to learn a bit about types and
the Static_Predicate aspect in Ada 2012,
then this AdaCore gem has the good stuff:

> Ada 2012 is full of features for
specifying a rich set of type properties.
In this series of three Gems, we
describe three aspects that can be used
to state invariant properties of types and
subtypes. This first Gem is concerned
with the Static_Predicate aspect.

With the Static_Predicate aspect you can
do cool stuff like this:

type Day is (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday, Sunday);
type T_Day is new Day with
 Static_Predicate => T_Day in
 Tuesday | Thursday;

Nice eh’? The compiler will now protect
you against assigning Friday to a T_Day.
That is pretty neat. Stay tuned for part 2
and 3, where more of the Ada 2012
goodness will be explained.

Article in German magazine
Heise

From: Peter Dencker
<peter.dencker@etas.com>

Date: Thu, 23 May 2013 12:49:23 +0000
Subject: Ada - Artikel auf heise
To: Liste der Fachgruppe Ada

<ada@gi-fb-sicherheit.de>

Ein Ada Artikel auf heise-online zu Ihrer
Information:

http://www.heise.de/developer/artikel/
Nebenlaeufige-Programmierung-in-Ada-
1862433.html

[Good publicity for Ada 2012. —sparre]

Ada Inside

IKEv2 Trusted Key
Manager

From: Adrian-Ken Rueegsegger
<ken@codelabs.ch>

Date: Mon, 08 Apr 2013 15:40:59 +0200
Subject: ANN: IKEv2 Trusted Key Manager
Newsgroups: comp.lang.ada

We are proud to announce that the
popular strongSwan open source IPsec
VPN project now makes use of Ada.

The latest strongSwan release 5.0.3 [1]
contains support for the Trusted Key
Manager (TKM), which is a separate
process providing security critical
operations of the IKEv2 protocol. The
TKM has been implemented from scratch
in Ada.

Further information about the IKEv2
disaggregation concept, the design and
implementation of the TKM is available
on the project website [2].

[1] http://www.strongswan.org/blog/2013/
04/06/strongswan-5.0.3-released.html

[2] http://www.codelabs.ch/tkm/

First person shooter

From: Thomas Løcke <tl@ada-dk.org>
Date: April 16, 2013
Subject: AdaDoom3 – FPS Action in Ada
URL: http://ada-dk.org/2013/04/

adadoom3-fsp-action-in-ada/

Those of us who are gamers at heart,
know that Id Software usually release
their “old” games and tech as open
source, and naturally that also happened

for the Doom 3 game. This in itself is
good news, but what is even better is the
fact that efforts are being put into an Ada
port. The man behind the project is only
known to me as J JS [1], and he is hosting
the project at the AdaDoom3 [2] GitHub
repository.

A few posts have been made about the
project at the Ada Programming
Community [3]:

- Initial news item about AdaDoom3 [4],
by Thomas Løcke [5]

- State of AdaDoom3 [6], by Adam Wolk
[7]

Feel free to pop in and join the Doom fun!

[1] https://plus.google.com/u/0/
104228556547212920341/posts

[2] https://github.com/AdaDoom3/
AdaDoom3

[3] https://plus.google.com/u/0/
communities/102688015980369378804

[4] https://plus.google.com/u/0/
112815721307813813920/posts/
EszZMWbYu32

[5] https://plus.google.com/u/0/
112815721307813813920

[6] https://plus.google.com/u/0/
102090077582777383295/posts/
StaiiW72Czw

[7] https://plus.google.com/u/0/
102090077582777383295

AZip - A portable Zip
archive manager

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat 11 May 2013
Subject: AZip 1.20 - tree view
URL: http://gautiersblog.blogspot.dk/

2013/05/azip-120-tree-view.html

http://azip.sf.net

[And a screenshot. — sparre]

Indirect information on Ada
usage

From: David Dhénaux
Date: Wed May 15 2013
Subject: Paris - Ingéeur Logiciel Java ou

Ada

Fondé par quatre ingéneurs, SmartSide est
une jeune entreprise en plein essor,
proposant un système d'information
innovant dédié aux problématiques des
Smart Grids.

Votre missions:

Vous participez à la réalisation des
nouvelles fonctionnalités et intervenez sur
toutes les activités inhérentes au
développement logiciel.

Vous et SmartSide:

Vous aimez travailler en équipe et êtes
motivé à l'idée de rejoindre une jeune

74 Ada in Context

Volume 34, Number 2, June 2013 Ada User Journal

 entreprise innovante afin de participer à
son essor. Vous êtes attiré par les équipes
dynamiques et cohésives dans lesquelles
l'entraide et le partage de connaissances
sont des valeurs primordiales. Vous aimez
les défis techniques et vous engager pour
les relever. Vous avez le sens de
l'humour. Vous êtes intéressé, initié ou
grand fanatique des méthodes Agiles.
Votre aisance relationnelle à
communiquer vos idées, votre esprit
d'équipe et votre capacité d'analyse sont
vos atouts majeurs.

Vous intégrerez une équipe à taille
humaine qui travaille dans la bonne
humeur et le respect d'autrui. Ensemble,
nous partagerons des valeurs essentielles
concernant notamment le bien-être de
chacun. La communication avec les
dirigeants sera simple et vous ne devrez
pas attendre des mois pour qu'une
décision soit prise. L'équipe sera à votre
écoute et nous étudierons ensemble toutes
vos propositions avec attention, qu'elles
soient techniques ou relationnelles.

Vos Compétences : 2 à 5 ans
d'expérience, BAC +5, Java et/ou Ada,
méthodes Agiles.

Ada in Context

Automatic parallelism

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Fri, 08 Mar 2013 11:18:48 +0100
Subject: Re: Ada and OpenMP
Newsgroups: comp.lang.ada

> Fortunately, OpenMP is no longer
needed to achieve automatic parallelism
in either C or Ada at the low level.
GCC's vectorizer produces code that
runs in parallel for a number of loop
patterns. These are documented, and
they work in GNAT GPL or more
recent FSF GNATs. Later 4.7s IIRC.

For example, adding -ftree-vectorize to
the set of options (-O2 …) increases the
speed of the program below by factors up
to 3, depending to some extent on the
value of MAX. (Option -O3 is even easier
in this case, and yields improvements
when MAX = 8.)

The assembly listing includes instructions
like MOVDQA and PADDD used with
SSE registers.

GNAT will report successful
optimizations when -fopt-info-optimized
is among the switches (or -ftree-
vectorizer-verbose=2 for older GNATs).

package Fast is
 MAX : constant := 50;

 subtype Number is Integer;
 type Index is new Natural range 0 .. MAX;
 type Vect is array (Index) of Number;

 procedure Inc_Array (V : in out Vect);
end Fast;

package body Fast is
 procedure Inc_Array (V : in out Vect) is
 begin
 for K in Index loop
 V (K) := V (K) + 1;
 end loop;
 end Inc_Array;
end Fast;

with Ada.Real_Time; use Ada.Real_Time;
with Ada.Text_IO;
with Fast; use Fast;
procedure Test_Fast is
 Start, Finish : Time;
 Data : Vect;
 Result : Integer := 0;
 pragma Volatile (Result);
begin
 Start := Clock;
 for Run in 1 .. 500_000_000/MAX loop
 Inc_Array (Data);
 if Data (Index(MAX/2 + Run mod
 MAX/2)) rem 2 = 1 then
 Result := 1;
 end if;
 end loop;
 Finish := Clock;
 Ada.Text_IO.Put_Line
 (Duration'Image (
 To_Duration (Finish -Start)));
end Test_Fast;

Bulletin from the Anti-
Pragma Society

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 7 Mar 2013 17:42:59 -0600
Subject: Re: Ada and OpenMP
Newsgroups: comp.lang.ada

> In Ada one might write, perhaps

 pragma OMP(Parallel_For)

 for I in 1 .. MAX loop

 A(I) := A(I) + 1

 end loop;

> Doing this with Ada tasks in such a way
that it uses an optimal number of
threads on each execution (based on
core count) would be much more
complicated, I should imagine. Please
correct me if I'm wrong!

Well, this doesn't make much sense. If the
pragma doesn't change the semantics of
the loop, then it is not necessary at all (the
compiler can and ought to do the
optimization when it makes sense,
possibly under the control of global
flags). Programmers are lousy at
determining where and how the best of
use of machine resources can be made.
(Pragma Inline is a similar thing that
should never have existed and certainly
shouldn't be necessary.)

If the pragma does change the semantics,
then it violates "good taste in pragmas". It
would be much better for the change to be
indicated by syntax or by an aspect.

Pragmas, IMHO, are the worst way to do
anything. Compiler writers tend to use
them because they can do so without
appearing to modify the language, but it's
all an illusion: the program probably
won't work right without the pragma, so
you're still locked into that particular
vendor. Might as well have done it right
in the first place (and make a proposal to
the ARG, backed with practice, so it can
get done right in the next version of Ada).

 Randy Brukardt,

 President, Anti-Pragma Society. :-)

Case conversion of UTF-8
encoded Unicode strings

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 7 Mar 2013 17:53:25 -0600
Subject: Re: string and wide string usage
Newsgroups: comp.lang.ada

[…]
Right. The proper thing to do (for Ada
2012) is to use
Ada.Characters.Wide_Handling (or
Wide_Wide_Handling) to do the case
conversion, after converting the UTF-8
into a Wide_String (or
Wide_Wide_String).

If you're trying to do this in an older
version of Ada, you'll have to find some
library somewhere to do the job.

But I want to caution you that "converting
to lower case" is not a great idea if you
plan to support arbitrary Unicode strings.
Such conversions are somewhat
ambiguous, and tend to make strings
appear similar that are different (and
sometimes the reverse happens as well).
Usually, the best plan is to store the
strings unmodified and use
Equal_Case_Insensitive to compare them
(this uses the most accurate comparison
defined by Unicode, and has the
advantage of being guaranteed not to
change in future character set standards,
which is NOT true of conversion to lower
case).

There is a nice example of this problem in
the next chapter of the Ada 2012
Rationale (although you'll have to wait
until May to see it, unless you get the Ada
User Journal).

I realize you may have no choice given
the design of your database might not be
in your control, and it might not matter if
you don't plan to have Greek and Turkish
characters in your data (to mention two of
the most common where convert to lower
case and Equal_Case_Insensitive give
different answers for Wide_Strings).

Parallelised execution of
loops

From: Georg Bauhaus
<bauhaus@futureapps.de>

Ada in Context 75

Ada User Journal Volume 34, Number 2, June 2013

Date: Fri, 08 Mar 2013 16:47:06 +0100
Subject: Re: Ada and OpenMP
Newsgroups: comp.lang.ada

> for I in 1 .. MAX loop

 A(I) := A(I) + 1

 end loop;

If A is an array of small objects, then with
GNAT on Intel, you can turn on -ftree-
vectorize (or -O3) and see what this gives.

Adding -ftree-vectorizer-verbose=2 (old)
or -fopt-info-optimize instructs GCC to
report successful vectorizations.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 8 Mar 2013 17:40:21 -0600
Subject: Re: Ada and OpenMP
Newsgroups: comp.lang.ada

(1) Use a compiler that does this
automatically (apparently GNAT does
this in some circumstances).

(2) Use a library like Paraffin; a bit less
convenient but it will work on any Ada
compiler for any target. Some of the
Ada 2012 features may make such a
library more convenient to write (I
haven't been keeping up with Brad's
work on this).

(3) Use a compiler with an appropriate
extension for parallel loops. One
possibility would be something like:

for I in 1 .. MAX loop in parallel
 A(I) := A(I) + 1
end loop;

This of course ties you to a particular
implementation, or to wait for Ada 202x.
Of course, so does a pragma, and it's
much less likely to be standardized. So I
suggest (1) or (2).

From: Brad Moore
<brad.moore@shaw.ca>

Date: Fri, 08 Mar 2013 14:37:04 -0700
Subject: Re: Ada and OpenMP
Newsgroups: comp.lang.ada

The following code shows the same
problem executed sequentially, and then
executed with Paraffin libraries.

with Ada.Real_Time; use Ada.Real_Time;
with Ada.Command_Line;
with Ada.Text_IO; use Ada.Text_IO;
with Parallel.Iteration.Work_Stealing;

procedure Test_Loops is

 procedure Integer_Loops is new
 Parallel.Iteration.Work_Stealing
 (Iteration_Index_Type => Integer);

 Start : Time;

 Array_Size : Natural := 50;
 Iterations : Natural := 10_000_000;

begin

 -- Allow first command line parameter to
 -- override default iteration count
 if Ada.Command_Line.
 Argument_Count >= 1 then

 Iterations := Integer'Value
 (Ada.Command_Line.Argument (1));
 end if;

 -- Allow second command line parameter
 -- to override default array size
 if Ada.Command_Line.
 Argument_Count >= 2 then
 Array_Size := Integer'Value
 (Ada.Command_Line.Argument (2));
 end if;

 Data_Block : declare
 Data : array (1 .. Array_Size)
 of Natural := (others => 0);
 begin

 -- Sequential Version of the code, any
 -- parallelization must be auto
 -- generated by the compiler

 Start := Clock;

 for I in Data'Range loop
 for J in 1 .. Iterations loop
 Data (I) := Data (I) + 1;
 end loop;
 end loop;

 Put_Line ("Sequential Elapsed=" &
 Duration'Image (To_Duration
 (Clock - Start)));

 Data := (others => 0);
 Start := Clock;

 -- Parallel Version of the code, explicitly
 -- parallelized using Paraffin

 declare

 procedure Iterate (First : Integer;
 Last : Integer) is
 begin
 for I in First .. Last loop
 for J in 1 .. Iterations loop
 Data (I) := Data (I) + 1;
 end loop;
 end loop;
 end Iterate;

 begin
 Integer_Loops (
 From => Data'First,
 To => Data'Last,
 Worker_Count => 4,
 Process => Iterate'Access);
 end;

 Put_Line ("Parallel Elapsed=" &
 Duration'Image (To_Duration
 (Clock - Start)));

 end Data_Block;

end Test_Loops;

When run on my machine AMD
Quadcore with parameters 100_000
100_000, with full optimization turned on
with -ftree-vectorize, I get.

Sequential Elapsed= 6.874298000
Parallel Elapsed= 6.287230000
With optimization turned off, I get
Sequential Elapsed= 32.428908000
Parallel Elapsed= 8.424717000

gcc with GNAT does a good job of
optimization when its enabled, for these
cases as shown, but the differences
between optimization and using Paraffin
can be more pronounced in other cases
that are more complex, such as loops that
involve reduction (e.g. calculating a sum)

Types and subtypes

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 13 Mar 2013 10:45:54 +0100
Subject: Re: Is this expected behavior or not
Newsgroups: comp.lang.ada

[…] In Ada, a type is a set of values. A
subtype is the SAME TYPE, restricted to
a subset of the values (the "constraint").

This feature does not exist in other OO
languages, […] A subtype has the same
operation as its base type, not copies of
the operations as with inheritance.

Searching for NYU Ada/Ed
Version 19.7 V-001

From: Nigel Williams
<nw@retrocomputingtasmania.com>

Date: Sat, 13 Apr 2013 16:56:19 -0700
Subject: searching for the first validated

Ada compiler: NYU Ada/Ed
Newsgroups: comp.lang.ada

I'm part of small band of Ada enthusiasts
and software preservationists who are
keen to find and preserve the first
validated Ada compiler (NYU Ada/Ed
Version 19.7 V-001), implemented by
NYU (nyu.edu) in the early 1980s and
validated in 1983.

The validation report is referenced here:

http://oai.dtic.mil/oai/
oai?verb=getRecord&metadataPrefix=
html&identifier=ADA136759

NYU Ada/Ed was developed using the
SETL programming language and it
appears the first implementation was
targeted at VAX/VMS. I hope to find both
the Ada/Ed interpreter and the toolchain
used to build it, at least minimally the
relevant SETL implementation. It would
also be important to find the V1.1 of the
ACVC tests used for the validation as
well.

I have contacted NYU and some of the
original authors of NYU Ada/Ed but so
far only later versions, particularly those
that were re-built using C or SETL2 have
so far been found.

We might be looking for old VAX backup
tapes or perhaps someone kept printed
copies of the source-code.

If anyone has leads and suggestions on
what to look for and where to look, it
would be appreciated.

76 Ada in Context

Volume 34, Number 2, June 2013 Ada User Journal

TOYOTA ITC Japan selects
SPARK Pro for High-
Reliability research project

From: AdaCore Press Center
Date: Tue Apr 23 2013
Subject: TOYOTA ITC Japan Selects

SPARK Pro Language and Toolset for
High-Reliability Research Project

URL: http://www.adacore.com/press/
toyota-itc-japan-selects-spark-pro-
language-and-toolset-for-high-reliabilit/

SAN JOSE, Calif., NEW YORK and
PARIS, April 23, 2013 – Design West
Conference – AdaCore and Altran today
announced TOYOTA InfoTechnology
Center (ITC) Japan’s selection of the
SPARK language and SPARK Pro toolset
for a high-reliability software research
project. The goal of the project is to show
that software requirements can be
transformed into an implementation that
can be proven to be free of run-time
errors. This will have the key advantage
of providing ultra-low-defect software for
higher reliability in a vehicle component.
An added benefit is the reduction of
development and maintenance effort,
since the formal approach being used can
give mathematical assurance to a variety
of correctness properties, reducing the
need for certain types of testing and
eliminating the need for post-deployment
corrections.

The research project is taking a proven
design and generating a fully assured code
implementation, starting from a single
vehicle system component. The aim is to
use SPARK Pro technology to prove that
the software can be produced free of run-
time exceptions under all operating
conditions, as a first step to composing
larger ultra-low-defect systems.
Alternative approaches using
conventional software development
methods have fundamental limitations.
Testing can only provide evidence for a
limited set of conditions, and static
analysis performed on existing code to
check for vulnerabilities, or other errors,
does not address the underlying problem
of preventing the errors in the first place.
Using the SPARK language, toolset and
methods solves this basic issue and will
provide a clear competitive advantage for
this component.

About SPARK

SPARK is a programming language that
supports the precise specification of
design or requirements in source code
using a notation for formal contracts,
including pre-conditions and post-
conditions for subprograms, and inter-
module information flow dependencies.
The SPARK Pro toolset can then be used
to verify that the software correctly
implements the design, or meets its
requirements, by verifying that the source

code logic complies with the specified
contracts.

SPARK can be used both to precisely
express system requirements and to define
an executable implementation, which can
be formally shown to meet those
requirements. Correctness can thus be
demonstrated from the start, and
maintained incrementally as the system
evolves. This is a vastly different
approach, and much more reliable, than
developing a system and then using tests
or static analysis to reduce the number of
errors introduced in earlier life-cycle
phases.

About SPARK Pro

SPARK Pro, a product jointly developed
by Altran and AdaCore, provides a state-
of-the-art language and toolset for
engineering high-assurance software. It
combines Altran’s SPARK language and
verification tools with AdaCore’s GNAT
Programming Studio (GPS) and
GNATbench Integrated Development
Environments. There are SPARK versions
based on Ada 83, Ada 95, and Ada 2005,
so all standard Ada compilers and tools
work out-of-the-box with SPARK.

The SPARK Pro language and toolset is
specifically designed for developing
applications where correct operation is
vital for safety or security. It offers static
verification that is unrivalled in terms of
its soundness (no “false negatives”), low
false-alarm rate, depth and efficiency. The
toolset generates evidence for correctness,
including proofs of the absence of run-
time errors that can be used to meet the
requirements of safety and security
certification schemes, such as ISO 26262,
DO-178B, DO-178C and the Common
Criteria. SPARK Pro is especially
applicable in the context of the Formal
Methods supplement to DO-178C.

About TOYOTA InfoTechnology Center
Co., Ltd.

TOYOTA InfoTechnology Center Co.,
Ltd. provides cutting-edge technology and
creates value with superior intelligence
and greater innovation throughout the IT
business related to automobiles.
TOYOTA ITC as a whole has as its
objective the development of advanced,
world-class information technologies to
meet market needs. This includes the
research, development and evaluation of
technologies, hardware and software
research, analysis and planning of market
and business models, and the management
of intellectual property rights.

TOYOTA ITC has North America
headquarters in Mountain View, CA and
the main office in Tokyo, Japan.
www.toyota-itc.com

[…]

Targeting GNAT to the TI
MSP430

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Wed, 1 May 2013 23:37:10 +0000
Subject: Re: Extended Exceptions and other

tweaks.
Newsgroups: comp.lang.ada

> I have borrowed the AVR-Ada RTS as
a starting point for the TI MSP430 and
it's looking good so far. I haven't tried
exceptions yet though, but I'll report
when I get that far.

Played with exceptions tonight; they look
better than I expected and I think I can
shed some light on Luke's experiments.

(NOTE: all the following apply with
"pragma No_Exception_Propagation" in
effect).

The a-except.ad[sb] from AVR-Ada
nearly worked for the MSP430 as well!
The address clause on "procedure Reset"
was the only point of failure so far, as it is
not 0 on the MSP430 but 16#FF80# or
other CPU-dependent value.

What's untested so far:

Actually running the executables : so far I
have just examined the code emitted by
the compiler

Raising exceptions as a result of runtime
errors (overflow etc) instead of explicit
Raise statements.

What works :

- Raising a standard exception.

 - Handling it locally

 - Handling it in the Last Chance Saloon
(cough, Handler).

- Raising a user-defined exception,
declared immediately visible to the
subprogram which raises and handles it.

- Handling it locally.

- Handling it in the Last Chance handler.

- Raising a user-defined exception,
declared elsewhere - even in a local
package.

 - Handling it in the Last Chance handler.

What doesn't work :

Locally handling a user-defined exception
from another package, via a selected
name. The compiler ignores (deletes) any
local handler and passes the exception
(actually just plants a call to) the Last
Chance handler. However, making the
exception directly visible via a Use
clause, it does work.

So the following ,

raise Timer_A.oops; -- last chance handler!
and
use Timer_A;
raise oops; -- can be locally handled

end up in different exception handlers!

Ada in Context 77

Ada User Journal Volume 34, Number 2, June 2013

I'm not clear on whether this is expected
behaviour…

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 1 May 2013 20:06:20 -0500
Subject: Re: Extended Exceptions and other

tweaks.
Newsgroups: comp.lang.ada

> I'm not clear on whether this is expected
behaviour…

It's certainly not Ada behavior. But since
you didn't show the local handler, there's
a possibility that the problem was there,
rather than in the exception raise. More
likely, it is just some sort of compiler bug

Applying typestate analysis
to Ada?

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 12 May 2013 00:06:25 +0300
Subject: Re: Seeking for papers about

tagged types vs access to subprograms
Newsgroups: comp.lang.ada

[http://en.wikipedia.org/wiki/
Typestate_analysis]

I haven't studied typestate analysis at all
deeply. I had a look at the "Plaid"
language referenced from the Wikipedia
article, at
http://www.cs.cmu.edu/~aldrich/plaid/,
and was a bit surprised to understand that
Ada subtypes come rather close to it, in
particular subtypes of discriminated
record types with variants. The value of
the discriminant represents the state, with
certain components of the record (=
attributes of the object or type) existing or
not existing depending on the variant
selected by the discriminant.

For the Open-Close example:

 type File_State is (Is_Closed, Is_Open);

 type File_Object (State : File_State :=
 Is_Closed) is record
 case State is
 when Is_Closed => null;
 when Is_Open => Handle :
 System.IO.File_Handle;
 end case;
 end record;

 subtype Closed_File is File_Object (State
 => Is_Closed);
 subtype Open_File is File_Object (State
 => Is_Open);

By using subtypes on formal parameters,
we can indicate that the available
operations on a File_Object depend on the
actual subtype (i.e. the state), except for
one deficiency, on which more below.

First, reading and writing is possible only
for open files:

 procedure Read (File : in Open_File; …)
 procedure Write (File : in Open_File; …)

Second, a Closed file can be Opened, and
an Open file can be Closed:

 procedure Open
 (File : in out Closed_File);
 procedure Close
 (File : in out Open_File);

The problem here is that these operations
should change the subtype of the "in out"
parameter: Open changes the File from
Closed_File to Open_File, and Close
changes it from Open_File to
Closed_File. However, Ada does not let
us specify such changes, in the
subprogram profile. (This can of course
be specified with pre- and post-
conditions, but I'm looking for a closer
connection between the subprogram
profile and the subtypes.)

Well, why is Ada limited in this way?
There is no real reason why an "in out"
parameter should have the same
constraints on input and on output. So let
us extend Ada to allow different "in" and
"out" subtypes:

 -- Extended Ada:
 procedure Open
 (File : in Closed_File out Open_File ; …);
 procedure Close
 (File : in Open_File out Closed_File; …);

This gives us exactly the open/close
typestate example. A compiler with strong
value-range analysis should then be able
to deduce, for example, that the "in"
constraint check on a particular call of
Open, Close, Read, or Write always
succeeds (= typestate correctness) or may
or must fail (various degrees of typestate
incorrectness). I believe that many current
compilers could do such value-range
analysis, and thus Ada could support this
kind of typestate concept with rather
small language changes.

(You may ask: if an "in out" parameter
has different "in" and "out" subtypes,
what subtype is applied when the formal
parameter is used or assigned within the
subprogram body? I think the logical
answer would be the "disjunctive
subtype" that represents the union of the
"in" and "out" subtypes, which
unfortunately could be a subtype with
"holes". But I think that would be
manageable, since this disjunctive
subtype would have at most two separate
components, i.e. at most one hole.)

From: Shark8
<onewingedshark@gmail.com>

Date: Sat, 11 May 2013 16:19:06 -0700
Subject: Re: Seeking for papers about

tagged types vs access to subprograms
Newsgroups: comp.lang.ada

> There is no real reason why an "in out"
parameter should have the same
constraints on input and on output.

What? Ada's not constrained like that, at
least as you're implying:

Given the types you have […] the proper
way to formulate _EXACTLY_ what you
want is this:

procedure Open
 (File : in out File_Object; …)
 with Pre => File in Closed_File,
 Post => file in Open_File;

Or am I wrong?

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 12 May 2013 09:09:01 +0300
Subject: Re: Seeking for papers about

tagged types vs access to subprograms
Newsgroups: comp.lang.ada

[…]

As I said, it can be expressed with pre-
and post-conditions in this way, but then
the parameter profile does not mention the
subtypes and instead uses the
unconstrained type (here File_Object). As
I also said, I wanted the subtype changes
to be visible in the subprogram profile, to
show more clearly (or at least, more
traditionally) how the availability of the
subprogram depends on the state (i.e. the
subtype) of the parameter, and how it
affects the state.

To condense my points:

1. The typestate concept, as implemented
in the Plaid language, seems (after my
brief study of Plaid) to be
implementable in Ada through
discriminated records with variants.

2. The influence of the current typestate
of an object, on the set of subprograms
(operations) available for the object,
can be represented as constraints on the
"in" subtype of the object, and the
typestate changes can be represented as
the "out" subtype. In current Ada, of
course, the subtype checks in principle
occur at run-time, so typestate
correctness is not checked at compile-
time. Moreover, current Ada does not
allow the formal subtype (as written in
the profile) to be different for the "in"
and "out" roles.

3. Those different "in" and "out"
constraints can be implemented in Ada
2012 as pre/post-conditions, as you
say.

4. A closer match to Plaid can be
achieved if Ada is extended to allow
different subtypes for the "in" and "out"
roles of an "in out" parameter.

As the pre/post-condition feature of Ada
2012 becomes more familiar, perhaps the
pre- and post-conditions will be seen as a
more integrated part of the subprogram's
profile, and there is no reason to consider
changes to the formal subtypes allowed in
the language (point 4).

On the other hand, it seems to me that
there are other cases, not perhaps related
to typestate, where it would be natural to
specify different "in" and "out" subtypes

78 Ada in Context

Volume 34, Number 2, June 2013 Ada User Journal

for an "in out" parameter. Something as
simple as:

 procedure Increment
 (Counter : in out Natural)

could become

 -- Extended Ada:
 procedure Increment (Counter : in
 Natural range 0 ..Natural'Last - 1
 out Positive);

Of course, all such different in/out
constraints can be expressed using the
"heavy guns" of pre/post-conditions, so
perhaps this suggestion is out of date after
Ada 2012. Any compiler powerful enough
to do useful typestate analysis based on
the formal parameter subtypes is probably
able to do the same analysis using the
corresponding pre/post-conditions, at least
when the conditions take the simple form
"parameter in subtype".

It is interesting that Randy thinks his
ideas regarding a future replacement for
Ada resemble the typestate concept, but
that the typestate concept as implemented
in Plaid seems to be implementable in
Ada 2012. Perhaps Randy's ideas go
much further than this, however.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 13 May 2013 21:02:16 -0500
Subject: Re: Seeking for papers about

tagged types vs access to subprograms
Newsgroups: comp.lang.ada

> […]

The main thing I was thinking about was
some extension to the things that have to
be compile-time analyzable (as Static
Predicates are in Ada 2012). Probably the
basis of them would remain subtypes and
subprogram profiles (via preconditions
and postconditions). For the Open
example, that requires some way to
encode the notion of "properties" in a
statically understandable way. Perhaps
you are right that discriminants would do
the trick, but we'd want them to be

"virtual" discriminants without any
runtime cost.

I agree that you can get the effect of
typestate analysis in Ada 2012 using
discriminants, predicates, and
pre/postconditions, but those would be
checked at runtime. The key here for me
is to require static detection of these
errors, even when variables and
unconstrained formal parameters are
involved.

Anyway, I'm just musing here as opposed
to having fully worked out ideas. So I
could in fact be going down the wrong
path.

The point in having an
object for a closed file

From: Jeffrey Carter <jrcarter@acm.org>
Date: Sun, 12 May 2013 11:56:50 -0700
Subject: Re: Seeking for papers about

tagged types vs access to subprograms
Newsgroups: comp.lang.ada

> […]

I'm not sure I see the point in having an
object for a closed file, other than the
requirements of low-level languages in
which such things were 1st implemented.
Why not something like

type File_Info (<>) is tagged limited
 private;

function Open (Name : …; …)
 return File_Info;
function Create (Name : …; …)
 return File_Info;

function Read (File : in out File_Info)
 return …;
procedure Write (File : in out File_Info;
 Item : in …);

declare
 File : File_Info := Open ("junk", …);
begin
 Data := Read (File);
 …
end;

A File_Info must be opened or created
when declared, and is closed when it's
finalized.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Sun, 12 May 2013 18:15:24 -0400
Subject: Re: Seeking for papers about

tagged types vs access to subprograms
Newsgroups: comp.lang.ada

> I'm not sure I see the point in having an
object for a closed file,

Yeah, I was about to post basically the
same thing. A closed file is pretty useless.
It's like an uninitialized variable -- you
can't do anything with it.

[…]

> type File_Info (<>) is tagged limited
private;

Yes, but I would have separate types for
Input_File and Output_File. Possibly
another type for the rare case when you
want to read and write to/from the same
file handle.

> function Open (Name : …; …) return
File_Info;

> function Create (Name : …; …) return
File_Info;

Note that these are build-in-place
functions. You can't call them as the right-
hand side of an assignment statement.

> […]

You could use it as above, or like this:

 Grind_Upon_File(Open("junk", …));

Or like this:

 X := new File_Info'(Open(…));

But you couldn't use it like this:

 File : File_Info; -- Illegal!
 … -- some code that computes File_Name
 File := Open (File_Name); -- Illegal!

which is a limitation, compared to the
current design of Text_IO and friends.

 79

Ada User Journal Volume 34, Number 2, June 2013

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked  is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with  denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2013

 July 01-02 International Symposium on High-Level Parallel Programming and applications (HLPP'2013),
Paris, France.

July 01-03 18th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2013), Canterbury, Kent, UK.

July 01-03 7th International Symposium on Theoretical Aspects of Software Engineering (TASE'2013),
Birmingham, UK. Topics include: the theoretical aspects of model driven software engineering,
component based software engineering, software security, reliability, and verification, embedded and
real time software systems, aspect and object oriented software design, reverse engineering, etc.

 July 01-05 27th European Conference on Object-Oriented Programming (ECOOP'2013), Montpellier, France.
Topics include: all areas of object technology and related software development technologies, such as
aspects, components, modularity, concurrent and parallel systems, distributed computing, programming
environments, versioning, refactoring, software evolution, language definition and design, language
implementation, compiler construction, design methods and design patterns, real-time systems, security,
specification, verification, type systems, etc.

July 01 Workshop on MechAnisms for SPEcialization, Generalization and inHerItance
(MASPEGHI'2013). Topics include: the design of inheritance-related reuse
mechanisms, including their dynamic semantics, static analysis, permissions and
visibility; software engineering issues, including metrics, interactions with
methodologies, and consequences for quality parameters such as maintainability and
comprehensibility.

 July 01 2nd International Workshop on Combined Object-Oriented Modeling and
Programming Languages (COOMPL'2013). Topics include: differences and
similarities between modeling and programming, modeling constructs not supported by
programming languages, programming constructs not supported by modeling languages,
support for functional and constraint programming in modeling, support for concurrent /
distributed modeling and programming, implementation techniques, etc.

 July 01-02 Doctoral Symposium. Topics include: languages, modelling, processes, environments
and tools, methods and programming/modelling paradigms, execution, concurrent
parallel and distributed systems, evolution, analysis validation and verification.

 July 02 8th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2013). Topics include: efficient
implementation and compilation of OO languages in various application domains
ranging from embedded and real-time systems to desktop systems.

July 03-07 8th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE'2013), Angers, France. Topics include: emerging as well as established SE methods, practices,
architectures, technologies and tools; software process improvement, model-driven engineering,
application integration technologies, software quality management, software change and configuration
management, geographically distributed software development environments, formal methods,

80 Conference Calendar

Volume 34, Number 2, June 2013 Ada User Journal

 component-based software engineering and commercial-off-the-shelf (COTS) systems, software and
systems development methodologies, etc.

 July 12-14 GNU Tools Cauldron 2013, Mountain View, California, USA. Topics include: gathering of GNU tools
developers, to discuss current/future work, coordinate efforts, exchange reports on ongoing efforts,
discuss development plans for the next 12 months, developer tutorials and any other related discussions.

 July 16-18 11th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2013), Melbourne, Australia. Topics include: parallel and distributed algorithms, and
applications; high-performance scientific and engineering computing; middleware and tools; reliability,
fault tolerance, and security; parallel/distributed system architectures; tools/environments for
parallel/distributed software development; novel parallel programming paradigms; compilers for parallel
computers; distributed systems and applications; etc.

July 17-19 18th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2013), Singapore. Topics include: verification and validation, security of complex systems,
model-driven development, reverse engineering and refactoring, design by contract, agile methods,
safety-critical & fault-tolerant architectures, real-time and embedded systems, tools and tool integration,
industrial case studies, etc.

July 23-25 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'2013), Montreal,
Quebec, Canada. Topics include: parallel and distributed algorithms; multi-core architectures; compilers
and tools for concurrent programming; synergy of parallelism in algorithms, programming, and
architecture; etc.

July 29-30 13th International Conference on Quality Software (QSIC'2013), Nanjing, China. Theme: "Quality
of Evolving Software". Topics include: dynamic analysis, software quality, inspection, fault localization,
code review, formal methods, static analysis, proof-based systems, verification techniques combining
proofs and tests, testing in multi-core environments, etc.

August 18-26 9th Joint European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE'2013), Saint Petersburg, Russia. Topics include:
components, development environments and tools, distributed software, embedded and real-time
software, maintenance and evolution, model-driven software engineering, parallel and concurrent
software, reverse engineering, software architecture, validation, verification, and testing, etc.

 Aug 19-20 International Conference on Multicore Software Engineering, Performance, and
Tools (MUSEPAT'2013). Topics include: software engineering for multicore systems;
specification, modeling and design; programing models, languages, compiler techniques
and development tools; verification, testing, analysis; debugging, performance tuning,
and security testing; software maintenance and evolution; multicore software issues in
scientific computing, embedded and mobile systems; energy-efficient computing;
experience reports.

 August 19-21 19th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2013), Taipei, Taiwan. Topics include: embedded system design practices,
software and compiler issues for heterogeneous multi-core embedded platform, real-time scheduling,
timing analysis, programming languages and run-time systems, middleware systems, design and
analysis tools, case studies and applications, etc.

 August 26-30 19th International European Conference on Parallel and Distributed Computing (Euro-Par'2013),
Aachen, Germany. Topics include: all aspects of parallel and distributed computing, such as support
tools and environments, scheduling, high-performance compilers, distributed systems and algorithms,
parallel and distributed programming, multicore and manycore programming, theory and algorithms for
parallel computation, etc.

September 04-06 39th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2013),
Santander, Spain. Topics include: information technology for software-intensive systems.

September 08-11 10th International Conference on Parallel Processing and Applied Mathematics (PPAM'2013),
Warsaw, Poland. Topics include: multi-core and many-core parallel computing; parallel/distributed
algorithms: numerical and non-numerical; scheduling, mapping, load balancing; parallel/distributed
programming; tools and environments for parallel/distributed computing; security and dependability in

Conference Calendar 81

Ada User Journal Volume 34, Number 2, June 2013

parallel/distributed environments; applications of parallel/distributed computing; etc. Event also
includes: workshop on Language-Based Parallel Programming Models.

 Sep 08-11 5th Workshop on Language-Based Parallel Programming Models (WLPP'2013).
Topics include: Language and library implementations; Proposals for, and evaluation of,
language extensions; Applications development experiences; Comparisons between
programming models; Compiler Implementation and Optimization; etc.

September 08-11 FedCSIS2013 - 4th Workshop on Advances in Programming Languages (WAPL'2013), Kraków,
Poland. Topics include: compiling techniques, domain-specific languages, formal semantics and syntax,
generative and generic programming, languages and tools for trustworthy computing, language
concepts, design and implementation, model-driven engineering languages and systems, practical
experiences with programming languages, program analysis, optimization and verification,
programming tools and environments, proof theory for programs, specification languages, type systems,
etc.

 September 10-13 International Conference on Parallel Computing 2013 (ParCo'2013), München, Germany. Topics
include: all aspects of parallel computing, including applications, hardware and software technologies as
well as languages and development environments, in particular Parallel programming languages,
compilers, and environments; Tools and techniques for generating reliable and efficient parallel code;
Best practices of parallel computing on multicore, manycore, and stream processors; etc. Deadline for
submissions: July 31, 2013 (full papers).

September 11-13 13th Workshop on Automated Verification of Critical Systems (AVoCS'2013), Guilford, Surrey,
UK. Topics include: specification and refinement, verification of software and hardware, real-time
systems, dependable systems, verified system development, industrial applications, etc. Deadline for
submissions: July 19, 2013 (short papers). Deadline for registration: July 30, 2013.

September 22-23 13th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM'2013), Eindhoven, the Netherlands. Topics include: program transformation and refactoring,
static and dynamic analysis, source level software metrics, security and vulnerability analysis, source
level verification, program comprehension, abstract interpretation, etc.

September 22-24 12th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT'2013), Budapest, Hungary. Topics include: software methodologies and tools for robust,
reliable, non-fragile software design; software developments techniques and legacy systems; software
evolution techniques; agile software and lean methods; formal methods for software design; software
maintenance; software security tools and techniques; formal techniques for software representation,
software testing and validation; software reliability and software diagnosis systems; model driven
development (DVD), code centric to model centric software engineering; etc.

September 22-28 29th IEEE International Conference on Software Maintenance (ICSM'2013), Eindhoven, the
Netherlands. Topics include: software repository analysis and mining; reverse engineering, re-
engineering and migration; software refactoring, restructuring and renovation; software and system
comprehension; maintenance-related testing (e.g., regression testing); maintenance and evolution
processes; software quality improvement; etc.

 Sep 23-24 18th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2013),
Madrid, Spain. Topics include: design, specification, code generation and testing based on formal
methods; methods, techniques and tools to support automated analysis, certification, debugging,
learning, optimization and transformation of complex, distributed, real-time systems and embedded
systems; verification and validation methods that address shortcomings of existing methods with respect
to their industrial applicability (e.g., scalability and usability issues); tools for the development of formal
design descriptions; case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions; impact of the adoption of
formal methods on the development process and associated costs; application of formal methods in
standardization and industrial forums.

September 23-27 11th International Conference on Software Engineering and Formal Methods (SEFM'2013),
Madrid, Spain. Topics include: programming languages, program analysis and type theory; formal
methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-tolerant
and secure systems; light-weight and scalable formal methods; tool integration; applications of formal
methods, industrial case studies and technology transfer; education and formal methods; etc.

82 Conference Calendar

Volume 34, Number 2, June 2013 Ada User Journal

 Sep 29 - Oct 04 CBSoft2013 - 17th Brazilian Symposium on Programming Languages (SBLP'2013), Brasília,
Distrito Federal, Brazil. Topics include: the fundamental principles and innovations in the design and
implementation of programming languages and systems; programming paradigms and styles, including
object-oriented, real-time, multithreaded, parallel, and distributed programming; program analysis and
verification, including type systems, static analysis and abstract interpretation; programming language
design and implementation, including new programming models, programming language environments,
compilation and interpretation techniques; etc.

Sep 30 - Oct 03 32nd International Symposium on Reliable Distributed Systems (SRDS'2013), Braga, Portugal.
Topics include: distributed objects and middleware systems, enabling technologies for dependable
applications, formal methods and foundations for dependable distributed computing, analytical or
experimental evaluations of dependable distributed systems, secure and trusted systems, high-assurance
and safety-critical system design and evaluation, etc.

 Sep 30- Oct 04 12th International Conference on Parallel Computing Technologies (PaCT'2013), Saint-Petersburg,
Russia. Topics include: new developments, applications, and trends in parallel computing technologies;
all technological aspects of the applications of parallel computer systems; high level parallel
programming languages and systems; methods and tools for parallel solution of large-scale problems;
languages, environments and software tools supporting parallel processing; teaching parallel processing;
etc.

 Sep 7 6th International Workshop on Multi/many-Core Computing Systems
(MuCoCoS'2013). Topics include: portable programming models, languages and
compilation techniques; case studies highlighting performance portability and tuning;
etc.

 October 03 ICPP2013 - International Workshop on Embedded Multicore Systems (EMS'2013), Lyon, France.
Topics include: programming models for embedded multicore systems; software for Multicore, GPU,
and embedded architectures; real-time system designs for embedded multicore environments;
applications for automobile electronics of multicore designs; compiler for worst-case execution time
analysis; formal method for embedded systems; etc.

October 10-11 7th International Symposium on Empirical Software Engineering and Measurement (ESEM'2013),
Baltimore, Maryland, USA. Topics include: qualitative methods; replication of empirical studies;
empirical studies of software processes and products; industrial experience and case studies; evaluation
and comparison of techniques and models; reports on the benefits / costs associated with using certain
technologies; empirically-based decision making; quality measurement and assurance; software project
experience and knowledge management; etc.

October 14-17 20th Working Conference on Reverse Engineering (WCRE'2013), Koblenz, Germany. Topics
include: program comprehension, reengineering to distributed systems, mining software repositories,
software architecture recovery, empirical studies in reverse engineering, program analysis and slicing,
re-documenting legacy systems, reengineering patterns, program transformation and refactoring, reverse
engineering tool support, etc. Deadline for submissions: July 1, 2013 (tool demonstrations), July 10,
2013 (workshops).

October 26-28 6th International Conference on Software Language Engineering (SLE'2013), Indiana, Indianapolis,
USA. Topics include: formalisms used in designing and specifying languages and tools that analyze
such language descriptions; language implementation techniques; program and model transformation
tools; language evolution; approaches to elicitation, specification, or verification of requirements for
software languages; language development frameworks, methodologies, techniques, best practices, and
tools for the broader language lifecycle; design challenges in SLE; applications of languages including
innovative domain-specific languages or "little" languages; etc. Deadline for submissions: June 7, 2013
(abstracts), June 14, 2013 (full papers).

 October 26-31 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2013), Indiana, Indianapolis, USA. Deadline for submissions: July 19 - September
6, 2013 (workshop papers).

 Oct 26 - 31 28th Annual Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'2013). Topics include: any aspect of programming,
systems, languages, and applications; any aspect of software development, including
requirements, modeling, prototyping, design, implementation, generation, analysis,

Conference Calendar 83

Ada User Journal Volume 34, Number 2, June 2013

verification, testing, evaluation, maintenance, reuse, replacement, and retirement of
software systems; large-scale software repositories; tools (such as new languages,
program analyses, or runtime systems) or techniques (such as new methodologies,
design processes, code organization approaches, and management techniques) that go
beyond objects in interesting ways; etc.

Oct 27 - Nov 01 8th International Conference on Software Engineering Advances (ICSEA'2013), Venice, Italy.
Topics include: advances in fundamentals for software development; advanced mechanisms for software
development; advanced design tools for developing software; software security, privacy, safeness;
specialized software advanced applications; open source software; agile software techniques; software
deployment and maintenance; software engineering techniques, metrics, and formalisms; software
economics, adoption, and education; improving productivity in research on software engineering; etc.

Oct 29 - Nov 01 15th International Conference on Formal Engineering Methods (ICFEM'2013), Queenstown, New
Zealand. Topics include: abstraction and refinement; program analysis; software verification; formal
methods for software safety, security, reliability and dependability; tool development, integration and
experiments involving verified systems; formal methods used in certifying products under international
standards; formal model-based development and code generation; etc.

November 04-07 24th IEEE International Symposium on Software Reliability Engineering (ISSRE'2013), Pasadena,
CA, USA.

 Nov 10-14 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2013), Pittsburgh, Pennsylvania, USA. Deadline for submissions:
August 1, 2013 (industrial presentations).

November 17-22 26th International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'2013), Denver, Colorado, USA. Topics include: applications, programming systems
(technologies that support parallel programming, such as compiler analysis and optimization, parallel
programming languages and notations, programming models, runtime systems, tools, software
engineering for parallel programming, solutions for parallel programming challenges, ...), state of the
practice, etc. Deadline for submissions: July 31, 2013 (posters).

December 02-05 20th Asia-Pacific Software Engineering Conference (APSEC'2013), Bangkok, Thailand. Topics
include: software engineering methodologies; software analysis and understanding; software testing,
verification and validation; software maintenance and evolution; software quality and measurement;
software process and standards; software security, reliability and privacy; software engineering
environments and tools; software engineering education; distributed and parallel software systems;
embedded and real-time software systems; formal methods in software engineering; etc. Deadline for
submissions: July 30, 2013 (industry track papers, postgraduate symposium papers, tutorials).

December 09-11 11th Asian Symposium on Programming Languages and Systems (APLAS'2013), Melbourne,
Australia. Topics include: foundational and practical issues in programming languages and systems,
such as semantics, design of languages and type systems, domain-specific languages, compilers,
interpreters, abstract machines, program analysis, verification, model-checking, software security,
concurrency and parallelism, tools and environments for programming and implementation, etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 December 15-18 19th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2013), Seoul,
Korea. Topics include: parallel and distributed applications and algorithms, multi-core and
multithreaded architectures, security and privacy, dependable and trustworthy computing and systems,
real-time systems, cyber-physical systems, embedded systems, etc.

December 18-21 20th IEEE International Conference on High Performance Computing (HiPC'2013), Hyderabad,
India. Topics include: parallel and distributed algorithms / applications, parallel languages and
programming environments, hybrid parallel programming with GPUs, scheduling, resilient/fault-tolerant
algorithms and systems, scientific/engineering/commercial applications, compiler technologies for high-
performance computing, software support, etc.

84 Conference Calendar

Volume 34, Number 2, June 2013 Ada User Journal

2014

January 09-11 15th IEEE International Symposium on High Assurance Systems Engineering (HASE'2014),

Miami, Florida, USA. Topics include: tools and techniques used to design and construct systems that, in
addition to meeting their functional objectives, are safe, secure, and reliable. Deadline for submissions:
August 1, 2013 (papers).

February 12-14 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2014), Turin, Italy. Topics include: embedded parallel and distributed systems, multi- and many-
core systems, programming languages and environments, runtime support systems, simulation of
parallel and distributed systems, dependability and survivability, real-time distributed applications, etc.
Deadline for submissions: July 31, 2013 (full papers).

March 24-28 29th ACM Symposium on Applied Computing (SAC'2014), Gyeongju, Korea.

 Mar 24-28 Track on Programming Languages (PL'2014). Topics include: compiling techniques,
domain-specific languages, formal semantics and syntax, garbage collection, language
design and implementation, languages for modeling, model-driven development, new
programming language ideas and concepts, practical experiences with programming
languages, program analysis and verification, programming languages from all
paradigms, etc.

March 24-28 Track on Software Verification and Testing (SVT'2014). Topics include: new results
in formal verification and testing, technologies to improve the usability of formal
methods in software engineering, applications of mechanical verification to large scale
software, etc. Deadline for submissions: September 13, 2013.

April 05-13 European Joint Conferences on Theory and Practice of Software (ETAPS'2014), Grenoble, France.
Events include: CC, International Conference on Compiler Construction; ESOP, European Symposium
on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS, Foundations of
Software Science and Computation Structures; POST, Principles of Security and Trust; TACAS, Tools
and Algorithms for the Construction and Analysis of Systems.

April 22-26 13th International Conference on Modularity (Modularity'2013), Lugano, Switzerland. Topics
include: varieties of modularity (generative programming, aspect orientation, software product lines,
components; ...); programming languages (support for modularity related abstraction in: language
design; verification, contracts, and static program analysis; compilation, interpretation, and runtime
support; formal languages; ...); software design and engineering (evolution, empirical studies of existing
software, economics, testing and verification, composition, methodologies, ...); tools (refactoring,
evolution and reverse engineering, support for new language constructs, ...); applications (distributed
and concurrent systems, middleware, cyber-physical systems, ...); complex systems; etc. Deadline for
submissions: July 25, 2013 (round 1), October 13, 2013 (round 2).

 June 23-27 19th International Conference on Reliable Software Technologies - Ada-
Europe'2014, Paris, France. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN (requests pending).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Forthcoming events 85

Ada User Journal Volume 34, Number 2, June 2013

ACM SIGAda Annual International Conference
High Integrity Language Technology HILT 2013

Call for Technical Contributions

Developing and Certifying Critical Software

Pittsburgh, Pennsylvania, USA
November 10-14, 2013

Sponsored by ACM SIGAda in cooperation with SIGPLAN, SIGAPP, SIGCSE, SIGBED, SIGCAS,
SIGSOFT, Ada-Europe and the Ada Resource Association

Contact: SIGAda.HILT2013 at acm.org www.sigada.org/conf/hilt2013

KEYNOTE & INVITED SPEAKERS

Edmund M. Clarke (ACM Turning Award 2007 and Professor of Electrical and Computer Engineering, Carnegie
Mellon University), Jeannette Wing (Vice President and Head Microsoft Research International) and John
Goodenough (Software Engineering Institute). Special session on Model-Based Engineering with invited talk by
Michael Whalen of University of Minnesota.

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system. HILT 2013 will provide a forum for experts from
academia/research, industry, and government to present the latest findings in designing, implementing, and using
language technology for high integrity software. We are soliciting technical papers, experience reports, and
tutorial proposals on a broad range of relevant topics.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
 New developments in formal methods
 Multicore and high integrity systems
 Object-Oriented Programming in high integrity systems
 High-integrity languages (e.g., SPARK)
 Use of high reliability profiles such as Ravenscar
 Use of language subsets (e.g., MISRA C, MISRA C++)
 Software safety standards (e.g., DO-178B and DO-178C)
 Typed/Proof-Carrying Intermediate Languages
 Contract-based programming (e.g., Ada 2012)
 Model-based development for critical systems
 Specification languages (e.g., Z)
 Annotation languages (e.g., JML)

 Teaching high integrity development
 Case studies of high integrity systems
 Real-time networking/quality of service guarantees
 Analysis, testing, and validation
 Static and dynamic analysis of code
 System Architecture and Design including

Service-Oriented Architecture and Agile Development
 Information Assurance
 Security and the Common Criteria /

Common Evaluation Methodology
 Architecture design languages (e.g., AADL)
 Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s mare than 100,000 members, and the wider software community.

86 Forthcoming Events

Volume 34, Number 2, June 2013 Ada User Journal

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
(with bibliographic references), results to date, and future directions.

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Except for Tutorial proposals use www.easychair.org/conferences/?conf=hilt2013

Submission Deadline Use Easy Chair Link Above
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 29, 2013

For more info contact:
Tucker Taft, Program Chair
taft@adacore.com
 Industrial presentation proposals

August 1, 2013 (overview)
September 30, 2013 (abstract)

Send Tutorial proposals to June 29, 2013 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (greggicca@gmail.com) to learn the benefits of
becoming a sponsor and/or exhibitor at HILT 2013.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?
Please send email to SIGAda.HILT2013@acm.org or Conference Chair (Jeff Boleng, jlboleng@SEI.CMU.EDU), Program
Chair (Tucker Taft, taft@adacore.com), SIGAda’s Vice-Chair for Meetings and Conferences (Alok Srivastava,
alok.srivastava@tasc.com), or SIGAda’s Chair (Ricky E. Sward, rsward@mitre.org).

Forthcoming events 87

Ada User Journal Volume 34, Number 2, June 2013

 First Call for Papers

19th International Conference on
Reliable Software Technologies –

Ada‐Europe 2014
23‐27 June 2014, Paris, France

http://www.ada‐europe.org/conference2014

General Chair

Jean‐Pierre Rosen
Adalog
rosen@adalog.fr

Program co‐Chairs

Laurent George
LIGM/UPEMLV ‐ ECE Paris
lgeorge@ieee.org

Tullio Vardanega
University of Padova
tullio.vardanega@unipd.it

Industrial Chair

Jørgen Bundgaard
Rambøll Denmark A/S
jogb@ramboll.dk

Tutorial co‐Chairs

Liliana Cucu
INRIA
Liliana.Cucu@inria.fr

Albert Llemosí
Universitat de les Illes Balears
albert.llemosi@uib.cat

Exhibition Chair

To be appointed

Publicity co‐Chairs

Jamie Ayre
AdaCore
ayre@adacore.com

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Magali Munos
ECE
munos@ece.fr

In cooperation requested with
ACM SIGAda, SIGBED, SIGPLAN

General Information

The 19th International Conference on Reliable Software Technologies – Ada‐Europe 2014 will take
place in Paris, France. As per its traditional style, the conference will span a full week, including,
from Tuesday to Thursday, three days of parallel scientific, technical and industrial programs,
along with tutorials and workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for providers,
practitioners and researchers in reliable software technologies. The conference presentations will
illustrate current work in the theory and practice of the design, development and maintenance of
long‐lived, high‐quality software systems for a challenging variety of application domains. The
program will allow ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia and
government organizations active in the promotion and development of reliable software
technologies.

Topics of interest to this edition of the conference include but are not limited to:

 Multicore and Manycore Programming: Predictable Programming Approaches for Multicore
and Manycore Systems, Parallel Programming Models, Scheduling Analysis Techniques.

 Real‐Time and Embedded Systems: Real‐Time Scheduling, Design Methods and Techniques,
Architecture Modelling, HW/SW Co‐Design, Reliability and Performance Analysis.

 Theory and Practice of High‐Integrity Systems: Challenges from Mixed‐Criticality Systems;
Medium to Large‐Scale Distribution, Fault Tolerance, Security, Reliability, Trust and Safety,
Languages Vulnerabilities.

 Software Architectures: Design Patterns, Frameworks, Architecture‐Centred Development,
Component‐based Design and Development.

 Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Model‐driven Architecture and Engineering, Formal Methods, Re‐engineering
and Reverse Engineering, Reuse, Software Management Issues.

 Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation,
Profiling), Run‐time Systems and Libraries.

 Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

 Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Cloud Environments, Smart Energy systems, Serious Games, etc.

 Experience Reports in Reliable System Development: Case Studies and Comparative
Assessments, Management Approaches, Qualitative and Quantitative Metrics.

 Experiences with Ada and its Future: Reviews of the Ada 2012 new language features;
implementation and use issues; positioning in the market and in the software engineering
curriculum; lessons learned on Ada Education and Training Activities with bearing on any of
the conference topics.

8 December 2013 Submission of regular papers, tutorial and workshop proposals
19 January 2014 Submission of industrial presentation proposals
16 February 2014 Notification of acceptance to all authors
16 March 2014 Camera‐ready version of regular papers required
18 May 2014 Industrial presentations, tutorial and workshop material required

88 Forthcoming Events

Volume 34, Number 2, June 2013 Ada User Journal

Program Committee

Mario Aldea, Universidad de
Cantabria, Spain

Ted Baker, US National Science
Foundation, USA

Johann Blieberger, Technische
Universität Wien, Austria

Bernd Burgstaller, Yonsei
University, Korea

Maryline Chetto, University of
Nantes, France

Liliana Cucu, INRIA, France
Christian Fraboul, ENSEEIHT,

France
Laurent George, ECE Paris, France
Xavier Grave, CNRS, France
Emmanuel Grolleau, ENSMA,

France
Jérôme Hugues, ISAE, France
Albert Llemosí, Universitat de les

Illes Balears, Spain
Kristina Lundqvist, Mälardalen

University, Sweden
Franco Mazzanti, ISTI-CNR, Italy
John McCormick, University of

Northern Iowa, USA
Stephen Michell, Maurya Software,

Canada
Laurent Pautet, Telecom ParisTech,

France
Luís Miguel Pinho, CISTER/ISEP,

Portugal
Erhard Plödereder, Universität

Stuttgart, Germany
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Jorge Real, Universitat Politècnica

de València, Spain
José Ruiz, AdaCore, France
Sergio Sáez, Universitat Politècnica

de València, Spain
Amund Skavhaug, NTNU, Norway
Yves Sorel, INRIA, France
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, University of

Applied Sciences, Germany
Elena Troubitsyna, Åbo Akademi

University, Finland
Tullio Vardanega, University of

Padova, Italy
Juan Zamorano, Universidad

Politécnica de Madrid, Spain

Industrial Committee

Jacob Sparre Andersen, JSA
Consulting, Denmark

Roger Brandt, Telia, Sweden
Ian Broster, Rapita Systems, UK
Jørgen Bundgaard, Rambøll, DK
Dirk Craeynest, Ada-Belgium &

KU Leuven, Belgium
Peter Dencker, ETAS, Germany
Ismael Lafoz, Airbus, Spain
Maria del Carmen Lomba

Sorrondegui, GMV, Spain
Ahlan Marriott, White Elephant, CH
Robin Messer, Altran-Praxis, UK
Quentin Ochem, AdaCore, France
Steen Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK
Ana Rodriguez, Silver-Atena, Spain
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC, USA
Claus Stellwag, Elektrobit, Germany
Jean-Loup Terraillon, European

Space Agency, Netherlands
Rod White, MBDA, UK

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall exceed 14 LNCS‐style pages in length. Authors shall
submit their work via EasyChair following the relevant link on the conference web site. The
format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera‐ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 16, 2014. For format and style guidelines authors
should refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to
register for the conference by that date will prevent the paper from appearing in the proceedings.

The CORE ranking (dated 2008) has the conference in class A. The CiteSeerX Venue Impact Factor
had it in the top quarter. Microsoft Academic Search has it in the top third for conferences on
programming languages by number of citations in the last 10 years. The conference is listed in
DBLP, SCOPUS and Web of Science Conference Proceedings Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the
selection process for regular papers. Authors are invited to submit a presentation outline of
exactly 1 page in length by January 19, 2014. Submissions shall be made via EasyChair following
the relevant link on the conference web site. The Industrial Committee will review the
submissions and make the selection. The authors of selected presentations shall prepare a final
short abstract and submit it by May 18, 2014, aiming at a 20‐minute talk. The authors of accepted
presentations will be invited to submit corresponding articles for publication in the Ada User
Journal, which will host the proceedings of the Industrial Program of the Conference. For any
further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half‐ or full‐day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted
full‐day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half‐ or full‐day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the General Chair. The workshop organizer shall also
commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact a Conference Co‐Chair for information
and for allowing suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the General Chair for details.

90

Volume 34, Number 2, June 2013 Ada User Journal

Rationale for Ada 2012: 6a Containers
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract

This paper describes improvements to the predefined
container library in Ada 2012.

Keywords: rationale, Ada 2012.

1 Overview of changes

The WG9 guidance document [1] specifically says that
attention should be paid to

 improving the use and functionality of the predefined
containers.

The predefined containers were introduced in Ada 2005
and experience with their use revealed a number of areas
where they could be improved.

The following Ada Issues cover the relevant changes and
are described in detail in this paper.

 1 Bounded containers and other container issues

 69 Holder container

136 Multiway tree container

139 Syntactic sugar for access, containers & iterators

159 Queue containers

184 Compatibility of streaming of containers

212 Accessors and iterators for Ada.Containers

251 Problems with queue containers

These changes can be grouped as follows.

The existing containers are unbounded and generally
require dynamic storage management to be performed
behind the scenes. However, for high-integrity systems,
such dynamic management is often unacceptable.
Accordingly, bounded versions of all the existing
containers are added (1).

A number of facilities are added to make important
operations on containers more elegant. These are the
updating of individual elements of a container and iteration
over a container (139, 212).

Ada 2005 introduced containers for the manipulation of
lists and it was expected that this would provide a basis for
manipulating trees. However, this proved not to be the case,
so specific containers are added for the manipulation of
multiway trees (136). There are versions for unbounded
indefinite and unbounded definite trees and for bounded
definite trees.

A further new kind of container is for single indefinite
objects and is known as the holder container (69).

A range of containers are added for manipulating queues
with defined behaviour regarding multiple task access to
the queues (159, 251).

The Ada 2005 container library also introduced sorting
procedures for constrained and unconstrained arrays. An
additional more general sorting mechanism is added in Ada
2012 (1).

Finally, an oversight regarding the streaming of containers
is corrected (184).

2 Bounded and unbounded containers

It is perhaps worth starting this discussion by summarizing
the containers introduced in Ada 2005. First, there is a
parent package Ada.Containers which simply declares the
types Hash_Type and Count_Type.

Then there are six containers for definite objects, namely
(abbreviating the prefix Ada.Containers to just A.C)

A.C.Vectors
A.C.Doubly_Linked_Lists
A.C.Hashed_Maps
A.C.Ordered_Maps
A.C.Hashed_Sets
A.C.Ordered_Sets

The declarations of these six containers all start with

generic
 ...
 type Element_Type is private;
 ...
package Ada.Containers.XXX...

and we see that the type Element_Type has to be definite.
There are also containers for the manipulation of indefinite
types whose names are

A.C.Indefinite_Vectors
A.C.Indefinite_Doubly_Linked_Lists
A.C.Indefinite_Hashed_Maps
A.C.Indefinite_Ordered_Maps
A.C.Indefinite_Hashed_Sets
A.C.Indefinite_Ordered_Sets

and these are very similar to the definite containers except
that the formal type Element_Type is now declared as

 type Element_Type(<>) is private;

so that the actual type can be indefinite such as String.

J. G. P. Barnes 91

Ada User Journal Volume 34, Number 2, June 2013

Finally, there are two generic packages for sorting arrays
namely

A.C.Generic_Array_Sort
A.C.Generic_Constrained_Array_Sort

which apply to unconstrained and constrained arrays
respectively.

The first change in Ada 2012 is that the parent package
Ada.Containers now includes the declaration of the
exception Capacity_Error so that it becomes

package Ada.Containers is
 pragma Pure(Containers);

 type Hash_Type is mod implementation-defined;
 type Count_Type is range 0 .. implementation-defined;
 Capacity_Error: exception;

end Ada.Containers;

The names of the new containers with bounded storage
capacity are

A.C.Bounded_Vectors
A.C.Bounded_Doubly_Linked_Lists
A.C.Bounded_Hashed_Maps
A.C.Bounded_Ordered_Maps
A.C.Bounded_Hashed_Sets
A.C.Bounded_Ordered_Sets

The facilities of the bounded containers are almost identical
to those of the original unbounded ones so that converting a
program using one form to the other is relatively
straightforward. The key point of the bounded ones is that
storage management is guaranteed (implementation advice
really) not to use features such as pointers or dynamic
allocation and therefore can be used in high-integrity or
safety-critical applications.

The major differences between the packages naturally
concern their capacity. In the case of the bounded packages
the types such as Vector have discriminants thus

type Vector(Capacity: Count_Type) is tagged private;

whereas in the original packages the type Vector is simply

type Vector is tagged private;

The other types in the bounded packages are

type List(Capacity: Count_Type) is tagged private;

type Map(Capacity: Count_Type;
 Modulus: Hash_Type) is tagged private;

type Map(Capacity: Count_Type) is tagged private;

type Set(Capacity: Count_Type;
 Modulus: Hash_Type) is tagged private;

type Set(Capacity: Count_Type) is tagged private;

Note that the types for hashed maps and sets have an extra
discriminant to set the modulus; this will be explained in a
moment.

Remember that the types Count_Type and Hash_Type are
declared in the parent package Ada.Containers shown
above.

When a bounded container is declared, its capacity is set
once and for all by the discriminant and cannot be changed.
If we subsequently add more elements to the container than
it can hold then the exception Capacity_Error is raised.

If we are using a bounded container and want to make it
larger then we cannot. But what we can do is create another
bounded container with a larger capacity and copy the
values from the old container to the new one. Remember
that we can check the number of items in a container by
calling the function Length.

So we might have a sequence such as

My_List: List(100);
... -- use my list
if Length(My_List) > 90 then -- Gosh, nearly full
...
 declare
 My_Big_List: List := Copy(My_List, 200);
 begin
 ...

The specification of the function Copy is

function Copy(Source: List;
 Capacity: Count_Type := 0) return List;

If the parameter Capacity is not specified (or is given as
zero) then the capacity of the copied list is the same as the
length of Source.

If the given value of Capacity is larger than (or equal to) the
length of the Source (as in our example) then the returned
list has this capacity and the various elements are copied. If
we foolishly supply a value which is less than the length of
Source then Capacity_Error is naturally raised. Remember
that a discriminant can be set by an initial value.

Note that if we write

declare
 My_Copied_List: List := My_List;
begin

then My_Copied_List will have the same capacity as
My_List because discriminants are copied as well as the
contents.

In order to make it easier to move from the bounded form
to the unbounded form, a function Copy is added to the
unbounded containers as well although it does not need a
parameter Capacity in the case of lists and ordered maps
and sets. So in the case of the list container it is simply

function Copy(Source: List) return List; -- unbounded

Similar unification between bounded and unbounded forms
occurs with assignment. In Ada 2005, if we have two lists L
and M, then we can simply write

L := M;

92 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

and the whole structure is copied (including all its
management stuff). Note that this will almost certainly
require that the value of L be finalized which might be a
nuisance. Such an assignment with discriminated types
needs to check the discriminants as well (and raises
Constraint_Error if they are different). This is a nuisance
because although the capacities might not be the same, the
destination L might have plenty of room for the actual
elements in the source M.

This is all rather bothersome and so procedures Assign are
added to both unbounded and bounded containers which
simply copy the element values. Thus in both case we have

procedure Assign(Target: in out List; Source: in List);

In the bounded case, if the length of Source is greater than
the capacity of Target, then Capacity_Error is raised. In the
unbounded case, the structure is automatically extended.

It might be recalled that in Ada 2005, lists and ordered
maps and sets do not explicitly have a notion of capacity. It
is in their very nature that they automatically extend as
required. However, in the case of vectors and hashed maps
and sets (which have a notion of indexing) taking a purely
automatic approach could lead to lots of extensions and
copying so the notion of capacity was introduced. The
capacity can be set by calling

procedure Reserve_Capacity(Container: in out Vector;
 Capacity: in Count_Type);

and the current value of the capacity can be ascertained by
calling

function Capacity(Container: Vector) return Count_Type;

which naturally returns the current capacity. Note that
Length(V) cannot exceed Capacity(V) but might be much
less.

If we add items to a vector whose length and capacity are
the same then no harm is done. The capacity will be
expanded automatically by effectively calling
Reserve_Capacity internally. So the user does not need to
set the capacity although not doing so might result in
poorer performance.

The above refers to the existing unbounded forms and is
unchanged in Ada 2012. For uniformity the new bounded
forms for vectors and hashed maps and sets also declare a
procedure Reserve_Capacity. However, since the capacity
cannot be changed for the bounded forms it simply checks
that the value of the parameter Capacity does not exceed
the actual capacity of the container; if it does then
Capacity_Error is raised and otherwise it does nothing.
There is of course also a function Capacity for bounded
vectors and hashed maps and sets which simply returns the
fixed value of the capacity.

Many operations add elements to a container. For
unbounded containers, they are automatically extended as
necessary as just explained. For the bounded containers, if
an operation would cause the capacity to be exceeded then
Capacity_Error is raised.

There are a number of other differences between the
unbounded and bounded containers. The original
unbounded containers have pragma Preelaborate whereas
the new bounded containers have pragma Pure.

The bounded containers for hashed maps and hashed sets
are treated somewhat differently to those for the
corresponding unbounded containers regarding hashing.

In the case of unbounded containers, the hashing function
to be used is left to the user and is provided as an actual
generic parameter. For example, in the case of hashed sets,
the package specification begins

generic
 type Element_Type is private;
 with function Hash(Element: Element_Type)
 return Hash_Type;
 with function Equivalent_Elements(Left, Right:
 Element_Type) return Boolean;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Hashed_Sets is
 pragma Preelaborate(Hashed_Sets);

What the implementation actually does with the hash
function is entirely up to the implementation. The value
returned is in the range of Hash_Type which is a modular
type declared in the root package Ada.Containers. The
implementation will typically then map this value onto the
current range of the capacity in some way. If the
unbounded container becomes nearly full then the capacity
will be automatically extended and a new mapping will be
required; this in turn is likely to require the existing
contents to be rehashed. None of this is visible to the user.

In the case of the new bounded containers, these problems
do not arise since the capacity is fixed. Moreover, the
modulus to be used for the mapping is given when the
container is declared since the type has discriminants thus

type Set(Capacity: Count_Type;
 Modulus: Hash_Type) is tagged private;

The user can then choose the modulus explicitly or
alternatively can use the additional function
Default_Modulus whose specification is

function Default_Modulus(Capacity: Count_Type)
 return Hash_Type;

This returns an implementation defined value for the
number of distinct hash values to be used for the given
capacity. Thus we can write

My_Set: Set(Capacity => My_Cap;
 Modulus => Default_Modulus(My_Cap));

Moreover, for these bounded hashed maps and sets, the
function Copy has an extra parameter thus

function Copy(Source: Set;
 Capacity: Count_Type := 0;
 Modulus: Hash_Type := 0) return Set;

J. G. P. Barnes 93

Ada User Journal Volume 34, Number 2, June 2013

If the capacity is given as zero then the newly returned set
has the same capacity as the length of Source as mentioned
above. If the modulus is given as zero then the value to be
used is obtained by applying Default_Modulus to the new
capacity.

As mentioned in the paper on the Predefined Library, Ada
2012 introduces additional functions for hashing strings
(fixed, bounded and unbounded) to provide for case
insensitive, wide and wide wide situations.

Finally, note that there are no bounded containers for
indefinite types. This is because the size of an object of an
indefinite type (such as String) is generally not known and
so indefinite types need some dynamic storage
management. However, the whole point of introducing
bounded containers was to avoid such management.

3 Iterating and updating containers

This topic was largely covered in the paper on Iterators and
Pools which introduced the generic package
Ada.Iterator.Interfaces whose specification is

generic
 type Cursor;
 with function Has_Element(Position: Cursor)
 return Boolean;
package Ada.Iterator_Interfaces is
 pragma Pure(Iterator_Interfaces);

 type Forward_Iterator is limited interface;
 function First(Object: Forward_Iterator)
 return Cursor is abstract;
 function Next(Object: Forward_Iterator;
 Position: Cursor) return Cursor is abstract;

 type Reversible_Iterator is limited interface and
 Forward_Iterator;
 function Last(Object: Reversible_Iterator)
 return Cursor is abstract;
 function Previous(Object: Reversible_Iterator;
 Position: Cursor) return Cursor is abstract;

end Ada.Iterator_Interfaces;

This generic package is used by both existing and new
container packages. For illustration we consider the list
container Ada.Containers.Doubly_Linked_Lists. Here is its
specification giving all new and changed material in full
(marked -- 12) and identifying most existing entities by
comment only.

with Ada.Iterator_Interfaces; -- 12
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 pragma Preelaborate(Doubly_Linked_Lists);
 pragma Remote_Types(Doubly_Linked_Lists) -- 12

 type List is tagged private -- 12
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,

 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;
 pragma Preelaborable_Initialization(List);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_List: constant List;
 No_Element: constant Cursor;

 function Has_Element(Position: Cursor) -- moved 12
 return Boolean;
 package List_Iterator_Interfaces is -- 12
 new Ada.Iterator_Interfaces(Cursor, Has_Element);

 ... -- functions "=", Length, Is_Empty, Clear, Element
 ... -- procedures Replace_, Query_, Update_Element

 type Constant_Reference_Type -- 12
 (Element: not null access constant Element_Type)
 is private
 with Implicit_Dereference => Element;

 type Reference_Type -- 12
 (Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference -- 12
 (Container: aliased in List;
 Position: in Cursor)
 return Constant_Reference_Type;
 function Reference -- 12
 (Container: aliased in out List;
 Position: in Cursor)
 return Reference_Type;

 procedure Assign(Target: in out List; -- 12
 Source: in List);

 function Copy(Source: List) return List; -- 12

 ... -- Move, Insert, Prepend, Append,
 ... -- Delete, Delete_First, Delete_Last,
 ... -- Reverse_Elements, Swap, Swap_Links, Splice,
 ... -- First, First_Element, Last, Last_Element,
 ... -- Next, Previous, Find, Reverse_Find,
 ... -- Contains, Iterate, Reverse_Iterate

 function Iterate(Container: in List) return -- 12
 List_Iterator_Interfaces.Reversible_Iterator'Class;

 function Iterate(Container: in List; -- 12
 Start: in Cursor) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;

 ... -- generic package Generic_Sorting

private
 ... -- not specified by the language
end Ada.Containers.Doubly_Linked_Lists;

Note that the function Has_Element has been moved. In
Ada 2005 it was declared towards the end between
Contains and Iterate. It has been moved so that it can be
used as an actual parameter in the declaration of
List_Iterator_Interfaces using the instantiation of
Ada.Iterator_Interfaces.

94 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

It will be recalled from the paper on Iterators and Pools that
in Ada 2012 we can simply write

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

or even

for E of The_List loop
 ... -- do something to Element E
end loop;

rather than the laborious and error prone

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...
C := F.First;
loop
 exit when not The_List.Has_Element(C);
 E := The_List.Element(C);
 ... -- do something to E
 C := F.Next(C);
end loop;

Note that in the case of

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

we are not permitted to assign to C since that would upset
the mechanism of the loop. There is an analogy with the
traditional loop statement. If we write

for K in A'Range loop
 A(K) := 0;
end loop;

then the language prevents us from making a direct
assignment to the loop parameter K.

If we write

for E of The_List loop
 ... -- do something to Element E
end loop;

then we can change the element E unless The_List has been
declared as constant.

It will be recalled that subprograms Replace_Element,
Query_Element and Update_Element are defined for all
containers in Ada 2005. Query_Element and
Update_Element permit in situ operations. Thus in order to
find the value of some component Q of an element of
The_List identified by cursor C we can write either

X := Element(C).Q;

or we can first declare a slave procedure

procedure Get_Q(E: in Element_Type) is
begin
 X := E.Q;
end Get_Q;

and then call Query_Element thus

Query_Element(C, Get_Q'Access);

The advantage of the former is that it is easy but it could be
slow because it copies the whole element which could be
enormous. The advantage of the latter is that it does not
copy the element; its disadvantage is that it is somewhat
incomprehensible.

In Ada 2012, we can do much better. The type List now has
new functions Reference and Constant_Reference, so we
can write for example

X := The_List.Constant_Reference(C).Q;

This works because the function Constant_Reference
returns a value of Constant_Reference_Type and this
moreover has aspect Implicit_Dereference whose value is
Element.

However, we can simplify this even more because the type
List has aspects Constant_Indexing and Variable_Indexing
which refer to the functions Constant_Reference and
Reference. The result is that we can simply write

X := The_List(C).Q; -- gosh that's better

which is a lot better than calling Query_Element.

Similarly, if we just want to update the component Q of
some element given by a cursor C, then in Ada 2005 we
either have to create a whole new element with the new
value for Q and then use Replace_Element thus

Temp: E_Type := Element(C);
...
Temp.Q := X;

Replace_Element(The_List, C, Temp);

or declare a slave procedure and use Update_Element thus

procedure Put_Q(E: in out Element_Type) is
begin
 E.Q := X;
end Put_Q;

Update_Element(The_List, C, Put_Q'Access);

Again the first is slow, the second is gruesome (well, they
are both gruesome really).

In Ada 2012 we simply write

The_List(C).Q := X; -- gosh again

which implicitly uses the aspect Variable_Indexing to call
the function Reference which gives access to the element.

It will be remembered that there are dire warnings in Ada
2005 about tampering with elements and cursors. Thus we
must not use Update_Element (that is via Put_Q in the
example above) to do other things such as add new
elements.

Although tampering is still possible in Ada 2012; the new
features discourage it. Thus if we write

The_List(C).Q := X;

J. G. P. Barnes 95

Ada User Journal Volume 34, Number 2, June 2013

rather than calling Update_Element then no tampering can
occur (unless X is some gruesome function).

Similarly if we write

for C in My_Container loop
 ...
 Delete(My_Container, Position => C); --illegal
 ...
end loop;

then we are prevented from madness since the parameter
Position of Delete is of mode in out and this is not matched
by the loop parameter C which is a constant. However, if
we write the loop out using First and Next as illustrated
earlier then we could get into trouble.

4 Multiway tree containers

Three new containers are added for multiway trees; two
correspond to the existing unbounded definite and
unbounded indefinite forms for existing structures such as
Lists and Maps in Ada 2005. There is also a bounded form
corresponding to the newly introduced bounded containers
for the existing structures discussed above. As expected
their names are

A.C.Multiway_Trees
A.C.Indefinite_Multiway_Trees
A.C.Bounded_Multiway_Trees

These containers have all the operations required to operate
on a tree structure where each node can have multiple child
nodes to any depth. Thus there are operations on subtrees,
the ability to find siblings, to insert and remove children
and so on. It will be noted that many of the operations on
trees are similar to corresponding operations on lists.

We will look in detail at the unbounded definite form by
giving its specification interspersed with some explanation.
It starts with the usual generic parameters.

with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Multiway_Trees is
 pragma Preelaborate(Multiway_Trees);
 pragma Remote_Types(Multiway_Trees);

 type Tree is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;
 pragma Preelaborable_Initialization(Tree);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_Tree: constant Tree;
 No_Element: constant Cursor;

 function Has_Element(Position: Cursor)
 return Boolean;

 package Tree_Iterator_Interfaces is new
 Ada.Iterator_Interfaces(Cursor, Has_Element);

This is much as expected and follows the same pattern as
the start of the list container in the previous section.

 function Equal_Subtree(Left_Position: Cursor;
 Right_Position: Cursor) return Boolean;
 function "=" (Left, Right: Tree) return Boolean;

 function Is_Empty(Container: Tree) return Boolean;

 function Node_Count(Container: Tree)
 return Count_Type;
 function Subtree_Node_Count(Position: Cursor)
 return Count_Type;

 function Depth(Position: Cursor) return Count_Type;

 function Is_Root(Position: Cursor) return Boolean;
 function Is_Leaf(Position: Cursor) return Boolean;
 function Root(Container: Tree) return Cursor;
 procedure Clear(Container: in out Tree);

A tree consists of a set of nodes linked together in a
hierarchical manner. Nodes are identified as usual by the
value of a cursor. Nodes can have one or more child nodes;
the children are ordered so that there is a first child and a
last child. Nodes with the same parent are siblings. One
node is the root of the tree. If a node has no children then it
is a leaf node.

All nodes other than the root node have an associated
element whose type is Element_Type. The whole purpose
of the tree is of course to give access to these element
values in a structured manner.

The function "=" compares two trees and returns true if and
only if they have the same structure of nodes and
corresponding nodes have the same values as determined
by the generic parameter "=" for comparing elements.
Similarly, the function Equal_Subtree compares two
subtrees.

The function Node_Count gives the number of nodes in a
tree. All trees have at least one node, the root node. The
function Is_Empty returns true only if the tree consists of
just this root node. Note that A_Tree = Empty_Tree,
Node_Count(A_Tree) = 1 and Is_Empty(A_Tree) always
have the same value. The function Subtree_Node_Count
returns the number of nodes in the subtree identified by the
cursor. If the cursor value is No_Element then the result is
zero.

The functions Is_Root and Is_Leaf indicate whether a node
is the root or a leaf respectively. If a tree is empty and so
consists of just a root node then that node is both the root
and a leaf so both functions return true.

The function Depth returns 1 if the node is the root, and
otherwise indicates the number of ancestor nodes. Thus a
node which is an immediate child of the root has depth
equal to 2. The function Root returns the cursor designating
the root of a tree. The procedure Clear removes all elements
from the tree so that it consists just of a root node.

96 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

 function Element(Position: Cursor)
 return Element_Type;

 procedure Replace_Element(Container: in out Tree;
 Position: in Cursor;
 New_Item: in Element_Type);

 procedure Query_Element(Position: in Cursor;
 Process : not null access procedure
 (Element: in Element_Type));

 procedure Update_Element(Container: in out Tree;
 Position: in Cursor;
 Process: not null access procedure
 (Element: in out Element_Type));

These subprograms have the expected behaviour similar to
other containers.

 type Constant Reference_Type
 (Element: not null access constant Element_Type)
 is private
 with Implicit_Dereference => Element;

 type Reference_Type
 (Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference
 (Container: aliased in Tree;
 Position: in Cursor)
 return Constant_Reference_Type;

 function Reference(Container: aliased in out Tree;
 Position: in Cursor)
 return Reference_Type;

These types and functions are similar to those for the other
containers and were explained in the paper on Iterators and
Pools and also in the previous section.

 procedure Assign(Target: in out Tree;
 Source: in Tree);

 function Copy(Source: Tree) return Tree;

 procedure Move(Target: in out Tree;
 Source: in out Tree);

The subprograms Assign and Copy behave as expected and
were explained in the section on Bounded and Unbounded
containers. The procedure Move moves all the nodes from
the source to the target after first clearing the target; it does
not make copies of the elements so after the operation the
source only has a root node.

 procedure Delete_Leaf(Container: in out Tree;
 Position: in out Cursor);

 procedure Delete_Subtree(Container: in out Tree;
 Position: in out Cursor);

 procedure Swap(Container: in out Tree;
 I, J: in Cursor);

The procedures Delete_Leaf and Delete_Subtree check that
the cursor value designates a node of the container and
raise Program_Error if it does not. Program_Error is also

raised if Position designates the root node and so cannot be
removed. In the case of Delete_Leaf, if the node has any
children then Constraint_Error is raised. The appropriate
nodes are then deleted and Position is set to No_Element.

The procedure Swap interchanges the values in the two
elements denoted by the two cursors. The elements must be
in the given container (and must not denote the root)
otherwise Program_Error is raised.

 function Find(Container: Tree; Item: Element_Type)
 return Cursor;

 function Find_In_Subtree(Item: Element_Type;
 Position: Cursor)
 return Cursor;

 function Ancestor_Find(Item: Element_Type;
 Position: Cursor)
 return Cursor;

 function Contains(Container: Tree;
 Item: Element_Type) return Boolean;

These search for an element in the container with the given
value Item. The function Contains returns false if the item
is not found; the other functions return No_Element if the
item is not found. The function Find searches the whole tree
starting at the root node, Find_In_Subtree searches the
subtree rooted at the node given by Position including the
node itself; these searches are in depth-first order. The
function Ancestor_Find searches upwards through the
ancestors of the node given by Position including the node
itself.

Depth-first order is explained at the end of the section.

 procedure Iterate(Container: in Tree;
 Process: not null access procedure
 (Position: in Cursor));

 procedure Iterate_Subtree(Position: in Cursor;
 Process: not null access procedure
 (Position: in Cursor));

These apply the procedure designated by the parameter
Process to each element of the whole tree or the subtree.
This includes the node at the subtree but not at the root;
iteration is in depth-first order.

 function Iterate(Container: in Tree) return
 Tree_Iterator_Interfaces.Forward_Iterator'Class;

 function Iterate_Subtree(Position: in Cursor) return
 Tree_Iterator_Interfaces.Forward_Iterator'Class;

The first of these is called if we write

for C in The_Tree.Iterate loop
 ... -- do something via cursor C
end loop;

and iterates over the whole tree in the usual depth-first
order. In order to iterate over a subtree we write

for C in The_Tree.Iterate(S) loop
 ... -- do something via cursor C
end loop;

J. G. P. Barnes 97

Ada User Journal Volume 34, Number 2, June 2013

and this iterates over the subtree rooted at the cursor
position given by S.

If we use the other new form of loop using of thus

for E of The_Tree loop
 ... -- do something to element E
end loop;

then this also calls Iterate since the aspect Default_Iterator
of the type Tree (see above) is Iterate. However, we cannot
iterate over a subtree using this mechanism.

 function Child_Count(Parent: Cursor)
 return Count_Type;

 function Child_Depth(Parent, Child: Cursor)
 return Count_Type;

The function Child_Count returns the number of child
nodes of the node denoted by Parent. This count covers
immediate children only and not grandchildren.

The function Child_Depth indicates how many ancestors
there are from Child to Parent. If Child is an immediate
child of Parent then the result is 1; if it is a grandchild then
2 and so on.

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 New_Item: in Element_Type;
 Position: out Cursor;
 Count: in Count_Type := 1);

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Position: out Cursor;
 Count: in Count_Type := 1);

These three procedures enable one or more new child nodes
to be inserted. The parent node is given by Parent. If Parent
already has children then the new nodes are inserted before
the child node identified by Before; if Before is
No_Element then the new nodes are inserted after all
existing children. The second procedure is similar to the
first but also returns a cursor to the first of the added nodes.
The third is like the second but the new elements take their
default values. Note the default value of one for the number
of new nodes.

 procedure Prepend_Child(Container: in out Tree;
 Parent: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

 procedure Append_Child(Container: in out Tree;
 Parent: in Cursor;

 New_Item: in Element_Type;
 Count: in Count_Type:= 1);

These insert the new children before or after any existing
children.

 procedure Delete_Children(Container: in out Tree;
 Parent: in Cursor);

This procedure simply deletes all the children,
grandchildren, and so on of the node designated by Parent.

 procedure Copy_Subtree(Target: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Source: in Cursor);

This copies the complete subtree rooted at Source into the
tree denoted by Tree as a subtree of Parent at the place
denoted by Before using the same rules as Insert_Child.
Note that this makes a complete copy and creates new
nodes with values equal to the corresponding existing
nodes. Note also that Source might be within Tree but
might not. There are the usual various checks.

 procedure Splice_Subtree(Target: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Source: in out Tree;
 Position: in out Cursor);

 procedure Splice_Subtree(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Position: in Cursor);

 procedure Splice_Children(Target: in out Tree;
 Target_Parent: in Cursor;
 Before: in Cursor;
 Source: in out Tree;
 Source_Parent: in Cursor);

 procedure Splice_Children(Container: in out Tree;
 Target_Parent: in Cursor;
 Before: in Cursor;
 Source_Parent: in Cursor);

These are similar to the procedures Splice applying to lists.
They enable nodes to be moved without copying. The
destination is indicated by Parent or Target_Parent together
with Before as usual indicating where the moved nodes are
to be placed with respect to existing children of Parent or
Target_Parent.

The first Splice_Subtree moves the subtree rooted at
Position in the tree Source to be a child of Parent in the tree
Target. Note that Position is updated to be the appropriate
element of Target. We can use this procedure to move a
subtree within a tree but an attempt to create circularities
raises Program_Error.

The second Slice_Subtree is similar but only moves a
subtree within a container. Again, circularities cannot be
created.

98 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

The procedures Splice_Children are similar but move all the
children and their descendants of Source_Parent to be
children of Target_Parent.

 function Parent(Position: Cursor) return Cursor;
 function First_Child(Parent: Cursor) return Cursor;
 function First_Child_Element(Parent: Cursor)
 return Element_Type;
 function Last_Child(Parent: Cursor) return Cursor;
 function Last_Child_Element(Parent: Cursor)
 return Element_Type;
 function Next_Sibling(Position: Cursor) return Cursor;
 function Previous_Sibling(Position: Cursor)
 return Cursor;
 procedure Next_Sibling(Position: in out Cursor);
 procedure Previous_Sibling(Position: in out Cursor);

Hopefully, the purpose of these is self-evident.

 procedure Iterate_Children(Parent: in Cursor;
 Process: not null access procedure
 (Position: in Cursor));

 procedure Reverse_Iterate_Children
 (Parent : in Cursor;
 Process: not null access procedure
 (Position: in Cursor));

These apply the procedure designated by the parameter
Process to each child of the node given by Parent. The
procedure Iterate_Children starts with the first child and
ends with the last child whereas Reverse_Iterate_Children
starts with the last child and ends with the first child. Note
that these do not iterate over grandchildren.

 function Iterate_Children(Container: in Tree;
 Parent: in Cursor) return
 Tree_Iterator_Interfaces.Reversible_Iterator'Class;

This is called if we write

for C in Parent.Iterate_Children loop
 ... -- do something via cursor C
end loop;

and iterates over all the children from Parent.First_Child to
Parent.Last_Child. Note that we could also insert reverse
thus

for C in reverse Parent.Iterate_Children loop
 ... -- do something via cursor C
end loop;

in which case the iteration goes in reverse from
Parent.Last_Child to Parent.First_Child. The observant
reader will note that this function returns
Reversible_Iterator'Class and so can go in either direction
whereas the functions Iterate and Iterate_Subtree described
earlier use Forward_Iterator'Class and cannot be reversed.

private
 ... -- not specified by the language
end Ada.Containers.Multiway_Trees;

The above descriptions have not described all the situations
in which something can go wrong and so raise

Constraint_Error or Program_Error. Generally, the former is
raised if a source or target is No_Element; the latter is
raised if a cursor does not belong to the appropriate tree. In
particular, as mentioned above, an attempt to create an
illegal tree such as one with circularities using
Splice_Subtree raises Program_Error. Remember also that
every tree has a root node but the root node has no element
value; attempts to remove the root node or read its value or
assign a value similarly raise Program_Error.

The containers for indefinite and bounded trees are much as
expected.

In the case of the indefinite tree container the generic
formal type is

type Element_Type(<>) is private;

The other significant difference is that the procedure
Insert_Child without the parameter New_Item is omitted;
this is because indefinite types do not have a default value.

In the case of the bounded tree container the changes are
similar to those for the other containers. One change is that
the package has pragma Pure; the other changes concern
the capacity. The type Tree is

type Tree(Capacity: Count_Type) is tagged private;

and the function Copy is

function Copy(Source: Tree;
 Capacity: Count_Type := 0) return Tree;

And of course the exception Capacity_Error is raised in
various circumstances.

Applications of trees are usually fairly complex. The tree
structure for depicting the analysis of a program for a
whole language such as even Ada 83 has an enormous
variety of nodes corresponding to the various syntactic
structures. And trees depicting human relationships are
complex because of multiple marriages, divorces,
illegitimacy and so on. So we content ourselves with a
couple of small examples.

A tree representing a simple algebraic expression involving
just the binary operations of addition, subtraction,
multiplication and division applied to simple variables and
real literals is straightforward. Nodes are of three kinds,
those representing operations have two children giving the
two operands, and those representing variables and literals
have no children and so are leaf nodes.

We can declare the element type thus

type Operator is ('+', '–', '×', '/');
type Kind is (Op, Var, Lit);

type El(K: Kind) is
 record
 case K is
 when Op =>
 Fn: Operator;
 when Var =>
 V: Character;
 when Lit =>

J. G. P. Barnes 99

Ada User Journal Volume 34, Number 2, June 2013

 Val: Float;
 end case;
 end record;

Note that the variables are (as typically in mathematics)
represented by single letters. So the expression

 (x + 3) × (y – 4)

is represented by nodes with elements such as

(Op, '×')
(Var, 'x')
(Lit, 3.0)

So now we can declare a suitable tree thus

package Expression_Trees is
 new Ada.Containers.Multiway_Trees(El);

use Expression_Trees;

My_Tree: Tree := Empty_Tree;

C: Cursor;

and then build it by the following statements

C := Root(My_Tree);

Insert_Child(Container => My_Tree,
 Parent => C,
 Before => No_Element,
 New_Item => (Op, '×'),
 Position => C);

This puts in the first real node as a child of the root which
is designated by the cursor C. There are no existing
children so Before is No_Element. The New_Item is as
mentioned earlier. Finally, the cursor C is changed to
designate the position of the newly inserted node.

We can then insert the two children of this node which
represent the mathematical operations + and –.

Insert_Child(My_Tree, C, No_Element, (Op, '+'));
Insert_Child(My_Tree, C, No_Element, (Op, '–'));

These calls are to a different overloading of Insert_Child
and have not changed the cursor. The second call also has
Before equal to No_Element and so the second child goes
after the first child. We now change the cursor to that of the
first newly inserted child and then insert its children which
represent x and 3. Thus

C := First_Child(C);
Insert_Child(My_Tree, C, No_Element, (Var, 'x'));
Insert_Child(My_Tree, C, No_Element, (Lit, 3.0));

And then we can complete the tree by inserting the final
two nodes thus

C := Next_Sibling(C);
Insert_Child(My_Tree, C, No_Element, (Var, 'y'));
Insert_Child(My_Tree, C, No_Element, (Lit, 4.0));

Of course a compiler will do all this recursively and keep
track of the cursor rather more neatly than we have in this
manual illustration.

The resulting tree should be as in Figure 1.

Figure 1 The expression tree

We can assume that the variables are held in an array which
might be as follows

subtype Variable_Name is Character range 'a' .. 'z';

Variables: array (Variable_Name) of Float;

We can then evaluate the tree by a recursive function such
as

function Eval(C: Cursor) return Float is
 E: El := Element(C);
 L, R: Float
begin
 case E.K is
 when Op =>
 L := Eval(First_Child(C));
 R := Eval(Last_Child(C));
 case E.Fn is
 when '+' => return (L+R);
 when '–' => return (L–R);
 when '×' => return (L*R);
 when '/' => return (L/R);
 end case;
 when Var =>
 return Variables(E.V);
 when Lit =>
 return E.Val;
 end case;
end Eval;

Finally, we obtain the value of the tree by

X := Eval(First_Child(Root(My_Tree)));

Remember that the node at the root has no element so
hence the call of First_Child.

An alternative approach would be to use tagged types with
a different type for each kind of node rather than the variant
record. This would be much more flexible and would have
required the use of the unbounded indefinite container
Ada.Containers.Indefinite_Multiway_Trees.

As a more human example we can consider the family tree
of the Tudor Kings and Queens of England. We start with
Henry VII, who had four children, Arthur, Margaret, Henry
VIII and Mary. See Figure 2.

100 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

Figure 2 The Tudor tree

Arthur died young, Margaret married James IV of Scotland
and had James (who was thus James V of Scotland), Henry
VIII had three children, namely Edward VI, Mary I and
Elizabeth I. And Mary had Frances. Henry VII was
succeeded by Henry VIII and he was succeeded by his
three children.

Remember the rules of primogeniture. The heir is the eldest
son if there are sons; if not then the heir is the eldest
daughter. If there are no offspring at all then we go back a
generation and try again. Hence Edward VI became king
despite being younger than Mary.

Since Edward, Mary and Elizabeth had no children we go
back to the descendants of the other children of Henry VII.
Margaret, her son James, and his daughter Mary Queen of
Scots were all dead by then, so the throne of England went
to the son of Mary who became James I of England and VI
of Scotland and thus united the two thrones. So the Tudor
line died with Elizabeth (Good Queen Bess).

Incidentally, Frances, the daughter of Mary, the fourth
child of Henry VII, had a daughter, Lady Jane Grey; she
was Queen for 9 days but lost her head over a row with
Mary I.

Representing this is tricky, especially with people such as
Henry VIII having so many wives. But the essence could
be represented by a tree with a simple element type thus

type Person is
 record
 Name: String(1 .. 10);
 Sex: Gender;
 Birth: Date;
 Death: Date;
 end record;

With such a structure and the dates, starting from Henry
VII and using the rules of primogeniture, one should be
able to trace the monarchs (apart from poor Lady Jane Grey
who would I am sure much rather not have been involved).

The overall tree structure is shown in Figure 2.

With the obvious connections we can define useful
functions such as

function Are_Cousins(A, B: Cursor) return Boolean is
 (Parent(A) /= Parent (B) and then
 Parent(Parent(A)) = Parent(Parent(B)));

More of a challenge is to define a function Is_Successor
using the rules described above. The reader can
contemplate these and other family relationships and
attempt to construct the Tudor tree.

Finally, an explanation of depth-first order. The general
principle is that child nodes are visited in order before their
parent. We can symbolically write this as

procedure Do_Node(N) is
begin
 for CN in N.First_Child .. N.Last_Child loop
 Do_Node(CN);
 end loop;
 if not N.Is_Root then
 Do_Element(N);
 end if;
end Do_Node;

and the whole thing is triggered by calling Do_Node(Root).
Remember that the root node has no element. The result is
that the first element to be processed is that of the leftmost
leaf.

Thus in the tree illustrated below in Figure 3, the elements
are visited in order A, B, C, D, and so on. Note that the root
has no element and so is not visited.

Figure 3 A tree showing depth-order first

J. G. P. Barnes 101

Ada User Journal Volume 34, Number 2, June 2013

5 The holder container

As mentioned in the Introduction, it is not possible to
declare an object of an indefinite type that can hold any
value of that type since the object becomes constrained by
the mandatory initial value. Thus we can write

Pet: String := "dog";

We can assign "cat" to Pet but we cannot assign "rabbit"
because it is too long.

This is overcome in Ada 2012 by the introduction of the
holder container which can hold a single indefinite object.
Its specification is

generic
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Indefinite_Holders is
 pragma Preelaborate(Indefinite_Holders);
 pragma Remote_Types(Indefinite_Holders);

 type Holder is tagged private;
 pragma Preelaborable_Initialization(Holder);

 Empty_Holder: constant Holder;

 function "=" (Left, Right: Holder) return Boolean;

 function To_Holder(New_Item: Element_Type)
 return Holder;

 function Is_Empty(Container: Holder) return Boolean;

 procedure Clear(Container: in out Holder);

 function Element(Container: Holder)
 return Element_Type;

 procedure Replace_Element(Container: in out Holder;
 New_Item: in Element_Type);

 procedure Query_Element(Container: in Holder;
 Process: not null access procedure
 (Element: in Element_Type));

 procedure Update_Element(Container: in out Holder;
 Process: not null access procedure
 (Element: in out Element_Type));

 type Constant_Reference_Type
 (Element: not null access constant Element_Type)
 is private
 with Implicit_Dereference => Element;

 type Reference_Type
 (Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference
 (Container: aliased in Holder)
 return Constant_Reference_Type;

 function Reference(Container: aliased in out Holder)
 return Reference_Type;

 procedure Assign(Target: in out Holder;
 Source: in Holder);

 function Copy(Source: Holder) return Holder;

 procedure Move(Target: in out Holder;
 Source: in out Holder);

private
 ... -- not specified by the language
end Ada.Containers.Indefinite_Holders;

Hopefully, the purpose of the facilities provided by this
container are obvious given an understanding of the use of
the existing containers. It would be possible to use a list
container with just a single element to act as a holder but it
seems better to have an explicit container with probably
less overhead and risk of confusion.

A trivial example of its use might be to provide a holder for
pets. We write

package Strings is
 new Ada.Containers.Indefinite_Holders(String);

Kennel: Strings.Holder := To_Holder("cat");

This declares an object Kennel which is a wrapper for a
string and initializes it with the string "cat". We can replace
the cat with a rabbit by writing

Kennel := To_Holder("rabbit");

However, using To_Holder in this way could be a bit slow
since this will create a new object which has to be
destroyed after the assignment. It is better to write

Replace_Element(Kennel, "rabbit");

If we want to print out the contents of the kennel we just
write

Put(Element(Kennel));

Operations such as Update_Element are provided partly for
uniformity but also because the object might be large so
that it is better to update it in situ. Alternatively, we can use
the functions such as Reference as explained earlier.

6 Queue containers

When the goals of the revision to Ada 2005 were discussed,
one of the expectations was that it would be possible to
improve the containers, or maybe introduce variants, that
would be task safe. However, further investigation revealed
that this would not be practicable because the number of
ways in which several tasks could interact with a container
such as a list or map was large.

However, one data structure that is amenable to controlled
access by several tasks is the queue. One or more tasks can
place objects on a queue and one or more can remove them.
Moreover, the existing container library did not include
queues as such so we were not tied to any existing
structures.

There are in fact four different queue containers in Ada
2012. These are all for elements of a definite type. Two are
bounded and two are unbounded. And there are priority and
synchronized queues. The names are

102 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

A.C.Unbounded_Synchronized_Queues
A.C.Bounded_Synchronized_Queues
A.C.Unbounded_Priority_Queues
A.C.Bounded_Priority_Queues

At one stage it was also planned to have unbounded
containers for elements of an indefinite type. This would
then have been similar to the other containers which have
unbounded definite, unbounded indefinite and bounded
definite forms. However, there were significant problems
with the Dequeue operation to remove an indefinite object
related to the fact that Ada does not have entry functions.
This is easily overcome by making the elements of the
queue a holder container as described in the previous
section.

These four different queue containers are all derived from a
single synchronized interface declared in a generic package
whose specification is as follows

generic
 type Element_Type is private; -- definite
package A.C.Synchronized_Queue_Interfaces is
 pragma Pure(Synchronized_Queue_Interfaces);

 type Queue is synchronized interface;

 procedure Enqueue(Container: in out Queue;
 New_Item: in Element_Type)
 is abstract
 with Synchronization => By_Entry;

 procedure Dequeue(Container: in out Queue;
 Element: out Element_Type)
 is abstract
 with Synchronization => By_Entry;

 function Current_Use(Container: Queue)
 return Count_Type is abstract;
 function Peak_Use(Container: Queue)
 return Count_Type is abstract;
end A.C.Synchronized_Queue_Interfaces;

This generic package declares the synchronized interface
Queue and four operations on queues. These are the
procedures Enqueue and Dequeue to add items to a queue
and remove items from a queue respectively; note the
aspect Synchronization which ensures that all
implementations of these abstract procedures must be by an
entry. There are also functions Current_Use and Peak_Use
which can be used to monitor the number of items on a
queue.

The four queue containers are generic packages which
themselves declare a type Queue derived in turn from the
interface Queue declared in the package above. We will
look first at the synchronized queues and then at the
priority queues.

The package for unbounded synchronized queues is as
follows

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic

 with package Queue_Interfaces is new
 A.C.Synchronized_Queue_Interfaces(<>);
 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Unbounded_Synchronized_Queues is
 pragma Preelaborate
 (Unbounded_Synchronized_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority :=
 Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with
 overriding
 entry Enqueue(New_Item:
 in Queue_Interfaces.Element_Type);
 overriding
 entry Dequeue(Element:
 out Queue_Interfaces.Element_Type);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ... -- not specified by the language
 end Queue;

private
 ... -- not specified by the language
end A.C.Unbounded_Synchronized_Queues;

Note that there are two generic parameters. The first
(Queue_Interfaces) has to be an instantiation of the
interface generic Synchronized_Queue_Interfaces;
remember that the parameter (<>) means that any
instantiation will do. The second parameter concerns
priority and has a default value so we can ignore it for the
moment.

Inside this package there is a protected type Queue which
controls access to the queues via its entries Enqueue and
Dequeue. This protected type is derived from
Queue_Interfaces.Queue and so promises to implement the
operations Enqueue, Dequeue, Current_Use and Peak_Use
of that interface. And indeed it does implement them and
moreover implements Enqueue and Dequeue by entries as
required by the aspect Synchronization.

As an example suppose we wish to create a queue of some
records such as

type Rec is record ... end record;

First of all we instantiate the interface package (using
named notation for clarity) thus

package Rec_Interface is
 new A.C.Synchronized_Queue_Interfaces
 (Element_Type => Rec);

J. G. P. Barnes 103

Ada User Journal Volume 34, Number 2, June 2013

This creates an interface from which we can create various
queuing mechanisms for dealing with objects of the type
Rec.

Thus we might write

package Unbounded_Rec_Package is
 new A.C.Unbounded_Synchronized_Queues
 (Queue_Interfaces => Rec_Interface);

Finally, we can declare a protected object, My_Rec_UQ
which is the actual queue, thus

My_Rec_UQ: Unbounded_Rec_Package.Queue;

To place an object on the queue we can write

Enqueue(My_Rec_UQ, Some_Rec);

or perhaps more neatly

My_Rec_UQ.Enqueue(Some_Rec);

And to remove an item from the queue we can write

My_Rec_UQ.Dequeue(The_Rec);

where The_Rec is some object of type Rec which thereby
is given the value removed.

The statement

N := Current_Use(My_Rec_UQ);

assigns to N the number of items on the queue when
Current_Use was called (it could be out of date by the time
it gets into N) and similarly Peak_Use(My_Rec_UQ) gives
the maximum number of items that have been on the queue
since it was declared.

This is all task safe because of the protected type; several
tasks can place items on the queue and several, perhaps the
same, can remove items from the queue without
interference.

It should also be noticed that since the queue is unbounded,
we never get blocked by Enqueue since extra storage is
allocated as required just as for the other unbounded
containers (I suppose we might get Storage_Error).

The observant reader will note the mysterious local
package called Implementation. This enables the
implementation to declare local types to be used by the
protected type. It will be recalled that there is an old rule
that one cannot declare a type within a type. These local
types really ought to be within the private part of the
protected type; maybe this is something for Ada 2020.

The package for bounded synchronized queues is very
similar. The only differences (apart from its name) are that
it has an additional generic parameter Default_Capacity and
the protected type Queue has an additional discriminant
Capacity. So its specification is

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new
 A.C.Synchronized_Queue_Interfaces(<>);

 Default_Capacity: Count_Type;
 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Bounded_Synchronized_Queues is
 pragma Preelaborate
 (Bounded_Synchronized_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Capacity: Count_Type :=
 Default_Capacity,
 Ceiling: Any_Priority :=
 Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 ... -- etc as for the unbounded one

end A.C.Bounded_Synchronized_Queues;

So using the same example, we can use the same interface
package Rec_Interface. Now suppose we wish to declare a
bounded queue with capacity 1000, we can write

package Bounded_Rec_Package is
 new A.C.Bounded_Synchronized_Queues
 (Queue_Interfaces => Rec_Interface
 Default_Capacity => 1000);

Finally, we can declare a protected object, My_Rec_BQ
which is the actual queue, thus

My_Rec_BQ: Bounded_Rec_Package.Queue;

And then we can use the queue as before. To place an
object on the queue we can write

My_Rec_BQ.Enqueue(Some_Rec);

And to remove an item from the queue we can write

My_Rec_BQ.Dequeue(The_Rec);

The major difference is that if the queue becomes full then
calling Enqueue will block the calling task until some other
task calls Dequeue. Thus, unlike the other containers,
Capacity_Error is never raised.

Note that having given a value for Default_Capacity, it can
be overridden when the queue is declared, perhaps

My_Rec_Giant_BQ:
 Bounded_Rec_Package.Queue(Capacity => 100000);

These packages also provide control over the ceiling
priority of the protected type. By default it is Priority'Last.
This default can be overridden by our own default when the
queue package is instantiated and can be further specified
as a discriminant when the actual queue object is declared.
So we might write

My_Rec_Ceiling_BQ:
 Bounded_Rec_Package.Queue(Ceiling => 10);

In the case of the bounded queue, if we do not give an
explicit capacity then the ceiling has to be given using
named notation. This does not apply to the unbounded

104 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

queue which only has one discriminant, so to give that a
ceiling priority we can just write

My_Rec_Ceiling_UQ:
 Unbounded_Rec_Package.Queue(10);

But clearly the use of the named notation is advisable.

Being able to give default discriminants is very convenient.
In Ada 2005, this was not possible if the type was tagged.
However, in Ada 2012, it is permitted in the case of limited
tagged types and a protected type is considered to be
limited. This was explained in detail in the paper on
Structure and Visibility.

If we wanted to make a queue of indefinite objects, then as
mentioned above, there is no special container for this
because Dequeue would be difficult to use since it is a
procedure and not a function. So the actual parameter
would have to be constrained which means knowing before
the call the value of the discriminant, tag, or bound of the
object which is unlikely. However, we can use the holder
container to wrap the indefinite type so that it looks
definite.

So to create a queue for strings, using the example of the
previous section, we can write

package Strings is
 new Ada.Containers.Indefinite_Holders(String);

package Strings_Interface is
 new A.C.Synchronized_Queue_Interfaces
 (Element_Type => Strings.Holder);

package Unbounded_Strings_Package is
 new A.C.Unbounded_Synchronized_Queues
 (Queue_Interfaces => Strings_Interface);

and then finally declare the actual queue

My_Strings_UQ: Unbounded_Strings_Package.Queue;

To put some strings on this queue, we write

My_Strings_UQ.Enqueue(To_Holder("rabbit"));

My_Strings_UQ.Enqueue(To_Holder("horse"));

or even

My_Strings_UQ.Enqueue(Element(Kennel));

We now turn to considering the two other forms of queue
which are the unbounded and bounded priority queues.

Here is the specification of the unbounded priority queue

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new
 A.C.Synchronized_Queue_Interfaces(<>);

 type Queue_Priority is private;
 with function Get_Priority
 (Element : Queue_Interfaces.Element_Type)
 return Queue_Priority is <>;

 with function Before(Left, Right : Queue_Priority)
 return Boolean is <>;

 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Unbounded_Priority_Queues is
 pragma Preelaborate(Unbounded_Priority_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority :=
 Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 overriding
 entry Enqueue(New_Item:
 in Queue_Interfaces.Element_Type);
 overriding
 entry Dequeue(Element:
 out Queue_Interfaces.Element_Type);

 not overriding
 procedure Dequeue_Only_High_Priority
 (At_Least: in Queue_Priority;
 Element: in out Queue_Interfaces.Element_Type;
 Success: out Boolean);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ... -- not specified by the language
 end Queue;

private
 ... -- not specified by the language
end A.C.Unbounded_Priority_Queues;

The differences from the synchronized bounded queue are
that there are several additional generic parameters, namely
the private type Queue_Priority and the two functions
Get_Priority and Before which operate on objects of the
type Queue_Priority, and also that the protected type Queue
has an additional operation, the protected procedure
Dequeue_Only_High_Priority.

The general idea is that elements have an associated
priority which can be ascertained by calling the function
Get_Priority. The meaning of this priority is given by the
function Before.

When we call Enqueue, the new item is placed in the queue
taking due account of its priority with respect to other
elements already on the queue. So it will go before all less
important elements as defined by Before. If existing
elements already have the same priority then it goes after
them.

As expected Dequeue just returns the first item on the
queue and will block if the queue is empty.

J. G. P. Barnes 105

Ada User Journal Volume 34, Number 2, June 2013

The new procedure Dequeue_Only_High_Priority (note that
it is marked as not overriding unlike the other operations)
is designed to enable us to process items only if they are
important enough as defined by the parameter At_Least.
The priority of the first element E on the queue is P as
given by Get_Priority(E). And so if Before(At_Least, P) is
false, then the item on the queue is indeed important
enough and so is removed from the queue and the Boolean
parameter Success is set to true. On the other hand if
Before(At_Least, P) is true then the item is not removed and
Success is set to false. Note especially that
Dequeue_Only_High_Priority never blocks. If the queue is
empty, then Success is just set to false; it never waits for
an item to be put on the queue.

As an (unrealistic) example, suppose we decide to make the
queue of strings into a priority queue and that the priority is
given by their length so that "rabbit" takes precedence over
"horse". Remember that the type of the elements is
Strings.Holder. We can define the priority as given by the
attribute Length so we might as well make the actual type
corresponding to Queue_Priority as simply Natural. Then
we define

function S_Get_Priority(H: Strings.Holder)
 return Natural is
 (H.Element'Length);

function S_Before(L, R: Natural) return Boolean is
 (L > R);

Note the convenient use of expression functions for this
sort of thing.

The instantiation now becomes

package Unbounded_Priority_Strings_Package is
 new A.C.Unbounded_Priority_Queues
 (Queue_Interfaces => Strings_Interface,
 Queue_Priority => Natural,
 Get_Priority => S_Get_Priority,
 Before => S_Before);

and we then declare a queue thus

My_Strings_UPQ:
 Unbounded_Priority_Strings_Package.Queue;

To put some strings on this queue, we write

My_Strings_UPQ.Enqueue(To_Holder("rabbit"));

My_Strings_UPQ.Enqueue(To_Holder("horse"));

My_Strings_UPQ.Enqueue(To_Holder("donkey"));

My_Strings_UPQ.Enqueue(To_Holder("gorilla"));

The result is that "gorilla" will have jumped to the head of
the queue despite having been put on last. It will be
followed by "rabbit" and "donkey" and the "horse" is last.

If we do

My_Strings_UPQ.Dequeue_Only_High_Priority
 (7, Kennel, OK);

then the "gorilla" will be taken from the queue and placed in
the Kennel and OK will be true. But if we then do it again,
nothing will happen because the resulting head of the queue
(the "rabbit") is not long enough.

Finally, we need to consider bounded priority queues. They
are exactly like the unbounded priority queues except that
they have the same additional features regarding capacity
as found in the synchronized queues. Thus the only
differences (apart from the name) are that there is an
additional generic parameter Default_Capacity and the
protected type Queue has an additional discriminant
Capacity.

As a final example we will do a bounded priority queue of
records. Suppose the records concern requests for servicing
a dishwasher. They might included usual information such
as the model number, name and address of owner and so
on. They might also have a component indicating degree of
urgency, such as

Urgent – machine has vomited dirty water all over floor;
housewife/husband having a tantrum,

Major – machine won't do anything; husband refuses to
help with washing up,

Minor – machine leaves some dishes unclean, mother-in-
law is coming next week,

Routine – machine needs annual service.

So we might have

type Degree is (Urgent, Major, Minor, Routine);

type Dish_Job is
 record
 Urgency: Degree;
 Name: ...
 ...
 end record;

First we declare the interface for this type

package Dish_Interface is
 new A.C.Synchronized_Queue_Interfaces
 (Element_Type => Dish_Job);

and then we declare the two slave functions for the priority
mechanism thus

function W_Get_Priority(X: Dish_Job) return Degree is
 (X.Urgency);

function W_Before(L, R: Degree) return Boolean is
 (Degree'Pos(L) < Degree'Pos(R));

The instantiation is then

package Washer_Package is
 new A.C.Bounded_Priority_Queues
 (Queue_Interfaces => Dish_Interface,
 Queue_Priority => Degree,
 Get_Priority => W_Get_Priority,
 Before => W_Before,
 Default_Capacity => 100);

106 Rat ionale for Ada 2012: 6a Containers

Volume 34, Number 2, June 2013 Ada User Journal

and we declare the queue of waiting calls thus

Dish_Queue: Washer_Package.Queue;

which gives a queue with the default capacity of 100.

The staff taking requests then place the calls on the queue
by

Dish_Queue.Enqueue(New_Job);

To cope with the possibility that the queue is full, they can
do a timed entry call; remember that this is possible
because the procedure Enqueue in the interface package
has Synchronization => By_Entry.

And then general operatives checking in and taking the
next job do

Dish_Queue.Dequeue(Next_Job);

However, at weekends we can suppose that just one
operative is on call and deals with only Urgent and Major
calls. He might check the queue from time to time by
calling

Dish_Queue.Dequeue_Only_High_Priority
 (Major, My_Job, Got_Job);

and if Got_Job is false, he can relax and go back to digging
the garden or playing golf.

7 Sorting

Ada 2005 provides two containers for sorting arrays; one is
for unconstrained array types and one is for constrained
array types. The specification of the unconstrained one is

generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is
 array (Index_Type range <>) of Element_Type;
 with function "<" (Left, Right: Element_Type)
 return Boolean is <>;
procedure Ada.Containers.Generic_Array_Sort
 (Container: in out Array_Type);
pragma Pure(Ada.Containers.Generic_Array_Sort);

This does the obvious thing. It sorts the array Container so
that the components are in the order defined by the generic
parameter "<".

We could for example sort the letters in a string into
alphabetical order. We would declare

procedure String_Sort is
 new Ada.Containers.Generic_Array_Sort
 (Positive, Character, String);

and then if we had a string such as

Bigpet: String := "rabbit";

we could apply String_Sort to it thus

String_Sort(Bigpet);

and the value in Bigpet will now be "abbirt".

That is all in Ada 2005. However, sorting doesn't just apply
to arrays and Ada 2012 provides a much more flexible
approach. An additional container is provided whose
specification is

generic
 type Index_Type is (<>);
 with function Before(Left, Right: Index_Type)
 return Boolean;
 with procedure Swap(Left, Right: in Index_Type);
procedure Ada.Containers.Generic_Sort
 (First, Last: Index_Type'Base);
pragma Pure(Ada.Containers.Generic_Sort);

This can be used to sort any indexable structure and not just
arrays. The generic parameters define the required ordering
through the parameter Before much as expected. The
cunning trick however, is that the means of interchanging
two items in the structure is provided by the parameter
Swap.

As an illustration we can use this on the array Bigpet. We
can use an expression function for BP_Before and so we
write

function BP_Before(L, R: Positive) return Boolean is
 (Bigpet(L) < Bigpet(R));

procedure BP_Swap(L, R: in Positive) is
 Temp: Character;
begin
 Temp := Bigpet(L);
 Bigpet(L) := Bigpet(R);
 Bigpet(R) := Temp;
end BP_Swap;

procedure BP_Sort is
 new Ada.Containers.Generic_Sort
 (Positive, BP_Before, BP_Swap);

and then we actually do the sort by

BP_Sort(Bigpet'First, Bigpet'Last);

That may seem to be rather a struggle but the key point is
that the technique can be used to sort items in any
indexable structure such as a vector container.

Suppose we have a number of records of a type Score
which might be

type Score is
 record
 N: Natural := 0;
 OS: Other_Stuff;
 end record;

and we declare a vector container to hold such objects thus

package Scores is
 new Ada.Containers.Vectors(Natural, Score);

My_Vector: Scores.Vector;

Now assume that we have added various objects of the type
Score to our vector and that we decide that we would like
them sorted into order determined by their component N.

J. G. P. Barnes 107

Ada User Journal Volume 34, Number 2, June 2013

We write

function MV_Before(L, R: Natural) return Boolean is
 (Scores.Element(My_Vector, L).N <
 Scores.Element(My_Vector, R).N);

procedure MV_Swap(L, R: in Natural) is
begin
 Scores.Swap(My_Vector, L, R);
end MV_Swap;

procedure MV_Sort is
 new Ada.Containers.Generic_Sort
 (Natural, MV_Before, MV_Swap);

and then we do the sort by

MV_Sort(Scores.First_Index(My_Vector),
 Scores.Last_Index(My_Vector));

Note that the vectors container package conveniently
already has a procedure Swap.

This vector example is not very exciting because it might
be recalled that the vectors containers already have their
own internal generic sort. To use it on this example we
would have to write

package MV_Sorting is
 new Scores.Generic_Sorting(MV_Before);

MV_Sorting.Sort(My_Vector);

which is somewhat simpler. However, note that this sorts
the whole vector. If we only wanted to sort part of it, say

from elements in index range P to Q then it cannot be used.
But that would be easy with the new one since we would
simply write

MV_Sort(P, Q);

Note that curiously this does not need to mention
My_Vector.

8 Streaming

Ada 2005 was somewhat unclear regarding streaming
values from and to containers. This is clarified in Ada
2012. Thus if V is a vector container then V'Write writes
Length(V) elements to the stream concerned.

An important point is that in order to simplify the
interchange between containers, we are assured that we can
stream between them using 'Write and 'Read. Thus we can
stream between a bounded and an unbounded container as
well as between two bounded or two unbounded containers
provided of course that the elements all have the same
subtype.

References

[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions
to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

© 2013 John Barnes Informatics.

108

Volume 34, Number 2, June 2013 Ada User Journal

Overview of the 15th International Real-Time Ada Workshop

14-16 September 2011
Liébana (Cantabria), Spain

Contents *

Workshop Session Summaries
- J. Real, J.F. Ruiz, “Session Summary: Multiprocessor Issues, part 1”

- A. Wellings, L.M. Pinho, “Session Summary: Multiprocessor Issues, part 2
resource control protocols)”

- A. Burns, T. Vardanega, “Session Summary: Language Profile and Application
Frameworks"

- J.A. de la Puente, S. Michell, “Session Summary: Concurrency Issues”

Program Committee

Mario Aldea Rivas (Program Chair), Neil Audsley, John Barnes, Ben Brosgol, Alan Burns, Michael
González Harbour (Local Chair), José Javier Gutiérrez, Stephen Michell, Brad Moore, Luís Miguel Pinho,
Juan Antonio de la Puente, Jorge Real, Jose F. Ruiz, Joyce Tokar, Tullio Vardanega, Andy Wellings and
Rod White.

Workshop Participants

Mario Aldea Rivas, University of Cantabria, Spain
António Barros, Polytechnic Institute of Porto, Portugal
Alan Burns, University of York, UK
Michael González Harbour, University of Cantabria, Spain
Javier Gutierrez, University of Cantabria, Spain
Stephen Michell, Maurya Software, Canada
Marco Panunzio, University of Padua, Italy
Hector Pérez Tijero, University of Cantabria, Spain
Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal
Juan Antonio de la Puente, Technical University of Madrid, Spain
Jorge Real, Universitat Politècnica de València, Spain
José Ruiz, AdaCore, France
Sergio Saez, Universitat Politècnica de València, Spain
Lin Shiyao, University of York, UK
Joyce Tokar, Pyrrhus Software, USA
Tullio Vardanega, University of Padua, Italy
Andy Wellings, University of York, UK
Rod White, MBDA, UK
Juan Zamorano, Technical University of Madrid, Spain

Sponsors

* The Proceedings of the 15th International Real-Time Ada Workshop are published in
ACM Ada Letters, Volume XXXII, Number 1, April 2013.

 109

Ada User Journal Volume 34, Number 2, June 2013

Session Summary: Multiprocessor Issues, part 1*
Chair: Jorge Real

Rapporteur: José F. Ruiz

1 Introduction*

The topic of multiprocessors was addressed by quite a
number of position papers this year, so the whole first day
of the IRTAW 15 workshop, while we were all fresh, was
allocated to discussing multiprocessor issues. There was a
discussion about dispatching domains and multiprocessor
architectures during the morning, focusing on resource
control protocols in the afternoon.

This summary addresses the morning session, whose
goals were to review and evaluate the Ada 2012 support
for multiprocessors, and think about possible additions to
future (post 2012) language revisions. Specific issues
discussed in this session were:

 The current definition of dispatching domains

 Per dispatching domain scheduling policies

 Dynamic dispatching domains

 Support for very large number of cores

 Non-SMP architectures

 Deferred attributes

The following sections will provide the details of the
discussions around these subjects.

2 Dispatching domains in Ada 2012

Ada 2012 support for task affinities is provided by
dispatching domains (Ada 2012 RM D.16.1), and there
are already reference implementations [6] indicating that
the current definition is appropriate and implementable on
top of operating systems and kernels.

These early implementations showed an editorial error in
the current definition of package System.-
Multiprocessors.Dispatching_Domains, which is intended
to be Preelaborate, but it cannot be so because it depends
on package Ada.Real_Time which is not Preelaborate.
Alan Burns volunteered to submit this minor correction to
ARG.

The definition of the System_Dispatching_Domain was
found slightly misleading, because it is defined as
constant (although it is implicitly modified by the creation
of other dispatching domains), and it is not always a
contiguous range as the other dispatching domains.

* The Proceedings of the 15th International Real-Time Ada Workshop are
published in ACM Ada Letters, Volume XXXII, Number 1, April 2013.

Hence, for the System_Dispatching_Domain,
Get_First_CPU and Get_Last_CPU do not make much
sense, and Assign_Task cannot be used. However, these
minor annoyances could probably be addressed better in
the Rationale than by changes in the Reference Manual.

3 Dispatching domain's scheduling
policy

The position paper submitted by Alan Burns and Andy
Wellings [2] to last IRTAW 14 advocated for a more
flexible definition of dispatching domains, where one
could assign specific scheduling policies to each
dispatching domains.

The discussion around this feature showed that this
behavior can be achieved by carefully using the existing
support for dispatching domains; if the priority range is
partitioned into non-overlapping priority bands, each of
these bands to be used only by tasks allocated to the same
dispatching domain, we can set specific dispatching
policies for the different ranges of priorities (and hence
for each dispatching domain).

Therefore, there was not a strong motivation for trying to
push forward this feature.

4 Dynamic dispatching domains

Ada 2012 defines dispatching domains as static entities.
Therefore, mode changes involving migration of CPUs
from one dispatching domain to another cannot be
implemented. Reconfiguring dispatching domains when
the underlying hardware changes (CPUs being added or
removed to/from an Ada partition) is not supported either.

It would be interesting to support dynamic dispatching
domains to address these situations. Note that the current
Ada 2012 model assumes that the set of processors
available to an Ada partition remains constant for its
whole lifetime, so addressing changes to the hardware is
outside the intention in the language. Still, the existing
static support is not flexible enough for some kinds of
mode changes which would be desirable.

The position papers discussed in the workshop did not
address this functionality, so after discussing for a while
its implications it was decided to encourage the
submission of concrete proposals for the next workshop,
motivating the need and detailing its design.

5 Very large number of cores

Luís Miguel Pinho started this discussion by stating that
Ada is not fit for a large number of cores and we should
start thinking about how to address this limitation. Tasks

110 Session Summary: Mul t iprocessor Issues, part 1

Volume 34, Number 2, June 2013 Ada User Journal

and protected objects are too heavyweight, in terms of
time to create and destroy, context switch,
synchronization protocol, etc.

When there are many CPUs available, what would be
desirable is to have the notion of "parallel" activity, which
could be functions (without side effects), blocks, loops, or
others.

This notion of user-level _fine-grained parallelism is
already present in many programming languages and
libraries. In ParaSail [8], language semantics are parallel
by default, and subprograms, loops, statements and some
other elements can be executed in parallel. Intel's Cilk [1]
extends the C language with primitives to express
parallelism, and the Cilk run-time system maps the
expressed parallelism into a parallel execution
framework. Cilk provides keywords to indicate how
subprograms can be executed in parallel. Hence, there
exist today different languages, libraries and APIs to
express parallelism in a program. The field of automatic
parallelization by compilers or tools has not yet been
proved as very efficient, leaving user-level description of
parallelism as the only means to achieve highly parallel
applications effectively.

Therefore, the workshop identified this topic as a relevant
one. Ada has been prominent in treating concurrent units
(tasks) as first-class citizens in the language, and it would
be good to address better support for parallelism. The
submission of proposals about this subject is strongly
encouraged for the next workshop.

6 Non-SMP architectures

Ada 2012 support for multiprocessor architectures focuses
on Symmetric MultiProcessor (SMP) architectures, where
all processors are identical and access to main memory is
uniform (caching aside). In the Ada model a partition is a
single address space.

At the last IRTAW 14 workshop there was a position
paper by Andy Wellings et al. [9] addressing the
difficulties to handle this kind of hardware architectures.
The main issues explained there:

 Understanding the address map. The first requirement
is to be able to represent the platform. The goal is to
include the notion of locality and distance (in number
of hops) of a processor from a memory bank
servicing a particular address, so that tasks can
allocate the objects they use in a "close" location. It
would require to add the concepts of memory bank
and distance to Ada. Looking at standard ways to
describe memory topologies, it was suggested to look
at Portable Hardware Locality (hwloc) [4], which
provides a portable abstraction of the hierarchical
hardware topology. It would be useful to have an
interface to a library to get the hardware
representation.

 Using storage pools to partition the heap. The idea is
to allow users to allocate objects at addresses where
they can be accessed more efficiently, for example by

choosing a local memory bank. Storage pools appear
as the obviuos choice to do it, but the issue is that you
cannot set the address of a storage pool; Ada lets you
partition the heap into separate storage pools, but you
cannot specify their address location. The workshop
agreed it would be interesting to be able to specify
the address attribute of a storage pool. POSIX has
typed memory facilities [5] to control the allocation
of memory pools.

Hence, it was considered appealing to add support to
represent memory topologies, and to be able to use this
information to allocate objects in an informed manner.

We considered as well whether it would be good to have
the means to indicate that an object is only used by tasks
executing on the same processor. This information could
be used to indicate that all those tasks share the same
cache, and hence enforcement of cache coherence would
not be needed. However, we realized that this is not an
issue because the hardware would enforce cache
coherence only when needed, and if two tasks are in the
same CPU, data can remain in cache without being
written to memory (it would be written to memory if
another core tries to read/write this memory area).

7 Deferred attributes

During this session, Sergio Sáez stated the existing
limitations of the current model of setting attributes
(priority, deadline and affinity). Possible ways to address
this issue where discussed in the session about
"Concurrency Issues" [3].

Priority, deadline and affinity can be changed
dynamically (Set_{Priority,Deadline,CPU}) and all of these
are dispatching points. Ada 2012 allows you to change
deadline and affinity after a delay
(Delay_Until_And_Set_{Deadline,CPU}), but it is not
possible to set more than one of these attributes
atomically. When these task attributes are not changed
atomically, some scheduling artifacts could arise giving
rise to incorrect schedules [7]. We agreed that we want to
be able to atomically change task's attributes to avoid
unintended effects.

Possible solutions using timing events or protected
objects to perform these changes atomically were
discussed. However, they could not meet the requirements
when changing another task's attributes.

The addition of subprograms for setting attributes at the
next dispatching point (such as Set_Next_{Priority,
Deadline,CPU}) was proposed and discussed in more
detail during the "Concurrency Issues" session.

8 Conclusion

There was a very interesting and constructive discussion
during all the morning session (continued during the
afternoon and the rest of the workshop) about the
challenges raised by the new multiprocessor architectures.

J. Real , J . F. Ruiz 111

Ada User Journal Volume 34, Number 2, June 2013

The first important outcome to point out is that the current
support for multiprocessors in Ada 2012 (dispatching
domains) is considered very appropriate. In addition to
that, it matches rather smoothly the support typically
offered by multiprocessor operating systems.

Two mechanisms were explored to make dispatching
domains more flexible. One was the possibility of setting
dispatching domain's scheduling policies, which was
deemed not very important since it can be achieved with
the current support. The second was to migrate CPUs
among dispatching domains, and was considered
interesting for implementing mode changes. This
workshop encouraged the submission of proposals
addressing these dynamic dispatching domains.

Another subject considered very appealing for future
workshops was the support for user-level fine grained
parallelism. As more and more CPUs are made available,
the notion of task is perhaps not the right abstraction, with
respect to controlling parallelism with smaller granularity.

It was also agreed that Ada provides limited expressive
power for non-SMP architectures, and it would be good to
add more control over the physical address map.

Finally, better support for deferred attributes was
motivated during this morning session, but lunch time
deferred the discussion of the required interface until a
later session . . .

References
[1] Robert D. Blumofe, Christopher F. Joerg, Bradley C.

Kuszmaul, Charles E. Leiserson, Keith H. Randall,

and Yuli Zhou, (1995), Cilk: An efficient
multithreaded runtime system, Journal of Parallel and
Distributed Computing, pages 207-216.

[2] Alan Burns and Andy J. Wellings (2010), Supporting
execution on multiprocessor platforms, Ada Letters,
XXX(1):16-25.

[3] Juan A. de la Puente and Stephen Michell (2011),
Session summary: Concurrency issues, This issue.

[4] Portable hardware locality (hwloc). Available at
http://www.open-mpi.org/projects/hwloc.

[5] IEEE. Portable Operating System Interface (POSIX)
- Part 1: System Application Program Interface (API)
- Advanced Realtime Extensions [C Language],
2000. 1003.1j-2000.

[6] José F. Ruiz (2011), Going real-time with Ada 2012
and GNAT, Ada Letters.

[7] Sergio Sáez and Alfons Crespo (2011), Deferred
setting of scheduling attributes in ada 2012, Ada
Letters.

[8] Tucker Taft (2011), Multicore programming in
ParaSail, In A. Romanovsky and T. Vardanega,
editors, Ada-Europe 2011, 16th International
Conference on Reliable Software Technologies,
volume 6652 of Lecture Notes in Computer Science
(LNCS). Springer.

[9] Andy Wellings, Abdul H Malik, Neil Audsley, and
Alan Burns (2010), Ada and cc-NUMA architectures:
What can be achieved with Ada 2005?, Ada Letters,
XXX(1):125-134.

112

Volume 34, Number 2, June 2013 Ada User Journal

Session Summary: Multiprocessor Issues, part 2
(resource control protocols)*
Chair: Andy Wellings

Rapporteur: Luís Miguel Pinho

1 Introduction*

The second session on the topic of Multiprocessor Issues
took place after a post-lunch relaxing walk on Picos de
Europa, 800 meters above the workshop location and
more than 1800 meters above the sea level. Indeed a
stimulating activity to foster a productive session.

The goals of this session were:

A. To review and evaluate the efficacy of the Ada 2012
support in the area of multiprocessor resource control

- The first topic being to analyze if the Reference
Manual (RM) for Ada 2012 had been fully
updated concerning priority inheritance issues,
given that Ada 2012 allows tasks to be fully
partitioned, globally scheduled or scheduled in
disjoint domains;

- A second topic was the wording of priority
inheritance for the case of Earliest Deadline
Scheduling in multiprocessors, where a potential
issue had been put forward by [1].

- The third topic was to evaluate whether
Protected Objects should be used only for local
resource access or if new access protocols were
needed to allow it to be used globally without the
need for spin-locks, following a position paper
on the topic [1];

B. To look beyond Protected Objects and Rendezvous to
other paradigms amenable to be used in multiprocessor
platforms, for instance Software Transactional
Memory (STM) or wait-free queues

- The objective was to analyze to what extent the
Ada primitives are suitable to implement these
new paradigms and if secondary standards were
the appropriate mechanism to introduce these
paradigms into Ada;

- In particular, STM would be analyzed in more
detail as there was a position paper on the topic
[2].

*The Proceedings of the 15th International Real-Time Ada Workshop are
published in ACM Ada Letters, Volume XXXII, Number 1, April 2013.

C. To review previous workshops proposals of new
synchronization primitives to improve parallel
execution of Ada programs.

- Following a proposal from [3] the workshop
decided to revisit broadcast primitives for calling
PO subprograms in parallel [4, 5] and the use of
parallel barriers in Protected Objects [4, 6].

2 Ada 2012 support in the area of
multiprocessor resource control

2.1 Review of priority inheritance and task
partitioning
In order to provide a basis for discussion, the Session
Chair started by presenting an overview of the
specification of priority inheritance (Ada 2012 RM D.1):

- During activation, a task being activated inherits
the active priority that its activator (see 9.2) had
at the time the activation was initiated.

- During rendezvous, the task accepting the entry
call inherits the priority of the entry call (see
9.5.3 and D.4).

- During a protected action on a protected object,
a task inherits the ceiling priority of the
protected object (see 9.5 and D.3).

The chair then introduced into the discussion if the
meaning of priority inheritance would still hold in a fully
partitioned system (when the task inheriting the priority is
on a different processor to the task which is waiting) or in
a cluster-based system (when the task inheriting the
priority is in a different dispatching domain to the task
which is waiting). Would inheritance of priorities among
domains be meaningful, if tasks were interacting in two
different dispatching domains, using different priority
ranges?

A note was nevertheless made that the current Ada model,
albeit allowing multiple dispatching domains, imposes a
single scheduling policy in all domains. Therefore, after
several rounds of discussion, there was an agreement that
priority assignments in all processors should be globally
coherent. If that approach is followed, inheritance of a
priority from one processor to the other is always correct.

A. Wel l ings, L. M. Pinho 113

Ada User Journal Volume 34, Number 2, June 2013

2.2 EDF, priority inheritance and
Multiprocessors
In this short topic, [1] noted a potential misleading
wording of paragraph 26 in section D.2.6, that could
allow programs to behave incorrectly:

 For a task T to which policy EDF_Across_Priorities
applies, the base priority is not a source of priority
inheritance; the active priority when first activated or
while it is blocked is defined as the maximum of the
following:

[…]

- the highest priority P, if any, less than the base
priority of T such that one or more tasks are
executing within a protected object with ceiling
priority P and task T has an earlier deadline
than all such tasks; and furthermore T has an
earlier deadline than all other tasks on ready
queues with priorities in the given
EDF_Across_Priorities range that are strictly
less than P.

The workshop discussed the issue, and although there was
not an agreement that the sentence was incorrect, it was
agreed that Alan Burns would further analyze the issue
after the workshop to check if the wording would need to
be clarified.

2.3 Access protocols for Protected Objects in
multiprocessors
In the third topic of the session, the Chair started by
providing an overview of the Reference Manual wordings
concerning the access and control protocols for Protected
Objects, noting that both the RM and the Annotated
Reference Manual (ARM) do not fully define the access
protocol for a protected object on a multiprocessor
system.

For instance, Note 19, Section 9.5.1 states:

If two tasks both try to start a protected action
on a protected object, and at most one is calling
a protected function, then only one of the tasks
can proceed. Although the other task cannot
proceed, it is not considered blocked, and it
might be consuming processing resources while
it awaits its turn. There is no language-defined
ordering or queuing presumed for tasks
competing to start a protected action on a
multiprocessor such tasks might use busy-
waiting; for monoprocessor considerations, see
D.3, “Priority Ceiling Locking”.

Discussion: The intended implementation on a
multi-processor is in terms of “spin locks” – the
waiting task will spin.”

While in D.2.1, paragraph 3, it states:

It is implementation defined whether, on a
multiprocessor, a task that is waiting for access
to a protected object keeps its processor busy.

Thus it is implementation defined whether spinning
occurs non-preemptively or, if not, at what priority it is
performed. Furthermore, it is not defined whether there
are queues (FIFO or priority) associated with the spin-
lock. The workshop agreed that this could pose a potential
problem to analyze maximum blocking times.

Afterwards, Andy Wellings performed a review of the
most current used shared data protocols for
multiprocessor systems, analyzing if these could be
implemented in Ada. From the perform analysis, the
conclusion was the majority of these protocols could not
be used, as they were based in suspending contending
tasks in FIFO or Priority Queues, something that was
disallowed in Ada.

At this point Michael Gonzalez noted that there was
nothing in Ada preventing an implementation based on
suspending on the lock. Andy noted that the RM states
that access control in multiprocessors should be done with
spin-locks. After a brief discussion, the general view was
that although the RM promoted the spin-lock model, it
allowed implementations to provide alternative
implementations.

Alan Burns then proposed that if there was a recognized
good solution for access control protocols based in
suspension in the lock, the RM wording could be changed
in the next revision process.

The session then went to analyze if it would be useful to
allow the programmer the ability to change the underlying
locking code (thus controlling the implementation). That
would allow trying different protocols or to use the best
fit for a particular applications.

Both Alan Burns and Tullio Vardanega noted that the
current model in Ada is the result of many years of
research which provided a sound access model for the
monoprocessor case. The current work for the
multiprocessor case was still far from that and there was
no clear winner at the moment. The workshop came back
to the issue of the suitability of the concurrency model of
Ada for multiprocessors, but the general feeling was that
there was yet no general agreement on what the model
would be and what protocols to support.

A note was also made by José Ruiz that usually the access
model of the Protected Objects uses mechanisms which
are provided by the underlying Operating System. It
would not be possible to give the programmer direct
access to those. However, Andy noted that the idea being
proposed was different, in that the approach would be to
provide applications with an interface to specify
application protocols that the runtime could used instead
of the one provided by the underlying operating system.

Then Andy presented a proposal [1] of an API that
allowed to control and extend the queue locks, and
implement the access control protocols:

package System.Multiprocessors.Queue_Locks is
 type Queue_Order is
 (FIFO_Ordered, Priority_Ordered);

114 Session Summary: Mul t iprocessor Issues, part 2

Volume 34, Number 2, June 2013 Ada User Journal

 type Spinning_Priority is (Active_Priority_Of_Task,
 Non_Preemptively);
 type Spin_Lock(
 Length : Positive := 1;
 Order : Queue_Order := FIFO_Ordered;
 At_Pri : Spinning_Priority := Non_Preemptively)
 is private;
 function Acquire(L : Spin_Lock) return Boolean
 procedure Release(L : Spin_Lock);

 type Suspension_Lock(
 Length : Positive := 1;
 Order : Queue_Order := FIFO_Ordered)
 is private;

 function Acquire(L : Suspension_Lock)
 return Boolean;
 function Remove_Head(L : Suspension_Lock)
 return Task_Id;
 procedure Add(L : Suspension_Lock; T : Task_Id);
 function Highest_Queued_Priority
 (L : Suspension_Lock) return Any_Priority;
 procedure Release(L : Suspension_Lock);

private
 ...
end System.Multiprocessors.Queue_Locks;

package
System.Multiprocessors.Protected_Object_Access is
 type Lock_Type is (Read, Write);
 type Lock_Visibility is (Local, Global);
 type Protected_Controlled is
 new Limited_Controlled with private;
 overriding procedure Initialize
 (C : in out Protected_Controlled);
 overriding procedure Finalize
 (C : in out Protected_Controlled);
 procedure Lock
 (C : in out Protected_Controlled; L : Lock_Type;
 V : Lock_Visibility; Ceiling : Priority;
 Tid : Task_Id);
 procedure Unlock (C : in out Protected_Controlled;
 Tid : Task_Id);
private
 ...
end
System.Multiprocessors.Protected_Object_Access;

Simultaneously an Aspect in the Protected Objects would
allow the programmer to specify that access protocol was
user defined:

protected type X (PC : access Protected_Controlled)
 with Locking_Policy => (User_Protected,
 Lock_Visibility => Global,
 Locking_Algorithm => PC) is
 procedure A;
end X;

Several issues were still open, such as if the proposed
functionality would be sufficient to build the current and

future protocols or if spin-locks would still be predefined,
but the advantage of this model was allowing to use better
algorithms (and test new ones) and still be allowed to use
Protected Objects as the data sharing mechanism.
Furthermore, compilers can reject or ignore unsupported
aspects/pragmas.

To summarize, two approaches could be made available
to allow programmers to specify access protocols:

 One would be to use low-level abstractions (such as
locks), being Protected Objects not used for
multiprocessors;

 The second being Protected Objects augmented with
user defined access protocols.

The general agreement of the workshop was that the latter
would be the better approach. The workshop view is that
this is a worthwhile idea that should be further exploited
and presented in the next IRTAW.

3 Looking beyond Protected Objects

3.1 Software Transactional Memory
In the second part of the session, Miguel Pinho started by
presenting an overview of Transactional Memory (TM),
providing a quick overview of how in this approach
atomic sections are executed concurrently and
speculatively, in isolation. In particular, Miguel briefly
explained how transactions worked with multiple versions
of the data objects, allowing increasing the parallelization
of execution.

Transactional Memory provides a higher-abstraction to
programmers, which can focus on the algorithms, writing
the sequential code and identifying the atomic sections.
The underlying TM mechanism then controls the
concurrent interaction of the transactions.

Studies show that TM is an alternative to locks for larger
number of cores, particularly under low contention, when
there is a predominance of read-only or short running
transactions and there is a low ratio of pre-emptions
during its execution. Nevertheless, TM suffers from extra
overheads, such as the time needed to access data (it is not
accessed directly and updates may be aborted) and the
extra memory needed for having multiple versions of the
data.

A proposal was being made to support Software TM, as,
although less efficient that its hardware counterpart, it
was more flexible and more implementations and research
was being performed. The proposal was for a standard
API which would allow programs to be independent of
particular STM implementations and algorithms, and that
would also allow to test new contention protocols.

Miguel then presented an example of a potential
(conceptual) implementation from [2], currently only
addressing non-nested transactions:

-- we need a transaction identifier structure
My_Transaction : Transaction;
-- start an update transaction

A. Wel l ings, L. M. Pinho 115

Ada User Journal Volume 34, Number 2, June 2013

My_Transaction.Start(Update);
loop
 -- read a value from a transactional object
 x := trans_object_1.Get(My_Transaction);
 -- write a value to a transactional object
 trans_object_2.Set(My_Transaction, y);
 -- try to commit transaction
 exit when My_Transaction.Commit;
exception
 -- handle possible exceptions here...
end loop;

-- Transactional object
package Transactional_Objects is
 type Transactional_Object is tagged private;
 -- examples of transactional class methods
 procedure Set(T_Object: Transactional_Object;
 Transaction_ID : Transaction;
 Value : Object_Type);
 function Get(T_Object: Transactional_Object;
 Transaction_ID : Transaction)
 return Object_Type;
private
 type Transactional_Object is tagged
 record
 Current_Value : Object_Type;
 Accesses_Set : <list of pointers to transaction
 identifiers>
 -- some other relevant fields...
 end record;
end Transactional_Objects;

type Transaction_Type is (Read_Only, Update);
-- Transaction identifier
package Transactions is
 type Transaction is tagged private;
 procedure Start(T : Transaction;
 TRX_Type : Transaction_Type);
 procedure Abort(T : Transaction);
 procedure Terminate(T : Transaction);
 function Commit(T : Transaction)
 return Boolean;
private
 type Transaction is tagged
 record
 Data_Set : List_Ref_Transactional_Objects;
 end record;
end Transactions;

In the following discussion, the workshop made a note
that the initial read snapshots and the final commit
operations would need to be actually performed in
memory, so transactional data (only the original not the
multi-versions) would need to be volatile.

A doubt was also raised if the implementation of STM
would require changes to the language or if standard Ada
provides all mechanisms to allow such implementation. It
was concluded that the proposed API model is possible to
implement, but other models (e.g. declaring transactional
objects at the language level) could be interesting to

address. It would be also important to incorporate in the
proposal the capability for the user to implement its own
contention control algorithm.

As a general conclusion, the work was encouraged by the
workshop, and it was considered that a prototype
implementation would be important to evaluate the
proposal. Steve Michell then raised the issue that if a
solution was achieved it could be released as a Technical
Report or Technical Specification so that initial
implementation and evaluations could be performed.
Nevertheless, Joyce Tokar noted that it would not be
possible if syntactic changes to the language were
required – this can only be done through the RM.

4 Mechanisms for improved parallelism

4.1 Broadcast of operations to an array of POs
The first topic in the third part of the session concerned in
proposal that was made at IRTAW 13 [4] to support a
parallel broadcast of calls to an array of Protected
Objects:

protected type po_type is
 procedure call(val : integer);
end po_type;

po_array : array (1..10) of po_type;
po_array(7).call(37); −− single instance call
po_array.all.call(25); −− broadcast to all
 −− elements of po array
po_array(1..10).call(25); −− alternative broadcast to all
 −− elements of po array
po_array(2..5).call(13); −− broadcast to restricted
 −− range of elements

One issue that was debated was how the model could
allow broadcasts with different data for each actual
object. A proposal was also made to consider the use of
synchronized interfaces to provide more flexibility to the
broadcast.

Afterwards, the usefulness of this mechanism was largely
discussed, particularly because the parallel calls would
require some execution context (thus it related to the
discussion on the previous session on the Ada parallel
model). The initial proposal had been performed in the
context of direct compilation of Ada code to hardware
where these parallel calls could be directly mapped in the
FPGA.

The final conclusion was that this was not considered to
be currently needed.

4.2 Parallel barriers in functions on POs
The final topic of the session was to revisit the use of
parallel barriers in functions within Protected Objects. In
the previous workshop the incorporation of parallel
barriers had been considerably discussed. The discussion
had been separated in both defining a simple task parallel
barrier mechanism similar to suspension objects, and
allowing tasks in Protected Objects special entries to be

116 Session Summary: Mul t iprocessor Issues, part 2

Volume 34, Number 2, June 2013 Ada User Journal

released in parallel. Although the former has made it to
Ada 2012 (Synchronous Barriers), the latter, although
several rounds of discussion and multiple proposals being
made (see [6)), had not reached a conclusion.

A note was made that one of the difficulties with
implementing this type of barriers was the data passing
issue. POSIX provides simple barriers, because some
hardware platforms directly support them. Nevertheless,
this does not include data sharing, so this would be
difficult to implement.

Finally, the workshop agreed that it would be good to
have a model similar to barriers, but more generic and
allowing more complex interactions than Synchronous
Barriers (and data passing), but that a suitable approach
needs further investigation.

5 Conclusions

The session was mainly devoted to analyze how the
ubiquitous multicore and multiprocessor platforms
impacted the Ada mode for resource control among tasks:

 In the first topic analyzed (priority inheritance and
task partitioning) the workshop concluded that the
assignment of priorities in partitioned approaches had
to be globally coherent and that in this case, priority
inheritance between tasks in different domains was
always correct.

 In the second topic (priority inheritance under EDF),
the workshop felt that there was a possible
misleading wording of the behaviour of priority
inheritance under EDF, and it was decided to
analyzed this further to propose clarification if
required.

 In the third topic (access protocols for Protected
Objects) the workshop considered important that
users are given an interface to control and define

different access protocols than simple spin-locks.
Further work in this topic is encouraged.

 In the fourth topic (Software Transactional Memory),
the workshop concluded that work on other
paradigms for concurrency interaction with larger
number of cores was important. Further work in this
topic is encouraged.

 In the fifth topic (broadcast calls for Protected Object
arrays), the workshop considered that currently there
was not a need for this mechanism.

 Finally, in the last topic (parallel barriers in Protected
Objects), the workshop concluded that this would be
a good mechanism to have, but that a suitable
approach needs further investigation.

References
[1] S. Lin, A.J. Wellings and A. Burns (2013), Ada 2012,

Resource Sharing and Multiprocessors, Ada Letters.

[2] A. Barros and L. M. Pinho (2013), Revisiting
Transactions in Ada, Ada Letters.

[3] A Burns and A. J. Wellings (2013), Support for
Multiprocessor Platforms, Ada Letters.

[4] M. Ward and N. C. Audsley (2007), Suggestions for
stream based parallel systems in Ada, Ada Letters,
Proceedings of the 13th International Real-Time Ada
Workshop, XXVII(2).

[5] J. Real and S. Mitchell (2007), Beyond Ada 2005
session report. Ada Letters, Proceedings of the 13th
International Real-Time Ada Workshop, XXVII(2).

[6] T. Vardanega, M. González Harbour, L. M. Pinho
(2010), Session Summary: Language and
Distribution Issues, Ada Letters, Proceedings of the
14th International Real-Time Ada Workshop,
XXX(1).

 117

Ada User Journal Volume 34, Number 2, June 2013

Session Summary: Language Profile and
Application Frameworks*
Chair: Alan Burns

Rapporteur: Tullio Vardanega

1 Introduction*

The Chair’s introduction enumerates the issues raised by
the papers assigned to the session:

 Beyond Ravenscar – other profiles

 Ravenscar and distribution

 Ravenscar and EDF

 Code archetypes for Ravenscar

 Real-time framework – dealing with multiprocessors
and mode changes.

The initial group’s perception is that the attention should
focus first on the discussion of new language profiles,
which is bound to require the largest fraction of the time
duration of the session. The group agrees to this proposal,
and the Chair presents the highlights of the profile
proposal that Burns and Wellings made in [1].

2 Language profiles beyond Ravenscar

An element of the rationale for looking beyond Ravenscar
is to avoid the feature creep phenomenon that may
diminish the distinctive nature – and the measurable
success – of the Ravenscar Profile (RP). The existence of
the full language and its wealth of features should be
considered to specify new profiles with an expressive
power not necessarily close to the end of the RP.

The group understands that there exist two fundamental
needs behind language profiles of interest to IRTAW, and
to its constituency: (a) to have a coherent set of
functionalities; (b) to warrant ease and efficiency of
implementation, and, possibly, amenability to
certification, although not necessarily to the highest level.

Andy Wellings illustrates the profile proposal made in
[1]. The envisioned profile has a twofold motivation:

(1) To gain the ability to tolerate timing faults, which
Ravenscar is poorly equipped for, since its
fundamental strength is the assurance of absence of
them.

* The Proceedings of the 15th International Real-Time Ada Workshop are
published in ACM Ada Letters, Volume XXXII, Number 1, April 2013.

(2) To address the greater uncertainty in timing analysis
typical of multicore computing.

The direction taken by Burns and Wellings proposal is to
incorporate in the profile sufficient means for software
dynamic fault tolerance (as per Anderson and Lee’s
model in [2]): error detection, damage confinement and
assessment, error recovery, fault treatment and continued
service.

The discussion reviews some variants of fault-error-
failure chains, all essentially based on the following,
recurrent causal chain:

 Error: WCET overrun or blocking duration overrun
(as a ramification of WCET underestimation).

 Error propagation: deadline miss.

 Failure: untimely delivery of service.

The detection means that can be deployed to counter the
above chain range from the extreme of deadline miss
detection – which however is not a necessary
consequence of error propagation, perhaps because of
slack capacity available due to less frequent arrival of
sporadic tasks in the system – to budget time overrun
detection, including blocking time, for better damage
confinement, via monitoring the frequency of arrival of
sporadic tasks.

The Ravenscar Profile does not allow the use of
Ada.Execution_Time.Timers (D.14.1): as a consequence,
one can only poll for overrun detection, which obviously
is not satisfactory.

Frequency of sporadic arrivals cannot be controlled at
language level, but can by the application, for example by
forcing task suspension before waiting for the next release
event.

Monitoring for overrun of blocking time is no standard
provision for either operating system or Ada. The risk is
that this fault may go undetected.

For damage confinement one could use budget servers,
which the Ravenscar Profile does not support.

The error recovery strategies may include: stopping the
overrunning task and then starting a new task to resume
service; using the programmatic interface of the
asynchronous task control package, D.11. Implementing
them under the constraints of the Ravenscar Profile,
which does not allow any of those features, calls for

118 Session Summary: Language Prof i le and Appl icat ion Frameworks

Volume 34, Number 2, June 2013 Ada User Journal

application-level solutions that may obfuscate the
resulting code.

The group agrees that the above considerations provide
sufficient motivation to define a new profile, which goes
beyond Ravenscar and, quite possibly, includes all of its
features.

Discussion ensues on the general characteristics of the
profile. Joyce Tokar comments that the idea of a new
profile is interesting and attractive but it is hard to tell
how difficult it may be to implement. Michael González
argues that we should pay attention to allowing features
that at the time of Ravenscar were known to be extremely
complex to implement. He observes that alternative
models may exist, such as e.g., ARINC 653, which might
be an interesting target to specify a language profile
against. Joyce Tokar voices agreement to that
consideration, but also reckons that discussing an ARINC
653 profile would stray the discussion away from the
intended focus.

The discussion then moves to the need for dynamic
priorities. The question before the group is what language
features we really need to be able to suspend / resume
individual tasks? The choice is between dynamic
priorities (D.5) and asynchronous task control (D.11).

At the end of this first round of high-level discussion,
there is full consensus from the group that we need a new
profile, distinct from Ravenscar. What we want is a
consistent, cohesive profile, and not a string of optional
additions to Ravenscar. We should however pay attention
to keeping the implementation and certification distance
from Ravenscar affordable for language implementers.
The group’s consensus is also that the starting point for
the definition of a new profile should be a clear
application programming model, from which we can then
determine the implementation requirements, language
restrictions, and obstacles to certification. Burns and
Wellings’ paper [1] is a good starting point.

At this point the Chair invites the group to delve deeper
into the discussion of specific features, with special
attention at how they would work in a multicore
environment.

The first feature on the list is Set_CPU (D.16.1).
Including it in the profile supports error recovery
strategies that use load balancing. In the envisioned
model, tasks are statically allocated to groups, but they
can be moved across cores. This feature provides key
support to a task splitting approach to handling timing
faults whereby overrun-work may be performed
opportunistically, via load balancing, on a core different
from the one in which the offending task was initially
assigned.

Michael González voices his preference for a suspension-
only model to one that also allows overrunning tasks to
resume. An inconclusive discussion then follows on the
implementation complexity that may be incurred by
asynchronous task suspension. This issue, among others,

needs to be further studied and should become a topic of
investigation for IRTAW-16.

The second feature on the list is the restriction “one CPU
Timer per task”. The rationale for that restriction is that,
on a single core, the timer resides in the same CPU as the
task to which it belongs. It is natural to extend this notion
to multicore. The problem with multicores however is that
systems may exist where there is a single clock for all
cores: in that case it may become complex to map time
events to the CPU where the task resides. The reason to
attach the event handler to the CPU where the task
executes is that this assignment warrants that if the
handler executes then certainly the task does not, and
consequently we don’t need complex asynchronous
control to hold the task from running.

The issue of setting affinities for the handlers of timing
events, CPU timers and “normal” interrupt handlers is
discussed. The idea is to require the affinity for time-
related handlers to be consistent (i.e., equal) to that of the
task that causes handler invocation. The discussion then
delves into the general problem of what affinities – also
for Ravenscar and full Ada – can be set to protected
handlers in multicores. It rapidly becomes evident that
this is a large, general problem which should be set aside
for later and deeper analysis, for discussion at IRTAW-
16.

The next feature submitted to discussion is the support for
Group Budget: the concept is that fault containment
strategies for collections may offer greater flexibility than
for individual tasks (yet at the cost of not knowing what
the offending task actually is). The group’s concern is that
a non-trivial implementation burden may be incurred in
supporting that feature. To make things simpler we need
to assume that the group budget must be per CPU. Intense
discussion takes place on whether dynamic group
management (i.e., adding and removing tasks from groups
at run time) should be preferred to having static group
membership only.

The discussion returns to the issue of dynamic priorities:
there is majority sentiment that the current slant of the
dynamic priority package is too general for our needs. We
do not really want any generalized agent to be allowed to
set task priorities: we rather want specialized / dedicated
handlers (which perhaps could be identified by some
restriction) to do that. One way around this problem is to
prefer asynchronous task control (with hold only) to
dynamic priorities. The group’s sentiment on the
alternative appears to be divided. The Chair calls for a
straw poll, which shows 10 in favour of asynchronous
task control, and 8 doubtful abstentions.

The final feature for discussion in the part of the session
is entry queues. We still require single entry (for the same
reasons why we had that restriction in Ravenscar), but we
want to allow multiple calls to queue. We feel the guard
should continue to be a Boolean only. ‘Count can however
be used in the entry body. On that account, an intense yet
inconclusive discussion takes place on the safeness, for

A. Burns, T. Vardanega 119

Ada User Journal Volume 34, Number 2, June 2013

our purposes, of the semantics of Hold being called when
the task has a call in an entry queue. As part of this slot,
the issue is also briefly discussed as to whether nested
protected subprogram calls should be allowed in
multicore processing: the group observes that the theory
of real-time systems has not yet developed a convincing
model for nested resources. It may therefore be wiser at
this time to disallow nesting.

Before calling this discussion to an end, the Chair invites
suggestions for further features of interest for the
envisioned profile; the group response includes: barriers
in multicores; relative delay statement and relative timing
events. The intent is to record this need, invite the group
to investigate it in the future, and then discuss the findings
at IRTAW-16.

3 Ravenscar and distribution

The Chair then invites a short report on the progress of
the University of Cantabria’s (UC) group in the
development of a Ravenscar- and SPARK-compliant
implementation of the Distributed Systems Annex. Héctor
Pérez, on behalf of UC, explains that two language
features are needed by the current implementation but
conflict with the SPARK restrictions: generics; and
abstract types.

The group sentiment in that respect is that too strict
adherence to SPARK may defeat the purpose of the UC
project: “educated” generics and abstract types are useful
abstractions for the project and they should be retained.

A side issue was raised before the discussion on this topic
came to an end: language support for initialization-level
configuration is desired (which comes handy for, e.g.,
end-point receivers) that does not resort to full-fledged
programmatic interfaces, which could be exposed to
erroneous usage. No conclusion is reached on this point,
other than recording it for further investigation.

4 Code archetypes and programming
frameworks

The subsequent slot of discussion focuses – in a joint
fashion – on hearing a report on the progress of the work
conducted at the University of Padova (UPD) for the
finalization of Ravenscar code patterns for automated
code generation [3], and at the Universitat Politècnica de
València (UPV) for the extension to multicore of the real-
time programming framework [4].

Both reports show good and interesting progress. Seeing
some complementarity between the qualities of the two
respective approaches, the group encourages the teams at
UPV and UPD to investigate the possibility of integrating
their results.

5 Profiles: Ravenscar and EDF

The final slot of the day’s discussion is devoted to
examining Alan Burns’ proposal in [5] for an EDF
version of the Ravenscar Profile. The author’s rationale
for the proposal is that Ada 2005 supports EDF and mixed
dispatching policies via Baker’s stack resource protocol
[6]. However, the resulting protocol is complicated to
understand as well as to implement.

In the author’s vision, an interesting alternative to support
resource sharing under EDF is to make protected
execution non-preemptive. The consequences of that
approach are: in the pro side, an easy implementation at
language level since priorities are no longer needed and a
single ready queue is required; on the cons side instead:
longer blocking time for tasks owing to non-preemption
during protected execution.

The group’s sentiment on the proposal gets quickly
divided. For some, Burns’ model seems attractive and, in
a way, conducive to a Ravenscar adoption of EDF
symmetrical, for simplicity and theory support, to Fixed
Priority Scheduling (FPS). For others instead, and for
Michael González in particular, EDF alone should be
considered insufficient for safely programming HRT
systems: in Michael’s view one would need additional
features, either EDF+FPS (as in previous publications
from our community) or budget control. Intense
discussion takes place on this interesting subject, but it
comes to no final conclusion owing to lack of time. The
Chair invites the group to continue investigating this
matter with a view to reporting progress at IRTAW-16.

References
[1] A. Burns, A.J. Wellings and A.H. Malik (2013), TTF-

Ravenscar: A Profile to Support Reliable High-
Integrity Multiprocessor Ada Applications, Ada
Letters.

[2] T. Anderson and P.A. Lee (1990), Fault Tolerance
Principles and Practice, Prentice-Hall International,
2nd edition.

[3] M. Panunzio and T. Vardanega (2013), Charting the
evolution of the Ada Ravenscar code archetypes, Ada
Letters.

[4] S. Saez, J. Real, and A. Crespo (2013), Adding
Multiprocessor and Mode Change Support to the Ada
Real-Time Framework, Ada Letters.

[5] A. Burns (2013), An EDF Run-Time Profile based on
Ravenscar, Ada Letters.

[6] T.P. Baker (1991), Stack-based scheduling of real-
time processes, Journal of Real-Time Systems, 3(1).

120

Volume 34, Number 2, June 2013 Ada User Journal

Session Summary: Concurrency Issues*
Chair: Juan Antonio de la Puente

Rapporteur: Stephen Michell

1 Introduction*

This session was the final session of International Real
Time Ada Workshop 15. It was chaired by Juan Antonio
de la Puente. Stephen Michell was the rapporteur. Papers
and issues discussed were
 Concurrency and real time vulnerabilities under

consideration by ISO/IEC/JTC 1/SC 22/WG 23
Programming Language Vulnerabilities Working
Group.

 Execution time accounting as being implemented by
the Ada programming language and considerations
for multiprocessor environments

 Discussion of Set_CPU and deferment of attribute
setting in multiprocessor environments.

Section 2 discusses the concurrency vulnerabilities with
2.1 discussing the vulnerabilities in [6] and 2.2 discussing
real time vulnerability outlines presented by Stephen
Michell at the workshop. Section 3 summaries the
discussion of execution time accounting. Section 4 is Ada
real time and virtualization.

2 Concurrency Vulnerabilities

2.1 Methodology
As discussed in [2] and [6], the work being done by WG
23 to date does not address the real issues of
vulnerabilities presented by concurrent programs. [6]
addresses this with a proposal for six vulnerabilities for

 Thread activation,

 Thread termination – directed

 Thread termination – premature termination,

 Shared data access,

 Concurrent data corruption, and

 Concurrency protocol errors.

The workshop examined these proposals and then went
further to consider three proposals to develop real time
vulnerability writeups for

 Real time timing vulnerabilities,

 Real time thread control, and

* The Proceedings of the 15th International Real-Time Ada Workshop are
published in ACM Ada Letters, Volume XXXII, Number 1, April 2013.

 Real time scheduling.

2.2 General Vulnerability Discussion
Steve introduced the topic by first discussing
vulnerabilities, the notion of exploits of vulnerabilities.
For a general writeup on vulnerabilities, their effects, and
the role that programming languages can play in creating
and helping to avoid vulnerabilities, see section 5 of [8].
More discussions on weaknesses and vulnerabilities can
be found at the Open Web Application Security Project
[7], the Common Weakness Evaluations [4], Common
Attack Pattern Enumeration [3], and the Build Security In
project [1].

There are two kinds of vulnerabilities discussed by TR
24772. The first is called “Language Vulnerabilities” and
are documented in section 6 of that document. The second
is “Application Vulnerabilities” in section 7 of this
document. TR 24772 explains the difference as follows.

“This Technical Report focuses on a particular class of
vulnerabilities, language vulnerabilities. These are
properties of programming languages that can contribute
to (or are strongly correlated with) application
vulnerabilities—security weaknesses, safety hazards, or
defects. An example may clarify the relationship. The
programmer’s use of a string copying function that does
check length may be exploited by an attacker to place
incorrect return values on the program stack, hence
passing control of the execution to code provided by the
attacker. The string copying function is the language
vulnerability and the resulting weakness of the program
in the face of the stack attack is the application
vulnerability. The programming language vulnerability
enables the application vulnerability. The language
vulnerability can be avoided by using a string copying
function that does set appropriate bounds on the length of
the string to be copied. By using a bounded copy function
the programmer improves the predictability of the code’s
execution.

The primary purpose of this Technical Report is to survey
common programming language vulnerabilities; this is
done in Clause 6. Each description explains how an
application vulnerability can result. In Clause 7, a few
additional application vulnerabilities are described.
These are selected because they are associated with
language weaknesses even if they do not directly result
from language vulnerabilities. For example, a
programmer might have stored a password in plaintext
(see [XYM]) because the programming language did not
provide a suitable library function for storing the
password in a non-recoverable format.”

J. A. de la Puente, S. Michel l 121

Ada User Journal Volume 34, Number 2, June 2013

The workshop spent most of the session discussing the
real time issues that could become vulnerabilities. They
are identified here as presented by Stephen on slides to
lead the session.

It should be noted that TR 24772 uses the term “thread”
where Ada uses “task” to designate entities that can
execute concurrently. For the purpose of this section, the
term thread will be used exclusively.

2.3 General Concurrency Vulnerabilities
2.3.1 Thread Activation [CGA]
Steve presented the general principals as presented in [6]
section 5.1 Thread Activation [CGA]. There was general
agreement that there are language issues involved in the
creation of threads such as resource exhaustion,
undetected failure to activate of some threads, and the
resulting system failures that can occur during creation.
Therefore, this vulnerability belongs in section 6
Programming Language Vulnerabilities of ISO IEC TR
24772. There were no recommendations for further
subdivision of the vulnerability or consolidation with
other vulnerabilities. No further application workarounds
or programming language extensions were discussed.

2.3.2 Thread Termination (on request) [CGT] (and
premature) [CGS]
The workshop decided to discuss the issues of thread
termination together. Both vulnerabilities were presented
as being appropriate for section 6 of ISO IEC TR24772 as
programming language vulnerabilities, since, even if the
language does not have a concurrency component, the
underlying environment as presented by its libraries have
such a paradigm and can expose the issues. Languages
that have concurrency as part of the language must
consider all termination issues. There were no
recommendations for further subdivision of the
vulnerability or consolidation with other vulnerabilities.

Joyce raised the issue that finalization of data and of
control space after the directed termination of a thread is
an issue that must be discussed in [CGT]. Also, there
must be a way to detect attempts to interact with threads
that have been terminated or requested to terminate, both
in the period of termination and after the thread has been
terminated. These issues will be added to the submissions
to WG 23.

2.3.3 Concurrent Data Access [CGX]
Stephen noted that this vulnerability was split from
[CGY] so that issues of direct access to data in concurrent
and real time data can be separated from shared resources
that happen in external components of the system such as
filing systems, environment variables, and databases.

The workshop reviewed the writeup, and agreed that this
was a language vulnerability and as such belonged in
section 6 of TR 24772. Andy noted that the issue of
“volatile” of a shared variable was missing, in the sense
that languages often reorder reads and assignments and
may not be aware that other assignment operations exist
in other threads. The “volatile” directive notifies the

language processor not to perform such re-orderings, and
to make fetches and assignments as atomic as possible.

It was noted that there is another recommendation to
application developers to always specify data elements as
“volatile” to prevent language processors from
performing such reordering.

2.3.4 Concurrent Data Corruption [CGY]
Steve proposed in his presentation to target this
vulnerability to TR 24772 sect 7 as an application
vulnerability, since external resources outside of the
application itself, and the concurrent components
accessing it may not be part of the same program, so
language-specific mechanisms to control access are not
feasible in general. There were no proposed additional
issues, language vulnerabilities or application
workarounds discussed.

2.3.5 Concurrent Protocol Errors [CGM]
The workshop discussed the vulnerability's target to TR
24772 sect 6 as a language or OS vulnerability and agreed
that it was appropriate because a number of languages and
most operating systems (through libraries) provide
protocols for concurrency paradigms. No significant
issues were identified as missing. No other application
workarounds or language avoidance mechanisms were
identified.

2.4 Real Time Vulnerability Discussion
Stephen led the discussion from slides prepared to present
three real time vulnerabilities, with the plan to use the
workshop discussions to generate writeups suitable for
WG 23.

2.4.1 Real Time Timing [CGQ]
The application vulnerability was identified as an
application vulnerability (as opposed to a programming
language vulnerability) since almost all real time timing
issues arise as a result of hardware issues, low level
kernel issues and application issues. The main issues
identified initially were

 Drift between clocks, such as real time and time of
day clocks, or between clocks on different processors

 Failure to track time of day clock updates due to leap
seconds, time zone changes or corrections; and

 mismatches between time accounting and notification
requests, such as posted wakeup times or deadlines

The workshop added to this

 Rollover of bounded clocks can cause timer
calculations to fail

 mismatches between the resolution of the clock and
the expectations of the application can cause wakeups
or deadlines to be too late or too early (usually too
late)

 transfers between a time of day clock and real time
clock can result in loss of precision and missed
deadlines or missed wakeups

122 Session Summary: Concurrency Issues

Volume 34, Number 2, June 2013 Ada User Journal

The effects of these errors can be

 Wrong calculations

 Missed deadlines

 Wakeups that are too early or too late causing
portions of the concurrency structure to fail

 guardian code (that relies on being notified if
deadlines are missed) may misbehave if timers drift

Recommended approaches for application developers are:

 Develop systems whose concurrency model is
amenable to static analysis, such as model checking,

 Perform analysis of all aspects of timing with as
much rigour as is possible;

 Choose a language or environment that provides the
capabilities to express time, select the appropriate
time paradigm, and clock management mechanisms

 Implement measures to monitor time accounting, and
drift between clocks, and be prepared to take
corrective action

 Identify mechanisms to identify misbehaving systems
such as heartbeats or watchdog timers; and

 Include monitors with the ability to reset the
complete system back to a known state before
continuing.

The usual result of such errors is erroneous behaviours or
misbehaving feedback systems. Systems that rely on on-
time calculations and events and that experience such
erroneous behaviour may experience catastrophic failures.
Arbitrary code execution is unlikely.

2.4.2 Real Time Thread Control
Burns and Wellings [2] identified real time thread control
issues as another real time potential vulnerability. The
workshop agreed that this was already covered in the
vulnerability Protocol Lock Errors [CGM].

2.4.3 Real Time Scheduling [CGP]

Real Time Scheduling was identified as a programming
language vulnerability since there are a few languages and
operating systems that provide scheduling protocols
suitable for real time, and use of the high level paradigms,
such as the Priority Ceiling Protocol can fix many of the
issues in this domain. On the other hand, to make real
time systems function to specification, even using these
protocols requires applications designers that clearly
understand the domain and take the necessary steps to
allocate attributes to threads (such as deadlines and
priorities) and to communications and protocol
management code.

 The main issues identified were

 Priority inversion when a thread of a lower urgency
(lower priority or later deadline) is executing and
preventing one of higher urgency (that is ready to
execute) from executing.

 Scheduling mistakes resulting in threads not
completing their work in the required time

 Missed thread deadlines due to priority inversions,
scheduling mistakes and protocol errors

 Missed interrupts or events

 Excessive input or events

 Excessive use of a resource

 Lack of access policy or queuing policy resulting in
indefinite waiting for some threads

These can result in

 Missed system deadlines

 Complete system failure

 System halting

 System ceasing to process input or deliver output

 Instability

 System not meeting specifications

It was noted that, in the real time realm, that even
seemingly small changes, such as a change of a single
priority to a single thread can have very large impacts.

Recommended approaches for application developers are:

 Develop systems whose concurrency model is
amenable to static analysis, such as model checking,

 Perform this analysis with as much rigour as is
possible;

 Choose a language or environment that provides the
capabilities of priority inheritance and priority ceiling
protocol, and to use those capabilities;

 If using multiprocessors, be aware of the issues with
scheduling, thread interaction and data and cache
coherency across multiple processors and be very
conservative in the assignment of threads to
processors;

 Identify mechanisms to identify misbehaving systems
such as heartbeats or watchdog timers; and

 Include monitors with the ability to reset the
complete system back to a known state before
continuing.

Errors in this domain can be used to create covert
channels, and can lead to complete system shutdown or
misbehaviour, but arbitrary code execution as a result of
this vulnerability alone is unlikely.

3 Execution-time accounting of
interrupts

This session followed on from Session A, where the focus
of the discussion was specialization to multiprocessor
environments..

J. A. de la Puente, S. Michel l 123

Ada User Journal Volume 34, Number 2, June 2013

While the workshop was in progress, participants received
an advanced copy of a paper by Kristoffer Gregersten on
the implementation of execution-time accounting of
interrupts. A paper submitted by the same author [5] was
instrumental in leading IRTAW 14 to recommend that
Ada implement this accounting as part of Ada 2012,
which is now being finalized and which includes this
capability. In the paper to be submitted to the Ada Users
Journal, Kristoffer summarizes an implementation of this
new capability in the MARTE real time Ada executive on
a single processor embedded processor. In his paper he
documents a number of tests that show negligible
additional overhead to support this accounting and
explains the reasons for this.

Jose Ruiz reported that AdaCore has similar functionality
implemented for GNAT Ada on embedded Leon32 and
PowerPC processors and suggested that the capability was
very useful for their clients.

3.1 Deferred attribute setting mechanism
Sergio raised the issue that the current wording in the
draft Ada 2012 reference manual says that
System.Multiprocessors.Dispatching_Domains.Set_CPU
can cause excessive context switches for tasks that are
executing in a protected operation on CPU1 but make a
call to Set_CPU to move itself to CPU 2. Clause
D.16.1(27) of the ARM says

“A call of Set_CPU is a task dispatching point for task T.
If T is the Current_Task the effect is immediate,
otherwise the effect is as soon as practical.”

This could be interpreted to mean that Set_CPU calls into
the kernel, effectively suspends the task while it moves it
to “CPU”, possibly causing at least 2 context switches. It
was noted that the same wording exists for
System.Multiprocessors.Dispatching_Domains.Add_Task.

Here is a model of what can happen:

 T1 is executing on CPU1 with priority P1.

 T2 is executing on CPU2 with priority P2>P1.

 T1 calls a protected operation PO_A that has a
ceiling priority of P3>P2>P1. Within PO_A, T1
(which is now executing at priority P3) executes a
Set_CPU or a Set_Task call to assign itself to CPU2.

 T2 is immediately moved to CPU2 while still
executing inside PO_A and preempts T2.

 P2 either is switched to a different cpu (depending
upon T2's affininty) or is delayed until P1 completes
execution of PO_A.

 T1 completes PO_A, and its priority drops to P1,
causing another context switch to permit T2 to
resume execution.

There was significant discussion on the various issues. It
was noted that there is no significant issue if task T1 is
blocked or delayed and another task changes its CPU or
affinity. Changes to the running task, however, can have

the difficulties described above. In a real time system
where T2 has a deadline, such additional overhead of
context switches and execution of protected operations in
place of T2's execution could cause T2 to miss its
deadline.

Miguel raised the issue that more deferred operations are
required, such as Delay_Until_And_Set_Deadline (See
ARM D.2.6), and noted that any combination of
Set_CPU, Set_Deadline, and Set_Priority can cause
excessive context switches and priority inversions (such
as the one described above) unless we can explicitly defer
the setting of these operations. Miguel proposed the
following subprograms:

Ada.Dispatching.EDF.Set_Next_Deadline(
 D : in Deadline;
 T : in Ada.Task_Identification.Task_Id
 := Ada.Task_Identification.Current_Task);

System.Multiprocessors.Dispatching_Domains.
Set_Next_Task(CPU : in CPU_Range;
 T : in Task_Id := Current_Task);

Ada.Dynamic_Priorities.Set_Next_Priority(
 Priority : in System.Any_Priority;
 T : in Ada.Task_Identification.Task_Id
 := Ada.Task_Identification.Current_Task);

Miguel proposed to add the following subprogram that set
the deferred attributes immediately:

Set_Attributes(
 Attr : Deferred_Attributes;
 T : in Ada.Task_Identification.Task_ID :=
 Current_Task);

Where

type Deferred_Attributes is record
 CPU: CPU_Range;
 D: Deadline;
 ...
end Deferred_Attributes;

The advantage of this approach would be that it provides
a consistent Set_Attributes, whereas the calls

Set_Next_Deadline, Set_Next_CPU, ...,

permits different task calls to interleave, creating different
“Next” attributes to be set, at the point of the Set_-
Attributes.

There was general support for this concept. Steve
proposed that these be in a child package of each page,
possibly called something like Deferred. It was not clear
where Set_Attributes would be declared.

There was discussion as to what would happen if
Set_Now was not called. The presumption was that the
deferred settings would happen when

 Set_Attributes was called

 The task awoke from a delay, delay_until,

124 Session Summary: Concurrency Issues

Volume 34, Number 2, June 2013 Ada User Journal

 The task was removed from a suspension object,

 The task was released from a protected entry, after
completing the operation of that entry

 The task completed a protected operation, or the
outermost protected operation if it was executing in a
nested protected operation.

It was noted that one cannot rely upon a task being
suspended, blocked or delayed for a significant period of
time after having a deadline, priority or affinity set, hence
there needs to be a subprogram call to set the attributes
immediately.

Implementation approaches were discussed. The approach
of having room for deferred attributes in the Task Control
Block or task attributes was discussed. Such attributes
would become effective when the task was released from
a delay or blockage, or immediately upon a call to
Set_Attributes.

It was agreed that these issues needed further
investigation, modelling and trial implementations before
a formal proposal could be made to WG9.

4 Ada Real-Time Services and
Virtualization

There was a discussion of Ada real time services and
virtualization. It was decided that this was not a language
issue, hence discussion terminated.

5 Wrap up and Conclusions

This session was the final one of the workshop. The work
on vulnerabilities gave Stephen material to feed back into
the work of WG 23. He expects that the next publishing

of TR 24772 will contain at 6-8 concurrency
vulnerabilities based on the work done here.

The next meeting of the workshop is planned for York
area, UK in the spring of 2013.

References
[1] Build Security In website, www.BuildSecurityIn.us-

cert.org.

[2] Burns, Alan and Wellings, Andy (2010), Language
Vulnerabilities - Lets Not Forget Concurrency,
Proceedings of Real Time Ada Workshop 14, ACM
SIGAda Letters, Volume 30 Issue 1.

[3] Common Attack Pattern Enumeration and
Classification project web site, www.capec.mitre.org

[4] Common Weakness Enumeration web site,
www.cwe.mitre.org

[5] Gregertsen, Kristoffer (2010), Execution-time control
for interrupt handling, Proceedings of IRTAW 14,
ACM SIGAda Letters., vol. 30 Issue 1.

[6] Michell, Stephen (2011), Programming Language
Vulnerabilities – Proposals to Include Concurrency
Paradigms, Transactions of IRTAW 15, ACM
SIGADA Letters, Volume 31 Issue 4.

[7] Open Web Application Security Project,
www.owasp.com.

[8] ISO IEC TR 24772 (2010), Information technology --
Programming languages -- Guidance to avoiding
vulnerabilities in programming languages through
language selection and use, International Standards
Organisation.

 125

Ada User Journal Volume 34, Number 2, June 2013

Ada Conference UK 2013
Sophie Robinson, AdaCore, 46 rued’Amsterdam, Paris 75009, France

Abstract

The Ada Conference UK 2013, operated by the
Centre for Software Reliability (CSR), took place
this year on 25th April at the IET Birmingham:
Austin Court Conference Centre.

1 Introduction

The 25th April was a significant date in the Ada calendar
as it was the date of the 2013 edition of the Ada
Conference UK, the biennial event showcasing industrial
and academic uses of the Ada programming language.
This year was specifically significant due to the recent
release of Ada 2012.

Following three previous editions of the event, the
organisers this year decided to move the event north to the
IET’s Austin Court, Birmingham, a historical building on
the canal-side location of Brindley Place.

Delegates were drawn by the success of previous years,
the programme of speakers and the launch of the new Ada
programming language, Ada 2012. The day started with a
comical introduction from the ever-brilliant John Barnes
and included an excellent half-day tutorial from Tucker
Taft, who had flown over from the USA. The highlight of
the day’s activities had to be the outstanding talks of the
keynote speakers, John C. Knight and Robert Dewar.
John presented the talk “Ada Types – Are They
Sufficient?” and Robert concluded the day with his talk,
“I’m as Mad as Hell, and I’m Not Going To Take This
Anymore!”

John Barnes summed up the event nicely, stating “I much
enjoyed the Ada conference recently held in Birmingham;
it is always a pleasure to meet users and enthusiasts (both
old and new) within a convivial location. We were
privileged to learn about the technical strides being made
by Ada and SPARK from experts such as Tucker Taft and

Stuart Matthews. As well as a number of talks on various
aspects of high integrity applications, our keynote
speakers were John Knight who emphasised the
importance of getting our types right, and Robert Dewar
who ended the day by cajoling us all to attack the
prevalence of relaxed attitudes to software glitches.”

The technical track offered talks on a diverse range of
subjects by leading industrial experts. Parallel to the
technical track, there was a stream of (technically
oriented) vendor talks from Atego, Altran, AdaCore,
Abstract Solutions, Wind River and Vectorcast.

2 Abstracts from the talks that made up
the technical track

Ada Types–Are They Sufficient?
John Knight, University of Virginia, Charlottesville.

Abstract: In this talk I will introduce a type system based
on general real-world semantics. The type system permits
any attributes of real-world entities to be encoded in the
type of their machine representations, together with type
rules that allow checks to be based on the real-world
behavior of the typed entities. As well as checking for
violations of real-world type rules in expressions, the real-
world type system allows checking of crucial properties in
systems of systems. For example, inconsistent states that
might arise in an avionics system between the coordinates
being used in different component sub-systems can be
detected statically.

Proposed Revision to Def Stan 00-56.
Paul Caseley, dstl.

Abstract: Def Stan 00-56 defines the contractor
requirements for system safety for MOD Defence
equipment. This presentation will provide insight to the
direction and content of the draft Def Stan 00-56 issue 5
which proposes new concepts that will influence system
and software safety related projects. Additionally, an
insight to the direction of thinking behind the proposed
programmable electronics standard, Def Stan 00-55 issue
3, will also be discussed.

Ada 2005 in Practice.
Jeff Cousins, BAE Systems.

Abstract: This presentation discusses what code changes
we had to make for Ada 2005, and what additional
changes we chose to make to utilise Ada 2005 features.
Although some Ada 2005 features have proved useful,
use of them has been limited as legacy code would
generally have already found some solution using Ada 95.

Vendor extensions and tools are then discussed. Although
vendor extensions are generally avoided for portability

126 Ada Conference UK 2013

Volume 34, Number 2, June 2013 Ada User Journal

reasons, a few are so useful that they have tempted us. A
first look is then taken at using Ada 2012, evaluated using
the vendor’s compiler.

From the model to the target to certification–
trends in growing use of code from model based
developmental systems in high integrity
environments.
Ian Harry, LDRA.

Abstract: This presentation will discuss the trend in which
an increasing portion of embedded code in high integrity
environments is directly derived from models. This trend
has been driven, in part, due to high-fidelity modeling and
code generation tools. These tools are extremely powerful
in making sure that embedded code matches the model,
even in cases where the model and the application are
rapidly changing. However, in safety critical
environments these tools are not, in and of themselves,
adequate for system verification. They must be paired
with embedded target-verification tools and matched with
appropriate process standard goals.

We will discuss how tools can automate best practices to
track code from the model to the target, ensuring that
verification tasks such as code coverage are completed
correctly. In addition, requirements traceability
capabilities ensure that all of the elements are adequately
connected. This is particularly important with process
standards such as DO-178C, which require specific model
based elements to be connected to specific verification
tasks and results. This workflow will be discussed in

depth in the context of both DO-178C and other process
standards.

Applying D0333/DO178C–a white paper.
Nick Tudor, D-RisQ Ltd.

Abstract: This presentation will discuss the crucial steps
in using DO333, the Formal Methods Supplement to
DO178C/DO278A. It provides a view of what that
document considers to be ‘Formal Methods’ and how to
use them to claim credit for certification. While some
detail from the document will be discussed, it is – of
course – not intended to provide a tutorial on the entire
document! A white paper from D-RisQ, upon which the
presentation is based, will be made available on request.

“I’m as Mad as Hell, and I’m Not Going To Take
This Anymore!”
Robert Dewar, New York University and AdaCore.

Abstract: We live in the age of the computer “glitch”
where disastrous errors in all kinds of software system –
dismissed as glitches – have horrible consequences,
including loss of life from defective medical equipment,
major financial disruption from malfunction of financial
software, accidental release of dangerous prisoners etc.
It’s time we didn’t tolerate this unacceptable state of
affairs. In this talk we will speculate on what could be
done to fix this problem and, in particular, how we can
negotiate a marriage (or at least a civil union) between the
worlds of testing and formal proof in the search for
solutions.

 127

Ada User Journal Volume 34, Number 2, June 2013

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #144: A Bit of Bytes:
Characters and Encoding Schemes
Emmanuel Briot, AdaCore

Abstract. This Gem describes some of the concepts behind
character encoding and Unicode. It explains why multiple
character sets exist, and how to deal with them in your
application if you want to handle international input and
output.

Let’s get started…

This Gem starts with a problem. As a French native, I often
manipulate text files that contain accented letters (those
accents, by the way, were often introduced as a shorthand to
replace letters in words, to save paper when it was still an
expensive commodity). Unfortunately, depending on how the
file was created, my programs do not necessarily see the same
byte contents (which depends on the encoding and the
character set of the file), and, if I just try to display them on
the screen (either in a text console, or in a graphical window),
the output might not read like what I initially entered.

Glyphs

At this point, let's introduce the notion of glyphs. These are the
visual representations of characters. For instance, I want "e-
acute" to look like an "e" with a small acute accent above it.
This visual representation is the final goal in a lot of
applications, since that's what the user wants to see. In other
applications, however, the glyphs are irrelevant. For instance,
a compiler does not care how characters are displayed on your
screen. It needs to know how to split a sequence of characters
into words, but that's about it. It assumes your console, where
error messages are displayed, will display the same glyphs you
had in your source file when given the same bytes as the
source file itself.

A text file does not embed the description of what its
representation looks like. Instead, it is composed of bytes,
which are combined in certain ways (sometimes called
character encoding schemes) to make up code points. These
code points are then matched to a specific character using a
character set. Finally, the font determines how the character
should be represented as a glyph.

A character's exact representation (its glyph) really depends on
the font you are using, since a "lower case a" might have
widely different aspects that depend on the font. This is
outside the scope of this Gem, though.

In general, your application is not concerned with the mapping
of characters to glyphs via the font. This is all taken care of by
either the text console, or the GUI toolkit you are using. Your
application will often let the user choose her preferred font,
and then make sure to pass valid characters. The toolkit does
the complex work of representing the characters. For example,
this work is the role of the Pango toolkit (accessible from
GtkAda).

Character Sets

A repertoire is a set of generally related characters, for
instance the alphabets used to spell English or Russian words.

A character set is a mapping from a repertoire to a set of
integers called code points. A given character, as we shall see,
might exist in several different character sets with different
code points.

Most of the standard character sets (sometimes abbreviated as
charsets) are specific to one language. For instance, there exist
ISO-8859-1 (also known as Latin-1) and ISO-8859-15, which
are used for West European languages; we also have ISO-
8859-5 and KOI8-R, which are different, but both used for
Russian; Windows introduced a number of code pages, which
are in fact character sets specific to that platform; Japanese
texts often use ISO-2022-JP, whereas Chinese has several
standard sets.

Let's take the simplest of them all, the ASCII charset. Most
developers are familiar with it. For instance, in this set the
code point 65 is associated with the letter upper-case-A. This
set includes 128 characters, 31 of which have no visual
representation. It contains no accented letters, but is basically
appropriate for representing English texts.

In a lot of Western European languages, like French, ASCII
was not sufficient, so ISO-8859-1 was built on top of it. The
first 128 characters are the same, so code point 65 is still
upper-case-A. But it also adds 128 extra characters, for
instance 233 is lower-case-e-with-acute. See the Wikipedia
page on ISO-8859-1 for more details.

Another example is ISO-8859-5, for Russian text, which is
incompatible with ISO-8859-1, although it is also based on
ASCII. So 65 is still upper-case-A, but this time 233 is
cyrillic-small-letter-shcha and lower-case-e-with-acute does
not exist.

As a result, if an application is reading an ISO-8859-5 encoded
file, but believes it is ISO-8859-1, it will display an invalid
glyph for most of the Russian letters, obviously making the
text unreadable for the user.

In most applications (for instance, the GPS IDE), there is a
way to specify which character set the application should
expect the files to be encoded in by default, and a way to
override the default encoding for specific files.

There exists one character set that includes all characters that
exist in all the other character sets (or at least is meant to), and
this is Unicode (somewhat akin to ISO-10646). It includes
thousands upon thousands of characters (and more are added
at each revision), while avoiding duplicates. For compatibility
with a lot of existing applications, the first 256 characters are
the same as in ISO-8859-1, so upper-case-A is still 63, and
lower-case-e-with-acute is still 233. But now cyrillic-small-
letter-shcha is 1097.

Nowadays, a lot of applications (and even programming
languages) will systematically use Unicode internally. For
instance, the GTK+ graphic toolkit only manipulates Unicode

128 Ada Gems

Volume 34, Number 2, June 2013 Ada User Journal

for internal strings, and so does Python 3.x. So whenever a file
is read from disk by GPS, it is first converted from its native
character set to Unicode, and then the rest of the application no
longer has to care about character sets.

Given the size of Unicode, there are few (if any) fonts that can
represent the whole set of characters, but that's not an issue in
general since most applications do not need to represent
Egyptian hieroglyphs...

Another major part of the Unicode standard is a set of tables to
find the properties of various characters: which ones should be
considered as white space, how to convert from lower to upper
case, which letters are part of words, etc. This knowledge is
often hard-coded in our applications and often involves a
major change when an application decides to use Unicode
internally.

Character Encoding Schemes

We now know how to represent characters as a combination of
code points and a character set. But we often need to store
those characters in files, which only contain bytes. That seems
relatively easy when the code point is less than 256, but
becomes much less obvious for other code points, like the
1097 we saw earlier.

In practice, this issue is solved in a number of ways. Encoding
schemes such as the Japanese ISO-2022-JP use a notion of
plane shift: special bytes indicate that from now on the bytes
should be interpreted differently, until the next plane shift.
Decoding and encoding therefore requires knowledge of the
current state.

Unicode itself defines three different encoding schemes (with
their variants), which are known as UTF-8, UTF-16, and UTF-
32. The last number indicates the number of bits that each
character is encoded in. Therefore, in UTF-32, each character
occupies four bytes, which allows the whole set of Unicode
characters to be represented. Decoding and encoding is
therefore trivial, but there is a major waste of space associated
with UTF-32.

In UTF-16, each character is encoded in two bytes, which is
enough for all characters used by spoken languages. Other
characters are for specific usage, like Egyptian hieroglyphs.
For code points that do not fit in two bytes, Unicode defines a
few special bytes (the surrogate pairs) that are similar to the
plane shifts we described earlier. Thus, there is much less
wasted space, but decoding and encoding becomes a bit more
complex.

The above two encoding schemes are not backward
compatible: an application that was written before Unicode
and that only knew about ASCII or ISO-8859-1 will not
understand the input strings properly.

For this reason, and to save even more space, Unicode also
defines the UTF-8 encoding. For all ASCII characters, they are
still represented as before using a single byte. Characters
greater than 127 are encoded as a sequence of several bytes
(and it is guaranteed that all bytes but the last are not part of
ASCII).

Properly manipulating a UTF-8 string requires the use of
specialized routines (since moving forward one character
means moving forward 1 to 6 bytes). However, a casual
application can, for instance, skip to the next white space
character as it did before by moving forward one byte at a time
and stopping when it sees 32 (a space) or 13 (a newline). This
property can often be used by applications that do not need to

represent the characters, like the example of the compiler we
mentioned at the beginning.

Although the notions of character sets and character encoding
schemes are orthogonal, often these notions are conflated. For
instance, when someone mentions ISO-8859-1, it usually
means the character set as well as its standard representation,
where each character is represented as a single byte. Likewise,
someone talking about UTF-8 will typically mean the Unicode
character set together with the UTF-8 character encoding
scheme.

Conversions

We now have almost all of the pieces in place, except for the
conversion between character sets. In theory, it is enough to
decode the input stream using the proper character encoding
scheme, then find the mapping for the code points from the
origin to the target character set, and finally use the target
encoding scheme to represent the characters as bytes again.

When a character has no mapping into the target character set
(for instance the e-acute in the Russian iso-8859-5), the
application needs to decide whether to raise an error, ignore
the character, or find a transliteration (for example, using e'
for e-acute).

This is obviously tedious, and requires the use of big lookup
tables for all the character sets your application needs to
support.

On Unix systems, there exists a standard library, iconv, to do
this conversion work on your behalf. The GNU project also
provides such an open-source library for other systems.

We have recently added a binding to this library in the GNAT
Components Collection (GNATCOLL.Iconv), making it even
easier to use from Ada. For instance:

with GNATCOLL.Iconv; use GNATCOLL.Iconv;
procedure Main is
 EAcute : constant Character :=
 Character'Val(16#E9#);
 -- in ISO-8859-1

 Result : constant String := Iconv
 ("Some string " & EAcute,
 To_Code => UTF8,
 From_Code => ISO_8859_1)
begin
 null;
end Main;

XML/Ada has also included such conversion tables for a
while, but supports many fewer character sets. Check the
Unicode.CSS.* packages.

As you can see above, we are reusing the string type, since, in
Ada, a string is not associated with any specific character set
or encoding scheme. In general, as we mentioned before, this
is not an issue, since an application will use a single encoding
internally (UTF-8 in most cases). Another approach is to use a
Wide_String or Wide_Wide_String. The same comment as for
UTF-16 and UTF-32 applies: these make character
manipulation more convenient, but at the cost of wasted
memory.

Manipulating UTF-8 and UTF-16 strings

The last piece of the puzzle, once we have a Unicode string in
memory, is to find each character in it. This requires
specialized subprograms, since the number of bytes is variable

Ada Gems 129

Ada User Journal Volume 34, Number 2, June 2013

for each character.

XML/Ada's Unicode module includes such a set of
subprograms in its Unicode.CES.* packages. In general, going
forward is relatively easy and can be done efficiently, whereas
going backward in a string is more complex and less efficient.

The GNAT run-time library also contains such packages, for
instance GNAT.Encode_UTF8_String and GNAT.-
Decode_UTF8_String. In particular, the latter provides
Decode_Wide_Character, Next_Wide_Character, and
Prev_Wide_Character, to find all the characters in a string.

Gem #146: Su(per)btypes in Ada
2012 - Part 1
Yannick Moy, AdaCore

Abstract. The new revision of Ada is full of features for
specifying properties of types. In this series of three Gems, we
describe three aspects that can be used to state invariant
properties of types. This first Gem is concerned with the
Static_Predicate aspect.

Let’s get started…

Ada 2012 is full of features for specifying a rich set of type
properties. In this series of three Gems, we describe three
aspects that can be used to state invariant properties of types
and subtypes. This first Gem is concerned with the
Static_Predicate aspect.

Static_Predicate can be specified on scalar types and subtype
definitions to state a property that all objects of the subtype
must respect at all times. Take for example a type Day
representing the days of the week:

type Day is (Monday, Tuesday, Wednesday, Thursday,
 Friday, Saturday, Sunday);

To state that T_Day is the (sub)type of days whose name starts
with a 'T', we can write:

type T_Day is new Day with Static_Predicate => T_Day
 in Tuesday | Thursday;

or

subtype T_Day is Day with Static_Predicate => T_Day
 in Tuesday | Thursday;

Now the compiler will warn about a program that assigns a
value statically known to be different from Tuesday or
Thursday to a T_Day object.

We'll proceed with using the second definition above. For
example, on this incorrect code:

D : T_Day := Day'First; -- Incorrect

GNAT generates the following warning at compile time:

>>> warning: static expression fails static predicate
check on "T_Day"

The compiler also checks the completeness of case expressions
and case statements involving T_Day arguments. For example,
on this code:

 case D is
 when Tuesday => ...
 when Friday => ... -- Incorrect
 end case;

GNAT generates the following errors at compile time:

>>> missing case value: "Thursday"
>>> static predicate on "T_Day" excludes value "Friday"

If Friday is replaced by the correct value Thursday, then the
code compiles quietly.

Finally, the compiler generates run-time checks for any
erroneous write of a day other than Tuesday or Thursday in an
object of type T_Day, which makes it easy to detect violations
of the predicate of a type as soon as it occurs! Note that to
enable run-time checking of Static_Predicate (and other kinds
of assertions specified by aspects) it's necessary to compile
with the switch -gnata (or else enable assertion checking with
the pragma Assertion_Policy).

For example, suppose we have a procedure Next that advances
its argument to the next day, and we want to define a similar
procedure, Next_T, that advances its argument of subtype
T_Day. Here's the definition of procedure Next:

procedure Next (D : in out Day) is
begin
 if D = Sunday then
 D := Monday;
 else
 D := Day'Succ (D);
 end if;
end Next;

Following is a failed attempt at defining Next_T:

procedure Next_T (D : in out T_Day) is
begin
 Next (D); -- Incorrect
 while D not in T_Day loop
 Next (D);
 end loop;
end Next_T;

Let's add a test of this code:

with Days; use Days;
procedure Main is
 D : T_Day := Tuesday;
begin
 Next_T (D);
end Main;

When this code is compiled with assertions enabled (-gnata)
and run, it issues a run-time error:

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :
Static_Predicate failed at days.adb:3

This points to the first line where Next is called in Next_T.
Indeed, on entry to Next_T, the value of D is Tuesday, so
Next returns Wednesday, which does not satisfy the
Static_Predicate of T_Day, but is assigned to a T_Day, hence
triggering a run-time error. The correct version of Next_T uses
a temporary variable of type T_Day'Base, which strips off all
constraints from T_Day, including the predicate if present:

procedure Next_T (D : in out T_Day) is
 Tmp : T_Day'Base := D;
begin
 Next (Tmp);
 while Tmp not in T_Day loop
 Next (Tmp);

130 Ada Gems

Volume 34, Number 2, June 2013 Ada User Journal

 end loop;
 D := Tmp;
end Next_T;

In the next Gem in this series we'll see how to use a related
aspect called Dynamic_Predicate.

Gem #147: Su(per)btypes in Ada
2012 - Part 2
Yannick Moy, AdaCore

Abstract: In the previous Gem in this series, we saw how the
aspect Static_Predicate can be used to state properties of scalar
objects that should be respected at all times. This Gem is
concerned with the Dynamic_Predicate aspect.

Let’s get started…

The previous Gem in this series showed how the aspect
Static_Predicate can be used to state properties of scalar
objects that should be respected at all times. This Gem is
concerned with the Dynamic_Predicate aspect, which can be
used on all type and subtype declarations (not just scalar ones).

Consider for example a type Message encoding the dates
when a message was sent and received, where dates are
represented by strings, such as "1789-07-14" for the fourteenth
of July 1789:

type Day is new String (1 .. 10);

type Message is record
 Sent : Day;
 Received : Day;
end record;

To state that a message reception date should always be
greater than the date it was sent, we can write:

type Message is record
 Sent : Day;
 Received : Day;
end record with
 Dynamic_Predicate => Message.Sent <=
 Message.Received;

Note that the type name itself is used as a prefix of the
components named in the predicate. In this context the name
of the type denotes what Ada calls the current instance of the
type, which at run time will denote the actual object the
predicate is applied to.

In contrast to Static_Predicate, the compiler cannot determine
in general if a Dynamic_Predicate will fail, so it inserts run-
time checks at certain required locations in the code:

- when assigning to a variable of the subtype

- when passing an input parameter of the subtype

- when returning an output parameter to an object of the
subtype

- when converting a value to the subtype

For example, on the following incorrect code:

M : Message := (Received => "1776-07-04", Sent =>
"1783-09-03"); -- ncorrect

Compiling it with assertions and running it leads to the
following error:

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :
Dynamic_Predicate failed at main.adb:3

If the values of the Sent and Received components are
corrected to reflect the actual event ordering of the
proclamation of the Independence of the United States and the
date of the treaty of Paris ending the American Revolutionary
War, then the generated code executes without errors.

Beware that no run-time checks are inserted when assigning to
individual components, so the predicate can be silently
violated between assignments and calls. For example, if the
definition above separately assigns each component of M,
even if the value for Received and Sent are appropriately
ordered:

 M : Message; -- incorrect
begin
 M.Received := "1783-09-03"; -- incorrect
 M.Sent := "1776-07-04"; -- predicate is correct here

This code does not lead to a run-time failure, but if we pass the
message before it is completely initialized to some procedure
Process taking it as input parameter:

procedure Process (M : Message);

Compiling the resulting code with assertions and running it
again leads to an error:

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :
Dynamic_Predicate failed at main.adb:7

Note that Dynamic_Predicate is more flexible than
Static_Predicate: it can be applied to more forms of types and
more general predicate expressions. For example, the mod
operator is not allowed outside a static expression in a
Static_Predicate, so the type of odd numbers must be defined
with a Dynamic_Predicate:

subtype Odd is Integer with Dynamic_Predicate =>
 Odd mod 2 = 1;

Likewise, a user function can be called in a
Dynamic_Predicate, but not in a Static_Predicate.

GNAT conveniently provides an aspect Predicate that can be
used anywhere a Dynamic_Predicate is allowed, and analyzes
it as a Static_Predicate when possible.

In the next and final Gem in this series on type and subtype
contracts we'll look at a related aspect called Type_Invariant.

Gem #148: Su(per)btypes in Ada
2012 - Part 3
Yannick Moy, AdaCore

Abstract: In the previous two Gems of this series, we saw
how the aspects Static_Predicate and Dynamic_Predicate can
be used to state properties of objects that should be respected
at all times. This Gem is concerned with the Type_Invariant
aspect.
Let's get started...

In the previous two Gems, we saw how aspects
Static_Predicate and Dynamic_Predicate can be used to state
properties of objects that should be respected at all times. This
third and final Gem in the series is concerned with an aspect
called Type_Invariant.

Ada Gems 131

Ada User Journal Volume 34, Number 2, June 2013

The Type_Invariant aspect can be used with private types, to
define a property that all objects of the types should respect
outside of the package where the types are declared. Take for
example a type Communication storing the messages between
various parties, based on the Message type used in the
previous Gem:

package Communications is
 type Message_Arr is array (Integer range <>) of
 Message;
 type Communication (Num : Positive) is private;
private
 type Communication (Num : Positive) is record
 Msgs : Message_Arr (1 .. Num);
 end record;
end Communications;

To state that messages should be ordered by date of reception,
we can add the aspect to the full type:

type Communication (Num : Positive) is record
 Msgs : Message_Arr (1 .. Num);
end record with
 Type_Invariant =>
 (for all Idx in 1 .. Communication.Num-1 =>
 Communication.Msgs(Idx).Received <=
 Communication.Msgs(Idx+1).Received);

The compiler will insert run-time checks to ensure that this
property holds at prescribed locations in the code:

- at object initialization (including by default!)

- on conversions to the type

- when returning an object from a public function defined
in the type's package

- on out and in out parameters, when returning from a
public procedure of the type's package

For example, consider the following incorrect code that fails to
initialize Com to a correct value satisfying the invariant:

Com : Communication (2); -- incorrect

Compiling it with assertions and running it leads to the
following error:

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :
failed invariant from communications.ads:16

But if we give the object an explicit value, through a creation
function Create defined in unit Communications, then the
object declaration is elaborated without errors:

Coms : Communication (2) := Create (A);

Inside the Create function, the initialization of Coms must
respect the invariant, but after that, the invariant could be
violated between the time Coms is declared, and the time it is
returned.

function Create (A : Message_Arr)
 return Communication is
 Coms : Communication :=
 (Num => A'Length, Msgs => A);
begin

-- statements before the return might violate the
-- invariant

 return Coms;
end Create;

Ada requires that the type invariant be checked on every part
of a parameter that has type Communication, where a part can
be a component of a record, or an element of an array, or any
such combination. For example, it is checked on every element
of the array returned by Create_N or potentially modified by
Update_N:

type Communication_Arr is array (Integer range <>)
 of Communication;
function Create_N return Communication;
procedure Update_N (A : in out Communication_Arr);

Importantly, the invariant is not checked on subprograms
declared in the private part or in the package body. These
subprograms are internal operations, and should be callable on
objects whose invariant does not hold. Likewise, the invariant
is not checked on parameters of mode in, for example on query
functions used in the definition of the type invariant itself.
This is fortunate, since otherwise this would easily cause
infinite loops!

As a side note, it's worth mentioning that GNAT also provides
an aspect with the name Invariant, which is a synonym for the
Type_Invariant aspect (and implemented before
Type_Invariant appeared in Ada 2012).

This Gem ends the series of three Gems on su(per)btypes in
Ada. Together with Static_Predicate and Dynamic_Predicate,
Type_Invariant provides new ways to state properties of your
data, both in new and existing programs, so try them out!.

132

Volume 34, Number 2, June 2013 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming events
	Rationale for Ada 2012: 6a Containers
	Overview of the 15th International Real-Time Ada Workshop
	Session Summary: Multiprocessor Issues, part 1
	Session Summary: Multiprocessor Issues, part 2
	Session Summary: Language Profile and Application Frameworks
	Session Summary: Concurrency Issues
	Ada Conference UK 2013
	Ada Gems
	National Ada Organizations

