

Ada User Journal Volume 31, Number 4, December 2010

ADA
USER
JOURNAL

Volume 31
Number 4

December 2010

Contents
Page

Editorial Policy for Ada User Journal 222

Editorial 223

Quarterly News Digest 225

Conference Calendar 250

Forthcoming Events 257

Student Programming Contest “The Ada Way” 260

Overview of the 14th International Real-Time Ada Workshop

 A. Burns, A. J. Wellings
“Multiprocessor Systems Session Summary” 263

 T. Vardanega, M. González-Harbour, L. M. Pinho
“Session Summary: Language and Distribution Issues” 266

 S. Michell, J. Real
“Conclusions of the 14th International Real-Time Ada Workshop” 273

 A. Burns
“Progress Report from the 14th International Real-Time Ada Workshop – IRTAW14” 275

Special Contribution

 A. Burns, J. L. Tokar (Eds.)
“Ada and the Software Vulnerabilities Project: the SPARK Annex” 278

Ada Gems 291

Ada-Europe Associate Members (National Ada Organizations) 296

Ada-Europe 2010 Sponsors Inside Back Cover

222

Volume 31, Number 4, December 2010 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 223

Ada User Journal Volume 31, Number 4, December 2010

Editorial

The majority of the content of this last issue of 2010 is the result of the work of two groups of Ada practitioners which devote
part of their time to the development and promotion of the Ada language within two of the topics where Ada is without
doubts a strong technology: real-time systems and reliable software.

In the first part of the issue, we present an overview of the 14th International Real-Time Ada Workshop (IRTAW), which was
held approximately one year ago, in Portovenere, Italy. This overview provides not only the workshop’s session summaries,
allowing readers to get the necessary insight in the fruitful discussions and results of the workshop, but also a post workshop
report, by Alan Burns, of the University of York, UK, presenting how the workshop proposals are going through the Ada
2012 standardization process (since many times we wonder what happens to the Ada Issues that the workshop produces).
IRTAW has been and still is a major forum for Ada evolution (and not only in the real-time arena); it is therefore with
happiness that in the issue we also have the announcement of the next edition of the workshop, which will take place in
September 2011, in the mountains nearby Santander, Spain.

In the second part o the issue, we conclude the publication of the results of the work of the Software Vulnerabilities group,
which produced the Ada annex (published in the September issue of the Ada User Journal) to the ISO Technical Report on
“Avoiding Programming Language Vulnerabilities through Language Selection and Use” (ISO/IEC PDTR 24772.2). To
finalize the work, in this issue we publish the annex concerning SPARK.

I would also like to point out to our readers the forthcoming events section, where, before the IRTAW call for papers, we
already have preliminary information concerning “The Ada Connection”, an event that combines the Ada-Europe 2011
conference and the Ada-Conference UK 2011, taking place in Edinburgh, Scotland, next June 20-24.

In the Ada Gems section, the issue publishes the series of gems concerning the Distributed Systems Annex, by Thomas
Quinot, of AdaCore, France. Last, but definitely not least, readers will find the wealthy of information in the usual news
digest and calendar sections.

In a final note, this last 2010 issue of the Ada User Journal should be reaching you already in 2011. Nevertheless, hopefully
there was no substantial delay (except for the normal printing and distribution time). We are making our best efforts in
putting the AUJ back in its scheduled publication date, and I would like to thank the Editorial Team of the Journal – Jorge
Real (Deputy Editor), Dirk Craeynest (Calendar and Events), and Marco Panunzio (News Digest) – for all their volunteer
efforts in achieving this.

Our best wishes for 2011,

 Luís Miguel Pinho
Porto

December 2010
 Email: lmp@isep.ipp.pt

 225

Ada User Journal Volume 31, Number 4, December 2010

Quarterly News Digest
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Organizations 225
Ada-related Events 225
Ada Semantic Interface Specification

(ASIS) 227
Ada and Education 228
Ada-related Resources 228
Ada-related Tools 229
Ada-related Products 231
Ada and GNU/Linux 234
Ada Inside 235
Ada in Context 236

Ada-related
Organizations
Video and PDF of
presentations at the
Ada-Europe 2010 conference
From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 19 Oct 2010
Subject: Ada-Europe 2010 - the videos
URL: http://ada-dk.org/?

page=news&news_id=194
Yesterday Jorge Real (Ada-Europe
General Secretary) informed me that the
Ada-Europe 2010 conference talks are
now online as PDF's and/or video.
To that I only have one thing to say:
Great!
No less than 33 talks are available for
download, so if you're interested in Ada,
then the odds are good for finding
something of interest to you.
Now if you'll excuse me, I'll go pour
myself a cup of tea, grab a comfortable
chair and start watching some Ada talks.
If all goes well, I'll come out of it a bit
wiser.
A big thank you to Ada-Europe for
making all this material available, and to
the authors for permitting it.
[you can find the material at
http://www.disca.upv.es/jorge/ae2010/
outcome.html —mp]

New website for Ada-France
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 03 Nov 2010 16:16:58 +0100
Subject: New site for Ada-France
Newsgroups: comp.lang.ada
Ada-France is pleased to announce the
total revamping of its website, with up-to-
date information, new look-and-fill,

twitter-indeti.ca-facebook-RSS feeds, and
more!
If you speak (or at least understand ;-))
French, please visit us at:
http://www.ada-france.fr/
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Wed, 03 Nov 2010 16:41:54 +0100
Subject: Re: New site for Ada-France
Newsgroups: comp.lang.ada
[…]
http://www.ada-france.org/
I guess? Otherwise, this would have been
a literally cosmetic change. :-)
Les voilà les accents! Good to see the
correct characters.
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 04 Nov 2010 11:50:24 +0100
Subject: Re: New site for Ada-France
Newsgroups: comp.lang.ada
[…]
Ooops, yes of course, sorry for the
confusion.

First open meeting of "Ada
in Denmark"
From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 04 Nov 2010
Subject: An open Ada-DK meeting!
URL: http://ada-dk.org/

?page=news&news_id=204
December 7th, 2010 marks the day when
the first open Ada-DK meeting is being
held.
The "open" part means that the meeting is
not a member only affair, but that
anybody interested in Ada is welcome, so
feel free to invite whomever you might
believe could be interested in spending an
evening talking about Ada.
We do not yet have an agenda for the
meeting, simply because we don't know
how many are going to attend. It might be
a smashing hit, a massive failure or
something in between. Time will tell. If
it's not a complete failure, I'm certain
we'll come up with an agenda for the next
meeting.
The plan is to have one open Ada-DK
meeting each month, on the first Tuesday
of the month.
If you're interested in participating, feel
free to send us an email, and we'll inform
you of the when and where. Or join the

Freenode IRC #ada channel and look for
ThomasLocke.
The meeting is of course free.
[contact Ada-DK at info@ada-dk.org
—mp]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

Workshop on Object-
Oriented technologies and
Ada in High-Integrity
Systems
From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 07 Sep 2010 16:54:41 +0200
Subject: Ann: Workshop on OO and Ada in

High Integrity Systems
Newsgroups: comp.lang.ada
There will be a workshop during SIGAda,
whose goal is to define a set of Ada
restrictions that would make using Object
Oriented technologies with Ada more
applicable to high integrity systems. The
workshop could lead to the definition of a
profile and to a document explaining and
justifying the profile, following the
example of the Ravenscar profile for the
concurrency aspects.
All those interested are invited:
- to attend
- and/or send suggestions for possible

restrictions (with justification)
to rosen@adalog.fr
The workshop will start with a summary
of received proposals, followed by
discussion and (hopefully!) agreement on
the content of the profile.
Those who are interested in the topic but
are not aware of all the issues are invited
to attend the tutorial on the same topic
during the conference.
More info on
http://www.sigada.org/conf/sigada2010/
Please pass the word around, and see you
in Fairfax!
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 08 Sep 2010 07:28:01 +0200

226 Ada-related Events

Volume 31, Number 4, December 2010 Ada User Journal

Subject: Re: Ann: Workshop on OO and
Ada in High Integrity Systems

Newsgroups: comp.lang.ada
> […] Hope there will be some on-line

publications after this meeting (just a
wish).

> […]
This is definitely the intent.
From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 15 Oct 2010 12:25:35 +0200
Subject: Material for the HR-OO workshop

at SIGAda
Newsgroups: comp.lang.ada
I have made a page in preparation for the
High-Reliability Object-Oriented Ada
workshop at SIGAda:
http://www.adalog.fr/hr-oo-workshop/
If you plan to attend, there is no
requirement to send a formal position
paper, but it would be nice if you could
send your views in advance as a proposal,
as explained in the above page.
If you don't plan to attend, you are also
welcome to send proposals and good
ideas!
See you in Fairfax.

Ada-Europe Programming
Contest "The Ada Way"
From: Dirk Craeynest

<dirk@cs.kuleuven.ac.be>
Date: Mon, 27 Sep 2010 20:22:27 +0000

UTC
Subject: Press Release - Ada-Europe Kicks

Off First Programming Contest
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc
FOR IMMEDIATE RELEASE
Ada-Europe Kicks Off its First Annual
Student Programming Contest "The Ada
Way"
Brussels, Belgium (September 28, 2010) -
Ada-Europe[1], the international
organization that promotes the knowledge
and use of the Ada programming
language in European academia, research
and industry, is pleased to announce "The
Ada Way"[2]. This annual student
programming contest aims to attract
students and educators to Ada in a form
that is both fun and instructive. Entries are
now open for the 2010-11 competition
and judging takes place in May next year.
In line with the start of the football
season, this year's challenge is to build a
software simulator of a football match.
The software system, programmed in
Ada, will need to support a number of
gaming and football features including
speed, tactical skills and player fatigue.
The submitted code will include a
software core, implementing the logic of
the simulation, as well as read-write
graphical panels for participating football
team managers.

Candidate submissions will be judged on
a number of evaluation criteria including:
- Coverage of requirements.
- Syntactic, semantic, programmatic and

design correctness.
- Clarity and readability of the code.
- Quality of design.
- Ingenuity and cuteness of the solution.
- Time and space efficiency of the

solution.
The winning submission will win a
framed award, one free registration and
up to 3 reduced student fees for
representatives of the winning team to
attend to the Ada-Europe 2011
Conference[3], accommodation and
airfare for the team representatives, an
exhibition slot in the conference program,
and visibility in electronic and printed
media.
This year's competition is sponsored by
Ada-Europe, AdaCore, and Atego.
To enter, and for the full specification and
details of software requirements, please
go to the official web site of "The Ada
Way", www.ada-europe.org/AdaWay.
About Ada-Europe
Ada-Europe is the international non-profit
organization that promotes the knowledge
and use of the Ada programming
language in academia, research and
industry in Europe. Ada-Europe has
member organizations all over the
continent, in Belgium, Denmark, France,
Germany, Spain, Sweden, Switzerland, as
well as individual members in many other
countries.
A PDF version of this press release is
available at www.ada-europe.org.
Press contact
Dirk Craeynest, Ada-Europe Vice-
President,
Dirk.Craeynest@cs.kuleuven.be
[1] www.ada-europe.org
[2] www.ada-europe.org/AdaWay
[3] www.ada-europe.org/conference2011

Ada at FOSDEM 2011
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 6 Oct 2010 02:28:49 -0700 PDT
Subject: Call for speakers for Ada at

FOSDEM 2011; deadline on
2010-10-16!

Newsgroups: comp.lang.ada
The next FOSDEM[1], the Free and
Open-Source European
Developers'Meeting, will take place on
Saturday 5 and Sunday 6 February 2011
in Brussels, Belgium. The event is
entirely free; speakers and attendees alike
are unpaid but enthusiastic volunteers.
The audience consists mostly of fellow
developers. FOSDEM is one of the major

events giving visibility to worthy projects
and languages. Ada-Belgium organized
two very successful series of
presentations at FOSDEM 2006[2] and
FOSDEM 2009[3], earning a good
reputation for reliability and quality, and
is now seeking speakers for FOSDEM
2011. Two speakers have already
volunteered.
[1] http://www.fosdem.org
[2] http://archive.fosdem.org/2006/2006/

index/dev_room_ada.html
[3] http://people.cs.kuleuven.be/

~dirk.craeynest/ada-
belgium/events/09/090207-fosdem.html

For several years now, Ada-Belgium has
been running a dedicated mailing list for
the coordination of Ada at FOSDEM [4].
If you would like to be a speaker or just
attend the event, please subscribe to this
mailing list and peruse the archives;
traffic is low and the signal-to-noise ratio
is extremely high :) We can discuss
accommodation and catering issues as
well as technical ones on this list. A
proposal should consist of a 10-line
summary of the presentation, a 10-line
biography of the speaker and an optional
small picture (in JPEG or PNG) of the
speaker.
The deadline for the submission of
proposals for a Developers' Room at
FOSDEM is ten (10) days from now on
October 16, 2010 [5]. If you would like to
be a speaker, please react now on the
adafosdem list so we can arrange for a
joint proposal for all Adaists.
[4] http://listserv.cc.kuleuven.be/

archives/adafosdem.html
[5] http://www.fosdem.org/2011/

call_for_mainspeakers_devrooms
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Wed, 27 Oct 2010 23:44 CEST
Subject: Again NO Ada at FOSDEM (was:

Call for speakers for Ada at FOSDEM
2011)

Mailing list: ada-belgium-info@
cs.kuleuven.be

Dear Ada-Belgium friend,
This is a short status report on what has
happened since we posted the appended
Call for Speakers earlier this month.
Based on the feedback we received, we
prepared a detailed proposal for an Ada
Developer Room during both days of
FOSDEM 2011 next February.
Our proposal, including the full list of
presentations and speakers, is available on
the Ada at FOSDEM 2011 web-page at
http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/11/110205-fosdem.html
Unfortunately, earlier today Valentine
wrote to the AdaFOSDEM mailing list:
 "Hi all

Ada Semantic Inter face Specif icat ion (ASIS) 227

Ada User Journal Volume 31, Number 4, December 2010

 bad news …
 they did not send a mail to say our
 request was rejected…
 but as far as i can read …
 :/
 http://www.fosdem.org/2011/news/
 accepted-devrooms"
The list of accepted DevRooms does not
include Ada, so after very successful and
well attended Ada DevRooms in 2006 and
2009, we once more didn't make it for
2011.
Thanks again, everybody involved with
the proposal this year.
Maybe we should reconsider and start
looking for another event than FOSDEM
for next year…
Valentine, Ludovic, Dirk
The FOSDEM Team of Ada-Belgium

Ada Semantic Interface
Specification (ASIS)
On inconsistencies in ASIS
type definitions and ASIS
versions
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sun, 07 Nov 2010 09:04:11 +0100
Subject: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
Hello Ada writers,
I was trying to patch AdaControl
(http://www.adalog.fr/adacontrol2.htm)
so that it can build with Gela-ASIS. This
is an interesting process of little
refactoring, as Gela-ASIS is clearly
designed so that it make no reference at
all to a specific compiler implementation
(it do so defining an Implementation_
Defined_Type from which other discrete
types are derived). After a first attempt I
restarted again and felt something was
wrong as I could not get something
coherent about types.
Prior note: I do not own a copy of the ISO
ASIS reference, so I cannot tell who of
TenDRA or ISO is right or wrong.
What disturbs me, if I believe (as I feel it
is) that Gela-ASIS heavily stick on the
ASIS standard: Asis.Text defines two
types, Character_Position and
Line_Number. Character_Position is
derived from ASIS_Natural, which in
turn is derived from ASIS_Integer,
which, the latter, is implementation
defined.
Also, ASIS defines a type
Asis.Program_Text, which is not
implementation defined, and which is
explicitly an unconstrained subtype of the
Ada's type Standard.Wide_String.

Shouldn't be Asis.Text.Character_
Position be defined so that is can be used
as an index in Asis.Program_Text? This
would imply Character_Position would
be a derived from Standard.Positive, and
due to the way Character_Position is
derived, as explained above, this would
imply the root implementation defined
type, should be instead, at least derived
from Positive or an ancestor type of
Positive.
Which is wrong? TenDRA with Gela-
ASIS or the ASIS ISO reference (which I
do not own, so I cannot check).
Comments and lightings welcome from
any one owning a copy of the ASIS
reference, so that I can figure if I should
primarily patch Gela-ASIS or
AdaControl.
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Tue, 9 Nov 2010 06:18:16 -0800 PST
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
[…] Here are official ASIS packages
specifications:
http://www.sigada.org/wg/asiswg/
specs/asis20s.txt
From: Simon Wright

<simon@pushface.org>
Date: Sun, 07 Nov 2010 12:34:56 +0000
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
[…] GNAT ASIS is pretty clear (at least
from the copyright notice) that most of
the public part of package specs is from
the standard.
ASIS.Text is about fragments of code --
the part of the source text corresponding
to an element -- in type Span.
Line_Number is the line in the source
text, Character_Position is the position in
the line.
I suspect you're supposed to use
Element_Image, Line_Image etc?
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sun, 07 Nov 2010 20:03:41 +0100
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
[…] Gela-ASIS seems too, as the package
specification they used is a raw copy of
what you can get from there:
http://www.sigada.org/wg/asiswg/
intro.html
> […] I suspect you're supposed to use

Element_Image, Line_Image etc?
… and Comment_Image and
Non_Comment_Image and
Debug_Image, Yes.
But the source I am dealing with makes
the assumption that Character_Position is
a subtype of Natural, and that is why I

was wondering about this type definition.
This leads into trouble when I try to build
it with Gela-ASIS, because with Gela-
ASIS, Character_Position and
Line_Number are not subtypes (direct or
indirect) of Natural.
As the packages specifications seems to
be raw copy of what you get from the link
above, I suppose TenDRA is right.
And you are right too, the accessors to be
used to get text representation are indeed
the Asis.Text.XTZ_Image. So there is no
need for Character_Position to be a
subtype of the index type of
Program_Text. So the ASIS specification
is not wrong either.
By the way, another question: do you
know a link to a working draft version of
ASIS 2005 ?
(I know this can be inferred from ASIS
Issues list, just that this would be
cleaner… but I don't bother if there is
none)
[…]
From: Simon Wright

<simon@pushface.org>
Date: Sun, 07 Nov 2010 19:20:40 +0000
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
> the source I am dealing with makes the

assumption that Character_Position is a
subtype of Natural, and that is why I
was wondering about this type
definition. […]

I think the source must be making
unwarranted assumptions.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sun, 07 Nov 2010 21:44:04 +0100
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
[…] But the compiler did not reject
anything ;) So the responsibility must be
shared with the underlying ASIS library
too (remember, Ada is strongly typed, if
there was no issue with ASIS-for-GNAT
too, this could not even compile with this
one)
From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 07 Nov 2010 20:35:43 +0100
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
[…] I don't think there is a public version
of the current state of the ASIS manual
(Randy will correct me if I'm wrong).
Note that there will be no ASIS 2005.
Given the current lagging of ASIS w.r.t.
Ada, ISO took the decision to skip ASIS
2005 and to issue ASIS 2012,
approximately at the same time, and then
keep both in sync.

228 Ada-related Resources

Volume 31, Number 4, December 2010 Ada User Journal

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 12 Nov 2010 13:35:16 -0600
Subject: Re: Asis.Text.Character_Position :

inconsistency ?
Newsgroups: comp.lang.ada
[…] That's right. The only way to get
access to the draft ASIS is to become a
member of the ARG. We could use some
additional ASIS expertise, so that's not
out of the question.
The SIs themselves are publicly available
on www.ada-auth.org, so you can find out
about individual changes that way.

Ada and Education
Webinar on AdaCore's
GPS 5.0
From: Jamie Ayre
Date: Thu, 28 Oct 2010
Subject: GPS 5.0 webinar
Source: LinkedIn Groups - Ada

Programming Language
The GNAT Pro InSight webinar series
continues with a presentation and demo of
the new features introduced in GPS 5.0.
This release sees many enhancements to
the GPS IDE technology including
improved support for C/C++ in addition
to its already comprehensive support for
the Ada language, more powerful source
editing, improved ease of use, better tool
support (GNATstack, CodePeer), and
enhanced documentation generation.
This webinar is open to all. If you would
like to join us, please visit:
http://www.adacore.com/home/products/
gnatpro/webinars/
[webinar to be held on December 14,
2010 - 5:00pm CET —mp]

Webinar on SPARK Pro 9.1
From: AdaCore Webinar webpage
Date: Fri, 12 Nov 2010 [fetched]
Subject: Introducing SPARK 9.1
URL: http://www.adacore.com/home/

products/gnatpro/webinars/
The InSight webinar series continues with
a presentation by Angela Wallenburg on
the new features of the AdaCore/Altran
Praxis joint offering – SPARK Pro.
SPARK Pro combines the proven SPARK
Ada language and supporting toolset with
AdaCore’s GNAT Programming Studio
(GPS) integrated development
environment, backed by unrivalled
support systems.
SPARK Pro 9.1 is a major release
including many new features – the use of
full range array subtypes, the relaxation of
aliasing rules for record fields, the ability
to specify VC generation on a per-file
basis in metafiles, the introduction of new

SPARK libraries, the introduction of the
SPARKbridge feature.
[webinar to be held on December 7, 2010
- 5:00pm CET —mp]

Ada code examples for
educational purposes
From: R Tyler Croy <tyler@linux.com>
Date: 12 Nov 2010 20:25:16 GMT
Subject: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada
I've commented on a GitHub support
ticket to ask them to support/index Ada
code in their "Explore" functionality, but
I'm wondering if there are any other good
sites to find collections of well
commented, well structured Ada code to
help me learn Ada properly?
Somewhere between simple one page
tutorials and giant programs would be
helpful.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Fri, 12 Nov 2010 14:22:56 -0700
Subject: Re: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada
[…]
You can find plenty of examples of Ada
code at http://www.adaworld.com/ and
http://www.adaic.org/. Many of them are
libraries, so they're reasonably easy to
understand.
The Ada-specific search at AdaIC.org
might also be useful.
You can find both the PragmAda
Reusable Components and the
Mine_Detector game (not giant, but a
complete program) at
http://pragmada.x10hosting.com/
From: Thomas Løcke <tl@ada-dk.org>
Date: Sat, 13 Nov 2010 11:14:32 +0100
Subject: Re: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada
[…]
I personally enjoy the Ada examples at
http://rosettacode.org
http://rosettacode.org/wiki/Category:Ada
Some links from the Ada-DK website:
http://ada-dk.org/?page=basics
http://wiki.ada-dk.org
http://wiki.ada-dk.org/index.php/
Ada_Resources
Another option is keeping an eye on
http://planet.ada.cx for various Ada
projects. Download, unpack, enjoy!
From: Simon Wright

<simon@pushface.org>
Date: Sat, 13 Nov 2010 12:27:49 +0000
Subject: Re: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada

[…]
If you go to sourceforge.net and search
for 'ada' you'll get 138 results -- OK, the
first isn't appropriate, but the rest of the
first page of results looks relevant, I didn't
check further.
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Sat, 13 Nov 2010 14:18:00 +0100
Subject: Re: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada
[…]
The GNAT distribution always includes
an examples directory.
I think some programs in there will be
about a few pages in length.
From: Ed Falis <falis@verizon.net>
Date: Sat, 13 Nov 2010 07:11:23 -0800 PST
Subject: Re: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada
[…]
You might find the "Ada Gems" page at
AdaCore's site interesting:
http://www.adacore.com/category/
developers-center/gems/
These are a set of small tutorials on
various topics having to do with Ada -
there are 90 some-odd ones there. Also, if
you go to libre.adacore.com, sources are
available for all of the downloadable tools
and components.
From: Marc A. Criley <mc@mckae.com>
Date: Sun, 14 Nov 2010 18:10:00 +0100
Subject: Re: Finding code to read for

educational purposes
Newsgroups: comp.lang.ada
The Ada sub-reddit
(http://www.reddit.com/r/ada) has links to
a variety of Ada related information,
including Ada software projects, nearly
all of which provide source code.

Ada-related Resources
DSA Messenger
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Tue, 26 Oct 2010 15:02:07 -0700

PDT
Subject: Announce: DSA Messenger

example
Newsgroups: comp.lang.ada
Hello,
I am pleased to announce new example of
use QtAda in distributed application -
DSA Messenger. It is simple multiuser
chat application, which uses DSA
application personality of PolyORB to
split Ada application into several
partitions and QtAda to implement client's
GUI.

Ada-related Tools 229

Ada User Journal Volume 31, Number 4, December 2010

You can download source code by
following this link:
http://adaforge.qtada.com/cgi-bin/
tracker.fcgi/qtada4/downloader/
download/file/1
and found important additional
information
http://adaforge.qtada.com/cgi-bin/
tracker.fcgi/qtada4/wiki/Examples/
DSAMessenger

Ada-related Tools
Simple components for
Ada v3.10
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 30 Oct 2010 21:45:32 +0200
Subject: ANN: Simple components for Ada

v3.10
Newsgroups: comp.lang.ada
The library provides implementations of
smart pointers, directed graphs, sets,
maps, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, reentrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support. It grew out of needs and does not
pretend to be universal. Tables
management and strings editing are
described in separate documents see
Tables and Strings edit. The library is
kept conform to both Ada 95 and Ada
2005 language standards.
http://www.dmitry-kazakov.de/ada/
components.htm
The version 3.10 extends the package
Object.Handle.Generic_Set and provides
some bug fixes.
[see also "Simple Components for Ada
v3.9" in AUJ 31-3 (Sep 2010), p.156
—mp]

Fuzzy sets for Ada v5.5
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 31 Oct 2010 10:09:22 +0100
Subject: ANN: Fuzzy sets for Ada v5.5
Newsgroups: comp.lang.ada
The current version includes distributions
of string edit, interval arithmetic and
simple components packages. It provides
implementations of:
1. Confidence factors with the operations

not, and, or, xor, +, *;
2. Classical fuzzy sets with the set-

theoretic operations and the operations
of the possibility theory;

3. Intuitionistic fuzzy sets with the
operations on them;

4. Fuzzy logic based on the intuitionistic
fuzzy sets and the possibility theory;

5. Fuzzy numbers both integer and
floating-point ones with conventional
arithmetical operations;

6. Dimensioned fuzzy numbers;
7. Fuzzy linguistic variables and sets of

linguistic variables with operations on
them;

8. Dimensioned fuzzy linguistic
variables and sets;

9. String-oriented I/O is supported;
10. GUI interface based on GTK+ (The

GIMP Toolkit) with fuzzy set editors,
truth values widgets and renderers,
linguistic variables sets editors.

http://www.dmitry-kazakov.de/ada/
fuzzy.htm
Changes to the version 5.4.
- A fuzzy set renderer property was added

to prefix the rendered value with a
string;

- Fuzzy set renderer commits changes
when Enter is pressed while no drop
down has been popped up;

- Procedure Get added to
Gtk.Generic_Fuzzy_Linguistic_Set_Me
asure_Tree_View and
Gtk.Generic_Fuzzy_Linguistic_Set_Me
asure_Editor to get dimensioned set of
linguistic variables as a dimensionless
set and scale;

- Fuzzy.Stream_IO provides conversions
to stream elements arrays;

- Minor bug fixes in
Fuzzy.Abstract_Edit.Named.

[see also "Fuzzy Sets for Ada v5.4" in
AUJ 30-3 (Sep 2009), p.142 —mp]

AVR-Ada 1.1.0 port with
AVR-GCC 4.3.2 for
OpenBSD
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 1 Sep 2010 04:00
Subject: AVR-Ada 1.1.0 port with AVR-GCC

4.3.2 for OpenBSD
URL: http://tero.stronglytyped.org/
I updated my AVR-Ada port to version
1.1.0. It consists of three parts:
- AVR-GCC 4.3.2 with Ada support -

http://bitbucket.org/tkoskine/avr-gcc
- AVR-Ada 1.1.0 runtime files -

http://bitbucket.org/tkoskine/avr-ada-rts
- AVR-Ada 1.1.0 library files (AVR.*

packages) - http://bitbucket.org/
tkoskine/avr-ada-lib

For now, only Arduino (atmega328p) is
supported in avr-ada-lib package.

[see also "AVR-Ada 1.1" in AUJ 31-1
(Mar 2010), p.9 —mp]

Arduino Ethernet Shield
support for AVR-Ada
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 29 Sep 2010 17:53
Subject: Arduino Ethernet Shield support

for AVR-Ada
URL: http://tero.stronglytyped.org/
I finally got my code working with
Arduino Ethernet Shield and put it
available at
http://bitbucket.org/tkoskine/
arduino-ethernet/.
Only receiving data via TCP client
connections is supported, but I plan to
improve the library as my time permits.
[see also http://www.arduino.cc/en/Main/
ArduinoEthernetShield —mp]

Mathpaqs - November 2010
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Wed, 10 Nov 2010 13:11:45 -0800

PST
Subject: Mathpaqs release 10-Nov-2010
Newsgroups: comp.lang.ada
Hello,
There is a new release of mathpaqs, a set
of various mathematical packages in Ada
including algebra, finite elements, random
variables, probability dependency models,
unlimited integers.
In this release, the main change is a bug in
the Gaussian copula simulation which has
been fixed.
http://sf.net/projects/mathpaqs/

Ada Server Faces
From: Stephane Carrez
Date: Thu, 11 Nov 2010 23:21 +0100
Subject: Ada Servlet Example
URL: http://blog.vacs.fr/index.php?post/

2010/11/11/Ada-Servlet-Example
To write a web application, Java
developers can use the servlet API.
The servlet technology, created around
1997, is a simple and powerful framework
on top of which many web applications
and higher web frameworks have been
created.
This article shows how to write the same
kind of web application in Ada.
Ada Servlet Framework
The Ada Servlet framework is provided
by Ada Server Faces. It is an adaptation
and implementation of the JSR 315 (Java
Servlet Specification) for the Ada 05
language.
The Ada API is very close to the Java API
as it provides the Servlet, Filter, Request,

230 Ada-related Tools

Volume 31, Number 4, December 2010 Ada User Journal

Response and Session types with quite the
same methods. It should be quite easy for
someone who is familiar with Java
servlets to write an Ada servlet.
The Ada Servlet implementation uses the
Ada Web Server as a web server. In the
future other other web servers such as
Apache or Lighthttpd could be used.
[download the sources of the project,
available under the Apache License 2.0, at
http://code.google.com/p/ada-asf/ —mp]

Ada binding for the shapelib
library
From: Ian Clifton

<cliftons_oxf@yahoo.co.uk>
Date: Fri, 01 Oct 2010 21:29:49 +0100
Subject: Ada shapelib binding?
Newsgroups: comp.lang.ada
Has anyone got an Ada binding to the
shapelib library for ESRI shapefiles for
geographic data?
http://en.wikipedia.org/wiki/Shapefile
or any other way of reading shapefiles
from Ada. I probably only want to read
polygons. I could bite the bullet and
cobble together some partial thin routines,
I as just wondering if anyone has anything
better already. […]
From: Tom Moran <tmoran@acm.org>
Date: Fri, 1 Oct 2010 21:47:59 +0000 UTC
Subject: Re: Ada shapelib binding?
Newsgroups: comp.lang.ada
[…]
I did one several years ago to read BLM
data for Scout. It's at:
http://home.comcast.net/~tommoran4/
shp.zip

QtAda 3.1.0
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sun, 10 Oct 2010 07:17:50 -0700

PDT
Subject: Announce: QtAda 3.1
Newsgroups: comp.lang.ada
We are pleased to announce the
immediate availability of the QtAda 3.1.0.
You can download multi platform source
code package or Microsoft Windows
binary package from the our download
page:
http://www.qtada.com/en/download.html
QtAda is an Ada2005 language bindings
to the Qt libraries and a set of
development tools. QtAda allows easily to
create cross-platform powerful graphical
user interface completely on Ada 2005.
QtAda applications will work on most
popular platforms -- Microsoft Windows,
Mac OS X, Linux/Unix -- without any
changes and platform specific code.
QtAda allows to use all power of visual
GUI development with Qt Designer.

New in QtAda 3.1.0:
- support for QtOpenGL module
- support for QDir, QFileInfo,

QProcessEnvironment, QSettings, QUrl
classes of QtCore module

- support for
QAbstractTextDocumentLayout,
QColorDialog, QGraphicsObject,
QGraphicsSimpleTextItem,
QGraphicsTextItem, QImage,
QImageReader, QImageWriter,
QPlainTextDocumentLayout, QRgb
classes of QtGui module

- support for additional operations of
classes of QtCore and QtGui modules

- support for mixed GtkAda/QtAda
applications on X11 platform

- bug fixes and performance speedups
[see also "QtAda 3.0 and 2.2" in AUJ
30-3 (Sep 2009), p.145 —mp]

Ada bindings for cURL
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 13 Oct 2010 19:23
Subject: Ada bindings for cURL
URL: http://tero.stronglytyped.org/
I put my Ada bindings to libcurl available
at http://hg.stronglytyped.org/curl-ada/.
At the moment, they are pretty simple and
contain only a small subset of libcurl, but
they allow me to fetch data over http/https
and that is good enough for my current
purposes.
The bindings should work with GNAT
and Janus/Ada on 32-bit and 64-bit
systems.
The build scripts are less than optimal, but
with some effort you should figure out
how to build the bindings.

PC/SC WinSCard API
From: Ludovic Rousseau's blog
Date: Fri, 20 Aug 2010 05:32 CEST
Subject: PCSC sample in Ada
URL: http://ludovicrousseau.blogspot.com/

2010/08/pcsc-sample-in-ada.html
Here is the PC/SC [WinSCard —mp]
sample in Ada language I promised […].
Installation
The PCSC/Ada project is hosted at
http://www.nongnu.org/pcscada.
PCSC/Ada is available as package in
Debian testing/unstable and Ubuntu
10.04.
The API documentation is available
online at
http://www.nongnu.org/pcscada/api/
index.html.
[…]

I do not use Ada myself so I can't really
say more. This wrapper should do the job
if you do use Ada.
Thanks a lot to Reto Buerki, the author of
the Ada wrapper, for writing the sample
code for me.

P2Ada
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Mon, 6 Sep 2010 14:34:58 -0700 PDT
Subject: ANN: P2Ada August 2010
Newsgroups: comp.lang.ada
Hello.
Source codes and now binaries of P2Ada
for Windows and Mac PPC / Intel are
available on Source Forge web (Aug-
2010):
http://sourceforge.net/projects/p2ada/files/
P2Ada is a set of helpful tools used to
translate Pascal source code in Ada source
code.
P2Ada includes :
- aflex lexer
- ayacc parser
- NewP2Ada translator for ISO standards
- ObjP2Ada translator for Delphi and FPC
NewP2Ada translator is well known and
stable.
ObjP2Ada translator is new with a very
preliminary release.
Feel free to send feedback on web site:
http://sourceforge.net/projects/p2ada/
support
[…]

libsparkcrypto 0.1.0
From: Alexander Senier <mail@senier.net>
Date: Thu, 9 Sep 2010 00:08:53 +0200
Subject: ANN: libsparkcrypto
Newsgroups: comp.lang.ada
Hello,
I'm happy to announce the first release of
libsparkcrypto.
Further information, license and source
code is available here:
http://senier.net/libsparkcrypto/
Version 0.1.0 of libsparkcrypto can be
downloaded here:
http://senier.net/libsparkcrypto/
libsparkcrypto-0.1.0.tgz
libsparkcrypto is a formally verified
implementation of several widely used
symmetric cryptographic algorithms using
the SPARK programming language and
toolset. For the complete library proofs of
the absence of run-time errors like type
range violations, division by zero and
numerical overflows are available. Some
of its subprograms include proofs of
partial correctness.

Ada-related Products 231

Ada User Journal Volume 31, Number 4, December 2010

The distribution contains test cases for all
implemented algorithms and a benchmark
to compare its performance with the
OpenSSL library. The achieved speed has
been found to be very close to the
optimized C and Assembler
implementations of OpenSSL.
[…]

ssprep-1.5.3
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Wed, 13 Oct 2010 17:11:02 +0200
Subject: ANN: ssprep-1.5.3
Newsgroups: comp.lang.ada
ssprep contains a few helpers to manage
and generate projects based on GNAT
project files.
ssprep: which is a tool to generate project
structures from templates using the
templates_parser.
getbuildorder: Which is a tool that takes a
set of GNAT project files and calculates
the build order it could be used to
automatically perform a make/make
install in correct order.
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Wed, 13 Oct 2010 17:51:53 +0200
Subject: Re: ANN: ssprep-1.5.3
Newsgroups: comp.lang.ada
Sorry missed the link:
http://sourceforge.net/projects/ssprep/
[…]

TOMI_4_Ada 0.10
From: Marc A. Criley <mc@mckae.com>
Date: Mon, 25 Oct 2010 19:13:12 -0500
Subject: Announce: TOMI_4_Ada 0.10

Initial Release
Newsgroups: comp.lang.ada
TOMI_4_Ada is "Text-Oriented
Messaging Interfaces 'for' Ada",
providing a basic Ada interface to existing
messaging middleware providers, and a
framework for expanding support to
currently unsupported ones. While most
messaging middleware supports binary as
well as text messaging (text being simply
a subset of binary), TOMI_4_Ada focuses
exclusively on textual transfers so as to
simplify the interface, but remaining well-
equipped to support the broad domain of
text-based messaging protocols, i.e. XML,
HTML, JSON, raw text, etc.
Out of the box TOMI_4_Ada provides
interfaces to the text messaging
capabilities of three protocols:
- STOMP protocol via the Apache

ActiveMQ broker
- AMQP via the OpenAMQ broker
- ZeroMQ (brokerless)
TOMI_4_Ada provides the following
capabilities:

- A "thick" binding to a subset of each of
the supported messaging protocols that
includes a callback-based
publish/subscribe and client/server
reference implementation.

- A "thin" binding to a subset of the
WireAPI protocol that is supplied as part
of the OpenAMQ message broker
distribution.

- The STOMP protocol is simply a
definition of a text-based protocol, and
the TOMI_4_Ada.STOMP_Adapter
package implements it. An externally
supplied transport protocol (such as
TOMI_4_Ada.Transport.TCP_Connect)
and supporting messaging broker, such
as Apache ActiveMQ, is then required to
convey messages utilizing the STOMP
protocol.

In addition a number of simple test
programs are provided in the 'test'
directory that exercise various aspects of
the thick bindings. These can be used as a
starting point for implementing one's own
application-specific messaging.
TOMI_4_Ada was developed on Linux
(Ubuntu 10.04) using the GNAT GPL
2010 compiler and verified in that
environment with the Apache ActiveMQ
broker, the OpenAMQ broker, and Per
Sandberg's ZeroMQ binding.
TOMI_4_Ada 0.10 is considered an alpha
release, but currently has no known
outstanding bugs. It is available on
SourceForge at
http://sourceforge.net/projects/tomi4ada/
files.
[…]

Fuzzy machine learning
framework v0.1
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 7 Nov 2010 10:42:05 +0100
Subject: ANN: Fuzzy machine learning

framework v0.1
Newsgroups: comp.lang.ada
Fuzzy machine learning framework is a
library and a GUI front-end for machine
learning using intuitionistic fuzzy data.
The approach is based on the intuitionistic
fuzzy sets and the possibility theory.
Further characteristics are: fuzzy features
and classes; numeric, enumeration
features and features based on linguistic
variables; user-defined features; derived
and evaluated features; classifiers as
features for building hierarchical systems;
automatic refinement in case of dependent
features; incremental learning; fuzzy
control language support; object-oriented
software design with extensible objects
and automatic garbage collection; generic
data base support through ODBC; text I/O
and HTML output; advanced graphical
user interface based on GTK+; examples
of use.

http://www.dmitry-kazakov.de/ada/
fuzzy_ml.htm

Ada-related Products
AdaCore — GNATbench
2.4.1 for Wind River
Workbench
From: AdaCore Press Center
Date: Tue, 21 Sep 2010
Subject: AdaCore Upgrades GNATbench for

Wind River Workbench
URL: http://www.adacore.com/2010/09/21/

gnatbench-241/
New platforms and features benefit Ada
developers on Wind River Workbench
NEW YORK and PARIS, September 21,
2010 – Embedded Systems Conference
Boston […]
AdaCore, a leading supplier of Ada
development tools and support services,
today announced a major update to
GNATbench, the Ada plug-in that brings
the advantages of AdaCore’s GNAT Pro
toolset to Wind River’s Workbench
integrated development environment for
embedded systems running VxWorks.
The latest version of GNATbench, 2.4.1,
is now available as part of the recent
GNAT Pro 6.3.2 release, and is supported
on Wind River Workbench 3.1 / 3.2,
hosted on Windows, Linux, and Solaris.
“AdaCore is one of Wind River’s
strategic partners, and our business
relationship goes back many years,” said
Robert Dewar, AdaCore President and
CEO. “Maintaining this relationship is an
ongoing process, it involves making
critical contributions to our joint
technology and enhancing our products to
meet customers’ growing needs.
Our new version of GNATbench meets
both these goals.”
“We’ve introduced support for significant
new Wind River platforms as well as for a
new version of an existing major
platform,” said Dr. Patrick Rogers,
GNATbench Project Lead. “These
platforms address the application domains
within which Ada is most advantageous.
We’ve also enhanced our integration with
the Wind River project builder and
replaced the underlying Ada compilation
engine.”
GNATbench 2.4.1 now supports three
new Wind River platforms: VxWorks
653, version 2.3; VxWorks Cert, version
6.6.2; and VxWorks MILS, version 2.1.
In addition, GNATbench now supports
VxWorks 6.8 (General Purpose Platform
3.8) and Workbench 3.2. Tutorials for
these new platforms are now provided, as
well as new tutorials for building shared
libraries.
GNATbench now uses the Wind River
default “flexible” managed build type for

232 Ada-related Products

Volume 31, Number 4, December 2010 Ada User Journal

all new projects. This build type allows
only those directories actually containing
code to be processed during a build,
which is therefore simpler and more
efficient.
The deprecated “standard” managed
builds are still supported for existing
GNATbench projects, and a project
conversion wizard provides the option to
convert them to use the new build type.
This new version of GNATbench uses
GPRbuild, the AdaCore multi-language
builder, when building the Ada portion of
a Workbench project. As such, it can also
compile code written in other languages,
if required. Equally important, GPRbuild
is the current and future AdaCore builder
technology, replacing the older gnatmake
toolset.
“Wind River adds new features and
functionality to each new version of
Workbench based on customer demand,”
said Chip Downing, Director of
Aerospace and Defense at Wind River.
“With AdaCore’s continued
enhancements to GNATbench, the
Workbench/GNATbench combination
provides a very powerful Eclipse-based
development environment.”
New GNATbench 2.4.1 features include:
- New Wind River platforms
- Wind River VxWorks 653 Platform,

version 2.3
- Wind River VxWorks DO-178B

Platform, version 6.6
- Wind River VxWorks MILS Platform,

version 2.0.1
- New version of Wind River General

Purpose Platform
- Workbench 3.2
- VxWorks 6.8
- “Flexible” managed builds for all new

projects
- Project conversion wizard
- GPRbuild, the GNAT multi-language

builder
- New tutorials
- VxWorks 653
- VxWorks DO-178B
- VxWorks MILS
- Shared libraries
About GNATbench
GNATbench for Wind River Workbench
brings the advantages of AdaCore’s
GNAT Pro toolset to Wind River’s
Workbench integrated development
environment for embedded systems
running VxWorks. GNATbench for Wind
River Workbench is fully integrated with
the existing Workbench tools, combining
the power of AdaCore’s development and
compilation technology with the extensive

Workbench tools for VxWorks systems
creation.
AdaCore has also developed a stand-alone
version of GNATbench for Eclipse. This
separate plug-in has all the editing and
browsing features of the Workbench
version, including the Outline View. The
difference is primarily the intended
execution target: the builder produces
executables for native systems, rather than
embedded processors, and likewise the
debugger supports native system
debugging.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base; see
http://www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro continue to see a
growing usage in high-integrity and
safety-certified applications, including
commercial aircraft avionics, military
systems, air traffic management/control,
railroad systems, and medical devices,
and in security-sensitive domains such as
financial services.
AdaCore has North American
headquarters in New York and European
headquarters in Paris.
www.adacore.com

AdaCore — GNAT Pro 6.3
Multi-Language
From: AdaCore Press Center
Date: Tue, 21 Sep 2010
Subject: Enhanced Solutions for Multi-

Language Systems
URL: http://www.adacore.com/2010/09/21/

multi-language/
NEW YORK and PARIS, September 21,
2010 – Embedded Systems Conference
Boston AdaCore, a leading supplier of
Ada development tools and support
services, today announced a
comprehensive set of tools and support
services for projects where Ada is used in
conjunction with other programming
languages. Available with GNAT Pro 6.3,
the latest release of AdaCore’s Ada
Development Environment, the solutions
include tools and libraries to handle the
various ways in which multi-language
systems are designed and constructed.
“’One Language Fits All’ is not how large
systems are developed,” said Robert
Dewar, AdaCore President and CEO.
“Programmers need to mix and match,

using different languages that are
appropriate for different jobs, or
incorporating legacy software
components written in different
languages. AdaCore is answering that
requirement, through both products and
support services, for customers who are
using other languages along with Ada.”
AdaCore’s multi-language solutions
include GNAT Pro C and GNAT Pro C++
for support of C and C++ development,
respectively, as well as a general-purpose
multi-language build tool (GPRbuild). For
systems that need to work with Java,
AdaCore supplies the GNAT Ada-Java
Interfacing Suite (for communicating
between Java and natively compiled Ada)
and GNAT Pro for the JVM. Combining
Ada and Python, for example to drive Ada
test suites through Python scripts, is
supported by the GNAT Component
Collection (GNATcoll). And GNAT Pro
for .NET allows smooth interfacing,
through managed code, between Ada and
C# or other languages that compile to
Common Language Runtime assemblies.
These are in addition to GNAT Pro’s
existing support for the foreign language
interfacing facilities specified in the Ada
standard.
Multi-language capabilities are especially
important in safety-critical and/or high-
security applications. For example
avionics systems typically consist of
components at different safety levels –
such as flight software at DO-178B Level
A in Ada, and entertainment software at
Level E, perhaps in Java.
In the security arena, a MILS-compliant
architecture can host different
applications at different Evaluation
Assurance Levels (EALs), where
applications at the highest levels might be
written in a language such as SPARK (an
Ada subset augmented with annotations /
“contracts” that allow formal proofs of
security properties), whereas applications
at lower levels might be written in
languages that do not support such rigor.
AdaCore’s multi-language solutions
address such needs.
About GNAT Pro The GNAT Pro
development environment is a full-
featured, multi-language development
environment complete with libraries,
bindings and a range of supplementary
tools. It provides a natural solution for
organizations that need to create reliable,
efficient, and maintainable code.
GNAT Pro implements all three versions
of the Ada language standard – Ada 83,
Ada 95, and Ada 2005 – and the latest
releases of GNAT Pro implement some of
the new features in Ada 2012. GNAT Pro
is backed by rapid and expert support
service.
[…]

Ada-related Products 233

Ada User Journal Volume 31, Number 4, December 2010

AdaCore — GNAT GPL for
the LEGO MINDSTORMS
NXT - Ravenscar Edition
From: Matteo Bordin

<matteo.bordin@gmail.com>
Date: Thu, 21 Oct 2010 08:39:32 -0700

PDT
Subject: GNAT GPL for the LEGO

MINDSTORMS NXT - Ravenscar Edition
Newsgroups: comp.lang.ada
Dear group,
AdaCore is proud to announce the
availability of the GNAT GPL edition for
the LEGO MINDSTORMS NXT -
Ravenscar Edition. This new release of
the GNAT GPL for the LEGO
MINDSTORMS NXT includes a run-time
library that supports the Ada 2005
Ravenscar profile. With the Ravenscar
run-time library, developers can write
analyzable and efficient all-Ada
concurrent real-time applications on the
LEGO MINDSTORMS NXT. The
compiler implements the Ada 2005
standard and provides a preview of some
Ada 2012 features. The release includes
Ada drivers to access the NXT brick and
its connected sensors and actuators. This
technology is community-based: users are
encouraged to contribute additional
drivers, teaching material and demos.
Have a look at
http://libre.adacore.com/libre/tools/
mindstorms/
Have fun!
[…]
[see also "AdaCore — GNAT GPL for
Lego Mindstorms NXT" in AUJ 30-3
(Sep 2009), p.148 —mp]

AdaCore — GPS 5.0
From: AdaCore Press Center
Date: Tue, 26 Oct 2010
Subject: AdaCore releases GPS 5.0
URL: http://www.adacore.com/2010/10/26/

gps-5-0/
GPS 5.0 Integrated Development
Environment brings enhanced multi-
language support, more powerful source
editing, and improved ease of use.
NEW YORK, PARIS and FAIRFAX,
Va., October 26, 2010 – SIGAda 2010 –
AdaCore, a leading supplier of Ada
language tools and support services, today
announced the release of GNAT
Programming Studio (GPS) 5.0. This new
major version of AdaCore’s graphical
Integrated Development Environment
(IDE) offers enhanced support for C and
C++, more powerful source editing,
simpler use, and integration of
GNATstack (a static analysis tool that
determines a program’s maximum stack
requirements). GPS is provided with
GNAT Pro on most platforms, for both

native and embedded software
development.
GPS’s multi-language support will
especially benefit GNAT Pro customers
whose applications include C or C++ as
well as Ada. Among the enhancements
are more accurate and complete source
navigation using a new cross reference
engine, better outlining and indentation,
and navigation through #include
directives.
GPS 5.0 also brings easier source editing
via additional syntax highlighting,
annotations on the side of editor windows
concerning compilation messages and
search results, automatic compilation,
highlighting of errors, improved code
completion, and better automated code
fixes. It also introduces easier target
toolchain selection, support for
GNATstack, and access to project
templates for easy project setup.
“Developers will enjoy this major release,
with the many powerful new features it
places at their fingertips,” said Arnaud
Charlet, GPS Project Manager at
AdaCore. “GPS 5.0 is really a must for
multi-language projects – it uses an
upgraded technology that we’ve been
developing during the past few years.”
Enhancements in GPS 5.0 include:
- Improved support for C/C++:
 o More accurate and complete source

navigation
 o Better outline view
 o Improved automatic indentation
- More powerful source editing:
 o More syntax highlighting
 o Annotations on the side of the editor

window
 o Automatic compilation
 o Enhanced code completion
 o Partial Ada source navigation without

compilation
 o Additional automatic code fixes
- Improved ease of use:
 o Easy target toolchain selection
 o Faster processing on large projects
 o Improved handling of desktop via

perspectives
 o Ability to quickly create projects from

existing templates
- Better tool support:
 o Support for GNATstack
 o Improved support for CodePeer
- Enhanced documentation generation:
 o Detection of entity names in comments

and production of links to their
definitions

 o Handling of lists and intentional line
returns in structured comments

GPS 5.0 is compatible with GNAT Pro
versions 3.16a1 up to 6.4.
As with all GNAT Pro components, GPS
is distributed with full source code and is
backed by AdaCore’s rapid and expert
online support.
About GNAT Programming Studio (GPS)
GPS is a powerful Integrated
Development Environment (IDE) written
in Ada using the GtkAda toolkit. GPS’s
extensive source-code navigation and
analysis tools can generate a broad range
of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also supports configuration management
through an interface to third-party
Version Control Systems, and is available
on a variety of platforms. GPS is highly
extensible; a simple scripting approach
enables additional tool integration. It is
also customizable, allowing programmers
to specialize various aspects of the
program’s appearance in the editor for a
user-specified look and feel.
[…]

Inspirel — YAMI4 v. 1.1.0
and 1.2.0
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 1 Sep 2010 05:28:00 -0700 PDT
Subject: YAMI4 v. 1.1.0 released
Newsgroups: comp.lang.ada
I am pleased to announce that the new
version of YAMI4, 1.1.0, has been just
released and is available for download.
The Ada programmer will benefit from
this new release thanks to the ability to
transmit raw binary messages - this in
addition to support high-performance
scenarios can be used as a hook for
custom serialization routines. Direct
improvements for Ada include also better
control over the automatic reconnection
facility and reduced jitter in multiple-
receiver scenarios, even in the case of
partial system failure.
This new version extends the coverage of
supported programming languages with a
completely new Python3 module, which
features full integration of built-in
dictionary objects as message payloads.
Since Python is frequently being used as a
secondary language in the Ada
community, the support for it will allow
Ada programmers to better integrate their
components in multi-language distributed
systems.
Please see the changelog.txt file, which is
part of the whole package, for a detailed
description of all improvements.
http://www.inspirel.com/yami4/
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Mon, 8 Nov 2010 03:00:52 -0800 PST

234 Ada and GNU/Linux

Volume 31, Number 4, December 2010 Ada User Journal

Subject: YAMI4 v. 1.2.0 released
Newsgroups: comp.lang.ada
Hello,
I am pleased to announce that the new
version of YAMI4, 1.2.0, has been just
released and is available for download:
http://www.inspirel.com/yami4/
This release brings the following
improvements for Ada programmers:
- Keepalive option for TCP/IP.
- Propagation of events related to

connection management.
- Ability to customize the management of

slow (overflowing) receivers in the
publish-subscribe scenario.

Apart from these, a pending issue related
to some combination of compiler bugs
was fixed to ensure that the code compiles
and runs properly on a wider range of
compiler versions.
Multi-language developers will also find
it interesting that in addition to equivalent
feature improvements for other supported
languages, a new module for Python 2.5+
was added to complement the already
existing Python 3.x library.
Please see the changelog.txt file for the
detailed list of improvements.
[see also "Inspirel — YAMI4" in AUJ 31-
2 (Jun 2010), p.91 —mp]

Lattix — Lattix 6.0
From: Lattix Website
Date: Wed, 1 Sep 2010
Subject: Lattix Releases Lattix 6.0 with new

Repository and Project Browser
URL: http://www.lattix.com/node/155
Award-winning software architecture
management solution now provides
powerful way to publish and track the
evolution of projects
Boston, MA - September 1, 2010- Lattix
Inc., a leading provider of innovative
software architecture management
solutions, today announced the release of
its newest solution, Lattix 6.0. This
solution includes the Lattix Repository
and Project Browser, a web application
that enables architects, developers and
managers to view a project's architecture,
dependencies, and metrics as well as
changes and trends over time.
In addition to many performance and
feature improvements, Lattix 6.0 also
includes a new ActionScript Module and
enhanced capabilities to create projects
for entire enterprise systems consisting of
requirements, processes, and resources in
addition to software and hardware
infrastructure.
"With these innovations in Lattix 6.0, the
architecture of software becomes more
visible to the entire organization" explains
Neeraj Sangal, president and founder of
Lattix. "This leads to significant

improvements in software quality and
productivity and helps to make the
software development process far more
transparent than ever before."
The Lattix Repository and Project
Browser allows users to maintain a
complete history of their projects. The
Lattix Repository, which can be updated
manually with Lattix LDM or
automatically with Lattix LDC, includes a
web server to enable access via a web
browser. The extended team can use the
Project Browser to view Project Tracks
with Snapshots of each build and compare
trends of changes, architectural violations,
metrics and a variety of other data. It is
now easier than ever to communicate this
critical information to the entire
organization.
For more information about the Lattix
Repository and Project Browser, please
visit
http://www.lattix.com/repository.
The Lattix ActionScript Module is the
most comprehensive solution for
analyzing the architecture of your
ActionScript and Flex MXML
applications. You can load in swf,swc, or
link report files and understand the
interrelationships between them at any
level (packages, classes, interfaces,
methods, data members etc.)
"As complexity creeps into client side
applications, it has become increasingly
important to understand and manage their
architecture too," said Han van
Roosmalen, Software Architect at
Software-Architectuur.nl. "With the
Lattix ActionScript Module I was able to
find structural problems in my outsourced
app development before it was deployed,
which saved us a lot of hassle."
For more information at the Lattix
ActionScript Module, please visit
http://www.lattix.com/products/
actionscript.
About Lattix 6.0
Lattix 6.0 provides the most
comprehensive solution for systems that
include codebases, databases,
frameworks, and UML/SysML models.
Lattix 6.0 now supports 64-bit operating
systems and has modules for
ActionScript, Ada, C/C++, Java, .NET,
and Pascal languages; Oracle, SQL
Server, and Sybase databases; Spring and
Hibernate frameworks; and XMI and IBM
Rational Rhapsody models. With the new
Repository and Project Browser, Lattix
6.0 also provides support for full web-
based viewing of architecture diagrams,
reports of key metrics and architectural
violations, and trends of snapshots of the
project over time.
To learn more about Lattix 6.0 and
explore the different solutions that are
available, please visit
http://www.lattix.com/products.

Lattix 6.0 enables companies to improve
and maintain quality, lower defect rates,
enhance testability, lower costs through
more effective development, and manage
risks by better understanding of the
impact of proposed changes.
Availability
Lattix 6.0 is available immediately from
Lattix in North America or from our
Partners throughout Europe, the Middle
East, Asia Pacific, and South America. A
variety of license options are available,
from individual user to enterprise floating
licenses. A free evaluation license is also
available for download from
http://www.lattix.com/download.
About Lattix
Lattix is the leader of software
architecture management solutions that
deliver higher software quality and lower
risk throughout the application lifecycle.
Lattix provides a powerful new approach
which utilizes the Dependency Structure
Matrix (DSM) for automated analysis and
enforcement of system architectures.
Lattix is located in North Reading, MA.
More information about Lattix can be
found at
www.lattix.com.
[…]
[see also "Lattix — Lattix 5.5" in AUJ
30-4 (Dec 2009), p.211 —mp]

Ada and GNU/Linux
On porting GNAT
JVM/AVR/Mindstorms to
GNU/Linux
From: deadlyhead

<deadlyhead@gmail.com>
Date: Tue, 26 Oct 2010 17:59:26 -0700

PDT
Subject: GNAT JVM/AVR/Mindstorms on

GNU/Linux?
Newsgroups: comp.lang.ada
Just wondering if anybody has had any
success using GNAT targeting either
JVM, AVR-elf or Mindstorms NXT from
a GNU/Linux environment. I've been
trying to build a JVM cross-compiler on
my Debian system with the latest stable
GCC release, but have met only with
failure.
Comparing the patches provided by
AdaCore and the GCC development tree,
it looks like I might have success when
GCC 4.6 is released, but until then I think
I'm stuck.
I'd really like to develop for the NXT
system, too. I have some friends whose
kids who would be pretty excited at
having robots that could be controlled
from their computers, and at least a
couple of them are old enough to be

Ada Inside 235

Ada User Journal Volume 31, Number 4, December 2010

introduced to some basic programming,
robotics and computer science geekery.
I've been introducing them all to the joys
of free software (using GNU/Linux and
the Gimp, SuperTuxKart, etc), and it
seems a shame that I can't use the same
system to teach them about Ada and
robotics at the same time.
I'm just fishing for ideas here, and would
like to know if anybody has tried/had any
success with targeting embedded systems
with GNAT from GNU/Linux (I include
the JVM here because I'm looking at the
possibility for developing Android apps in
Ada, too). Am I crazy to think that a
GCC-based compiler should work on
GNU systems first, then other systems
later?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 27 Oct 2010 00:25:17 -0700

PDT
Subject: Re: GNAT JVM/AVR/Mindstorms

on GNU/Linux?
Newsgroups: comp.lang.ada
[…]
If you really need GCC 4.6, then I suggest
you use it :) You don't have to wait for
another year for the release of 4.6.0; you
can compile from the sources any day.
OK, you might run into bugs but your
reports would then be very valuable; the
fixes would make it into 4.6.0. Note that
the end of Stage 1 is scheduled for today;
from then on the sources of GCC 4.6 will
be quite stable (no new features, bug fixes
only).
> I'd really like to develop for the NXT

system, too. […]
FTR, I'd be interested too if I had more
time on my hands. My son is only 5, so
it's a bit too soon for him anyway. It
would be great if Debian would include a
cross-compiler for the NXT, nicely
packaged and ready to go…
From: deadlyhead

<deadlyhead@gmail.com>
Date: Wed, 27 Oct 2010 08:26:03 -0700

PDT
Subject: Re: GNAT JVM/AVR/Mindstorms

on GNU/Linux?
Newsgroups: comp.lang.ada
[…]
I've been eyeballing compiling from the
GCC trunk for about a week now, and
you're right, there is no need for me to
wait for a 4.6 release. I used the 4.4 SVN
regularly when it was being developed,
and never actually had any problems
compiling Ada programs. Don't know
why I've been hesitant this time.
> […] It would be great if Debian would

include a cross-compiler for the NXT,
nicely packaged and ready to go… […]

Is this a subtle hint? If so, I'm willing to
give it a shot once I'm done moving (I'm
wasting precious packing time replying

now!) and I'll let you know if I have any
success.
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 27 Oct 2010 12:36:22 +0200
Subject: Re: GNAT JVM/AVR/Mindstorms

on GNU/Linux?
Newsgroups: comp.lang.ada
[…]
> Just wondering if anybody has had any

success using GNAT targeting either
JVM, AVR-elf or Mindstorms NXT
from a GNU/Linux environment. […]

I am currently at the SIGAda conference,
and we had yesterday a paper from the
people of Universidad Politecnica de
Madrid, who did the port.
I'll transmit your e-mail to Peter Bradley
who did the talk.
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 27 Oct 2010 17:46:31 +0200
Subject: Re: GNAT JVM/AVR/Mindstorms

on GNU/Linux?
Newsgroups: comp.lang.ada
[…]
> That would be excellent. I wish I could

have seen their talk. None of the
SIGAda talks are posted online
anywhere, are they?

They are not taped, but the slides are
generally on the post-conference CD.
BTW, the talk was really about using the
Lego-Mindstorms, not about the port to
Linux.
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 27 Oct 2010 23:28:06 +0200
Subject: Re: GNAT JVM/AVR/Mindstorms

on GNU/Linux?
Newsgroups: comp.lang.ada
[…]
> That would be interesting reading. How

do I obtain such a CD?
You normally get it as part of your
subscription to SIGAda.
They announced at the conference it
would be available early 2011.

Ada Inside
Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [Belgium]: Ada developer
Development (& designer tests) of basic
SW, signalling application software and
monitor software (interface Basic
Software / Application Software).
Integration. Functional tests in lab.
Responsibilities:

Responsible of SW development (design,
integration and designer tests).
Experience:
Experienced in SW design and
programming (4 or 5 years).
Experienced in real time embedded Sw
and basic Sw.
Notions in communication, safety
protocols.
[…]
Technical Skills & Competences
Ada programming language.
Functional SW specification (Teamwork
tool).[…]
Job offer [United Kingdom]: Software
Engineer
[…] Software Engineer with strong
defence background […]
This role is for an experienced and
tenacious software engineer with strong
ADA - 95 [sic —mp] background. You
will work within the engineering team
supporting design, development, analysis,
testing, and documentation of a complex
mission computing system in support of
the MCSP.
The programme includes technology
enhancements to the aircraft, ground
preparation/analysis system, training
systems and support infrastructure. […]
The position requires strong
understanding and sound application of
the Software Engineering principles and
practices and a general knowledge of
Systems engineering and Test &
Integration and Validation disciplines.
The position requires a software
developer who designs, develops,
documents, tests, and debugs applications
software that contains logical and
mathematical solutions to
business/mission problems or questions in
computer language for solutions by means
of data processing equipment. Applies the
appropriate standards, processes,
procedures, and tools throughout the
development life cycle.
Corrects program errors, prepares
operating instructions, compiles
documentation of program development,
and analyzes system capabilities to
resolve questions of program intent,
output requirements, input data
acquisition, programming techniques, and
controls.
The Software Developer will be
responsible for design, development and
unit test of elements of software on the
MCSP programme. This will include:
- Plan own work within defined

constraints with the assistance of
engineering and technical mentors

- Provide overall technical support and
assistance to engineers

236 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

- Design using object oriented
methodologies and a UML toolset
(Artisan Studio)

- Code development in ADA 95 (using
Greenhill's AdaMulti)

- Documentation of developed software
- Unit testing (using ADATest)
- Problem determination and resolution
[…]
Required Skills:
- Ada Programming Experience
- Development with C/C++/Java
- Be familiar with object-oriented design

methodologies and UML.
- Experience with Version Manager or

equivalent
- Experience with Visual Studio and C#

or VB.Net
- Experience with XML, SQL, ODBC,

web services
- Experience in developing media-rich

GUIs containing audio, video, animation
- Experience in database programming

and building web applications with
database connectivity

[…]
Desired Skills:
- Development in ADA95
- Familiarity with software safety

standards including Def Stan 00-55 and
DO178

- Experience of Configuration
Management Systems within a Software
Development environment

- Experience in OpenGL
- Demonstrable experience of Software

Development within a Windows Based
System

- Experience with iData or equivalent (i.e.
VAPS)

- CORBA
- Web services, XML, SQL/Oracle
- DOORS experience
Job offer [United Kingdom]: Principal
Software Engineer
Principal Software Engineer with
Avionics, Defence background required
to work within a world leading Defence
Company.
As a Principal Software Engineer, you
will have experience within a software
lead or senior role.
You will have software engineering
experience in embedded software systems
in safety critical applications in the
Aerospace, Defence, transport or space
domains.
You will have experience in full lifecycle
development, from system level
requirements analysis and failure moding

through functional allocation, modelling,
and interface definition to software
development and multi-level verification.
- Experience in software technical

authority/lead
- Requirements analysis
- UML Design
- DO-178B/ED-12B/CENELEC BS

EN50128
Experience of waterfall, incremental and
iterative development programmes,
prototyping, customised V-lifecycles and
AGILE SCRUM AND XP practices.
Desired Skills:
- UML
- Simulink
- SCADE
- Ada
- C
- C++
- DOORS or Requisite pro
- Clear case, CM Synergy, Subversion,

Tortoise SVN or PVCS/Dimensions.
- Artisan or Rational Rose/Rhapsody
- ARINC653/429
- Canbus
Job offer [Italy]: Software Engineer
Software Engineer – Design,
Development and Testing of avionics
systems
At least 6 months of experience in the
avionics domain is required.
The knowledge of the following
programming languages, tools and
methodologies is required:
- Experience of programming in ADA [sic
—mp] for embedded applications,
preferably in the avionics domain;
- Software Testing;
- C/C++;
- DOORS, Matlab, Vector.
[…]
The knowledge of avionics standards such
as DO-178B/254 etc. is fundamental.
The candidate must hold a Laurea
[Bachelor's degree —mp] in Computer,
Electronic or Telecommunication
Engineering.
[translated from Italian —mp]
Job offer [Spain]: Analyst programmer
The job assignment comprises:
- Training period on railway signalling

systems;
- Programming with low-level languages;
- Design and development of test cases

for hardware simulator;
[…]

No experience is required.
- Ingeniero Superior [~ Master's degree —

mp] in Telecommunication Engineering;
- Good knowledge of network

programming;
- Good knowledge of languages for

multitasking (C/C++ and ADA [sic —
mp]).

[…]
- A master's thesis realized with C++ is

considered an advantage.
[translated from Spanish —mp]

Ada in Context
On the Ravenscar profile
and task termination
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Fri, 05 Nov 2010 12:05:42 +0100
Subject: Q: Profiles
Newsgroups: comp.lang.ada
The Ravenscar profile (and the Restricted
profile in GNAT) assume we want our
tasks to run forever. Programs will be
supported by a lean and efficient run-
time.
What if I just want the lean and efficient
Ravenscar run-time but do want my tasks
to terminate?
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Fri, 05 Nov 2010 12:50:50 +0100
Subject: Re: Q: Profiles
Newsgroups: comp.lang.ada
> […]
> What is the impact of using a system

designed to run for ever for an
application which is expected to run
short or not very long ?

Part of the system (run-time system?) is
that it is lean and efficient.
Assume programs that are designed to run
for a few days.
Their communication structure is easily
expressed since the tasks communicate
along very few lines.
No fancy tasking things (Ravenscar is
on).
Basically, the tasks express independent
sequences of statement whose results is to
be coordinated every once in a while, and
when they have finished.
From: Vinzent Hoefler <nntp-2010-10@t-

domaingrabbing.de>
Date: Fri, 05 Nov 2010 21:14:58 +0100
Subject: Re: Q: Profiles
Newsgroups: comp.lang.ada
[…]
I'd suggest to use the appropriate list of
Restriction pragmas then.

Ada in Context 237

Ada User Journal Volume 31, Number 4, December 2010

See ARM D13.1(3) f.
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Fri, 05 Nov 2010 21:59:00 +0100
Subject: Re: Q: Profiles
Newsgroups: comp.lang.ada
[…]
I think I need to place a pragma Profile
(Ravenscar) or (Restricted) (in the case of
GNAT) to make the compiler pick the
desired run-time. But then tasks won't
terminate.
From: Vinzent Hoefler <nntp-2010-10@t-

domaingrabbing.de>
Date: Fri, 05 Nov 2010 22:28:47 +0100
Subject: Re: Q: Profiles
Newsgroups: comp.lang.ada
[…]
If you can stick to GNAT only, this isn't
true. "No_Task_Termination" is an
additional restriction for the Ravenscar
profile which isn't in the original set. See
GNAT RM:

The above set is a superset of the
restrictions provided by pragma Profile
(Restricted), |it includes six additional
restrictions (Simple_Barriers,
No_Select_Statements, No_Calendar,
No_Implicit_Heap_Allocations,
No_Relative_Delay and
No_Task_Termination).
This means that pragma Profile
(Ravenscar), like the pragma Profile
(Restricted), automatically causes the
use of a simplified, more efficient
version of the tasking run-time system.

Maybe I am wrong, but I would expect
the binder to use the "simplified, more
efficient version" as soon as the proper set
of restrictions is met, no matter if they are
given in a "pragma Profile (…)" or as an
explicit list of "pragma Restrictions (…)".
And BTW, the "tasks won't terminate" is
probably not true in its literal sense, it's
just erroneous behaviour if they do in a
Ravenscar profile restricted program. ;)
From: Ed Falis <falis@verizon.net>
Date: Fri, 5 Nov 2010 16:11:37 -0700 PDT
Subject: Re: Q: Profiles
Newsgroups: comp.lang.ada
The --RTS= switch for gnatmake or
--config=,,,, switch to gprconfig is your
friend. You generally would need to
designate the run-time library through one
of these mechanisms. pragma Profile
(Ravenscar) will remove some overhead,
but not as much as the former in versions
of GNAT that support the specialized
libraries.
As far as termination goes, it's erroneous
as you stated, but there are a variety of
unusual ways to terminate tasks, typically
being system calls.
From: Ed Falis <falis@verizon.net>
Date: Sat, 6 Nov 2010 07:43:55 -0700 PDT
Subject: Re: Q: Profiles

Newsgroups: comp.lang.ada
> The --RTS=… option is really useful

with GNAT-Pro, isn't it ?
Right, the GNAT Pro line is the place
supporting alternate run-time libraries of
the various GNATs.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 06 Nov 2010 15:53:16 +0100
Subject: Re: Q: Profiles
Newsgroups: comp.lang.ada
[…]
No, the gnat-4.4 in Debian also supports
both SJLJ and ZCX runtimes :)
[setjmp / longjmp and Zero-Cost
Exceptions —mp]

Abstract does not hide
predefined operator
From: Stefan.Lucks <Stefan.Lucks@uni-

weimar.de>
Date: Fri, 12 Nov 2010 16:04:27 +0100
Subject: Abstract operator does not hide

predefined operator
Newsgroups: comp.lang.ada
Hi all,
I've implemented a small generic package
for modular arithmetic. Note that Ada's
"mod N" types define addition subtraction
and multiplication right, but use the
integer division for "/" instead of the
proper modular division, where A/B is
A * Inverse(B). I also tried to get rid of
the unary "not" operator, whose purpose I
don't understand for general modular
arithmetic. (I understand that it is useful if
the modulus is a power of two, just like
the binary xor operator.)
This is the spec of my generic package:

generic
 type Mod_T is mod <>;
package Mod_Arith is
 type Modular is new Mod_T;
 function "/"(Left, Right: Modular)
 return Modular;
 function Inverse(Value: Modular)
 return Modular;
 function "not"(Value: Modular)
 return Modular is abstract;
end Mod_Arith;

For testing that package, I first
instantiated it:

 type M3343 is mod 3343;
 package M is new
 Mod_Arith(Mod_T => M3343);
 use type M.Modular;
 S,T,U: M.Modular;

(Sidenote: 3343 is a prime, so addition
and multiplication over M.Modular are
field operations, mathematically.)

Now, my freshly defined division works
as expected. The multiplication (and
addition and subtraction) are inherited
from the type M3343:

 S := 3;
 T := S/(2*S); -- T becomes the
 -- multiplicative Inverse
 -- of 2 mod 3343;
 -- the same expression's
 -- result in M3343 would
 -- be zero.
 Ada.Text_IO.Put_Line(
 M.Modular'Image(T) &
 M.Modular'Image(M.Inverse(2)));
 -- The output is "1672 1672",
 -- as expected.

But, unfortunately, the compiler (GNAT)
also accepts the following:

 U := not S; -- this should not be
 -- possible, because the
 -- "not" operator been
 -- defined abstract ... but
 -- instead, the predefined
 -- "not" from M3343 seems
 -- to be used
 Ada.Text_IO.Put_Line(
 M.Modular'Image(U));
 -- The output is "3339", which actually
 -- is not(M3343(S)) = 3342-S.

What can I do to get rid of the predefined
"not"? If I change the "not" from an
abstract function to a function always
raising an exception, the

 U := not S;

raises the desired exception. But I would
prefer to be told at compile time that I
must not use "not", rather than at run
time. Also, I would prefer not to define
the type Mod_Arith.Modular as a private
type.
Any ideas?
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 12 Nov 2010 08:56:02 -0800 PST
Subject: Re: Abstract operator does not hide

predefined operator
Newsgroups: comp.lang.ada
[…]
This appears to be a GNAT bug; the
inherited "not" subprogram of Modular,
which is inherited from the predefined
function of M3343, exists but should be
hidden from all visibility, and therefore
cannot be a possible meaning of "not" in
the expression "not S". So what you're
doing should work, I think. (P.S. I've
confirmed that the version of GNAT I'm
using also accepts the program if I write
out M instead of making it a generic
instantiation, and if I use "use" instead of
"use type". So neither of those appears to
be an issue.)

238 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

From: Alex Mentis <asmentis@gmail.com>
Date: Fri, 12 Nov 2010 17:39:21 +0000

UTC
Subject: Re: Abstract operator does not hide

predefined operator
Newsgroups: comp.lang.ada
[…]
Agree that it smells buggy. It seems that
the problem only affects making unary
operators abstract ("-" and "not"). Testing
with "+", "-", "/", "*", "and", "or", and
"xor" operators as abstract refused to
compile as expected for me.

On discriminants of
tagged types
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 27 Oct 2010 05:16:39 -0700

PDT
Subject: Discriminants of tagged types
Newsgroups: comp.lang.ada
Hi,
I'm not sure if I have already complained
about it, but as I have hit that problem
again, here it goes:
GNAT says that discriminants of tagged
types cannot have default values.
So this is OK:

 type T (A : Integer := 0) is null record;

but this is an error:

 type T (A : Integer := 0) is
 tagged null record;

I find it disturbing and artificial, but
perhaps I don't see the big picture. What
is the rationale for this limitation?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 27 Oct 2010 05:34:26 -0700

PDT
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
If one discriminant has a default value,
then all discriminants must have default
values (ARM 3.7(9.1/2)). The reason is
explained in the Annotated Ada
Reference Manual.
http://www.adaic.com/standards/05aarm/
html/AA-3-7.html
Tagged types have, by definition, a
hidden discriminant which is the tag. The
tag has no default value and cannot have
one, for that would allow changing the
type of an object at run time (through
assignment of an aggregate). Therefore,
additional discriminants cannot have
default values either.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 27 Oct 2010 15:19:46 +0200
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada

> The tag has no default value and cannot
have one, for that would allow
changing the type of an object at run
time (through assignment of an
aggregate).

No, it would not because you cannot
assign a value of another type.
> Therefore, *additional* discriminants

cannot have default values either.
I think there were concerns about
implementation difficulties when the
derived type adds new discriminants
and/or defines some inherited ones.
Anyway the limitation is indeed
annoying.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Wed, 27 Oct 2010 09:52:48 -0400
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
> No, it would not because you cannot

assign a value of another type.
I think Ludovic means that the Tag could
change. That is, tags are sort of like
discriminants, so if Tags could have
defaults, then we can guess that they
would inherit the strange rule "can change
if defaulted". So this would work:

A : T1;
B : T'Class := A;
C : T2;
B := C; -- Raises an exception.

[…]
> Anyway the limitation is indeed

annoying.
Then you won't like my opinion, which is
that this feature should never have existed
even for untagged types. It's useful, but
it's just not worth the trouble, in terms of
programmer confusion, and
implementation difficulty. Also non-
portability:

type T(Length: Natural := 0) is
 record
 S: String(1..Length);
 end record;

This works on some implementations, and
not others.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 27 Oct 2010 16:12:42 +0200
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
> […] So this would work:
But this is an unrelated case. The tag of a
specific type cannot be changed
regardless its view as a discriminant.
Considering the class-wide type, its
discriminants are unknown, it is an open
set. So the standard rules here do not
apply anyway. BTW, if we considered
class-wide assignment dispatchng, we

would come to the case of a specific type
when the tags are same, or to
Constraint_Error when they differ.
And independently on defaults:

A : T1;
B : T2;
C : T'Class := A;
D : T'Class := B;
C := D;

> […] Then you won't like my opinion,
which is that this feature should never
have existed even for untagged types.
[…]

It might wonder you, but I wholeheartedly
agree with you, but for another reason.
The problem default values are supposed
to solve IMO, should be solved by
constructors and user-defined aggregates.
If they existed and for any type, the
programmer could provide variable list of
arguments passed to the constructor.
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 27 Oct 2010 15:54:17 +0200
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
> […] GNAT says that discriminants of

tagged types cannot have default
values.

And it is right.
> I find it disturbing and artificial, but

perhaps I don't see the big picture.
What is the rationale for this limitation?

Default values of discriminants are not
"just" default values: they define another
form of record, the polymorphic record.
Tagged types define a different kind of
polymorphism, through inheritance.
Having two orthogonal kinds of
polymorphism in the same data structure
would be difficult to manage, both from a
design and an implementation point of
view.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Wed, 27 Oct 2010 09:44:17 -0400
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
> GNAT says that discriminants of tagged

types cannot have default values.
Well, Ada says that. GNAT is just
following orders. ;-)
> but this is an error:
 type T (A : Integer := 0) is tagged null

record;
We tried very hard during Ada 9X to
allow this, but we kept running into
semantic difficulties, which required more
and more complicated rules to fix. One
day, Tucker said to me (or I said to
Tucker -- I don't remember which), let's
just outlaw this. We both agreed it was a
big simplification.

Ada in Context 239

Ada User Journal Volume 31, Number 4, December 2010

Sorry, I don't remember in detail what the
semantic difficulties were. Ludovic's
explanation seems as good as any.
I believe Ada 2012 will allow defaults for
LIMITED tagged types, and I think (not
sure) it's already implemented in GNAT
under -gnat2012 mode. The limited case
is easy, because the weird rule that says
"defaulted discriminants can change" isn't
true for limited types, because assignment
statements are forbidden.
From: Adam Beneschan

<adam@irvine.com>
Date: Wed, 27 Oct 2010 08:06:24 -0700

PDT
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
AARM 3.7(9.d): "Defaults for
discriminants of tagged types are
disallowed so that every object of a
tagged type is constrained, either by an
explicit constraint, or by its initial
discriminant values. This substantially
simplifies the semantic rules and the
implementation of inherited dispatching
operations. For generic formal types, the
restriction simplifies the type matching
rules. If one simply wants a 'default' value
for the discriminants, a constrained
subtype can be declared for future use."
One issue with untagged types with
default discriminants is that if you define
a type like that:

type Rec (Discr : Integer := 0) is
 record…

and declare a procedure with an IN OUT
parameter of that (unconstrained) type:

procedure Proc (R : in out Rec) is
begin
 …
 R := (Discr => R.Discr + 1,
 [other components => …])
 -- whether this is allowed depends on
 -- the actual parameter
end Proc;

you could declare both an unconstrained
and constrained object of that type and
pass them both to Proc:

R1 : Rec;
R2 : Rec(10);
Proc (R1);
Proc (R2);

Proc is allowed to assign a new value to
R that changes the discriminant, but it has
to know that if R2 is the actual parameter,
the discriminant is not allowed to change.
This requires additional information to be
passed to Proc so that it knows whether to
raise Constraint_Error when the
assignment to R happens. Apparently it
was felt that where tagged types, class-
wide types, and dispatching were

involved, this would make things too
complicated.
This may seem "annoying" to those who
think that a default discriminant is *just*
a default (rather than creating a different
kind of type that allows the creation of
both constrained and unconstrained
objects). But the last sentence of the
AARM note shows that the workaround is
simple enough. (Personally, I would have
preferred that the two concepts not be
mixed, and that there be two syntaxes---
one for specifying a default value for
discriminants, and another to specify that
unconstrained objects of the type can be
created. It's not the only case where
having one syntax do "double duty" ends
up causing problems. I think AI05-154 is
a symptom of this, in which putting a
constraint on a nominal array subtype not
only specifies a constraint but also tells
the compiler that an 'Access can't be used
as an access-to-unconstrained-array value,
causing headaches when you want to
include a constraint but *also* want the
ability to have an access-to-
unconstrained-array point to the object;
another case, perhaps, where "double
duty" may have seemed like a clever
solution to avoid extra syntax, but turned
out not to be such a good idea… But I'm
starting to rant a bit.)
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Wed, 27 Oct 2010 12:06:52 -0400
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
> In the mean time I have solved the

problem by realizing that "taggedness"
need not be public - in my case the type
was tagged, because it was controlled
(hate to repeat it, but the interaction
between these two unrelated language
features is really annoying).

 I don't have to expose the controlled
nature of the type in the public view
and moved the "tagged" keyword to
private part. Interestingly, this allowed
me to use default values for
discriminants *and* have the controlled
type.

That doesn't sound right. What does your
example look like, and what compiler
compiled it without error?
The latest GNAT says:

1. with Ada.Finalization; use
 Ada.Finalization;
2. package Eg is
3. type T (X: Boolean := False) is
 private;
4. private
5. type T (X: Boolean := False) is new
 Controlled with null record;
>>> discriminants of tagged type cannot
 have defaults

6. end Eg;
6 lines: 1 error
[…]
> (except that now the "distinguished

receiver" notation is gone…)
I'm not a big fan of that notation. An
awful lot of compiler work for a little bit
of syntactic sugar (or maybe syntactic
salt).
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 27 Oct 2010 14:05:32 -0700

PDT
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
> That doesn't sound right.
I was surprised, too.
>What does your example look like,
Much more complex, but reproducible
with your code.
> and what compiler compiled it without

error?
GPL 2009 (20090519)
> The latest GNAT says: […]
My compiler eats this stuff without even
blinking. It complains only when I add the
"tagged" keyword in line 3, between "is"
and "private".
> […] I'm not a big fan of that notation.

[…]
Protected objects, tasks and records
already supported it. It is not a new idea,
so it wasn't that big deal for compiler
writers, I guess. I treat it as a unification
of syntax across these similar features -
quite a valid goal in language design.
This is especially reasonable if you take
into account that in Ada 2005 protected
types can derive from interfaces. It would
be very inconsistent not to allow the same
calling syntax across the whole hierarchy,
including the class-wide type.

type Base is interface;
procedure Do_Something (
 X : in out Base) is abstract;
protected type Derived is new Base
 with procedure Do_Something;
end Derived;
D : Derived;
B : Base'Class := D;
D.Do_Something; -- this was always
 OK, D is protected
B.Do_Something; -- this *should* be
 OK as well for consistency

From: Simon Wright
<simon@pushface.org>

Date: Wed, 27 Oct 2010 22:28:02 +0100
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
This compiles without complaint with
GNAT GPL 2010 & GCC 4.5.0:

240 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

package Privately_Tagged is
 type T (X : Integer := 42) is private;
private
 type T (X : Integer := 42) is tagged
 null record;
end Privately_Tagged;
(and so does your example).
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Wed, 27 Oct 2010 20:35:44 -0400
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada

[…]
OK, well then it's a compiler bug that has
since been fixed.
Now that I think about it, I think I
remember a recent bug in this area.
I'll bet if you tried hard enough, you'd find
some cases where the compiler generated
code that did strange things (before the
bug was fixed, I mean).
> Protected objects, tasks and records

already supported it.
Records never supported this notation for
calls, which I thought was what we're
talking about.
I wasn't a big fan of it for tasks or
protected objects, either. But at least for
these things, a "distinguished receiver"
does make sense, because there's only one
object getting locked. And because inside
the operation, you can only see inside that
one object. That is, in X.Y(Z), X is
special in the protected object case, but X
and Z are just normal parameters in the
normal tagged case.
> … It is not a new idea, so it wasn't that

big deal for compiler writers, I guess.
Well, it was. Maybe it wouldn't have been
if this new syntax had been invented in
the first place, but adding this sort of
thing into an existing compiler can be
quite a pain.
> I treat it as a unification of syntax

across these similar features - quite a
valid goal in language design. […]

Good point. But I'd prefer to unify the
syntax in the other direction.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Thu, 28 Oct 2010 01:55:09 -0700

PDT
Subject: Re: Discriminants of tagged types
Newsgroups: comp.lang.ada
[…]
And I would accept that other direction
without any criticism, really.
The problem is that time has only one
direction and now there is no other option
than to allow the dot syntax for
everything.

In its current state, the language is
inconsistent and only more difficult to
learn.

Ada for Android
From: Riccardo Bernardini

<framefritti@gmail.com>
Date: Sun, 7 Nov 2010 02:48:25 -0800 PST
Subject: Crazy idea: Ada for Android?

(A4A?)
Newsgroups: comp.lang.ada
Dear all,
I just read an article (on a paper
magazine, so no link available) about
Android. As I understand, Android
applications are executed by Dalvik, a
specially-tailored Java VM and that there
is a converter from Java VM to Dalvik.
Since jgnat translates Ada to JVM… The
idea of being able to write Android
applications in Ada is too attractive… Do
you believe that it is too ambitious a goal
to try to bring Ada to the Android world?
I have also a nice acronym with minimal
clashes: A4A […]
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 07 Nov 2010 19:02:39 +0100
Subject: Re: Crazy idea: Ada for Android?

(A4A?)
Newsgroups: comp.lang.ada
[…]
Yes. That »converter« (called aapt) is the
default way to develop. […]
I tried Scala for Android and it did work.
However: Scala needs a 6MB runtime
library. aapt needs minute or so (on a 8
core MacPro) to convert that library and
the result is 6 times big as an average
Android application. So Scala is only an
option for devices where you can pre-
install the runtime library. That is: phones
where you have root access.
So translated to Ada that means either
“pragma No_Runtime;” (painful) or again
pre-install the runtime-library (no good
for customer devices).
Alternatively there is the NDK for native
non-VM development. But that would
only be do-able for Ada-Core itself.
From: Simon Clubley

<clubley@eisner.decus.org-Earth.UFP>
Date: Mon, 8 Nov 2010 00:16:21 +0000

UTC
Subject: Re: Crazy idea: Ada for Android?

(A4A?)
Newsgroups: comp.lang.ada
[…]
I'm on the verge of buying my first
Android phone and I have considered this
as well. However, I was thinking about
the NDK level instead of the Java based
SDK level.
> Alternatively there is the NDK for

native non-VM development. But that

would only be do-able for Ada-Core
itself.

Why? OAR (the creators of RTEMS)
have modified GCC so that Ada will run
on RTEMS. The AVR-Ada people have
modified gcc so that Ada will run on bare
metal AVRs.
It's probably way too much work for me
in light of other hobbyist projects I have
pending, but I don't see why someone
more familiar with the code base could
not do it (at least in principle.)

On the precision of floating
point types
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2010 08:58:52 +0200
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
> Is Ada's long_float like Fortran double

precision? and short_float is like
Fortran single precision (just called real
in Fortran)?

There is nothing in the standard that
guarantees this. Float and Long_Float are
just floating point types, with greater
accuracy for Long_Float.
On the other hand, package
Interfaces.Fortran provides types Real and
Double_Precision, which are required to
match the corresponding Fortran types.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Thu, 30 Sep 2010 01:46:56 -0700

PDT
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
> Thanks. Are you saying that in Ada I

can't make double precision variables
and single precision variables? (as in
Fortran?)

[…]
Why don't you have a look in the RM,
especially 3.5.7. There you can find the
following definitions:

{Float} In an implementation that
supports floating point types with 6 or
more digits of precision, the requested
decimal precision for Float shall be at
least 6.
{Long_Float} If Long_Float is
predefined for an implementation, then
its requested decimal precision shall be
at least 11.

You can define your own float types with
the precision you need.
From: Mark Lorenzen

<mark.lorenzen@gmail.com>
Date: Thu, 30 Sep 2010 02:59:42 -0700

PDT
Subject: Re: simple question on

long_float/short_float

Ada in Context 241

Ada User Journal Volume 31, Number 4, December 2010

Newsgroups: comp.lang.ada
[…]
You should generally not use the
predefined types for anything other than
interfacing with other languages e.g. C or
Fortran. Don't think in terms of "Ada has
these types…" but define the types you
need.
Ada is not Fortran, so don't code Fortran
in Ada.
From: Peter C. Chapin

<chapinp@acm.org>
Date: Thu, 30 Sep 2010 09:30:25 -0400
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
A common recommendation is to avoid
using the built-in types directly.
Instead define your own:

type My_Floating_Type is digits 12;

If the implementation has a floating point
type with at least 12 decimal digits of
precision it will use it as the base type for
My_Floating_Type and all will be well. If
the implementation can't handle that much
precision in any of its built-in types you
will get a compile time error. For example
you could try

type My_Floating_Type is digits 350;

But I doubt if there is any implementation
that will honor that.
The types in Interfaces.Fortran are
intended for the case where you are
exchanging data with a corresponding
Fortran compiler. It sounds like you
might, in fact, be doing that.
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 30 Sep 2010 15:45:16 +0200
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
> […] So, what is Ada's Float? 32 bit or

64 bits?
This is not specified by the definition of
the language in Ada. Nor in Fortran, by
the way.
With Ada, you can access all floating
point types provided by the hardware, you
are not constrained to single or double
precision only (the VAX had 4 floating
point formats, for example).
From: Jeffrey Carter <jrcarter@acm.org>
Date: Thu, 30 Sep 2010 08:37:52 -0700
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
In most languages (other than Ada), you
have to use the numeric types provided by
the language, and select the types that are
the closest fit to the requirements of the
problem. This is part of what is known as

"translating the problem into the solution
space", which makes the software harder
to understand, since the reader has to
understand both the problem and the
translation chosen.
In Ada, one can declare numeric types to
match the requirements of the problem.
This is part of what is known as
"modeling the problem in the software",
which is intended to make the software
easier to understand, since there is no
translation from problem to solution space
to understand.
Ada's Float is defined as "at least 6
decimal digits of precision". This
definition is imprecise, presumably to
discourage its use in favor of user-defined
types. If the precision of a floating-point
type is important to the problem, you
won't use a predefined type, but will
declare your own with the desired
precision.
Thinking in terms of declaring numeric
types based on the needs of the problem,
rather than choosing from language-
supplied types, is part of the Ada Mind
Set(tm).
From: Nasser M. Abbasi

<nma@12000.org>
Date: Thu, 30 Sep 2010 11:22:29 -0700
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
This really opened my eyes to a very good
point that I did not think of.
You are 100% right.
Very well said.
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 30 Sep 2010 08:56:47 -0700

PDT
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
> So, what is Ada's Float? 32 bit or 64

bits?
The language does not define this. The
language is designed to be implemented
on many processors, some of which have
floats that are neither 32 nor 64 bits.
Others have mentioned 80-bit floats. ADI
SHARC has 40-bit floats. Some older
systems (Honeywell 600 series e.g.) were
based on 36-bit words and their floats
were 36 bits. No idea what Crays define,
but it wouldn't surprise me if there are
processors designed for heavy scientific
computation that would require floats of
even greater precision than these.
Anyway, it was deliberate that the
language did not define exactly what
"Float", "Long_Float", and "Short_Float"
are supposed to look like, so you
shouldn't use those types if you care what

kind of float you're getting. If you need
the type to match a type in some other
language implemented on that same
processor, then use one of the types in
Interfaces.Fortran or Interfaces.C or
whatever. If you need your floating-point
type to be specifically 32 or 64 or 57 bits
for some other reason, then either define
your own, or (if you don't care about
portability) check to see what your
particular compiler's definitions for that
particular processor are. (Even on the
same processor, the definition of "Float"
may be different between different
vendors' compilers, because the language
doesn't define this.) You can use Float or
Long_Float if you just want any floating-
point type that meets or exceeds the
minimum standard in 3.5.7(14-15) and
don't really care how it's implemented.
But only then.
From: Peter C. Chapin

<chapinp@acm.org>
Date: Thu, 30 Sep 2010 17:21:02 -0400
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
I don't know about old Fortran but in
Fortran 90 and above you can specify the
characteristics of your floating point type
and ask the compiler to find an underlying
type that works for you.
Each compiler provides various "kinds" of
floating point types.
Depending on the underlying machine
there might be several. These kinds are
identified by compiler specific integer
constants (kind 1, kind 2, etc). Of course
referring to them that way isn't portable...
my floating point type that is labeled as
"kind 1" might be nothing like the floating
point type you are labeling as "kind 1." To
get around this you can use the intrinsic
function SELECTED_REAL_KIND. It
looks like this:

INTEGER, PARAMETER ::
my_floating_kind =
SELECTED_REAL_KIND(6, 30)

This asks the compiler to find a floating
point type with at least 6 digits of
precision and a range that covers 10**30.
The resulting kind (some number like 1,
2, 3, etc) is then given the name
"my_floating_kind."
I declare variables like this

REAL(KIND = my_floating_kind) ::
 x, y, z

The kind value is like a type parameter.
Thus REAL(KIND = 1) means you want
the first kind of floating point type,
REAL(KIND = 2) means you want the
second kind. In the declaration above
"my_floating_kind" is used meaning that
you want whatever kind is necessary to
get the desired precision and range.

242 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

Maybe that's kind 2 on my compiler and
kind 17 on yours.
Fortran compilers are required (I think) to
provide a double precision type but
internally that type is just a particular kind
(maybe kind 2?). In modern Fortran you
never have to say "double precision" the
term exists for compatibility and
convenience.
We now return to our regularly scheduled
discussion of Ada. :)
From: Peter C. Chapin

<chapinp@acm.org>
Date: Fri, 01 Oct 2010 07:13:14 -0400
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
> This trend to update computer

languages every few years seems to
result in a language first starting as
simple, with the basic features, then it
gets more and more complicated and
bloated as more features are stuffed in
it to make it more cool and modern.
With time computer languages become
too complex to understand by mere
mortals, unless one has a PhD in
computer science.

I agree there definitely is that trend. Of
course part of the problem is that old
features can only be removed with
extreme difficulty since most language
communities want backward
compatibility. Thus the "size" of a
language tends to be a monotonically
increasing function of time.
In fact, this is one reason why I appreciate
Ada. Although the language is large and
complicated, my perception is that new
features are added to it conservatively and
only after extensive deliberation. I'm not
saying other communities don't deliberate
extensively as well, but it seems like some
languages (C++?) grow more quickly than
is good for them.
Also Ada has a mechanism (pragma
Restrictions) where one can selective
remove features from the language
depending on one's needs. I don't know of
any other language that offers a standard
way to make it smaller.
Finally there is SPARK. The language
itself is actually quite simple and basic.
Of course fully using the annotations and
doing all the associated proofs introduces
its own complexity, but much of that
could be skipped if desired.

On float precision and
IEEE 754
From: Nasser M. Abbasi

<nma@12000.org>
Date: Sat, 02 Oct 2010 02:11:10 -0700
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada

[…]
It says here
http://www.pegasoft.ca/resources/
boblap/17.html
"GNAT provides interfacing packages for
languages besides C.
Interfaces.Fortran contains types and
subprograms to link Fortran language
programs to your Ada programs. The
GCC Fortran 77 compiler is g77.
As with GCC, most of the Fortran data
types correspond identically with an Ada
type. A Fortran real variable, for example,
is the same as an Ada float, and a double
precision variable is an Ada long_float.
Other Ada compilers may not do this: if
portability is an issue, always use the
types of Interfaces.Fortran."
I wrote a small Ada program to print a
value of a floating number which has the
type Double_Precision, and printed the
value to the screen.
I did the same in Fortran, same number,
and printed the value to screen.
In Fortran, the value printed is that of
IEEE754, and in Ada it also printed the
same as Fortran. So I am happy to see
that. Here is the code and the output:
---- Ada v1 ----

with ada.text_io;
with Interfaces.Fortran;
use Interfaces.Fortran;
procedure test is
 package my_float_IO is new
 Ada.Text_IO.float_IO(
 Double_Precision);
 use my_float_IO;
 a : Double_Precision := 2.3;
begin
 Put(item=>a,Fore=>25,Aft=>16) ;
end test;

---- fortran ----
program main
 implicit none
 double precision :: c=2.3D0
 write (*,'(F25.16)') c
end program main

---- output of the above in same order ---
2.2999999999999998E+00 ---- Ada
2.2999999999999998 ---- Fortran

Then I changed the Ada code to the
following:

---- Ada v2 -----
with ada.text_io;
procedure test is
 type my_float_type is digits 16;
 package my_float_IO is new
 Ada.Text_IO.float_IO(
 my_float_type);

 use my_float_IO;
 a : my_float_type := 2.3;
begin
 Put(item=>a,Fore=>25,Aft=>16) ;
end test;

and now the output is

2.3000000000000000E+00

1) So, it seems to me that Ada did use
Fortran double in v1. since output is
different than in v2. Unless I made a
mistake in v2. Hence, I do not
understand why the webpage above
said that GNAT would use the same
types. Can I change v2 to make it
output the same as Fortran? I assume
not, since it is not double to start with.

2) The reason I wanted to use Fortran
double type, so I can compare the
output of my Ada program to that of
Fortran and some output in the
textbook.

3) I need to read more about Ada Float
type. Standard is IEEE754, so if Ada
float does not use this, would this not
make the analysis of floating point
computation in Ada harder? Most
textbooks and numerical stuff, assume
IEEE754 computation done on floating
points.

I also need to study more about Ada floats
and how they work. What I do not
understand yet, does Ada use IEEE 754
for its floats? Assuming it does, then it
must do something additional at run-time
to obtain the result it needs when one uses
DIGITS nnn in the type definition for Ada
float.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 2 Oct 2010 11:48:47 +0200
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
[…]
Hmm, try this:

with Ada.Text_IO; use Ada.Text_IO;
with Interfaces.Fortran;
use Interfaces.Fortran;
procedure Test is
 type My_Float_Type is digits 16;
 type Long_Float_Type is digits 18;
 A : My_Float_Type := 2.3;
 B : Double_Precision := 2.3;
 C : Long_Float_Type := 2.3;
begin
 Put_Line ("A'Size=" &
 Integer'Image (A'Size) & " A=" &
 My_Float_Type'Image (A));
 Put_Line ("B'Size=" &
 Integer'Image (B'Size) & " B=" &
 Double_Precision'Image (B));

Ada in Context 243

Ada User Journal Volume 31, Number 4, December 2010

 Put_Line ("C'Size=" &
 Integer'Image (C'Size) & " C=" &
 Long_Float_Type'Image (C));
end Test;

On my Intel machine Double_Precision is
96 bits.
Then note that the output may differ not
because the Ada type uses another
machine type. Even if they are same,
since you have specified 16 *decimal*
digits, the output rounds the underlying
binary representation to 16 decimal digits.
> 3) I need to read more about Ada Float

type. Standard is IEEE 754, so if Ada
float does not use this,

That depends on the machine. Float and
Long_Float standard types are most likely
IEEE 754.
> would this not make the analysis of

floating point computation in Ada
harder?

No, it makes it easier. It is advisable not
to use IEEE 754 semantics, even if the
machine is IEEE 754. E.g. if you declare
your type as

type My_Float is new Float; -- Chances
 -- are high to get IEEE 754 here

To kill IEEE 754 semantics do it this way:

type My_Float is new Float
 range Float'Range; -- Only numbers!

> Most textbooks and numerical stuff,
assume IEEE754 computation done on
floating points.

I doubt it much. IEEE 754 is a normal
floating-point + some non-numbers like
NaN. As the name suggests, numeric
computations are performed on
numbers. IEEE 754 non-numbers might
be useful for the languages with no means
to deal with numeric errors. But in Ada
you don't need that because Ada has
numeric exceptions.
From the software design point of view, it
is a very bad idea of IEEE 754 to
postpone error handling till the end of
computations or even forever.
You might compute something awfully
long and complex just to get NaN in the
end, not knowing what (and where) was
wrong. In a closed loop system you might
deliver NaN on actuators, what would
they do?
Ada's numeric model follows the
fundamental software design principle:
you shall detect errors *early*.
> I also need to study more about Ada

floats and how they work. What I do
not understand yet, does Ada use IEEE
754 for its floats?

It likely uses IEEE 754 if the machine is
IEEE 754, which is almost always.
From: Simon Wright

<simon@pushface.org>

Date: Sat, 02 Oct 2010 21:09:26 +0100
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
> But in Ada you don't need that because

Ada has numeric exceptions.
But GNAT doesn't raise numeric
exceptions for floating-point
computations resulting in Inf or NaN
('Machine_Overflows is False).
You can use 'Valid, or you can define the
range as Dmitry noted above (range
Float'Range, I think) in which case you
get Constraint_Error on overflow.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 02 Oct 2010 09:52:43 -0700
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
> […] Can I change v2 to make it output

the same as Fortran? […]
Sure. Try

type My_Float is digits Interfaces.
 Fortran.Double_Precision'digits;

or

type My_Float is digits
 Long_Float'digits;

or even

type My_Float is digits 15;

all of which give My_Float the same
"digits 15" declaration as
Double_Precision and Long_Float.
> I also need to study more about Ada

floats and how they work. What I do
not understand yet, does Ada does use
IEEE754 for its floats? […]

Ada compilers typically use an underlying
hardware floating-point type to implement
floating-point type declarations. That is
IEEE-754 on many platforms, but not all.
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Sat, 02 Oct 2010 22:01:53 +0200
Subject: Re: simple question on

long_float/short_float
Newsgroups: comp.lang.ada
In addition to that, compilers may
generate different code for what only
appears to be the "same platform": Using
GNAT, if you add options -mfpmath=sse
or -mfpmath=387, the compiler will issue
instructions for a corresponding set of
registers, respectively.
(What exactly this means w.r.t. IEEE-754
I don't know).

On the renaming of
subprograms
From: Gene Ressler

<gene.ressler@gmail.com>
Date: Sat, 25 Sep 2010 17:43:17 -0700 PDT

Subject: Renaming of procedures in a
generic instantiation

Newsgroups: comp.lang.ada
I'm confused about an aspect of renaming.
It boils out to this little example:

with Ada.Containers.Ordered_Sets;
package Foo is
 type Queue is private;
 procedure Add(Q : in out Queue;
 Item : in Integer);
 function Is_Empty(Q : Queue)
 return Boolean;
private
 package Queues is
 new Ada.Containers.
 Ordered_Sets(Integer, "<", "=");
 type Queue is new Queues.Set
 with null record;
end Foo;
package body Foo is
 procedure Add(Q : in out Queue;
 Item : in Integer)
 renames Insert;
 function Is_Empty(Q : Queue)
 return Boolean
 renames Queues.Is_Empty;
end Foo;

The renaming in Add "finds" the correct
procedure Insert, but the renaming of
Is_Empty fails:

gnatmake foo.adb
gcc -c foo.adb
foo.adb:6:04: no visible subprogram
matches the specification for
"Is_Empty"
foo.adb:6:13: expected private type
"Ada.Containers.Ordered_Sets.Set"
from instance at foo.ads:14
foo.adb:6:13: found type "Queue"
defined at foo.ads:16
gnatmake: "foo.adb" compilation error

I guess I can see this error because a
parameter type conversion is implied in
the renaming. But then why does the
renaming of Insert work correctly?
Running Win7 64-bit with:
gcc (GCC) 4.3.4 20090511 for GNAT
GPL 2009 (20090511)
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Sun, 26 Sep 2010 09:54:15 +0300
Subject: Re: Renaming of procedures in a

generic instantiation
Newsgroups: comp.lang.ada
[…]
The type derivation

type Queue is new Queues.Set
 with null record;

244 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

makes type Queue inherit the primitive
operations of Queues.Set by implicitly
declaring (within package Foo)
corresponding operations on type Queue.
These include the operation Insert with
the profile:

procedure Insert (
 Container : in out Queue;
 New_Item : in Integer);

This profile matches that of Foo.Add, and
so Foo.Add can be a renaming of this
Insert. By the way, this implicitly
declared Insert (on Queue) has the
qualified name Foo.Insert, not
Queues.Insert.
The type derivation also "tries" to declare
implicitly the Is_Empty operation from
Queues, with the profile:

function Is_Empty (Container : Queue)
 return Boolean;

but this operation clashes with (has the
same name and same profile as) the
operation Is_Empty that was already and
explicitly declared in Foo (before the
"private"), so they cannot both be visible.
If I understand correctly, the rule RM
8.3(10/1) says that the first, explicit
declaration overrides the second, implicit
declaration (because the first declaration
is not "overridable").
So what saves you in the Insert/Add case
is that the operation names are different,
which means there is no clash. It is a bit
irritating that the "simpler" case, with the
same names, does not work in the same
way.
I have at times had the same problem,
where I have been disappointed that
implementing a private type as a derived
type does not implicitly complete the
declarations of matching operations, such
as Is_Empty in this example. I would
have liked to be able to write something
like:

type Queue is new Queues.Set
 with null record
 overriding Is_Empty (Q : Queue)
 return Boolean; -- Not Ada!

No doubt you have already found a
solution for Is_Empty, but anyway here is
what I would do:

function Is_Empty (Q : Queue)
 return Boolean
is
begin
 return Queues.Is_Empty (
 Queues.Set (Q));
end Is_Empty;

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sun, 26 Sep 2010 00:40:48 -0700
Subject: Re: Renaming of procedures in a

generic instantiation

Newsgroups: comp.lang.ada
[…]
Or change the name of the operation
(Empty comes to mind). I would probably
use a wrapper record:

type Queue_Handle is
 Value : Queues.Set;
end record;
procedure Put (
 Onto : in out Queue_Handle;
 Item : in Integer) is
 -- null;
begin -- Put
 Onto.Insert (New_Item => Item);
end Put;
function Is_Empty (
 Queue : in Queue_Handle) is
 -- null;
begin -- Is_Empty
 return Queue.Value.Is_Empty;
end Is_Empty;

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sun, 26 Sep 2010 10:07:24 -0700
Subject: Re: Renaming of procedures in a

generic instantiation
Newsgroups: comp.lang.ada
>>[…]
>> Onto.Insert (New_Item => Item);
>
> A nit: You surely meant
>
> Onto.Value.Insert (New_Item => Item);
Yes, of course. Luckily, the compiler
catches these for you.
From: Gene Ressler

<gene.ressler@gmail.com>
Date: Sun, 26 Sep 2010 07:52:58 -0700

PDT
Subject: Re: Renaming of procedures in a

generic instantiation
Newsgroups: comp.lang.ada
[…]
Thanks for the clear and quick
explanation. It makes sense, but, as you
say, is a bit unsatisfying. I've run into
several cases where I want to implement
an abstraction with minor reshaping and
restriction of an Ada.Containers instance.
(The current one is event queues for a
simulator.) As you've shown above, there
are some quirks in this approach.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 26 Sep 2010 17:04:49 +0200
Subject: Re: Renaming of procedures in a

generic instantiation
Newsgroups: comp.lang.ada
[…]
Delegation (in order to implement
interfaces) is poorly supported in Ada.

In real projects we have huge problems
with this. About 40% of the code are
wrappers, nasty, error prone, incredibly
difficult to maintain.
From: Adam Beneschan

<adam@irvine.com>
Date: Mon, 27 Sep 2010 12:23:00 -0700

PDT
Subject: Re: Renaming of procedures in a

generic instantiation
Newsgroups: comp.lang.ada
> […]
> But then why does the renaming of

Insert work correctly?
Because you didn't refer to the "Insert"
defined in Queues, the way you did with
Is_Empty. If you had declared this, it
would be illegal in the same way:

procedure Add(Q : in out Queue;
 Item : in Integer)
 renames Queues.Insert;

Obviously, you can't solve the problem
for Is_Empty by removing the "Queues."
prefix:

function Is_Empty(Q : in out Queue)
 return Boolean
 renames Is_Empty;

I found that this compiles, but it's
obnoxious:

with Ada.Containers.Ordered_Sets;
package Foo is
 type Queue is private;
 procedure Add(Q : in out Queue;
 Item : in Integer);
 function Is_Empty(Q : Queue)
 return Boolean;
private
 package Queues is
 new Ada.Containers.
 Ordered_Sets(Integer, "<", "=");
 package Dummy_Package is
 type Dummy_Queue is new
 Queues.Set with null record;
 function Rename_Empty(
 Q : Dummy_Queue)
 return Boolean
 renames Is_Empty;
 end Dummy_Package;
 type Queue is new Dummy_Package.
 Dummy_Queue with null record;
end Foo;
package body Foo is
 procedure Add(Q : in out Queue;
 Item : in Integer)
 renames Insert;
 function Is_Empty(Q : Queue)
 return Boolean
 renames Rename_Empty;
end Foo;

Ada in Context 245

Ada User Journal Volume 31, Number 4, December 2010

Just writing Is_Empty to call
Queues.Is_Empty, as Niklas suggested,
seems better than this. I'd also add
"pragma Inline(Is_Empty)" to the private
part of Foo to possibly prevent extraneous
call code from being generated.
I had thought that someone (possibly me)
once proposed adding the ability to
declare that a subprogram renames the
hidden subprogram that it overrides, e.g.

function Is_Empty(Q : Queue)
 return Boolean renames <>;
but I can't find anything like that in my
mail records. Randy did once mention
using something like Is_Empty'Parent as
a stand-in for the call to the parent
routine; he wasn't thinking of a renaming
context, but it might work here:

function Is_Empty(Q : Queue)
 return Boolean
 renames Is_Empty'Parent;

In any event, however, it seems to be a
minor enough problem with a simple
enough workaround that it's not
worthwhile to change the language.

On libflorist and ioctl
From: Francesco Piraneo Giuliano

<fpiraneo@gmail.com>
Date: Thu, 21 Oct 2010 02:13:23 -0700

PDT
Subject: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
In Linux we have the ioctl function that
allows to control or get informations
about an open device.
Questions:
- I don’t understand if the ioctl is a

function of POSIX compliant OS'es so it
can be handled by Ada libflorist or is a
Linux-specific function that we have to
import in Ada with a pragma Import;

- In the case that ioctl is a standard
POSIX function, I'm very glad if
someone can address me to the right
function in libflorist… I've not found
anything similar.

[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 21 Oct 2010 03:20:23 -0700

PDT
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
The title of your post is quite correct; ioctl
is indeed black magic :)
POSIX[1] defines this function, as
"obsolescent" mind you, along with
several values of the request parameter
but most operating systems add
nonstandard values to the standard ones.
Most of these values are appropriate only

for certain kinds of device. Depending on
the value of the request parameter, ioctl
performs entirely different things and
takes a different arg parameter; it is a
variadic function which has no equivalent
in Ada. So, calls to ioctl are sometimes
portable (if request has one of the
standard values), sometimes non-portable
across operating systems, sometimes non-
portable across devices on a single
machine, and always obsolescent!
Therefore, a thick Ada binding would not
expose ioctl directly but instead offer a
different subprogram (with the
appropriate parameters) for each
supported value of the request parameter.
This may explain why Florist has no
binding to ioctl. GNAT.Sockets has one
in the body off the package but it is used
for only one specific value of the request
parameter. So I suggest you create a
binding only for the specific purpose you
need ioctl for and use that.
[1] http://www.opengroup.org/
onlinepubs/9699919799/
[…]
See [1] above for the official
documentation of POSIX. The additional,
non-standard values of "request" along
with the parameter profiles are in the
ioctl_list(2) man page installed on your
machine. See that and despair…
From: Francesco Piraneo Giuliano

<fpiraneo@gmail.com>
Date: Thu, 21 Oct 2010 04:31:53 -0700

PDT
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
But my application […] has to run under
Linux so to collect some data about Linux
framebuffer I have to use ioctl; the only
solution is to write all low level
interfacing (open the device, get
informations about, map it into memory)
in C then write the upper level in Ada?
If this is true I have some philosophical
concerns about… ;-)
[…]
From: Mark Lorenzen

<mark.lorenzen@gmail.com>
Date: Thu, 21 Oct 2010 04:50:37 -0700

PDT
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
No you don't need to write anything in C.
[…]
It's difficult to know your exact
requirements since ioctl is a variadic
system call. Maybe you can post the
equivalent C-code showing how you call
ioctl in C and then we can translate it into
Ada.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>

Date: Thu, 21 Oct 2010 05:04:47 -0700
PDT

Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
> […]
> the only solution is to write all low level

interfacing (open the device, get
informations about, map it into
memory) in C then write the upper
level in Ada?

No; I wrote:
>> […] So I suggest you create a binding

only for the specific purpose you need
ioctl for and use that.

What I meant by this is:

function Fixed_Info (
 Framebuffer : in
 POSIX.IO.File_Descriptor)
 return Fixed_Framebuffer_Info
is
 function ioctl
 (Framebuffer : in
 POSIX.IO.File_Descriptor;
 Request : in Interfaces.C.int;
 Result : access
 Fixed_Framebuffer_Info)
 return Interfaces.C.int; -- local,
 specific-purpose binding
 pragma Import (C, ioctl, "ioctl");
 Result : aliased
 Fixed_Framebuffer_Info;
begin
 if ioctl (Framebuffer,
 FBIOGET_FSCREENINFO,
 Result'Access) /= 0
 then
 raise Ioctl_Error;
 end if;
 return Result;
end Fixed_Info;

[…]
From: Michael Bode <m.g.bode@web.de>
Date: Fri, 22 Oct 2010 22:16:00 +0200
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
Look here
http://www.pegasoft.ca/resources/boblap/
book.html for information on how to
program for Linux in Ada. You can call
ioctl from an Ada program, you only have
to arrange the parameters. […]
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sat, 23 Oct 2010 22:26:51 +0200
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
ioctl is a varargs function. You cannot call
C varargs functions directly from Ada.

246 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

You need to write a small wrapper with a
fixed number of arguments.
In addition, the ioctl constants are often
difficult to extract from the header files.
The best way to get them seems to be a
small C program which just prints them.
So writing some C code is unavoidable
here.
From: Simon Wright

<simon@pushface.org>
Date: Sun, 24 Oct 2010 12:08:28 +0100
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
It could print them as an Ada spec; no
manual handling required!
From: Frank J. Lhota

<FrankLho@rcn.com>
Date: Sun, 24 Oct 2010 08:41:14 -0400
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
> […] So writing some C code is

unavoidable here.
Actually, you can call a varargs function
such as ioctl from Ada.
Declare each ioctl profile that you need,
e.g.

-- ioctl for commands with no
-- additional arguments
function Ioctl (Fd : in Interfaces.C.Int;
 Cmd : in Interfaces.C.Int)
 return Interfaces.C.Int;
 pragma Import (C, Ioctl, "ioctl");
-- ioctl for commands with an
-- additional argument
-- for returning the device status
function Ioctl (Fd : in Interfaces.C.Int;
 Cmd : in Interfaces.C.Int;
 Status : access
 Interfaces.C.Int)
 return Interfaces.C.Int;
 pragma Import (C, Ioctl, "ioctl");

From: Florian Weimer
<fw@deneb.enyo.de>

Date: Sun, 24 Oct 2010 19:56:59 +0200
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
Perhaps it seems to work for you, but this
is not portable.
There are popular targets where the
varargs calling convention is markedly
different from the non-varargs calling
convention, such as amd64.
It might still work by accident, but all bets
are off, really.
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 24 Oct 2010 19:58:04 +0200
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada

> […] It could print them as an Ada spec;
no manual handling required!

Sure (and I did that in similar cases).
By the way, is there a good way to
integrate such source code generation into
the gnatmake project-based build system?
From: Simon Wright

<simon@pushface.org>
Date: Sun, 24 Oct 2010 19:36:34 +0100
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
I hadn't realised this: but a quick scan of
the GNAT sources confirms:
in socket.c,

* Wrapper for ioctl(2), which is a
variadic function */
int __gnat_socket_ioctl (int fd, int req,
 int *arg) {
#if defined (_WIN32)
 return ioctlsocket (fd, req, arg);
#else
 return ioctl (fd, req, arg);
#endif
}

From: Frank J. Lhota
<FrankLho@rcn.com>

Date: Sun, 24 Oct 2010 20:45:26 -0400
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
This is because of a Microsoft portability
problem; in Winsock (the windows socket
facility), the function for performing ioctl
on sockets is named ioctlsocket instead of
ioctl. This is one of many areas where
Winsock differs just enough from the
standards to require heavy use of "#if"
preprocessing directives to maintain
portability. This is why Winsock is by far
my least favorite part of the Win32 API.
At any rate, this problem is not an Ada
issue.
From: Frank J. Lhota

<FrankLho@rcn.com>
Date: Sun, 24 Oct 2010 21:13:58 -0400
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
The Microsoft documentation seems to
say that varargs is _not_ markedly
different; see
http://msdn.microsoft.com/en-us/library/
dd2wa36c%28v=VS.80%29.aspx
I will concede, however, that these Import
pragmas may not be portable to all
platforms, but that is true of Import
pragmas in general. After all, the calling
convention for ioctl can vary from
platform to platform, not to mention
which calling conventions are supported
by the Ada compiler.

I am absolutely sure that my pragmas will
not work with MS Windows, for an more
elementary reason: Win32 / Win64 does
not support the ioctl function at all!
Instead, the function DeviceIoControl is
used to query configure most devices, and
the function ioctlsocket is used to query /
configure sockets. See
http://msdn.microsoft.com/en-us/library/
aa363216.aspx
http://msdn.microsoft.com/en-us/library/
ms738573%28VS.85%29.aspx
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Mon, 25 Oct 2010 20:56:03 +0200
Subject: Re: The "black magic" of ioctl
Newsgroups: comp.lang.ada
[…]
There are additional requirements for
passing floating-point arguments.
It's different from Linux that this will only
bite you when you actually pass floating-
point arguments which are used in the
callee in a certain way (which should
happen with ioctl).

On -fstack-check in
GNAT/GCC
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Mon, 25 Oct 2010 22:15:21 +0200
Subject: GNAT/GCC and -fstack-check
Newsgroups: comp.lang.ada
[…]
I would like to know if someone had the
same I get.
First a few words about the context. I
wanted to get rid of having two compilers,
GNAT from AdaCore and GNAT from
MinGW, to keep only one, which I
choose to be MinGW for multiple
reasons. When I wanted to build some
applications which was built before with
GNAT from AdaCore with now the
GNAT from MinGW, I get a surprising
behavior.
I was using -fstack-check in the GPR file.
At compile time, I get these kind of
messages:

 xxxxx.adb: In function 'XXX.YYY'
 xxxxx.adb:1:22: warning: frame size
 too large for reliable stack checking
 xxxxx.adb:1:22: warning: try reducing
 the number of local variables

Where XXX.YYY is actually not a
function but a package (do not know why
the message says it is a function).
Moreover, there was not a lot of local
variables… just a few.
None of the compiled applications could
launch and were all crashing right at start
up.
After some time (I checked that the
package raising these warnings was the

Ada in Context 247

Ada User Journal Volume 31, Number 4, December 2010

ones whose initialization was crashing) I
decided to remove the -fstack-check
option from the GPR file. There were then
no more warnings and compiled
applications could run properly.
I wonder if this is GCC related or GNAT
related. The MinGW is the last one
(decided to update it in the while), it
seems to use GCC 4.5 and GNAT 2009.
I suppose it is based on GNAT 2009, as
“gnatmake -v” does not know about the “-
gnat12” option.
Did anybody experienced something
similar with GNAT and -fstack-check? Or
are there some reasons to suppose this is
more GCC related than GNAT related?
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 26 Oct 2010 07:11:51 +0200
Subject: Re: GNAT/GCC and -fstack-check
Newsgroups: comp.lang.ada
Three years ago, Niklas Holsti seems to
have raised the same question:
http://www.rhinocerus.net/forum/
lang-ada/116262-gnat-fstack-check-does-
work.html
He said:
[In “GNAT and -fstack-check, does it
work?”]
I have been using those options for a
while, but I was recently hit by a bug in
which stack overflow made the program
abort with Segmentation Violation (signal
11 = SIGSEGV) instead of the expected
Storage_Error exception.
Which is exactly what I get too. I get a
signal, not an exception, otherwise I
wouldn't get a Windows crash-box.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 26 Oct 2010 07:23:57 +0200
Subject: Re: GNAT/GCC and -fstack-check
Newsgroups: comp.lang.ada
[…]
Seven years ago, there was a bug report
for the same: http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=10127
(not the same Niklas was talking about,
this one is even older).
It was marked as solved… I feel it was
either not really or else it is back.
By the way, I am surprised the Ada
environment does not catch this signal to
turn it into an exception. I would
understand if this was a compiler bug, but
what I now see as a compiler bug, is that
the program does not catch the signal and
let the program crash.
I will either investigate more to
understand what is going wrong with the
stack with that package, or else will
simply drop the use of -fstack-check (as I
am not sure this make the program crash
because there is indeed a real stack
overflow somewhere).

Any opinions and thoughts on that topic
appreciated.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 26 Oct 2010 10:04:53 +0200
Subject: Re: GNAT/GCC and -fstack-check
Newsgroups: comp.lang.ada
[…]
This GCC back-end problem is old and
has been reported multiple times with
several variants:
http://gcc.gnu.org/PR10127
http://gcc.gnu.org/PR13182 (still open)
http://gcc.gnu.org/PR13757 (duplicate of
PR10127)
http://gcc.gnu.org/PR20548
http://gcc.gnu.org/PR39306 (duplicate of
PR10127)
I first learned of this problem thanks to
PR20548 and consequently removed -
fstack-check from all Ada packages in
Debian.
PR10127 and PR20548 were both fixed in
November 2009 in the trunk, therefore
this fix should be in GCC >= 4.5.0 (per
http://gcc.gnu.org/develop.html#timeline).
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 26 Oct 2010 10:16:09 +0200
Subject: Re: GNAT/GCC and -fstack-check
Newsgroups: comp.lang.ada
[…]
But the GCC I now use is :
gcc.exe (GCC) 4.5.0
Copyright (C) 2010 Free Software
Foundation, Inc.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org
Date: Tue, 26 Oct 2010 08:11:17 -0700

PDT
Subject: Re: GNAT/GCC and -fstack-check
Newsgroups: comp.lang.ada
[…]
Ah, there is also
http://gcc.gnu.org/PR43013
Read the comments from Eric
Botcazou…
[excerpts of the mentioned comments
follow —mp]
I'll write a book about -fstack-check
someday…
-fstack-check was severely broken during
the GCC3 -> GCC4 transition and,
despite years of patches posting and
pinging, only GCC 4.5 has the beginning
of a working implementation, so anything
between 4.0 and 4.4 must be forgotten
since totally broken.
And, again despite posted patches, the 4.5
implementation only restores the old
implementation available in the 3.x series
which doesn't work for this case: […]

Granted, we now generate wrong code
instead of erroring out, but it's again a
fallout of the GCC3 -> GCC4 breakage,
not of my patches.
This will be fixed once the improved
implementation is merged.
ETA is 4.6, for x86/x86-64 at least.

On array initialization in
SPARK
From: Peter C. Chapin

<chapinp@acm.org>
Date: Thu, 28 Oct 2010 03:13:02 -0700

PDT
Subject: Array initialization in SPARK
Newsgroups: comp.lang.ada
Hello!
Consider the following type definition:

type Matrix is array (Natural range <>,
 Natural range <>) of
 Types.Float8;

Now consider the following "obvious"
implementation of a matrix transpose
procedure:

procedure Matrix_Transpose(
 In_Matrix : in Matrix;
 Out_Matrix : out Matrix) is
 begin
 for I in Natural range
 Out_Matrix'Range(1) loop
 for J in Natural range
 Out_Matrix'Range(2) loop
 Out_Matrix(I, J) :=
 In_Matrix(J, I);
 end loop;
 end loop;
 end Matrix_Transpose;

This procedure makes assumptions about
the relative sizes of the two matrix
objects. I intend to assert those
assumptions using preconditions.
However, my question right now is about
the initialization of Out_Matrix. As
written the Examiner complains that the
"initial undefined value of Out_Matrix is
used in the definition of Out_Matrix" (or
words to that effect).
I understand the issue. The assignment
inside the loop only assigns to a single
matrix element at a time. Thus, for
example, the first time it executes the
resulting value of Out_Matrix has only
one defined element; the rest of the matrix
has its "initial undefined value." I
understand that SPARK works this way
because it can't be expected to track
individual array elements because array
indexes are dynamic constructs.
In the past when I've had this problem I've
just used an aggregate to initialize the
array. In full Ada I can do

248 Ada in Context

Volume 31, Number 4, December 2010 Ada User Journal

Out_Matrix :=
 (others => (others => 0.0));

However, SPARK isn't happy with this.
I'm having trouble figuring out what
would make SPARK happy here. Actually
it would be even better if I could convince
the Examiner that the overall effect of the
two loops is to initialize the entire
Out_Matrix. I'm not keen about spending
execution time with an aggregate
initialization only to overwrite the initial
values anyway. In fact, SPARK
complains about doing that sort of thing
with scalar values so it certainly doesn't
seem like the "SPARK way."
From: Phil Thornley

<phil.jpthornley@gmail.com>
Date: Thu, 28 Oct 2010 05:47:53 -0700

PDT
Subject: Re: Array initialization in SPARK
Newsgroups: comp.lang.ada
> […]
> However, SPARK isn't happy with this.

I'm having trouble figuring out what
would make SPARK happy here.

I don't think that you can get SPARK to
accept an aggregate assignment for an
unconstrained array. Section 4.1 of the
LRM says:
"SPARK excludes most whole-array
operations on unconstrained array objects,
in order that rules relating to index
bounds may be statically checked."
> […] In fact, SPARK complains about

doing that sort of thing with scalar
values so it certainly doesn't seem like
the "SPARK way."

It's far better to use the accept annotation
(which is there for this sort of situation):

 begin
 for I in Natural range
 Out_Matrix'Range(1) loop
 for J in Natural range
 Out_Matrix'Range(2) loop
 --# accept F, 23, Out_Matrix, "All
 of array is assigned in the loop.";
 Out_Matrix(I, J) :=
 In_Matrix(J, I);
 --# end accept;
 end loop;
 end loop;

 --# accept F, 602, Out_Matrix,
 Out_Matrix, "All of array is assigned
 in the loop.";
 end Matrix_Transpose;

[…]
From: Peter C. Chapin

<chapinp@acm.org>
Date: Thu, 28 Oct 2010 07:51:15 -0700

PDT
Subject: Re: Array initialization in SPARK
Newsgroups: comp.lang.ada
> It's far better to use the accept

annotation (which is there for this sort
of situation):

Thanks for the suggestion. I can see the
value of accept here.
In this case it’s pretty obvious that the
entire output matrix is being assigned. I
have a couple of other procedures with a
similar issue but where it is much less
obvious that they are setting values for all
matrix elements (they are supposed to be
doing so). I can see that while accept is a
useful tool one would have to be careful
about sprinkling them around too
liberally. I'll take a closer look at those
other procedures and see if a little code
reorganization might be desirable.
Thanks again!
From: Peter C. Chapin

<chapinp@acm.org>
Date: Thu, 28 Oct 2010 08:23:19 -0700

PDT
Subject: Re: Array initialization in SPARK
Newsgroups: comp.lang.ada
[…]
I thought of a follow up question…
My understanding is that SPARK
assumes there are no flow errors when
creating verification conditions. Thus, in
general, if one accepts certain flow errors
would there be a danger that one might
subsequently prove a VC that is not really
relevant to the program?
From: Alexander Senier <mail@senier.net>
Date: Thu, 28 Oct 2010 18:26:01 +0200
Subject: Re: Array initialization in SPARK
Newsgroups: comp.lang.ada
[…]
In Section 7.1 (and particularly in 7.1.1
"Array initialization in a loop") of the
SPARK Proof manual this issue is
discussed. When generating RTCs the

Examiner *assumes* that all elements of
an array are defined and within their
subtype ranges. The best way to ensure
that indeed is making the Examiner to
show the absence of data flow errors.
If you must initialize arrays in a loop (as
in your example), you have to accept the
flow errors and review the code to
initialize all array elements correctly. You
definitely want to be very careful with
those accept statements and really
simplify your other initialization functions
to make that as obvious as possible.
It may be beneficial to restrict the
initialization to simple patterns that could
be verified (semi-)automatically in the
future. E.g. have a for loop over the
complete array index and only use its loop
variable to index into the array on the left-
hand side of an assignment. If the array is
not referenced on the right-hand side (or
only indices smaller than the current value
of the loop variable), all array elements
should be valid after execution of that
loop. But your problem may not fit into
that pattern…
From: Phil Thornley

<phil.jpthornley@gmail.com>
Date: Thu, 28 Oct 2010 09:38:40 -0700

PDT
Subject: Re: Array initialization in SPARK
Newsgroups: comp.lang.ada
[…]
> It may be beneficial to restrict the

initialization to simple patterns that
could be verified (semi-)automatically
in the future.

[…]
That's excellent advice.
But if you can't do that, and it really is
important to ensure complete
initialization, and you are completing run-
time check proofs, then you could force a
check on the array:

--# check for all I in Natural range
 Out_Matrix'Range(1) =>
--# (for J in Natural range
 Out_Matrix'Range(2) =>
--# (Out_Matrix(I, J) in
 Types.Float8));

but, for a complex initialization,
completing the proof of this check will be
correspondingly complex :-(

250

Volume 31, Number 4, December 2010 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2011

January 17-20 9th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2011), Perth,

Australia. Topics include: Multicore; Middleware and tools; Performance evaluation; Parallel
programming models, languages and compilers; Runtime systems; Reliability, security, and
dependability; Applications; etc.

☺ January 26-28 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2011),
Austin, Texas. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice.

January 24-25 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2011).

☺ January 29 5th ACM SIGPLAN Workshop on Programming Languages meets Program
Verification (PLPV'2011). Topics include: research at the intersection of programming
languages and program verification; attempts to reduce the burden of program
verification by taking advantage of particular semantic or structural properties of the
programming language; all aspects, both theoretical and practical, of the integration of
programming language and program verification technology.

☺ February 09-10 3rd International Symposium on Engineering Secure Software and Systems (ESSoS'2011), Madrid,
Spain. Topics include: security architecture and design for software and systems; verification techniques
for security properties; systematic support for security best practices; programming paradigms for
security; processes for the development of secure software and systems; etc.

February 09-11 19th Euromicro International Conference on Parallel, Distributed and network-based Processing
(PDP'2011), Ayia Napa, Cyprus. Topics include: Parallel Computer Systems (embedded parallel and
distributed systems, fault-tolerance, multi/many core systems, GPU and FPGA based parallel systems
...); Models and Tools for Parallel Programming Environments; Advanced Applications (multi-
disciplinary applications, numerical applications with multi-level parallelism, real time distributed
applications, distributed business applications ...); Languages, Compilers and Runtime Support Systems
(task and data parallel languages, object-oriented languages, dependability issues, scheduling, ...); etc.

☺ February 21-25 Software Engineering 2011 (SE'2011), Karlsruhe, Germany. Theme (in German): Ingenieurmäßige
Software-Entwicklung für kritische Anwendungen.

March 01-04 15th European Conference on Software Maintenance and Reengineering (CSMR'2011), Oldenburg,
Germany. Topics include: Tools, formalisms and methods supporting the evolution of software systems,
software architectures and software models; Methods and techniques to assess, enable, improve and
certify maintainability and evolvability of software intensive systems; Experience reports on
maintenance and reengineering of large-scale systems; Empirical studies in software reengineering,
maintenance, evolution and renovation; Education-related issues to evolution, maintenance and
reengineering; Language support for software maintenance and evolution; etc.

☺ March 09-12 42nd ACM Technical Symposium on Computer Science Education (SIGCSE'2011), Dallas, Texas,
USA.

Conference Calendar 251

Ada User Journal Volume 31, Number 4, December 2010

March 14-18 Design, Automation and Test in Europe (DATE'2011), Grenoble, France. Topics of Track on Real-
time, Networked and Dependable Systems include: real-time programming languages and software,
worst case execution time analysis, verification, tools and design methods, dependable systems,
software for safety critical systems, etc.

March 21-25 26th ACM Symposium on Applied Computing (SAC'2011), TaiChung, Taiwan.

☺ Mar 21-25 Track on Object-Oriented Programming Languages and Systems (OOPS'2011).
Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Aspects, components, and
modularity; Distributed, concurrent or parallel systems; Interoperability, versioning and
software adaptation; etc.

☺ Mar 21-25 Track on Programming Languages (PL'2011). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development and Model
Transformation, New Programming Language Ideas and Concepts, Practical
Experiences with Programming Languages, Program Analysis and Verification,
Programming Languages from All Paradigms, etc.

☺ Mar 21-25 Track on Real-Time Systems (RTS'2011). Topics include: all aspects of real-time
systems design, analysis, implementation, evaluation, and case-studies; including
scheduling and schedulability analysis; worst-case execution time analysis; modeling
and formal methods; validation techniques; reliability; compiler support; component-
based approaches; middleware and distribution technologies; programming languages
and operating systems; embedded systems; etc.

March 21-25 4th IEEE International Conference on Software Testing, Verification and Validation (ICST'2011),
Berlin, Germany. Topics include: Domain specific testing including, but not limited to, security testing,
embedded software testing, OO software testing, ...; Verification & validation; Quality assurance;
Empirical studies; Inspections; Tools; Novel approaches to software reliability assessment; etc.

March 21-25 10th International Conference on Aspect-Oriented Software Development (AOSD'2011), Porto de
Galinhas, Pernambuco, Brazil. Topics include: new notions of modularity in computer systems, software
engineering, programming languages, and other areas; Software development methods, Programming
language design, Compilation and interpretation, Verification and static program analysis, Refactoring,
Distributed/concurrent systems, etc. Deadline for submissions: February 28, 2011 (student forum and
poster event).

Mar 26 – Apr 03 European Joint Conferences on Theory and Practice of Software (ETAPS'2011), Saarbrücken,
Germany.

March 26 11th International Workshop on Language Descriptions, Tools and Applications
(LDTA'2011). Topics include: program analysis, transformation, generation, and
verification; reverse engineering and re-engineering; refactoring and other source-to-
source transformations; language definition and language prototyping; debugging,
profiling, IDE support; etc.

March 27 3rd Workshop on Generative Technologies (WGT'2011). Topics include: Generative
programming, metaprogramming; Analysis of language support for generative
programming; Case Studies and Demonstration Cases; etc.

April 01-02 9th Workshop on Quantitative Aspects of Programming Languages (QAPL'2011).
Topics include: probabilistic, timing and general quantitative aspects in Language
design, Language extension, Multi-tasking systems, Language expressiveness,
Verification, Semantics, Time-critical systems, Safety, Embedded systems, Program
analysis, Risk and hazard analysis, Scheduling theory, Distributed systems, Model-
checking, Security, Concurrent systems, etc. Deadline for submissions: January 24,
2011 (presentation reports).

April 02-03 8th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2011). Topics include: Interface compliance

252 Conference Calendar

Volume 31, Number 4, December 2010 Ada User Journal

and contractual use of components; Modelling formalisms for the analysis of concurrent
systems assembled of components; Techniques for prediction and formal verification of
system properties, including static and dynamic analysis; Industrial case studies and
experience reports; etc.

☺ Mar 28-31 14th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2011), Newport Beach, California, USA. Topics include: Programming and system
engineering (ORC paradigms, languages, RT Corba, UML, model-driven development of high integrity
applications, specification, design, verification, validation, testing, maintenance, system of systems,
etc.); System software (real-time kernels, middleware support for ORC, extensibility, synchronization,
scheduling, fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics,
consumer electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness,
worst-case execution time, dependability, fault detection and recovery time, etc.); ...

☺ April 10-13 6th European Conference on Computer Systems (EuroSys'2011), Salzburg, Austria. Topics include:
all areas of operating systems and distributed systems, including systems aspects of Dependable
computing and storage, Distributed computing, Parallel and concurrent computing, Programming-
language support, Real-time and embedded computing, Security, etc.

April 12-15 2nd International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering
(PARENG'2011), Ajaccio, Corsica, France.

April 18-20 3rd NASA Formal Methods Symposium (NFM'2011), Pasadena, California, USA. Topics include:
Theorem proving, Model checking, Static analysis, Dynamic analysis, Model-based development,
Application experiences, etc.

April 20-24 17th International Symposium on Formal Methods (FM'2011), Limerick, Ireland. Theme: "Formal
Methods Come of Age". Topics include: advances and maturity in formal methods research, education,
and deployment via tool support and industrial best practice, and their role in a variety of industries,
domains, and in certification and assurance; in particular experience with practical applications of
formal methods in industrial and research settings, experimental validation of tools and methods as well
as construction and evolution of formal methods tools. Deadline for submissions: January 10, 2011
(papers), January 24, 2011 (tutorials, workshops).

☺ April 25-29 5th Latin-American Symposium on Dependable Computing (LADC'2011), São José dos Campos,
São Paulo, Brazil. Topics include: Dependability of software (frameworks and software architectures for
dependability, model driven dependability engineering, testing, verification, software certification, ...);
Dependability of maintenance; Dependability and human issues; Security; Safety (safety-critical
applications and systems, ...); etc. Deadline for submissions: February 4, 2011 (industry track, fast
abstracts, student forum).

April 27-29 18th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2011), Las Vegas, Nevada, USA. Theme: "Engineering Next Generation
Systems". Topics include: Component-Based System Design; Design Evolution; Distributed Systems
Design; ECBS Infrastructure (Tools, Environments); Education & Training; Embedded Real-Time
Software Systems; Integration Engineering; Model-Based System Development; Modelling and
Analysis of Complex Systems; Open Systems; Reengineering & Reuse; Reliability, Safety,
Dependability, Security; Standards; Verification & Validation; etc. Deadline for early registration:
February 22, 2011.

April 27-29 16th Annual IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2011), Las Vegas, Nevada, USA. Topics include: Verification and validation, Model-driven
development, Reverse engineering and refactoring, Design by contract, Agile methods, Safety-critical &
fault-tolerant architectures, Real-time and embedded systems, Tools and tool integration, Industrial case
studies, etc. Deadline for early registration: February 22, 2011.

☺ May 16-20 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2011), Anchorage,
Alaska, USA. Topics include: all areas of parallel and distributed processing, such as: Parallel and
distributed algorithms; Applications of parallel and distributed computing; Parallel and distributed
software, including parallel and multicore programming languages and compilers, runtime systems,
middleware, libraries, parallel programming paradigms, programming environments and tools, etc.

Conference Calendar 253

Ada User Journal Volume 31, Number 4, December 2010

☺ May 20 12th International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-11). Topics include: parallel and distributed
computing techniques and codes; practical experiences using various parallel and
distributed systems; task parallelism; scheduling; compiler issues for scientific and
engineering computing; scientific and engineering computing on parallel computers,
multicores, GPUs, FPGAs, ...; etc.

☺ May 20 Workshop on Multithreaded Architectures and Applications (MTAAP'2011).
Topics include: programming frameworks in the form of languages and libraries,
compilers, analysis and debugging tools to increase the programming productivity.
Deadline for submissions: January 10, 2011.

☺ May 21-28 33rd International Conference on Software Engineering (ICSE'2011), Waikiki, Honolulu, Hawaii,
USA. Theme: "Software by Design". Topics include: Engineering of distributed/parallel software
systems; Engineering of embedded and real-time software; Engineering secure software; Patterns and
frameworks; Programming languages; Reverse engineering and maintenance; Software architecture and
design; Software components and reuse; Software dependability, safety and reliability; Software
economics and metrics; Software tools and development environments; Theory and formal methods; etc.
Deadline for submissions: January 30, 2011 (student volunteers).

May 21-22 8th International Working Conference on Mining Software Repositories
(MSR'2011). Topics include: Mining of repositories across multiple projects;
Characterization, classification, and prediction of software defects based on analysis of
software repositories; Search techniques to assist developers in finding suitable
components and code fragments for reuse, and software search engines; Analysis of
change patterns and trends to assist in future development; Case studies on extracting
data from repositories of large long-lived and/or industrial projects; etc. Deadline for
submissions: January 26, 2011 (research/short papers).

May 21-28 2nd Student COntest on softwaRe Engineering (SCORE'2011). Deadline for
submissions: January 15, 2011 (summary reports), February 28, 2011 (final deliverable),
ICSE 2011 (finals).

May 22-24 24th IEEE-CS Conference on Software Engineering Education and Training (CSEET'2011),
Waikiki, Honolulu, Hawaii, USA. Topics include: Technology Transfer, Student projects and
internships, Industry-academia collaboration models, Software engineering professionalism, Education
& training for "real-world" Software Engineering practices, Training models in industry, Systems and
Software Engineering, etc. Deadline for submissions: January 17, 2011 (panel sessions, practice and
methods presentations, posters, tutorials).

May 24-27 22nd IEEE International Symposium on Rapid System Prototyping (RSP'2011), Karlsruhe, Germany.
Topics include: Real Time embedded system challenges; Specification and Language Models for
hardware/software systems; Very large scale system engineering; Embedded System
verification/validation; Critical Embedded Systems design; Reliability and failure analysis; Emerging
Technologies and Applications; Industrial Designs in Automotive, Medical and Avionics domains; etc.
Deadline for submissions: January 16, 2011 (full papers).

☺ May 26-28 9th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2011), Busan, Korea. Topics include: all aspects of parallel and distributed computing and
networking, such as Parallel/distributed system architectures, Tools and environments for software
development, Distributed systems and applications, Reliability, fault-tolerance, and security, High-
performance scientific and engineering computing, etc.

June 01-03 11th International Conference on Computational Science (ICCS'2011), Tsukuba, Japan. Topics
include: recent developments in methods and modelling of complex systems for diverse areas of
science, advanced software tools, etc. Deadline for submissions: January 8, 2011 (full papers). Deadline
for early registration: March 31, 2011.

June 06-09 6th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2011),
Reykjavik, Iceland. Includes the COORDINATION, DAIS, and FMOODS & FORTE conferences.
Deadline for submissions: February 6, 2011 (abstracts), February 13, 2011 (papers).

254 Conference Calendar

Volume 31, Number 4, December 2010 Ada User Journal

June 15-17 36th Annual USENIX Technical Conference (USENIX ATC'2011), Portland, Oregon, USA. Topics
include: Distributed and parallel systems; Embedded systems; Reliability, availability, and scalability;
Security, privacy, and trust; etc. Deadline for submissions: January 12, 2011.

June 20-23 2011 International Conference for Computational Science and its Applications (ICCSA'2011),
Santander, Spain. Topics include: Parallel and Distributed Computing, Security Engineering, Risk
Analysis, Reliability Engineering, Software Engineering, etc. Deadline for early registration: April 4,
2011.

♦ June 20-24 16th International Conference on Reliable Software Technologies - Ada-
Europe'2011, Edinburgh, UK. Organized together with the Ada Conference UK 2011,
under the common name of "The Ada Connection". Sponsored by Ada-Europe, in
cooperation with ACM SIGAda. Deadline for submissions: January 8, 2011 (industrial
presentations).

June 20-24 9th Working IEEE/IFIP Conference on Software Architecture (WICSA'2011), Boulder, Colorado,
USA. Topics include: Software architecture and software qualities; Architecture description languages
and model driven architecture; Software architecture discovery and recovery; Software architects' roles
and responsibilities; Training, education, and certification of software architects; Industrial experiments
and case studies; etc. Deadline for submissions: February 7, 2011 (papers).

June 20-24 11th International Conference on Application of Concurrency to System Design (ACSD'2011),
Kanazawa, Japan. Topics include: (Industrial) case studies of general interest, gaming applications,
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design,
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc. Deadline for
submissions: January 10, 2011 (abstracts), January 17, 2011 (papers).

June 27-29 16th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2011), Darmstadt, Germany.

☺ June 28-30 49th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2011),
Zurich, Switzerland. Topics include: Applications to safety- and security-related software; Distributed
and concurrent object systems; Domain specific languages and language design; Experience reports,
including efforts at standardisation; Language implementation techniques, compilers, run-time systems;
Multicore programming, models and patterns; Object technology, including programming techniques,
languages, tools; Practical applications of program verification and analysis; Real-time object-oriented
programming and design; Tools and frameworks for supporting model-driven development; Trusted and
reliable components; etc. Deadline for submissions: January 28, 2011 (papers).

July 05-07 15th International Conference on System Design Languages of the SDL Forum Society (SLD'2011),
Toulouse, France. Topics include: Industrial application reports (industrial usage and experience reports,
tool engineering and frameworks, domain-specific applicability, such as aerospace, automotive, control,
...); Evolution of development tools and languages (domain-specific profiles and extensions, modular
language design, semantics and evaluation, methodology for application, standardization activities);
Modeling in multi-core and parallel applications; Education and Promotion of System Design
Languages; etc. Deadline for submissions: February 1, 2011 (abstracts), February 14, 2011 (papers),
May 15, 2011 (posters, exhibits).

July 13-14 11th International Conference on Quality Software (QSIC'2011), Madrid, Spain. Topics include:
Software quality (review, inspection and walkthrough, reliability, safety and security, ...); Evaluation of
software products and components (static and dynamic analysis, validation and verification); Economics
of software quality; Formal methods (program analysis, model construction, ...); Applications
(component-based systems, distributed systems, embedded systems, enterprise applications, information
systems, safety critical systems, ...); etc.

July 14-20 23rd International Conference on Computer Aided Verification (CAV'2011), Snowbird, Utah, USA.
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Verification methods for parallel and concurrent hardware/software systems,
Applications and case studies, Verification in industrial practice, etc. Deadline for submissions: January
14, 2011 (abstracts), January 21, 2011 (papers).

Conference Calendar 255

Ada User Journal Volume 31, Number 4, December 2010

☺ July 25-29 25th European Conference on Object-Oriented Programming (ECOOP'2011), Lancaster, UK. Topics
include: all areas of object technology and related software development technologies, such as Analysis
and design methods and patterns; Distributed, concurrent, real-time systems; Language design and
implementation; Modularity, components, services; Software development environments and tools;
Type systems, formal methods; Compatibility, software evolution; etc.

August 15-18 6th IEEE International Conference on Global Software Engineering (ICGSE'2011), Helsinki,
Finland. Topics include: Strategic issues in distributed development (cost-benefit-risk analysis, ...);
Methods and tools for distributed software development (requirements engineering, design, coding,
verification, testing and maintenance, development governance); Empirical studies and lessons learnt
from distributed development; etc. Deadline for submissions: February 14, 2011 (abstracts, workshops),
February 28, 2011 (papers), March 14, 2011 (other contributions).

Aug 29 – Sep 02 15th IEEE International Enterprise Computing Conference (EDOC'2011), Helsinki, Finland. Topics
include: the full range of engineering technologies and methods contributing to intra- and inter-
enterprise distributed application systems; industry specific solutions, e.g. for aerospace, automotive,
finance, logistics, medicine and telecommunications; etc. Deadline for submissions: February 15, 2011
(abstracts), February 28, 2011 (full papers), March 15, 2011 (workshop papers).

☺Aug 30 – Sep 02 International Conference on Parallel Computing 2011 (ParCo'2011), Gent, Belgium. Topics include:
all aspects of parallel computing, including applications, hardware and software technologies as well as
languages and development environments, in particular Applications of multicores, GPU-based
applications, Parallel programming languages, compilers and environments, Best practices of parallel
computing, etc. Deadline for submissions: March 20, 2011 (extended abstracts of papers), March 31,
2011 (proposals for mini-symposia).

☺ Sep 13-16 40th International Conference on Parallel Processing (ICPP'2011), Taipei, Taiwan. Topics include:
all aspects of parallel and distributed computing, such as Compilers, Programming Models and
Languages, Multi-core and Parallel Systems etc. Deadline for submissions: February 24, 2011 (papers).

♦ Sep 14-16 15th International Real-Time Ada Workshop (IRTAW-15), Liébana (Cantabria),
Spain. Deadline for receipt of position paper: 15 May 2011.

September 22-23 5th International Symposium on Empirical Software Engineering and Measurement (ESEM'2011),
Banff, Alberta, Canada. Topics include: Generative programming, metaprogramming; Product-line
architectures; Analysis of language support for generative programming; Semantics, type-systems of
generative programs; Case Studies and Demonstration Cases; etc. Deadline for submissions: March 15,
2011 (full papers), June 15, 2011 (industry experience reports, short papers, posters).

☺ Sep 26-30 CBSoft2011 - 15th Brazilian Symposium on Programming Languages (SBLP'2011), Sao Paulo,
Brazil. Topics include: the fundamental principles and innovations in the design and implementation of
programming languages and systems; such as: Programming paradigms and styles, including object-
oriented, real-time, multithreaded, parallel, and distributed programming; Program analysis and
verification, including type systems, static analysis and abstract interpretation; Programming language
design and implementation, including new programming models, programming language environments,
compilation and interpretation techniques; etc. Deadline for submissions: April 22, 2011 (abstracts),
April 29, 2011 (full papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Forthcoming Events 257

Ada User Journal Volume 31, Number 4, December 2010

The Ada Connection

16
th

 International Conference on
Reliable Software Technologies –

 Ada-Europe 2011
Ada Conference UK

2011

20 – 24 June 2011, Edinburgh, UK
http://www.ada-europe.org/conference2011

Advance Information
The Ada Connection combines the 16th International Conference on Reliable Software Technologies – Ada-
Europe 2011 – with Ada Conference UK 2011. It will take place in Edinburgh, Scotland's capital city and the UK's
most popular conference destination. Following tradition, the conference will span a full week, including a
three-day technical program Tuesday to Thursday, and parallel tutorials and workshops on Monday and Friday.
The Ada Connection will also encompass industrial and vendor tracks, and a vendor exhibition on Tuesday and
Wednesday, under the banner of Ada Conference UK.
The Ada Connection provides a unique opportunity for interaction and collaboration between academics and
industrial practitioners.

About the Venue

The Conference venue is Edinburgh’s John McIntyre Conference Centre, a newly extended conference and
meeting venue which opened in September 2009. Situated just over a mile away from Edinburgh Castle, the
Conference venue is a state-of-the-art, self-contained building with a range of nearby accommodation options
and an open-air terrace overlooking Holyrood Park, a public park with volcanic cliff faces whose centrepiece,
Arthur's Seat, offers a rewarding climb from which excellent views can be gained of the city and beyond.
Edinburgh is one of the top ten conference destinations in the world, and home to Scotland’s five National
Galleries and the National Museum of Scotland. Bounded by seven hills and open sea, Edinburgh is an
architectural masterpiece; the Old and New Towns are both designated World Heritage Centres. Highlights
include the iconic Edinburgh Castle, the stunning Scottish Parliament and the Georgian New Town.

in cooperation with

ACM SIGAda

258 Forthcoming Events

Volume 31, Number 4, December 2010 Ada User Journal

Invited Speakers
Eminent keynote speakers have been selected to open each of the three days of the core conference
programme. Confirmed speakers are:
• Peter Bernard Ladkin (University of Bielefeld CITEC and Causalis Limited), a recognised specialist in system

safety. Peter will address concerns about the international standard IEC 61508 and its perceived lack of
criteria for critical assessment of objective properties of software developed for safety-critical systems. He
will also recount progress on guidelines for German applications which go some way towards redressing this
perceived lack, in his talk entitled Future of Software Safety Standards.

• Jeff O’Leary (US Federal Aviation Administration (FAA)), has more than 18 years of experience in software
development, systems acquisition and deployment of large mission critical command and control systems. In
his talk Assuring Software Reliability While Using Web Services and Commercial Products he will present a
government software procurement official’s perspective on systems development and quality, and discuss
the implications, approach and unique issues of building reliable, trusted web services using commercial
products.

STOP PRESS: Pippa Moore (UK Civil Aviation Authority) is confirmed as the third keynote speaker

Tutorials
Attendees will have a varied choice of half-day and full-day tutorials that will be offered on Monday and Friday,
either side of the central days of the conference. Tutorials consist of courses given by recognised experts in their
respective fields, which deal with up-to-date technologies for the development of reliable software.

Social Programme
The social programme offers a congenial Reception on Tuesday evening and a Conference Banquet on
Wednesday evening. The reception will include a “whisky tasting”, providing the opportunity to sample a range
of specially selected single malt Scotch whiskies. The banquet will be held at the historic and scholarly Signet
Library on the Royal Mile in Edinburgh city centre.

Further Information
The conference website at http://www.ada-europe.org/conference2011 will provide full and up-
to-date details of the program, venue and social programme, accommodation and travel advice. For exhibiting
and sponsoring details please contact the Exhibition Chair, Joan Atkinson, at Joan.Atkinson@ncl.ac.uk.

Forthcoming Events 259

Ada User Journal Volume 31, Number 4, December 2010

15TH INTERNATIONAL REAL-TIME ADA WORKSHOP
(IRTAW-15)

September 14-16, 2011 – Liébana (Cantabria), Spain

http://www.artist-embedded.org/artist/IRTAW-15.html

CALL FOR PAPERS

Since the late Eighties the International Real-Time Ada

Workshop series has provide d a forum for identifying issues with
real-time system support in Ada and for exploring possible
approaches and solutions, and has attracted participation from key
members of the research, user, and implementer communities
worldwide. Recent IRTAW meetings have significantly
contributed to the Ada 2005 standard and to the proposals for Ada
2012, especially with respect to the tasking features, the real-time
and high-integrity systems annexes, and the standardization of the
Ravenscar profile.

In keeping with this tradition, and in light of the current
revision process that will lead to the new Ada 2012 standard, the
goals of IRTAW-15 will be to:

• review the current status of the Ada 2012 Issues that are related with the support of real-time systems;
• examine experiences in using Ada for the development of real-time systems and applications, especially – but not

exclusively – those using concrete implementation of the new Ada 2005 real-time features;
• report on or illustrate implementation approaches for the real-time features of Ada 2012;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other extra-functional concerns;
• examine and develop paradigms for using Ada for real-time distributed systems, with special emphasis on

robustness as well as hard, flexible and application-defined scheduling;
• consider the definition of specific patterns and libraries for real-time systems development in Ada;
• identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
• examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

• consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-15 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Format
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted

papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press) (to be confirmed). Selected papers will also appear in the Ada User Journal.

Submission
Please submit position papers, in PDF format, to the Program Chair by e-mail: aldeam@unican.es

Important Dates

Receipt of Position Paper: 15 May 2011
Notification of Acceptance: 15 June 2011

Final Copy of Paper: 31 July 2011
Workshop Date: 14-16 September 2011

260

Volume 31, Number 4, December 2010 Ada User Journal

Introduction
"The Ada Way" is an annual student programming contest
organized by Ada-Europe, the international organization
that promotes the knowledge and use of Ada in European
academia, research and industry. A Steering Committee
formed by representatives of promoting institutions
oversees the organization of the contest. The Steering
Committee is currently comprised of: Dirk Craeynest and
Ahlan Marriott (Ada-Europe), Ricky Sward (ACM
SIGAda), Jamie Ayre and Matteo Bordin (AdaCore), Jean-
Pierre Fauche (Atego), Ian Broster (Rapita), Rod White
(MBDA).

This initiative aims to attract students and educators to Ada
in a form that is both fun and instructive. For this reason
the contest is a yearly programming competition among
student teams, whereby each team must have a university
affiliation and be endorsed by an educator. The ideal, but
not exclusive, context for participation is as part of an
organized teaching/course activity in which the theme and
requirements of the contest are endorsed and supported by
the educator. See the "Participation Requirements" section
for details.

The contest opens in September with the announcement of
the theme, and allows submissions until the end of April
the following year. See below for the 2010-11 edition
theme and the Submissions section for the submission
requirements.

Students and educators who may consider participating and
want more information on "The Ada Way" in general and
its 2010-11 edition in particular are invited to make contact
with the Steering Committee at board@ada-europe.org.

Project Theme for Academic Year
2010-11: Software simulator of a football
(soccer) match
The following specification intentionally leaves some room
for interpretation and extension: participants are
encouraged to use their intelligent creativity to firm up the
derivative specification they want to work against.

The software system shall support at least the
following features:
• Users must be able to play a single game; support for

playing a series of matches, with fixtures and
associated rules, is optional and can be omitted

• The chosen variant of the game shall be configurable
in all relevant parameters, allowing for any of 5-a-side,
7-a-side, and the canonical 11-a-side formats

• The members of the squads will feature individually
configurable characteristics for, at least, technical and
tactical skills, speed, physical parameters including
fatigue; some of those parameters shall be dynamic
and evolve with the match according to some
programmed logic

• Each squad shall have a (software) manager able to
configure the initial players line up, the initial tactic
and to issue commands for tactic changes and
substitutions, all subject to the rules of the game as in
the corresponding standard

• Each squad shall play according to the tactic
commanded by the manager; deviations shall be
permitted in so far as they result from programmable
characteristics of the players

• Each match shall have one independent (software)
referee and two to three subordinate (software)
assistants who control the game and ensure that the
applicable rules are followed; the behavior and the
performance of the referee and assistants need not
exhibit the physical limitations of actual humans.

The software system shall include at least:
• A software core, whether centralized or distributed,

implementing all of the logic of the simulation

• One read-only graphical panel (window) for the
display of the football field, the players, the ball, the
referee and assistants; as for the (simulated) human
figures on the pitch it shall be sufficient to represent
them as moving numbered dots on the display without
resorting to sophisticated graphical rendering, as in a
view of a subbuteo table seen from the top

• Two distinct read-write graphical panels (windows) for
the user to influence the otherwise independent action
of the team managers; the panel shall display the
current parameters for each player; the refresh rate of
such display shall be user-configurable

• One read-only graphical panel (window) for the
display of a user-configurable selection of statistics;
the refresh rate of such display shall be user-
configurable.

Student Programming Contest “The Ada Way” 261

Ada User Journal Volume 31, Number 4, December 2010

The software core shall be programmed in Ada. The
software design shall permit the principal algoritms to be
modified and replaced at will: in other words, the software
system shall be as modular, configurable and scalable as
possible. These qualities will contribute to the evaluation.

The graphical panels can be programmed in any language
that the participating teams will consider fit for purpose.
The graphical beauty of such panels will however be only a
minor factor in the evaluation. What shall matter instead is
that the interaction and the flow of data and control
between the software core and the graphical panels is
governed by good architectural principles and shows
sufficient accuracy and performance.

To be considered for evaluation, the system shall run out of
the box. The target platform may be freely chosen between
Linux, Windows and MacOS. Portability across them will
however be a competitive advantage.

Participation requirements
Participating teams shall be composed by a minimum of 2
and a maximum of 7 members. Each team shall have a
codename and a logo. Team work may be performed as
part of an organized teaching/course activity or as a
volunteer project. Either way, each team must be
recognised and endorsed by an academic educator.

Team members must be full-time students: they must
provide evidence of their status when submitting their
project. The contest is open to undergraduate and Master
students. Teams may but need not include a mix of
undergraduate and graduate students. Team members may
belong to distinct institutions.

Submission
The software system shall be delivered in source (as a
single compressed archive), accompanied by:

1. A software specification document (in PDF),
which describes the principal design decisions and
argues their quality, and presents the points of
extension and modification in the system; the
specification shall clearly single out all places at
which the team made arbitrary interpretation of
the specification or added or extended
requirements

2. A user manual describing the compilation and
installation procedures, the configuration options
and the allowable use of the system (in PDF)

3. The team codename, logo and composition: name,
email contact, evidence of enrollment as full-time
students (in a single PDF)

4. The written endorsement to the submission by an
academic or otherwise senior instructor in whose
class the project was launched (in PDF).

The submission shall be made as a single compressed
archive of all items listed above at the URL that will appear
on this page in due time.

All sources shall be released for the good of the general
public, to become reference material for educational and
promotional purposes. To this end the use of GPL (GNU
General Public License) is recommended, though we are
not prescriptive of a specific scheme, so long as the general
intent of free dissemination is preserved.

Submissions shall be accepted during the whole month of
April 2011, at the Ada Way website, http://www.ada-
europe.org/AdaWay.

Evaluation and Prize
The evaluation criteria will include:

• Coverage of requirements

• Syntatic, semantic, programmatic and design
correctness

• Clarity and readability of the code

• Quality of design

• Ingenuity and cuteness of the solution

• Time and space efficiency of the solution.

The evaluation will be performed by a team of
distinguished Ada experts comprised of: John Barnes (UK),
Tucker Taft (US), Joyce Tokar (US), Pascal Leroy (F), Ed
Schonberg (US).

The winning submission shall be announced on 31 May
2011 by a post on the site and by an email communication
to all participating teams.

The prize will consist of: a framed award; one free
registration and up to 3 reduced student fees for
representatives of the winning team to attend to the Ada-
Europe 2011 Conference; accommodation and airfare for
the team representatives (with ceiling at EUR 3,000); an
exhibition slot in the conference program; visibility in
electronic and printed media including:

• Ada User Journal: http://www.ada-europe.org/
journal.html

• Ada Letters: http://www.sigada.org/ada_letters/

For up-to-date information on Ada-Europe's student
programming contest, please go to the official web site of
“The Ada Way”, http://www.ada-europe.org/AdaWay,

Sponsors
This year's competition is sponsored by Ada-Europe,
AdaCore, and Atego.

262

Volume 31, Number 4, December 2010 Ada User Journal

Overview of the 14th International Real-Time Ada Workshop

7-9 October 2009
Portovenere, Italy

Contents *

Workshop Session Summaries

- “Multiprocessor Systems Session Summary”, A. Burns, and A. J. Wellings
- “Session Summary: Language and Distribution Issues”, T. Vardanega,

M. González-Harbour and L. M. Pinho
- “Conclusions of the 14th International Real-Time Ada Workshop”, S. Michell and

J. Real

“Progress Report from the 14th International Real-Time Ada Workshop”, A. Burns

Program Committee

Neil Audsley (Program Chair), Ben Brosgol, Alan Burns, Michael González Harbour, Stephen Michell,
Javier Miranda, Luís Miguel Pinho, Juan Antonio de la Puente, Jorge Real, José Ruiz, Tullio Vardanega
(Local Chair) and Andy Wellings.

Workshop Participants

José Ruiz, AdaCore, France
Edmond Schonberg, AdaCore, USA
Stephen Michell, Maurya Software, Canada
Rod White, MBDA, UK
Kristoffer Nyborg Gregertsen, Norwegian Institute of Science And Technology, Norway
Bjorn Andersson, Polytechnic Institute of Porto, Portugal
António Barros, Polytechnic Institute of Porto, Portugal
Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal
Joyce Tokar, Pyrrhus Software, USA
Juan Antonio de la Puente, Technical University of Madrid, Spain
Juan Zamorano, Technical University of Madrid, Spain
Jorge Real, Technical University of Valencia, Spain
Sergio Saez, Technical University of Valencia, Spain
Mario Aldea Rivas, University of Cantabria, Spain
Michael González Harbour, University of Cantabria, Spain
Javier Gutierrez, University of Cantabria, Spain
Enrico Mezzetti, University of Padua, Italy
Marco Panunzio, University of Padua, Italy
Tullio Vardanega, University of Padua, Italy
Alan Burns, University of York, UK
Abdul Haseeb Malik, University of York, UK
Andy Wellings, University of York, UK
Carl Brandon, Vermont Technical College, USA

Sponsors

 * The Proceedings of the 14th International Real-Time Ada Workshop appeared in ACM Ada Letters, Volume XXX, Number 1, April 2010;

 session summaries reprinted with permission.

 263

Ada User Journal Volume 31, Number 4, December 2010

Multiprocessor Systems Session Summary
Chairs/ Rapporteurs: Alan Burns and Andy J. Wellings

Abstract
This report summarizes the discussion held at
Fourteenth InternationalWorkshop on Real-Time Ada
Issues (IRTAW 14) on how to provide better support
for multiprocessor systems in Ada.

1 Introduction
The whole first day of the workshop was dedicated to a
discussion of multiprocessor issues. The discussions were
partitioned into two sub sessions. The first was chaired by
Alan Burns and covered the following topics:

• scope of the issues to be addressed;

• current state of real-time multiprocessing scheduling;

• the development of a proposed model for Ada,
including both task allocation, protected object access
protocols and interrupt handling.

The second session was chaired by Andy Wellings and
addressed the following issues:

• Execution-Time Clocks and Timers

• Group Budgets

• Ravenscar Issues

• Non SMP Architectures

Ada 2005 is about to undergo further updates and any
proposals for changes have to be raised by the end of
October 2009. Consequently, although the overall goal of
the sessions was to consider a wide range of issues, it was
agreed that the focus should be on developing better
support for real-time scheduling on multiprocessor systems.

2 Scope of Issues
Early on in the discussions it was reaffirmed that
traditionally the unit of concurrency in Ada had always
been coarse grained and expressed via the task construct.
Although for high-performance computing there may be
some need to be able to express data-level parallelism, the
workshop focus was real-time and it was agreed that we
should only consider tasks.

It was further agreed that Ada 2005 currently does already
support multiprocessor systems and that nothing we
proposed should undermine the current specification,
unless it was inherently broken. In the absence of any
directives in the program, the behaviour of the program
should be that currently defined in the Ada Language
Reference Manual. The workshop took the Ada model to be
essentially the following:

• all tasks executing in a partition must be able to access
shared memory; and

• scheduling between tasks in a partition is global, hence
when a processor becomes available it must be given to
the highest priority runnable task.

For the above reason, the workshop decided to focus on
multiprocessor systems that have access to shared memory
and are symmetric, i.e. SMP architectures. There was some
discussion on whether the IO space of an SMP architecture
could be accessed from all processors. It was assumed that
in general all memory locations/device registers could be
assessed from all CPUs and that only interrupt may be
constrained to certain CPUs.

No assumptions were made about the speed of the
individual CPUs. Hence, hyperthreading architectures were
in scope.

3 State of the Art in Multiprocessor
Scheduling
Alan summarized the possibilities for real-time
multiprocessor scheduling. The focus was on where tasks
can run.

• Fully global partitioning – Any task can run on any of
the available CPUs. The scheduler decides order and
placement. Typically these require a global ready queue
and there are some concerns about whether this can be
implemented efficiently and whether it is scalable to
large systems.

• Task partitioned – Each task can only run on one CPU,
this being specified by the programmer. However, the
specified CPU could be changed at run-time.

• Job partitioned – When a task is released it can run on
any CPU, however preempted tasks return to the CPU
on which they were initially allocated. Hence, the tasks
can migrate only at release time.

It was agreed that the state of the art in multiprocessor
scheduling was not mature enough to focus on supporting
any particular approach. However, it was agreed that some
form of both global and partition scheduling is needed. The
reason for this is that better schedulability can be obtained
by fixing CPU intensive tasks to a single processor and
allowing the others to migrate. Also a task may need to be
on a particular processor to service a device’s interrupts.

4 The Proposed Model
During the next few hours, discussions were held on what
was an appropriate model for Ada. The model that emerged
can be summarized by the following points:

This paper previously appeared in ACM Ada Letters, Volume XXX,
Number 1, April 2010; reprinted with permission.

264 Mult iprocessors Systems Session Summary

Volume 31, Number 4, December 2010 Ada User Journal

• The introduction of the notion of an allocation
domain 1 . In the multiprocessor literature, allocation
domains are sometimes called clusters. The key point
about an allocation domain is that it defines a set of
CPUs on which tasks are globally scheduled.

• There is a default allocation domain (the System
domain) that is the set of all processors allocated to a
program. The assumption is that this is a fixed set of
processors that does not change during the execution of
the program. The default behaviour of an Ada program
if it does not specify anything is therefore global
scheduling of all tasks across all processors. Depending
on the run-time infrastructure, tasks may migrate
between processors only at release time (called job-
level allocation in Section 3) or within a release (called
fully global allocation in Section 3) 2.

• Allocation domains cannot overlap; that is no CPU can
be in more than one allocation domain. The reason for
this constraint is to ease schedulability analysis and to
support efficient global run queues and scaling of the
system to hundreds of processors.

• The model allows the programmer to constrain a task to
execute on only one CPU in an allocation domain. This
was seen as more useful than allowing a task to be fixed
to a subset of the CPUs in the allocation domain. Also
some current real-time scheduling practices require this.

The following issues were also discussed

• Failure semantics: Currently Ada has an implicit
semantics of crash failures. It was decided that although
the workshop would ideally like to support programs
executing on platforms with partial failures, this was too
big an issue to address within the current time
constraints and the absence of any position papers on
the topic.

• Migration of tasks across allocation domain: Should
a task be able to automatically migrate across allocation
domains? The main reasons for allowing this might be
load shedding during a transient overload, or
reconfiguration following a partial failure.The current
Ada mechanism for accessing protected objects from
multiple CPUs is not fully defined by the language.
Instead implementation advice is given. In this, the
assumption is that tasks will busy-wait (spin) at their
active priorities for the lock (although other
implementations will be allowed). This was not
changed by the Workshop. It was decided (mainly for
simplicity of feasibility analysis) that migration
between allocation domains should not be supported but

1 We use this term as being short for scheduling or dispatching allocation
domain.
2 During the workshop Björn Anderson considered the job partitioning
approach and showed, from a scheduling point of view, that the approach
could lead to very poor performance. The workshop therefore restricted its
consideration to the task and global partitioning approaches.

that the domain of a task could be changed by the
programmer at run time.

4.1 Protected Objects
There was some discussion on whether protected objects
should be given allocation domains and potentially fixed to
specific processors in those domains. The main requirement
for this was device access. However, it was agreed that in
the model under consideration all device registers were
accessible for all CPUs and that interrupts, had “affinities”
not protected objects.

The rules for setting the ceiling priorities were deemed by
the workshop not to be part of the language. However, for
completeness they were given.

• For fully global scheduling – setting the ceiling priority
of a protected object that is only accessed within a
single allocation domain can use the usual approach of
setting ceilings to max priority of the accessing tasks
plus 1 (note it must be plus 1 for the global scheduling
to work).

• Fixed tasks – Where tasks are fixed to a processor in the
same allocation domain, care must be taken and the
interaction between tasks and protected object must be
understood when setting the ceilings. It is probably
safest to force non-pre-emptive execution of protected
subprograms.

• If the underlying platform only supports job-level
scheduling then all protected objects shared across
processors should be accessed non-preemptively.

• For protected objects shared between allocation
domains, the protected objects must run non pre-
emptively. This is because there is no relationship
between the priorities in one allocation domain and
those in another.

• A lock is always required; using the priority model for
locking is not sustainable with multiprocessors (unless
it is possible to show that a protected object is only
accessed from one processor).

It was also noted that on multiprocessor systems:

• Nested protected object locks can cause deadlock (there
are some schemes in the literature to avoid this – for
example for each chain another lock must be acquired
first)

• Chain blocking is possible.

• In the absence of deadlock, blocking can be bounded.

4.2 Interrupt Handling
In the Ada model, interrupts are mapped to protected
procedure calls. Typically these have ceiling set to the
hardware priority of the interrupt. The workshop discussed
at length how best to ensure mutual exclusive access to
interrupt handling protected objects. Various models were
considered, including migrating a task to the site where the
interrupt is delivered and using the priority model, or
disabling/masking the interrupt. In the end it was agreed

A. Burns, A. J . Wel l ings 265

Ada User Journal Volume 31, Number 4, December 2010

that it is the run-time responsibility to ensure mutual
exclusion of the protected object in the presence of user
tasks calling the procedures.

The workshop did agree however that the ‘affinity’ of an
interrupt should be available to the program so that a
‘released’ task can be co-located on the same CPU.

5 Execution-Time Clocks and Timers
The workshop discussed whether there were any
multiprocessor issues with execution-time clocks and
timers.

It was agreed that:

• Measuring execution times presented no additional
problems on a multiprocessor as tasks can only be
active on one CPU at a time.

• Timers similarly should be no problem. The interrupt
from a timer may be constrained to be handled on one
processor, but this simply required that the associated
PO’s subprograms execute non-preemptively.

• Deciding what the values should be for the WCET on a
multiprocessor system is problematic, particularly if
processors run at different speeds. However, this is not
a language or a run-time issue. If was suggested that if
the programmer was enforcing execution times of a task
then its allocation domain should perhaps be set so that
the task runs at a uniform speed.

6 Group Budgets
Supporting group budgets in a multiprocessor system is
fraught with difficulties. Andy in his overview of the topic
gave three approaches:

1. Group budgets can be active on many processors and
processors may have variable speed.

2. Group budgets can be active on many processors but
processors must have the same speed.

3. Group budgets can only be active on one processor at a
time.

The first approach, the workshop felt, would be very
difficult to implement accurately without hardware support.

The second approach had two possible implementation
models. The first was that at every preemption and release
point: the run-time had to look at all running tasks and the
group budget for all these tasks. For each group budget, the
run-time divides the remaining budget by the number of
running tasks and sets timers for this time. When timers go
off, the budget has expired.

The second implementation model tries to reduce the run-
time cost of the above approach by considering only task
release points. When a timer expires in this case, the budget

needs to be checked and the timers reset if the remaining
budget is greater than 0.

Given the complexity of a multiprocessor group budget, the
workshop supported the single-processor group budget
approach. It was felt that the use cases for the
multiprocessor cases were not clear from a scheduling point
of view.

It was noted by the workshop, that the current Ada
Reference Manual supported implicitly multiprocessor
budgets and that this had to be changed.

7 Non SMP Architectures
Ada was designed to support multiprocessor applications
where there is memory shared between each processor.
Although the workshop had hoped to discuss non-SMP
architectures, it was decided that this was a big issue and
left to another day.

8 Ravenscar Issues
For the Ada Ravenscar Profile, the workshop believed that
the most restrictive model is probably the best:

• No creation of allocation domains.

• Each tasks fixed to a single processor (either by the
programmer, or by the system).

• Interrupts are fixed by the run-time to one of the
processors in the system allocation domain.

However, the workshop did feel that having multiple
allocation domains was not out of the question.

8.1 Non-multiprocessor Ravenscar issues
Three other non-multiprocessor Ravenscar issues were
discussed during the first day of the workshop. One
concerned the programming of ‘recovery’ after an
executing-time overrun or a deadline miss. It was felt that a
new profile, Ravenscar+, that was still significantly smaller
than the full language, was desirable. The definition of such
a profile will be discussed at the next workshop.

The second, minor, issue concerned the fact that although
relative delays are not permitted in Ravenscar, a relative
delay via a timing event was possible. The workshop felt
that this bug in the language definition should be fixed.

The final issue concerned timers which are currently
excluded from Ravenscar. A number of people felt that as
library-level timing events were permitted then timers
(restricted to one per task) should also be allowed. There
was some concern voiced as to the asynchronous nature of
timer events – Ravenscar has eliminated most such events.
A vote showed a majority in favour of a change to the
definition of Ravenscar to include timers.

266

Volume 31, Number 4, December 2010 Ada User Journal

Session Summary: Language and Distribution
Issues
Chairs: Tullio Vardanega and Michael González-Harbour
Rapporteur: Luís Miguel Pinho

1 Introduction
The goal of the session was to consider a set of additions
and changes to the language arising from the accepted
position papers, but still not consensual. The session lasted
a full day, with Tullio Vardanega and Michael González-
Harbour in charge, respectively, of the Morning and
Afternoon periods.

At the beginning of the day, Tullio started by presenting the
outline of the session, with an initial list of issues to discuss
but also noting that the agenda was to be regarded as fairly
open and that new or returning issues could easily be
integrated.

The anticipated topics (and proponents) for the session
were:

• Non-preemptive scheduling and the use of Ravenscar
and sporadic tasks with EDF, proposed by Rod White;

• Named memory (storage) pools, non-blocking delays
for hardware interfacing and parallel release of barriers,
proposed by Luke Wong, Stephen Michell and Brad
Moore;

• Generalising EDF support and user-defined clocks, by
Andy Wellings and Alan Burns;

• Execution-time accounting of interrupts handlers, a
topic with two position papers, one by Mario Aldea
Rivas and Michael González-Harbour, and another by
Kristoffer Nyborg Gregertsen and Amund Skavhaug;

• The Real-Time Transaction model, by Héctor Pérez
Tijero, J. Javier Gutiérrez and Michael González-
Harbour.

Other issues were also discussed during the session, either
because they were continued from the previous day, or
because they were considered to be related:

• Non-Uniform Memory Access architectures, by Andy
Wellings, Abdul H. Malik, Neil Audsley and Alan
Burns;

• The Ravenscar profile and Multiprocessors, by José
Ruiz;

• The Real-Time Framework, by Jorge Real and Alfons
Crespo.

The session was highly dynamic, with several rounds of
discussion. In order to increase the readability of this

report, the successive rounds of discussion on individual
topics are collated in a single presentation, instead of
actually following the chronological flow of the session.

2 Discussion
2.1 Non-preemptive scheduling
This topic started with a presentation by Rod White,
proposing extensions to the Ada real-time features, mainly
motivated by experience on practical industrial use of
(some of the) new capabilities of Ada 2005 [1]. Rod’s
objectives were also to make the new features easy to use,
without disrupting the current ones, introducing more
transparency, as complexity or obscurity would impair
industrial adoption.

In particular, Rod introduced three topics for discussion
[1]:

1. A more complete and transparent model for the control
of dispatching points in non-preemptive scheduling;

2. The use of the Ravenscar profile in conjunction with
EDF dispatching;

3. The treatment of sporadic tasks under EDF dispatching.

In the first topic, Rod noted that the current mechanism for
tasks to yield the processor in the non-preemptive model is
to perform a non-blocking delay, such as a delay into the
past (delay until Clock_First), which, although giving a
correct execution, does not provide a clear understanding.

Furthermore, when a task relinquishes the processor, it is
placed at the tail of the ready queue for its priority.
Therefore, this command cannot be executed inside a
protected subprogram. Rod then proposed a new package
for handling non-preemptive scheduling:

package Ada.Dispatching.Non_Preemptive is
procedure Yield_To_Higher;
procedure Yield; -- Bounded error if executed within a
 protected operation
end Ada.Dispatching.Non_Preemptive;

Yield would replace the non-blocking delay as the
mechanism for relinquishing the processor.
Yield_To_Higher would put the task at the head of its
priority queue, therefore only allowing higher priority tasks
to execute. This would allow it to be performed inside
protected subprograms.

Alan Burns then noted that Yield could have a different
behaviour inside a protected subprogram, deferring the

This paper previously appeared in ACM Ada Letters, Volume XXX,
Number 1, April 2010; reprinted with permission.

T. Vardanega, M. González-Harbour, L. M. Pinho 267

Ada User Journal Volume 31, Number 4, December 2010

Yield operation to when the task left the protected object,
instead of giving a bounded error.

In addition to the new package, Rod also proposed a new
pragma (Cooperate_On_Priority_Change), that would allow
the runtime to implicitly perform Yield_To_Higher
operations anytime a task’s priority was changed (such
when entering or leaving a protected object). This would
permit a more precise control on the responsiveness of the
system.

In a second round of discussion, the workshop came back
to this issue, and a proposal was made to include Yield and
Yield_To_Higher in the language. The actual wording
would be worked offline, but the general model was
considered OK. A straw vote was taken, and the proposal
was accepted with 19 votes in favour and 3 abstentions.

As for the Cooperate_On_Priority_Change pragma, there
was a consensus that this was a new scheduling model and
that as such it needed further thoughts. The proposal was
thus withdrawn.

2.2 Ravenscar and EDF
On a different topic, Rod noted that EDF allows higher
levels of processor utilisation, thus proposed its use within
the Ravenscar profile, by introducing a second parameter to
the pragma Profile:

pragma Profile (Ravenscar, EDF_Across_Priorities);

that would default to current behaviour
(FIFO_Within_Priorities), if not specified. This would also
allow for other scheduling strategies (such as non-
preemptive) to be used together with Ravenscar.

It was not clear to Rod if this would be a variant of
Ravenscar, or a new profile. Creating a new profile could
be heavy for a simple change in the dispatching policy.
Furthermore, Ravenscar is well established in industry – a
new name would not be regarded as highly. Therefore,
Rod’s proposal was to maintain the Ravenscar brand,
although probably with some “EDF tag”.

At this point Tullio Vardanega asked whether the proposal
also considered priority bands or only a model where all
priorities had the same dispatching policy. Rod confirmed
that his idea was the latter. Michael González-Harbour then
noted that by allowing the use of priority bands would
permit to mix critical and non critical tasks in the same
system, thus with higher levels of flexibility. Nevertheless,
Rod answered that for simplicity they would not implement
priority bands in their Ravenscar kernel. Rod put forward
that the Ravenscar kernel is used in non-critical parts of the
system, for efficiency reasons, where EDF could be
usefully employed.

In a second round of discussion, Joyce Tokar presented a
model of “overriding” the dispatching policy in Ravenscar.
Nevertheless, it was noted that all of the mechanisms which
are used for EDF control would need to be analysed
considering the Ravenscar restrictions (e.g. changing
deadlines). The group considered that further work was

required to think this proposal through and recommended
this to be a subject for the next workshop.

2.3 Sporadic tasks under EDF
In another topic, also presented by Rod, Ada’s
implementation of EDF dispatching assumes that tasks are
periodic, and are scheduled using the clock. However, in
embedded systems there are cases where periodic events in
nature are released by an external event, and not by the
language clock. And, for this case, there is no equivalent to
the procedure Delay_Until_And_Set_Deadline, thus it is not
possible to set the deadline of sporadic tasks when they are
suspended.

Solutions to this problem are possible with the current
features of the language, based on protected objects
(examples of this are presented in [1]). However, a more
efficient solution, and equivalent to the periodic
Delay_Until_And_Set_Deadline mechanism, would be an
extension to the Suspension_Object, through a child
package:

 package Ada.Synchronous_Task_Control.EDF is
 procedure Suspend_Until_True_And_Set_Deadline (
 S : in out Suspension_Object;
 D : in Ada.Real_Time.Time_Span);
 end Ada.Synchronous_Task_Control.EDF;

At this point, Andy Wellings raised the issue that user
defined clocks (which would be discussed later on) could
be a potential solution to this problem. However, it was not
clear how that would be accomplished.

A vote was taken later in the session, and the proposal
received 8 votes in favor and 12 abstentions. In the
Workshop’s tradition, abstentions are taken as "informed
non-opposition", thus this result was a sufficient basis to
promote an AI on the topic. Alan then accepted to prepare
an AI to support the proposal.

Another issue was raised with the recurrent use of the
“Suspend/Delay until true and set something”, since in the
previous day the same model was proposed for setting
processor affinities. This was regarded as not scalable, as
the number of attributes to set when suspending is
increased. Although no conclusion was reached on the
issue, it was considered something that should be further
analyzed.

2.4 Non-blocking delays for hardware interfacing
After Rod’s presentation, the session moved on to Stephen
Michell, who presented for consideration in the session
[2,3]:

• Non-blocking delays for hardware interfacing

• Named memory (storage) pools

• Parallel release of barriers

In the first item, Steve presented the problem when a task
needs to access hardware, but requires it to be ready after
some “settle” time. The solution for the task to suspend
itself is not possible inside a protected object (potentially

268 Session Summary: Language and Distr ibut ion Issues

Volume 31, Number 4, December 2010 Ada User Journal

suspending operations are not permitted), but if the task
spin-waits it consumes CPU time undesirably.

The proposal was then to allow for some kind of delay,
inside a protected subprogram. A consequence would be
that objects would have to implement actual locks, which is
not a problem in multiprocessor systems, where priority-
based locks are no longer effective.

Alan Burns then put forward that the same effect could be
currently obtained by setting a timer, and requeuing to a
private entry. Upon expiration of the timer, the task would
be released and could access the hardware. After some
consideration, this was accepted as an already existent
solution, and the proposal was withdrawn.

2.5 Named memory (storage) pools
Steve also presented a proposal to give the programmer
more control on the specification of storage pools. In order
to be able to specify and interface with different types of
memory, a new API was proposed, where the memory
model became similar to direct file I/O [3].

The proposed API would allow to create, read and write
memory, but with a more precise control of the
characteristics of the underlying memory type (for instance
read only). The dynamic addition of memory to the pool
was also analysed but considered more complicated to
implement.

Andy Wellings also presented his view that many times it is
necessary to be able to specify the actual address of storage
pools. An attribute ‘Address could simply solve the
problem. Steve noted that it would not be enough, as
special memory may require explicit reads or writes to be
performed.

Andy also added that in Non Uniform Memory Access
(NUMA) architectures the same problem exists, since it is
necessary to separate and identify the heap of each
processor. There was some discussion on this issue, but no
conclusion was drawn.

2.6 Parallel release of barriers
Another proposal by Steve was to allow the parallel release
of several tasks in the same event, which would be useful in
a multiprocessor environment. Currently, Ada defines that
only the task at the head of an entry queue is released,
which means that the release of multiple tasks must be
sequential. Also, suspension objects only allow one
suspended task.

Steve then proposed to add parallel release capabilities to
protected entries and suspension objects. The first would be
provided by a pragma Barrier_Entry which would identify
an entry as a barrier. Furthermore, to allow for parallel
execution inside the entry, it would not be allowed to
change the protected state.

The latter would be supported by adding a new type
Group_Suspension_Object to Ada.Synchronous_Control,
which would allow one to specify a maximum count of
suspended tasks. This solution would be simpler, but less
flexible. Protected objects are general programming

constructs, therefore a solution for protected entries must
be much more generic, thus complex.

A note was then made that whatever the solution, it should
not break if implemented in a sequential environment (e.g.
uniprocessor systems). The resulting behaviour would need
to be the same.

Ed Schonberg presented his view that, in order to avoid
confusion with regular entries, this mechanism would need
its own syntax. This was generally agreed upon by
participants, but two different perspectives were put
forward: either to add a barrier condition to functions, or to
create “entry functions”. The advantage of the last is that
the specification of the protected object would clearly
indicate the parallel release. The existence of a barrier
condition in the function would only be known within the
protected body.

Later in the session, and after some work during the break,
Steve proposed an API for the suspension barrier and a
model for “entry functions”.

For the suspension barrier, the new proposal was not to mix
barriers with suspension objects, and thus implement a
child package instead:

package Ada.Synchronous_Control.Suspension_Group is
 type Group_Suspension_Object_Status is record
 Last_Released : Boolean;
 Count : Positive);
 type Group_Suspension_Object(Count : Positive) is
limited private;
 -- count of 1 => unlimited blocking count
 -- and explicit release
 -- suspended tasks can always be released by
 -- call to Set_True
 procedure Set_True (
 S : in out Group_Suspension_Object);
 procedure Set_False (
 S : in out Group_Suspension_Object);
 procedure Current_Status(
 S : Group_Suspension_Object)
 return Group_Suspension_Object_Status;
 procedure Suspend_Until_True(
 S : in out Group_Suspension_Object;
 Unique : out Boolean);
end Ada.Synchronous_Control.Suspension_Group;

It was generally agreed that this could be accepted, but it
was anyhow decided to defer the issue to the next day for
further iteration.

Concerning the protected object model, the proposal was to
support special “entry functions”, where the last released
task would need to set the barrier back to false. This means
that this special task would need to change the state of the
protected object, which could impact the other tasks
executing in parallel inside the entry. The solution was to
define a pragma Modifiable_State, which permits to specify
what state of the object could be changed by the last
released task. All other tasks would not be able to read it.

T. Vardanega, M. González-Harbour, L. M. Pinho 269

Ada User Journal Volume 31, Number 4, December 2010

protected type PT is
 ...
 entry function Barrier(A, B, C : Integer) return Integer;
 pragma Barrier_Entry(Entry_Name => Barrier,
 Count => N);
 procedure Release;
private
 State : Local_State;
 Go_Now : Boolean;
 Total_Count : Integer;
 pragma Modifiable_State(Total_Count);
end PT;
protected body PT is
 entry function Barrier(A, B, C : Integer) return Integer
 increments Total_Count when Go_Now is
 begin
 . . .
 if PT'Last_Released then
 Total_Count := 0;
 end if;
 end Barrier;
 procedure Release is
 begin
 if Total_Count = N then
 Go_Now := True;
 or else Now then
 Go_Now := True;
 end if;
 end release;
end PT;

Ed Schonberg noted the drawback of the model where one
particular task (the last released one) has a special role, as it
must be explicitly handled by the programmer inside the
entry code. Some proposals were then made to include this
special code inside the when clause of the entry, or it to be
handled by the releasing task (by requeuing and waiting for
the last task to leave the entry function).

A question was asked whether the ARG would accept a
change of syntax, as this was the first proposal within the
workshop with that requirement. It was considered possible
by the members of the ARG present in the meeting, as this
was a localized change.

The general feeling was that, although interesting, the
model of how to control the resetting of the barrier after all
task were released was still not yet mature enough.

The workshop came back to this issue in a third round of
discussion, with a set of different proposals made by Andy
Wellings. In the first proposal, and considering that the
guard is not re-evaluated after each task release (tasks are
all released simultaneously), it was up to the releaser to
wait to clean the object state:

entry Go is
begin
 Data_Available := True;
 if Parallel’Count > 0 then requeue Clean_Up2;
 else requeue Clean_Up1;
 end if;

end;
entry function Parallel when Data_Available and
 Parallel’Count = 10 is
begin
 return Data;
end;
entry Clean_Up1 when Parallel’Count > 0 is
begin
 requeue Clean_Up2;
end;
entry Clean_Up2 when Parallel’Count = 0 is
begin
end;

A problem existed however, if a new task calls function
parallel while the other task is executing inside. That
needed further consideration.

The second approach was to add a special entry’completion
procedure to be executed after all tasks are released:

entry Go is
begin
 Data_Available := True;
end;
entry function Parallel when Data_Available and
 Parallel’Count = 10 is
begin
 return Data;
end;
when Parallel’Completion procedure Clean_Up is
begin
end;

The third proposal was to create a special finalize block
that could be executed only once and that could modify the
state of the object:

entry Go is
begin
 Data_Available := True;
end;
entry function Parallel when Data_Available and
 Parallel’Count = 10 is
begin
 return Data;
finally
 -- can update state
 -- only executed once
end;

No decision was eventually made, and the issue was
deferred.

2.7 User-defined clocks
The workshop then addressed a proposal [4] from Andy
Wellings and Alan Burns to revisit user-defined clocks,
something that was considered for Ada 95 but that was not
included in the language. Examples exist of a variety of
different clocks in embedded systems (for example, a GPS
clock), and Ada currently allows for implementations to
define other clocks and make them available to

270 Session Summary: Language and Distr ibut ion Issues

Volume 31, Number 4, December 2010 Ada User Journal

applications. Nevertheless, the proposal was to define a
root type for time, where all time types derive.

The proposal was updated to reflect not only the advances
in the Ada language (particularly in the Object-Oriented
model), but also to simplify the model, where applications
do not manage the delay queues, which are left to the
runtime. There were still some open issues, such as the
necessity for user-defined clocks to call back the runtime,
for example to handle time discontinuities (jumping
forward or back to the past), or the relationship between
user-defined and calendar time.

There was some discussion in this issue, but no decision
was taken at the workshop.

2.8 Generalising EDF support
The next proposal, also by Andy Wellings and Alan Burns
[5], was to integrate into Ada the support to user-defined
scheduling, leveraging on the fact that the Preemption
Level Control Protocol introduced in Ada 2005 to support
EDF can be used with several scheduling algorithms.

For this, a new mechanism would be required that permits
to specify a task attribute on which to base dispatching
decisions and to also control dispatching within a priority
level. It would also be necessary to define new dispatching
points, which would include the point where the value of a
task’s dispatching attribute was changed. Andy also
presented some open issues, namely if other scheduling
schemes other than EDF are useful, and if there are other
resource sharing protocols that could be supported by Ada
to allow for a wide range of scheduling schemes. There was
some discussion on this issue, but no decision was taken in
the workshop.

2.9 Non-Uniform Memory Access architectures
Andy Wellings presented the issue of supporting in Ada the
NUMA (Non-Uniform Memory Access) multi-processor
architectures. The accompanying paper [6] argues that the
programming model should allow for a more visible
mapping of the architecture at the programming level. Ada
abstracts programmers away from the low-level
architecture of the hardware, which although appropriate
for SMP, does not permit to use NUMA architectures
predictably and efficiently. There were a few comments on
this issue, but it was not discussed further in the Workshop.

2.10 Execution-time accounting of interrupts
handlers
Two independent proposals were submitted to the
workshop on the issue of execution-time accounting of
interrupts handlers. Both proposals noted that the current
model is implementation defined but the usual approach is
to charge the execution time of interrupts into the currently
running task, which does not provide for accurate
accounting. This is even more important as the introduction
of timing events causes programmers to shift code from
tasks to this low overhead mechanism, which is accounted
as an interrupt.

However, the two approaches differed in the way the actual
accounting was done.

In the proposal by Mario Aldea Rivas and Michael
González-Harbour [7], the interrupts execution-time is
accounted in a global “conceptual” task. An API is also
provided for applications to monitor the time executed in
interrupts. Therefore, applications not only have a more
accurate measure of tasks’ execution time but can also
measure the time spent in interrupts.

The proposal by Kristoffer Gregertsen and Amund
Skavhaug [8] defines a “pseudo” task for each interrupt
priority, with execution time accounting done per priority.

After some discussion, consensus was formed that the
separation of execution-time accounting was necessary,
although that it would be more appropriate that accounting
was performed per Interrupt_ID.

In a later round of discussion, an issue was raised that a
simple solution would be to introduce an implementation
advice that tasks should not be charged for the execution
time of interrupts. Then, this would become a runtime
quality issue. The proposal to introduce such
implementation advice was approved with 16 votes in
favour and 3 abstentions.

A second vote was made to decide if the workshop would
propose a model, in case the implementation supported
execution-time monitoring of interrupts. There were 9 votes
in favour, 1 opposed and 11 abstentions. It was then
decided that both Mario Aldea and Kristoffer Gregertsen
would work on an API to be analyzed on the following day.

2.11 Ravenscar and multiprocessor issues
One of the issues which had been closed in the previous
day was the integration of multiprocessor in the Ravenscar
profile, and whether the profile should specify one
particular multiprocessor scheduling model. There was a
proposal by José Ruiz [9] for Ravenscar to determine that
tasks would be statically allocated to processors, with a
Ravenscar partition being a single scheduling domain as
sanctioned in the previous session.

Doubts were raised however, particularly regarding
whether task migration would be allowed, and whether the
scheduling would be local to each processor or global to the
domain. In particular, task migration under user control
would allow more flexibility and efficiency. However,
concerns were voiced that task migration could impact the
certification of Ravenscar-based systems.

As for local versus global scheduling, it was argued that
Ravenscar would need a local scheduling approach, with
one ready queue per processor. This would impact the
definition of scheduling domains agreed earlier, since in
that definition, scheduling was global within the same
domain.

Another issue with global scheduling and task migration
was the impact on the locks of protected objects. In this
model, all locks would have to be actual, and no longer
priority based locks. The static allocation and local

T. Vardanega, M. González-Harbour, L. M. Pinho 271

Ada User Journal Volume 31, Number 4, December 2010

scheduling approach would allow for more efficient
implementations.

From the discussion, a list of possible models was
introduced:

1. Tasks’ fixed allocation, affinities specified by the user

2. Tasks’ fixed allocation, affinities specified by the user,
and allowing task migration

3. Tasks’ fixed allocation, affinities specified by the
runtime

4. Global scheduling, no fixed allocation

It was also considered that the model could be a mix, with
some tasks fixed, while other were scheduled globally.

During the discussion, there were doubts as to whether all
models were feasible, and whether the Ravenscar profile
should specify a model at all. Multiprocessor scheduling is
still fairly open area, with new models and algorithms
every day, so maybe Ravenscar should be silent and afford
implementations and programmers more flexibility.
However, by doing that, different implementations could
choose different models, something that the Ada standard
tries to avoid.

Considering all of this, consensus was reached that the
profile should not specify a model, but the workshop would
recommend that Ravenscar is implemented together with
option 1 above (tasks’ fixed allocation, affinities specified
by the user). This could be done through an implementation
advice in the standard.

2.12 The Real-Time Framework
The Real-Time Framework had been proposed in the
previous workshop, in 2008, and intended to provide a
library of real-time utilities which could be used by
application developers. In this workshop, Jorge Real
proposed the integration of support for mode changes into
the framework [10].

The proposal was based on the original implementation
made available by Andy Wellings in 2008, which was also
updated to work with a new version of the Ada compiler (at
the time of the original framework, some Ada 2005 features
were still not available in compilers). During the workshop
Jorge also made available the updated framework code.

In the proposal, mode management is based on a
synchronized interface, thus integrating the model with the
object-oriented model of Ada. During the presentation of
the mode manager, it was noted that in the implemented
model, the mode manager depends on a user defined type
(List_Of_Modes) and hence it is not independent from the
application. It was then considered that a different model
should be analysed.

Afterwards the discussion went on to consider whether the
real-time utilities framework should be pursued for
standardisation (for instance through a secondary standard)
to make it more visible. A proposal was put forward to
make it available in some form of collaborative platform,

and announcing it to the Ada community as a work in
progress.

It was decided to continue the work in an informal
collaboration, and anyone interested in working on it to
contact Jorge Real.

2.13 The Real-Time Transaction Model
The presentation of the real-time transaction model [11]
was made by J. Javier Gutiérrez. The goal is to integrate
distributed real-time transactions within the Distributed
Systems Annex of Ada, allowing for a separation of
concerns between the scheduling of both processing nodes
and network, and the application code.

There was some discussion on whether an attempt should
be made to standardize a real-time distributed model (or
make it available as a technical report), such that all
implementations would follow the same guidelines. The
question was raised whether the integration of distribution
and real-time would be useful and worth the effort. The
issue has been around for several workshops, and it was
generally agreed that this should be further pursued.

The discussion then went into a specific model for the
Ravenscar profile. This particular model is not compatible
with the profile, but it would be possible to make a
compatible version. It was thus decided that a Ravenscar
version should be proposed, with the intention to put
forward a technical report. If the model was then accepted,
it would be built also for full Ada.

3 Conclusions
The Language and Distribution session was mainly devoted
to the discussion of the changes and additions to the
language. An action list was permanently being built and
updated reflecting the outcomes of the discussion, but for
most of the issues actual decisions were deferred to the last,
concluding, session of the workshop [12], where the final
definition of the AIs to produce was completed.

References
[1] Rod White. Providing Additional Real-Time

Capability and Flexibility for Ada 2005. ACM Ada
Letters, Volume XXX, Number 1, April 2010.

[2] Stephen Michell, Luke Wong, Brad Moore. Realtime
Paradigms Needed Post Ada 2005. ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[3] Luke Wong, Stephen Michell, Brad Moore. Named
Memory Pool for Ada. ACM Ada Letters, Volume
XXX, Number 1, April 2010.

[4] Andy Wellings, Alan Burns. User-Defined Clocks. Is
it the right time now? ACM Ada Letters, Volume
XXX, Number 1, April 2010.

[5] Andy Wellings, Alan Burns. Generalizing the EDF
Scheduling Support in Ada 2005. ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[6] Andy Wellings, Abdul H. Malik, Neil Audsley, Alan
Burns. Ada and cc-NUMA Architectures. What can

272 Session Summary: Language and Distr ibut ion Issues

Volume 31, Number 4, December 2010 Ada User Journal

be achieved with Ada 2005? ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[7] Mario Aldea Rivas, Michael González Harbour.
Execution time monitoring and interrupt handlers.
ACM Ada Letters, Volume XXX, Number 1, April
2010.

[8] Kristoffer Nyborg Gregertsen, Amund Skavhaug.
Execution-time control for interrupt handling. ACM
Ada Letters, Volume XXX, Number 1, April 2010.

[9] José Ruiz. Towards a Ravenscar Extension for
Multiprocessor Systems. ACM Ada Letters, Volume
XXX, Number 1, April 2010.

[10] Jorge Real and Alfons Crespo. Incorporating
Operating Modes to an Ada Real-Time Framework.
ACM Ada Letters, Volume XXX, Number 1, April
2010.

[11] Héctor Pérez Tijero, J. Javier Gutiérrez, Michael
González Harbour. Support for a real-time
transactional model in distributed Ada. ACM Ada
Letters, Volume XXX, Number 1, April 2010.

[12] Stephen Michell, Jorge Real. Conclusions of the 14th
International Real-Time Ada Workshop. ACM Ada
Letters, Volume XXX, Number 1, April 2010.

 273

Ada User Journal Volume 31, Number 4, December 2010

Conclusions of the 14th International
Real-Time Ada Workshop
Chair: Stephen Michell
Rapporteur: Jorge Real

1 Introduction
The last session of IRTAW-14 was devoted to concluding
on the results of the workshop, with the goal of prioritizing
and selecting Ada Issues (AIs) to be produced and sent to
the ISO/IEC JTC1/SC22/WG9 Ada Rapporteur Group
(ARG). It allowed time for closing some open issues.

In this report, Sections 2 to 4 summarize the final
discussion around some open issues. Section 5 reflects the
list of AIs to be produced by the workshop. The plan for
next meeting is considered in Section 6. There is a final
consideration about concurrency vulnerabilities in Section
7. Finally, Section 8 concludes with the closing of IRTAW-
14.

2 Barrier suspension objects
Stephen Michell summarized the proposal for Ada to
include barrier suspension objects to allow parallel release
of multiple readers upon a certain condition, expressed by
means of a barrier [4]. This proposal is targeted to
multiprocessor architectures and the goal is to allow true
parallelism when multiple readers wait for data produced
by a single writer task. In such cases, the maximum
efficiency is achieved by broadcasting the data in parallel
to all the interested reader tasks. This behaviour cannot be
accomplished by means of an entry, as presently specified
in Ada, due to the fact that only the first waiting task would
be released upon barrier opening and then the barrier
condition would need to be reevaluated every time a single
task is served. The proposal can be supported in POSIX
and in most present hardware implementations of a barrier.

It was noted that the definition of barrier suspension objects
should be accompanied by pragma Preelaborate. The
workshop did not see any need for requiring barrier
suspension objects to be declared at library level. No
implications were identified with respect to pragmas
Intrinsic and Inline. There was unanimous support for the
proposal.

3 Named storage pools
Named storage pools were proposed in [5]. They are
motivated by the convenience to use storage pools
specifically tied to one of the different kinds of memory
available, since memory maps include different memory
technologies in many systems (RAM, ROM, FLASH, etc.).

The workshop however did not find enough motivation for
pushing for this change to the language: the proposal is not

mature enough and there were opinions in the sense that
there may be ways to achieve a similar functionality in
current Ada. The proposal was therefore withdrawn. It was
agreed, however, that there should be syntax added to Ada
to permit the specification of an address for a declared
storage pool.

4 Execution time control for interrupt
handling
Kristoffer Gregertsen gave a summary of the proposal to
introduce mechanisms for monitoring the execution time
spent in servicing interrupts. This proposal was based on
[3] and [1]. The proposed API (i) defines one execution-
time clock per Interrupt ID, (ii) allows the mechanism to
obtain the time spent in the handling of each interrupt, and
(iii) also allows association of timers to those clocks.

Use of Ada.Interrupts.Interrupt_ID was preferred to using
Task ID to identify execution time of the different interrupt
handlers. A new package Ada.Execution Time.Interrupts
contains the following subprogram:

function Clock (I: Ada.Interrupts.Interrupt_ID)
 return CPU_Time;

The function returns the execution time spent in handling
the identified interrupt, or returns CPU Time First if the
facility is not supported by the implementation.

The proposal was supported by 17 votes for, no vote
against, and 3 abstentions. Hence an AI will be produced
on this topic. Note that being a child package of
Ada.Execution_Time, its implementation would be optional.

The workshop then considered a natural extension to this
facility: timers for CPU time spent in interrupt handling.
This feature would need the inclusion of interrupt clocks
first, since timers rely on clocks. Although there was no
objection to the interface described in [3], there was no
general support for pushing this feature forward to
standardization (4 votes for, 2 against and 13 abstentions).
The workshop however agreed to suggest to ARG the
inclusion of an implementation advice stating that this
service, if implemented, should stick to the proposed
interface:

with Ada.Interrupts;
package Ada.Execution_Time.Timers.Interrupts is
 type Timer (I: Ada.Interrupts.Interrupt_ID)
 is new Ada.Execution_Time.Timers.Timer(
 Ada.Task_Identification.Null_Task_Id’Access)
 with private;

This paper previously appeared in ACM Ada Letters, Volume XXX,
Number 1, April 2010; reprinted with permission

274 Conclusions of the 14t h Internat ional Real-Time Ada Workshop

Volume 31, Number 4, December 2010 Ada User Journal

private
. . .
end Ada.Execution_Time.Timers.Interrupts;

5 Wrapping up
Alan Burns prepared the list of topics about which the
workshop agreed to produce new AIs. The list was
reviewed and the different items were assigned to those in
charge of writing them. The final list considers:

1. Addition of affinity support packages, interrupt
affinities and considerations about spin locking — A.
Burns and A. Wellings.

2. Change definition of group budgets to include
processor, with default to processor 1 — A. Burns and
A. Wellings.

3. Addition of an implementation advice to allow for
multiprocessor execution of Ravenscar programs — J.
Ruiz.

4. Addition of timers to the Ravenscar profile (a
maximum of one timer per task) — T. Vardanega. 1

5. Add the definition of barrier suspension objects — S.
Michell.

6. Implementation advice on interrupt monitoring — M.
Gonz´alez and M. Aldea.

7. Addition of operations yield and yield to higher
priority in non-preemptive scheduling — A. Burns.

8. Deadlines in synchronous task control — A. Burns.

9. Addition of interrupt execution-time accounting clocks
— M. González.

6 Conclusion and next IRTAW
Deadlines were set for finalization of session reports,
production of final versions of the position papers, and
writing of the AIs to be sent to ARG. Alan Burns will
centralize the AIs and propose them in the next ARG
meeting.

There was general agreement about the need of future
editions of IRTAW. The next edition will be organized by
Michael González in the Santander area, in Spain. The
workshop is scheduled for April or May 2011, hence we
leave some 18 months between editions 14 and 15. Mario
Aldea will head the role of Program Committee Chair.

1 Tullio will check that the Ravenscar model is not broken with this
addition and get feedback from implementors — perhaps add a restriction
(e.g. Max_Nr_Of_Timers_Per_Task and set it to 1 for Ravenscar).

7 Consideration of concurrency
vulnerabilities
The ISO/IEC JTC 1/SC 22/WG 23 (WG23, for short) is
preparing a technical report about Programming Language
Vulnerabilities. One of the items in the workshop agenda
was to note the absence of concurrency-related
vulnerabilities in the technical report being prepared, as
reflected in the position paper [2].

The workshop decided to submit this position paper to
WG23, after receiving comments and suggestions for
improvement from participants at the workshop. Miguel
Pinho noted that multiprocessor execution may be yet
another source of vulnerabilities worth considering.

8 Closing
There being no other pending issues, Stephen Michell
closed the session and the workshop. The workshop
thanked specially the presence of first-time participants and
encouraged them to continue to do so. All thanked Tullio
Vardanega for the splendid local arrangement.

References
[1] M. Aldea and Michael González-Harbour. Execution

time monitoring and interrupt handlers. Ada Letters,
ACM Ada Letters, Volume XXX, Number 1, April
2010.

[2] A. Burns and A. Wellings. Language vulnerabilities -
let’s not forget concurrency. Ada Letters, ACM Ada
Letters, Volume XXX, Number 1, April 2010.

[3] K. Gregertsen and A. Skavhaug. Execution-time control
for interrupt handling. Ada Letters, ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[4] S. Michell, L. Wong, and B. Moore. Real-Time
paradigms needed post Ada 2005. Ada Letters, ACM
Ada Letters, Volume XXX, Number 1, April 2010.

[5] L. Wong, S. Michell, and B. Moore. Named memory
pool for Ada. Ada Letters, ACM Ada Letters, Volume
XXX, Number 1, April 2010.

 275

Ada User Journal Volume 31, Number 4, December 2010

Progress Report from the 14th International Real-
Time Ada Workshop – IRTAW14
Alan Burns
Department of Computer Science, University of York, UK

Abstract
This paper reviews the outcomes of the latest
workshop in the IRTAW series. Specifically it looks at
the impact the workshop is having on the current
effort to define the 2012 amendment to Ada.
Keywords: real-time, Ada.

1 Introduction
The 14th International Real-Time Ada workshop took place
in Portovenere, Italy during 7-9 October 2009. A total of
fourteen papers were accepted for the workshop. But in
keeping with the tradition of the IRTAW series these
papers were not formally presented but were made
available to the 24 delegates before the event – they formed
the background to the discussions that took place. The
papers themselves have been published by Ada Letters in
Volume XXX, Number 1 (April 2010); a list of the papers
is included in Appendix A.

The workshop was organised into a number of discussion
sessions:

• Multiprocessor Systems,

• Language and Distribution Issues, and

• Conclusions and Recommendations.

Each of these sessions produced a summary report that
were also published in the above referenced volume of Ada
Letters 4.

The objectives of the workshop include a wish to consider
all relevant language issues to do with the support of real-
time applications. This includes experiences in
implementing and using current language features, and the
exploration of possible new features. Some of these
features are ‘in the long term’, but others are relevant to the
current effort to define the 2012 amendment to Ada. In the
remainder of this paper, we focus on this latter objective,
and review the progress that is currently been made to
influence the development of Ada 2012.

2 Recommendations from IRTAW14
The discussions during the workshop produced the
following recommendations for consideration by the Ada
2012 revision process:

4 Editor’s note: the session summaries are also available in this issue of the
Ada User Journal.

1. To support multiprocessor-based systems the notion of
an allocation domain was developed. The key point
about an allocation domain is that it defines a set of
CPUs on which tasks are globally scheduled. There is a
default allocation domain (the System domain) that is
the set of all processors allocated to a program. The
assumption is that this is a fixed set of processors that
does not change during the execution of the program.
The default behaviour of an Ada program if it does not
specify anything is therefore global scheduling of all
tasks across all processors. But tasks with an allocation
domain can be assigned a specific CPU to support fully
partitioned allocations.

2. A static Ravenscar specific solution to the allocation
problem for multicore targets was defined for inclusion
in the profile’s definition.

3. Group Timers should be confined to just a single
processor – to manage parallel use of budgets was
deemed too problematic.

4. Where possible the time spent in interrupt handlers
should not be added to a task’s execution time clock.
Ideally the time spent handling interrupts should be
available via a ‘special’ interrupt clock.

5. For non-preemtpive scheduling it is useful to
distinguish between yielding to strictly higher priority
tasks, and yielding to equal or higher priority. The use
of an explicit yield procedure would also help the
readability of programs (the current alternative is to
make calls of delay 0.0, or delay until <some time in the
past>).

6. For EDF scheduled sporadic tasks, where a task’s
release is controlled by a synchronous task control
object, there is a need to be able to suspend with one
deadline but to have another deadline when next
released. This is equivalent to the delay until and set
deadline primitive for controlling EDF scheduled
periodic tasks. A ‘Suspend_Until_
True_And_Set_Deadline’ procedure was proposed.

7. For parallel hardware, where data-oriented parallelism
is being employed, a thread barrier is often supported.
This allows a set of threads to be blocked until the final
thread (of the set) arrives. All threads are then released
(with one of the threads being identified as having a
special status so that is can manipulate the barrier). A
task-based primitive for Ada is proposed.

276 Progress Report f rom the 14 t h Internat ional Real-Time Ada Workshop

Volume 31, Number 4, December 2010 Ada User Journal

8. Another addition to the Ravenscar profile was to allow
Timers (perhaps a maximum of one per task) to be
included in the profile.

Of course there were a number of other issues and topics
discussed that may lead to changes to Ada in the future.
Among this list are: Ravenscar and EDF scheduling, named
memory pools, barriers functions in protected objects, user-
defined clocks, support for NUMA architectures, the real-
time framework (set of utilities) and further support for
distributed applications. These, and other, topics will be
considered at the next IRTAW event (in September 2011).

3 AIs in the Ada 2012 process
The definition and maintenance of the Ada language is the
responsibility of the ARG, a working committee of WG9,
itself an ISO/IEC committee. The ARG manages its work
by placing all possible language changes into an AI (Ada
Issue). For Ada 2012 there are over 200 such AIs. From
the above list of topics that the workshop defined as being
of relevance to Ada 2012 the following AIs were developed
(the number in brackets refers to the above numbered list):

AI-166: Yield for non-preemptive dispatching (5).

AI-167: Managing affinities for programs executing on
multiprocessors (1).

AI-168: Extended suspension objects (6).

AI-169: Defining group budgets for multiprocessor
platforms (3).

AI-170: Monitoring the time spent in Interrupt Handlers,
and providing a clock to read these values (4).

AI-171: Pragma CPU and Ravenscar Profile (1,2).

AI-172: Extension to Ravenscar Profile (8).

AI-174: Implement Task barriers in Ada (7).

AI-210: Correct Timing_Events metric.

AI-211: No_Relative_Delay should not allow relative
timing events.

The latter two very minor issues were clear errors in the
2005 definition of Ada and must therefore be corrected.

Other AIs that have relevance to the real-time community,
though not arising from this workshop are:

AI-30: Requeue on synchronized interfaces (came from
last IRTAW, allows for more general patterns to be
developed),

AI-94: Timing_Events should not require deadlock (a
common programming idiom is to set a handler while
executing a handler – obviously this should not lead to
deadlock!),

AI-117: Memory barriers and Volatile objects (a class of
non-locking algorithm for parallel hardware require that
assignments to shared variables are not reordered – Ada’s
definition of Volatile needs to ensure this),

AI-119: Package Calendar, Daylight Savings Time, and
UTC_Offset,

AI-202: Task_Termination and Exceptions raised during
finalization.

All of these AI can be obtained from the Ada Conformity
Assessment Authority home page: www.ada-auth.org/.

4 Progress of the real-time AIs
All but one of the ‘workshop’ AIs is currently making
progress through the ARG procedures. The one that has
been dropped is AI-172. It was felt that the Ravenscar
profile was a significant ‘brand’ for Ada, and that changes
to it should not be made likely. Further consideration of the
increase in run-time complexity was needed. This is likely
to be taken up at the next IRTAW.

Of the other AIs, many have already been ‘concluded’ and
have either been progressed through the pipeline to WG9,
or are awaiting the final word-smiting. The ones currently
been worked on are those concerned with multiprocessor
scheduling (AI-167 and AI-171). These represent the more
significant changes and hence it is not surprising that they
still require further work. However, it is still the view of
ARG that these should make it through to Ada 2012.

The process by which the ARG transforms ideas presented
to it by the IRTAW inevitable leads to many necessary
changes. Often the final language feature is quite different
from what was discussed at the workshop. Nevertheless,
the essential need always remains at the heart of the
discussions and the final amendment does indeed address
the issue raised.

To give an example of this process, consider AI-166. The
initial recommendation from the workshop is that the
following package be added to the Standard:

package Ada.Dispatching.Non_Preemptive is
 procedure Yield_To_Higher;

 procedure Yield; - - Bounded error if
 - - executed within a protected operation
end Ada.Dispatching.Non_Preemptive;

After seven iteration of this definition the final language
change recommendation is to add to package Ada.
Dispatching the following procedure:

procedure Yield; -- Bounded error if
- - executed within a protected operation

and to include the following new package:

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher
 renames Yield;
end Ada.Dispatching.Non_Preemptive;

Hence the functionality is split between two packages and
the Yield procedure becomes available even if preemptive
dispatching is being used.

A. Burns 277

Ada User Journal Volume 31, Number 4, December 2010

To give an example of a complete set of language changes
concerned with just a single well-focused issue, consider
AI-168. The required wording change from this AI is:

Add after D.10(5):

The following language-defined library package exists:

with Ada.Real_Time;
package Ada.Synchronous_Task_Control.EDF is

 procedure
 Suspend_Until_True_And_Set_Deadline
 (S : in out Suspension_Object;
 TS : in Ada.Real_Time.Time_Span);

end Ada.Synchronous_Task_Control.EDF;
Add after D.10(10):

The procedure Suspend_Until_True_And_Set_Deadline
blocks the calling task until the state of the object S is True;
at that point the task becomes ready with a deadline of
Ada.Real_Time.Clock + TS, and the state of the object
becomes False. Suspend_Until_True_And_Set_Deadline is
a potentially blocking operation.

Add after D.10(11):

NOTE: More complex schemes, such as setting the
deadline relative to when Set_True is called, can be
programmed using a protected object.

The other major changes to the workshop’s proposals
concern the support for affinities for programs running on
multicore or multiprocessor platforms. Here the
terminology has changed (from allocation domains to
dispatching domains) and the functionality has been
reduced (no longer will each domain be able to specify
different scheduling rules). But again the essential
requirements identified by the workshop are being met.

5 Conclusions
Just as the previous thirteen workshops in the IRTAW
series have influenced the continuing development of Ada,
the 14th event proved to again generate ideas that keep Ada
at the forefront of languages in terms of its support for real-
time programming. Many aspects of embedded and real-
time systems are having to face up to the challenges that
new parallel hardware is generating. There is much to be
done in this area, but Ada has made a start by introducing
the notion of affinity into the set of abstractions that it
makes available to programmers.

It is most likely that future workshops will continue to
focus on this crucial area. But it is also important that
implementations become available that allow these new
features to be used. Only though experience will the new

abstractions be tested and evaluated as to whether they are
fit for purpose. If they are, we can continue to progress the
Ada language, if they are not then alternatives must be
developed. In both of these endeavours the IRTAW series
will have a role.

The 15th IRTAW will take place in Spain in mid September
2011. A call for papers will be available shortly; readers of
the Ada User Journal are encouraged to consider
participating.

Appendix A
The following papers were accepted for the Workshop and
are now available via Volume XXX, Number 1 (April
2010) of Ada Letters:

[1] Supporting Execution on Multiprocessor Platforms -
A. Burns and A.J. Wellings.

[2] Language Vulnerabilities - Let's not forget
Concurrency - A. Burns and A.J. Wellings.

[3] Execution-time control for interrupt handling -
Kristoffer Nyborg Gregertsen and Amund Skavhaug.

[4] Temporal Isolation with the Ravenscar Profile and Ada
2005 - Enrico Mezzetti, Marco Panunzio and Tullio
Vardanega

[5] Named Memory Pool for Ada - Luke Wong, Stephen
Michell and Brad Moore.

[6] Realtime Paradigms Needed Post Ada 2005 – Stephen
Michell, Luke Wong and Brad Moore.

[7] Execution time monitoring and interrupt handlers,
Position Statement – Mario Aldea Rivas and Michael
Gonzales Harbour.

[8] Incorporating Operating Modes to an Ada Real-Time
Framework - Jorge Real and Alfons Crespo.

[9] Towards a Ravenscar Extension for Multi-Processor
Systems - Jose F. Ruiz.

[10] Support for a real-time transactional model in
distributed Ada - Hector Perez Tijero, Javier Gutierrez
and Michael G. Harbour.

[11] User-Defined Clocks. Is it the right time now? - A.J.
Wellings and A. Burns.

[12] Generalizing the EDF Scheduling Support in Ada 2005
- A.J. Wellings and A. Burns.

[13] Ada and CC-NUMA Architectures: What can be
achieved with Ada 2005? - A.J. Wellings, A.H. Malik,
N.C. Audsley and A. Burns.

[14] Providing Additional Real-Time Capability and
Flexibility for Ada 2005 – Rod White.

278

Volume 31, Number 4, December 2010 Ada User Journal

Ada and the Software Vulnerabilities Project:
the SPARK Annex
Alan Burns, FREng (ed.)
Department of Computer Science, University of York, York YO1 5DD UK; Tel: +44 (0)1904 432779;
email: burns@cs.york.ac.uk

Joyce L. Tokar, PhD (ed.)
Pyrrhus Software, PO Box 1352, Phoenix, AZ, 85001-1352, USA.; Tel: +1 602373 0713;
email: tokar@pyrrhusoft.com

Stephen Baird, John Barnes, Rod Chapman, Gary Dismukes, Michael González-Harbour, Stephen Michell,
Brad Moore, Luís Miguel Pinho, Erhard Ploedereder, Jorge Real, J.P. Rosen, Ed Schonberg, S. Tucker Taft,
T. Vardanega

Abstract
In a previous article [1] we published the Ada [2]
Annex to the Technical Report (TR) on software
vulnerabilities [3], developed by ISO/IEC JTC 1/SC
22/WG 23. This article completes this work, with the
annex concerning SPARK [4] *.
Keywords: software vulnerabilities, software
vulnerability, Ada, SPARK.

1 Introduction
Software vulnerabilities are defined as a property of a
system security, requirements, design, implementation, or
operation that could be accidentally triggered or
intentionally exploited and result in a security failure [5].
Work on software vulnerabilities and how they enable
software applications to be infiltrated and corrupted
continues to be of interest world. Working Group 23 (WG
23) of the Programming Languages Subcommittee (SC 22)
of the International Organization of Standards (ISO) has
recently completed a Technical Report that identifies and
enumerates a collection of software vulnerabilities in
existing programming languages [3]. Annexes to this
document are being developed to identify if the
vulnerabilities defined in the TR exist in various
programming languages.

A workshop was conducted in parallel with the 14th
International Conference on Reliable Software
Technologies – Ada-Europe 2009 to initiate the
development of content of an Annex to the Technical
Report that documents its applicability to the Ada and
SPARK programming languages. The results of this
workshop were published in [6]. Another workshop was
conducted in parallel with the 2009 SIGAda conference.

* For completeness, the article republishes and adapts the Introduction
section of [1].

Work continued on this document over the course of 2009
and was completed in a short workshop at the 15th
International Conference on Reliable Software
Technologies – Ada-Europe 2010. A previous article [1]
published the final draft copy of the Ada Annex to the WG
23 TR submitted to WG 23 for inclusion in the TR. This
article completes the work, providing the SPARK annex
developed by Altran-Praxis.

Note, within the WG 23 TR each vulnerability is assigned a
unique identifier such as RIP for the Inheritance
vulnerability. Since the WG 23 TR was under development
during the work on this Annex and there is an expectation
that more vulnerabilities will be added to the TR, the
sections in the Ada and SPARK annexes include their
corresponding unique identifier in the section heading.

References
[1] Burns, A., Tokar, J. L. (Eds.), Ada and the Software

Vulnerabilities Project, in Ada User Journal, Vol. 31,
number 3, September 2010, pp. 191-215.

[2] Taft, S. Tucker, Duff, R. A., Brukardt, R. L.,
Ploedereder, E., Leroy, P, Ada Reference Manual,
LNCS 4348, Springer, Heidelberg, 2006.

[3] ISO/IEC JTC 1/SC 22 N 4522, ISO/IEC TR 24772,
Information Technology — Programming Languages
— Guidance to Avoiding Vulnerabilities in
Programming Languages through Language Selection
and Use, 7 November 2009.

[4] SPARK Language Definition: “SPARK95: The
SPADE Ada Kernel (Including RavenSPARK)”
Available at www.altran-praxis.com.

[5] NIST Special Publication 268, “Source Code Security
Analysis Tool Functional Specification Version 1.0,”
May 2007.

[6] Proceedings of the Software Vulnerabilities
Workshop of Ada-Europe 2009, in Ada User Journal,
Volume 30, Number 3, September 2009, pp. 174-192.

A. Burns, J. L. Tokar (Eds.) 279

Ada User Journal Volume 31, Number 4, December 2010

Annex SPARK – Final Draft

SPARK.Specific information for
vulnerabilities

SPARK.1 Identification of standards
and associated documentation
See Ada.1 *, plus the references below. In the body of this
annex, the following documents are referenced using the
short abbreviation that introduces each document,
optionally followed by a specific section number. For
example “[SLRM 5.2]” refers to section 5.2 of the SPARK
Language Definition.

[SLRM] SPARK Language Definition: “SPARK95: The
SPADE Ada Kernel (Including RavenSPARK)” Latest
version always available from www.altran-praxis.com.

[SB] “High Integrity Software: The SPARK Approach to
Safety and Security.” John Barnes. Addison-Wesley, 2003.
ISBN 0-321-13616-0.

[IFA] “Information-Flow and Data-Flow Analysis of while-
Programs.” Bernard Carré and Jean-Francois Bergeretti,
ACM Transactions on Programming Languages and
Systems (TOPLAS) Vol. 7 No. 1, January 1985. pp 37-61.

[LSP] “A behavioral notion of subtyping.” Barbara Liskov
and Jeannette Wing. ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 16, Issue 6
(November 1994), pp. 1811 - 1841.

SPARK.2 General terminology and
concepts
The SPARK language is a contractualized subset of Ada,
specifically designed for high-assurance systems. SPARK
is designed to be amenable to various forms of static
analysis that prevent or mitigate the vulnerabilities
described in this TR.

This section introduces concepts and terminology which
are specific to SPARK and/or relate to the use of static
analysis tools.

Soundness
This concept relates to the absence of false-negative results
from a static analysis tool. A false negative is when a tool
is posed the question “Does this program exhibit
vulnerability X?” but incorrectly responds “no.” Such a
tool is said to be unsound for vulnerability X. A sound tool
effectively finds all the vulnerabilities of a particular class,
whereas an unsound tool only finds some of them.

* Editor’s note: The Ada Annex is published in the September 2010 issue
of the Ada User Journal (Vol. 31, n. 3).

The provision of soundness in static analysis is
problematic, mainly owing to the presence of unspecified
and undefined features in programming languages. Claims
of soundness made by tool vendors should be carefully
evaluated to verify that they are reasonable for a particular
language, compilers and target machines. Soundness claims
are always underpinned by assumptions (for example,
regarding the reliability of memory, the correctness of
compiled code and so on) that should also be validated by
users for their appropriateness.

Static analysis techniques can also be sound in theory –
where the mathematical model for the language semantics
and analysis techniques have been formally stated, proved,
and reviewed – but unsound in practice owing to defects
in the implementation of analysis tools. Again, users should
seek evidence to support any soundness claim made by
language designers and tool vendors. A language which is
unsound in theory can never be sound in practice.

The single overriding design goal of SPARK is the
provision of a static analysis framework which is sound in
theory, and as sound in practice as is reasonably possible.

In the subsections below, we say that SPARK prevents a
vulnerability if supported by a form of static analysis which
is sound in theory. Otherwise, we say that SPARK
mitigates a particular vulnerability.

SPARK Processor
We define a “SPARK Processor” to be a tool that
implements the various forms of static analysis required by
the SPARK language definition. Without a SPARK
Processor, a program cannot reasonably be claimed to be
SPARK at all, much in the same way as a compiler checks
the static semantic rules of a standard programming
language.

In SPARK, certain forms of analysis are said to be
mandatory – they are required to be implemented and
programs must pass these checks to be valid SPARK.
Examples of mandatory analyses are the enforcement of the
SPARK language subset, static semantic analysis (e.g.
enhanced type checking) and information flow analysis
[IFA].

Some analyses are said to be optional – a user may choose
to enable these additional analyses at their discretion. The
most notable example of an optional analysis in SPARK is
the generation of verification conditions and their proof
using a theorem proving tool. Optional analyses may
provide greater depth of analysis, protection from
additional vulnerabilities, and so on, at the cost of greater
analysis time and effort.

Failure modes for static analysis
Unlike a language compiler, a user can always choose not
to, or might just forget to run a static analysis tool.
Therefore, there are two modes of failure that apply to all
vulnerabilities:

280 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

1. The user fails to apply the appropriate static
analysis tool to their code.

2. The user fails to review or mis-interprets the
output of static analysis.

SPARK.3.BRS Obscure Language
Features [BRS]
SPARK mitigates this vulnerability.

SPARK.3.BRS.1 Terminology and
features
As in Ada.3.BRS.1.

SPARK.3.BRS.2 Description of
vulnerability
As in Ada.3.BRS.2.

SPARK.3.BRS.3 Avoiding the
vulnerability or mitigating its effects
The design of the SPARK subset avoids many language
features that might be said to be “obscure” or “hard to
understand”, such as controlled types, unrestricted tasking,
anonymous access types and so on.

SPARK goes further, though, in aiming for a completely
unambiguous semantics, removing all erroneous and
implementation-dependent features from the language. This
means that a SPARK program should have a single
meaning to programmers, reviewers, maintainers and all
compilers.

SPARK also bans the aliasing, overloading, and
redeclaration of names, so that one entity only ever has one
name and one name can denote at most one entity, further
reducing the risk of mis-understanding or mis-interpretation
of a program by a person, compiler or other tools.

SPARK.3.BRS.4 Implications for
standardization
None.

SPARK.3.BRS.5 Bibliography
None.

SPARK.3.BQF Unspecified
Behaviour [BQF]
SPARK prevents this vulnerability.

SPARK.3.BQF.1 Terminology and
features
As in Ada.3.BQF.1.

SPARK.3.BQF.2 Description of
vulnerability
As in Ada.3.BQF.2.

SPARK.3.BQF.3 Avoiding the
vulnerability or mitigating its effects
SPARK is designed to eliminate all unspecified language
features and bounded errors, either by subsetting to make
the offending language feature illegal in SPARK, or by
ensuring that the language has neutral semantics with
regard to an unspecified behaviour.

“Neutral semantics” means that the program has identical
meaning regardless of the choice made by a compiler for a
particular unspecified language feature.

For example:

• Unspecified behaviour as a result of parameter-
passing mechanism is avoided through subsetting
(no access types) and analysis to make sure that
formal and global parameters do not overlap and
create a potential for aliasing [SLRM 6.4].

• Dependence on evaluation order is prevented

through analysis so that all expressions in SPARK
are free of side-effects and potential run-time
errors. Therefore, any evaluation order is allowed
and the result of the evaluation is the same in all
cases [SLRM 6.1].

• Bounded error as a result of uninitialized variables

is prevented by application of static information
flow analysis [IFA].

SPARK.3.BQF.4 Implications for
standardization
None.

SPARK.3.BQF.5 Bibliography
None.

SPARK.3.EWF Undefined
Behaviour [EWF]
SPARK prevents this vulnerability.

SPARK.3.EWF.1 Terminology and
features
As in Ada.3.EWF.1.

SPARK.3.EWF.2 Description of
vulnerability
As in Ada.3.EWF.2.

A. Burns, J. L. Tokar (Eds.) 281

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.EWF.3 Avoiding the
vulnerability or mitigating its effects
SPARK prevents all erroneous behaviour, either through
subsetting or static analysis [SB 1.3].

SPARK.3.EWF.4 Implications for
standardization
None.

SPARK.3.EWF.5 Bibliography
None.

SPARK.3.FAB Implementation-
Defined Behaviour [FAB]
SPARK mitigates this vulnerability.

SPARK.3.FAB.1 Terminology and features
As in Ada.3.FAB.1.

SPARK.3.FAB.2 Description of
vulnerability
As in Ada.3.FAB.2.

SPARK.3.FAB.3 Avoiding the vulnerability
or mitigating its effects
SPARK allows a number of implementation-defined
features as in Ada. These include:

• The range of predefined integer types.
• The range and precision of predefined floating-

point types.
• The range of System.Any_Priority and its

subtypes.
• The value of constants such as System.Max_Int,

System.Min_Int and so on.
• The selection of T’Base for a user-defined integer

or floating-point type T.
• The rounding mode of floating-point types.

In the first four cases, static analysis tools can be
configured to “know” the appropriate values [SB 9.6]. Care
must be taken to ensure that these values are correct for the
intended implementation. In the fifth case, SPARK defines
a contract to indicate the choice of base-type, which can be
checked by a pragma Assert. In the final case, additional
static analysis of numerical precision must be performed by
the user to ensure the correctness of floating-point
algorithms.

SPARK.3.FAB.4 Implications for
standardization
None.

SPARK.3.FAB.5 Bibliography
None.

SPARK.3.MEM Deprecated
Language Features [MEM]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.MEM.

SPARK.3.NMP Pre-Processor
Directives [NMP]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NMP.

SPARK.3.NAI Choice of Clear
Names [NAI]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NAI.

SPARK.3.AJN Choice of Filenames
and other External Identifiers [AJN]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.AJN.

SPARK.3.XYR Unused Variable
[XYR]
SPARK mitigates this vulnerability.

SPARK.3.XYR.1 Terminology and
features
As in Ada.3.XYR.1.

SPARK.3.XYR.2 Description of
vulnerability
As in Ada.3.XYR.2.

SPARK.3.XYR.3 Avoiding the vulnerability
or mitigating its effects
As in Ada.3.XYR.3. Also, SPARK is designed to permit
sound static analysis of the following cases [IFA]:

• Variables which are declared but not used at all.
• Variables which are assigned to, but the resulting

value is not used in any way that affects an output
of the enclosing subprogram. This is called an
“ineffective assignment” in SPARK.

SPARK.3.XYR.4 Implications for
standardization
None.

282 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

SPARK.3.XYR.5 Bibliography
None.

SPARK.3.YOW Identifier Name
Reuse [YOW]
SPARK prevents this vulnerability.

SPARK.3.YOW.1 Terminology and
features
As in Ada.3.YOW.1.

SPARK.3.YOW.2 Description of
vulnerability
As in Ada.3.YOW.2.

SPARK.3.YOW.3 Avoiding the
vulnerability or mitigating its effects
This vulnerability is prevented through language rules
enforced by static analysis. SPARK does not permit names
in local scopes to redeclare and hide names that are already
visible in outer scopes [SLRM 6.1].

SPARK.3.YOW.4 Implications for
standardization
None.

SPARK.3.YOW.5 Bibliography
None.

SPARK.3.BKL Namespace Issues
[BJL]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.BJL.

SPARK.3.IHN Type System [IHN]
SPARK mitigates this vulnerability.

SPARK.3.IHN.1 Terminology and features
SPARK’s type system is a simplification of that of Ada.
Both Explicit and Implicit conversions are permitted in
SPARK, as is instantiation and use of
Unchecked_Conversion [SB 1.3].

A design goal of SPARK is the provision of static type
safety, meaning that programs can be shown to be free from
all run-time type failures using entirely static analysis. If
this optional analysis is achieved, a SPARK program
should never raise an exception at run-time.

SPARK.3.IHN.2 Description of
vulnerability
As in Ada.3.IHN.2 for Unchecked_Conversion.

SPARK.3.IHN.3 Avoiding the vulnerability
or mitigating its effects
Vulnerabilities relating to value conversions, exceptions,
and assignments are mitigated by static analysis.
Vulnerabilities relating to the use of
Unchecked_Conversion are as in Ada.

SPARK.3.IHN.4 Implications for
standardization
None.

SPARK.3.IHN.5 Bibliography
None.

SPARK.3.STR Bit Representation
[STR]
SPARK mitigates this vulnerability.

SPARK.3.STR.1 Terminology and features
As in Ada.3.STR.1.

SPARK.3.STR.2 Description of
vulnerability
SPARK is designed to offer a semantics which is
independent of the underlying representation chosen by a
compiler for a particular target machine. Representation
clauses are permitted, but these do not affect the semantics
as seen by a static analysis tool [SB 1.3].

SPARK.3.STR.3 Avoiding the vulnerability
or mitigating its effects
As in Ada.3.STR.4.

SPARK.3.STR.4 Implications for
standardization
None.

SPARK.3.STR.5 Bibliography
None.

SPARK.3.PLF Floating-point
Arithmetic [PLF]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.PLF.

SPARK.3.CCB Enumerator Issues
[CCB]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.CCB.

A. Burns, J. L. Tokar (Eds.) 283

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.FLC Numeric Conversion
Errors [FLC]
SPARK prevents this vulnerability.

SPARK.3.FLC.1 Terminology and features
As in Ada.3.FLC.1.

SPARK.3.FLC.2 Description of
vulnerability
As in Ada.3.FLC.2.

SPARK.3.FLC.3 Avoiding the vulnerability
or mitigating its effects
SPARK is designed to be amenable to static verification of
the absence of predefined exceptions, and in particular all
cases covered by this vulnerability [SB 11]. All numeric
conversions (both explicit and implicit) give rise to a
verification condition that must be discharged, typically
using an automated theorem-prover.

SPARK.3.FLC.4 Implications for
standardization
None.

SPARK.3.FLC.5 Bibliography
None.

SPARK.3.CJM String Termination
[CJM]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.CJM.

SPARK.3.XYX Boundary Beginning
Violation [XYX]
SPARK prevents this vulnerability.

SPARK.3.XYX.1 Terminology and features
As in Ada.3.XYX.1.

SPARK.3.XYX.2 Description of
vulnerability
As in Ada.3.XYX.2.

SPARK.3.XYX.3 Avoiding the vulnerability
or mitigating its effects
SPARK is designed to permit static analysis for all such
boundary violations, through techniques such as theorem
proving or abstract interpretation [SB 11].

SPARK programs that have been subject to this level of
analysis can be compiled with run-time checks suppressed,

supported by a body of evidence that such checks could
never fail, and thus removing the possibility of erroneous
execution.

SPARK.3.XYX.4 Implications for
standardization
None.

SPARK.3.XYX.5 Bibliography
None.

SPARK.3.XYZ Unchecked Array
Indexing [XYZ]
SPARK prevents this vulnerability.

SPARK.3.XYZ.1 Terminology and features
As in Ada.3.XYZ.1.

SPARK.3.XYZ.2 Description of
vulnerability
As in Ada.3.XYZ.2.

SPARK.3.XYZ.3 Avoiding the vulnerability
or mitigating its effects
As per SPARK.3.XYX.3 – this vulnerability is eliminated
in SPARK by static analysis using the same techniques.

SPARK.3.XYZ.4 Implications for
standardization
None.

SPARK.3.XYZ.5 Bibliography
None.

SPARK.3.XYW Unchecked Array
Copying [XYW]
SPARK prevents this vulnerability.

SPARK.3.XYW.1 Terminology and
features
As in Ada.3.XYW.1.

SPARK.3.XYW.2 Description of
vulnerability
As in Ada.3.XYW.2.

SPARK.3.XYW.3 Avoiding the
vulnerability or mitigating its effects
Array assignments in SPARK are only permitted between
objects that have statically matching bounds, so there is no

284 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

possibility of an exception being raised [SB 5.5, SLRM
4.1.2]. Ada’s “slicing” and “sliding” of arrays is not
permitted in SPARK, so this vulnerability cannot occur.

SPARK.3.XYW.4 Implications for
standardization
None.

SPARK.3.XYW.5 Bibliography
None.

SPARK.3.XZB Buffer Overflow
[XZB]
SPARK prevents this vulnerability.

SPARK.3.XZB.1 Terminology and features
As in Ada.3.HCF.1.

SPARK.3.XZB.2 Description of
vulnerability
As in Ada.3.XZB.2.

SPARK.3.XZB.3 Avoiding the vulnerability
or mitigating its effects
As per SPARK.3.XYX.3 – this vulnerability is eliminated
in SPARK by static analysis using the same techniques.

SPARK.3.XZB.4 Implications for
standardization
None.

SPARK.3.XZB.5 Bibliography
None.

SPARK.3.HCF Pointer Casting and
Pointer Type Changes [HCF]
SPARK prevents this vulnerability.

SPARK.3.HCF.1 Terminology and features
As in Ada.3.HCF.1.

SPARK.3.HCF.2 Description of
vulnerability
As in Ada.3.HCF.2.

SPARK.3.HCF.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SB 1.3, SLRM 3.10].

SPARK.3.HCF.4 Implications for
standardization
None.

SPARK.3.HCF.5 Bibliography
None.

SPARK.3.RVG Pointer Arithmetic
[RVG]
SPARK prevents this vulnerability.

SPARK.3.RVG.1 Terminology and
features
As in Ada.3.RVG.1.

SPARK.3.RVG.2 Description of
vulnerability
As in Ada.3.RVG.2.

SPARK.3.RVG.3 Avoiding the
vulnerability or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

SPARK.3.RVG.4 Implications for
standardization
None.

SPARK.3.RVG.5 Bibliography
None.

SPARK.3.XYH Null Pointer
Dereference [XYH]
SPARK prevents this vulnerability.

SPARK.3.XYH.1 Terminology and
features
As in Ada.3.XYH.1.

SPARK.3.XYH.2 Description of
vulnerability
As in Ada.3.XYH.2.

SPARK.3.XYH.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

A. Burns, J. L. Tokar (Eds.) 285

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.XYH.4 Implications for
standardization
None.

SPARK.3.XYH.5 Bibliography
None.

SPARK.3.XYK Dangling Reference
to Heap [XYK]
SPARK prevents this vulnerability.

SPARK.3.XYK.1 Terminology and
features
As in Ada.3.XYK.1.

SPARK.3.XYK.2 Description of
vulnerability
As in Ada.3.XYK.2.

SPARK.3.XYK.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

SPARK.3.XYK.4 Implications for
standardization
None.

SPARK.3.XYK.5 Bibliography
None.

SPARK.3.SYM Templates and
Generics [SYM]
At the time of writing, SPARK does not permit the use of
generics units, so this vulnerability is currently prevented.
In future, the SPARK language may be extended to permit
generic units, in which case section Ada.3.SYM applies.

SPARK.3.RIP Inheritance [RIP]
SPARK mitigates this vulnerability.

SPARK.3.RIP.1 Terminology and features
As in Ada.3.RIP.1.

SPARK.3.RIP.2 Description of
vulnerability
As in Ada.3.RIP.1.

SPARK.3.RIP.3 Avoiding the vulnerability
or mitigating its effects
SPARK permits only a subset of Ada’s inheritance
facilities to be used. Multiple inheritance, class-wide
operations and dynamic dispatching are not permitted, so
all vulnerabilities relating to these language features do not
apply to SPARK [SLRM 3.8].

SPARK is also designed to be amenable to static
verification of the Liskov Substitution Principle [LSP].

SPARK.3.RIP.4 Implications for
standardization
None.

SPARK.3.RIP.5 Bibliography
None.

SPARK.3.LAV Initialization of
Variables [LAV]
SPARK prevents this vulnerability.

SPARK.3.LAV.1 Terminology and features
As in Ada.3.LAV.1.

SPARK.3.LAV.2 Description of
vulnerability
Ada in Ada.3.LAV.2.

SPARK.3.LAV.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability is entirely prevented by use of static
information flow analysis [IFA].

SPARK.3.LAV.4 Implications for
standardization
None.

SPARK.3.LAV.5 Bibliography
None.

SPARK.3.XYY Wrap-around Error
[XYY]
See Ada.3.XYY. In addition, SPARK mitigates this
vulnerability through static analysis to show that a signed
integer expression can never overflow at run-time [SB 11].

SPARK.3.XZI Sign Extension Error
[XZI]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.XZI.

286 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

SPARK.3.JCW Operator
Precedence/Order of Evaluation
[JCW]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.JCW.

SPARK.3.SAM Side-effect and
Order of Evaluation [SAM]
SPARK prevents this vulnerability.

SPARK.3.SAM.1 Terminology and
features
As in Ada.3.SAM.1.

SPARK.3.SAM.2 Description of
vulnerability
As in Ada.3.SAM.2.

SPARK.3.SAM.3 Avoiding the
vulnerability or mitigating its effects
SPARK does not permit functions to have side-effects, so
all expressions are side-effect free. Static analysis of run-
time errors also ensures that expressions evaluate without
raising exceptions. Therefore, expressions are neutral to
evaluation order and this vulnerability does not occur in
SPARK [SLRM 6.1].

SPARK.3.SAM.4 Implications for
standardization
None.

SPARK.3.SAM.5 Bibliography
None.

SPARK.3.KOA Likely Incorrect
Expression [KOA]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation (see Ada.3.KOA) although many cases of
“likely incorrect” expressions in Ada are forbidden in
SPARK.

SPARK.3.XYQ Dead and
Deactivated Code [XYQ]
SPARK mitigates this vulnerability.

SPARK.3.XYQ.1 Terminology and
features
As in Ada.3.XYQ.1.

SPARK.3.XYQ.2 Description of
vulnerability
As in Ada.3.XYQ.2.

SPARK.3.XYQ.3 Avoiding the
vulnerability or mitigating its effects
In addition to the advice of Ada.3.XYQ.3, SPARK is
amenable to optional static analysis of dead paths. A dead
path cannot be executed in that the combination of
conditions for its execution are logically equivalent to false.
Such cases can be statically detected by theorem proving in
SPARK.

SPARK.3.XYQ.4 Implications for
standardization
None.

SPARK.3.XYQ.5 Bibliography
None.

SPARK.3.CLL Switch Statements
and Static Analysis [CLL]
As in Ada.3.CLL, this vulnerability is prevented by
SPARK. The vulnerability relating to an uninitialized
variable and the “when others” clause in a case statement is
also prevented – see SPARK.3.LAV.

SPARK.3.EOJ Demarcation of
Control Flow [EOJ]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.EOJ.

SPARK.3.TEX Loop Control
Variables [TEX]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.TEX.

SPARK.3.XZH Off-by-one Error
[XZH]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.XZH. Additionally, any off-
by-one error that gives rise to the potential for a buffer-
overflow, range violation, or any other construct that could
give rise to a predefined exception, will be detected by
static analysis in SPARK [SB 11].

SPARK.3.EWD Structured
Programming [EWD]
SPARK mitigates this vulnerability.

A. Burns, J. L. Tokar (Eds.) 287

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.EWD.1 Terminology and
features
As in Ada.3.EWD.1

SPARK.3.EWD.2 Description of
vulnerability
As in Ada.3.EWD.2

SPARK.3.EWD.3 Avoiding the
vulnerability or mitigating its effects
Several of the vulnerabilities in this category that affect
Ada are entirely eliminated by SPARK. In particular: the
use of the goto statement is prohibited in SPARK [SLRM
5.8], loop exit statements only apply to the most closely
enclosing loop (so “multi-level loop exits” are not
permitted) [SLRM 5.7], and all subprograms have a single
entry and a single exit point [SLRM 6]. Finally, functions
in SPARK must have exactly one return statement which
must the final statement in the function body [SLRM 6].

SPARK.3.EWD.4 Implications for
standardization
None.

SPARK.3.EWD.5 Bibliography
None.

SPARK.3.CSJ Passing Parameters
and Return Values [CSJ]
SPARK mitigates this vulnerability.

SPARK.3.CSJ.1 Terminology and features
As in Ada.CSJ.1.

SPARK.3.CSJ.2 Description of
vulnerability
As in Ada.CSJ.3.

SPARK.3.CSJ.3 Avoiding the vulnerability
or mitigating its effects
SPARK goes further than Ada with regard to this
vulnerability. Specifically:

• SPARK forbids all aliasing of parameters and
names [SLRM 6].

• SPARK is designed to offer consistent semantics

regardless of the parameter passing mechanism
employed by a particular compiler. Thus this
implementation-dependent behaviour of Ada is
eliminated from SPARK.

Both of these properties can be checked by static analysis.

SPARK.3.CSJ.4 Implications for
standardization
None.

SPARK.3.CSJ.5 Bibliography
None.

SPARK.3.DCM Dangling References
to Stack Frames [DCM]
SPARK prevents this vulnerability.

SPARK.3.DCM.1 Terminology and
features
As in Ada.3.DCM.1.

SPARK.3.DCM.2 Description of
vulnerability
As in Ada.3.DCM.2.

SPARK.3.DCM.3 Avoiding the
vulnerability or mitigating its effects
SPARK forbids the use of the ‘Address attribute to read the
address of an object [SLRM 4.1]. The ‘Access attribute and
all access types are also forbidden, so this vulnerability
cannot occur.

SPARK.3.DCM.4 Implications for
standardization
None.

SPARK.3.DCM.5 Bibliography
None.

SPARK.3.OTR Subprogram
Signature Mismatch [OTR]
SPARK mitigates this vulnerability.

SPARK.3.OTR.1 Terminology and
features
See Ada.3.OTR.1.

SPARK.3.OTR.2 Description of
vulnerability
See Ada.3.OTR.2.

SPARK.3.OTR.3 Avoiding the
vulnerability or mitigating its effects
Default values for subprogram are not permitted in SPARK
[SLRM 6], so this case cannot occur. SPARK does permit
calling modules written in other languages so, as in

288 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

Ada.3.OTR.3, additional steps are required to verify the
number and type-correctness of such parameters.

SPARK also allows a subprogram body to be written in
full-blown Ada (not SPARK). In this case, the subprogram
body is said to be “hidden”, and no static analysis is
performed by a SPARK Processor. For such hidden bodies,
some alternative means of verification must be employed,
and the advice of Annex Ada should be applied.

SPARK.3.OTR.4 Implications for
standardization
None.

SPARK.3.OTR.5 Bibliography
None.

SPARK.3.GDL Recursion [GDL]
SPARK does not permit recursion, so this vulnerability is
prevented [SLRM 6].

SPARK.3.NZN Returning Error
Status [NZN]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NZN.

SPARK.3.REU Termination Strategy
[REU]
SPARK mitigates this vulnerability.

SPARK.3.REU.1 Terminology and
features
As in Ada.3.REU.1.

SPARK.3.REU.2 Description of
vulnerability
As in Ada.3.REU.2.

SPARK.3.REU.3 Avoiding the
vulnerability or mitigating its effects
SPARK permits a limited subset of Ada’s tasking facilities
known as the “Ravenscar Profile” [SLRM 9]. There is no
nesting of tasks in SPARK, and all tasks are required to
have a top-level loop which has no exit statements, so this
vulnerability does not apply in SPARK.

SPARK is also amenable to static analysis for the absence
of predefined exceptions [SB 11], thus mitigating the case
where a task terminates prematurely (and silently) owing to
an unhandled predefined exception.

SPARK.3.REU.4 Implications for
standardization
None.

SPARK.3.REU.5 Bibliography
None.

SPARK.3.LRM Extra Intrinsics
[LRM]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.LRM.

SPARK.3.AMV Type-breaking
Reinterpretation of Data [AMV]
SPARK mitigates this vulnerability.

SPARK.3.AMV.1 Terminology and
features
As in Ada.3.AMV.1.

SPARK.3.AMV.2 Description of
vulnerability
As in Ada.3.AMV.2.

SPARK.3.AMV.3 Avoiding the
vulnerability or mitigating its effects
SPARK permits the instantiation and use of
Unchecked_Conversion as in Ada. The result of a call to
Unchecked_Conversion is not assumed to be valid, so static
verification tools can then insist on re-validation of the
result before further analysis can succeed [SB 11].

At the time of writing, SPARK does not permit
discriminated records, so vulnerabilities relating to
discriminated records and unchecked unions are prevented.

SPARK.3.AMV.4 Implications for
standardization
None.

SPARK.3.AMV.5 Bibliography
None.

SPARK.3.XYL Memory Leak [XYL]
SPARK prevents this vulnerability.

SPARK.3.XYL.1 Terminology and features
As in Ada.3.XYL.1.

A. Burns, J. L. Tokar (Eds.) 289

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.XYL.2 Description of
vulnerability
As in Ada.3.XYL.2.

SPARK.3.XYL.3 Avoiding the vulnerability
or mitigating its effects
SPARK does not permit the use of access types, storage
pools, or allocators, so this vulnerability cannot occur
[SLRM 3]. In SPARK, all objects have a fixed size in
memory, so the language is also amenable to static analysis
of worst-case memory usage.

SPARK.3.XYL.4 Implications for
standardization
None.

SPARK.3.XYL.5 Bibliography
None.

SPARK.3.TRJ Argument Passing to
Library Functions [TRJ]
SPARK mitigates this vulnerability.

SPARK.3.TRJ.1 Terminology and features
See Ada.3.TRJ.1.

SPARK.3.TRJ.2 Description of
vulnerability
See Ada.3.TRJ.2.

SPARK.3.TRJ.3 Avoiding the vulnerability
or mitigating its effects
SPARK includes all of the mitigations of Ada with respect
to this vulnerability, but goes further, allowing
preconditions to be checked statically by a theorem-prover.
The language in which such preconditions are expressed is
also substantially more expressive than Ada’s type system.

SPARK.3.TRJ.4 Implications for
standardization
None.

SPARK.3.TRJ.5 Bibliography
None.

SPARK.3.NYY Dynamically-linked
Code and Self-modifying Code
[NYY]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.NYY.

SPARK.3.NSQ Library Signature
[NSQ]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.NSQ.

SPARK.3.HJW Unanticipated
Exceptions from Library Routines
[HJW]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.HJW. SPARK does permit the use of exception
handlers, so these may be used to catch unexpected
exceptions from library routines.

 291

Ada User Journal Volume 31, Number 4, December 2010

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #84: The Distributed Systems
Annex 1 – Simple client/server
Thomas Quinot, AdaCore
Date: 19 April 2010

Abstract: This is the first in a series of Gems introducing the
facilities defined by the optional annex for distributed systems
(Annex E) in the Ada Reference Manual. In this introduction,
we show how a simple client/server architecture can be
implemented easily with the Distributed Systems Annex
(DSA).

Let’s get started…
Many aspects of software engineering require, or can benefit
from, distributed technology:

• Load balancing

• Fault tolerance

• Interconnection between multiple agents
… among others.
In each of these instances, it is useful to enlist the contribution
of multiple computers to achieve a certain goal in a
coordinated fashion. In a distributed application design, parts
of the processing are thus assigned to distinct hosts which
communicate in order to provide a given service. In Ada
parlance, the fraction of the complete application that is
assigned to each host is called a partition.
A distributed design can be implemented using direct calls to
communication services provided by the environment,
allowing the exchange of data between partitions. However,
this is extremely cumbersome and error-prone. Distribution
models have therefore been defined, which are sets of high-
level abstractions allowing the programmer to express the
interactions between components of a distributed application
— possibly located on different partitions — in convenient
high-level terms.
Distribution models support various communication patterns.
The simplest ones support simple message passing. More
elaborate models also provide more structured patterns, such
as remote subprogram calls (based on the natural abstraction
boundaries represented by subprograms) and distributed
(remote) objects, extending remote subprogram calls to the
case of method calls in an object-oriented design.
The services afforded by distribution middleware (i.e., the
implementation of a distribution model) can be made available
to the programmer in different ways. Explicit distribution APIs
can be used. Alternatively, distribution may be included in the
facilities provided by a programming language. Ada 95 and
Ada 2005 include such features as part of the optional Annex
E of the Reference Manual.

In this first introductory example, we consider a simple
application managing a public bulletin board, which we want
to make available for posting from several partitions. The DSA
allows a service to be offered in a very simple way: you just
write a package declaration:

package Bulletin_Board is
 pragma Remote_Call_Interface;
 -- This makes the package a Remote Call Interface (RCI),
 -- so the subprograms below are remotely callable.
 -- This pragma enforces some restrictions on the unit to
 -- ensure that any visible subprogram can actually be
 -- called remotely, and in particular that the types
 -- of the parameters are suitable for transport over a
 -- communication link from one partition to another.
 subtype Length is Natural range 0 .. 100;
 type News_Item (
 Author_Length, Message_Length : Length := 0)
 is record
 Author : String (1 .. Author_Length);
 Message : String (1 .. Message_Length);
 end record;
 type News_Items is
 array (Positive range <>) of News_Item;
 procedure Post (Item : News_Item);
 function Whats_Up return News_Items;
end Bulletin_Board;

A simple client can then be written that will just make calls to
these subprograms. The fact that these calls may be executed
remotely is completely transparent in the code.

with Ada.Text_IO; use Ada.Text_IO;
with Bulletin_Board; use Bulletin_Board;
procedure Post_Message is
 Author, Message : String (1 .. 140);
 Author_Length, Message_Length : Natural;
begin
 Put ("Author name: ");
 Get_Line (Author, Author_Length);
 Put ("Message : ");
 Get_Line (Message, Message_Length);

 Post (News_Item'
 (Author_Length => Author_Length,
 Message_Length => Message_Length,
 Author => Author (1 .. Author_Length),
 Message => Message (1 .. Message_Length)));
 -- This subprogram call may be remote, but we write it
 -- exactly in the usual way.
end Post_Message;

Similarly, a procedure that displays all messages can be
written as follows:

with Ada.Text_IO; use Ada.Text_IO;

292 Ada Gems

Volume 31, Number 4, December 2010 Ada User Journal

with Bulletin_Board; use Bulletin_Board;
procedure Display_Messages is
begin
 loop
 Put_Line ("----- all messages -----");
 declare
 Contents : constant News_Items := Whats_Up;
 begin
 for J in Contents'Range loop
 Put_Line (Contents (J).Author & " says:");
 Put_Line (Contents (J).Message);
 New_Line;
 end loop;
 delay 2.0;
 end;
 end loop;
end Display_Messages;

This procedure can run on the same partition as the one where
Bulletin_Board is located (the language requires that each
Remote_Call_Interface unit is assigned to exactly one
partition). However, since it only uses a visible subprogram
declared in Bulletin_Board (Whats_Up), it could also very
well run in another partition.
The assignment of units to partitions need not be apparent in
sources. The same set of sources can even be used for different
partitioning configurations (or used without partitioning to
build a monolithic version of the application, in which case
there is no distribution overhead at all).
The process of partitioning a DSA application is
implementation defined. In GNAT, this is done using the
gnatdist tool, and a po_gnatdist configuration file. The syntax
for this file is documented in the PolyORB User’s Guide.
Here is an example configuration for the bulletin board
application:

configuration Dist_App is
 pragma Starter (None);
 -- User starts each partition manually
 ServerP : Partition := (Bulletin_Board);
 -- RCI package Bulletin_Board is on partition ServerP
 ClientP : Partition := ();
 -- Partition ClientP has no RCI packages
 for ClientP'Termination use Local_Termination;
 -- No global termination
 procedure Display_Messages is in ServerP;
 -- Main subprogram of master partition
 procedure Post_Message;
 for ClientP'Main use Post_Message;
 -- Main subprogram of slave partition
end Dist_App;

After running po_gnatdist on this configuration file, two
executables are produced: serverp and clientp. Serverp will
loop, displaying all posted messages, and clientp will allow
sending a message to the server. This example thus shows how
a simple client/server design can be implemented in Ada
without any network programming.
In the next Gem we will discuss remote object designs, which
allow flexible dynamic communication across partitions.

Gem #85: The Distributed Systems
Annex 2 – Distributed Objects
Thomas Quinot, AdaCore
Date: 03 May 2010

Abstract: This is the second in a series of Gems introducing
the facilities defined by the optional annex for Distributed
Systems (Annex E) of the Ada Reference Manual. In the first
installment, we showed how a simple client/server architecture
can be implemented easily with the Distributed Systems
Annex (DSA). We now introduce distributed objects, which
allow dynamic relationships between components of a
distributed application.

Let’s get started…
In the previous DSA Gem, we showed how subprograms in a
package can be made remotely callable using a pragma
Remote_Call_Interface (RCI for short). Each RCI unit is
present in only one partition of a distributed application, and
any call to a subprogram in such a unit made from another
partition is transparently handled by the distribution run-time
library.
This is sufficient to implement simple client/server
communication, where a single partition is identified as the
provider of a service (defined by an RCI package) and accepts
requests from other partitions. Different services can be
provided by different partitions, and services can be clients of
one another. However this scheme is inflexible in that a given
service can only ever be provided by a single server.
Furthermore, the association between services and partitions is
static.
In some contexts, however, more flexible interactions between
application components are desired: multiple partitions may
want to provide the same service, for performance or fault-
tolerance reasons; servers may need to call back their clients;
finally, direct (peer-to-peer) interactions between partitions
may need to be established in a dynamic fashion, without
determining in advance (prior to execution) who will interact
with whom.
Such a flexible organization can be implemented using
distributed objects. In nondistributed object-oriented
programming, an object is an entity with an identity (you can
reference, or designate it), internal state, and a set of methods
that are common to all objects that belong to the same class,
and which represent the ways any object of the class can
interact with others. In a distributed world, this paradigm is
naturally extended by allowing object references to designate
objects that are located on another partition.
In the DSA, distributed objects are created using a specific
pragma: Remote_Types. When this pragma is applied to a
package, certain type declarations have additional semantics
specific to distribution. If you declare a tagged limited private
type in such a package, and a corresponding access-to-class-
wide type, then that access type is a Remote Access to Class-
Wide type (or RACW), and is allowed to designate objects
that are located on partitions other than the current one.
These remote object references can be passed around as
parameters in remote subprogram calls. For example, they can
be sent to an RCI package, or retrieved from it, by passing
them as parameters in remote subprogram calls.

Ada Gems 293

Ada User Journal Volume 31, Number 4, December 2010

Methods of remote objects can be called by just writing a
regular dispatching call on any primitive operation. All
underlying communication is handled transparently by the
distribution run-time library.
So let’s now assume that we want to allow users of our
bulletin board application to exchange direct messages with
one another. Each user will instantiate an object of a concrete
type derived from the User type:

package Chat_Users is
 pragma Remote_Types;
 -- This package declares a remote object type
 type User is abstract tagged limited private;
 -- Remote objects must be tagged, limited, and private
 type User_Ref is access all User'Class;
 -- This is a remote access-to-class-wide type
 function Name (Who : User) return String;
 procedure Say
 (From : User_Ref;
 To : User;
 What : String);
 -- The controlling formal 'To' determines the object that
 -- calls are sent to.
 -- The recipient object may be remote. Formal parameter
 -- 'From' is a reference to the originating user, and can be
 -- used to call the user back at a later time.
private
 ...
end Chat_Users;

Each message posted to the bulletin board can now include a
reference to the message author:

with Chat_Users;
package Bulletin_Board is
 ...
 type News_Item (Message_Length : Natural) is
 Author : Chat_Users.User_Ref;
 Message : String (1 .. Message_Length);
 end News_Item;
 ...
end Bulletin_Board;

Now each client can create an instance of a concrete type
derived from Chat_Users.User, and pass a ‘Access to that
object to the bulletin board as it posts messages.

with Chat_Users;
package Client is
 -- This is a regular package, no pragma needed
 type Myself_Type is new Chat_Users.User
 with null record;
 function Name (Self : Myself_Type) return String;
 procedure Say
 (From : Chat_Users.User_Ref;
 To : Myself_Type;
 What : String);
end Client;

with Ada.Text_IO; use Ada.Text_IO;
package body Client is
 function Name (Self : Myself_Type) return String is

 begin
 return "Jean-Pierre";
 end Name;
 procedure Say
 (From : Chat_Users.User_Ref;
 To : Myself_Type;
 What : String)
 is
 pragma Unreferenced (To);
 -- Parameter 'To' is unused within the body. Its purpose
 -- is just to cause dispatching to the appropriate
 -- object instance.
 begin
 Put_Line ("Got a message from " & From.Name);
 -- Dispatching call to Name to retrieve user name
 -- of the sender 'From'
 Put_Line (What);
 -- Display received message.
 end Say;

 Myself : aliased Myself_Type;
 ...
end Client;

Other clients can use the Author component retrieved from the
bulletin board to directly contact other clients using the Say
method:

 Say
 (From => Myself'Access,
 To => Some_Item.Author,
 Message => "I like it!");

Arbitrary partition-to-partition interactions can thus be
established using distributed objects. More precisely, these are
actually normal objects with the additional property that they
can be designated from other partitions using special access
types (RACWs). RCI units serve as switchboards to initially
propagate references to remote objects across partition
boundaries. Once these references are disseminated, partitions
can interact directly without the mediation of RCIs.
In the next Gem, we will discuss the implementation of
mailbox-based message passing using the Distributed Systems
Annex.

Gem #87: The Distributed Systems
Annex 3 – Mailboxes
Thomas Quinot, AdaCore
Date: 02 June 2010

Abstract: This is the third in a series of gems introducing the
facilities defined by the optional annex for Distributed systems
(Annex E) of the Ada Reference Manual. In the previous two
installments, we introduced the Distributed Systems Annex
(DSA). We showed how a client/server architecture can be
implemented, and we introduced distributed objects. The
present gem shows how asynchronous message passing can be
implemented on top of these facilities.

294 Ada Gems

Volume 31, Number 4, December 2010 Ada User Journal

Let’s get started…
In the previous two DSA gems, all communication between
partitions occurred as subprogram calls: the received message
is handled immediately by the receiving partition (the
subprogram body is executed), and the caller resumes
execution only after the call returns.
In some applications, a different communication pattern is
desired. One partition may want to send a message to another
and then forget about it; the receiving partition may not be
available to process the message at that time, and may want to
keep it queued for later processing.
Sending a message in a “fire-and-forget” fashion can be
implemented in the DSA using pragma Asynchronous. This
pragma, which applies to subprograms and to remote access
types, means that the called subprogram does not return any
information (it must be a procedure, and may not have any
OUT or IN OUT formal parameters), and that the caller is not
interested in any exception that might be raised. When this
pragma applies to a remote procedure, execution resumes in
the calling task immediately after sending the call (without
waiting for any confirmation from the receiver). When the
pragma applies to an RACW, this extends to all relevant
primitive operations (i.e. procedures with no OUT or IN OUT
formals).
The message sending capability is thus simply described by a
remote access type declaration:

package Mailboxes is
 pragma Remote_Types;
 subtype Message_Type is String;
 -- In this simple example, exchanged messages are
 -- just strings, but this could be changed to any other
 -- type, or made a generic type.
 type Mailbox is limited interface;
 -- This is Ada 2005!
 -- Using an interface as the base type allows the
 -- capability to receive a message to be subsequently
 -- imparted on arbitrary objects (they just need to
 -- implement that interface).
 procedure Send_Message (Recipient : access Mailbox;
 Message : Message_Type)
 is abstract;

 type Remote_Mailbox is access all Mailbox'Class;
 -- Remote access to mailbox
 pragma Asynchronous (Remote_Mailbox);
 -- Calls to Send_Message will return to the caller without
 -- waiting for any reply from the callee.
end Mailboxes;

A very simple implementation of a mailbox is the “active”
mailbox, where a dedicated task handles each incoming
message:

package Mailboxes.Active is
 task type Active_Mailbox is new Mailbox with
 entry Start (Id : Integer);
 entry Send_Message (Message : Message_Type);
 end Active_Mailbox;
 type Active_Mailbox_Acc is access all Active_Mailbox;
 -- Local access type
end Mailboxes.Active;

with Ada.Text_IO; use Ada.Text_IO;
package body Mailboxes.Active is
 task body Active_Mailbox is
 My_Id : Integer;
 begin
 accept Start (Id : Integer) do
 My_Id := Id;
 end Start;
 Put_Line ("Active_Mailbox #" & My_Id'Img & " starting");
 loop
 accept Send_Message (Message : Message_Type)
 do
 Put_Line ("... got message: " & Message);
 end Send_Message;
 end loop;
 end Active_Mailbox;
end Mailboxes.Active;

Note that this implementation could perfectly well be replaced
with any other type implementing the Mailbox interface, for
example a protected bounded buffer. Any partition can thus
create a mailbox on which it will receive messages from
others, just by creating an object of type Mailboxes.Active.
Active_Mailbox.
Now, another partition that needs to send it a message will
need to obtain an RACW designating that mailbox in order to
do so, just like you’d need an address to send a postcard. An
RCI package can be used as a central clearinghouse to
exchange these initial references: the RCI acts as a directory of
partitions that can receive messages.

with Mailboxes;
package Hub is
 pragma Remote_Call_Interface;
 procedure Register_Listener (
 Id : Integer;
 Ptr : Mailboxes.Remote_Mailbox);
 -- A partition that has created a mailbox registers it here,
 -- associating it with a unique identifier Id.
 function Get_Listener (Id : Integer)
 return Mailboxes.Remote_Mailbox;
 -- A partition that wants to send a message to the mailbox
 -- identified by Id retrieves the corresponding RACW
 -- (previously registered using the above procedure)
 -- by calling this function.
 -- The implementation of this unit can be as simple as an
 -- array of RACWs:
 -- All_Listeners : array (1 .. Max_Mailboxes) of
 -- Mailboxes.Remote_Mailbox;
end Hub;

It should be noted that the RCI is used only to initially
disseminate references to partitions. The messages themselves
are sent directly across partitions. There is no single point of
failure or communication bottleneck.
Complete source code for this application (message sender,
message receiver, and central hub) is available in subdirectory
examples/dsa/mailboxes of the PolyORB source package, or
can also be downloaded directly from the online Gem page.

Ada Gems 295

Ada User Journal Volume 31, Number 4, December 2010

Gem #90: The Distributed Systems
Annex 4 – DSA and C
Thomas Quinot, AdaCore
Date: 14 September 2010

Abstract: This is the fourth in a series of Gems introducing
the facilities defined by the optional annex for distributed
systems in the Ada Reference Manual (Annex E). In the
previous installments, we introduced the Distributed Systems
Annex (DSA), and we explained how it allows various
interaction paradigms to be implemented. In this Gem, we
show how these useful tools can be used from a C program.

Let’s get started…
The previous DSA Gems showed how components in a pure
Ada application can be spread across several partitions and use
static or dynamic remote calls to interact. Wouldn’t it be nice
if other languages such as C could also benefit from these
features?
Of course, you can embed C code in an Ada partition just as
you would in any nondistributed application. Your C code can
also call back to Ada code (as long as the Ada subprograms
have the C convention). Remote (RCI) subprograms can thus
be called from C. If the call occurs on the partition to which
the RCI is assigned, nothing special happens, this is just a
regular call. On other partitions, the compiler-generated
calling stubs are used, and this is a transparent remote call, just
as it would be if it occurred in Ada code: a remote subprogram
has nothing special at the call point; all the magic is done in
the generated stubs.
This is all well and good, but you still have to write your
complete application in Ada, and in particular have the main
subprogram of each partition declared in the GNATDIST
configuration file.
What if you would like to incorporate DSA client or server
code in an existing C application? This can be achieved by
combining the DSA with GNAT’s stand-alone libraries, a
feature allowing an Ada partition to generate a loadable
module rather than a full-fledged executable image. Here’s
how…
Rebuild PolyORB with -fPIC
The “-fPIC” switch instructs the compiler to generate so-called
Position Independent Code, that is, code that can be
dynamically loaded as a shared library.
In order to have a DSA partition in a stand-alone library, you
need to set CFLAGS=”-O2 -g -fPIC” in your environment
when calling the PolyORB configure script. (The resulting
PolyORB build can also be used for normal applications.)
Build your Ada partitions as usual, also with -fPIC
Let’s assume for example that your application has a server
partition that is fully written in Ada, and a client partition
meant for embedding in a C/C++ application as a shared
object. The server partition will be built using:

po_gnatdist -fPIC xxxx.cfg server_partition

Create a dummy main subprogram for the client side

You need to provide a dummy main subprogram for the client
partition. You should make this a null library subprogram that
has WITH clauses for any package (including RCIs) that you
want to reference from the C side.
Also, it may be convenient to include in this closure an
“Exports” package containing suitable subprogram
declarations for those routines that you want to call from C,
with C-compatible argument types, and using pragma Export
to give them friendly C names. (Note that this is not specific to
the Distributed Systems Annex: such an interface package is
typically created any time you need to call Ada code from C
code.)

with RCI_1;
...
with RCI_n;

with Exports;
procedure Client is
begin
 null;
end Client;

Build the client library
This is the crucial point. To build a partition as a stand-alone
library instead of a regular executable, special arguments are
passed to GNATDIST:

po_gnatdist -fPIC -g xxxx.cfg client_partition \
 -bargs rci_1.ali ... rci_n.ali polyorb-dsa_p-partitions.ali \
 -shared -LClientName \
 -largs -shared

In this command line, you need to list the ALI files for all RCI
packages referenced in your client partition (rci_1.ali ..
rci_n.ali), and also the one for the internal RCI polyorb-dsa_p-
partitions.ali.
You can replace the name “ClientName” with an arbitrary
prefix of your choosing (it is used for some automatically
generated symbols, see below).
This will generate a file client_partition, which you can
rename to client_partition.so.
Call client library from C code
Once you have your loadable object generated, you can load it
from C code using the standard dlopen(3) function.
Symbols from the library can then be obtained using the
dlsym(3) function. You first need to retrieve the symbols
ClientNameinit and ClientNamefinal from the library.
ClientNameinit corresponds to the elaboration of all Ada units
in the library, and should be called once upon module load.
This starts the Ada PCS and connects to the DSA name server
to retrieve the initial location of RCI units.
ClientNamefinal corresponds to the finalization, and should be
called once, just before unloading the module or terminating
the application (ClientName here is the prefix you passed on
the GNATDIST command line above).
Finally, you can retrieve and call the symbols for RCI
subprograms, or any subprogram exported by your Ada units,
and call them as though they were normal C routines.

296

Volume 31, Number 4, December 2010 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Student Programming Contest -
The Ada Way
	Overview of the 14th International Real-Time Ada Workshop
	Multiprocessor Systems Session Summary
	Session Summary: Language and Distribution Issues
	Conclusions of the 14th International Real-Time Ada Workshop
	Progress Report from the 14th International Real-Time Ada Workshop – IRTAW14
	Ada and the Software Vulnerabilities Project: the SPARK Annex
	Ada Gems
	National Ada Organizations

