

Ada User Journal Volume 32, Number 1, March 2011

ADA
USER
JOURNAL

Volume 32
Number 1

March 2011

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 5

Conference Calendar 30

Forthcoming Events 37

Student Programming Contest “The Ada Way” 40

Articles

 B. J. Moore
“A comparison of work-sharing, work-seeking, and work-stealing parallelism strategies
using Paraffin with Ada 2005” 43

 S. T. Taft
“Designing ParaSail – Parallel Specification and Implementation Language” 49

Ada Gems 60

Ada-Europe Associate Members (National Ada Organizations) 64

Ada-Europe 2010 Sponsors Inside Back Cover

2

Volume 32, Number 1, March 2011 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 32, Number 1, March 2011

Editorial

In this first editorial of 2011, I would like to start by briefly presenting to our readers some of the highlights this year will
bring to the Ada community. First, I am happy to announce that the Ada User Journal will publish the Rationale for Ada
2012, under preparation by John Barnes. The Rationale will be a valuable asset for the Ada community and will be published
in several parts, the first being planned for next September. Also, a brief note to the return of the International Real-Time Ada
Workshop, which will take place next September, organized by our friends of the University of Cantabria, Spain. Note that
the deadline is around the corner.

Last, but definitely not least, a note for all Ada practitioners to converge to Edinburgh, this June, for the Ada-Europe 2011
conference, which will join efforts with the Ada Conference UK, in an event called “The Ada Connection”. I must draw your
attention to the rich contents of this event (briefly presented in the forthcoming events section of the Journal), which, apart
from the tutorials, exhibition and scientific and technical presentations will also provide a very rich networking environment.
A particular highlight this year is the panel discussions which will be held, on the challenging topics of “DO178C and Object-
Orientation for Critical Systems” and “Programming Languages Meet Multi-Core”.

And it is in line with the latter, that the technical contents of this issue discuss parallel programming approaches. In the first
paper, Brad Moore, of General Dynamics, Canada, discusses the results of applying different approaches to manage parallel
work items using Paraffin, a set of Ada 2005 generics supporting the incorporation of parallel computation in Ada programs.
Afterwards, the issue provides a paper, contributed by Tucker Taft, of SofCheck, USA, with the edited and consolidated trail
of the ParaSail blog, detailing the (evolving) design of a new programming language, targeted to the development of parallel
and high-integrity software. It is interesting to verify that although the time passing notion of a blog is difficult to map into
the "static" and self-contained nature of a Journal paper, the result is a pleasure to read.

Continuing with the contributions, the Ada Gems section provides the series of gems on Reference Counting, from
Emmanuel Briot, of AdaCore. And, as usual, you will find the valuable information of the News and Calendar sections,
contributed by Marco Panunzio and Dirk Craeynest, their respective editors.

 Luís Miguel Pinho
Porto

March 2011
 Email: lmp@isep.ipp.pt

 5

Ada User Journal Volume 32, Number 1, March 2011

Quarterly News Digest
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Organizations 5
Ada-related Events 5
Ada-related Resources 7
Ada-related Tools 8
Ada-related Products 14
References to Publications 15
Ada Inside 16
Ada in Context 17

Ada-related
Organizations
New AdaIC website
From: Thomas Løcke <tl@ada-dk.org>
Date: Fri, 17 Dec 2010
Subject: New AdaIC website.
URL: http://ada-dk.org/?page=news&

news_id=227
And it is gorgeous. It is probably the best
looking Ada website I've seen.
Pleasant, clean and easy to navigate.
The website is a regular treasure trove of
Ada information, and I especially enjoyed
these pages:
- Ada Advantages
- Ada Learning Materials
- Introduction to Ada 2005
- Free Tools And Libraries
All this might also have been available on
their old website, but never was it so
visible and readily available.
[…]
And I spotted this on the reddit Ada
subgroup, which is another "do not miss"
Ada resource.
[visit http://www.adaic.com/ and
http://www.reddit.com/r/ada/ —mp]

Ada 2012 Language
Reference Manual (draft)
From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 08 Feb 2011
Subject: The Ada 2012 Reference Manual

(Draft)
URL: http://ada-dk.org/?page=news&

news_id=262
The ARA has made an early Ada 2012
Reference Manual Draft available to the
Ada community. There's also a link to the
proposed Amendment 2 to the Ada
Standard.

All very nice. Of special interest to me is
the new string encoding package, which
looks to shape up very nicely. Also the
Containers.Multiway_Trees is interesting.
Here's a comparison chart showing the
differences between the various Ada
standards.
I'm still a bit worried about Conditional
expressions / Case expressions and In-out
parameters for functions, but given the
excellent track-record of Ada, I'm sure
even those two will come out both
looking and working quite well.
[the draft can be downloaded at
http://www.ada-auth.org/standards/
ada12.html
the comparison chart can be downloaded
at
http://www.adaic.org/advantages/
ada-comp-chart/ —mp]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

Ada-Europe 2011 - Final
Call for Industrial
Presentations
From: Dirk Craeynest

<dirk@cs.kuleuven.ac.be>
Date: Fri, 31 Dec 2010 08:10:45 +0000 UT
Subject: FINAL CfIP, Conf. Reliable

Software Technologies, Ada-Europe
2011

Newsgroups: comp.lang.ada,fr.
comp.lang.ada,comp.lang.misc

FINAL Call for Industrial Presentations

The Ada Connection

16th International Conference on
Reliable Software Technologies -

Ada-Europe 2011
 +

Ada Conference UK 2011

20 - 24 June 2011, Edinburgh, UK

http://www.ada-europe.org/
conference2011

*** DEADLINE Saturday 8 JANUARY

2010 ***

The Ada Connection combines the 16th
International Conference on Reliable
Software Technologies - Ada-Europe
2011 - with Ada Conference UK 2011. It
will take place in Edinburgh, Scotland's
capital city and the UK's most popular
conference destination.
In addition to the usual Call for Papers,
the conference also seeks industrial
presentations which deliver value and
insight, but may not fit the selection
process for regular papers.
Authors of industrial presentations are
invited to submit a short overview (at
least one page) of the proposed
presentation by 8 January 2011. The
Industrial Committee will review the
proposals and make the selection. To
submit your abstract, please visit:
http://conferences.ncl.ac.uk/adaconnectio
n2011/industrial_contributions_form.php
The authors of selected presentations shall
prepare a final short abstract and submit it
by 16 May 2011, aiming at a 20-minute
talk.
Accepted authors will also be invited to
submit corresponding articles for
publication in the Ada User Journal,
which will host the proceedings of the
Industrial Program of the Conference. For
any further information please contact the
Industrial Chair directly.
In addition to the award for best regular
paper, Ada-Europe will also offer an
honorary award for the best presentation,
considering both regular and industrial
presentations.
Schedule

08 January 2011: Submission of
industrial presentation proposals
08 February 2011: Notification of
acceptance to authors
16 May 2011: Industrial presentations
required
20-24 June 2011: Conference

6 Ada-related Events

Volume 32, Number 1, March 2011 Ada User Journal

Industrial Committee

Jamie Ayre, AdaCore, France (Industrial
Chair)
Guillem Bernat, Rapita Systems, UK
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
Hubert Keller, Forschungszentrum
Karlsruhe GmbH, Germany
Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White-Elephant GmbH,
Switzerland
Paul Parkinson, Wind River, UK
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC Inc, USA
Rei Stråhle, Sweden
Rod White, MBDA, UK

Please circulate widely.
If you have a LinkedIn account, let your
network know that you will be attending
or are interested in thist event; see
http://events.linkedin.com/
Ada-Connection-16th-International/
pub/405820
Dirk.Craeynest@cs.kuleuven.be,
Ada-Europe'2011 Publicity Chair
(V6.1)

14th Jornadas de
Tiempo Real
From: Ada Spain news
Date: Tue, 01 Feb 2011 [fetched]
Subject: JTR 2011
URL: http://polaris.dit.upm.es/~str/jtr11/
The "Real-time systems" group at the
Universidad Politécnica de Madrid
organized the first edition of the
"Jornadas de Tiempo Real" ("Real-time
Days" —mp) in 1998, with the goal of
contributing to establishing a common
ground between the various Spanish
research groups on real-time systems.
Since then, the Jornadas have been
characterized by an open dialogue and
collaboration, and as a meeting
opportunity for those groups.
After thirteen years, the group at UPM
returns to organize the "Jornadas de
Tiempo Real".
This fourteenth edition shares the same
goal: to facilitate the dissemination,
analysis and constructive debate on the
results of teaching and research
experiences carried out by those groups.
The Jornadas will be held at the Escuela
Técnica Superior de Ingenieros de
Telecomunicación, located in the
University Campus of Madrid, on the 3rd
and 4th of February, 2011.

[Translated from Spanish. Find the
program and download the papers or
presentations (mostly in English) at
http://polaris.dit.upm.es/~str/jtr11/
contribuciones.html —mp]

Ada in Debian and other
distributions: FOSDEM
video online
From: Dirk Craeynest

<dirk@vana.cs.kuleuven.be>
Date: Sat, 12 Feb 2011 09:03:28 +0000

UTC
Subject: Ada at FOSDEM 2011 - video and

slides available (update)
Newsgroups: comp.lang.ada
On Sunday February 6 at FOSDEM 2011,
Ludovic Brenta and Miguel Telleria de
Esteban gave a 1.5-hour talk about Ada.
The video is online at:
http://www.youtube.com/watch?v=-
3HvUH4fJPM&p=AC607424229CFC1A.
The slides for both parts of the talk ("Ada
in Debian and Other Distributions" and
"Ada Packaging Example: MAST") are
available on Ada-Belgium's web page for
this event:
http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/11/110205-fosdem.html
The Debian package for MAST has been
uploaded as well:
http://ppa.launchpad.net/snapy/ppa/
ubuntu/pool/main/m/mast/
MAST is a schedulability and time-
completion analysis tool for real-time
systems, developed at the CTR-lab of the
University of Cantabria, Spain.
Enjoy!
The FOSDEM Team of Ada-Belgium

Videos from the High
Assurance Software
Symposium
From: Altran Praxis Press Center
Date: Fri, 21 Jan 2011
Subject: High Assurance Software

Symposium and SPARK User Group
Meeting

URL: http://www.altran-praxis.com/news/
SPARKuserGroup_21_Jan_11.aspx

Altran Praxis and AdaCore are pleased to
announce that the first videos from the
October 2010 High Assurance Software
Symposium and SPARK User Group
meeting are now available on-line.
SPARK Ada in High SIL Active Life
Support; Alex Deas, Deep Life.
Alex Deas describes how Deep Life have
used SPARK to replace the core of a self-
contained active life support system, used
for diving, known as a rebreather. The
rebreather maintains a diver's oxygen
levels within a narrow range, as well as
monitoring over 60 sensors and providing

high integrity communications. Unsafe
failure of the system can produce either
low or high levels of oxygen, which will
generally result in a fatal accident within
a minute of the failure occurring. The
application was assessed as IEC 61508
SIL 3, and was developed with SIL 4
rigour. A time-triggered architecture is
used in which the microcontroller
operates a task scheduler through which
each computational module is executed
with a predefined frequency and phase in
relation to other tasks. Originally
developed in MISRA C, the task
scheduler has been converted to SPARK.
This was so successful that all other
functions are also being ported to
SPARK, and SPARK will form the basis
for future high-integrity systems within
Deep Life.
Designing and Implementing a Verifiable
High-Assurance Workstation; Alexander
Senier, Secunet.
Alexander Senier presents a methodology
and a system architecture for cost-
efficient development of high-security
systems. The approach, which uses
SPARK for critical components, is being
successfully used to build an interactive
workstation for secure concurrent
handling of multiple security domains,
using the emerging system architecture
called Multiple Independent Levels of
Security (MILS). Reuse of general-
purpose software and manageable
verification effort make the proposed
architecture both flexible and cost-
efficient.
Autocoding – do we still need software
design; Rod White, MBDA.
Over the past few years there has been a
rapid proliferation of the use of
autocoding across a wide range of
software domains. With the heightened
focus on code, that on the design and non-
functional properties appears to have
diminished. Rod White looks across the
issues of autocoding and design and, from
experience, examines the kind of
problems that emerge and suggests how
design might be used effectively in an
autocoding environment.
More recordings from this highly
successful event will be posted at the
same location soon, so keep checking
regularly for further updates.
The High Assurance Software
Symposium and SPARK User Group
meeting was hosted by Altran Praxis in
Bath and brought together the SPARK
community and clients interested in high
assurance software.
[…]

Presentation of the results of
project Couverture
From: Jamie Ayre <ayre@adacore.com>
Date: Wed, 19 Jan 2011 16:28:00 +0100

Ada-related Resources 7

Ada User Journal Volume 32, Number 1, March 2011

Subject: [ada-france] Le Projet Couverture
Newsletter: Ada-France newsletter
The Couverture project (http://www.open-
do.org/projects/couverture/), by the Free
Software group of the "Systematic"
cluster, just finished. The project aimed to
developing (with an open license) a set of
software tools for the analysis of the
structural coverage of an Ada program for
use during its functional tests.
It also provides for the production of
artifacts which permit the qualification of
the developed tools according to the
certification standards applicable to
embedded safety-critical software.
If you want more information about the
project and its results, you are cordially
invited to participate to the event which
will be held at the premises of AdaCore
on January 27, 2011 at 17:30. Register at
events@adacore.com
[translated from French —mp]

Ada-related Resources
On the book "Building
Parallel, Embedded, and
Real-Time Applications with
Ada"
From: Marco

<prenom_nomus@yahoo.com>
Date: Sat, 5 Feb 2011 04:57:20 -0800 PST
Subject: Questions on new John McCormick

book
Newsgroups: comp.lang.ada
"Chapter 2 of the book "Building Parallel,
Embedded, and Real-Time Applications
with Ada" by McCormick, Singhoff, and
Hugues includes a long section on low
level programming with Ada. It covers
both memory mapped and port I/O
architectures. We develop polling and
interrupt based device drivers. Everything
is done using high level Ada abstractions
for low level features. It includes a small
amount of machine code insertion. We
just turned in the final page proofs and
expect to have hard copy by April."
1) Will this cover Ada 95 as well as
2005?
2) Do you cover some non-Intel x86 HW?
3) Will it be sold in the USA?
From: John McCormick

<mccormick@cs.uni.edu>
Date: Sun, 6 Feb 2011 06:12:22 -0800 PST
Subject: Re: Questions on new John

McCormick book
Newsgroups: comp.lang.ada
> 1) Will this cover Ada 95 as well as

2005?
Yes
> 2) Do you cover some non-Intel x86

HW?

Very little SPECIFIC hardware is
covered. The only hardware specific topic
is an example of inserting x86 machine
code.
> 3) Will it be sold in the USA?
Yes
From: John McCormick

<mccormick@cs.uni.edu>
Date: Wed, 9 Feb 2011 13:59:58 -0800 PST
Subject: Re: Questions on new John

McCormick book
Newsgroups: comp.lang.ada
> […]
> John McCormick (on another thread)

says they have only just handed the
final proofs and hope to have hard copy
in April. I will be interested to see what
Amazon says now!

Indeed! If anyone finds a copy earlier
they can let me know so I can get one :) I
think that April is realistic. I do appreciate
all of the excitement generated in this
thread. Frank, Jérôme, and I hope our
work justifies it. This semester is the
second time students in my real-time
embedded systems class have used the
manuscript. The first group did a good job
telling me where we needed to improve
our explanations. Authors learn a lot from
novices. The second group hasn't made
any suggestions (yet) so maybe we got it
right.
From: John McCormick

<mccormick@cs.uni.edu>
Date: Thu, 10 Feb 2011 04:21:41 -0800

PST
Subject: Re: Questions on new John

McCormick book
Newsgroups: comp.lang.ada
> […] Does the book cover any Ada 2012

innovations?
No.

Support for Ada in GitHub
From: R Tyler Croy <tyler@linux.com>
Date: 27 Nov 2010 08:17:15 GMT
Subject: GitHub added support for Ada
Newsgroups: comp.lang.ada
I posted this to /r/ada on reddit.com
already but I thought you guys would
enjoy this as well.
GitHub has finally added support
recognizing Ada as a language meaning
.adb and .ads files will now be syntax
highlighted *and* you can find Ada
projects using their "Explore"
functionality:
https://github.com/languages/Ada
[…]

Ada group on Identi.ca
From: R Tyler Croy <tyler@linux.com>
Date: Tue, 07 Dec 2010 19:53:15 GMT
Subject: Ada group on identica
Newsgroups: comp.lang.ada

I was bummed when I didn't find an Ada
group on Identi.ca so I went ahead and
created one:
http://identi.ca/group/ada
For the uninitiated, Identi.ca is a
microblogging service not too dissimilar
from Twitter, but far more heavily
populated with hackers :)
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 09 Dec 2010 08:43:42 +0100
Subject: Re: Ada group on identica
Newsgroups: comp.lang.ada
[…]
There is http://identi.ca/adafrance/ ;-)
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Thu, 09 Dec 2010 00:58:14 -0800

PST
Subject: Re: Ada group on identica
Newsgroups: comp.lang.ada
[…]
Considering the small size of the Ada
community, creating too many groups,
forums, fan pages and what not like this
will inevitably lead to dispersing the
effort. I'm not sure if the community can
afford this.
"Not too dissimilar from Twitter" begs the
question: what is the added value of it?
From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 09 Dec 2010 10:24:23 +0100
Subject: Re: Ada group on identica
Newsgroups: comp.lang.ada
[…]
The community is currently very small,
compared to other languages. I think it is
safe to say that we need all the visibility
we can get. The Ada community
generates some interesting things, but few
people outside the Ada community is
aware of this. I do not generate a lot of
Ada code (yet!), but I do spend a bit of
time every day trying to attract attention
to the work done by people like you
Maciej.
This is just another tool to help with that
effort.
> "Not too dissimilar from Twitter" begs

the question: what is the added value of
it?

I think the identi.ca crowd is more
technically oriented, so the audience is
probably more inclined to check out a
blurb about Ada.
Obviously, the more people who
subscribe to the Ada group, the more alive
and vibrant it will appear.
From: Marc A. Criley <mc@mckae.com>
Date: Fri, 10 Dec 2010 16:01:44 -0600
Subject: Re: Ada group on identica
Newsgroups: comp.lang.ada
> Considering a small size of the Ada

community, creating too many groups,
forums, fan pages and whatnot like this
will inevitably lead to dispersing the

8 Ada-related Tools

Volume 32, Number 1, March 2011 Ada User Journal

effort. I'm not sure if the community
can afford this.

(I know your concern has diminished, but
I wanted to make a point anyway :-)
I think effort (and people) are dispersed
only when one totally abandons one
"community" to join another.
comp.lang.ada is probably the longest-
serving, and probably strongest, Ada
community on the Internet.
Sure, there's been turnover and
participation waxes and wanes, but it does
seem to be the home port, so to speak.
Taking Ada knowledge and advocacy to
other venues in no way requires the
dilution of the comp.lang.ada community.
Overall it can increase the size of the
community, some participants of which
may end up here either casually or
actively.
And instead of there being just a single
home port for Ada, there can be a network
of Ada havens that leverage one another.
For instance, I'm the creator and
moderator of the Ada sub-reddit
(http://www.reddit.com/r/ada). I regularly
read comp.lang.ada for links to interesting
articles and announcements of newly
available products and releases, and I also
monitor Thomas Locke's Ada Denmark
site (http://ada-dk.org) for material. (Plus
I subscribe to various mailing lists and
just stumble across things from time to
time.) And Reddit can be a source of
material that I uncover, and those who
monitor it can then pass that material on
to others.
Each of us has our own set of readers and
subscribers, and passing along
information from one to another leverages
network effects to get it to those who may
not have the time to fish for information
across the Web, or who are only dabbling
in Ada to get a feel for it.
Our good buddy R. Tyler Croy recently
wrote a blog post
(http://unethicalblogger.com/posts/2010/
12/ada_surely_you_jest_mr_pythonman)
about his experiences learning Ada and
posted it in the general programming
forum on Reddit, where it did very well,
garnering a lot of comments, discussion,
and interest. I leveraged off his
submission witha brief plug for the Ada
sub-reddit, and in one day the number of
subscriptions increased 10%, that was the
largest one-day, or even one *week*,
increase ever. It's hardly likely that there
was just simply a bunch of Ada
programmers on Reddit, who didn't know
about the Ada sub-reddit, but who had
now suddenly become aware that there
was someplace associated with one of
their hangouts to which they could join.
No, I expect most of those new
subscriptions were individuals who were

intrigued by the discussion, and have
opted to now keep on eye on what's up
with Ada. Some of these may, like Tyler,
become an active participant in the
community.
The Ada group on identi.ca, then, is just
another means of potentially expanding
that community, providing another
avenue for advocacy to those who might
not have had any contact up till now with
any of the established Ada points of
presence on the Internet.

Ada links on Delicious
From: Georg Maubach

<ada_resources@gmx.de>
Date: Tue, 4 Jan 2011 09:27:17 GMT
Subject: Ada Links on Delicious
Newsgroups: comp.lang.ada
Hi All,
over the time I collected the Ada
resources I found and added them to my
Delicious bookmarks. Today, I have
opened them to the Ada community. You
can use them be directing your browser to
http://www.delicious.com/tags/
ada_resources
Any hints on other Ada links and
resources not listed here are welcome and
will be added to the list.

Literate Programs and Ada
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 05 Feb 2011 19:11:21 +0100
Subject: Another place where to promote

Ada (LP applied to Ada)
Newsgroups: comp.lang.ada
Hello,
Rosetta Code was previously (re-)
introduced here, for the purpose of
SPARK precisely.
Here is another similar place, oriented
toward Literate Programming, and it
proudly shows an Ada section, however
currently with only two examples.
Furthermore, these two examples are so
simple that they do not really explain
anything; so this really needs to be fed.
If anyone is interested into promoting
both Ada and LP, here is the place:
http://en.literateprograms.org/Category:
Programming_language:Ada

Splitting a string with
GNAT.String_Split
From: Thomas Løcke <tl@ada-dk.org>
Date: Fri, 24 Dec 2010
Subject: Using GNAT.String_Split to split a

string
URL: http://ada-dk.org/?page=news&

news_id=233
I've written a new article for our wiki:

GNAT.String_Split Basic Usage
Example.
[http://wiki.ada-dk.org/index.php/
GNAT.String_Split_Basic_Usage_Examp
le —mp]
Splitting a string into smaller parts based
on one or more separators is not an
uncommon task in programming, so when
I stumbled on an Ada example for doing
just that (thanks caracal!), I jumped at the
opportunity to turn it into a short beginner
article. And this really is a beginner’s
article, so everybody should be able to
understand what's going on.
I hope.
As usual I've done my best to honor Ada
by not letting too many bugs and errors
slip by, but there's a good chance I
might've failed somewhere.
If so, please let me know, or just fix it
yourself. It is a wiki after all, so you have
that power.

Ada-related Tools
Paraffin
From: Brad Moore

<brad.moore@shaw.ca>
Date: Tue, 25 Jan 2011 09:04:59 -0700
Subject: Paraffin: Parallelism generics for

Ada 2005
Newsgroups: comp.lang.ada
The initial release of paraffin is available
at
http://paraffin.sourceforge.net/
It provides generics for adding parallelism
to loops and recursive structures.
For iterative parallelism there are work-
sharing, work-seeking, and work-stealing
forms.
For recursive parallelism there are work-
sharing and and work-seeking forms.
Also, the recursive parallelism can
provide stack-safe recursion that avoids
stack overflow.
The stack-safe recursion generics provide
this capability even if used on a single
processor.
Any feedback is greatly appreciated.

Magpie 0.10
From: Marc A. Criley <mc@mckae.com>
Date: Wed, 26 Jan 2011 19:12:41 -0600
Subject: Announce: Magpie 0.10 Utilities

for multi-core execution
Newsgroups: comp.lang.ada
Hot on the heels of Brad Moore's Paraffin,
and inspired by his article in Ada Letters
(http://portal.acm.org/citation.cfm?
id=1879078, membership required),
comes the initial release of Magpie:

Ada-related Tools 9

Ada User Journal Volume 32, Number 1, March 2011

Magpie is a collection of generic
procedures that distributes subranges of
iterative application-defined processing
across the processors of a multi-core CPU
to achieve true concurrency and therefore
increased application performance.
Magpie supports work sharing and work
seeking processing for the GNAT
compiler on Linux platforms. The
platform restriction is due to processor-
affinity not being a standard Ada feature
until Ada 2012, so in the interim a
GNAT-specific pragma is utilized (more
info in the README).
Magpie is available for download at:
http://sourceforge.net/projects/magpie-mc
Break into groups, execute, and rejoin
with your consensus.
From: Marc A. Criley <mc@mckae.com>
Date: Wed, 02 Feb 2011 20:02:12 -0600
Subject: Re: Announce: Magpie 0.10

Utilities for multi-core execution
Newsgroups: comp.lang.ada
> Brad, Marc, what is the difference

between Magpie and Paraffin?
Magpie provides two generic functions
and a generic procedure. They're designed
to operate on a container of data that is
indexed or keyed by values of a discrete
type. E.g., an integer indexed array, or a
vector.
The generic functions retrieve a value
from the container, apply an application-
supplied function to it, then combine
("reduce") each result with a running
total, until all values have been processed,
and the final value of the running total is
returned as the generic function's value.
The generic procedure repeatedly invokes
an application-supplied procedure,
accompanying each invocation with an
index value. There is no value returned,
the supplied procedure is simply
repeatedly invoked, presumably
progressing through each element of the
container, and it is responsible for
managing its results.
The technique I got from Brad's article
had to do with partitioning the range of
index/keys amongst application-
designated CPU cores.
One of the functions simply evenly splits
the range across the number of cores and
kicks off the execution of each task
associated with a core.
The other function, and the procedure,
initially split the range evenly, but if one
of the core tasks finishes early, it
advertises that it is available to take on
more work. When one of the other tasks
notices this, it stops, splits its remaining
work, and both resume execution.
There's more detail about all this in the
README, along with a couple examples,
including a Magpie version of Jakob
Sparre Andersen's Mandelbrot set
generator.

Matreshka 0.0.6
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Fri, 4 Feb 2011 03:15:04 -0800 PST
Subject: Announce: Matreshka 0.0.6
Newsgroups: comp.lang.ada
We are pleased to announce Matreshka
0.0.6 release. Major improvements in this
release is:
- FastCGI support;
- XML writer;
- access to command line arguments and

environment variables;
- use of SSE2 instructions set on x86

platform when available;
- support for SHIFT-JIS encoding;
- update to Unicode 6.0.0.
Please visit http://adaforge.qtada.com/cgi-
bin/tracker.fcgi/matreshka/downloader
to download source code and obtain
additional information.
Matreshka is a set of reusable components
to construct Ada applications. It includes
components to handle strings of Unicode
character, text codecs, message translator,
regular expression engine, XML
processor, and FastCGI module.
[see also "Matreshka v0.0.4 and v0.0.5" in
AUJ 31‑3 (Sep 2010), p.161 —mp]

Storage_Stream
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 09 Feb 2011 12:00:08 +0100
Subject: [Ann] package Storage_Stream,

was: How do I write directly to a
memory address?

Newsgroups: comp.lang.ada
Back to the OP, since many people have
that need of putting various stuff at raw
memory addresses, I'm happy to provide a
stream that does just that: write data of
any type at any memory address.
It is available from Adalog's component
page:
http://www.adalog.fr/compo2.htm
GMGPL as usual, of course.

AVR-Ada and GCC 4.5.0
From: Brian Drummond

<brian_drummond@btconnect.com>
Date: Mon, 15 Nov 2010 15:27:00 +0000
Subject: AVR-Ada and GCC4.5.0 revisited.
Newsgroups: comp.lang.ada
Around August, I left this thread hanging
as I ran out of play time…
Then, I was having difficulty getting a
tool chain working under Linux - most of
the information online including the
article at
http://sourceforge.net/apps/mediawiki/
avr-ada/index.php?title=Setup

and the script and links from that page,
refer to GCC4.3.x.
Following these instructions to build
GCC4.3.x with GCC 4.5.0 installed is just
not going to work…
Modifying the script to use GCC 4.5 and
newer packages, results in obscure errors
about two non-existent files (which do
exist, however a third file, tested but not
reported, does not!) and my attempts to
understand this failed…
(Gory details suppressed, but building
mpfr apparently fails to find gmp.h)
Building the GCC4.5 tools from scratch,
following the above article, but editing
versions, I could build GCC with Ada
support, and gnatbind, but not gnatprep,
gnatlink, or gnatmake. Again, no idea
why not…
HOWEVER…
In that thread, Tero Koskinen posted that
he had the 4.5.0 files built for Fedora
Core 13 at http://iki.fi/tero.koskinen/ avr-
gnat/rpms
I was wary of trying these in case of
incompatibilities with OpenSuse.
But after struggling with the source for
long enough, I gave them a try.
They are not a complete set, (at least, for
OpenSuse 11.3) I needed to add avr-
binutils (avr-binutils-2.20-
2.fc13.x86_64.rpm) and avr-libc (avr-
libc-1.6.7-2.fc13.noarch.rpm), both from
rpm.pbone.net. Thre is a newer avr-libc
(1.70) for FC14, but I wanted to keep all
the versions in sync for now.
On OpenSuse 11.3, I used the procedure:
(1) load the above and Tero's six rpms

into a local directory
(2) added the local directory as a "plain

rpm" repository
(3) YAST then allowed me to select and

install the RPMs.
MUCH easier than previous attempts…
So far I have only built (not yet
downloaded) the "led_on" example from
the introductory tutorial at
http://sourceforge.net/apps/mediawiki/
avr-ada/index.php?title=Tutorial
but the process went smoothly.
So… Thanks to Tero Koskinen, as well as
to Warren and others for putting the
tutorials together!
From: Rolf Ebert

<rolf_ebert@users.sourceforge.net>
Date: Tue, 16 Nov 2010 14:15:32 -0800

PST
Subject: Re: AVR-Ada and GCC4.5.0

revisited.
Newsgroups: comp.lang.ada
[…]
Please note that gcc-4.5 for AVR has a
serious bug (http://gcc.gnu.org/

10 Ada-related Tools

Volume 32, Number 1, March 2011 Ada User Journal

bugzilla/show_bug.cgi?id=46192) that
prevents you using the compiler for
anything that is slightly more complex
than the LED example (i.e. anything)
I'll probably use gcc-4.4 for the next
AVR-Ada release.
From: Brian Drummond

<brian_drummond@btconnect.com>
Date: Wed, 17 Nov 2010 07:07:07 +0000
Subject: Re: AVR-Ada and GCC4.5.0

revisited.
Newsgroups: comp.lang.ada
[…]
Thanks for pointing this out. I've seen
various suggestions that gcc-4.3.x is
needed for AVR, but nothing explicit why
- until now.
Pity.
I had just confirmed that (with minor
changes to the Makefile) Warren's tutorial
works on the Arduino Duemilanove.
Now it looks as if I need to find a native
gcc-4.3.x for my system and start again.
From: Warren W. Gay

<ve3wwg@gmail.com>
Date: Wed, 24 Nov 2010 21:26:10 +0000

UTC
Subject: Re: AVR-Ada and GCC4.5.0

revisited.
Newsgroups: comp.lang.ada
[…]
> I had just confirmed that (with minor

changes to the Makefile) Warren's
tutorial works on the Arduino
Duemilanove. […]

Great to hear that Brian! Arduino has
new life (for me anyway), when you can
combine it with Ada instead of that
"munged Arduino flavoured C++". ;-)
You can see my synth's atmega168 MIDI
module here:
http://tinyurl.com/3xhlutv
Written in AVR-Ada, running with one
main thread receiving MIDI messages and
another processing "events" and
scheduled events (through timeouts).
I have a VCA module just about ready for
it as well, but no front module panel yet.
From: Warren <ve3wwg@gmail.com>
Date: Mon, 29 Nov 2010 15:10:50 +0000

UTC
Subject: Re: AVR-Ada and GCC4.5.0

revisited.
Newsgroups: comp.lang.ada
[…]
I guess you can't go directly to the picture
without logging in.
Try the following thread link instead:
http://experimentalistsanonymous.com/
board/index.php?topic=2445.0
[…]
From: Simon Wright

<simon@pushface.org>

Date: Fri, 11 Feb 2011 18:16:27 +0000
Subject: Re: avr-ada ubuntu cross-compiler

build failed
Newsgroups: comp.lang.ada
[…]
> My dreams of success were short-lived,

though, when someone pointed out a
catastrophic bug in GCC4.5.0 targeting
the AVR… […]

Actually, this bug is also present in GCC
version 4.6.0 20110203 (experimental)
[trunk revision 157963] for x86_64-apple-
darwin10.
I've updated bugzilla
(http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=46192).
The problem is there at -O2, goes away at
-O1 (and -O0).
From: Brian Drummond

<brian_drummond@btconnect.com>
Date: Fri, 11 Feb 2011 18:44:01 +0000
Subject: Re: avr-ada ubuntu cross-compiler

build failed
Newsgroups: comp.lang.ada
[…]
Do you happen to know if this applies
("goes away at -O1") in GCC 4.5 too, or
just 4.6?
(If so, I may stick with 4.5.0 and -O1 for
the time being, until I run out of space)
From: Simon Wright

<simon@pushface.org>
Date: Sat, 12 Feb 2011 13:27:37 +0000
Subject: Re: avr-ada ubuntu cross-compiler

build failed
Newsgroups: comp.lang.ada
[…]
Yes, it does. (on x86_64-apple-darwin10).
Are you sure this is really a problem for
you? It's that pragma Volatile isn't
retained *through a renaming*. Do you
have to rename?
From: Brian Drummond

<brian_drummond@btconnect.com>
Date: Sat, 12 Feb 2011 17:49:24 +0000
Subject: Re: avr-ada ubuntu cross-compiler

build failed
Newsgroups: comp.lang.ada
[…]
>Are you sure this is really a problem for

you? It's that pragma Volatile isn't
retained *through a renaming*. Do you
have to rename?

Good point, there are other ways around
the problem.
However some of the example code uses
renaming, and I can see why. Naming a
register or bit according to it's intent,
rather than its address, does add a lot to
readability, essentially "for free" in terms
of code generation.
From: Simon Wright

<simon@pushface.org>

Subject: Re: avr-ada ubuntu cross-compiler
build failed

Date: Sat, 12 Feb 2011 21:45:14 +0000
Organization: A noiseless patient Spider
Newsgroups: comp.lang.ada
[…]
It would be a lot of work, but inlined
subprograms might do the job?
With GNAT, you can use high
optimisation levels and -gnatn (-gnatN?)
but I've found you need to be more
selective (increases code size, often slows
the executable). Use pragma
Inline_Always (a GNAT special), not just
Inline.

GNAT 2009 for the LEGO
MINDSTORMS NXT —
Linux port
From: Peter Bradley

<pbradley@datsi.fi.upm.es>
Date: Thu, 18 Nov 2010 13:23:44 -0600
Subject: GNAT for LEGO Mindstorms using

a Linux host
Newsgroups: comp.lang.ada
Dear Ada developers,
At the UPM we have been working with
the LEGO Mindstorms trying to elaborate
an environment to develop real-time
applications in Ada for the Mindstorms
robotics kit.
One of the things we have done so far is
to port the GNAT cross compilation
system to Linux and we want to share this
work with the Ada community.
At the moment, the 2009 release has been
ported but we are already working with
the Ravenscar edition.
You can download the Linux x86 binaries
at:
http://polaris.dit.upm.es/~str/proyectos/
mindstorms
Regards.
[see also "AdaCore — GNAT GPL for
the LEGO MINDSTORMS NXT -
Ravenscar Edition" in AUJ 31-4 (Dec
2010), p.233 —mp]

GNAT AUX ported to
Android
From: DragonLace website
Date: Sat, 29 Jan 2011 17:51:59
Subject: GNAT AUX ported to Android
URL: http://www.dragonlace.net/posts/

GNAT_AUX_ported_to_Android/
This weekend, a GNAT AUX cross
compiler was built for Android (ARM
architecture).
While there are no regression test results
available, we can at least demonstrate that
a helloworld program written in Ada runs
on the Android SDK emulator.

Ada-related Tools 11

Ada User Journal Volume 32, Number 1, March 2011

The standard GCC version of GNAT runs
flawlessly on the ARM v7 port of Linux
with the default sjlj exception handling,
but to our knowledge it has never been
ported to the Android operating system
before.
The purpose for this cross compiler is that
Android applications can be written
entirely in Ada, and that they interface
natively with the C libraries that control
the phone/tables IO events. Starting with
Android 2.3 (Gingerbread) it's possible to
write applications in languages other than
Java.
The intention was to make C and C++
programmers happy, but it opened the
door for the rest of us.
Speaking of which, credit needs to be
given to Mike Long for blazing the trail.
He blogged about getting a Fortran
application running on his Android
device, and even has a nice YouTube
video to prove it. We'll try to produce
similar results soon enough, but check out
Fortran on Android. Stay tuned for more
developments about Ada on Android.
[see also "Ada for Android" in AUJ 31-4
(Dec 2010), p.240 —mp]

Atmega and Attiny
processors support for AVR-
Ada
From: Tero Koskinen's blog
Date: Mon, 14 Feb 2011
Subject: Arduino Mega 2560 and

Attiny13a/Attiny2313 support to AVR-
Ada

URL: http://tero.stronglytyped.org/blosxom.
cgi/2011/02/14#avradaimprovements

I recently got write access to the AVR-
Ada repository and now I have pushed my
changes there.
These changes improve support for
Atmega2560, Attiny13a, and Attiny2313
processors. Attiny13a and Attiny2313 are
pretty uninteresting, although common,
AVR processors. I use them in my
projects because they are cheap and that is
why I also wanted better support for them.
On the other hand, Atmega2560 processor
is used in the new Arduino Mega 2560
board.
This means that next release of AVR-Ada
will support the new Mega board out of
the box.
Some bits, like support for timers 3..5 and
extra UARTS, are missing, but at the
moment Atmega2560 should have about
same features as Atmega328p supported.

Mathpaqs - November 28,
2010
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>

Date: Mon, 29 Nov 2010 04:04:54 -0800
PST

Subject: Mathpaqs release 28-Nov-2010
Newsgroups: comp.lang.ada
Hello,
There is again a new release of
mathpaqs…
The reason of a second release in such a
short time is that I've realized that the first
one was not really worth the name
"release".
What's new:
- There is a GNAT project file
- Sparse matrix package is working (was

in an incompatible Ada 83 mode!)
- An auxiliary portable graphics package

(.ps output) was added, principally for
the tests / demos

- New fractal demo was added
- Most packages, demos or tests are now

working
Mathpaqs is a set of various mathematical
packages in Ada including algebra, finite
elements, sparse matrices, random
variables, probability dependency models,
unlimited integers.
URL: http://sf.net/projects/mathpaqs/
[see also "Mathpaqs - November 2010" in
AUJ 31-4 (Dec 2010), p.229 —mp]

Ada 2005 Math Extensions
From: Simon Wright

<simon@pushface.org>
Date: Thu, 23 Dec 2010 22:21:38 +0000
Subject: ANN: Ada 2005 Math Extensions

20101223
Newsgroups: comp.lang.ada
This release is now available at
http://sourceforge.net/projects/
gnat-math-extn/files/20101223/
Changes:
The package is renamed to
Ada_Numerics.Generic_Arrays.
An additional overloaded procedure
Eigensystem returns the generalized
eigenvalues and eigenvectors of a pair of
non-symmetric real matrices.
NB, this is only supported for
unconstrained Float and Long_Float a this
time.
To do:
- Add support for constrained floats to
this Eigensystem.
- Add generalized solutions for non-
hermitian complex matrices.
 …

Ada industrial control
widget library v1.0
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>

Date: Sat, 12 Feb 2011 15:22:12 +0100
Subject: ANN: Ada industrial control widget

library v1.0 released
Newsgroups: comp.lang.ada
The library is intended for designing high-
quality industrial control widgets for Ada
applications.
The widgets are composed of transparent
layers drawn by cairo. The widgets are
fully scalable graphics. Time-controlled
refresh policy is supported for real-time
and heavy-duty applications. The library
supports caching graphical operations and
stream I/O for serialization and
deserialization.
Ready-to-use gauge and meter widgets
provided as samples as well as an editor
widget for WYSIWYG design of complex
dashboards. The software is based on
GtkAda and cairoada, Ada bindings to
GTK+ and cairo.
http://www.dmitry-kazakov.de/
ada/aicwl.htm
Comments and suggestions are welcome.
P.S. Thanks to Damien Carbonne for
making cairoada binding available.

New release of the
Embedded Web Server
From: Simon Wright

<simon@pushface.org>
Date: Sun, 16 Jan 2011 12:31:24 +0000
Subject: ANN: EWS 20110115
Newsgroups: comp.lang.ada
This is a new release of my Embedded
Web Server, to be found at
https://sourceforge.net/projects/
embed-web-srvr/.
This release correctly supports HTTP/1.0
keep-alive, as requested by the
"Connection: Keep-Alive" field.
[see also "EWS — Embedded Web
Server" in AUJ 27-4 (Dec 2006), p.201
—mp]

Ada bindings to gtkdatabox
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Tue, 07 Dec 2010 21:33:52 +0100
Subject: [ANN] Ada bindimgs to gtkdatabox
Newsgroups: comp.lang.ada
There is now a binding to gtkdatabox
located on:
https://github.com/persan/A-gtkdatabox
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Tue, 07 Dec 2010 22:14:47 +0100
Subject: Re: [ANN] Ada bindimgs to

gtkdatabox
Newsgroups: comp.lang.ada
[…]
> Does it use time stamps on the X axis

(i.e. oscilloscope), or is it just a XY

12 Ada-related Tools

Volume 32, Number 1, March 2011 Ada User Journal

plot? It's basically an XY plot with float
values.

 Is it based on cairo?
Have not thought about it, I was looking
for a widget that makes it possible to
build a simple UI for a pc-oscilloscope.
> How does it handle the case when

several data points must be rendered in
one-pixel horizontal width?

I have not looked deeper into the scaling
effects when several X-values should be
rendered one pixel wide, but it seems like
a mean value is drawn.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 7 Dec 2010 23:17:29 +0100
Subject: Re: [ANN] Ada bindimgs to

gtkdatabox
Newsgroups: comp.lang.ada
[…]
I considered porting a C++ library that
does the oscilloscope to Cairo Ada, but I
am not so sure now.
[…]
Cairo looks a good choice. There are
excellent Cairo Ada bindings by Damien
Carbonne.
Considering the oscilloscope
implementation there is a problem. I don't
know how to get a BitBlt under Gtk or
Cairo, which would be essential for good
performance of scrolling.
[…]
> Have not looked deeper into the scaling

effects when several X-values should
be rendered one pixel wide, but it
seems like a mean value is drawn.

I see, not a min-to-max vertical bar (the
correct behavior).

Ada bindings for ØMQ 2.1.0
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Wed, 08 Dec 2010 06:30:37 +0100
Subject: [ANN] Ada Bindings for 0MQ 2.1.0
Newsgroups: comp.lang.ada
The Ada-bindings are now updated to
reflect the 2.1.0 ØMQ specs and a lot of
convenient functions are added.
The bindings are available from
https://github.com/persan/zeromq-Ada
[see also "Ada binding for ØMQ" in AUJ
31-2 (June 2010), p.86 —mp]

Ada binding to Linear
Algebra PACKage
From: Nasser M. Abbasi

<nma@12000.org>
Date: Tue, 14 Dec 2010 21:32:02 -0800
Subject: What is the status of Ada binding to

lapack?
Newsgroups: comp.lang.ada

Searching I could only find a reference to
http://www.sigada.org/ada_95/
bindings.html
With the following broken link to binding
of Ada to Lapack
ftp://cs.nyu.edu/pub/gnat/contrib/
lapack-ada/
How does one uses lapack from Ada
without binding?
I understand that with the latest GNAT
GPL 2010, these libraries (lapack and
blas) are part of the distribution and are
automatically linked with since they are
used by some one the new Ada 2005 math
functions (Annex G?) such as Solve().
But what if I want to make specific calls
to other lapack functions myself from
Ada?
ps. I found a page which says to have Ada
binding to Blas,
http://topo.math.u-psud.fr/~sands/
Programs/BLAS/
but did not try it.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Wed, 15 Dec 2010 07:00:46 -0500
Subject: Re: What is the status of Ada

binding to lapack?
Newsgroups: comp.lang.ada
[…]
Simon J. Wright's Ada 2005 Math
Extensions project may be if interest:
http://sourceforge.net/projects/
gnat-math-extn/
[read also "Ada 2005 Math Extensions" in
this issue of the AUJ —mp]

VTKAda 5 release 4
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Tue, 4 Jan 2011 02:31:19 -0800 PST
Subject: Announce : VTKAda version 5
Newsgroups: comp.lang.ada
Announce : VTKAda version 5 release 4
(work in progress)
VTKAda is an Ada-95(05) interface to
VTK (Visualization Toolkit) and Qt4
graphics library
VTK version 5.6.1, Qt version 4.7.1 open
source and qt4c.dll(libqt4c.so) built with
Microsoft Visual Studio 2010 in
Windows and GCC in Linux x86-64.
The package was tested with the GNAT
GPL 2009 Ada compiler in Windows 32-
bit and 64-bit and Linux x86-64 Kubuntu
9.10.
VTKAda is a powerful 2D, 3D rendering
and imaging system and works inside Qt4
application.
You can get more information from the
paper "Modern application development
with Ada" on the website.

VTKAda and QtAda for Windows and
Linux (Unix) are available from
http://users1.jabry.com/adastudio/
index.html
[…]
[see also "VTKAda" in AUJ 31-3 (Sep
2010), p.158 —mp]

GtkAda contributions v2.9
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 10 Jan 2011 17:54:49 +0100
Subject: ANN: GtkAda contributions v2.9
Newsgroups: comp.lang.ada
A contribution to GtkAda, Ada bindings
to GTK+, deals with the following issues:
- Tasking support;
- Custom models for tree view widget;
- Custom cell renderers for tree view

widget;
- Multi-columned derived model;
- Extension derived model (to add

columns to an existing model);
- Abstract caching model for directory-

like data;
- Tree view and list view widgets for

navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms and bug

fixes;
- Measurement unit selection widget and

dialogs;
- Improved hue-luminance-saturation

color model;
- Simplified image buttons and buttons

customizable by style properties;
- Controlled Ada types for GTK+ strong

and weak references;
- Simplified means to create lists of

strings;
- Spawning processes synchronously and

asynchronously with pipes;
- Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

- Source view widget support.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
Changes to the version 2.8:
1. Progress indication added to

Gtk_Abstract_Directory_Record;
2. Style_Get added to Gtk.Widget.Styles

returning GValue by name;

Ada-related Tools 13

Ada User Journal Volume 32, Number 1, March 2011

3. RGB convenience function was added
to Gtk.Missed;

4. Gtk.Generic_Enum_Combo_Box
provides combo box widget created
from an enumeration type (contributed
by Oliver Kellogg);

5. The documentation links to the
AdaCore on-line GtkAda Reference
Manual were fixed because the old
reference manual is no longer available.

[see also "GtkAda Contributions v2.7 and
v2.8" in AUJ 31‑3 (Sep 2010), p.158
—mp]

Termination review
requested for the Hibachi
project
From: Tero Koskinen

<tero.koskinen@iki.fi>
Subject: Hibachi project getting termination

review
Date: Tue, 14 Dec 2010 07:24:09 +0200
Newsgroups: comp.lang.ada
[…]
It seems that Eclipse people are shutting
down the Hibachi project since there has
been no activity lately:
http://dev.eclipse.org/mhonarc/lists/
hibachi-dev/msg00134.html
David M Williams wrote:
> The Tools PMC would like to request a

termination review of the Hibachi
project. For what ever reasons they
have not been able to stay an active
project working towards release, so if
no others come forward to take over
and revive the project, it should be
formally terminated and archived. We
hope this process will "flush out" any
community interest that needs to get
coordinated to keep the project going,
and towards that end, it would be good
to have a termination review scheduled
to have a deadline.

[see also "Status of Hibachi" in AUJ 30-3
(September 2009), p.146 —mp]

SPARKRules 1.0
From: Phil Thornley

<phil.jpthornley@gmail.com>
Date: Fri, 10 Dec 2010 07:20:41 -0800 PST
Subject: ANN: SPARKRules Version 1.0

now available
Newsgroups: comp.lang.ada
SPARKRules is designed to support
libraries of user rules and review proofs.
It avoids use of the verification directories
for the permanent storage of user rules
and review proofs.
Version 1.0 of SPARKRules is available
from:
http://sparksure.com
The download includes documentation for
the tool, a Windows executable, all the

source code (which has also compiled and
run on openSUSE) and, as an example of
its use, reworkings of the proof rules in
Tokeneer Version 2.
SPARKRules separates the storage of
user rules from the context in which they
are applied, so the documentation
includes a discussion of the potential for
unsound proofs to result from this and
suggests an approach to avoid this
problem.

Ada support in *BSD
distributions
From: DragonLace website
Date: Sat, 01 Jan 2011 12:35:08
Subject: GPS packages built for FreeBSD

and DragonFly
URL: http://www.dragonlace.net/posts/

GPS_packages_built_for_FreeBSD_
and_DragonFly/

There exist seven ports for FreeBSD and
an analogous seven packages for Pkgsrc
which serves DragonFlyBSD and
NetBSD. These ports/packages are mature
enough that the process to introduce them
into their respective trees will begin soon.
We've used these ports/packages to build
binaries for the following platforms:
- FreeBSD i386
- FreeBSD AMD64
- DragonFlyBSD i386
- DragonFlyBSD x86_64
The primary binaries available for these
four platforms are:
- GNAT AUX Ada Compiler
- GNAT Programming Studio (GPS)
- Ada Web Server (AWS)
Supporting binaries available for these
four platforms are:
- GNATPython (used for AWS regression

testing)
- GTKAda (GTK binding required by

GPS)
- XMLAda (General purpose XML

library used by several projects)
- GPRBuild-AUX (used to build multiple-

language projects)
All packages will build on NetBSD
AMD64, but binaries are not available for
this platform at the moment. GtkAda
doesn't seem to build on NetBSD i386
and thus no GPS has ever been built on
this platform. The issue is some kind of
linker problem and more investigation is
required. It is not known at this time if the
problem will hold up the submission of
the packages into the pkgsrc tree.
From: DragonLace website
Date: Sat, 22 Jan 2011 07:18:45
Subject: Going In The Ports Tree
URL: http://www.dragonlace.net/posts/

Going_In_The_Ports_Tree/

All seven ports (GNAT-AUX, XML/Ada,
GPRBuild, GTK/Ada, GPS,
GNATPython, and AWS) were submitted
to the FreeBSD Ports community on 9
January. The report that tracks the request
is PR 153828 and they've just started the
testing on the submission, so hopefully
they'll be available to FreeBSD users
soon.
Today, the same ports minus AWS were
submitted to NetBSD's pkgsrc. Since
DragonFlyBSD also uses pkgsrc, users
with i386 and x86_64 processors of both
operating systems will be able to build
these from source. When the 2011Q1 bulk
packages are built, they'll be able to just
install the binaries from standard
repositories. This will take about 3
months because the 2010Q4 snapshot is
just getting built now.
Ever since Unwind Support was added to
NetBSD, the Ada Web Server stopped
building on NetBSD. It's linking to the
system gcc library (too old) rather than
the GNAT version of it. It's actually only
a tool that's not build (awsres).
Ideally the authors of AWS will be able to
suggest a fix, otherwise the three options
are either exclude NetBSD from the
platform list (in other words
DragonFlyBSD is the only platform that
can build it) or somehow patch the source
to skip building the awsres tool. So for
now, the AWS package hasn't been
submitted.
The pending PRs on NetBSD are 44436
through 44441.
From: DragonLace website
Date: Sat, 12 Feb 2011 13:00:30
Subject: DragonLace Mail list and Pkgsrc
URL: http://www.dragonlace.net/posts/

DragonLace_Mail_list_and_Pkgsrc/
The big news of the day is that NetBSD
has imported all the packages into the
pkgsrc repository. This means that
NetBSD and DragonFlyBSD users can
build GNAT, the GNAT Programming
Studio, and others from source today if
they update pkgsrc to the repository head.
They will show up in a few months in the
next quarterly release (2011Q1), and at
that time maintainers for NetBSD and
DragonFlyBSD will build the binary
packages.
Our friends at ada.cx have graciously
hosted our brand new mailing list.
For now, feel free to post about anything
that DragonLace is involved with on our
one list. Later we may differentiate and
have separate lists for GNAT, Draco, and
Android application building.
[http://lists.ada.cx/archives/dragonlace/
to register to the mailing list —mp]
[…]
AWS is now available via pkgsrc as well.
[GNAT AUX was originally the compiler
for the AuroraUX project. See "Update on

14 Ada-related Products

Volume 32, Number 1, March 2011 Ada User Journal

the AuroraUX project" in AUJ 31-2 (June
2010) p.96. While the project seems
stagnating, the work on the compiler
seems promising. —mp]

ZanyBlue Ada localization
packages
From: Michael Rohan

<michael@zanyblue.com>
Date: Mon, 22 Nov 2010 02:19:05 -0800

PST
Subject: ANN: ZanyBlue.Text, Localization

Support for Ada
Newsgroups: comp.lang.ada
Hi Folks,
This is the first release of the ZanyBlue
Ada packages. This release includes the
Text package which support localization
of Ada applications with Java style
message formatting and .properties files.
The released files are available at
http://sourceforge.net/projects/zanyblue/
files/
There are two downloadable files:
1) The core release files: zanyblue-0.1.0b-

r1663.tar.gz
2) Support files for testing (AUnit) and

regneration of the built-in localizations
(CLDR) zanyblue-0.1.0b-r1663-
libs3rd.tar.gz

The primary dev environment is Unix but
has been tested on Windows.
[…]
From: Michael Rohan

<michael@zanyblue.com>
Date: Thu, 25 Nov 2010 23:00:44 -0800

PST
Subject: Re: ANN: ZanyBlue.Text,

Localization Support for Ada
Newsgroups: comp.lang.ada
[…]
Noticed that the number of downloads for
the libs3rd package exceeded the
download for the actual ZanyBlue code:
I've re-uploaded the code making it the
default download. The libs3rd package
contains the third-party dependencies for
ZanyBlue needed only if you want to
change the set of built-in localizations via
the Unicode.org CLDR XML data or you
don't have AUnit.
The regression tests, via a "make check"
in the src directory attempt to first build to
the AUnit library in the src/libs3rd
directory. If AUnit is already installed
simply run "make check" in the src/test
directory rather than the src directory (the
build of AUnit, via ZanyBlue, only works
on Unix).

ssprep v1.5.6 and 1.5.7
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Mon, 17 Jan 2011 20:27:16 +0100
Subject: [ANN] ssprep-1.5.6

Newsgroups: comp.lang.ada
ssprep is a tool to generate initial project
structures from a set of templates that is
highly configurable and expandable.
sample:

 $ssprep
 ssprep.simpleExecutableProject
 -Dproject=demo

will generate a full project tree with unit
and regression tests.

 $ssprep
 ssprep.simpleExecutableProject
 -Dproject=demo -dWITH_ASIS=True

will add a template for an ASIS program
as well.
After the project generation its just

$make
$make test
$make install

or open the project in GPS
http://sourceforge.net/projects/ssprep/
files/ssprep/1.5.6
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Tue, 18 Jan 2011 07:26:06 +0100
Subject: Re: [ANN] ssprep-1.5.6
Newsgroups: comp.lang.ada
URL should be:
http://sourceforge.net/projects/ssprep/
files/ssprep/1.5.7
Found some last time glitches.
[…]
[see also "ssprep-1.5.3" in AUJ 31-4 (Dec
2010), p.231 —mp]

Ada-related Products
AdaCore — GNATemulator
From: AdaCore Press Center
Date: Tue, 01 Feb 2011
Subject: AdaCore Releases New

GNATemulator Tool
URL: http://www.adacore.com/2011/02/01/

gnatemulator/
AdaCore Releases New GNATemulator
Tool for Efficient Embedded Software
Testing Provides open source, integrated,
lightweight target emulation
PARIS and NEW YORK, February 1,
2011 – AdaCore, a leading supplier of
Ada development tools and support
services, today announced the release of
GNATemulator, an efficient and flexible
emulator solution for testing embedded
software applications. Based on the
QEMU technology, a generic and open
source machine emulator and virtualizer,
the new GNATemulator tool allows
software developers to compile code
directly for their target architecture and

run it on their host platform, through an
approach that translates from the target
object code to native instructions on the
host. This avoids the inconvenience and
cost of managing an actual board, while
offering an efficient testing environment
compatible with the final hardware.
There are two basic types of emulators.
The first go far in replacing the final
hardware during development for all sorts
of verification activities, particularly
those that require time accuracy.
However, they tend to be extremely
costly, and are often very slow. The
second, which includes the
GNATemulator, do not pretend to be
complete time-accurate target board
simulators, and thus cannot be used for all
aspects of testing, but do provide a very
efficient, cost-effective way of executing
the target code very early and very
broadly in the development and
verification process. They offer a practical
compromise between a native
environment that is too far from the actual
target, and the final hardware that is never
available soon enough or in enough
quantity.
“GNATemulator affords designers a
lightweight, easy-to-use tool for target
code execution during early development
and verification processes, where greater
agility and efficiency is important,” said
Cyrille Comar, Managing Director at
AdaCore. “As a streamlined, low-cost
alternative to time-accurate target board
simulators, GNATemulator is ideally
suited for the broad range of testing
scenarios for which full-feature emulators
would be overkill.”
Combines Agile concepts with ease-of-
use GNATemulator helps automate
testing campaigns for embedded
application code and thus allows
developers to use continuous integration
techniques made popular by the Agile
community. Many versions of
GNATemulator can be launched
simultaneously, making it possible to
parallelize testing. GNATemulator is
smoothly integrated into the GNAT Pro
toolset and can be used with other
AdaCore tools, such as the GNAT
debugger (a part of the GNAT
Programming Studio) and
GNATcoverage.
Cost effective
GNATemulator reduces hardware cost
and maintenance: the actual target is
needed only for integration testing, since
unit and functional testing can be done
directly on the emulator, which is
installed on a standard desktop machine.
Development teams can thus start
producing and testing code for the target
before acquiring the actual target
hardware.
Improved productivity

References to Publ icat ions 15

Ada User Journal Volume 32, Number 1, March 2011

GNATemulator can be installed directly
on each developer’s desktop machine,
allowing tests to be written for the final
target taking into account particulars, such
as endianness and assembly code. It thus
improves test development productivity.
Optimized and efficient, GNATemulator
runs on the host platform, which is
usually more powerful than the target, and
executes code faster than on the actual
target.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where safety, security, and reliability are
critical. AdaCore’s flagship product is the
GNAT Pro development environment,
which comes with expert on-line support
and is available on more platforms than
any other Ada technology. AdaCore has
an extensive worldwide customer base;
see
http://www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro continue to see
growing usage in high-integrity and
safety-certified applications, including
commercial aircraft avionics, military
systems, air traffic management/control,
railway systems and medical devices, and
in security-sensitive domains such as
financial services.

AdaCore — GNATcoverage
From: AdaCore Press Center
Date: Tue, 01 Feb 2011
Subject: AdaCore Releases New

GNATcoverage Tool
URL: http://www.adacore.com/2011/02/01

/adacore-releases-new-gnatcoverage-
tool/

AdaCore Releases First Non-Intrusive
Coverage Tool to Fully Support All
Levels of Safety Certification.
New GNATcoverage tool provides
advanced program coverage analysis on
both object code and source code.
PARIS and NEW YORK, February 1,
2011 – AdaCore, a leading supplier of
Ada development tools and support
services, today announced the release of
GNATcoverage, a tool that analyzes and
reports program coverage. Originally
developed as part of the Couverture
research project, GNATcoverage
performs coverage analysis on both object
code — instruction and branch coverage –
and Ada and C language source code –
statement, decision and Modified
Condition/Decision Coverage (MC/DC).
Unlike most current technologies, the tool
works without requiring instrumentation
of the executable. Instead, it runs directly
on an instrumented version of
GNATemulator, a lightweight and
efficient emulator tool provided by

AdaCore. GNATcoverage helps software
developers assess the breadth of a testing
campaign and provides precise answers to
the needs of safety-certification processes,
such as the DO-178 avionics standard.
“Until recently, the relationship between
source coverage and object coverage had
never been studied in detail. The research
part of the ‘Couverture’ project proved
mathematically the exact perimeter in
which complex source coverage metrics,
such as MC/DC, could be deduced from
object coverage information,” said Cyrille
Comar, Managing Director of AdaCore.
“It allowed us to build the first coverage
tool, working on un-instrumented code
and providing results sufficiently accurate
for meeting the needs of the highest level
of avionics certification. We are very
proud of this achievement!”
Combines Agile concepts with ease-of-
use
By automating testing and coverage
analysis of embedded application code,
GNATcoverage allows developers to use
continuous integration techniques made
popular by the Agile community. Many
instances of the tool can be launched
simultaneously, making it possible to
parallelize coverage analysis.
GNATcoverage can also be installed on
individual developers’ desktops, allowing
them to verify locally and easily the
adequacy of their testing strategy.
Analyzes the final code that will run on
the embedded target GNATcoverage
provides code coverage information
directly on the embedded target
application code. There is no
instrumentation of the object code – the
instrumentation is done directly at
emulation level.
Aids in establishing certification
requirements (DO-178B level A, EN
50128, IEC 61508, ECCS-E40B)
GNATcoverage provides source coverage
information for all levels of safety
certification (Statement Coverage,
Decision Coverage and Modified
Condition/Decision Coverage).
Qualification material is available for
DO-178 B up to level A. GNATcoverage
can also provide object-level coverage
metrics in term of binary instructions and
which branches have been exercised.
[…]

Inspirel — YAMI4 v. 1.2.1
and 1.2.2
From: Inspirel Press Center
Date: Fri, 19 Nov 2010
Subject: YAMI4-1.2.1 released
URL: http://www.inspirel.com/news.html
The YAMI4-1.2.1 version of YAMI4, a
messaging solution for distributed
systems, is released.

This release is mainly a bugfix release,
but also introduces performance
improvements and more complete timeout
management.
From: Inspirel Press Center
Date: Fri, 10 Dec 2010
Subject: YAMI4-1.2.2 released
URL: http://www.inspirel.com/news.html
The YAMI4-1.2.2 version of YAMI4, a
messaging solution for distributed
systems, is released.
This is a bugfix and performance
improvement release.
From: Inspirel Press Center
Date: Tue, 16 Dec 2010
Subject: Wireshark plugin
URL: http://www.inspirel.com/news.html
The Wireshark plugin is made available
for the YAMI4 protocol.
[see also "Inspirel — YAMI4 v. 1.1.0 and
1.2.0" in AUJ 31-4 (Dec 2010), p.233 and
information about Wireshark at
http://www.wireshark.org —mp]

R.R. Software — New
Janus/Ada beta compiler
available
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 23 Dec 2010 9:12:00 +0100
Subject: [Janus/Ada 95] New Janus/Ada

beta compiler available
Mailing list: ada95@rrsoftware.com
Merry Christmas!
R.R. Software is happy to announce that a
new beta test of Janus/Ada is available.
The beta has a new, smarter installer,
support for a few Ada 2005 features,
partial support for stream attributes, and
(as always) lots of bugs fixed.
Beta test keys have already gone out to
supported customers (if you haven't
already received it, please contact me
ASAP). We're looking for a limited
number of additional beta testers from
customers who've let their support lapse;
priority will be given to the most recent
ones. Please contact me at
randy@rrsoftware.com if you are
interested.

References to
Publications
Two interviews with
Tucker Taft
From: Thomas Løcke <tl@ada-dk.org>
Date: Fri, 04 Feb 2011
Subject: Two Interviews With Tucker Taft
URL: http://ada-dk.org/?page=news&

news_id=261

16 Ada Inside

Volume 32, Number 1, March 2011 Ada User Journal

Tucker Taft should be a name familiar to
all Ada programmers, as he was the lead
designer of Ada 95 and heavily involved
in the Ada 2005 process.
If you have a question about Ada, the
chances are very high that Tucker is going
to have the answer. An interesting man
for sure.
Here are two fairly recent Tucker Taft
interviews:
- TechWorld: The A-Z of programming

languages: Ada
- Simple Talk Geek Of The Week: Tucker

Taft
I found this quote to be pretty interesting:
> One of my pet projects is designing

such an inherently parallel language,
tentatively dubbed ParaSail, for Parallel
Specification and Implementation
Language. It will attempt to incorporate
the lessons learned from a career spent
working on Ada, while embracing
annotations and implicit parallelism in
all their glory, to support the
development of efficient, safe, correct,
and highly scalable parallel systems.
Stay tuned…

[…]
[Find the interviews at:
http://www.techworld.com.au/article/223
388/a-z_programming_languages_ada/?
and http://www.simple-talk.com/
opinion/geek-of-the-week/tucker-taft-
geek-of-the-week/
The blog on the creation of the ParaSail
language is at http://parasail-
programming-language.blogspot.com/
See also the paper “Designing ParaSail –
Parallel Specification and Implementation
Language”, in this issue of the AUJ
—mp]

Ada Inside
Ada in automotive software
From: Rolf Ebert

<rolf_ebert@users.sourceforge.net>
Date: Thu, 16 Dec 2010 12:45:05 -0600

CST
Subject: safety critical automotive software
Newsgroups: comp.lang.ada,

comp.lang.c.moderated
The upcoming ISO 26262 highly
recommends "enforcement of strong
typing" [1]. There is a corresponding
footnote saying "The objective […] is to
impose principles of strong typing where
these are not inherent in the language".
Does anybody know if Ada has ever been
used (in ECU series production) in an
automotive application. Can you provide
a reference?
How do you achieve the "principles of
strong typing" using C?
[1] ISO DIS 26262-6, 2009

[…]
From: Midoan <midoan.ses@gmail.com>
Date: Sat, 18 Dec 2010 02:11:16 -0800 PST
Subject: Re: safety critical automotive

software
Newsgroups: comp.lang.ada
[…]
The MISRA C guidelines, if they are
complied with, do impose stronger typing
on C code (with its restrictions on type
declarations and stricter conversions
rules).
So it is possible to "impose principles of
strong typing where these are not inherent
in the language" for C.
Of course that sentence would not be
there in the standard if the MISRA C
guidelines did not exist.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 24 Dec 2010 13:11:24 -0600 CST
Subject: Re: safety critical automotive

software
Newsgroups:

comp.lang.ada,comp.lang.c.moderated
[…]
> Does anybody know if Ada has ever

been used (in ECU series production) in
an automotive application.

Not to my knowledge.
> How do you achieve the "principles of

strong typing" using C?
AFAIK, they don't care.
Then I guess that the recommendation
does not really mandate or even mean
application of strong typing in the
software design. I.e. you could be free to
deploy int8, unsigned16 instead of
meaningful user-defined numeric data
types of domain-specific ranges and
defined behavior. So "principles of strong
typing" in C could simply mean treating
warnings about comparing signed with
unsigned ints as errors.
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Fri, 24 Dec 2010 13:13:25 -0600 CST
Subject: Re: safety critical automotive

software
Newsgroups:

comp.lang.ada,comp.lang.c.moderated
[…]
> How do you achieve the "principles of

strong typing" using C?
There are tools that enforce a stronger
type model on C code than the compiler
does. I believe PC-Lint, for example, can
produce warnings about all implicit
conversions and can treat typedefs as new
types. I don't believe it allows you to
define range constraints, or anything else
requiring run-time checking, but if used
aggressively it can bring a higher degree
of discipline to C code than usual.
I'm sure there are other tools that can do
similar things.

From: Walter Banks
<walter@bytecraft.com>

Date: Fri, 7 Jan 2011 15:40:15 -0600 CST
Subject: Re: safety critical automotive

software
Newsgroups: comp.lang.ada,

comp.lang.c.moderated
[…] As far as I know Ada has not ever
been used. I am familiar with most of the
current ECU's and almost all are using the
same parts implemented in C with some
of the ISO/IEC 18037 additions.
> How do you achieve the "principles of

strong typing" using C?
Each of the automotive companies have
internal design rules that are company
mandated. I am generally impressed to the
degree that automotive coding standards
are maintained. MISRA is often looked at
as a set of guidelines but most automotive
companies use MISRA as one of many
sources for their internal standards.
[…]
From: Gerd <GerdM.O@t-online.de>
Date: Sun, 9 Jan 2011 09:09:54 -0800 PST
Subject: Re: safety critical automotive

software
Newsgroups: comp.lang.ada
I have worked in the automotive area for
many years.
I never had any project that should (nor
even was allowed to) be done in Ada.
Everything here is C, C and C again (C++
upcoming).
Even the new AUTOSAR standard is C
oriented.
The only Ada work in automotive range
that I ever heard about, was a research
project at BMW for assistance system. It
was presented at Ada Germany some
years ago. Look here:
http://www.ada-deutschland.de/aktuelles/
Tagungsprogramm.html
"S4 Fahrbetrieb und -simulation:
Dickmann (BMW): Softwareentwicklung
in Ada95: Ein Erfahrungsbericht"
or look here:
http://www.automotive2006.de/programm
/dickmanns.pdf
But - I don't know what has happened
with it.
From: Peter Hermann <h@h.de>
Date: Mon, 10 Jan 2011 14:56:22 +0000

UTC
Subject: Re: safety critical automotive

software
Newsgroups: comp.lang.ada
[…]
search for Dickmanns in
http://www.ihr.uni-
stuttgart.de/forschung/ada/
resources_on_ada/
for another report.

Ada in Context 17

Ada User Journal Volume 32, Number 1, March 2011

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [Belgium]: C/Ada developer
As a C/Ada developer you will develop a
dedicated GAIA gateway for
interconnection to simulators and
integrate the Airbus 4D-predictor
replacing the current BADA model. You
will implement the new DS-C ATN data
link standard and the extended i4D
CPDLC message, both as defined by the
EUROCAE WG78 interim standard.
Profile
As an experienced C/Ada developer you
have the following profile:
- an excellent knowledge of Ada 83-95

and C programming;
- experience with technical writing,

testing and data modelling;
- a good knowledge of Unix, SQL, Java,

ATC, Clearcase and Linux;
[…]
- you have at least 5 years of experience

in development languages.
[…]
Job offer [United Kingdom]: Ada 95
Software Engineer
ADA 95 [sic —mp], Software Engineers
– Embedded Development
A Software Engineer capable of design
and development of embedded and test
code for software-based Defence
applications.
-The role will involve integration testing

with the equipment containing the
software under test and suitable skills in
this area will be expected.

-The development languages will be
mainly ADA 95 (AdaCore)

-The specification of the design of the
embedded code uses MaDGe/MASCOT,
and familiarity with this approach would
be desirable. Knowledge of Rhapsody
UML would be useful.

-Knowledge of DOORS and the Serena
Dimensions configuration management
system.

Job offer [Spain]: Senior Software
Engineer
[…]
- Knowledge of software development life

cycle.
- Knowledge of Ada, C, C++. Knowledge

of Polyspace and C# are an advantage.
[…]
Experience: 3-5 years
[translated from Spanish —mp]

Job offer [Italy]: Software Architect
Your responsibilities include the
definition and verification of design
specifications and interfaces of software
products for use in space applications; in
particular for Guidance and Control
systems.
You are required to:
- define the software architecture and the

development and qualification process;
- supervise the development and

qualification phases;
- define interfaces with the system and

with software sub-contractors;
- ensure the coherence of the various

software products integrated in the same
system.

Profile
A degree in Computer/Automation
Engineering or Physics is required.
The successful candidate has 5-10 years
of experience.
Knowledge of Ada and CASE tools is an
asset.
Required knowledge:
- Software architectures
- HW/SW interfaces
- Software development process and

technologies
- Verification and Validation process
- Embedded/real-time software
- On-board software
[translated from Italian —mp]
Job offer [United States of America]:
Embedded Software Engineer and
Software Developer
Immediate need for (2) Embedded
Software Engineers, and (1) Applications
Software Development Engineer.
[…]
Responsibilities
- These positions are responsible for

developing, implementing, simulating
and verifying Embedded System
Software for aircraft systems such as
Engine Control, fly-by-wire Control,
and Electrical Power Generation Control
for military and commercial applications

Requirements
- All positions need a BS in Electrical

engineering, computer engineering, or
computer science. MS or PhD preferred
with consideration for higher level
degrees

- Embedded Software Specialists need
10+ years experience with strong
embedded programming skills,
preferably in C/C++ or Ada and
experience with LDRA, VectorCAST or
other verification tool suites

- Application Software Development
Specialist need 10+ years experience
with strong programming skills in
C/C++ and Java, and strong working
knowledge of application development
techniques and technologies, including:
Object-Oriented Design, Unified
Modeling and Relational Database
Design and Implementation

Ada in Context
OpenSSL library for Ada
From: Riccardo Bernardini

<framefritti@gmail.com>
Date: Sun, 13 Feb 2011 01:43:04 -0800

PST
Subject: An easy question: any OpenSSL

library for Ada?
Newsgroups: comp.lang.ada
The subject says everything: do you know
about any Ada interface to OpenSSL (or
other SSL libraries)? I tried a very fast
Google "Ada SSL," but I did not see
anything that convinced me…
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Thu, 17 Feb 2011 08:32:08 +0100
Subject: Re: An easy question: any OpenSSL

library for Ada?
Newsgroups: comp.lang.ada
Have a look at
http://github.com/persan/A-openssl
Just an experiment to see "how hard it
could be" to do a full binding to
OpenSSL.
There are still a some hours of hack to get
it into a state that could be called pre-
Alpha.
[…]
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sun, 13 Feb 2011 03:34:23 -0800

PST
Subject: Re: An easy question: any OpenSSL

library for Ada?
Newsgroups: comp.lang.ada
[…]
AXMPP includes binding to GNUTLS,
see
http://adaforge.qtada.com/
cgi-bin/tracker.fcgi/axmpp/wiki
From: Riccardo Bernardini

<framefritti@gmail.com>
Date: Sun, 13 Feb 2011 12:12:07 -0800

PST
Subject: Re: An easy question: any OpenSSL

library for Ada?
Newsgroups: comp.lang.ada
Thank you for your reply. Unfortunately,
I need DTLS (Datagram TLS, i.e., more
or less, TLS for UDP) and, from a first
very fast look (I searched for "DTLS,"
"datagram" and "UDP" in the manual
page http://www.gnu.org/software/gnutls/

18 Ada in Context

Volume 32, Number 1, March 2011 Ada User Journal

manual/gnutls.html) it seems that
GNUTLS does not support DTLS.
According to this thread
http://www.mail-archive.com/
help-gnutls@gnu.org/msg01497.html
GNUTLS did not support DTLS 1.5 years
ago and nobody was working on it…
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sun, 13 Feb 2011 14:48:14 -0800

PST
Subject: Re: An easy question: any OpenSSL

library for Ada?
Newsgroups: comp.lang.ada
[…] PolyORB uses OpenSSL as one of
security mechanism for its security
service, you can use this binding as
starting point for own one.

Queue container in Ada
From: Bryan Robinson

<brobinson.eng@gmail.com>
Date: Tue, 8 Feb 2011 16:43:49 -0800 PST
Subject: Generic Containers in Ada2005
Newsgroups: comp.lang.ada
I'm writing a small Ada program for a
personal project. I usually write C++/STL
for such projects due to my background,
but because I wanted to get more practice
with Ada, I decided to do the project with
Ada. All has been well, except that I've
been a bit surprised about generic
containers.
I was looking for a simple queue data
structure, but I noticed there is not a
standard Queue container. I managed to
make a Vector work like a Queue, but it
feels a bit awkward: Append() for a
"push" and First_Element() +
Delete_First() for a "pop". I realize that I
can write a wrapper interface and create
my own queue, but queues are so
common I can't believe we have
Hashed_Maps and not a simple Queue
container.
I'm just curious what the reasoning was
behind not providing a Queue container?
Is there some Ada philosophy behind
this? Or is there something similar to the
C++ Standard Template Library in Ada?
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Tue, 08 Feb 2011 17:57:09 -0700
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
> […] I realize that I can write a wrapper

interface and create my own queue, but
queues are so common I can't believe
we have Hashed_Maps and not a
simple Queue container.

I agree. And given that the Ada
philosophy was usually to provide
building blocks that the user can combine
to create more complex things, it always
surprised me that the library, when it

finally came into existence, requires the
implementor to have implementations of
hash tables and an O(log N) searchable
structure, but not to make them available
to the user. (Of course, implementors
have always had to have unlimited-
precision math libraries, but not make
them available.)
Personally, I'd base a queue on the lists
package rather than the vectors.
You can find queues, as well as bounded
data structures in the PragmAda Reusable
Components:
http://pragmada.x10hosting.com/
pragmarc.htm
From: Anh Vo <anhvofrcaus@gmail.com>
Date: Tue, 8 Feb 2011 17:26:48 -0800 PST
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
[…]
Or look at http://www.adaic.org/
ada-resources/tools-libraries/ for Booch
components and Charles (Charles
Container Library). Although, Ada 95 is
the target, Booch components should be
compatible with Ada 2005.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 9 Feb 2011 09:33:30 +0100
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
[…]
> I'm just curious what the reasoning was

behind not providing a Queue
container? Is there some Ada
philosophy behind this?

I think that queue is a too specific
container to be included into standard
library. Depending on the number of
concurrent peers accessing the queue
ends, whether the queue has fixed size,
whether elements are copied or referenced
(e.g. statically allocated elements moved
from queue to queue) the implementation
and interface may sufficiently vary.
From: Simon Wright

<simon@pushface.org>
Date: Wed, 09 Feb 2011 10:56:05 +0000
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
[…] If you find a case where the Booch
Components aren't compatible with Ada
2005 (read, modern GNATs in -gnat05
mode!) please report a bug at
http://sourceforge.net/tracker/?
group_id=135616&atid=733923 .
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Wed, 09 Feb 2011 12:10:33 -0700
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada

> […] Regarding concurrent peers, are the
generic containers provided in the
Ada.Containers library thread-safe?

No. You can safely access different
container objects from different tasks at
the same time, but not concurrent access
to the same object from different tasks.
From: Simon Wright

<simon@pushface.org>
Date: Wed, 09 Feb 2011 20:06:26 +0000
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
> […] Regarding concurrent peers, are the

generic containers provided in the
Ada.Containers library thread-safe?

No. Nor are the BCs. I believe that the
Ada 2012 effort includes synchronized
queues (though the last I heard there was
a serious problem).
Personally I think Dmitry is right.
Nothing to stop you using non-thread-safe
containers as part of the implementation
of something appropriate to your problem.
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada
Subject: Re: Generic Containers in

Ada2005
Date: Wed, 9 Feb 2011 12:56:05 -0800 PST
> […] Depending on the number of

concurrent peers accessing the queue
ends, whether the queue has fixed size,
whether elements are copied or
referenced (e.g. statically allocated
elements moved from queue to queue)
the implementation and interface may
sufficiently vary.

Exactly the same questions can be asked
with regard to vectors.
Yet, we do have vectors in the standard
library.
This means that the above concerns, even
though perfectly valid, do not explain the
absence of queue in the library. The
authors might have done exactly the same
as they did with vectors - give arbitrary
(but reasonable) answers to these
questions and provide the solution that fits
the bill in the typical case.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 9 Feb 2011 22:22:16 +0100
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
[…] Not really. Vectors are used for
general purpose programming, queues
largely are for systems programming. You
have less people who would demand
queues and their requirements would
contradict each other.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 9 Feb 2011 20:03:24 -0600
Subject: Re: Generic Containers in

Ada2005

Ada in Context 19

Ada User Journal Volume 32, Number 1, March 2011

Newsgroups: comp.lang.ada
> […] I was looking for a simple queue

data structure, but I noticed there is not
a standard Queue container.

This is added by Ada 2012. See the latest
draft of the Ada 2012 standard for details:
http://www.ada-
auth.org/standards/12rm/html/
RM-A-18-27.html
(and the next 5 clauses as well).
As to exactly when your favorite Ada
compiler adds this container, you'd have
to ask them. (I believe some versions of
GNAT already have versions of this
container.)
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Fri, 11 Feb 2011 02:08:30 -0500
Subject: Re: Generic Containers in

Ada2005
Newsgroups: comp.lang.ada
[…]
There needs to be a Reset function for
Peak_Use; it's not helpful to know that
sometime in the past 5 years the queue
held 500 objects!

On formal packages with
"others => <>"
From: ytomino <aghia05@gmail.com>
Date: Sun, 13 Feb 2011 18:46:41 -0800

PST
Subject: formal package question
Newsgroups: comp.lang.ada
Hello,
Please look this code:

package formalpkg is
 generic
 type T is private;
 with procedure P (X : T) is <>;
 package F is
 end F;

 generic
 with package FA is
 new F (others => <>);
 package B is
 end B;

 procedure P1 (X : Character) is null;
 package F1 is new F (Character, P1);
 -- use P => P1
 package B1 is new B (F1); -- Error !!
 procedure P (X : Character) is null;
 package F2 is new F (Character);
 -- P => P

 package B2 is new B (F2); -- OK
end formalpkg;

% gnatmake formalpkg.ads
gcc -c formalpkg.ads
formalpkg.ads:17:25: actual for "P" in
actual instance does not match
formal
gnatmake: "formalpkg.ads" compilation
error

B1 was compile error, but B2 is ok. Why?
Where is my code wrong?
I want to use instances of generic package
with some different subprograms like
B1…
(I use gcc-4.5.1)
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Mon, 14 Feb 2011 10:59:44 +0100
Subject: Re: formal package question
Newsgroups: comp.lang.ada
[…]
I get an error for B2, probably using a
different GNAT.
Not really an answer, but can you leave
out the "others" in ([others =>] <>) ?

package Formalpkg is
 generic
 type T is private;
 with procedure P (X : T) is <>;
 package F is
 end F;

 generic
 with package FA is new F (<>);
 package B is
 end B;

 procedure P1 (X : Character) is null;
 package F1 is
 new F (Character, P1);

 package B1 is new B (F1);
 procedure P (X : Character) is null;
 package F2 is new F (Character);
 package B2 is new B (F2);
end Formalpkg;

From: Adam Beneschan
<adam@irvine.com>

Date: Mon, 14 Feb 2011 07:38:51 -0800
PST

Subject: Re: formal package question
Newsgroups: comp.lang.ada
[…]
Yes, it compiles for me if I say F(<>) but
gets an error with F(others => <>).
There should be no difference between
the two syntaxes, so this is an error in the
compiler.
From: ytomino <aghia05@gmail.com>

Date: Mon, 14 Feb 2011 16:31:20 -0800
PST

Subject: Re: formal package question
Newsgroups: comp.lang.ada
I tried to remove "others =>", and got
same result that it compiled correctly.
umm…
This behavior of the compiler limits using
formal parameter…
I want to write partial parameters and use
defaults for remaining parameters.
But gcc(GNAT) can compile the example
in
http://www.adaic.org/resources/add_conte
nt/standards/05rm/html/RM-12-7.html
I deduce, this behavior is applied only to
generic package having formal package
having formal subprograms ???
[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 15 Feb 2011 00:17:01 -0800

PST
Subject: Re: formal package question
Newsgroups: comp.lang.ada
[…]
I reported this bug as
http://gcc.gnu.org/PR47748 for you.

Check for input validity
in Ada
From: KK6GM

<mjsilva@scriptoriumdesigns.com>
Date: Fri, 4 Feb 2011 08:33:57 -0800 PST
Subject: What would be the Ada solution?
Newsgroups: comp.lang.ada
A colleague is working on some old code,
written in C, that uses an "out of range"
integer value to indicate no valid value.
Thus, a default value (in this case
0x7FFFFFFF) means no value has been
entered. All code that uses any values
should check for this no-value and act
accordingly, but of course not all the code
actually does that, and there are odd cases
where the no-value value gets processed
as a valid value and then Bad Things
Happen.
I'm curious what the Ada approach to this
issue would be, the issue being to
differentiate between valid and invalid
values, and to catch (compile time or run
time) any manipulation of an invalid
value as if it were a valid value.
From: Mark Lorenzen

<mark.lorenzen@gmail.com>
Date: Fri, 4 Feb 2011 08:38:13 -0800 PST
Subject: Re: What would be the Ada

solution?
Newsgroups: comp.lang.ada
[…]
I guess something like this:

type T is range ...;

20 Ada in Context

Volume 32, Number 1, March 2011 Ada User Journal

type Opt_T (Is_Valid : Boolean :=
False) is
 record
 case Is_Valid is
 when True =>
 Value : T;
 when False =>
 null;
 end case;
 end record;

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de>

Date: Fri, 04 Feb 2011 19:59:19 +0100
Subject: Re: What would be the Ada

solution?
Newsgroups: comp.lang.ada
[…]
> I suggest you read these two "gems":
http://www.adacore.com/2010/03/22/
gem-82/
http://www.adacore.com/2010/04/05/
gem-83/
[Also available in the Ada Gems section
in AUJ 31‑3 (Sep 2010), p.217—mp]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de
Date: Fri, 4 Feb 2011 18:26:42 +0100
Subject: Re: What would be the Ada

solution?
Newsgroups: comp.lang.ada
[…]
An Ada solution would be to declare the
integer type of the valid range:

type ADC_16_Bit is range 0..2**16 - 1;

The compiler checks dynamically and,
where possible, statically that the value is
always valid.
When values read from the hardware
include some bit patterns, that may
indicate errors.
In such cases you can declare the full
range of possible values and a subrange of
the valid ones:

-- 2 octets as read from the station
type ADC_Word is mod 2**16;

Conversion_Error :
 constant ADC_Word := 16#FFFF#;
Short_Circuit_Error :
 constant ADC_Word := 16#EFFF#;
…
subtype Voltage is
 ADC_Word range 0..16#7FFF#;
 -- 0=-10V, 7FFF=+10V

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Fri, 04 Feb 2011 12:38:34 -0500
Subject: Re: What would be the Ada

solution?
Newsgroups: comp.lang.ada

[…]
And another problem is that you probably
have lots of unnecessary/redundant
checks for the no-value case. That's
"defensive programming", which
Bertrand Meyer wisely said is a bad idea.
But it's sort of necessary in C, because it's
hard to keep track of which code actually
needs the checks -- better to clutter the
code with redundant junk than to miss
some.
There are lots of ways to represent the "no
valid value" value in Ada.
You suggested a magic number. Mark
Lorenzen suggested a variant record.
Let's go with the magic number:

No_Value : constant := 2**31 - 1;
pragma Assert (No_Value =
 16#7FFF_FFFF#);

You don't want to check for No_Value all
over the place.
You want to check for it on input, and let
the rest of your program operate on valid
values, and be sure that No_Value doesn't
sneak into the rest of the program.
You could do something like this:

type Optional_T is range -2**31 ..
No_Value with
 Default_Value => No_Value;

That means every object of subtype
Optional_T will be initialized to
No_Value, unless you explicitly initialize
it to something else.

type T is new Optional_T with
 Static_Predicate => T /= No_Value;

That means every object of subtype T
will be checked that's it's not No_Value,
on assignment, parameter passing, etc.
And T inherits the Default_Value.
You input values of type Optional_T.
You then check whether they are valid,
and convert them to type T. The rest of
your program is written in terms of type
T. If you try to pass an Optional_T to a
parameter of type T, you get a compile
time error.
You can convert:

procedure P(X : T);
Possibly_Invalid :
 Optional_T := Read_From_Input(...);
P (T (Possibly_Invalid));
 -- Might raise an exception

but the conversion will raise an exception
if the value is No_Value.
If you declare an uninitialized variable of
type T, you will get an exception, because
the default value violates the predicate. If
you're lucky, your compiler will warn
about that at compile time.
Your objects (including parameters,
record components, etc) are of type T or

Optional_T, so it's easy to tell which ones
are safe. Hopefully, there are few
Optional_T objects, and few places where
you convert, so you can be careful about
those.
Depending on what you're trying to do,
you might want to make one or both types
private.
If the run-time checks are too slow (which
is unlikely!), you can always suppress
them, and get efficiency equal to the C
code.
Default_Value and Static_Predicate are
Ada 2012 features.
Both are implemented in the latest version
of GNAT, but I don't know about the
public version(s).
You can do more or less the same thing in
Ada 2005, except that to get a default
value, you have to wrap the thing in a
record, and you can use range constraints
instead of predicates.
You could probably do more-or-less the
same thing in C, but I think it would take
a fair amount of horsing around.
Predicates are my favorite feature of Ada
2012!
And user-defined integer types are one of
my favorite features of Ada 83.

On the use of user-defined
storage pools
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 22 Jan 2011 09:49:10 +0100
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
http://www.dmitry-kazakov.de/ada/
components.htm#Pools_etc
http://www.dmitry-kazakov.de/ada/
components.htm#
Generic_Doubly_Linked_Web
[…]
Storage pools are extremely useful for
purposes, which are not directly related to
memory allocation. If you take a look at
the example I provided, you will notice
that the storage pools there do not
maintain a heap of their own. They rather
take the memory from some backend
pool.
Consider the doubly-link list
implementation. It is storage pool based.
The links are not in the element body.
They are maintained by the pool. So you
can have any type as the list element type,
plain strings for example.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Sat, 22 Jan 2011 01:54:01 -0800 PST
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada

Ada in Context 21

Ada User Journal Volume 32, Number 1, March 2011

We use storage pools on a helicopter
flight simulator. All global objects are
elements of one storage pool. Thus we
can take snapshots of a current state by
simply storing away the pool contents.
Later, by restoring the pool contents, a
previous situation, e.g. where a pilot did
not perform correctly, can be restored and
the pilot can try to do better.
From: Simon Wright

<simon@pushface.org>
Date: Sat, 22 Jan 2011 15:13:40 +0000
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
The Booch Components
(https://sourceforge.net/projects/booch95/
) have always required users to provide
storage pools (except for Bounded forms).
I expect that most people who use(d) the
BCs use(d) the one provided, which is a
wrapper for the system storage pool.
However, while developing code on
Windows for use in VxWorks, we found
that the Windows allocator would zero-
fill, while the VxWorks allocator did no
initialization (which is perfectly legal, of
course). The result was that uninitialized
record components would appear to work
on Windows and crash mysteriously on
the target.
What we did to work round this (which
was before GNAT offered pragma
Initialize_Scalars and -gnatV) was to
provide a specialised storage pool which
fills the requested memory with
16#deadbeef#; so any uninitialized fields
are (a) reasonably unlikely to correspond
to reasonable values, (b) reasonably easy
to spot in a store dump, (c) wrong on
either OS.
From: Simon Wright

<simon@pushface.org>
Date: Mon, 24 Jan 2011 16:09:58 +0000
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
> *Required* That's interesting […]
The rationale, such as it is, is pretty much
lifted from the C++ BCs;
http://booch95.sourceforge.net/
documentation.html#storage
I got a lot of complaints about the need
for multiple levels of instantiation, lack of
support for indefinite types, need for
storage pools which I resisted on the
grounds that the BCs were a translation.
In 2005 Martin Krischik added support
for indefinite types for some containers,
and I have been toying with removing the
need for storage pools (by providing
BC.Indefinite_Unmanaged_Containers,
see http://booch95.svn.sourceforge.net/
viewvc/booch95/trunk/src/ about 2/3 of
the way down).

Of course nowadays you'd use
Ada.Containers, but there are still people
using Ada95 out there…
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 24 Jan 2011 01:25:29 -0800

PST
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
At Eurocontrol, we use two custom
storage pools besides the default one.
We have a "No-Dealloc" storage pool that
raises an exception if the software
attempts to deallocate from it. More
importantly, this pool works in two
modes: initially it accepts allocation and
writing of new objects in the pool (but, of
course, no deallocation), then it switches
to read-only mode by calling mprotect(2)
on all memory pages.
Any subsequent attempt to alter data in
this pool will crash the program. We use
this pool to parse a large database of
immutable objects into memory; objects
have lots of access values referencing one
another, so we have to be able to alter
references while parsing.
We switch to read-only mode when the
parsing is complete.
The other custom storage pool we use is
to detect memory leaks. We do that by
preprocessing our sources when building
in a special leak- detection mode.
From: Emmanuel Briot

<briot.emmanuel@gmail.com>
Date: Mon, 24 Jan 2011 05:43:09 -0800

PST
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
>> The other custom storage pool we use

is to detect memory leaks. We do that
by preprocessing our sources when
building in a special leak-detection
mode. […]

See the package GNAT.Debug_Pools and
its documentation for more information.
From: Dirk Craeynest

<dirk@vana.cs.kuleuven.be>
Date: Mon, 24 Jan 2011 16:48:24 +0000

UTC
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
For a paper co-authored by AdaCore and
Eurocontrol about the introduction of that
package, see:
http://www.cs.kuleuven.be/~dirk/papers/
ae03cfmu-paper.pdf
It is titled "Exposing Memory Corruption
and Finding Leaks: Advanced

Mechanisms in Ada" and was presented at
the Ada-Europe 2003 conference.
From: Jacob Sparre Andersen

<jacob@jacob-sparre.dk>
Date: Mon, 24 Jan 2011 12:46:53 +0100
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
I use storage pools to implement
persistent objects. I presented a paper on
the subject at Ada Europe 2010. There is
some demonstration source code at
http://www.jacob-sparre.dk/persistence/
My technique is depends on a well-
behaved memory mapping
implementation from your operating
system. Especially memory layout
randomization makes things more tricky
than I like.
From: Timo Warns

<Timo.Warns@Informatik.Uni-
Oldenburg.DE>

Date: 24 Jan 2011 14:04:30 GMT
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
As an example, Ada Gem #77
(http://www.adacore.com/2010/01/11/
gem-77/) shows how to use the GNAT
debug storage pool for analyzing the
memory usage of a program.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 25 Jan 2011 01:14:30 +0100
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
> Because storage pools provide no

means to check dereferences, GNAT
offers a special type of storage pool,
called a "Checked pool", with an
additional abstract primitive operation
called Dereference.

That's an interesting feature indeed, but
not standard. How many Ada compiler
vendors provides a similar feature?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 24 Jan 2011 19:36:27 -0600
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
Can't answer that, but we did consider
adding such a feature to Ada 2012.
Eventually we decided on a more general
purpose user-defined dereferencing
capability instead.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 7 Feb 2011 16:18:51 -0600
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?

22 Ada in Context

Volume 32, Number 1, March 2011 Ada User Journal

Newsgroups: comp.lang.ada
[…]
> You mean this is already part of the

actual or next to come Ada 2012 ?
We expect it to be, although it isn't
finished and it will have to be finished by
the end of this month (as with all work on
Ada 2012) in order to be included.
See AI05-0139-2. The "Reference" aspect
combines with access discriminants and
controlled types to give effectively a user-
defined dereferencing mechanism.
The primary problem with user-defined
dereferencing is controlling the lifetime of
the returned access value -- we don't want
it copied outside of the control of the
underlying container abstraction. In
addition, it is important that the container
be able to get control twice: once when
the dereference is created, and once when
it is destroyed. The latter is needed in
cases of persistence or other kinds of
locking. (In the case of persistence, the
object must be available in memory so
long as a reference to it is valid, but it can
be pushed back to the backing store once
the references are all gone. Another
example is a the tampering check of the
Ada containers, which prevent the object
of the reference from disappearing while
the reference exists.)
It turns out that the mechanism needed
already exists in the language, in the form
of access discriminants. In addition, the
object containing the access discriminant
can be controlled, thus giving control
upon destruction of the object (and the
reference). So the only problem is the
terrible syntax of such a dereference. The
Reference aspect allows us to eliminate
that.
Combined with the indexing aspect, you'll
be able to write something like:

Foo(1).Bar := 10;

For a vector container Foo whose
elements are a record type with a
component Bar. And even:

Text_Map ("Ada").Count := 1;

For an indefinite map.
From: Warren W. Gay

<ve3wwg@gmail.com>
Date: Wed, 26 Jan 2011 20:13:29 +0000

UTC
Subject: Re: User Defined Storage Pool :

did you ever experiment with it ?
Newsgroups: comp.lang.ada
[…]
[A user-defined storage pool —mp] can
be useful when you want to preallocate a
maximum amount of allocatable memory
to a class of (by usage) objects.
Emulator or simulators use this for safety.
This avoids an errant emulation from
allocating all of user memory and trashing
the emulator's own environment by

thrashing/swapping all available user
memory.
Another useful application is permitting
objects of a particular class (of use) to be
allocated from a pool. Then at a clearly
defined point in the code, *all* of those
objects can be efficiently released by
freeing the entire pool. No list traversal
(or list maintenance) is required.

On loops and parallel
execution
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Tue, 25 Jan 2011 16:40:38 +0100
Subject: Loops and parallel execution
Newsgroups: comp.lang.ada
A quick idea. Assume that some
subprogram Op from package P is
reentrant (and does not depend on global
state). Then,

with P;
...
 for K in all First .. Last loop
 P.Op (K);
 end loop;

should have the effect of the following
being permitted:
(a) to pick K from First .. Last in any

order
(b) to execute P (J) in parallel with P (K)

for J, K from First .. Last
The same would be allowed for
sufficiently simple expressions:

 for K in all First .. Last loop
 L(K) := Standard."*" (K, 3);
 end loop;

Can this be borrowed from HPF [High-
performance Fortran —mp] (IIUC)? Is
pragma Pure (P) sufficient to signal
reentrance?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 25 Jan 2011 17:37:03 +0100
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
[…]
No, it is not sufficient because it is wrong.
P cannot be pure because all instances of
P.Op must be synchronized at the end of
the "loop." You need some frame, context
relatively to which P might become pure.
"Embedded task", thread, fiber, call it as
you want. If you have that at the language
level, then it becomes no matter whether
the thing executed on such a context is
pure or not. This is similar to proper Ada
tasks, you can access shared data from a
task as you wish. If you do this
inconsistently that is your problem
(erroneous execution).
The point is, if you are going to somehow
derive concurrency stuff from a

sequentially written program using
pragmas and a "mind reading" compiler, I
doubt that could go anywhere. If you want
to add light-weight embedded in code
tasking constructs a-la Occam, that might
go, but I don't think that they could be
much useful. You need to map them onto
OS services in order to gain something,
because normally there is no direct access
to the cores.
That is not light-weight. Have you some
certain OS in mind?
This thing you wanted in present Ada:

 task type Worker (
 Do_Me : not null access
 procedure (K : Integer)) is
 entry Op (K : Integer);
 end Worker;
 task body Worker is
 I : Integer;
 begin
 accept Op (K : Integer) do
 I := K;
 end Op;
 Do_Me (I);
 end Worker;

 procedure Print (K : Integer) is
 begin
 Put_Line (Integer'Image (K));
 end Print;
…
 declare
 Threads : array (1..20) of
 Worker (Print'Access);
 begin
 for K in Threads'Range loop
 Threads (K).Op (K);
 end loop;
 end;

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de>

Date: Tue, 25 Jan 2011 18:36:29 +0100
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
> […] No, it is not sufficient because it is

wrong. P cannot be pure because all
instances of P.Op must be synchronized
at the end of the "loop."

I was thinking of relatively small things,
starting from this observation:
If a compiler detects two independent
paths inside a loop, it will generate
sequences of instructions that, while
written sequentially, will be executed in
parallel by the processor because the
processor can do the corresponding
distribution across the many register
words. Generalize that.
The Paraffin library just posted by Brad
Moore looks like it will resolve all other
issues nicely! :-)

Ada in Context 23

Ada User Journal Volume 32, Number 1, March 2011

[read the related news in this issue of the
AUJ —mp]
On an AS-IF basis, I thought of a tasking
profile much < Ravenscar:
Other than exiting with a value, each
P.Op (K) has no need for communication.
Each P.Op (K) is associated with a result
object, like this

 compiler_type Result_Object is
 limited record
 Ready : Boolean_Slot; -- a CAS
 bit?
 Result : Value_Type;
 end record;

The idea of employing Pure or something
similar was to have the compiler prevent
each P.Op (K) from meddling in P.Op
(J)'s affairs, J /= K, as with protected
objects, again on an AS-IF basis, as much
as possible.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 25 Jan 2011 22:32:57 +0100
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
[…]
> If a compiler detects two independent

paths inside a loop,
I don't see any application for this. Can
you remember the last time you wrote
such loop? I cannot.
The Occam's par-statement could be a
better candidate, but I don't see how this
could be useful under a modern general-
purpose OS with their "vertical"
parallelism, when each task is assigned to
one core. The thing you propose is
"horizontal" parallelism, when a
task/process would run on all cores
simultaneously. Inmos' Occam ran under
no true OS, and the processor architecture
was well suited for such ad-hoc
parallelism. Modern processors are very
different from T805 and I doubt that they
would allow an efficient implementation
of this.
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Tue, 25 Jan 2011 23:07:01 +0100
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
[…]
In fact, I have seen such a loop recently; it
computes a Mandelbrot set twice as fast.
(I am confident that the lessons learned in
finding this loop have found applications
in other loops that manipulate larger
amounts of numeric data.) The author has
found a way to split Ada's Complex type
into its constituent parts (two FPT
objects) such that the program is a lot
more efficient. (One would wish that
types like Complex would be treated
specially by the compiler.)

> […] Modern processors are very
different from T805 and I doubt that
they would allow an efficient
implementation of this.

I have recently seen small boards carrying
one processor each that could be
connected to one another on all sides,
IIRC. What matters then is, I think, the
efficiency of
(a) distribution of small computation, and
(b) the delivery of results at some nodes.
Is it therefore so unthinkable to have
something like a transputer these days?
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 26 Jan 2011 10:04:07 +0100
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
On Tue, 25 Jan 2011 23:07:01 +0100,
Georg Bauhaus wrote:
> […] I have recently seen small boards

carrying one processor each that could
be connected to one another on all
sides, IIRC […]

The Parix OS (actually a monitor) did
that. E.g. if you called, say, "printf" in a
node which didn't have a direct link to the
server (the server was an MS-DOS PC or
a Solaris workstation), the output would
be routed to the node connected to the
server and from there to the server which
printed the output.
> Is it therefore so unthinkable to have

something like a transputer these days?
I saw them too. BTW, they are in some
sense a step back comparing to the level
Inmos arrived before its fall. They
introduced a programmable TP-link
switch, so that you could reconnect the
network of transputers on the fly.
But the problem is. I really see no use for
the par-statement or alike. The main
argument against par is that using threads
causes to much overhead. If the argument
stands, I mean if you don't have very long
code alternatives running in parallel for
seconds, then using a mesh of processors
would make things only worse. The
overhead to distribute the code and data
over the mesh of processors is much
bigger than doing this on a machine with
shared memory (multi-core). There
certainly exist examples of long
independent code alternatives, but I would
say that most of them are constructed or
marginal.
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Wed, 26 Jan 2011 06:29:02 -0500
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
[…]
I've often wondered what it would take to
support OpenMP (or something like it) in
Ada. The advantage with such an

approach is that OpenMP is well
documented and widely used and
understood. Right now the OpenMP
standard only supports C (and C++?) and
Fortran. Why not Ada?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 26 Jan 2011 15:57:12 -0600
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
> […] Is pragma Pure (P) sufficient to

signal reentrance?
I've thought about such an idea. But it
requires restrictions well beyond those
enforced by pragma Pure. For instance,
Pure packages can write dereferences of
pointers to keep global state. Moreover,
there can't be any "cheating", which is
common in pragma Pure packages.
So there would need to be a new kind of
categorization for this. I was hoping that
we could using the proposed global
in/global out categorizations to do the job,
but those got dropped from Ada 2012.
Also, I think that "no communication" is
impractical in most real applications. But
it is sufficient if the communication is
tightly limited (via atomic and protected
objects, and/or synchronized interfaces -
you'll need to access global data, just
safely). That's another reason why
"checked global in/global out" is needed.
Finally, like Dmitry, I'm skeptical about
fine-grained parallelism buying much.
Unless there is specific architectural
support (something that doesn't exist in
commonly used processors -- and
especially in commonly used target
OSes/RTOSes), the management
overhead will kill any savings on "small"
expressions. Thread creation is not cheap!
The "win" is on larger tasks - which
means that subprograms - and separately
compiled subprograms - have to be
involved in some way.
My main interest in this technology is to
make it much easier to create programs
that use threads but don't deadlock,
livelock, or have dangerous use of
globals. That seems to require restrictions
on what you can do, and definitely
requires some form of compile-time
checking to enforce those restrictions. If
done usefully, that could be a giant win,
as you could use sequential reasoning for
the majority of your programming and
debugging, and still get parallelism when
useful.
From: Tom Moran <tmoran@acm.org>
Date: Thu, 27 Jan 2011 23:01:54 +0000

UTC
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
> Finally, like Dmitry, I'm skeptical

about fine-grained parallelism buying
much. Unless there is specific
architectural support (something that
doesn't exist in commonly used

24 Ada in Context

Volume 32, Number 1, March 2011 Ada User Journal

processors -- and especially in
commonly used target OSes/RTOSes),
the management overhead will kill any
savings on "small"

What about the SIMD (vector)
instructions in Intel CPUs? Or is that
better done by simply calling their
optimized, CPU capability detecting,
libraries?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 28 Jan 2011 18:23:13 -0600
Subject: Re: Loops and parallel execution
Newsgroups: comp.lang.ada
[…]
That's a code generation problem; I don't
believe that there is much if any value to
the programmer cluttering their code with
parallel operations in that point.
To expand on that a bit: code generation
for a CISC machine is primarily a pattern
matching problem. That is, the
intermediate code is a list of very simple
pseudo instructions, and the code
generator needs to map those to more
complex machine instructions (along with
simple ones when the pattern matching
fails). Matching SIMD instructions is a
more complex problem than the simple
matcher used in Janus/Ada (to take the
example I'm most familiar with), but it is
fundamentally the same problem. In this
case, I would probably apply a loop
unrolling optimization, then a series of
pattern matching operations to create the
SIMD instructions.
We already do something like this for
aggregates in Janus/Ada. An aggregate
assignment like:

My_Str := (others => Ch)

can get turned into the Intel STOSB (I
think that's the right opcode) instruction
(plus a bit of setup code); which is a lot
simpler than the loop that would be
otherwise generated.
In either case, you'll automatically get the
benefit of the advanced instructions when
they can be used, and no code changes are
needed. Of course, if your code doesn't
match the pattern, the advanced
instructions wouldn't be used, but it's
unlikely that adding a "parallel" direction
to the loop would somehow change that.
I'd be surprised if GCC doesn't already do
something like this. (This particular
problem hasn't been on my radar, in part
because I didn't even have a machine that
supported most of those instructions until
last year.)

Encapsulation of
Ada.DirectIO
From: Bryan Robinson

<brobinson.eng@gmail.com>
Date: Tue, 16 Nov 2010 20:44:49 -0800

PST

Subject: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
I'm trying to port some code to Ada for
dealing with Big5-encoded files. I realize
that I might be able to use
Ada.Wide_Text_IO, but I'm trying to
learn Ada and understand the language
better. I'm still working on wrapping my
head around types and packages. My
original code in C++ opens a file as
binary and parses it byte by byte and
breaking it into Big5 characters
depending on the byte codes. I thought I'd
try to do something similar by
encapsulating Ada.Direct_IO into a
package. I'm not having much luck,
however.
Spec file:

with Ada.Direct_IO;
package Big5_Text_IO is
 type File_Type is limited private;
 procedure Close(
 File : in out File_Type);
private
 package Byte_IO is
 new Ada.Direct_IO(Character);
 type File_Type
 is new Byte_IO.File_Type;
end Big5_Text_IO;

Body file:

package body Big5_Text_IO is
 procedure Close(
 File : in out File_Type) is
 begin
 Byte_IO.Close(File);
 end Close;
end Big5_Text_IO;

Test driver:

with Big5_Text_IO;
with Ada.Text_IO;
procedure Big5_Test is
 Input_File : Big5_Text_IO.File_Type;
begin
 Ada.Text_IO.Put_Line("OK?");
end Big5_Test;

If I leave out the Close method and
remove the body file, I can build the test
driver with no issues. Otherwise, I get the
following from GNAT:

gcc -c big5_text_io.adb
big5_text_io.adb:6:23: expected private
type "Ada.Direct_Io.File_Type"
from instance at big5_text_io.ads:11

I would greatly appreciate any tips in how
I can better design my package so that it
can encapsulate Ada.Direct_IO or some
other method of binary I/O. I looked at
the GNAT source and I'm hoping I won't
have to emulate what they have done…its
a bit over my head at this point.

From: Adam Beneschan
<adam@irvine.com>

Date: Tue, 16 Nov 2010 21:20:05 -0800
PST

Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
You're close. Try changing

Byte_IO.Close (File);

to

Byte_IO.Close (
 Byte_IO.File_Type (File));

When you declare a derived type "type T2
is new T1", then T2 and T1 are not the
same type, so you can't use an object of
type T2 where something of type T1 is
expected. But you can use a type
conversion.
Note: I'm at home so I can't try this easily.
I seem to recall that there were some
issues using this paradigm with limited
types (including an incompatibility with
earlier versions of the language), but I
don't recall the details and it's hard for me
to look them up right now. If it turns out
the type conversion doesn't work, then
you might have to make File_Type a
record in the private part:

type File_Type is record
 F : Byte_IO.File_Type;
end record;

and then use File.F whenever you want to
use a Byte_IO operation, e.g.:

Byte_IO.Close (File.F);

Hope this helps,
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Wed, 17 Nov 2010 07:25:18 -0500
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
Direct_IO allows random access. There is
nothing wrong with that, of course, but if
your intention is to read the file
sequentially you might prefer using
Sequential_IO.
Something I wonder about (I don't have
the answer) is if it necessary to use a
representation clause to force the size of
the objects being read to be 8 bits. I'm a
little unclear if the standard requires
Character to be stored in a file in 8 bit
units. That is, the language might treat the
type Character rather more abstractly than
you want. Again I'm not sure of this and
I'd love to get some insights from others
myself.
Thus you might want to do something like

package Big5_Text_IO is
 …
 type Byte is mod 2**8;
 for Byte'Size use 8;
 …

Ada in Context 25

Ada User Journal Volume 32, Number 1, March 2011

private
 package Byte_IO is
 new Ada.Direct_IO(Byte);
 …
end Big5_Text_IO;

This approach has the advantage of
creating a separate type to represent the
raw data from the file. Thus

C : Character;
B : Big5_Text_IO.Byte;
C := B; -- Compile error.
 You haven't decoded B yet.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 17 Nov 2010 19:16:07 -0600
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
Surely not. Not all machines have 8-bits
as any sort of native type. For instance,
the Unisys U2200 (a 36-bit machine, with
9-bit bytes) used Character'Size = 9. (It
was great fun for the cross-compiler.)
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Wed, 17 Nov 2010 23:39:13 -0800

PST
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
Huh. How then is Character defined
there? According to RM A.1(35),
Character has 256 positions, so
Character'Size should be still 8. Of course
stand-alone objects would have X'Size =
9.
Note that Natural'Size = Integer'Size - 1.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 18 Nov 2010 12:38:44 -0600
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
I suppose you are right, but Ada 95
Type'Size has no important meaning.
(It's a terrible definition, IMHO.) What
matters is what AdaCore calls
Type'Object_Size, and that is what I was
referring to. (Typically, specifying
Type'Size will have some effect on
Type'Object_Size, but exactly what that
is will vary depending on the target.)
You could, I suppose, have packed
characters into 8-bits in an array, but the
code to access them would have been
unspeakably bad. And there would have
been no reason to do so anyway, since
files and streams are automatically
converted when crossing into that
machine's domain.
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Wed, 17 Nov 2010 21:21:34 -0500
Subject: Re: Encapsulating Ada.Direct_IO

Newsgroups: comp.lang.ada
[…]
> Surely not. Not all machines have 8-

bits as any sort of native type. So in that
case if you absolutely wanted to read 8
bit units from a file (because the file is
in some externally defined binary
format that uses 8 bit units) it would be
necessary to do something like:

type My_Byte is mod 2**8;
for My_Byte'Size use 8; -- This is
 important.

package My_Byte_IO is
 new Ada.Sequential_IO(My_Byte);

… and then convert from My_Byte to
Character only as appropriate during the
file decoding process. True?
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 18 Nov 2010 08:36:56 -0800

PST
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
 […]
I have a longish rant that touches on this,
but the short answer is that I don't think
there's an Ada answer to your question. If
you had a file defined as using 8-bit units,
and that file got put onto a system that
uses 36-bit words, you'd need to know
just what the OS is going to do with it,
and how the particular Ada
implementation will deal with files on that
OS. It may be that the native "read from
file" service on that OS will put each byte
into a 9-bit byte and zero the high bit. I
don't see how to avoid implementation-
dependent code in a case like this.
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Thu, 18 Nov 2010 13:21:57 -0500
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
I understand what you are saying but it is
less than satisfying. :)
I'm thinking about the very common case
when one is trying to read a file that has a
format defined by some third party. For
example the specification of the format
might say, "The first octet of the header
defines the message type and can be one
of the following values… The type field
is followed by a 24 bit length field in big
endian form. The body of the message
follows the length field, and finally a 32
bit CRC follows the message body."
I want to write an Ada program that can
read in a file like this and process it. Are
you saying that it's impossible to write
such a program in a portable manner?
What I've been doing is as I showed
earlier… define my own "Byte" type with
Byte'Size set to 8 and then instantiate

Sequential_IO. My program then
interprets the individual bytes as
necessary. It seems to work with GNAT.
I suppose that C has the same issue,
really. The C standard does not promise
that char is exactly 8 bits. If it isn't I'm not
sure what happens when you do

int Ch;
while ((Ch = fgetc(infile)) != EOF) { … }

I guess that's the same point you are
making. Maybe the C standard talks about
this issue. Checking…
I just took a quick look at C99's
description of fgetc and it says, "the fgetc
function returns the next character from
the input stream." That seems to beg the
question, doesn't it?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 18 Nov 2010 12:36:00 -0600
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
Adam is right. What we did is the same
thing as the C compiler.
When you imported files from the "real
world" into that system, it added a zero bit
to every byte. So there normally would
not be any such thing as a file with 8-bit
characters.The same thing happened to
sockets.
The real trouble came when you did the
reverse, as it then *dropped* the high bit
if it thought that the files were text files.
That would be bad news for truly binary
files.
Ada can only define things portably that it
has control over. If you read and write
files on the same machine, then the results
should be portable. Once you start
communicating to other machines, there
can be translation layers that mess things
up.
The good new is that it is pretty rare that
you will have to deal with any machines
that have other than 8-bit bytes these
days. So I wouldn't worry about those
issues unless you happen to be working
with Unisys. ;-)
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 18 Nov 2010 11:48:49 -0800

PST
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
> I'm thinking about the very common

case when one is trying to read a file
that has a format defined by some third
party. […]

The problem is that this *definition* is
not sufficient to tell you what an OS will
stick in your memory buffer if you ask to
read from such a file. You need additional
OS-dependent information.

26 Ada in Context

Volume 32, Number 1, March 2011 Ada User Journal

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 18 Nov 2010 21:15:35 +0100
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
I don't think so. I presume that the context
of the definition above is the OS. It is a
reasonable presumption because files
from another OS (file system) cannot be
read at all unless they are converted into
the format supported by the OS's file
system. Another presumption is that the
definition describes memory layout,
rather than the media layout. The latter is
inaccessible anyway. So a stream of
octets is what a file reading OS service
delivers, when Ada would call it. There of
course is no guaranty that Direct_IO
would use this service and not some other
service.
> You need additional OS-dependent

information.
The Ada compiler vendor will likely
document the services used for Direct_IO,
but there is no way to verify that using the
representation clauses and/or assertions.
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 18 Nov 2010 08:31:20 -0800

PST
Subject: Re: Encapsulating Ada.Direct_IO
Newsgroups: comp.lang.ada
[…]
What I'm leading up to, though, is that I
think Peter's question is too simple. We're
all spoiled in having to deal exclusively,
or almost exclusively, with machines with
8-bit byte addressability and files that are
unstructured sequences of 8-bit bytes. But
there are other systems out there. There
are machines in use that are not byte-
addressable---Analog Devices 21060
series comes to mind, which uses 32-bit
words whose bytes are not individually
addressable. When reading from a file on
that system, do you want each word to
hold one byte, or four?
Even in VAX/VMS, which does run on a
machine with 8-bit byte addressability,
the OS is able to create files that have
more structure than just being sequences
of bytes. What would it mean to
instantiate Direct_IO(Character) on a file
like that? I don't think the answer is
trivial. How did the Pick operating system
treat files conceptually? How would
Direct_IO work on one of that system's
files?
Ada's designers have tried to design a
language that could work on any of those
systems, and therefore I think the standard
does not and cannot answer Peter's
question. In fact, I'm not entirely sure that
his question is meaningful on platforms
that don't use 8-bit bytes and/ or use files
with some structure. (It might have to be
rephrased.)

In any event, I think that details like this
are left up to the implementation. And if
you were trying to do something like this
on a U2200, there is no Ada answer to the
question, because you would have to
know more about the particular OS's file
system and how the Ada implementation
interacts with it.

Stack overflow with
arithmetic operators and
large arrays
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Fri, 3 Dec 2010 22:32:59 -0800 PST
Subject: Large arrays passed to arithmetic

operators overflows GNAT stack
Newsgroups: comp.lang.ada
For what it's worth, passing large
numerical arrays to the arithmetic
operators in GNAT can cause the stack to
overflow (segfault) even when the arrays
are allocated from the heap. I suppose that
indicates that they are being copied rather
than being passed by reference.
For example, on OS X which has a
default stack size of 8192 KB, the
following program segfaults when N is
greater than about 1_048_138 (about 8
MB per Long_Float array) but runs OK
when it is somewhat less than that
number.

with
 Ada.Numerics.Long_Real_Arrays;
use
 Ada.Numerics.Long_Real_Arrays;
procedure array_test is
 type Real_Vector_Access
 is access Real_Vector;
 N : Integer := 1_048_130;
 t_Ptr : Real_Vector_Access :=
 new Real_Vector(0 .. N);
 t : Real_Vector renames t_Ptr.all;
 t_Diff_Ptr : Real_Vector_Access :=
 new Real_Vector(0 .. N - 1);
 t_Diff : Real_Vector
 renames t_Diff_Ptr.all;
begin
 for i in t'range loop
 t(i) := 1.0;
 end loop;
 t_Diff := t(1 .. N) - t(0 .. N - 1);
end array_test;

The quick fix (in my case) is to increase
the stack size from the shell:

ulimit -s 65532

or whatever is appropriate for your
machine--65532 is the hard limit set by
OS X.
Another way to expand the stack without
invoking shell commands, as noted by
Björn Persson on this thread

http://groups.google.com/group/
comp.lang.ada/browse_thread/thread/
ae395e5c1=1de7bc9/bda8d61bd3a66ee9?
hl=3Den&q=3DJerry+stack&lnk=3Dnl&
is to call getrlimit and/or setrlimit from
within the program, linking to these
POSIX C routines.
Another fix would be to write operator
procedures that specifically take pointers
as arguments; that would possibly be the
only fix for arrays that still overflow the
stack when it is maxed out.
As usual, taking the dumb-guy approach,
this seems like an unnecessary nuisance.
From: Vinzent Hoefler
Date: Sat, 04 Dec 2010 10:19:47 +0100
Subject: Re: Large arrays passed to

arithmetic operators overflows GNAT
stack

Newsgroups: comp.lang.ada
[…]
It's probably not the operator call that
crashes, but the creation of the temporary
arrays t(…). Couple of days ago, I
stumbled upon a similar problem with
aggegrate assignments:
- Do array initialization in a loop.
- If it's done with an aggregate

assignment, GNAT raises
Storage_Error during elaboration.

> Another fix would be to write operator
procedures that specifically take
pointers as arguments; that would
possibly be the only fix for arrays that
still overflow the stack when it is
maxed out.

This wouldn't help here, I suppose.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 04 Dec 2010 08:27:30 -0500
Subject: Re: Large arrays passed to

arithmetic operators overflows GNAT
stack

Newsgroups: comp.lang.ada
[…]
In general, GNAT (and most other
compilers) don't copy arguments like
large arrays on the parameters to
subprograms. The problem here is almost
certainly in the return value associated
with the subtraction. I am not sure I'd say
it is impossible but I don't think I have
seen any Ada implementation that can
avoid the creation of the temporary based
on the internally defined local variable
that is generally required to construct
code the returns an array.
Even if certain cases could be found by
the optimizer and made to work, there are
all sorts of cases where users would end
up being surprised when temporaries had
to be created.
In cases where array slices, assignment
and the math involved 'destroy' the future
values as the current values are being
read, the compiler would have no choice

Ada in Context 27

Ada User Journal Volume 32, Number 1, March 2011

(given the semantics of the operator) but
to introduce some temporaries and it
would be quite a feat for a compiler to
figure out how much of a mini-slice temp
it would need.
I really think it is a shame that
Generic_Real_Arrays was defined the
way that it was as the pretty code one gets
when being able to use infix notation is
nice but the overhead involved in the
resulting copies renders the operators
useless for all but the smallest of array
vectors.
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Sat, 04 Dec 2010 09:17:08 -0500
Subject: Re: Large arrays passed to

arithmetic operators overflows GNAT
stack

Newsgroups: comp.lang.ada
[…]
> with
 Ada.Numerics.Long_Real_Arrays;
 use
 Ada.Numerics.Long_Real_Arrays;
 procedure array_test is
 type Real_Vector_Access

 is access Real_Vector;
 N : Integer := 1_048_130;
 t_Ptr : Real_Vector_Access :=

 new Real_Vector(0 .. N);
 t : Real_Vector renames t_Ptr.all;
I don't think you need this renaming. If
you do t_Ptr'Range or t_Ptr(i) the
compiler will forward those operations
directly to the object.
> t_Diff_Ptr : Real_Vector_Access :=
 new Real_Vector(0 .. N - 1);
 t_Diff : Real_Vector
 renames t_Diff_Ptr.all;
 begin
 for i in t'range loop
 t(i) := 1.0;
 end loop;
 t_Diff := t(1 .. N) - t(0 .. N - 1);
I believe a temporary object (on the stack)
needs to be created here to hold the result
of the difference before it gets assigned to
t_Diff. So despite the fact that the result is
ultimately stored on the heap it ends up
passing through the stack on its way. If
I'm correct it's not the subtraction operator
itself that is causing the problem but
rather what is happening with the result.
In short "-" is returning the array by value
and not an access to the array. The
compiler has to figure out what to do with
that value before assigning it to t_Diff and
it is using a stack temporary.
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Sat, 4 Dec 2010 17:22:04 -0800 PST

Subject: Re: Large arrays passed to
arithmetic operators overflows GNAT
stack

Newsgroups: comp.lang.ada
[…]
That is true but the renaming is still
convenient for other reasons.
For example, the lines

t : Real_Vector_Access :=
 new Real_Vector(0 .. N);
t_Diff : Real_Vector_Access :=
 new Real_Vector(0 .. N - 1);
...
[Line 14] t_Diff := t(1 .. N);

causes the complaints

expected type "Real_Vector_Access"
defined at line 14
found type
"Ada.Numerics.Generic_Real_Arrays.R
eal_Vector" from
instance at a-nlrear.ads:18

And passing t to a vector cosine (e.g.)
function that expects to see a
Real_Vector will also fail. Of course,
with two like pointers t and x, assignment
t := x assigns the pointers, not the array
contents, and with three like pointers t, x,
y, t := x - y fails to find an applicable
operator function.
This clever renaming trick was mentioned
by Brian Drummond in this thread:
http://groups.google.com/group/
comp.lang.ada/browse_thread/thread/
ae395e5c11de7bc9/bda8d61bd3a66ee9?
hl=en&q=Jerry+stack&lnk=nl&

Task safeness of packages
From: Riccardo Bernardini

<framefritti@gmail.com>
Date: Wed, 2 Feb 2011 12:51:04 -0800 PST
Subject: About task-safeness
Newsgroups: comp.lang.ada
Dear all,
I have a question (better, two questions)
about packages and concurrence.
We have a software, a fairly complex one,
that makes use of tasks. (Just to give you
the context, it is a network
communication software that can have
several connections open at once and
every connection is handled by a task.)
Data structure that are designed to be
shared among different tasks are
implemented as protected objects, but it
came to my mind that an innocent-
looking package (that maybe provides
some general-purpose functions) could
have some "internal state" represented by
some variable global to the package. (For
example, a package defining some type of
object could keep the number of allocated
objects, so it can give to each object a
unique ID.) If such a package was used by

two different tasks, and the counter was
not protected, obscure bugs can arise.
This type of structure maybe is not very
recommended, but it happens… :-(
Of course, one could do a review of all
the packages to check for this type of
problems, but since an Ada compiler has
the good habit of protecting you from
yourself, I searched for a way to have the
compiler to check the task-safety of the
packages used by tasks.
My first tentative was to ask that all the
packages with-ed by a package that
defines a task should be Pure (a Pure
package cannot have any global
variables). Unfortunately, I soon
discovered that asking for Pure-ity is a too
strong requirement: all the ancestors must
be Pure and no un-Pure package can be
used. Although such constraints make
perfectly sense, they prevent you from
using several standard (and useful)
packages such as Unbounded_Strings, all
(?) the Containers hierarchy and
GNAT.Sockets (which turns out handy in
a networking program…:-). (To be
honest, my action of Pure-fication was not
useless; while making my packages Pure,
I caught a global counter in a package…)
So, my first question is:
- Can you suggest a way to have the

compiler to check for some task-safety
of packages? Even a technique for a
non-totally exhaustive check could be
useful.

The thoughts above triggered in me
another question. Consider, for example,
the Ordered_Maps package. That
package is not Pure (it cannot be, since it
would prevent the use of named access
types), so how can I be granted that the
package does not have some "hidden" and
unprotected state? Please note that I am
not asking for an *object* of type
Ordered_Map to be task-safe, if I need I
can wrap it in a protected object; I am
asking for the *package* to be task-safe.
Note that if, say, Ordered_Maps has
some hidden status, two task can modify
the status at the same time by accessing to
two Maps, even if the Maps have been
wrapped inside two different protected
objects. So, my second question is
- Am I granted (maybe by some obscure

paragraph of our beloved RM ;-) that the
standard packages are task-safe? (I
would be surprised if they weren't, but it
is nice to be sure…)

[…]
From: Vinzent Hoefler
Date: Wed, 02 Feb 2011 22:01:20 +0100
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
> […] - Am I granted (maybe by some

obscure paragraph of our beloved RM
;-) that the standard packages are task-
safe? […]

Well, ARM 05, A(3/2) says:

28 Ada in Context

Volume 32, Number 1, March 2011 Ada User Journal

The implementation shall ensure that each
language-defined subprogram is reentrant
in the sense that concurrent calls on the
same subprogram perform as specified, so
long as all parameters that could be
passed by reference denote non-
overlapping objects.
Apart from that, you probably have to
trust the programmer - or some tool.
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 02 Feb 2011 23:38:21 +0100
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
[…]
Or you can use AdaControl, have a look
at rule Global_References.
This can check all global variables
accessed from more than one task (and it
does so by following the call graph).
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 2 Feb 2011 20:44:34 -0600
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
[…]
Note that "protection" may simply be
declaring the object Atomic. Presuming
the compiler supports that, there isn't a
problem with multiple tasks accessing the
same counter. (The main problem with
small objects is compilers that get too
helpful and optimize the unoptimizable.)
…
> […] how can I be granted that the

package does not have some "hidden"
and unprotected state?

Hidden and truly unprotected would
violate the RM, as noted by others. But
hidden and Atomic is fine (the Janus/Ada
containers will use counters this way to
detect dangling cursors).
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Thu, 03 Feb 2011 09:53:03 +0100
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
[…]
Randy, could you be more explicit about
your suggested use of Atomic? As I
understand it, even if a counter variable N
is Atomic, two tasks concurrently
executing an assignment of the form

N := N + 1;

can interleave their actions so that N is
increased by only 1, not by 2 as intended.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Thu, 03 Feb 2011 12:07:52 +0100
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
[…]
When I first read about atomic counting, I
thought so, too. But then, I noticed a

new(?) Implementation Advice in the
LRM that says, IIRC, that compilers
should make atomic processor ops
available, including decrement. A
neighboring paragraph is about intrinsic
operations.
From: Cristoph Grein

<christoph.grein@eurocopter.com>
Date: Thu, 3 Feb 2011 03:22:53 -0800 PST
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
[…]
You mean C.1(11-12):
(11) It is recommended that intrinsic
subprograms be provided for convenient
access to any machine operations that
provide special capabilities or efficiency
and that are not otherwise available
through the language constructs.
Examples of such instructions include:
(12) Atomic read-modify-write operations
— e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.
But N := N + 1; is not such an operation
even if N is atomic. An implementation
would have to provide something like a
CAS operation.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Thu, 03 Feb 2011 11:13:25 -0700
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
[…]
Those are examples of such operations,
which will differ from machine to
machine. If a machine offers an atomic
increment operation, a compiler
implementing Annex C should provide a
subprogram to use it.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 3 Feb 2011 18:33:00 -0600
Subject: Re: About task-safeness
Newsgroups: comp.lang.ada
> […] even if a counter variable N is

Atomic, two tasks concurrently
executing an assignment of the form

 N := N + 1;
 can interleave their actions so that N is

increased by only 1, not by 2 as
intended.

Good point. All of the examples I've used
have been where one task set the value to
some constant (like True or False), and
other read it. That's safe, while doing both
may not be.
Practically(*), however, this will be
generated atomically on an x86 (at least
on Janus/Ada): it will generate an

Inc [N]

instruction, which I don't think can be
interrupted between the read and the
write. The net effect is that the operation
will be undivided on a single processor. (I
don't really know how multicore systems

might affect this; there may be additional
locks needed here.)
(*) Note that Ada language rules might
make generating this atomically
impossible, such as if an overflow check
is needed. In that case, separate read and
write instructions might be needed. That's
not a problem in the Janus/Ada runtime
(where checks are suppressed always,
mostly for size and speed reasons), but it
might be in your code.
And of course, this is very target
dependent. N := N + A; is much harder to
generate atomically, and for expressions
involving atomic array components might
be impossible.
P.S. None of this actually depends on
"Atomic" in the current Janus/Ada
compiler, as it isn't actually supported.
But this optimization is done for all
objects. In addition, Janus/Ada currently
treats all writes as volatile. Most likely,
the next version of Janus/Ada will have a
full implementation of Atomic (it's been
fully implemented in the front-end for
years - Isaac did it as part of an ACATS
review contract back in the mid-90s. But I
never implemented it in the optimizer and
back-end - and that needs to be fixed.)

How to send an email with
an Ada program
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Fri, 17 Dec 2010 15:23:21 -0800 PST
Subject: How to have Ada program send an

email
Newsgroups: comp.lang.ada
How can I get my Ada (GNAT) program
to send me an email? It's a long-running
simulation and I'd like to know when it
finishes.
I'm on OS X so I suppose I could write an
Applescript to cause Mail.app to do the
job, then execute the Applescript as a
command line within the Ada program,
but is there an easier or more direct way?
From: Pascal Obry <pascal@obry.net>
Date: Sat, 18 Dec 2010 00:30:30 +0100
Subject: Re: How to have Ada program send

an email
Newsgroups: comp.lang.ada
[…]
One solution is to use AWS's SMTP API.
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Sat, 18 Dec 2010 11:06:20 -0800 PST
Subject: Re: How to have Ada program send

an email
Newsgroups: comp.lang.ada
[…]
AWS - took a minute to realize that the
Linux versions of GNAT GPL 2010 were
suitable for Mac OS X too! […]

30

Volume 32, Number 1, March 2011 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2011

☺ April 10-13 6th European Conference on Computer Systems (EuroSys'2011), Salzburg, Austria. Topics include:

all areas of operating systems and distributed systems, including systems aspects of Dependable
computing and storage, Distributed computing, Parallel and concurrent computing, Programming-
language support, Real-time and embedded computing, Security, etc. Includes workshops on: Systems
for Future Multi-Core Architectures (SFMA'2011), Workshop on Rigorous Systems Engineering
(WRiSE'2011), 5th EuroSys Doctoral Workshop (EuroDW'2011), Rigorous Embedded Design
(RED'2011), etc.

April 12-15 2nd International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering
(PARENG'2011), Ajaccio, Corsica, France.

April 18-20 3rd NASA Formal Methods Symposium (NFM'2011), Pasadena, California, USA. Topics include:
Theorem proving, Model checking, Static analysis, Dynamic analysis, Model-based development,
Application experiences, etc.

☺ April 25-29 5th Latin-American Symposium on Dependable Computing (LADC'2011), São José dos Campos,
São Paulo, Brazil. Topics include: Dependability of software (frameworks and software architectures for
dependability, model driven dependability engineering, testing, verification, software certification, ...);
Dependability of maintenance; Dependability and human issues; Security; Safety (safety-critical
applications and systems, ...); etc.

April 27-29 18th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2011), Las Vegas, Nevada, USA. Theme: "Engineering Next Generation
Systems". Topics include: Component-Based System Design; Design Evolution; Distributed Systems
Design; ECBS Infrastructure (Tools, Environments); Education & Training; Embedded Real-Time
Software Systems; Integration Engineering; Model-Based System Development; Modelling and
Analysis of Complex Systems; Open Systems; Reengineering & Reuse; Reliability, Safety,
Dependability, Security; Standards; Verification & Validation; etc.

Apri 27-29 16th Annual IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2011), Las Vegas, Nevada, USA. Topics include: Verification and validation, Model-driven
development, Reverse engineering and refactoring, Design by contract, Agile methods, Safety-critical &
fault-tolerant architectures, Real-time and embedded systems, Tools and tool integration, Industrial case
studies, etc.

May 10-12 11th Annual International Conference on New Technologies of Distributed Systems
(NOTERE'2011), Paris, France. Topics include: recent technology advances and latest research results
in the design, implementation, deployment, and evaluation of distributed system, applications,
algorithms and architectures; such as on: Distributed middleware (implementations and applications);
Distributed real-time embedded middleware and applications; Domain specific languages for distributed
systems; Modeling, formal and semi-formal methods, and tools for distributed systems; Reliability and
scalability of distributed systems; etc.

May 16-19 23rd Annual Systems and Software Technology Conference (SSTC'2011), Salt Lake City, Utah, USA.

Conference Calendar 31

Ada User Journal Volume 32, Number 1, March 2011

☺ May 16-20 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2011), Anchorage,
Alaska, USA. Topics include: all areas of parallel and distributed processing, such as: Parallel and
distributed algorithms; Applications of parallel and distributed computing; Parallel and distributed
software, including parallel and multicore programming languages and compilers, runtime systems,
middleware, libraries, parallel programming paradigms, programming environments and tools, etc.

☺ May 20 12th International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-11). Topics include: parallel and distributed
computing techniques and codes; practical experiences using various parallel and
distributed systems; task parallelism; scheduling; compiler issues for scientific and
engineering computing; scientific and engineering computing on parallel computers,
multicores, GPUs, FPGAs, ...; etc.

☺ May 20 Workshop on Multithreaded Architectures and Applications (MTAAP'2011).
Topics include: programming frameworks in the form of languages and libraries,
compilers, analysis and debugging tools to increase the programming productivity.

☺ May 17-20 DAta Systems In Aerospace (DASIA'2011), Marrakesh, Morocco.

☺ May 21-28 33rd International Conference on Software Engineering (ICSE'2011), Waikiki, Honolulu, Hawaii,
USA. Theme: "Software by Design". Topics include: Engineering of distributed/parallel software
systems; Engineering of embedded and real-time software; Engineering secure software; Patterns and
frameworks; Programming languages; Reverse engineering and maintenance; Software architecture and
design; Software components and reuse; Software dependability, safety and reliability; Software
economics and metrics; Software tools and development environments; Theory and formal methods; etc.

☺ May 21 4th International Workshop on Multicore Software Engineering (IWMSE'2011).
Topics include: Modeling techniques for multicore software; Software components and
composition; Programming models and their impact on multicore software engineering;
Testing and debugging parallel applications; Software reengineering for parallelism;
Development environments and tools for multicore software; Experience reports from
research projects or industrial projects; etc.

May 21-22 8th International Working Conference on Mining Software Repositories
(MSR'2011). Topics include: Mining of repositories across multiple projects;
Characterization, classification, and prediction of software defects based on analysis of
software repositories; Search techniques to assist developers in finding suitable
components and code fragments for reuse, and software search engines; Analysis of
change patterns and trends to assist in future development; Case studies on extracting
data from repositories of large long-lived and/or industrial projects; etc.

May 21-28 2nd Student COntest on softwaRe Engineering (SCORE'2011).

May 22-24 24th IEEE-CS Conference on Software Engineering Education and Training (CSEET'2011),
Waikiki, Honolulu, Hawaii, USA. Topics include: Technology Transfer, Student projects and
internships, Industry-academia collaboration models, Software engineering professionalism, Education
& training for "real-world" Software Engineering practices, Training models in industry, Systems and
Software Engineering, etc.

May 24-27 22nd IEEE International Symposium on Rapid System Prototyping (RSP'2011), Karlsruhe, Germany.
Topics include: Real Time embedded system challenges; Specification and Language Models for
hardware/software systems; Very large scale system engineering; Embedded System
verification/validation; Critical Embedded Systems design; Reliability and failure analysis; Emerging
Technologies and Applications; Industrial Designs in Automotive, Medical and Avionics domains; etc.

☺ May 26-28 9th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2011), Busan, Korea. Topics include: all aspects of parallel and distributed computing and
networking, such as Parallel/distributed system architectures, Tools and environments for software
development, Distributed systems and applications, Reliability, fault-tolerance, and security, High-
performance scientific and engineering computing, etc.

32 Conference Calendar

Volume 32, Number 1, March 2011 Ada User Journal

June 01-03 11th International Conference on Computational Science (ICCS'2011), Tsukuba, Japan. Topics
include: recent developments in methods and modelling of complex systems for diverse areas of
science, advanced software tools, etc.

June 06-09 6th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2011),
Reykjavik, Iceland. Includes the COORDINATION, DAIS, and FMOODS & FORTE conferences.

June 05-17 36th Annual USENIX Technical Conference (USENIX ATC'2011), Portland, Oregon, USA. Topics
include: Distributed and parallel systems; Embedded systems; Reliability, availability, and scalability;
Security, privacy, and trust; etc.

June 20-23 2011 International Conference for Computational Science and its Applications (ICCSA'2011),
Santander, Spain. Topics include: Parallel and Distributed Computing, Security Engineering, Risk
Analysis, Reliability Engineering, Software Engineering, etc. Deadline for early registration: April 4,
2011.

♦ June 20-24 16th International Conference on Reliable Software Technologies - Ada-
Europe'2011, Edinburgh, UK. Organized together with the Ada Conference UK 2011,
under the common name of "The Ada Connection". Sponsored by Ada-Europe, in
cooperation with ACM SIGAda.

June 20-24 17th International Symposium on Formal Methods (FM'2011), Limerick, Ireland. Theme: "Formal
Methods Come of Age". Topics include: advances and maturity in formal methods research, education,
and deployment via tool support and industrial best practice, and their role in a variety of industries,
domains, and in certification and assurance; in particular experience with practical applications of
formal methods in industrial and research settings, experimental validation of tools and methods as well
as construction and evolution of formal methods tools.

June 20-24 9th Working IEEE/IFIP Conference on Software Architecture (WICSA'2011), Boulder, Colorado,
USA. Topics include: Software architecture and software qualities; Architecture description languages
and model driven architecture; Software architecture discovery and recovery; Software architects' roles
and responsibilities; Training, education, and certification of software architects; Industrial experiments
and case studies; etc.

June 20-24 11th International Conference on Application of Concurrency to System Design (ACSD'2011),
Kanazawa, Japan. Topics include: (Industrial) case studies of general interest, gaming applications,
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design,
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc.

June 27-29 16th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2011), Darmstadt, Germany.

☺ June 28-30 49th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2011),
Zurich, Switzerland. Topics include: Applications to safety- and security-related software; Distributed
and concurrent object systems; Domain specific languages and language design; Experience reports,
including efforts at standardisation; Language implementation techniques, compilers, run-time systems;
Multicore programming, models and patterns; Object technology, including programming techniques,
languages, tools; Practical applications of program verification and analysis; Real-time object-oriented
programming and design; Tools and frameworks for supporting model-driven development; Trusted and
reliable components; etc.

☺ June 30 Workshop on Entwicklung zuverlässiger Software-Systeme, Stuttgart, Germany. Topics include (in
German): Multi-Core-Architekturen und Migration; Echtzeitsysteme; Sprachen versus Bibliotheken;
Risikobetrachtungen, Normen und SIL; Nachweis der Erfüllung der Sicherheits-Anforderungen;
Bewertung von realisierten Systemen; etc.

June 30 – July 02 5th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'2011),
Seoul, Korea.

☺ June 30 International Workshop on Multi-Core Computing Systems (MuCoCoS'2011).
Topics include: multi-core embedded systems; programming languages and models;
algorithms for multi-core computing systems; applications for multi-core systems;

Conference Calendar 33

Ada User Journal Volume 32, Number 1, March 2011

performance modeling and evaluation of multi-core systems; design space exploration;
tool-support for multi-core systems; compilers, runtime and operating systems; etc.

July 03-06 4th International Conference on Software Language Engineering (SLE'2011), Braga, Portugal.
Topics include: Formalisms used in designing and specifying languages and tools that analyze such
language descriptions; Language implementation techniques; Program and model transformation tools;
Language evolution; Approaches to elicitation, specification, or verification of requirements for
software languages; Design challenges in SLE; Applications of languages including innovative domain-
specific languages or "little" languages; etc. Deadline for submissions: April 8, 2011 (papers).

July 05-07 15th International Conference on System Design Languages of the SDL Forum Society (SDL'2011),
Toulouse, France. Topics include: Industrial application reports (industrial usage and experience reports,
tool engineering and frameworks, domain-specific applicability, such as aerospace, automotive, control,
...); Evolution of development tools and languages (domain-specific profiles and extensions, modular
language design, semantics and evaluation, methodology for application, standardization activities);
Modeling in multi-core and parallel applications; Education and Promotion of System Design
Languages; etc. Deadline for submissions: May 15, 2011 (posters, exhibits).

July 13-14 11th International Conference on Quality Software (QSIC'2011), Madrid, Spain. Topics include:
Software quality (review, inspection and walkthrough, reliability, safety and security, ...); Evaluation of
software products and components (static and dynamic analysis, validation and verification); Economics
of software quality; Formal methods (program analysis, model construction, ...); Applications
(component-based systems, distributed systems, embedded systems, enterprise applications, information
systems, safety critical systems, ...); etc.

July 14-20 23rd International Conference on Computer Aided Verification (CAV'2011), Snowbird, Utah, USA.
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Verification methods for parallel and concurrent hardware/software systems,
Applications and case studies, Verification in industrial practice, etc.

☺ July 25-29 25th European Conference on Object-Oriented Programming (ECOOP'2011), Lancaster, UK. Topics
include: all areas of object technology and related software development technologies, such as Analysis
and design methods and patterns; Distributed, concurrent, real-time systems; Language design and
implementation; Modularity, components, services; Software development environments and tools;
Type systems, formal methods; Compatibility, software evolution; etc. Deadline for submissions: April
15, 2011 (worskhop papers, doctoral symposium, PhD workshop), May 23, 2011 (studentships).

☺ July 26 6th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2011). Topics include: efficient
implementation and compilation of OO languages in various application domains
ranging from embedded and real-time systems to desktop systems. Deadline for paper
submissions: April 15, 2011.

August 15-18 6th IEEE International Conference on Global Software Engineering (ICGSE'2011), Helsinki,
Finland. Topics include: Strategic issues in distributed development (cost-benefit-risk analysis, ...);
Methods and tools for distributed software development (requirements engineering, design, coding,
verification, testing and maintenance, development governance); Empirical studies and lessons learnt
from distributed development; etc.

☺ August 29-30 16th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2011),
Trento, Italy. Topics include: Design, specification, code generation and testing based on formal
methods; Verification and validation methods that address shortcomings of existing methods with
respect to their industrial applicability; Tools for the development of formal design descriptions; Case
studies and experience reports on industrial applications of formal methods, focusing on lessons learned
or identification of new research directions; Impact of the adoption of formal methods on the
development process and associated costs; Application of formal methods in standardization and
industrial forums; etc.

Aug 29 – Sep 02 15th IEEE International Enterprise Computing Conference (EDOC'2011), Helsinki, Finland. Topics
include: the full range of engineering technologies and methods contributing to intra- and inter-
enterprise distributed application systems; industry specific solutions, e.g. for aerospace, automotive,
finance, logistics, medicine and telecommunications; etc.

34 Conference Calendar

Volume 32, Number 1, March 2011 Ada User Journal

☺ Aug 30 – Sep 02 International Conference on Parallel Computing 2011 (ParCo'2011), Gent, Belgium. Topics include:
all aspects of parallel computing, including applications, hardware and software technologies as well as
languages and development environments, in particular Applications of multicores, GPU-based
applications, Parallel programming languages, compilers and environments, Best practices of parallel
computing, etc.

September 05-09 8th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2011), Szeged, Hungary.
Topics include: Case studies and experience reports; Engineering of distributed/parallel software
systems; Engineering of embedded and real-time software; Engineering secure software; Reverse
engineering and maintenance; Software architecture and design; Software components and reuse;
Software dependability, safety and reliability; Software tools and development environments; Theory
and formal methods; etc. Deadline for applications: April 3, 2011 (industry track, technical briefings,
doctoral symposium); June 12, 2011 (new ideas track, tool demonstrations).

September 12-14 16th European Symposium on Research in Computer Security (ESORICS'2011), Leuven, Belgium.
Topics include: Accountability, Information Hiding, Information Flow Control, Integrity, Formal
Security Methods, Language-Based Security, Risk Analysis and Management, Security Verification,
Software Security, etc.

September 13-16 5th European Conference on Software Architecture (ECSA'2011), Essen, Germany. Topics include:
software tools and environments for architecture-centric software engineering; component-based
models, middleware, component-based deployment; technology of components and component-based
frameworks; industrial applications, case studies, best practices and experience reports; architecture
description languages and metamodels; etc. Deadline for submissions: April 3, 2011 (abstracts), April
10, 2011 (papers).

☺ Sep 13-16 40th International Conference on Parallel Processing (ICPP'2011), Taipei, Taiwan. Topics include:
all aspects of parallel and distributed computing, such as Compilers, Programming Models and
Languages, Multi-core and Parallel Systems etc.

☺ Sep 19-23 11th International Conference on Parallel Computing Technologies (PaCT'2011), Kazan, Russia.
Topics include: all aspects of the applications of parallel computer systems; methods and tools for
parallel solution of large-scale problems; languages, environment and software tools supporting parallel
processing; etc.

♦ Sep 14-16 15th International Real-Time Ada Workshop (IRTAW'2011), Liébana, Cantabria,
Spain. Deadline for position paper submissions: May 15, 2011.

September 22-23 5th International Symposium on Empirical Software Engineering and Measurement (ESEM'2011),
Banff, Alberta, Canada. Topics include: Generative programming, metaprogramming; Product-line
architectures; Analysis of language support for generative programming; Semantics, type-systems of
generative programs; Case Studies and Demonstration Cases; etc. Deadline for submissions: June 15,
2011 (industry experience reports, short papers, posters).

Sep 25 – Oct 01 27th IEEE International Conference on Software Maintenance (ICSM'2011), Williamsburg, VA,
USA. Topics include: reverse engineering and re-engineering; static and dynamic analysis; software
migration and renovation; maintenance and evolution process; mining software repositories; empirical
studies in software maintenance and evolution; testing, only in relation to maintenance (e.g., regression
testing); etc. Deadline for submissions: April 8, 2011 (research abstracts), April 15, 2011 (research
papers), June 10, 2011 (doctoral symposium, tutorials), June 20, 2011 (industry abstracts, early research
achievements abstracts), June 25, 2011 (industry presentations, early research achievements papers, tool
demonstrations).

☺ Sep 26-30 CBSoft2011 - 15th Brazilian Symposium on Programming Languages (SBLP'2011), Sao Paulo,
Brazil. Topics include: the fundamental principles and innovations in the design and implementation of
programming languages and systems; such as: Programming paradigms and styles, including object-
oriented, real-time, multithreaded, parallel, and distributed programming; Program analysis and
verification, including type systems, static analysis and abstract interpretation; Programming language
design and implementation, including new programming models, programming language environments,
compilation and interpretation techniques; etc. Deadline for submissions: April 22, 2011 (abstracts),
April 29, 2011 (full papers).

Conference Calendar 35

Ada User Journal Volume 32, Number 1, March 2011

Sep 29-30 10th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT'2011), Saint Petersburg, Russia. Topics include: Software methodologies, and tools for robust,
reliable, non-fragile software design; Software developments techniques and legacy systems; Automatic
software generation versus reuse, and legacy systems; Software evolution techniques; Agile Software
and Lean Methods; Formal methods for software design; Software maintenance; Software security tools
and techniques; Formal techniques for software representation, software testing and validation; Software
reliability, and software diagnosis systems; Model Driven Development (DVD), code centric to model
centric software engineering; etc.

☺ Oct 04-07 30th IEEE International Symposium on Reliable Distributed Systems (SRDS'2011), Madrid, Spain.
Topics include: distributed systems design, development and evaluation, particularly with emphasis on
reliability, availability, safety, security, trust and real time; high-confidence systems; distributed objects
and middleware systems; formal methods and foundations for dependable distributed computing;
analytical or experimental evaluations of dependable distributed systems; etc. Deadline for submissions:
April 3, 2011 (full papers).

☺ Oct 20-22 12th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2011), Gwangju, Korea. Topics include: all areas of parallel and distributed
computing; Reliability, and fault-tolerance; Formal methods and programming languages; Software
tools and environments; Parallelizing compilers; Component-based and OO Technology;
Parallel/distributed algorithms; Task mapping and job scheduling; etc. Deadline for submissions: April
5, 2011 (workshops), May 20, 2011 (submissions).

October 25-28 13th International Conference on Formal Engineering Methods (ICFEM'2011), Durham, UK. Topics
include: Abstraction and refinement; Formal specification and modelling; Software verification;
Program analysis; Tool development and integration; Software safety, security and reliability;
Experiments involving verified systems; Applications of formal methods; etc. Deadline for submissions:
April 7, 2011 (papers).

Nov 06-10 ACM SIGAda Annual International Conference on Ada and Related
Technologies (SIGAda'2011), Denver, Colorado, USA. Deadline for submissions:
June 30, 2011.

November 14-18 9th International Conference on Software Engineering and Formal Methods (SEFM'2011),
Montevideo, Uruguay. Topics include: programming languages, program analysis and type theory;
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of
formal methods, industrial case studies and technology transfer; etc. Deadline for submissions: April 23,
2011 (abstracts), April 30, 2011 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 18-21 18th IEEE International Conference on High Performance Computing (HiPC'2011), Bengaluru,
Bangalore, India. Topics include: Parallel and Distributed Algorithms, Parallel Languages and
Programming Environments, Scheduling, Fault-Tolerant Algorithms and Systems,
Scientific/Engineering/Commercial Applications, Compiler Technologies for High-Performance
Computing, Software Support, etc. Deadline for submissions: May 16, 2011 (papers, workshops), Sep
16, 2011 (student symposium). Deadline for early registration: November 14, 2011.

Forthcoming Events 37

Ada User Journal Volume 32, Number 1, March 2011

16
th

 International Conference on Reliable Software
Technologies –

 Ada-Europe 2011

Ada Conference UK
2011

John McIntyre Conference Centre, Edinburgh, UK
20 – 24 June 2011

http://www.ada-europe.org/conference2011

Monday Tuesday Wednesday Thursday Friday

Opening/Welcome Ada 2012 update GAP update, Educators'

session, AdaWay Prize

Tutorials Keynote - Peter Ladkin Keynote - Pippa Moore Keynote - Jeff O'Leary Tutorials

Tutorials Technical Papers:
Multi-Core

Industrial Presentations:
Modelling and Complexity

Panel: DO178C and Object-
Orientation for Critical

Systems
Tutorials

Tutorials
Technical
Papers:

Verification

Sponsor
talks

Industrial
Presentations:
Real-time and

Longevity

Exhibitor
talks

Technical
Papers:

Architecture
and

Modelling

Industrial
Presentations:

Innovation
and New
Markets

Tutorials

Tutorials

Panel:
Programming
Languages
Meet Multi-

Core

Sponsor
&

Exhibitor
talks

Industrial
Presentations:
Transitioning

and
Debugging

Exhibitor
talks

Technical Papers: Education
and

Mixed Criticality
Tutorials

The Ada Connection 2011 sees a union of two Ada events that have both been very successful in their
own right. The Ada-Europe series of conferences has become established as an international forum for
providers, practitioners and researchers in all aspects of reliable software technologies. The Ada
Conference UK has been running in its current form since 2006 as a series of biennial one-day events,
to highlight the increased relevance of Ada in safety- and security-critical systems. By combining these
events, the Ada Connection will provide a unique opportunity for interaction and collaboration
between academics and industrial practitioners.

Edinburgh is a first-class city and conference venue. The John McIntyre Conference Centre is located
within the University of Edinburgh campus, approximately 20 minutes walk from the city centre. The
Conference Centre is adjacent to Holyrood Park, whose centrepiece, Arthur’s Seat, offers a half-hour
‘climb’ from which excellent views can be gained of the city of Edinburgh and beyond.

38 Forthcoming Events

Volume 32, Number 1, March 2011 Ada User Journal

In cooperation with

ACM SIGAda

Social Programme
Welcome Reception – Tuesday 21st June

The Ada Connection offers a Welcome Reception with a difference, combining an informal opportunity to meet our
exhibitors with an educational tasting experience. Each exhibition stand will have a different bottle of single malt
Scotch whisky available, specially chosen to span the aroma and flavour spectrum; you are invited to visit and sample
an appropriate number of these fine and rare “malts”. Wine and soft drinks will, of course, also be available.

Conference Banquet Dinner – Wednesday 22nd June

The Ada Connection Gala Dinner will be held in true Celtic style at The Signet Library situated on the Royal Mile,
considered to be one of the finest examples of Georgian architecture in the country.
Drinks will be served in the Lower Library, which is a working law library by day, enjoying an outlook onto Parliament
Square and the Royal Mile. Once settled in, we will enjoy a pre-dinner presentation by Professor Les Hatton – a noted
contributor to safer software engineering. Dinner will then be served in the Upper Library, with magnificent
architectural features, including a magnificent stained glass window celebrating Queen Victoria's Jubilee.

Panels
Panel 1: Programming Languages Meet Multi-Core

The advent of multi-core is shaking the very foundations of programming
languages for concurrency, resource sharing, synchronisation, etc. We are asking
some language designers to discuss solutions to this challenge.
Confirmed participants include: Erhard Plödereder (moderator – University of
Stuttgart), Alan Burns (University of York), Tucker Taft (SofCheck, Inc), Kevin
Hammond (University of St Andrews).

Panel 2: DO178C and Object-Orientation for Critical Systems

The high-integrity systems industry faces the challenge of reaping the benefit of
object-orientation in their rigid and demanding development process. Domain
experts will debate pros and cons, risks and opportunities, and ways to introduce
elements of object-orientation into safety-critical system development.
Confirmed participants include: Cyrille Comar (AdaCore), Jean-Pierre Rosen
(Adalog), Dewi Daniels (Verocel).

Vendor Exhibition
The exhibition will open on Tuesday morning, and run until the last session on
Wednesday. It will take place in the conference venue; coffee breaks and lunch
on Wednesday will be served in the exhibition space.
Companies who have already booked their exhibition space at the conference
include, in alphabetical order: AdaCore, Altran Praxis, Causalis Limited, Ellidiss
Software, Green Hills Software, LDRA, Objektum Solutions, Rapita Systems,
Resource Engineering, TTE Systems, Vector Software and Wind River.
Exhibitors will also deliver a technical presentation in one of the tracks on
Tuesday and Wednesday afternoon.

Tutorials
Six half-day tutorials are presented on
Monday, and three full-day tutorials on
Friday.

Half Day Tutorials

T1: Experimenting with ParaSail Parallel

Specification and Implementation Language
by S. Tucker Taft, SofCheck, Inc (USA)

T2: Designing and Checking Coding Standards
for Ada by Jean-Pierre Rosen, Adalog
(France)

T3: Programming Distributed Systems with
YAMI4 by Maciej Sobczak, Inspirel (Poland)

T4: Why and How to Measure Non-Functional
Properties On Target by Ian Broster, Rapita
Systems Ltd (UK)

T5: Revamping the Software Technical Review
Process by William Bail, The MITRE
Corporation (USA)

T6: Use of Object-Oriented Technologies in
High-Reliability Systems by Jean-Pierre
Rosen, Adalog (France)

Full Day Tutorials

T7: MAST: Predicting Response Times in Event-

Driven Real-Time Systems by Michael G.
Harbour, Universidad de Cantabria (Spain)

T8: SPARK: The Libre Language and Toolset for
High-Assurance Software by Roderick
Chapman, Altran Praxis (UK)

T9: Distributed Programming Techniques in Ada
by Thomas Quinot, AdaCore (France)

For full tutorial details, please see the
conference web pages.

The conference programme includes tutorials, technical papers, industrial papers, vendor presentations and
a comprehensive vendor exhibition, together with two panel discussion sessions and three keynote talks.
These are summarised below, but for full details and registration see the conference website:

http://www.ada-europe.org/conference2011

Keynotes
Three keynote talks are provided by eminent speakers: Peter Bernard Ladkin
(Causalis Ltd) on the Future of Software Safety Standards, Pippa Moore (UK
CAA) on the topic of Hippocrates and DO-178B, and Jeff O’Leary (USA FAA) on
Assuring Software Reliability While Using Web Services and Commercial
Products.

Forthcoming Events 39

Ada User Journal Volume 32, Number 1, March 2011

15TH INTERNATIONAL REAL-TIME ADA WORKSHOP
(IRTAW-15)

September 14-16, 2011 – Liébana (Cantabria), Spain

http://www.artist-embedded.org/artist/IRTAW-15.html

CALL FOR PAPERS

Since the late Eighties the International Real-Time Ada

Workshop series has provide d a forum for identifying issues with
real-time system support in Ada and for exploring possible
approaches and solutions, and has attracted participation from key
members of the research, user, and implementer communities
worldwide. Recent IRTAW meetings have significantly
contributed to the Ada 2005 standard and to the proposals for Ada
2012, especially with respect to the tasking features, the real-time
and high-integrity systems annexes, and the standardization of the
Ravenscar profile.

In keeping with this tradition, and in light of the current
revision process that will lead to the new Ada 2012 standard, the
goals of IRTAW-15 will be to:

• review the current status of the Ada 2012 Issues that are related with the support of real-time systems;
• examine experiences in using Ada for the development of real-time systems and applications, especially – but not

exclusively – those using concrete implementation of the new Ada 2005 real-time features;
• report on or illustrate implementation approaches for the real-time features of Ada 2012;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other extra-functional concerns;
• examine and develop paradigms for using Ada for real-time distributed systems, with special emphasis on

robustness as well as hard, flexible and application-defined scheduling;
• consider the definition of specific patterns and libraries for real-time systems development in Ada;
• identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
• examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

• consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-15 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Format
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted

papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press) (to be confirmed). Selected papers will also appear in the Ada User Journal.

Submission
Please submit position papers, in PDF format, to the Program Chair by e-mail: aldeam@unican.es

Important Dates

Receipt of Position Paper: 15 May 2011
Notification of Acceptance: 15 June 2011

Final Copy of Paper: 31 July 2011
Workshop Date: 14-16 September 2011

40

Volume 32, Number 1, March 2011 Ada User Journal

Introduction
"The Ada Way" is an annual student programming contest
organized by Ada-Europe, the international organization
that promotes the knowledge and use of Ada in European
academia, research and industry. A Steering Committee
formed by representatives of promoting institutions
oversees the organization of the contest. The Steering
Committee is currently comprised of: Dirk Craeynest and
Ahlan Marriott (Ada-Europe), Ricky Sward (ACM
SIGAda), Jamie Ayre and Matteo Bordin (AdaCore), Jean-
Pierre Fauche (Atego), Ian Broster (Rapita), Rod White
(MBDA).

This initiative aims to attract students and educators to Ada
in a form that is both fun and instructive. For this reason
the contest is a yearly programming competition among
student teams, whereby each team must have a university
affiliation and be endorsed by an educator. The ideal, but
not exclusive, context for participation is as part of an
organized teaching/course activity in which the theme and
requirements of the contest are endorsed and supported by
the educator. See the "Participation Requirements" section
for details.

The contest opens in September with the announcement of
the theme, and allows submissions until the end of April
the following year. See below for the 2010-11 edition
theme and the Submissions section for the submission
requirements.

Students and educators who may consider participating and
want more information on "The Ada Way" in general and
its 2010-11 edition in particular are invited to make contact
with the Steering Committee at board@ada-europe.org.

Project Theme for Academic Year
2010-11: Software simulator of a football
(soccer) match
The following specification intentionally leaves some room
for interpretation and extension: participants are
encouraged to use their intelligent creativity to firm up the
derivative specification they want to work against.

The software system shall support at least the
following features:
• Users must be able to play a single game; support for

playing a series of matches, with fixtures and
associated rules, is optional and can be omitted

• The chosen variant of the game shall be configurable
in all relevant parameters, allowing for any of 5-a-side,
7-a-side, and the canonical 11-a-side formats

• The members of the squads will feature individually
configurable characteristics for, at least, technical and
tactical skills, speed, physical parameters including
fatigue; some of those parameters shall be dynamic
and evolve with the match according to some
programmed logic

• Each squad shall have a (software) manager able to
configure the initial players line up, the initial tactic
and to issue commands for tactic changes and
substitutions, all subject to the rules of the game as in
the corresponding standard

• Each squad shall play according to the tactic
commanded by the manager; deviations shall be
permitted in so far as they result from programmable
characteristics of the players

• Each match shall have one independent (software)
referee and two to three subordinate (software)
assistants who control the game and ensure that the
applicable rules are followed; the behavior and the
performance of the referee and assistants need not
exhibit the physical limitations of actual humans.

The software system shall include at least:
• A software core, whether centralized or distributed,

implementing all of the logic of the simulation

• One read-only graphical panel (window) for the
display of the football field, the players, the ball, the
referee and assistants; as for the (simulated) human
figures on the pitch it shall be sufficient to represent
them as moving numbered dots on the display without
resorting to sophisticated graphical rendering, as in a
view of a subbuteo table seen from the top

• Two distinct read-write graphical panels (windows) for
the user to influence the otherwise independent action
of the team managers; the panel shall display the
current parameters for each player; the refresh rate of
such display shall be user-configurable

• One read-only graphical panel (window) for the
display of a user-configurable selection of statistics;
the refresh rate of such display shall be user-
configurable.

Student Programming Contest “The Ada Way” 41

Ada User Journal Volume 32, Number 1, March 2011

The software core shall be programmed in Ada. The
software design shall permit the principal algoritms to be
modified and replaced at will: in other words, the software
system shall be as modular, configurable and scalable as
possible. These qualities will contribute to the evaluation.

The graphical panels can be programmed in any language
that the participating teams will consider fit for purpose.
The graphical beauty of such panels will however be only a
minor factor in the evaluation. What shall matter instead is
that the interaction and the flow of data and control
between the software core and the graphical panels is
governed by good architectural principles and shows
sufficient accuracy and performance.

To be considered for evaluation, the system shall run out of
the box. The target platform may be freely chosen between
Linux, Windows and MacOS. Portability across them will
however be a competitive advantage.

Participation requirements
Participating teams shall be composed by a minimum of 2
and a maximum of 7 members. Each team shall have a
codename and a logo. Team work may be performed as
part of an organized teaching/course activity or as a
volunteer project. Either way, each team must be
recognised and endorsed by an academic educator.

Team members must be full-time students: they must
provide evidence of their status when submitting their
project. The contest is open to undergraduate and Master
students. Teams may but need not include a mix of
undergraduate and graduate students. Team members may
belong to distinct institutions.

Submission
The software system shall be delivered in source (as a
single compressed archive), accompanied by:

1. A software specification document (in PDF),
which describes the principal design decisions and
argues their quality, and presents the points of
extension and modification in the system; the
specification shall clearly single out all places at
which the team made arbitrary interpretation of
the specification or added or extended
requirements

2. A user manual describing the compilation and
installation procedures, the configuration options
and the allowable use of the system (in PDF)

3. The team codename, logo and composition: name,
email contact, evidence of enrollment as full-time
students (in a single PDF)

4. The written endorsement to the submission by an
academic or otherwise senior instructor in whose
class the project was launched (in PDF).

The submission shall be made as a single compressed
archive of all items listed above at the URL that will appear
on this page in due time.

All sources shall be released for the good of the general
public, to become reference material for educational and
promotional purposes. To this end the use of GPL (GNU
General Public License) is recommended, though we are
not prescriptive of a specific scheme, so long as the general
intent of free dissemination is preserved.

Submissions shall be accepted during the whole month of
April 2011, at the Ada Way website, http://www.ada-
europe.org/AdaWay.

Evaluation and Prize
The evaluation criteria will include:

• Coverage of requirements

• Syntatic, semantic, programmatic and design
correctness

• Clarity and readability of the code

• Quality of design

• Ingenuity and cuteness of the solution

• Time and space efficiency of the solution.

The evaluation will be performed by a team of
distinguished Ada experts comprised of: John Barnes (UK),
Tucker Taft (US), Joyce Tokar (US), Pascal Leroy (F), Ed
Schonberg (US).

The winning submission shall be announced on 31 May
2011 by a post on the site and by an email communication
to all participating teams.

The prize will consist of: a framed award; one free
registration and up to 3 reduced student fees for
representatives of the winning team to attend to the Ada-
Europe 2011 Conference; accommodation and airfare for
the team representatives (with ceiling at EUR 3,000); an
exhibition slot in the conference program; visibility in
electronic and printed media including:

• Ada User Journal: http://www.ada-europe.org/
journal.html

• Ada Letters: http://www.sigada.org/ada_letters/

For up-to-date information on Ada-Europe's student
programming contest, please go to the official web site of
“The Ada Way”, http://www.ada-europe.org/AdaWay,

Sponsors
This year's competition is sponsored by Ada-Europe,
AdaCore, and Atego.

 43

Ada User Journal Volume 32, Number 1, March 2011

A comparison of work-sharing, work-seeking, and
work-stealing parallelism strategies using Paraffin
with Ada 2005
B. J. Moore
General Dynamics Canada, 1020 68th Ave. N.E., Calgary, Alberta, Canada; Tel: 001.403.730-1367;
email: brad.moore@gdcanada.com

Abstract
A computing trend today is towards the increased use
of multicore computers. Achieving optimal
performance on multicore architectures involves
taking advantage of parallelism opportunities when
possible. Iteration and recursion are examples of
constructs where parallelism opportunities can often
be applied.
Paraffin is an open source set of portable generics
written in Ada 2005 that may be used to inject
parallelism into loops and recursive algorithms. This
paper explores Paraffin's capabilities to compare
various parallelism approaches including work-
sharing, work-seeking, and work-stealing. The paper
suggests when one approach might be a better choice
over another.
Keywords: Ada 2005, Paraffin, parallel loops,
parallel recursion, work-sharing, work-seeking, work-
stealing.

1 Introduction
While mainstream languages such as C and C++ do not
currently provide direct support parallel loops and other
parallelism constructs, there are language extensions to
these languages [1, 5] that provide such capabilities. One
problem with non-standard language extensions is that they
are inherently non-portable.

A portable solution for parallelism does exist however, if
one considers the Ada programming language [4]. Ada was
designed from the ground up to support concurrency and
multi-tasking. While Ada does not currently provide direct
support for parallel loops and parallel recursion, the
language does provide the building blocks needed to
provide these parallelism constructs in the form of reusable
generic subprograms, without having to resort to non-
standard language extensions.

One such example of a parallelism library is Paraffin [3].
Paraffin is an open source set of Ada 2005 generics that
may be used to inject parallelism into loops and recursive
algorithms. Paraffin is 100% Ada code that does not have
known dependencies on any particular Ada 2005 compiler,
nor does it have any known dependencies on OS specific

features. Thus, it should be possible in theory to use
paraffin on any target that has an Ada 2005 compiler.

The Paraffin set of generics subprograms provide three
parallelism approaches; Work-Sharing, Work-Seeking, and
Work-Stealing.

Work-Sharing is the simplest approach that attempts to
evenly distribute the work between a set of worker tasks at
the start of a parallelism opportunity. Once the work has
been divided amongst the tasks, each task proceeds with its
share of the work until completion. When all workers have
completed their tasks, the parallelism is complete, and the
program continues executing sequentially until the next
parallelism opportunity. This simpler approach generally is
ideal when the amount of work can be evenly divided
amongst the workers, though scheduling and differing
processor loads tend to make it unlikely that workers will
actually complete all their work at the same time, and better
performance may actually result from selecting a different
parallelism approach.

Work-Seeking starts off just like work-sharing except that
when a worker completes its work, it will seek more work
from other busy workers. Busy workers regularly check an
atomic boolean flag indicating that a worker is seeking
work. If the flag is set, then the busy worker reports to the
generic the current progress of its tasking, and then the
generic makes an offer to the idle worker through a
protected object to split the remaining work assigned to the
busy worker.

If the idle worker has not already accepted an offer from
another busy worker that may have responded to the
seeking work flag request, then the idle worker accepts the
offer and both worker tasks proceed, with their half of the
remaining work that was originally allotted to the busy
worker. Work-Seeking proceeds in this manner until all
work has been completed, where the program then
continues sequential execution until the next parallelism
opportunity.

The Work-Seeking hand-off of work between a busy
worker and an idle worker is a cooperative hand-off. Work-
Seeking generally makes sense when the work cannot be
divided evenly between the workers, or when the workers
will not likely complete the work at the same time.

44 A comparison of work-shar ing, work-seeking, and work-steal ing

Volume 32, Number 1, March 2011 Ada User Journal

The other parallelism variant is called Work-Stealing. This
approach is similar to work-seeking, except that the goal is
to have the idle worker undertake most of the effort
involved with acquiring more work, when a worker
completes its current assignment.

An idle worker will search randomly through the set of
workers to identify a busy worker that has work that can be
stolen. The idle worker then steals the work by
manipulating the busy workers remaining work variables,
and then the busy worker and the idle worker continue after
having split the remaining work of the busy worker.

Unlike Work-Seeking, this approach is not cooperative.
The busy worker does not make an offer the idle worker.

Work-Sharing, Work-Seeking, and Work-Stealing generics
may be applied to iterative loops using Paraffin, while only
Work-Sharing and Work-Seeking may currently be applied
to recursive algorithms.

This paper examines the results of applying these
parallelism strategies to various problems, and then
suggests possible explanations for the results, and suggests
which approach is the better approach to the problem if
there is a clear winner. All tests were conducted on an
AMD Athlon II 64 four core processor running Linux.
Similar results have been previously reported for running
the generics on an Intel Atom 333 1.6 Ghz CPU under
Windows on an ASUS notebook computer [2]. The
previously reported results did not include work-stealing, as
the work-stealing generics were not available in Paraffin at
that time.

2 Iterative Parallelism
The following set of problems involve exercising Paraffin's
iterative parallelism generics.

2.1 Problem 1 - Parallel sum of integers
The first problem involves calculating the sum of integers
between 1 and 400_000_000. The graph in figure 1 does
not show the work-stealing results because the work-
stealing times were not in the same ballpark as the work-
sharing and work-seeking results. The work-stealing results
are shown in figure 2.

The results in figure 1 show that the work-sharing and
work-seeking generics perform comparably well. It is
interesting to note that running the generic code with a
single worker performs comparably to the sequential form
of the loop without the generics. This is encouraging as it
shows that the overhead of the generic processing can be
quite minimal.

Looking at the results more closely, we see that the work-
sharing generics generally performed marginally better than
the work-seeking. This one would expect, as the load is
evenly distributed amongst the workers, and the distributed
overhead of the work-seeking does not provide enough
benefits to make much of a difference. There was one case
where work-seeking outperformed work-sharing, which
was when the number of workers was one greater than the
number of cores. This has more to do with the fact that the

work-sharing performance dropped, not that the work-
seeking was any faster. Work-sharing had the best overall
time when the number of workers equalled the number of
cores.

An interesting point that will be reinforced by subsequent
test results is that using more workers than there are cores
typically leads to a degradation in performance for work-
sharing, whereas work-seeking forms tend to hold the
performance more closely to the performance associated
with running as many workers as there are cores, although
once the number of workers reaches over and above the
number of cores, the changes to the execution times profile
is fairly flat and not that noticeable.

0

0.5

1

1.5

1 2 3 4 5 6 7 8
Workers

Sequential
Integer Sum

W-Sharing
Elem Integer
Sum

W-Seeking
Elem Integer
Sum

Figure 1 Sum of Integers Loop

Looking at the work-stealing results in Figure 2 for the
same test, we see that the work-stealing approach cannot be
recommended at all for this problem. All results were
significantly worse than the sequential version of the code.

The explanation for this is that work-stealing involves
saving the state of the iterator as an atomic reference type.
This is needed as the work-stealer needs to have visibility
into each workers progress within its range of loop
iterations.

It is assumed that writing atomic updates through an
indirect type is expensive. If the amount of iteration is
significant relative to the actual processing performed
during each iteration, then the work-stealing approach is
likely going to perform poorly. On the other hand, as we
will see later, if the amount of iteration is not significant
compared to the processing performed during each
iteration, then work-stealing can outperform the other two
strategies.

0

5

10

15

1 2 3 4 5 6 7 8
Workers

Sequential
Integer Sum

W-Stealing
Elem Int Sum

W-Stealing
Elem Int Sum
Aff

Figure 2 Integer Sum Loop – Work Stealing

The work-sharing and work-seeking tests were performed
without setting the affinity of the worker tasks. The work-

B. J. Moore 45

Ada User Journal Volume 32, Number 1, March 2011

stealing tests were executed with and without setting the
worker affinities to see if any mode of operation might
generate favourable results. For this particular problem, all
work-stealing results were unfavourable.

2.2 Problem 2 - Sum of tagged type Integers
The next problem is similar to the previous problem except
that instead of producing a sum of integers, the desire is to
produce a sum of tagged type objects which happen to have
an integer component. As with the previous problem, there
are 400_000_000 iterations.

The execution times shown in Figure 3a are slightly longer
due to the manipulations of a composite tagged type
requiring more processing. The results of this test however
are very similar to the previous test. Work-sharing appears
to have a very slight favourable performance over work-
seeking, while work-stealing is again a non-starter in
Figure 3b.

It is interesting again to note that work-seeking
outperformed work-sharing when the number of workers
was one or two higher than the number of cores. In fact, the
best overall time occurred for work-seeking with 6
workers. In all other cases, work-sharing had the edge.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Workers

Ex
ec

 t
im

e

Sequential
Comp Monoid
Sum

Work-Sharing
Comp Monoid
Sum

Work-Seeking
Comp Monoid
Sum

Figure 3a Monoid Integer Sum

0
2
4
6

8
10
12

1 2 3 4 5 6 7 8

Workers

Ex
ec

 t
im

e

Sequential
Comp
Monoid Sum

Work-Stealing
Comp
Monoid Sum

Figure 3b Monoid Integer Sum

2.3 Parallel sum of float
This test is similar to the first test except that instead of
producing a sum of integers, the problem is to produce a
sum of floating point values. In this case, as shown in
Figure 4, work-seeking consistently produced marginally
better results than work sharing. All the work-stealing
results however were worse than the sequential version,

which again is likely due to the higher number of iterations
relative to the processing for each iteration.

Figure 4 Float Sum

Another interesting point is that the execution time for a
single work-sharing worker was equivalent to the
sequential execution time, and the single worker work-
seeking execution time was actually faster than the
sequential time. While it is difficult to explain how this
could be possible, it may be that the parallel code triggered
the clock speed of the processor to run at a slightly higher
rate. Selecting a worker count equal to the number of cores
(four) is recommended here. Marginal improvements to
both work-seeking and work-sharing occur for selecting
worker counts greater than 4, the number of cores.

2.4 Iteration without results
The previous tests all involve generating a final result,
called a reduction. Sometimes parallelism does not involve
a need to produce a final result. Paraffin provides generics
specifically for this purpose. For parallel iteration, this may
involve loops that iterate through a container or array,
possibly modifying each element in the container or array,
without having to generate a final result.

This test involves iterating through a packed bit array of
100_000_000 Booleans and toggling the state of each
element in the array. For this test, we finally see (Figure 5)

Figure 5 Iteration only

46 A comparison of work-shar ing, work-seeking, and work-steal ing

Volume 32, Number 1, March 2011 Ada User Journal

some respectable work-stealing results, though work-
stealing still cannot be recommended because the execution
times are noticeably behind the other results. In this test,
the work-seeking consistently outperformed work-sharing
although only by a very small margin, except for the usual
case of one over the number of cores which consistently
seems to have an adverse affect on the work-sharing
approach, and the advantage of work-seeking was more
noticeable.

2.5 Unbalanced iteration
This is a test that is designed to show how work-seeking
and work-stealing should outperform work-sharing.
Specifically, each iteration through the loop adds more
processing to the iteration. Workers that are assigned
higher ranges of iteration should take considerably longer
to complete their work assignment than workers that are
assigned lower ranges of iterations. As workers with lower
iterations complete earlier, having them seek or steal more
work to lighten the remaining work load should be
beneficial.

Figure 6 Unbalanced Iteration

For this test, the number of iterations is significantly less
than the previous tests (60_000 instead of 400_000_000).
The results (Figure 6) were surprising because for the first
time, the work-stealing generic produced respectable
results and not only were they respectable, but they were
consistently better than work-seeking with the best times
overall, although the performance differences between
these approaches are marginal. As expected, the work-
sharing generics did not fare so well on this test.

2.6 Matrix Solving
This problem involves applying elementary linear algebra
in parallel to solve matrices. In particular, the gauss-jordan
algorithm [11] is applied in parallel. An interesting point
about this example is that the Paraffin generics are used to
add parallelism to an algorithm that at the top level isn't a
loop. Also, worth mentioning is that the algorithm requires
sequential processing at lower levels of the iterative
processing. To achieve this, Paraffin's synchronous barriers
were used to ensure that the parallelism did not interfere
with the sequential portions of the algorithm. Due to the
nature of this algorithm, it only makes sense to apply work-
sharing.

The test involves solving an 800x800 matrix of floating
point values. The results (Figure 7) show the importance of
selecting an optimal worker count.

Figure 7 Parallel matrix solving

2.7 Parallel Bernoulli Numbers
This problem involves generating the Bernoulli number for
2000 by applying the Akiyama-Tanigawa algorithm in
parallel [9]. This problem is quite different than previous
problems because it is operating on the GNU Multiple
Precision Arithmetic Library (GMP) [10] data types which
have infinite precision representing fractions as rational
values.

Figure 8 Parallel Bernoulli Numbers

Note that an algorithm for determining Bernoulli numbers
was one that Ada Lovelace describes for use with Charles
Babbage's Difference Engine, the first computer [8]. In her
case the algorithm used, the method of finite differences,
was not amenable to a parallel approach. This can be easily
reasoned because determining subsequent Bernoulli
numbers on the Difference Engine involved turning a
crank. Thus, the result for a subsequent Bernoulli number
depends on the result for the previous Bernoulli number.
Such a dependence on other results from previous iterations
typically means the algorithm must be run in sequential
order ruling out parallelism.

The results (Figure 8) show that work-seeking and work-
stealing have the best performance. The work-stealing
generic had the best overall time when the number of

B. J. Moore 47

Ada User Journal Volume 32, Number 1, March 2011

workers matched the number of cores, otherwise work-
seeking mostly had a slight edge over work-stealing.

3 Recursive Parallelism
The following tests exercise the recursive generics of
Paraffin. The recursive generics currently only support
work-sharing and work-seeking modes of parallelism, so
the test results will only compare these strategies.

3.1 Recursive Iteration through a Red-Black Tree
This problem involves iterating through the nodes of a
binary red-black tree containing 100_000 nodes. A red-
black tree is a balanced tree, but there will always be more
nodes on one side of the tree than the other, so it makes
sense that a work-seeking approach would perform better
(Figure 9) because the processing loads are unbalanced.

Figure 9 Parallel Recursion through tree

Figure 10 Parallel Reduction through tree

Figure 11 Parallel Recursive Fibonacci

3.2 Recursive Reduction of tree nodes
This test involves calculating the sum of all 100000 nodes
in a red-black binary tree container. Each node contains an
integer value that is examined by the recursive generics to
produce the final result. The results (Figure 10) are similar
to the previous recursive iteration example. Work-Seeking
clearly performs better than work-sharing for this test.

3.3 Recursive Fibonacci
This test involves applying the paraffin recursive generics
to generate Fibonacci numbers in parallel.

Work seeking has generally produced good results in all the
other previous tests. It is surprising to see the results here
(Figure 11) showing that work-seeking fails to produce a
timely result for any number of workers, whereas work-
sharing clearly is producing desirable performance results.

3.4 Recursive Integration
This test involves finding the area under a curve for a
mathematical function, using a recursive trapezoidal
integration algorithm [13] adapted to Ada 2005 [12]. In this
case, the test involves integrating the square root function
from 1.0000 to 1.00001. The results shown are for an Intel
Dual Core Atom processor with four threads running on a
Windows notebook.

This problem is interesting because it involves both
recursion and iterative loops. The outer level of processing
is the recursive part where if the iterative part for a high
number of iterations significantly differs from a small
number of iterations, then the overall range is split in half
and the algorithm is rerun with two workers tackling the
smaller sub-range.

Figure 12 Parallel Recursive Integration

Once parallelism has been applied at the higher level part
of an algorithm, it has been found that attempting to apply
further parallelism to nested parts of the code typically
results in poor results. The added parallelism code provides
no benefits, but adds overhead to the processing.

Similarly, adding parallelism only to nested parts of an
algorithm, while being called iteratively by a higher level
sequential section of code may also lead to poor results, if
the overhead of creating worker threads outweighs the
speed gains by the parallelism.

48 A comparison of work-shar ing, work-seeking, and work-steal ing

Volume 32, Number 1, March 2011 Ada User Journal

Thus for this test, parallelism was only applied at the top
level of the algorithm, which was the recursive section. We
see in Figure 12 that work seeking appears to give more
consistent results, but both strategies generate favourable
results. It is interesting to note in this case that increasing
worker beyond 8 generally lead to deteriorating work-
seeking performance, whereas work-sharing performance
seemed to level off.

4 Conclusions
The results show that for iterative parallelism, work-
seeking is a reliable choice that generates consistently good
results. Work-stealing should not be used if the number of
iterations in the loop is high, and the amount of processing
during each iteration is minimal.

For these situations work-stealing may generate results
considerably worse than the sequential version of the code.
On the other hand, there are cases where work-stealing can
outperform work-sharing and work-seeking, though, in
these cases the work-seeking results are typically very close
to the best work-stealing results.

Similarly, there are cases where work-sharing can
outperform work-seeking and work-stealing, but in these
cases, work-seeking typically generates results very close
the work-sharing times. For recursive parallelism, it can be
difficult to suggest a general approach, as it can be difficult
to determine which strategy will perform the best.

If the work-load is unbalanced, a work-seeking approach
might be worth trying; otherwise the work sharing
approach might be the best choice. It may be necessary to
try both forms to see which one best fits the problem.

One other disadvantage of work-stealing that should be
mentioned is that it can only be applied to while loops,
since the technique involves modifying the loop
termination values which isn't possible with for loops in
Ada. Work-sharing and work-seeking do not have this
limitation, and can be used with for loops or while loops.

References
[1] Frigo M., Halpern P., Leiserson C., and Lewin-Berlin

S., “Reducers and Other Cilk++ Hyperobjects”, ACM
SPAA ’09 (2009).

[2] Moore B., “Parallelism generics for Ada 2005 and
beyond”, SIGAda'10 Proceedings of the ACM SIGAda
annual conference on SIGAda.

[3] Moore B., Paraffin, http://paraffin.sourceforge.net/
(Feb 2011)

[4] Taft, S.T., Duff, R. A., Bruckardt, R.L. And
Plödereder, E. Eds (2000). Consolidated Ada
Reference Manual. LNCS 2219, Springer-Verlag.

[5] Barney Blaise, Lawrence Livermore National
Laboratory, https://computing.llnl.gov/tutorials/open
MP/#WorkSharing (Sept 2010)

[6] Fox, G., Williams, R., Messina G., Parallel
Computing Works!, ISBN 1-55860-253-4 Morgan
Kaufmann Publishers, Inc., 1994.

[7] Walker J., Red Black Trees, http://www.eternally
confuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
(Aug 2010)

[8] Menabrea, L.F., Lovelace A., Sketch of the Analytical
Engine Invented by Charles Babbage, Bibliothèque
Universelle de Genève, October, 1842, No. 82.

[9] Kaneko M., The Akiyama-Tanigawa algorithm for
Bernoulli Numbers, Journal of Integer Sequences, Vol
3 (2000), Article 00.2.9.

[10] Free Software Foundation, GMP, http://gmplib.org,
Sept 2010.

[11] Anton, H., Rorres. C, Elementary Linear Algebra,
Drexel University (2010).

[12] Barnes, J., Programming in Ada 2005, Addison
Wesley, 2006, p202-203.

[13] Sanchit K., Integration and Area Under Curve Using
Limit of Sums, http://www.dreamincode.net/code/
snippet325.htm, Feb 2011.

 49

Ada User Journal Volume 32, Number 1, March 2011

Designing ParaSail – Parallel Specification and
Implementation Language
S. Tucker Taft
SofCheck, Inc, 11 Cypress Drive, Burlington, MA 01803 USA.; Tel: +1 781 850 7068; email: stt@sofcheck.com

Abstract
This (edited) blog follows the trials and tribulations of
designing a new programming language designed to
allow productive development of parallel, high-
integrity (safety-critical, high-security) software
systems. The language is named "ParaSail" for
Parallel, Specification and Implementation Language.
Keywords: parallel programming language, high-
integrity software, formal methods.

Introduction
This article is an extract from a blog started in September
2009 describing the process of designing ParaSail, a new
programming language for high-integrity, parallel
programming. If you wish to read the full blog, please visit
[1]. We have left out large parts of the blog, which in its
entirety would run to about 35 pages. We have included
editorial comments in “[…]” both to describe what we are
leaving out, and to describe changes since a given blog
entry was written. We have also fixed the examples to use
the latest ParaSail syntax, to avoid creating confusion.
Note that the online blog entries have not been edited, so if
you read those, beware that some of the syntactic details
have been changed over time.

September 2009
Why design a new programming language?
So why would anyone want to design a new programming
language? For some of us who have the bug, it is the
ultimate design project. Imagine actually creating the
language in which you can express yourself. But there is
another reason. I have been in the software business for
over 40 years, and despite everything that might have been
said to the contrary, I still believe that a well-designed
programming language can result in more productive
programmers building higher quality software. In the
particular area of high-integrity software, including both
safety-critical software and high-security software, there is
all the more reason to use the very best programming
language you can, because the problems you are trying to
solve and the level of quality required is at the very limits
of what can be accomplished.

This new language is meant to address the goals of
producing inherently safe and secure software, while taking
advantage of the wider availability of true parallel
processing in the form of multi-core chips. It is intended to
promote a formal approach to software, where the program

text includes pre- and postconditions, liberal use of
assertions and invariants, etc., with tool-supported proof of
correctness with respect to the formal annotations.

The language is tentatively named ParaSail, for Parallel
Specification and Implementation Language. I would have
spelled it "ParaSAIL" but for the danger of confusion with
the original Stanford AI Language, "SAIL" [2], and its
more modern follow-on "MAINSAIL" (for Machine
Independent SAIL). I don't mind making the connection
with SAIL, as it was a very interesting language in its day,
and MAINSAIL remains worth a look today. ParaSail is a
completely new language, but it steals liberally from other
programming languages, including the ML series (SML,
CAML, OCAML, etc.), the Algol/Pascal family (Algol,
Pascal, Ada, Modula, Eiffel, Oberon, etc.), the C family (C,
C++, Java, C#), and the region-based languages (especially
Cyclone). Perhaps one significant deviation from the
excellent baseline established by SAIL, ML, Eiffel, Java,
etc. is that ParaSail is intended to avoid "fine-granule"
garbage collection in favor of stack and region-based
storage management.

Why blog about designing a programming
language?
So why did I decide to start this blog? Designing a new
language is a long process, but it is hard to find someone
who is willing to sit down and discuss it. Those who like to
design languages generally have their own strong biases,
and the discussions tend to be more distracting than
satisfying, because there are so many good answers to any
interesting language design question. Those who don't have
any interest in designing a new language tend to lack the
patience to even talk about it, as they believe we already
have more than enough programming languages, and all we
need are better tools, better processes, and better training to
be more productive and to achieve higher quality.

So writing a blog seems like a nice way to record the
process, to perhaps get some feedback (though that may be
optimistic), and to hopefully make progress by being forced
to actually get the ideas down onto "paper."

That's probably enough meta-discussion for now. In the
next post I plan to dive into the technical issues.

ParaSail language themes and philosophy
So what will make ParaSail an interesting programming
language? What is the philosophy behind the language?
ParaSail tries to minimize implicit operations, implicit
parameters, implicit dynamic binding (virtual function

50 Designing ParaSai l – Paral le l Speci f icat ion and Implementat ion Language

Volume 32, Number 1, March 2011 Ada User Journal

calls), implicit initializations, implicit conversions, etc.
This is both in the name of clarity for the human reader,
and in the name of formal testability and verifiability.
ParaSail uses a small number of concepts to represent all of
the various composition mechanisms such as records,
packages, classes, modules, templates, capsules, structures,
etc. Arrays and more general containers are treated
uniformly.

On the other hand, ParaSail allows many things to proceed
in parallel by default, effectively inserting implicit
parallelism everywhere. Parameter evaluation is logically
performed in parallel. The language disallows uses that
would make the result depend on the order or concurrency
of parameter evaluation. The iterations of a for loop are by
default executed in parallel. Explicit ordering must be
specified if it is required by the algorithm. Even sequential
statements are essentially converted into a data-flow based
DAG which is then evaluated in parallel in so far as
possible. In all cases, the language disallows code that
could result in race conditions due to inadequately
synchronized access to shared data, either by using per-
thread data, structured safe synchronization, or a handoff
semantics (similar to that of linear types, distributed
languages like Hermes [3], or the UVM virtual memory
system). …

Modules in ParaSail
…ParaSail has only two kinds of modules: interface
modules and class modules. A class module implements
one or more interface modules. Perhaps a class ought to be
called an implementation module, but that is an awfully
long word, and in many ways a class module matches what
languages like Simula and C++ and Java and C# and Eiffel
call a class. In general ParaSail tries to use familiar
terminology in familiar ways. Of course there is danger of
confusion, but hopefully the benefits of familiarity
outweigh the dangers of confusion. [We have subtly
altered the vocabulary since this was written. We now
refer to the interface of a module, and the class that defines
the module. So there is really only one kind of module, but
like a Modula module or an Ada package, it has a part that
declares the external interface for the module, and a part
that defines the internals of the module. The “class” part
is optional. It need not be provided if the module is
abstract, or if there are no operations in the interface,
merely components.]

Both interface and class modules are parameterized,
essentially generic templates, as used in Ada, C++, Java,
etc. Because of their wide-spread adoption, ParaSail uses
"<...>" for generic parameters. While we are talking about
notation, ParaSail uses "(...)" for normal function/procedure
parameters, uses "[...]" for selecting from an array or
similar container. ParaSail uses words for bracketing
control flow (e.g. "if ... then ... else ... end if;"). ParaSail
uses "{...}" for annotations such as constraints, assertions,
pre/post-conditions, etc. This is intended to be familiar
from Hoare logic, which uses the notation "{P} S {Q}" to
represent a statement S with precondition P and
postcondition Q.

Interface modules have the following basic syntax:

 interface name < generic_parameters >
 is
 interface_items
 end interface name;

The interface_items comprise a sequence of function,
procedure, and nested interface specifications. In addition
constants and variables may be declared, but these are
considered equivalent to corresponding functions. … In
addition, operators may be declared. Operators are
essentially functions with special syntax for calling them.

As subtly implied above, an interface defines a type, and
within the interface module, the interface's name represents
that type. A type is essentially an interface that has been
bound to a set of actual generic parameters. There are also
subtypes in ParaSail, which are types with some additional
constraints (such as a range limitation), specified inside
"{...}".

Generic parameters are themselves either types derived
from specified interfaces, or static constants used to
parameterize the implementation of the interface, and/or
select among different implementations of the same
interface. A generic array interface, with its generic
parameter list, might look like this:

 interface Array < Element_Type is Assignable<>;
 Index_Type is Discrete<>>
 is
 function First(Arr : Array) -> Index_Type;
 function Last(Arr : Array) -> Index_Type;
 function Element(Arr : ref Array;
 Index : Index_Type {Index in First(Arr)..Last(Arr)})
 -> ref Element_Type;
 function Create_Array(First, Last : Index_Type)
 -> Result:Array
 {First(Result) = First; Last(Result) = Last};
 ...
 end interface Array;

Note that there is no implicit parameter in ParaSail
(identified as this or self in many object-oriented
languages). All parameters are explicit….

More on ParaSail interfaces
Continuing with the above example… To make indexing
into an Array look more familiar, we might want to use the
"[]" operator instead of the function Element:

 operator "[]"(Arr : ref Array;
 Index : Index_Type {Index in First(Arr)..Last(Arr)})
 -> ref Element_Type;

Now we could use this interface roughly as follows:

 var Names: Array<String, Student_ID> :=
 Create_Array(First => First_Student_ID,
 Last => Last_Student_ID);
 Names[ID_Of_Mike] := "Mike";

This kind of thing should look pretty familiar.

S. T. Taft 51

Ada User Journal Volume 32, Number 1, March 2011

A few things to note: There is no separate notion of a
constructor. A function that returns an object of the type
defined by the enclosing interface is effectively a
constructor. A function that returns a ref is not a
constructor, but may be used on the left-hand side of an
assignment, provided the ref parameter(s) to the function
can be used on the left-hand side. Parameters are by
default read-only, but ref var parameters can be updated.
The result of a function is specified after a "->". If the
function has multiple results, they are enclosed in
parentheses in the same way as the (input) parameters:

 function Two_Outputs(X : Input_Type) ->
 (Y : Output_Type1; Z : Output_Type2);

Once we start talking about statements, we will see that in
ParaSail, as in C++ and Java, declarations and executable
statements may be interspersed. All declarations start with
a reserved word, such as var, const, interface, type, etc. so
they are easy to distinguish from assignment statements,
procedure calls, etc.

Next time we will discuss how a class implements an
interface.

How a ParaSail class implements its interface
In ParaSail, a class implements an interface. Unless an
interface is marked as abstract, there is required to be a
class with the same name as the interface, which provides
the default implementation of the interface. There may be
multiple implementations of an interface. Some may be
specializations of the default. Specializations specify
certain restrictions on the generic parameters, along with a
preference level, which allows the compiler to choose the
appropriate implementation automatically if not specified
explicitly.

Here is a class implementing the interface Array shown in
an earlier post:

 class Array < Element_Type is Assignable<>;
 Index_Type is Discrete<>>
 is
 const First : Index_Type;
 const Last : Index_Type;
 function Length(Arr : Array) -> Integer is
 return Last-First+1;
 end function Length;
 var Data : Basic_Array<Element_Type>;
 exports
 function First(Arr : Array) -> Index_Type is
 return Arr.First;
 end function First;
 …
 operator "[]"(Arr : ref Array;
 Index : Index_Type {Index in First(Arr)..Last(Arr)})
 -> ref Element_Type is
 return Data[Index-First];
 end operator "[]";
 function Create_Array(First, Last : Index_Type)
 -> Result:Array
 {First(Result) = First and Last(Result) = Last}

 is
 return (First => First, Last => Last,
 Data => Create(Last-First+1));
 end function Create_Array;
 ...
 end class Array;

A class must include implementations for each operation in
its interface, plus any number of local declarations as
necessary to implement the exported operations. The
exported declarations inside a class follow the word
exports. Declarations preceding exports are local to the
class. Even though the interface associated with the class
implies what operations are exported, we make the
distinction explicit in the class itself, since changing the
specification of an exported declaration has a much larger
implication than does changing that of a local declaration.
Also, by segregating the exported declarations at the end,
we make it easier to find them. Finally, because a class
might implement interfaces other than its own, the exported
declarations allow it to fulfill the set of operations of other
interfaces. C uses "extern" vs. "static" to make a similar
distinction. Java uses "public" vs. "private". …

Resolving names in ParaSail
In ParaSail, the names exported by an interface can in most
cases be used without any explicit qualification of the
interface from which they came. Hence, continuing with
our Array interface example, we can generally write
"First(Arr)" without having to specify which "First"
function we mean, presuming we know the type of Arr. If
qualification is necessary, the "::" notation of C++ is used,
such as "Array::First(Arr)". ParaSail reserves "." for
selecting a component of a composite object, such as
"Obj.Field", or as a way of indicating an operation is
defined within the module defining the type of the object,
such as “Arr.First()”, which is equivalent to
“<type_of_Arr>::First(Arr)”.

…

ParaSail extension, inheritance, and
polymorphism
ParaSail fully supports object-oriented programming,
including interface and class extension/inheritance/reuse,
and both static (compile-time) and dynamic (run-time)
polymorphism.

Interface extension is the most straightforward. One
interface can be defined to extend another, meaning that it
inherits all of the operations and generic parameters of
some existing interface, and optionally adds more of each:

 interface Extensible_Array extends Array is
 operator "[]"(Arr : ref Extensible_Array;
 Index : Index_Type {Index >= First(Arr)})
 -> ref Element_Type {Last(Arr) >= Index};
 end interface Extensible_Array;

Here we have essentially the same operation, but now the
array automatically grows (at only one end) if the indexing
operation is applied to it with an index that is greater than
the prior value of Last(Arr). Note that the generic

52 Designing ParaSai l – Paral le l Speci f icat ion and Implementat ion Language

Volume 32, Number 1, March 2011 Ada User Journal

parameters for Extensible_Array are all inherited as is from
Array.

The operations that are not redeclared in the new interface
are inherited from Array, but with each occurrence of Array
replaced systematically with Extensible_Array.

Unless Extensible_Array is declared as an abstract
interface, there must be a corresponding Extensible_Array
class that provides its default implementation. The
Extensible_Array class might be defined as an extension of
the Array interface (and indirectly its associated class), but
it need not be. [We now require that a class extends
another module if and only if its interface also extends that
module. The reserved word implements is used (rather
than extends) when an interface inherits from another
module’s interface but does not inherit the code from the
other module’s class. An interface may specify any number
of other modules after the reserved word implements but
only one after extends.] … Here is what it would look like
if it were an extension of the Array interface.

 class Extensible_Array extends Parent: Array
 is
 ...
 exports
 operator "[]"(...) -> ... is ... end operator "[]";
 function Create_Array(...) -> Extensible_Array is ...
 end function Create_Array;
 end class Extensible_Array;

Local operations and objects could be defined as needed,
and exported operations could be redefined as appropriate.
An object of the interface being extended (the underlying
interface) is created as a local variable of the class (this
variable is the underlying object). A name can be given to
the underlying object -- we use "Parent" above.

Note that the class is extending an interface, rather than
directly another class, and in fact any implementation of the
interface can later be optionally specified when using
Extensible_Array. Effectively the actual class to use as the
implementation of the underlying interface becomes
another optional generic parameter. If unspecified, it
defaults to the default implementation of the underlying
interface.

For those operations of the interface that are not provided
explicitly in the class, an inherited operation is provided,
based on the corresponding operation of the underlying
interface. The implementation of this inherited operation
invokes the corresponding operation of the Array interface,
passing it the underlying Array object of each operand of
type Extended_Array. …

Although an interface may [implement] any number of
other interfaces, a class can only extend one interface. Of
course it may have local variables of many different
interfaces, but only one of them is the underlying object,
and only inherited operations corresponding to operations
on the underlying interface will be automatically provided.

One important thing to note about how ParaSail
implementation inheritance works. It is a completely black

box. Each implicitly provided inherited operation calls the
corresponding operation of the underlying interface,
passing it the underlying objects of any operands of the
type being defined. The underlying interface operation
operates only on the underlying object(s), having no
knowledge that it was called "on behalf" of some extended
class. If the underlying operation calls other operations,
they too are operating only on the underlying object(s).
There is no "redispatch" on these internal calls, so the
extended class can treat these underlying operations as
black boxes, and not worry that if it explicitly defines some
operations while inheriting others, that that might somehow
interact badly with how the underlying operations are
implemented.

Which brings us to polymorphism. Static, compile-time
polymorphism has already been illustrated, through the use
of generic parameters, and the name resolution rules. We
also see it here in that the particular class implementing the
underlying interface for an extended class can also vary
depending on the particular instantiation of the extended
class. Although we didn't mention the syntax for that, it
makes sense for it to use the extends keyword as well at the
point when we are providing the actual generic parameters:

 var XArr : Extended_Array
 extends Sparse_Array := Create_Array(...);

Now what about dynamic, run-time polymorphism? When
do we actually need it? A classic example is that of a
heterogeneous tree structure, where all of the nodes in the
tree are extensions of some basic Tree_Node type, but each
is specialized to carry one particular kind of information or
another. Static polymorphism is great for creating general
purpose algorithms and data structures, but they are
inevitably homogeneous to some degree. The algorithm
manipulates numbers all of the same precision, or the data
structure holds elements all of the same type. With
dynamic polymorphism, heterogeneity rules.

In ParaSail, dynamic polymorphism is indicated by
appending a "+" to a type name [(e.g. Tree_Node+)].
What this means is that the corresponding object,
parameter, or result might be of a type coming from any
extension of the given type's interface, with the proviso that
the generic parameters inherited from this original interface
have the same bindings for the two types. That is important
because, without that, the operations shared between the
two types would not necessarily take the same types of
parameters. …

October 2009
ParaSail pass-by-reference …
ParaSail has no global variables
ParaSail has no global variables. So how does that work?
Global variables have long been recognized as trouble
makers in the software world, and they get much worse in a
language with lots of parallelism. But can we eliminate
global variables completely? ParaSail tries to do that by
eliminating any notion of statically allocated variables. In
C or C++, global variables are those marked static or

S. T. Taft 53

Ada User Journal Volume 32, Number 1, March 2011

extern, or in a language with modules/packages like Ada,
global variables are those declared at the module level.
Although their declaration might be hidden, such variables
still represent global, variable state, and still create trouble.

In ParaSail, interface modules are generic types, and class
modules implement interfaces. That is, after providing
generic parameters to an interface, you end up with a type.
Any variable declared in a class is what is often called an
instance variable, that is, there is one per object of the type
defined by the class. There is nothing corresponding to
what are called class variables. In other words, the
variables declared in a class will always be effectively
fields/components of some enclosing object. You can of
course also have local variables inside the body of a
procedure or function, but these are never statically
allocated; they are stack-resident variables only (automatic
in C parlance).

…
ParaSail's implicit parallelism
As mentioned in the original overview of ParaSail, implicit
parallelism is at the heart of ParaSail (and of its name!).
Every procedure/function call with multiple parameters
involves implicit parallelism, in that all of the parameters
are evaluated in parallel. Handoff semantics is used for
writable parameters, meaning that a (non-concurrent)
object that is writable by one parameter evaluation, isn't
available to any other parameter evaluation. Operations on
concurrent objects are not ordered.

Furthermore, in a sequence of statements, the only default
limitation on parallelism is that imposed by operations on
non-concurrent objects. Parallelism can be inhibited by
using ";;" instead of merely ";" to separate two statements.
This forces sequencing for operations on concurrent
objects, which would otherwise not have any specified
order. By contrast, "||" can be used to indicate that
parallelism is expected, and it is an error if there are
conflicting operations on non-concurrent objects in the
statements on either side of the "||". That is, two statements
separated by "||" are executed effectively in parallel, just as
though there were embedded within two different
parameter evaluations to a single procedure or function
call. [We have changed the precedence for these operators
since this blog entry, and added another operator “then”
(equivalent to “;;”) with lowest precedence, “||” higher,
and “;” and “;;” at the highest precedence (bind most
tightly).] For example:

 X := F(A, B);
 Y := G(B, C);
then
 Z := H(R, S);
|| Z2 := Q(R, T);

So in the above, the assignments to X and Y are ordered
only if that would be required by the shared use of B (at
least one of them has B as a writable parameter). The
assignments to Z and Z2 occur in parallel, and it would be
an error if the shared use of R is unsafe (e.g. because R is
writable by one or both, and is not a concurrent object).

The assignments to X and Y will complete before
beginning the assignments to Z and Z2 (though of course, a
"very intelligent" compiler might still find parts that can be
executed in parallel because they can't possibly affect one
another). In all cases the evaluations of the parameters to a
single procedure/function call happen in parallel. …

Implicit parallelism also shows up in ParaSail loops. The
iterations of a for loop in ParaSail are executed as though
each iteration were separated from the next by a ";", but
with no particular ordering on the iterations. A particular
ordering may be specified by using the forward or reverse
keyword, which effectively puts a ";;" between the
iterations. Alternatively, the concurrent keyword may be
used to indicate that the iterations should be effectively
separated by "||", in which case it is an error if there are any
conflicts due to operations on a non-concurrent variable.
…
Using "=?" in ParaSail to implement "==", "!=",
"<=", ">=", etc.
Here is a simple ParaSail feature. It is often the case that a
user-defined type will have its own definition for equality
and comparison. However, it is always a bit of an issue to
make sure that "==" and "!=" are complements, and
similarly for "<" and ">=", ">" and "<=". ParaSail skirts
this issue by requiring the user to define only one operator,
"=?", which returns a value from the enumeration #less,
#equal, #greater, #unordered. The comparison and equality
operators are defined in terms of "=?" (which is
pronounced "compare"), in the natural way…

November 2009
ParaSail region-based storage management ...
ParaSail concurrent interfaces
A ParaSail interface can be marked as concurrent,
meaning that an object of a type produced by instantiating
such a concurrent interface can be accessed concurrently by
multiple parallel threads. We use the term concurrent type
for a type produced by instantiating a concurrent interface,
and concurrent object for an object of a concurrent type.

Both lock-based and lock-free synchronization techniques
can be used to coordinate access to a concurrent object. In
addition, operation queues are provided to hold operation
requests that cannot be serviced until the concurrent object
attains a desired state, as specified by the dequeue
condition. When a thread initiates an operation request, if
it can't be performed immediately because the condition is
False, the thread is blocked until the request gets dequeued
and the associated operation is completed, or the operation
request is canceled for some reason, such as a timeout. …

With a lock-based concurrent interface, one of the operands
of a procedure or function of the interface … can be
marked indicating it should be locked upon call. When
calling the operation, the operand's lock will be acquired
automatically upon entry to the operation, and the lock will
be released upon return. Alternatively, one operand of a
concurrent interface operation may be marked queued,
meaning that the dequeue condition must be true before the

54 Designing ParaSai l – Paral le l Speci f icat ion and Implementat ion Language

Volume 32, Number 1, March 2011 Ada User Journal

operation will be performed, and when it is performed it
will be locked automatically as well.

Within the concurrent class implementing a lock-based
concurrent interface, the components of an operand marked
locked or queued may be referenced directly, knowing that
the access is single-threaded at that point. If there are other
(non-locked/queued) operands of the associated concurrent
type, their non-concurrent components may not be
referenced by the operation. An operation with a queued
operand has the further assurance that at the point when the
operation starts, the dequeue condition is True. The
dequeue condition for a given operation may depend on the
values of the non-concurrent parameters, plus the internal
state of the (concurrent) operand marked queued.

Within the concurrent class implementing a lock-free
concurrent interface, all data components must themselves
be concurrent objects, since no locking is performed on
entry to the operations of the class. Typically these
components will be of low-level concurrent types, such as a
single memory cell that supports atomic load, atomic store,
and atomic compare-and-swap (CAS), or a somewhat
higher-level concurrent type that supports multi-word-
compare-and-swap (MCAS). The ParaSail standard library
provides a small number of such lower-level concurrent
types to support implementing lock-free concurrent
interfaces. The higher level queued operations are
implemented using a lower-level race-free and lock-free
concurrent type similar to a private semaphore, which can
be used directly if desired.

Here is an example of a concurrent interface and
corresponding concurrent class for implementing a simple
bounded buffer:

concurrent interface Bounded_Buffer
 <Element_Type is Assignable<>;
 Index_Type is Integer<>> is
 function Create_Buffer(
 Max_In_Buffer : Index_Type {Max_In_Buffer > 0})
 -> Result : Bounded_Buffer;
 // Create buffer of given capacity
 procedure Put(Buffer : queued Bounded_Buffer;
 Element : Element_Type);
 // Add element to bounded buffer;
 // remain queued until there is room
 // in the buffer.
 function Get(Buffer : queued Bounded_Buffer)
 -> Element_Type;
 // Retrieve next element from bounded buffer;
 // remain queued until there is an element.
end interface Bounded_Buffer;

concurrent class Bounded_Buffer is
 const Max_In_Buffer : Index_Type
 {Max_In_Buffer > 0};
 var Data : Array<Element_Type, Index_Type> :=
 Create_Array(1, Max_In_Buffer);
 var Next_Add : Index_Type
 {Next_Add in 1..Max_In_Buffer} := 1;
 var Num_In_Buffer : Index_Type

 {Num_In_Buffer in 0..Max_In_Buffer} := 0;
 exports
 function Create_Buffer(
 Max_In_Buffer : Index_Type {Max_In_Buffer > 0})
 -> Bounded_Buffer is
 return (Max_In_Buffer => Max_In_Buffer);
 end function Create_Buffer;
 procedure Put(Buffer : queued Bounded_Buffer;
 Element : Element_Type) is
 queued until
 Buffer.Num_In_Buffer < Buffer.Max_In_Buffer then
 Buffer.Data[Buffer.Next_Add] := Element;
 // Advance to next element, cyclically.
 Buffer.Next_Add :=
 (Buffer.Next_Add mod Buffer.Max_In_Buffer) + 1;
 Buffer.Num_In_Buffer += 1;
 end procedure Put;
 function Get(Buffer : queued Bounded_Buffer)
 -> Element_Type is
 queued until Buffer.Num_In_Buffer > 0 then
 return Buffer.Data[
 ((Buffer.Next_Add - Buffer.Num_In_Buffer - 1)
 mod Buffer.Max_In_Buffer) + 1];
 end function Get;
end class Bounded_Buffer;

This concurrent interface has one constructor, plus two
queued operations, Put and Get. The dequeue conditions
are provided as part of the implementation of an operation
with a queued operand. Here the dequeue conditions are
Buffer.Num_In_Buffer < Buffer.Max_In_Buffer for Put,
and Buffer.Num_In_Buffer > 0 for Get. These dequeue
conditions ensure that when the operations are performed,
they can proceed without an error. …

December 2009
ParaSail end-of-scope operator
When an object goes out of scope in ParaSail it may require
some amount of cleanup. For example, if the object
provided access to some external resource, then when the
object goes away, some release action on the external
resource might be required. This is provided by the "end"
operator. …

ParaSail module details …
ParaSail character, string, and numeric literals
… The [five] basic kinds of literals in ParaSail, and their
corresponding universal types, are as follows:

kind of literal example universal type

string literal "this is a string
literal" Univ_String

character literal 'c' Univ_Character

integer literal 42 Univ_Integer

real literal 3.14159 Univ_Real

enum literal #blue Univ_Enumeration

S. T. Taft 55

Ada User Journal Volume 32, Number 1, March 2011

The universal types can be used at run-time, but they are
primarily intended for use with literals and in annotations.
Univ_String corresponds to UTF-32, which is a sequence
of 32-bit characters based on the ISO-10646/Unicode
standard [4]. Univ_Character corresponds to a single 32-
bit ISO-10646/Unicode character (actually, only 31 bits are
used). Univ_Integer is an "infinite" precision signed
integer type. Univ_Real is an "infinite" precision signed
rational type, with signed zeroes and signed infinities.
[Univ_Enumeration is described in a later blog entry.]

The universal numeric types have the normal four
arithmetic operators, "+", "-", "*", "/". …

By providing conversions to and from a universal type, a
"normal" type can support the use of the corresponding
literal. These special conversion operations are declared as
follows (these provide for integer literals):

operator "from_univ"(Univ : Univ_Integer)
 -> My_Integer_Type;
operator "to_univ"(Int : My_Integer_Type)
 -> Univ_Integer;

If an interface provides the operator "from_univ"
converting from a given universal type to the type defined
by the interface, then the corresponding literal is effectively
overloaded on that type. The complementary operator
"to_univ" is optional, but is useful in annotations to connect
operations on a user-defined type back to the predefined
operators on the universal types.

Annotations may be provided on the conversion operators
to indicate the range of values that the conversion operators
accept. So for a 32-bit integer type we might see the
following:

interface Integer_32<> is
 operator "from_univ"
 (Univ : Univ_Integer {Univ in -2**31 .. +2**31-1})
 -> Integer_32;
 operator "to_univ"(Int : Integer_32)
 -> Result: Univ_Integer {Result in -2**31 .. +2**31-1};
 ...
end interface Integer_32;

With these annotations it would be an error to write an
integer literal in a context expecting an Integer_32 if it
were outside the specified range.

ParaSail Universal types in Annotations
As explained in the prior entry, ParaSail has [five]
universal types, [Univ_Enumeration], Univ_Integer,
Univ_Real, Univ_Character, and Univ_String, with
corresponding literals. The universal numeric types have
the usual arithmetic operators, and the universal character
and string types have the usual operations for concatenation
and indexing. In some ways values of the universal types
may be thought of as abstract mathematical objects, while
the values of "normal" types are the typical concrete
representations of such mathematical objects, with
attendant limitations in range or precision. To connect a
normal, concrete type to a corresponding universal type, the

type defines the operator "from_univ" to convert from the
universal type to the concrete type, and "to_univ" to
convert back to the universal type.

In the prior entry, we learned that by defining "from_univ"
a type can use the corresponding literal notation…. So
what about the "to_univ" operator? If "to_univ" is
provided, then ParaSail allows the use of a special convert-
to-universal notation "[[...]]", which would typically be
used in annotations, such as:

{ [[Left]] + [[Right]] in First .. Last }

This is equivalent to:

{ "to_univ"(Left) + "to_univ"(Right) in First .. Last }

This notation is intended to be a nod to the double bracket
notation used in denotational semantics [5] to represent the
denotation or abstract meaning of a program expression.
Using this notation we can give a more complete definition
of the semantics of the Integer interface:

interface Integer<First, Last : Univ_Integer> is
 operator "from_univ"
 (Univ : Univ_Integer {Univ in First .. Last})
 -> Integer;
 operator "to_univ"(Int : Integer)
 -> Result : Univ_Integer {Result in First .. Last};
 operator "+"(Left, Right : Integer
 {[[Left]] + [[Right]] in First .. Last})
 -> Result : Integer
 {[[Result]] == [[Left]] + [[Right]]};
 operator "-"(Left, Right : Integer
 {[[Left]] - [[Right]] in First .. Last})
 -> Result : Integer
 {[[Result]] == [[Left]] - [[Right]]};
 ...
end interface Integer;

Here we are defining the pre- and postconditions for the
various operators by expressing them in terms of
corresponding universal values, analogous to the way that
denotational semantics defines the meaning of a program
by defining a transformation from the concrete program
notations to corresponding abstract mathematical objects.

January 2010
ParaSail thread versus task
In ParaSail, there is a pervasive, implicit parallelism.
Because of that, it really doesn't make sense to talk about
specific threads of control as there are potentially hundreds
or thousands of them, appearing and disappearing all of the
time. Hence any notion of thread identity is probably
inappropriate. On the other hand, there might still be a
reason to identify what might be called a logical thread of
control, which would perhaps be reasonable to call a task,
namely a logically separable unit of work. Here it might
make sense to have a well defined task identity, and an
ability to set a priority, or a deadline, or some sort of
resource limits (such as maximum space, or maximum
number of simultaneous threads, etc.). …

56 Designing ParaSai l – Paral le l Speci f icat ion and Implementat ion Language

Volume 32, Number 1, March 2011 Ada User Journal

February 2010
Physical Units in ParaSail …

April 2010
ParaSail BNF …

May 2010
ParaSail enumeration types
We haven't talked about enumeration types in ParaSail yet.
One challenge is how to define an enumeration type by
using the normal syntax for instantiating a module, which is
the normal way a type is defined in ParaSail. Generally
languages resort to having special syntax for defining an
enumeration type... But that seems somewhat unsatisfying,
given that we can fit essentially all other kinds of type
definitions into the model of instantiating a module.
Another challenge with enumeration types is the
representation of their literal values. In many languages,
enumeration literals look like other names, and are
considered equivalent to a named constant, or in some
cases a parameterless function or constructor. Overloading
of enumeration literals (that is using the same name for a
literal in two different enumeration types declared in the
same scope) may or may not be supported.

In ParaSail we propose the following model: We define a
special syntax for enumerals (enumeration literals), of the
form #name (e.g. #true, #false, #red, #green). We define a
universal type for enumerals, Univ_Enumeration. We
allow a type to provide conversion routines from/to
Univ_Enumeration, identified by operator "from_univ" and
operator "to_univ". If a type has a from_univ operator that
converts from Univ_Enumeration, then that type is
effectively an enumeration type, analogous to the notion
that a type that has a from_univ that converts from
Univ_Integer is essentially an integer type. As with other
types, double-bracket notation applied to a value of an
enumeration type, e.g. [[enumval]], is equivalent to a call
on to_univ(enumval), and produces a result of
Univ_Enumeration type. An additional special Boolean
"in" operator which takes one Univ_Enumeration
parameter determines which enumerals are values of the
type. The notation "X in T" is equivalent to a call on the
operator T::"in"(X). The precondition on from_univ would
generally be {univ in Enum_Type}.

Here is an example:

interface Enum<Enumerals :
 Vector<Univ_Enumeration>> is
 operator "in"(Univ_Enumeration) -> Boolean<>;
 operator "from_univ"
 (Univ : Univ_Enumeration {Univ in Enum}) -> Enum;
 operator "to_univ"(Val : Enum)
 -> Result: Univ_Enumeration { Result in Enum };
 ...
end interface Enum;
...
type Color is Enum<[#red,#green,#blue]>;
var X : Color := #red; // implicit call on from_univ

Here we presume the class associated with the Enum
interface implements "in", "from_univ", and "to_univ" by
using the Enumerals vector to create a mapping from
Univ_Enumeration to the appropriate value of the Enum
type, presuming the enumerals map to sequential integers
starting at zero. A more complex interface for creating
enumeration types might take such a mapping directly,
allowing the associated values to be other than the
sequential integers starting at zero. The built-in type
Boolean is presumed to be essentially
Enum<[#false,#true]>.

So why this model? One is that it fits nicely with the way
that other types with literals are defined in ParaSail, by
using from_univ/to_univ. Secondly, it naturally allows
overloading of enumeration literals, in the same way that
the types of numeric literals are determined by context.
Finally, it makes a strong lexical distinction between
enumeration literals and other names. This could be
considered a bug, but on balance we believe it is useful for
literals to stand out from, and not conflict with, normal
names of objects, types, operations, and modules. Note
that this model is reminiscent of what is done in Lisp with
the quote operator applied to names, e.g. 'foo. It also
borrows from the notation in Scheme of #f and #t for the
literals representing false and true.

ParaSail without pointers?
We are working on defining the semantics for pointers in
ParaSail. As described in an earlier entry, we plan to use
region-based storage management rather than more fine-
grained garbage collection. However, there is the question
of how pointers are associated with their region, and more
generally how pointers are handled in the type system. We
are considering a somewhat radical approach: effectively
eliminate most pointers, replacing them with generalized
container indexing and expandable objects. …

By generalized container indexing, we mean using an
abstract notion of index into an abstract notion of container.
The most basic kind of container is an array, with the index
being an integer value or an enumeration value. Another
kind of container is a hash table, with the index (the key)
being something like a string value. …

By expandable objects, we mean treating a declared but not
initialized object (including a component of another object)
as a kind of stub into which a value can be stored. Even an
initialized object could be overwritten via an assignment
which might change the size of the object. Finally, an
initialized object could be set back to its stub state, where
the object doesn't really exist anymore….

Expandable objects eliminate a common use of pointers as
a level of indirection to support objects of variable or
unknown size. We propose to provide qualifiers optional
and mutable on objects to indicate that they are
expandable. The qualifier optional means that the object
starts out null, but may be assigned a non-null value. The
qualifier mutable means that the object may be assigned
multiple values of different sizes during its lifetime. If both
are given, then the object starts out null, can be assigned

S. T. Taft 57

Ada User Journal Volume 32, Number 1, March 2011

non-null values of varying size during its lifetime, and can
be assigned back to null. …

Handling concurrent events in ParaSail …
Talking about ParaSail …

June 2010
Generalized For loops in ParaSail
As we start to dive into the lower-level control structures
for ParaSail, one clearly very important structure is the for
loop. We have already suggested the basic structure:

 for I in 1..10 [forward | reverse | concurrent] loop

However, it would be nice if the for loop could also be
used for more general looping structures. A number of
languages have adopted a for loop where there is an
initialization, a "next step", and a termination/continuation
condition….

The above considerations lead us to the following possible
approach to a generalized for loop in ParaSail…:

 for T => Root then T.Left || T.Right
 while T != null loop
 … loop body
 end loop

This would represent a "loop" which on each iteration splits
into two threads, one processing T.Left and the other
T.Right. The iteration stops when all of the threads have hit
a test for T != null which returns false. …

If we were to specify concurrent loop then it would
presumably imply that the daughter threads are to be
created immediately once the test was found to be true, not
waiting for the loop body of the parent thread to finish.
This would effectively create a thread for every node in the
tree, with the loop body executing concurrently for each
node.

An intentional race condition in a ParaSail
concurrent loop
An intriguing question, given the presence of the
concurrent loop construct in ParaSail, is what would
happen if there were a loop exit or a return statement in
the body of a concurrent loop. Earlier we have said that
only forward and reverse loops would allow an exit
statement. But perhaps we should allow an exit or a return
from within a concurrent loop as a way of terminating a
concurrent computation, aborting all threads besides the
one exiting or returning. This would essentially be an
intentional race condition, where the first thread to exit or
return wins the race. This would seem to be a relatively
common paradigm when doing a parallel search, where you
want to stop as soon as the item of interest is found in the
data structure being walked, for example, and there is no
need for the other threads to continue working.

…

For example, using the generalized for loop from the
previous posting:

 var Winner : optional Node := null;
 for T => Root then T.Left || T.Right
 while T != null concurrent loop
 if T.Key == Desired_Key then
 exit loop with Winner => T;
 end if;
 end loop;

At this point Winner is either still null if no node in the tree
has the Desired_Key, or is equal to some node whose Key
equals the Desired_Key. If there is more than one such
node, it would be non-deterministic which such node
Winner designates.

Clearly this kind of brute force search of the tree would not
be needed if the tree were organized based on Key values.
This example presumes the Key is not controlling the
structure of the tree. Also note that if this were a function
whose whole purpose was to find the node of interest, the
exit loop with ... statement could presumably be replaced
by simply return T and we wouldn't need the local variable
Winner at all.

Flex-based lexical scanner for ParaSail …
(A)Yacc-based parser for ParaSail …
Some additional examples of ParaSail …

July 2010
N Queens Problem in ParaSail
Here is a (parallel) solution to the "N Queens" problem in
ParaSail, where we try to place N queens on an NxN chess
board such that none of them can take each other. This
takes the idea of using the "continue" statement as a kind
of implicit recursion to its natural conclusion. This
presumes you can turn a "normal" data structure like
Vector<> into a concurrent data structure by using the
keyword "concurrent," which presumably means that
locking is used on all operations to support concurrency. It
is debatable whether this use of a "continue" statement to
effectively start the next iteration of a loop almost like a
recursive call is easier or harder to understand than true
recursion. [This example has been updated and corrected.]

interface N_Queens <N : Univ_Integer := 8> is
 // Place N queens on an NxN checkerboard so that
 // none of them can "take" each other.
 type Chess_Unit is new Integer<-N*2 .. N*2>;
 type Row is Chess_Unit {Row in 1..N};
 type Column is Chess_Unit {Column in 1..N};
 type Solution is Array<optional Column, Indexed_By => Row>;

 function Place_Queens() -> Vector<Solution>
 {for all Sol of Place_Queens => for all Col of Sol => Col not null};
end interface N_Queens;

class N_Queens is
 type Sum_Range is Chess_Unit {Sum_Range in 2..2*N};
 type Diff_Range is Chess_Unit {Diff_Range in (1-N) .. (N-1)};
 type Sum is Set<Sum_Range>;
 type Diff is Set<Diff_Range>;
 exports

58 Designing ParaSai l – Paral le l Speci f icat ion and Implementat ion Language

Volume 32, Number 1, March 2011 Ada User Journal

 function Place_Queens() -> Vector<Solution>
 {for all Sol of Place_Queens => for all Col of Sol => Col not null}
 is
 var Solutions : concurrent Vector<Solution> := [];
 Outer_Loop
 for (C : Column := 1; Trial : Solution := [.. => null];
 Diag_Sum : Sum := []; Diag_Diff : Diff := []) loop
 // Iterate over the columns
 for R in Row concurrent loop
 // Iterate over the rows
 if Trial[R] is null and then
 (R+C) not in Diag_Sum and then
 (R-C) not in Diag_Diff then
 // Found a Row/Column combination that is
 // not on any diagonal already occupied.
 if C < N then
 // Keep going since haven't reached Nth column.
 continue loop Outer_Loop with (C => C+1,
 Trial => Trial | [R => C],
 Diag_Sum => Diag_Sum | (R+C),
 Diag_Diff => Diag_Diff | (R-C));
 else
 // All done, remember result with last queen placed
 Solutions |= (Trial | [R => C]);
 end if;
 end if;
 end loop;
 end loop Outer_Loop;
 return Solutions;
 end function Place_Queens;
end class N_Queens;

Updated (A)Yacc grammar for ParaSail …
Pointer-free primitives for ParaSail …

August 2010
Eliminating the need for the Visitor Pattern in ParaSail
…
Ad hoc interface matching in ParaSail …
Initial implementation model for ParaSail types …
No exceptions in ParaSail, but exitable multi-
thread constructs
We have been mulling over the idea of exceptions in
ParaSail, and have pretty firmly concluded that they aren't
worth the trouble. In a highly parallel language, with lots
of threads, exception propagation across threads becomes a
significant issue, and that is a nasty area in general. Also,
exceptions can introduce many additional paths into a
program, making thorough testing that much harder. And
the whole business of declaring what exceptions might be
propagated, and then deciding what to do if some other
exception is propagated can create numerous maintenance
headaches.

There is a feature in ParaSail as currently designed which
provides some of the same capabilities of exceptions, but is
particularly suited to parallel programming. This is the
"exit with" statement, which allows a construct to be exited
with one or more values specified as results, and at the

same time terminating any other threads currently
executing within the construct. For example, here is a loop
implementing a parallel search of a tree with the first thread
finding the desired node exiting and killing off all of the
other threads as part of the "exit ... with" statement:

const Result : optional Tree_Id;
for T => Root then T.Left || T.Right
 while T not null concurrent loop
 if T.Value == Desired_Value then
 // Found desired node, exit with its identifier
 exit loop with (Result => T.Id);
 end if;
end loop with (Result => null);

This declares a Result object of type Tree_Id. It then walks
the tree in parallel, starting at Root and continuing with
T.Left and T.Right concurrently. It continues until it
reaches "null" on each branch, or some node is found with
its Value component matching the Desired_Value. The
value of Identifier at the end indicates the identifier of the
node having the desired Value, or null to indicate that no
node was found. The presence of optional in the
declaration for Result indicates that its value might be null.

Supporting this kind of intentional "race" seems important
in parallel programming, as many problems are amenable
to a divide and conquer approach, but it is important that as
soon as a solution is found, no further time is wasted
searching other parts of the solution space. The "end ...
with" phrase allows the specification of one or more results
if the construct ends normally, as opposed to via an "exit ...
with" (in this case, ending normally means all threads
reach a null branch in the walk of the tree without finding
the desired node). Effectively the "exit ... with" skips over
the "end ... with" phrase.

So how does this all relate to exceptions? Well given the
"exit ... with" capability, one can establish two or more
threads, one which monitors for a failure condition, and the
others which do the needed computation. The thread
monitoring for a failure condition performs an "exit ...
with" if it detects a failure, with the result indicating the
nature of the failure, and as a side-effect killing off any
remaining computation threads. If the normal computation
succeeds, then an "exit ... with" giving the final result will
kill off the monitoring thread. Note that the "exit ... with"
statements must occur textually within the construct being
exited, so it is visible whether such a premature exit can
occur, unlike an exception which can arise deep within a
call tree and be propagated out many levels.

As an example of the kind of failure condition which might
be amenable to this kind of monitoring, imagine a resource
manager object, which provides up to some fixed
maximum of some kind of resource (e.g. storage) to code
within a block. This resource manager (which is
presumably of a concurrent type) could be passed down to
operations called within the block for their use.
Meanwhile, a separate monitoring thread would be created
immediately within the block which would call an
operation on the resource manager which would suspend

S. T. Taft 59

Ada User Journal Volume 32, Number 1, March 2011

the thread until the resource runs out, at which point it
would be awakened with an appropriate indication of the
resource exhaustion, and any other information that might
be helpful in later diagnosis. On return from this
Wait_For_Exhaustion operation, the monitoring thread
would do an "exit block with (Result => Failure, ...)" or
equivalent, to indicate that the computation required more
resources than were provided. The code following the
block would then be able to take appropriate action.

September 2010 …
[Please continue reading the blog on the web if interested.
We hope the above extract has captured the essence of the
ParaSail language design process.]

Conclusions about ParaSail
So what have we accomplished? The design of ParaSail is
now largely complete. As of this writing, a grammar exists
and a parser based on it is working; a simplified ParaSail
Virtual Machine interpreter has been implemented, and a
prototype compiler is under develoment. ParaSail has been
presented at several conferences and other venues. So far it
has been quite well received. In June at the upcoming
AdaEurope Ada Connection conference in Edinburgh, there
will be a workshop/tutorial allowing experimentation with
the language and its prototype implementation. But of
course, a programming language is only of significant
value if it is used to build software.

Our view is that to succeed in the “multicore” world, we
need new languages that make parallel programming as
productive as sequential programming, without adding
further complexity to the already challenging job of writing
correct and secure software. By making parallel expression
evaluation the default, by making it easy to insert even
more race-free parallelism explicitly, and by integrating
compile-time checked preconditions, postconditions, and
various other kinds of assertions into a unified language
from day one, we believe ParaSail can be one of those new
languages that carry us into the multicore era.

References
[1] S. T. Taft (2011), Designing ParaSail, a new

programming language, http://parasail-programming-
language.blogspot.com .

[2] Stanford Artificial Intelligence Laboratory (1976),
SAIL, http://pdp-10.trailing-edge.com/decuslib20-
01/01/decus/20-0002/sail.man.html .

[3] R. E. Strom, et al (1991), Hermes: A Language for
Distributed Computing, Prentice-Hall, Series in
Innovative Technology, ISBN 0-13-389537-8.

[4] Unicode Consortium (2011), Unicode 6.0.0,
http://www.unicode.org/versions/Unicode6.0.0/.

[5] L. Allison (1987), A Practical Introduction to
Denotational Semantics, Cambridge University Press.

60

Volume 32, Number 1, March 2011 Ada User Journal

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #97: Reference Counting
in Ada – Part 1
Emmanuel Briot, AdaCore
Date: 17 January 2011

Abstract: This series of three Gems describes a possible
implementation for automatic memory management, via the
use of reference counting. Part 1 explains how controlled types
can be used to achieve automatic reference counting, and
addresses some aspects of correct handling of reference
counts. Part 2 analyzes a few issues related to tasking. Finally,
Part 3 describes the use of weak reference counting.

Let’s get started…
Memory management is typically a complex issue to address
when creating an application, and even more so when creating
a library to be reused by third-party applications. It is
necessary to document which part of the code allocates
memory and which part is supposed to free that memory. As
we have seen in a previous Gem, a number of tools exist for
detecting memory leaks (gnatmem, GNATCOLL.Memory or
valgrind). But of course, it would be more convenient if the
memory were automatically managed.
Some languages include an automatic garbage collector. The
Ada Reference Manual has an implementation permission
allowing a conformant compiler to provide one, although none
of the mainstream compilers do so. Ada’s design allows
implementations to use the stack in many situations where
other languages use the heap; this reduces the need for a
garbage collector.
An alternative implementation for getting automatic memory
management is to use reference counting: every time some
object is allocated, a counter is associated with it. This counter
records how many references to that object exist. When that
counter goes down to zero, it means the object is no longer
referenced in the application and can therefore be safely
deallocated.
The rest of this Gem will show how to implement such a
mechanism in Ada. As we will see, there are a number of
minor but delicate issues involved, so implementing such
types is not as trivial as it first seems. The GNAT Components
Collection (GNATcoll) now includes a reusable generic
package that simplifies this, and we will discuss this briefly at
the end of this Gem.
As stated above, we need to associate a counter with the
objects of all types we want to monitor. The simplest is to
create a tagged type hierarchy where the root type defines the
counter:

 type Refcounted is abstract tagged private;
 procedure Free (Self : in out Refcounted) is null;
private
 type Refcounted is abstract tagged record

 Refcount : Integer := 0;
 end record;

This approach is mostly suitable when building a reusable
library for reference-counted types, such as GNATcoll. If you
just want to do this once or twice in your application, you can
simply add a new Refcount field to your record type (which
doesn’t need to be tagged).
Next, we need to determine when to increment and decrement
this counter. In some languages this counter needs to be
manually modified by the application whenever a new
reference is created, or when one is destroyed. This is, for
instance, how the Python interpreter is written (in C). But we
can do better in Ada, by taking advantage of controlled types.
The compiler calls special primitive operations each time a
value of such a type is created, copied, or destroyed.
If we wrap a component of a simple access type in a type
derived from Ada.Finalization.Controlled, we can then have
the compiler automatically increment or decrement the
reference count of the designated entity each time a reference
is established or removed. We thus create a smart pointer: a
pointer that manages the life cycle of the block of memory it
points to.

 type Refcounted_Access is
 access all Refcounted'Class;
 type Ref is tagged private;
 procedure Set (Self : in out Ref;
 Data : Refcounted'Class);
 function Get (Self : Ref) return Refcounted_Access;
 procedure Finalize (P : in out Ref);
 procedure Adjust (P : in out Ref);
private
 type Ref is new Ada.Finalization.Controlled with record
 Data : Refcounted_Access;
 end record;

Let’s first see how a user would use the type. Note that Get
returns an access to the data. This might be dangerous, since
the caller might want to free the data (which should remain
under control of Ref). In practice, the gain in efficiency is
worth it, since it avoids making a copy of a Refcounted’Class
object. This is also essential if we want to allow the user to
easily modify the designated entity. The user is ultimately
responsible for ensuring that the lifetime of the returned value
is compatible with the lifetime of the corresponding smart
pointer.

declare
 type My_Data is new Refcounted with record
 Field1 : ...;
 end record;
 R1 : Ref;
begin
 Set (R1, My_Data'(Refcounted with Field1 => ...));
 -- R1 holds a reference to the data

Ada Gems 61

Ada User Journal Volume 32, Number 1, March 2011

 declare
 R2 : Ref;
 begin
 R2 := R1;
 -- R2 also holds a reference to the data
 -- (thus 2 references)
 ...
 -- We now exit the block. R2 is finalized,
 -- thus only 1 ref left
 end;
 Put_Line (Get (R1).Field1); -- For instance
 -- We now leave R1's scope, thus refcount is 0,
 -- and the data is freed.
end;

Now let’s look at the details of the implementation. First
consider the two subprograms for setting and getting the
designated entity. Note that the default value for the reference
count is zero in the Refcounted type. The implementation of
Set is slightly tricky: it needs to decrement the reference count
of the previously designated entity, and increment the
reference count for the new data. Instead of calling Adjust and
Finalize explicitly (which is not a recommended practice when
it can be avoided), we use an aggregate and let the compiler
generate the calls for us.

procedure Set (Self : in out Ref;
 Data : Refcounted'Class) is
 D : constant Refcounted_Access :=
 new Refcounted'Class'(Data);
begin
 if Self.Data /= null then
 Finalize (Self); -- decrement old reference count
 end if;
 Self.Data := D;
 Adjust (Self); -- increment reference count (set to 1)
end Set;

function Get (P : Ref) return Refcounted_Access is
begin
 return P.Data;
end Get;

In GNATCOLL.Refcount, we provide a version of Set that
receives an existing access to Refcount’Class, and takes
responsibility for freeing it when it is no longer needed. The
implementation is very similar to the above (although we need
to be careful that we do not Finalize the old data if it happens
to be the same as the new, since otherwise we might end up
freeing the memory).
Adjust is called every time a new reference is created. Nothing
special here:

overriding procedure Adjust (P : in out Ref) is
begin
 if P.Data /= null then
 P.Data.Refcount := P.Data.Refcount + 1;
 end if;
end Adjust;

The implementation of Finalize is slightly more complicated:
the Ada reference manual indicates that a Finalize procedure
should always be idempotent. An Ada compiler is free to call
Finalize multiple times on the same object, in particular when

exceptions occur. This means we must be careful not to
decrement the reference counter every time Finalize is called,
since a given object only owns one reference. Hence the
following implementation:

overriding procedure Finalize (P : in out Ref) is
 Data : Refcounted_Access := P.Data;
begin
 -- Idempotence: the next call to
 -- Finalize will have no effect
 P.Data := null;
 if Data /= null then
 Data.Refcount := Data.Refcount - 1;
 if Data.Refcount = 0 then
 Free (Data.all); -- Call to user-defined primitive
 Unchecked_Free (Data);
 end if;
 end if;
end Finalize;

That’s it for the basic implementation. The next Gem in this
series will discuss issues of task safety associated with
reference-counted types.

Gem #99: Reference Counting
in Ada – Part 2: Task Safety
Emmanuel Briot, AdaCore
Date: 14 February 2011

Let’s get started…
In Part 1, we described a reference-counted type that
automatically frees memory when the last reference to it
disappears. But this type is not task safe: when we decrement
the counter, it might happen that two tasks see it as 0, and thus
both will try to free the data. Likewise, the increment of the
counter in Adjust is not an atomic operation, so it is possible
that we will be missing some references.
In some applications this restriction is not a big issue (for
instance, if there are no tasks, or if the types are only ever used
from a single task). However, let’s try to improve the situation.
The traditional solution is to use a lock while we are
manipulating the counter. We could, for instance, use a
protected type for this. However, this means that a nontasking
application using our reference-counted types would have to
initialize the whole tasking run-time, which could impact
execution somewhat, since part of the code goes through
slower code paths.
GNAT provides a global lock that we can reuse for that, and
that does not require the full tasking run-time. We could use
that lock in a function that changes the value of the counter
atomically. We need to return the new value from that
function: changing the value atomically solves the problem we
highlighted for Adjust, but not the one we showed for Finalize,
where two tasks could see the value as 0 if they read it
separately.

function Atomic_Add
 (Ptr : access Integer; Inc : Integer) return Integer
is
 Result : Integer;
begin
 GNAT.Task_Lock.Lock;

62 Ada Gems

Volume 32, Number 1, March 2011 Ada User Journal

 Ptr.all := Ptr.all + Value;
 Result := Ptr.all;
 GNAT.Task_Lock.Unlock;
 return Result;
end Atomic_Add;

On some systems there is actually a more efficient way to do
this, by using an intrinsic function: this is a function provided
by the compiler, generally implemented directly in assembly
language using low-level capabilities of the target machine.
We need special handling to check whether this facility is
available, but if it is, we no longer need a lock. The
GNATCOLL.Refcount package takes full advantage of this.

function Atomic_Add
 (Ptr : access Integer; Inc : Integer) return Integer
is
 function Intrinsic_Sync_Add_And_Fetch
 (Ptr : access Interfaces.Integer_32;
 Value : Interfaces.Integer_32) return
 Interfaces.Integer_32;
 pragma Import
 (Intrinsic, Intrinsic_Sync_Add_And_Fetch,
 "__sync_add_and_fetch_4");

begin
 return Intrinsic_Sync_Add_And_Fetch (Ptr, Value);
end Atomic_Add;

(Note: In actual practice, it would be necessary to declare the
access parameter of function Atomic_Add with type
Interfaces.Integer_32, for type compatibility with the
intrinsic.)
Once we have this Atomic_Add function we need to modify
our reference-counted type implementation. The first change is
to declare the Refcount field as aliased, in the definition of
Refcounted. We then revise the code as follows:

overriding procedure Adjust (P : in out Ref) is
 Dummy : Integer;
begin
 if P.Data /= null then
 Dummy := Atomic_Add (P.Data.Refcount'Access, 1);
 end if;
end Adjust;

overriding procedure Finalize (P : in out Ref) is
 Data : Refcounted_Access := P.Data;
begin
 P.Data := null;
 if Data /= null
 and then Atomic_Add (Data.Refcount'Access, -1) = 0
 then
 Free (Data.all);
 Unchecked_Free (Data);
 end if;
end Finalize;

The last Gem in this series will talk about a different kind of
reference, generally known as a weak reference.

Gem #99: Reference Counting
in Ada – Part 3: Weak References
Emmanuel Briot, AdaCore
Date: 28 February 2011

Let’s get started…
As we mentioned in the first two parts of this Gem series,
GNATCOLL now includes a package that provides support for
memory management using reference counting, including
taking advantage of the efficient synchronized add-and-fetch
intrinsic function on systems where it is available.
There is one thing that reference-counted types cannot handle
as well as a full-scale garbage collector: cycles. If A references
B which references A, neither of them will ever get freed. A
garbage collector is often able to detect such cycles and
deallocate all the objects as appropriate, but such a case cannot
be handled automatically through reference counting.
However, there’s a variant approach that can handle such cases
with only minor changes in the code.
Let’s take an example: you are retrieving values from some
container (a database for instance), and want to have a local
cache to speed things up. The code would likely be organized
as follows:

• Get a reference-counted value from the container. Its
counter is 1.

• Put it in the cache for later use. The counter is now 2,
since the cache itself owns a reference.

• When you are done using the value in your algorithm, you
release the reference you had. Its counter goes down to 1
(the cache still owns the reference).

Because of the cache, the value is never freed from memory.
This is not good, since memory usage will only keep
increasing.
GNATCOLL provides a solution for this issue, through the use
of weak references. This is a standard industry term for a
special kind of reference: you have a type that points to the
same object as a true reference-counted type would, but that
type does not hold a reference. Thus, it does not prevent the
counter from reaching 0, and the object from being freed.
When the deallocation occurs, the internal data of the weak
reference is reset. Thus, if you retrieve the data stored in the
weak reference, you get null, not an erroneous access to some
freed memory (which might sooner or later result in a
Storage_Error).
If we set up the cache so that it uses weak references, the code
becomes:

• Get a reference-counted value from the container. Its
counter is 1.

• Put it in the cache, through a weak reference. The counter
is still 1.

• When you are done using the value, the counter goes
down to 0, and the memory is freed.

• At this point, the cache still contains the weak reference,
but the latter uses just a little memory.

Using slightly more complex code, it is possible, in fact, to
remove the entry for the cache altogether when the value is
freed, thus really releasing all memory to the system. Though
GNATCOLL does provide a capability for using weak

Ada Gems 63

Ada User Journal Volume 32, Number 1, March 2011

references, a future package will provide easier handling of
such caches.
One way to implement weak references is by adding an extra
pointer in type Refcount. GNATCOLL chooses to make this
optional: if you want to systematically have that extra pointer
in your data structure, you can use weak references.

Otherwise, you still have access to the code we described in
the first part of this Gem series.
We will not go into the details of the implementation for a
weak reference. Interested parties can look at the code in
GNATCOLL.Refcount.Weakref, which is relatively small.

64

Volume 32, Number 1, March 2011 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Student Programming Contest - The Ada Way
	A comparison of work-sharing, work-seeking, and work-stealing parallelism strategies using Paraffin
with Ada 2005
	Designing ParaSail – Parallel Specification and Implementation Language
	Ada Gems
	National Ada Organizations

