

Ada User Journal Volume 30, Number 3, September 2009

ADA
USER
JOURNAL

Volume 30
Number 3

September 2009

Contents
Page

Editorial Policy for Ada User Journal 134

Editorial 135

News 137

Conference Calendar 163

Forthcoming Events 169

Proceedings of the “Software Vulnerabilities” Workshop of Ada-Europe 2009

 J. L. Tokar
“Ada Europe 2009 – Workshop on Software Vulnerabilities” 175

 J.-P. Rosen
“On Removing Programming Language Bias from the Vulnerabilities Document” 177

 S. Michell
“Ada and Programming Language Vulnerabilities” 180

 T. Vardanega
“An Argument for Language Subsetting” 185

 A. Burns, A.J. Wellings
“Concurrency Vulnerabilities” 187

 R. C. Chapman
“The Pros and Cons of Enumerating Programming Language Vulnerabilities” 190

Ada Gems 194

Ada-Europe Associate Members (National Ada Organizations) 200

Ada-Europe 2009 Sponsors Inside Back Cover

134

Volume 30, Number 3, September 2009 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 135

Ada User Journal Volume 30, Number 3, September 2009

Editorial

This issue of the Ada User Journal publishes the Proceedings of the “Workshop on Vulnerabilities” which was co-located
with the Ada-Europe 2009 conference, June 2009 in Brest, France. The workshop analyzed the Ada community’s answer to
the effort, led by ISO/IEC JTC 1/SC 22/WG 23, to produce an ISO Technical Report on Programming Language
Vulnerabilities (ISO/IEC PDTR 24772.2 – Guidance to Avoiding Vulnerabilities in Programming Languages through
Language Selection and Use). The goals of the workshop were to identify possible errors and omissions in the Technical
Report with respect to the Ada language, and to eventually define the Ada annex to it.

The Proceedings start with a short report of the workshop discussion and results, by the workshop organizer, Joyce Tokar
from Pyrrhus Software, USA. Afterwards, a paper by Jean-Pierre Rosen, from Adalog, France, points out the need to remove
the programming language bias from the Technical Report, noting that its language independent part is prepared with C and
C++ in mind. The second paper, by Steve Michell, from Maurya Software, Canada, addresses the Ada annex to the Technical
Report, providing examples of the writing of the Ada section of some of the vulnerabilities. Afterwards, Tullio Vardanega, of
the University of Padua, Italy, provides his view on the need for carefully consider language subsets, and support tools, in the
framework of vulnerabilities mitigation.

The next paper of the workshop, by Alan Burns and Andy Wellings, from the University of York, UK, notes the importance
of concurrency-related vulnerabilities, which were deferred for later treatment by WG 23. The final paper, by Rod Chapman,
of Praxis High Integrity Systems, UK, presents both a list of potential benefits of enumerating vulnerabilities, and also a list
of limitations and dangers of the same enumeration. It was indeed a successful workshop, and a group of people volunteered
to continue the work on this topic, in order to prepare the Ada Annex of the Technical Report, and further meetings related to
it are being prepared to be held at SIGAda 2009.

As for the other sections of the Journal, as usual the issue provides the News and Calendar information, by Marco Panunzio
and Dirk Craeynest, the respective editors. The forthcoming events section provides details on the 2009 SIGAda conference,
which will take place next November in the Tampa Bay area, Florida, USA, and on the 15th International Conference on
Reliable Software Technologies – Ada-Europe 2010 that will take place June 2010 in Valencia, Spain.

The issue also publishes a set of Ada Gems, starting with the Ada 83/Ada 95 incompatibility of unconstrained arrays in
generics, by Robert Dewar, of Ada Core; the use of pragma suppress, by Gary Dismukes of Ada Core; and two gems on the
use of SPARK, by Yannick Moy, also of AdaCore.

Luís Miguel Pinho
Porto

September 2009
Email: lmp@isep.ipp.pt

 137

Ada User Journal Volume 30, Number 3, September 2009

News
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Oraganizations 137
Ada-related Events 137
Ada Semantic Interface

Specification (ASIS) 140
Ada and Education 140
Ada-related Resources 141
Ada-related Tools 142
Ada-related Products 147
Ada and GNU/Linux 148
Ada and Microsoft 151
Refereces to Publications 151
Ada Inside 152
Ada in Context 153

Ada-related
Organizations
ARA — ACATS 3.0L
From: Ada Information Clearinghouse
Date: Wed, 1 Jul 2009
Subject: Ada Conformity Assessment Test

Suite
URL: http://www.adaic.com/whatsnew.html
ACATS Modification List 3.0L and the
associated test files have been posted.
[see also "ARA — ACATS 3.0J and
3.0K" in AUJ 30‑2 (Jun 2009), p.69
—mp]

Ada 2005 R2 Reference
Manual
From: Ada Information Clearinghouse
Date: Fri, 10 July 2009
Subject: Ada 2005 R2 Reference Manual
URL: http://www.adaic.com/standards/

ada1z.html
Draft 8 of Ada 2005 R2 was posted.
It includes some of the changes that are
expected to be included Amendment 2 to
Ada 95, including bounded container
forms.
[see also "Ada 2005 R2 Reference
Manual" in AUJ 30‑2 (Jun 2008), p.69
—mp]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

Ada-Europe 2010 — Call for
Papers
From: Dirk Craeynest

<dirk@asgard.cs.kuleuven.be>
Date: Sun, 30 Aug 2009 21:33:56 +0200

CEST
Subject: CfP 15th Conf. Reliable Software

Technologies, Ada-Europe 2010
Newsgroups: comp.lang.ada

,fr.comp.lang.ada,comp.lang.misc

CALL FOR PAPERS

15th International Conference on
Reliable Software Technologies -

Ada-Europe 2010

14 - 18 June 2010, Valencia, Spain

http://www.ada-europe.org/
conference2010.html

Organized by Ada-Europe,

in cooperation with ACM SIGAda
(approval pending)

*** CfP in HTML/PDF on web site ***

--
Ada-Europe organizes annual
international conferences since the early
80's. This is the 15th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), and Brest, France ('09).
General Information

The 15th International Conference on
Reliable Software Technologies - Ada-
Europe 2010 will take place in Valencia,
Spain. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibition from Tuesday to

Thursday, along with parallel tutorials and
workshops on Monday and Friday.
Schedule

16 November 2009: Submission of
regular papers, tutorial and workshop
proposals
11 January 2010: Submission of
industrial presentation proposals
01 February 2010: Notification of
acceptance to all authors
01 March 2010: Camera-ready version
of regular papers required
10 May 2010: Industrial presentations,
tutorial and workshop material required
14-18 June 2010: Conference
Topics

The conference has successfully
established itself as an international forum
for providers, practitioners and
researchers into reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events. Participants
will include practitioners and researchers
representing industry, academia and
government organizations active in the
promotion and development of reliable
software technologies. To gather
experience on the latest periodic revision
of the Ada language standard,
contributions that present and discuss the
potential of the revised language are
especially welcome.
All prospective contributions, whether
regular papers, industrial presentations,
tutorials or workshops, should address the
topics of interest to the conference, which
for this edition include but are not limited
to:
⁃ Methods and Techniques for Software

Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Model-driven
Architecture and Engineering, Formal
Methods, Re-engineering and Reverse
Engineering, Reuse, Software
Management Issues.

⁃ Software Architectures: Design
Patterns, Frameworks, Architecture-

138 Ada-related Events

Volume 30, Number 3, September 2009 Ada User Journal

Centered Development, Component and
Class Libraries, Component-based
Design and Development.

⁃ Enabling Technologies: Software
Development Environments, Compilers,
Debuggers, Run-time Systems,
Middleware Components, Concurrent
and Distributed Programming, Ada
Language and Technology.

⁃ Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems.

⁃ Theory and Practice of High-Integrity
Systems: Real-Time, Distribution, Fault
Tolerance, Security, Reliability, Trust
and Safety, Languages Vulnerabilities.

⁃ Embedded Systems: Multicore
Architectures, Architecture Modeling,
HW/SW Co-Design, Reliability and
Performance Analysis.

⁃ Mainstream and Emerging
Applications: Manufacturing, Robotics,
Avionics, Space, Health Care,
Transportation, Energy, Games and
Serious Games, etc.

⁃ Experience Reports: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics.

⁃ Ada and Education: Where does Ada
stand in the software engineering
curriculum; how learning Ada serves
the curriculum; what it takes to form a
fluent Ada user; lessons learned on
Education and Training Activities with
bearing on any of the conference topics.

Call for Regular Papers

Authors of regular papers which are to
undergo peer review for acceptance are
invited to submit original contributions.
Paper submissions shall be in English,
complete and not exceeding 14 LNCS-
style pages in length. Authors should
submit their work via the Web submission
system accessible from the Conference
Home page.
The format for submission is solely PDF.
Should you have problems to comply with
format and submission requirements,
please contact the Program Chairs.
Proceedings

The conference proceedings will be
published in the Lecture Notes in
Computer Science (LNCS) series by
Springer, and will be available at the start
of the conference. The authors of
accepted regular papers shall prepare
camera-ready submissions in full
conformance with the LNCS style, not
exceeding 14 pages and strictly by 1
March 2010. For format and style
guidelines authors should refer to the
following URL:

http://www.springer.de/comp/lncs/
authors.html.
Failure to comply and to register for the
conference will prevent the paper from
appearing in the proceedings.
The conference is ranked class A in the
CORE ranking and is listed among the top
quarter of CiteSeerX Venue Impact
Factor.
Awards

Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.
Call for Industrial Presentations

The conference also seeks industrial
presentations which may deliver value
and insight, but do not fit the selection
process for regular papers. Authors of
industrial presentations are invited to
submit a short overview (at least 1 page in
size) of the proposed presentation to the
Conference Chair by 11 January 2010.
The Industrial Program Committee will
review the proposals and make the
selection. The authors of selected
presentations shall prepare a final short
abstract and submit it to the Conference
Chair by 10 May 2010, aiming at a 20-
minute talk. The authors of accepted
presentations will be invited to submit
corresponding articles for publication in
the Ada User Journal, which will host the
proceedings of the Industrial Program of
the Conference.
Call for Tutorials

Tutorials should address subjects that fall
within the scope of the conference and
may be proposed as either half- or full-
day events.
Proposals should include a title, an
abstract, a description of the topic, a
detailed outline of the presentation, a
description of the presenter's lecturing
expertise in general and with the proposed
topic in particular, the proposed duration
(half day or full day), the intended level
of the tutorial (introductory, intermediate,
or advanced), the recommended audience
experience and background, and a
statement of the reasons for attending.
Proposals should be submitted by e-mail
to the Tutorial Chair. The authors of
accepted full-day tutorials will receive a
complimentary conference registration as
well as a fee for every paying participant
in excess of 5; for half-day tutorials, these
benefits will be accordingly halved. The
Ada User Journal will offer space for the
publication of summaries of the accepted
tutorials.
Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference week. Workshop
proposals should be submitted to the
Conference Chair. The workshop
organizer shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.
Call for Exhibitors

The commercial exhibition will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.
Grants for Students

A limited number of sponsored grants is
expected to be available for students who
would like to attend the conference or
tutorials. Contact the Conference Chair
for details.
Organizing Committee

Conference Chair
 Jorge Real, Universidad Politécnica de

Valencia, Spain
 jorge@disca.upv.es

Program Co-Chairs
 Jorge Real, Universidad Politécnica de

Valencia, Spain
 jorge@disca.upv.es
 Tullio Vardanega, University of Padua,

Italy
 tullio.vardanega@math.unipd.it

Tutorial Chair
 Albert Llemosí, Universitat de les Illes

Balears, Spain
 albert.llemosi@uib.cat

Exhibition Chair
 Ahlan Marriott, White Elephant GmbH,

Switzerland
 Ada@white-elephant.ch

Industrial Chair
 Erhard Plödereder, University of

Stuttgart, Germany
 ploedere@informatik.uni-stuttgart.de

Publicity Chair
 Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
 Dirk.Craeynest@cs.kuleuven.be

Ada-related Events 139

Ada User Journal Volume 30, Number 3, September 2009

Program Committee

Alejandro Alonso, Universidad
Politécnica de Madrid, Spain
Ted Baker, Florida State University, USA
John Barnes, John Barnes Informatics,
UK
Johann Blieberger, Technische
Universität Wien, Austria
Jørgen Bundgaard, Rovsing A/S,
Denmark
Bernd Burgstaller, Yonsei University,
Korea
Alan Burns, University of York, UK
Roderick Chapman, Praxis High Integrity
Systems, UK
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
Alfons Crespo, Universidad Politécnica
de Valencia, Spain
Juan A. de la Puente, Universidad
Politécnica de Madrid, Spain
Raymond Devillers, Université Libre de
Bruxelles, Belgium
Franco Gasperoni, AdaCore, France
Michael González Harbour, Universidad
de Cantabria, Spain
José Javier Gutiérrez, Universidad de
Cantabria, Spain
Andrew Hately, Eurocontrol CRDS,
Hungary
Peter Hermann, Universität Stuttgart,
Germany
Jérôme Hugues, ISAE Toulouse, France
Hubert Keller, Institut für Angewandte
Informatik, Germany
Albert Llemosí, Universitat de les Illes
Balears, Spain
Kristina Lundqvist, Mälardalen
University, Sweden & MIT, USA
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern
Iowa, USA
Julio Medina, Universidad de Cantabria,
Spain
Stephen Michell, Maurya Software,
Canada
Javier Miranda, Universidad Las Palmas
de Gran Canaria, Spain
Daniel Moldt, University of Hamburg,
Germany
Laurent Pautet, Telecom Paris, France
Luís Miguel Pinho, Polytechnic Institute
of Porto, Portugal
Erhard Plödereder, Universität Stuttgart,
Germany
Jorge Real, Universidad Politécnica de
Valencia, Spain

Alexander Romanovsky, University of
Newcastle upon Tyne, UK
Jean-Pierre Rosen, Adalog, France
Sergio Sáez, Universidad Politécnica de
Valencia, Spain
Ed Schonberg, AdaCore, USA
Theodor Tempelmeier, Univ. of Applied
Sciences Rosenheim, Germany
Jean-Loup Terraillon, European Space
Agency, The Netherlands
Santiago Urueña, Grupo de Mecánicade
Vuelo, Spain
Tullio Vardanega, Università di Padova,
Italy
Francois Vernadat, LAAS-CNRS &
INSA Toulouse, France
Daniel Wengelin, Saab, Sweden
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller
Universität, Germany
Luigi Zaffalon, University of Applied
Sciences, Switzerland

Industrial Committee

Guillem Bernat, Rapita Systems, UK
Roderick Chapman, Praxis High Integrity
Systems, UK
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
Pierre Dissaux, Ellidiss Technologies,
France
Franco Gasperoni, AdaCore, France
Hubert Keller, Forschungszentrum
Karlsruhe GmbH, Germany
Ismael Lafoz, EADS CASA, Spain
Ahlan Marriott, White-Elephant GmbH,
Switzerland
Erhard Plödereder, Universität Stuttgart,
Germany
José Simó, Universidad Politécnica de
Valencia, Spain
Alok Srivastava, Northrop Grumman,
USA
Rei Stråhle, Saab Systems, Sweden
[…]

Call for SIGAda Award
Nominations
From: Ricky E. Sward

<ricky.sward@msn.com>
Date: Fri, 28 Aug 2009 09:38:36 -0700

PDT
Subject: Call for SIGAda Award
Nominations

Newsgroups: comp.lang.ada
Dear Members of the Ada Community:

As the new Chair of SIGAda, I'm sending
you this call for nominations for the
SIGAda Outstanding Ada Community
Contribution Award and the ACM
SIGAda Distinguished Service Award.
Nominations are due on September 28th
to SIGAda-Award@listserv.acm.org.
On Thursday, Nov 5th, these SIGAda
Awards will be presented in a special
morning plenary session at the SIGAda
2009 conference in Tampa, Florida (See
http://www.sigada.org/conf/sigada2009/).
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda.
The two categories of awards are:
(1) Outstanding Ada Community
Contribution Award
 -- For broad, lasting contributions to
Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award
 -- For exceptional contributions to
SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people
as you think worthy. One or more awards
will be made in both categories.
Please visit http://www.acm.org/sigada/
exec/awards/awards.html#Recipients and
peruse the names of past winners. This
may help you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or vice versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at http://www.acm.org/
sigada/exec/awards/awards.html. You
need to visit this website to see past award
winners' names, so you don't nominate
someone who has already won an award
in a category. A picture of the statuette
used for the award is also on this site.
Submit your nomination as an e-mail or e-
mail attachment to
SIGAda-AWARD@listserv.acm.org.
The ACM SIGAda Awards Committee,
composed of volunteers who have
previously won an award, will determine

140 Ada and Educat ion

Volume 30, Number 3, September 2009 Ada User Journal

this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them. And
please nominate by September 28th.
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
Ricky E. Sward
Chair, ACM SIGAda

Ada Semantic Interface
Specification (ASIS)
ASIS and the Ada 2005
reference manual
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Fri, 5 Jun 2009 10:01:54 -0700 PDT
Subject: ASIS : questions about the ASIS

status against the Ada reference
Newsgroups: comp.lang.ada
Hello ASIS fans,
I'm interested in ASIS as it is an
abstraction for representing Ada sources.
One may set up its own abstract
representation, but as such a thing already
exist, it is better to use the existing one.
Better, because such an interface is a
rather big stuff, and it is better to reuse to
avoid errors and get the benefits of long
time worked issues.
But I have some doubt about ASIS. Well,
at least, one.
Looking at the ASIS package
specifications and even more at the ASIS
issues at ada-auth, I began to feel that a
lot of efforts are still running at making
ASIS able to fully represent all possible
Ada 2005 constructions.
From here, comes these fundamental
questions :
⁃ Is the ability of ASIS to represent all
Ada 2005 constructs formally provable?
⁃ Can ASIS be viewed as another
expression of a part of the Ada 2005
reference in a special formalism?
While I know ASIS is mainly useful for
code analysis, audits, statistics, etc, I
though about another question which may
give an answer to these two latter ones:
formally speaking (although perhaps not
practicable), is it theorically possible to
imagine a compiler built around ASIS ? If
the answer is yes, then the answer to the
two previous questions would be yes as
well.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 06 Jun 2009 02:25:45 -0400
Subject: Re: ASIS : questions about the ASIS

status against the Ada reference

Newsgroups: comp.lang.ada
> […]
 ⁃ Is the ability of ASIS to represent all

Ada 2005 constructs formally provable
?

I doubt it. But why do you want to know?
> ⁃ Can ASIS be viewed as another

expression of a part of the Ada 2005
reference in a special formalism?

Probably.
> While I know ASIS is mainly useful for

code analysis, audits, statistics, etc, I
though about another question which
may give an answer to these two latter
ones: formally speaking (although
perhaps not practicable), is it
theorically possible to imagine a
compiler built around ASIS?

I don't see how; ASIS presumes a
compiler that generates the information
ASIS uses. Why build another compiler
on top of that?
From: Pascal Obry <pascal@obry.net>
Date: Sat, 06 Jun 2009 11:24:54 +0200
Subject: Re: ASIS : questions about the ASIS

status against the Ada reference
Newsgroups: comp.lang.ada
> […]
 formally speaking (although perhaps

not practicable), is it theorically
possible to imagine a compiler builded
around ASIS?

I would say yes. The internal
representation of the Ada code could be
based on ASIS. Yet I don't think there is a
single Ada compiler that has followed this
path.
From: Pascal Obry <pascal@obry.net>
Date: Fri, 05 Jun 2009 19:23:28 +0200
Subject: Re: ASIS : questions about the ASIS

status against the Ada reference
Newsgroups: comp.lang.ada
[…]
> While I know ASIS is mainly useful for

code analysis, audits, statistics, etc,
Don't forget code generation. For example
AWS generates WSDL documents out of
Ada specs.

Ada and Education
Praxis — SPARK Training
September 2009
From: Praxis HIS
Subject: SPARK Training
Date: September, 2009
URL: http://www.praxis-his.com/sparkada/

training.asp
SPARK Training - Overview
We run six courses in SPARK, details of
which are below.

The schedule for public courses is shown
below. Exclusive courses for clients,
either at our offices or on-site, are also
available – please contact us for details.
Course 1: Two Day Overview
A 2-day day “extended tutorial” for
managers and engineers that presents the
principles and practice of high assurance
software engineering with SPARK.
The course explains the rationale of
SPARK, outlines the language and the
principles of static code analysis, and
presents the role of SPARK in systematic
program development.
The course also covers the design of the
SPARK language and the various types of
analysis and verification that can be
performed.
The second day of the course concentrates
on practical issues, such as how SPARK
matches contemporary standards for high
assurance software and software
processes such as CMM and PSP/TSP.
Finally, the issues (and problems) of
adopting SPARK will be considered,
followed by case-studies of SPARK usage
in the aerospace, rail and security
domains.
This course includes some pencil-and-
paper exercises, but does not involve
computer-based practical sessions or
SPARK programming. Students requiring
a thorough understanding of the practical
use of SPARK are referred to the longer
“Software Engineering with SPARK”
course.
Course 2: Software Engineering with
SPARK
A 4-day course for managers, regulators
and engineers, which presents the
principles of the development of high
integrity software, and the related
certification requirements.
It then explains the rationale of SPARK,
outlines the language and the principles of
static code analysis, and presents the role
of the SPARK Examiner in systematic
program development. The course also
covers fundamental SPARK design
issues, such as appropriate use of
packages such as abstract machines and
data types, as well as the use of SPARK
refinement, system interfaces, library
mechanisms, etc. Some of the more
advanced facilities of the SPARK
Examiner, for run-time error checking for
example, are presented.
Course 3: Advanced SPARK Program
Design and Verification
A course for engineers who have already
attended the "Software Engineering with
SPARK" course or are experienced
SPARK users. This course covers the
advanced use of SPARK, particularly in
the context of proof of exception freedom
and code correctness.

Ada-related Resources 141

Ada User Journal Volume 30, Number 3, September 2009

Attendees are taught to understand the
relationship between SPARK source code
and the verification conditions generated
for proof, leading to an understanding of
the impact of good SPARK design
principles on code verification.
Advanced facilities of the SPARK
Examiner are presented, and tuition in
planning, conducting and managing the
verification activities is supplemented by
the use of the SPARK proof tools,
particularly the Simplifier.
The course has a strongly practical
flavour, interweaving guidance and
lecture material with topical tutorial
sessions which reinforce the lecture
material via relevant examples. Each
tutorial session commences with a step-
by-step example which provides detailed
guidance, followed by additional
exercises which can be tried in the tutorial
sessions or used after the course to gain
additional practical experience. Note that
this course does not cover the
RavenSPARK language profile or the use
of the Proof Checker tool.
Course 4: Concurrent Software Design
with RavenSPARK
The Ada95 Ravenscar profile defines a
subset of the Ada95 tasking facilities that
are appropriate for the construction of
high assurance software. This one-day
course introduces the Ravenscar profile
and how it has been included in the core
SPARK language. The course will cover
the additional annotations in SPARK that
are used to describe packages that contain
tasks and protected objects and the
additional analyses implemented by the
Examiner to eliminate the potential for
defects in Ravenscar programs.
Delegates for this course should have
already attended the introductory
"Software Engineering with SPARK"
course, or should be experienced SPARK
users. This course may be taken as a one-
day stand-alone module, or may directly
follow a "Software Engineering with
SPARK" course.
Course 5: Introduction to the Proof
Checker
This course introduces the SPARK Proof
Checker, and how it can augment the
abilities of the Examiner and Simplifier in
the verification of SPARK programs.
Attendees will cover the basics of using
the Checker's interactive proof engine to
prove VCs that remain after
simplification.
The course also covers the use of the
Proof Checker to establish the validity of
user-defined proof rules. Delegates for
this course should have already attended
the “Advanced SPARK Program Design
and Verification” course.
Course 6: UML to SPARK
This course covers the rationale for
integrating SPARK with UML, and the

generation of SPARK from UML. The
majority of the course consists of a
practical session, where delegates will
produce SPARK from a partially
completed UML model.
Delegates for this course should have
already attended the introductory
"Software Engineering with SPARK"
course, or should be experienced SPARK
users.
No knowledge of UML or experience of
using UML tools is assumed.
This course may be taken as a one-day
stand-alone module, or may directly
follow a "Software Engineering with
SPARK" course.
Public Course Dates for 2009 - UK
Course 1 – "Two Day Overview"
TBD - come back soon for future course
dates.
Course 2 – "Software Engineering with
SPARK"
7th - 10th September 2009, Bath, UK.
Course 3 – "Advanced SPARK Program
Design and Verification"
22nd - 24th September 2009, Bath, UK.
Course 4 – "Concurrent Software Design
with RavenSPARK"
TBD - come back soon for future course
dates.
Course 5 – "Introduction to the Proof
Checker"
25th September 2009, Bath, UK.
Course 6– "UML to SPARK"
TBD - come back soon for future course
dates.
On-site training in the UK and around the
world
Praxis High Integrity Systems can run
training courses at a customer's facilities
as required. Training worldwide is
available from our partner company
AdaCore. Training in North America is
also available from our partner company
Pyrrhus Software.
Enquiries and Reservations
For enquiries and reservations for the
course, please contact us.
[see also "Praxis — SPARK Training
March 2009" in AUJ 29.4 (Dec 2008),
p.229 —mp]

Ada-related Resources
Ada 95 Quality and Style
From: Rick Duley <rickduley@gmail.com>
Date: Sat, 20 Jun 2009 22:21:33 -0700 PDT
Subject: Ada Quality and Style
Newsgroups: comp.lang.ada
I have my trusty "Ada95 Quality and
Style: Guidelines for Professional

Programmers". I cannot find a new
version. Is there one? If so, where can I
obtain a copy?
From: John McCormick

<mccormick@cs.uni.edu>
Date: Sun, 21 Jun 2009 04:48:46 -0700

PDT
Subject: Re: Ada Quality and Style
Newsgroups: comp.lang.ada
[…]
There was a discussion at the SIGAda
2008 meeting in Portland about updating
the style guide. Geoff Smith suggested
that the process be open to the Ada
community. He created a wikibook using
the Ada 95 version as a starting point. I'm
not sure how much work has been done
on it. Certainly there is still some work to
be done to add formatting markup, but the
entire document is there and ready for
people to add guidance for Ada 2005
additions.
http://en.wikibooks.org/wiki/
Ada_Style_Guide

Ada implementation of FFT
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 17 Jul 2009 09:27:21 +0200
Subject: Re: Fourier
Newsgroups: comp.lang.ada
> Does someone know an Ada

implementation of some Fourier
Transform? Or where I can find it?

One implementation of FFT is mentioned
at AdaIC:
http://www.adaic.org/links/libs.html
(the last in the list)
From: tmoran@acm.org
Date: Fri, 17 Jul 2009 07:37:25 +0000

UTC
Subject: Re: Fourier
Newsgroups: comp.lang.ada
> One implementation of FFT is

mentioned at AdaIC:
There are many around - do you want an
FFT for general (composite) N, or just
powers of two. Do you want to link in
highly optimized routines for particular
sizes, or just something simple to use.
From: Pablo Vieira Rego

<pablittto@gmail.com>
Date: Fri, 17 Jul 2009 04:49:19 -0700 PDT
Subject: Re: Fourier
Newsgroups: comp.lang.ada
[…]
I look for general N, simple to use, basic
to analyse data energy coherence.
From: tmoran@acm.org
Subject: Re: Fourier
Date: Fri, 17 Jul 2009 23:53:06 +0000

UTC
Newsgroups: comp.lang.ada
 […]

142 Ada-related Tools

Volume 30, Number 3, September 2009 Ada User Journal

I use a Glassman algorithm version. It's
fast for highly composite N (eg, powers of
2), but slow for prime sizes. For FFTing
images, that could be very slow indeed, so
I use a companion utility to find the
operation count for each K in N .. N+20
to see if a small extension of the data will
substantially speed things up.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Fri, 17 Jul 2009 10:27:45 -0400
Subject: Re: Fourier
Newsgroups: comp.lang.ada
[…]
Google says:
<http://fftwada.sourceforge.net/>

Ada-related Tools
Simple Components 3.4, 3.5
and 3.6
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 14 Jun 2009 16:23:31 +0200
Subject: ANN: Simple Components for Ada

v3.4
Newsgroups: comp.lang.ada
http://www.dmitry-kazakov.de/ada/
components.htm
The current version provides
implementations of smart pointers, sets,
maps, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, reentrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support; strings editing and tables
management.
Changes to the previous version:
1. The Test_Sequencer procedure made
Ada 95 conform;
2. The package
Parsers.Multiline_Source.Latin1_Text_IO
was added to support Latin-1 text I/O;
3. The package
Parsers.Multiline_Source.Wide_Text_IO
was added to support wide text I/O;
4. The generic procedure
Parsers.Multiline_Source.
Get_UTF8_Text was added for matching
texts in UTF-8 sources;
5. Parsers.Generic_Lexer.
Ada_2005_Blanks and
Parsers.Generic_Source.
Get_Ada_2005_Blank were added to
support Ada 2005 in UTF-8 encoding;
6. Task-safe implementation of reference
counting was added;
7. Task-safe implementation of persistent
storage was added;

8. Tracing implementation for GNAT Ada
for reference counting object was added;
9. Get_Class abstract operation was added
to the persistent storage interface;
10. Generic_Chebyshev_Polynomials was
added to sum Chebyshev series of the first
kind;
11. Gamma function approximation for
Float;
12. Parsers.Generic_Source.Text_IO
expands tabs;
13. Procedures Get_Location and Skip
were added to Parsers.Multiline_Source;
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 9 Jul 2009 20:23:56 +0200
Subject: ANN: Simple Components for Ada

v3.5
Newsgroups: comp.lang.ada
[…]
Changes to the previous version:
Minor bug fixes in example
test_ada_parser.adb fixed and in
Parsers.Generic_Source.Get_Cpp_Blank.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 7 Aug 2009 16:33:56 +0200
Subject: ANN: Simple Components for Ada

v3.6
Newsgroups: comp.lang.ada
[…]
Changes to the previous version:
1. Packages for text output of the
persistent storage index were added;
2. Is_Directory was added to
Persistent.Directory;
3. Handles and sets of backward links
added.
[see also "Simple Components 3.3" in
AUJ 30‑1 (Mar 2009), p.7 —mp]

Fuzzy Sets for Ada v5.4
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 14 Jun 2009 16:29:49 +0200
Subject: ANN: Fuzzy Sets for Ada v5.4
Newsgroups: comp.lang.ada
The current version includes distributions
of string edit, interval arithmetic and
simple components packages. It provides
implementations of:
1. Confidence factors with the operations
not, and, or, xor, +, *;
2. Classical fuzzy sets with the set-
theoretic operations and the operations of
the possibility theory;
3. Intuitionistic fuzzy sets with the
operations on them;
4. Fuzzy logic based on the intuitionistic
fuzzy sets and the possibility theory;

5. Fuzzy numbers both integer and
floating-point ones with conventional
arithmetical operations;
6. Dimensioned fuzzy numbers;
7. Fuzzy linguistic variables and sets of
linguistic variables with operations on
them;
8. Dimensioned fuzzy linguistic variables
and sets;
9. String-oriented I/O is supported;
10. GUI interface based on GTK+ (The
GIMP Toolkit) with fuzzy set editors,
truth values widgets and renderers,
linguistic variables sets editors.
http://www.dmitry-
kazakov.de/ada/fuzzy.htm
The current version works with GNAT
GPL 2009 and when GUI interface is
used with GtkAda 2.14.

GNAT GPL 2009 for 32-bit
Mac OS X
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Fri, 12 Jun 2009 14:49:57 -0700 PDT
Subject: GNAT GPL 2009 for 32-bit Mac

OS X
Newsgroups: comp.lang.ada
AdaCore's GNAT GPL 2009 is built for
the x86_64 architecture only.
Some Apple libraries (particularly Tk)
come in 32-bit only.
This new build, on Sourceforge in the
GnuAda project, is 32-bit only:
https://sourceforge.net/project/
showfiles.php?group_id=12974&
package_id=258771

On the Open Ravenscar
Kernel
From: Emilio Salazar

<emilio.salazar@gmail.com>
Date: Wed, 29 Jul 2009 06:49:35 -0700

PDT
Subject: Re: Open Ravenscar Real-Time

Kernel
Newsgroups: comp.lang.ada
> Does anyone know the status of the

Open Ravenscar Real-Time Kernel
(ORK+) project?
www.openravenscar.org is dead.

[…]
Please, try with this link
http://polaris.dit.upm.es/~str/ork/
index.html
[…]

GLOBE_3D
From: GLOBE 3D Project Webpage
Date: Tue, 01 Sep 2009
Subject: GLOBE_3D - Ada and GL 3D

Engine
URL: http://globe3d.sourceforge.net/

Ada-related Tools 143

Ada User Journal Volume 30, Number 3, September 2009

GLOBE_3D stands for GL Object Based
Engine for 3D.
GL stands for Graphics Library, created
by SGI. SGI stands for Silicon Graphics,
Inc. .
Short description: GLOBE_3D is a free,
open-source, real-time 3D Engine written
in Ada, based on OpenGL.
Features:
⁃ unconditionally portable sources (one

set of sources for all platforms)
⁃ real-time rendering; fast with a 3D

hardware-accelerated graphics card
⁃ full eye movements and rotations
⁃ displays combinations of colours,

materials, textures
⁃ transparency
⁃ multiple area rendering with the portal

technique, e.g. for inner scenes
⁃ collision detection [NEW]
⁃ binary space partition (BSP)
⁃ input-output of 3D objects or groups of

objects linked to each other by portals
⁃ easy management of resources like

textures (.bmp, .tga), BSP trees and
objects stored in .zip files

⁃ screenshots (.bmp) and video captures
(.avi)

⁃ multi-view support
⁃ vectorized geometry support
Goodies:
⁃ randomly extruded surface generator
Tools:
⁃ VRML virtual world compiler, through

the wrl2ada translator
⁃ GMax / 3D Studio Max scene exporter

& compiler, through the max2ada
translator

⁃ Compilation of game maps or levels
from the Doom 3, Quake 4 or GTK
Radiant level editors through the d3a (to
Ada) translator or the d3g (to .g3d) tool.

Download:
Download the archive at the SourceForge
project page.
It contains:
⁃ a ready-to-run demo built for Windows

and Linux
⁃ the tools mentioned above
⁃ fresh bindings to GL / OpenGL, GLU

and FreeGLUT
⁃ a single, standalone and complete set of

Ada sources, successfully built on the
following system / cpu / compiler
combinations:

OS;CPU;Compiler
MS Windows 95,98,NT,2K,XP;Intel x86
(32 bit);GNU - GNAT

MS Windows 95,98,NT,2K,XP;Intel x86
(32 bit);Aonix - ObjectAda
Linux;Intel x86 (32 bit);GNU - GNAT
Mac OS X;PowerPC (64 bit);GNU -
GNAT
OpenBSD;(one of several);GNU - GNAT
For any other system, GLOBE_3D should
work provided that the system supports
(Open)GL and GLU.
Availability of FreeGLUT or OpenGLUT
is needed for the demo.
I welcome your scripts, makefiles etc.
[verbatim from the home page of the
project —mp]

GWenerator 0.97 and 0.975
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Mon, 01 Jun 2009 19:49:29 +0200
Subject: Ann: GWenerator 0.97
Newsgroups: comp.lang.ada
[…]
A new version of GWenerator is out!
Latest changes:
0.97 (01-Jun-2009):
⁃ a test application with all of a resource's

dialogs is now generated, too, on
request

⁃ width/height settings in dialogs now
refer to client area (bug fix)

⁃ CONTROLs of "Button" and "Edit"
classes... understood as alternative to
'typed' button/editbox controls

⁃ many more resources files from MS
Visual Studio, Borland Resource
Workshop, ResEdit and others are now
translated

Visit: http://sf.net/projects/gnavi/
With GWenerator you can design
Graphical User Interfaces with existing
software like Visual Studio or the free
ResEdit (http://resedit.net), and program
Windows applications in Ada using the
GWindows object-oriented library.
GWenerator produces Ada sources
corresponding to dialogs and menus, as a
background task. The command-line
equivalent, rc2gw, does the same job on
request.
Of course, GWenerator's own GUI is
itself produced this way - kind of a self-
demo.
The archive contains some other
examples and numerous stress-tests
downloaded from Internet.
But the better is to play around and send
feedbacks or ask questions on the GNAVI
mailing list…
[…]
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Wed, 8 Jul 2009 13:06:44 -0700 PDT

Subject: Ann: GWenerator 0.975
Newsgroups: comp.lang.ada
[…]
A new version of GWenerator is out!
Latest changes:
0.975 (05-Jul-2009):
⁃ new Initialize_controls option: initialize

some controls with fake contents, for
test/debug; analogous to Ada's
Normalize_Scalars pragma

⁃ better support for: progress bars, tree
views, list views, static borders, some
special window styles

Visit: http://sf.net/projects/gnavi/
With GWenerator you can design
Graphical User Interfaces with existing
software like Visual Studio or the free
ResEdit
(http://resedit.net), and program
Windows applications in Ada using the
GWindows object-oriented library.
GWenerator produces Ada sources
corresponding to dialogs and menus, as a
background task. The command-line
equivalent, rc2gw, does the same job on
request. On request, GWenerator
produces a test application with all
dialogs.
Unlike some other GUI libraries,
GWindows is Windows-only, but a built
application can hold in a single .exe (no
need to provide any run-time framework,
toolkit, dll's and worry about version
conflicts), which make deployment very
easy in a Windows-centric environment.
The archive contains numerous examples
and stress-tests downloaded from Internet.
[see also "GWenerator" in AUJ 30.1 (Mar
2009), p.8 —mp]

Visual Ada Developer 7.2
From: Leonid Dulman

<leonid_dulman@yahoo.co.uk>
Date: Tue, 7 Jul 2009 11:45:11 +0300
Subject: announce : Visual Ada Developer

VAD 7.2
Newsgroups: comp.lang.ada
Visual Ada Developer (VAD) 7.2 is now
available
http://users1.jabry.com/adastudio/
index.html
VAD is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License
as published by the Free Software
Foundation; either version 2 of the
License, or (at your option) any later
version.
VAD is distributed in the hope that it will
be useful, but WITHOUT ANY
WARRANTY; without even the implied
warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR
PURPOSE.

144 Ada-related Tools

Volume 30, Number 3, September 2009 Ada User Journal

VAD 7.2 Common description.
1. VAD (Visual Ada Developer) is a
Tcl/Tk oriented Ada-95(TCL) GUI
builder portable to different platforms,
such as Windows NT/9x,Unix(Linux),
Mac and OS/2.
You may use it as IDE for any Ada-
95(C,C++,TCL) project.
VAD generated Ada sources you may
compile and build executable or generate
TCL script to interpret with Tcl/Tk.
VAD 7.2 was tested in Windows 32bit
and 64bit and Linux x86-64 Fedora 11,
Kubuntu 9.04
2. Used software
GNAT GPL 2009 Ada-05 compiler (or
any others)
TCL/TK 8.5.x
http://tcl.activestate.com/software/tcltk/
TCL/TK 8.6.x
http://tcl.activestate.com/software/tcltk/
W A R N I N G ! VAD 7.2 has two
realization for tcl/tk 8.5.x and tcl/tk 8.6.x ,
you need to install and test tcl/tk at first.
From version tcl/tk 8.5.0.1 ActiveState
distribution includes many of VAD used
packages
(Itcl,Img,Tktable,BWidgets,Tkhtml and
so on).
You may choice needed version at link
time. (I recommend to work with 8.6)
[…]

GTKAda Contributions v2.4
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 7 Aug 2009 16:11:23 +0200
Subject: ANN: GtkAda Contributions v2.4

with GtkSourceView support
Newsgroups: comp.lang.ada
This library is proposed as a contribution
to GtkAda, an Ada bindings to GTK+. It
deals with the following issues:
1. Tasking support;
2. Custom models for tree view widget;
3. Custom cell renderers for tree view

widget;
4. Multi-columned derived model;
5. Extension derived model (to add

columns to an existing model);
6. Abstract caching model for directory-

like data;
7. Tree view and list view widgets for

navigational browsing of abstract
caching models;

8. File system navigation widgets with
wildcard filtering;

9. Resource styles;
10. Capturing resources of a widget;
11. Embeddable images;

12. Some missing subprograms and bug
fixes;

13. Measurement unit selection widget
and dialogs;

14. Improved hue-luminance-saturation
color model;

15. Simplified image buttons and buttons
customizable by style properties;

16. Controlled Ada types for GTK+
strong and weak references;

17. Simplified means to create lists of
strings;

18. Spawning processes synchronously
and asynchronously with pipes;

19. Capturing asynchronous process
standard I/O by Ada tasks and by text
buffers.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
Changes to the previous version:
1. Support for translation of stack
traceback into symbolic form by pasting
from the clipboard;
[see also "GTKAda Contributions" in
AUJ 29‑3 (Sep 2008), p.152 —mp]

Status of wxAda
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 11 Aug 2009 20:20:14 -0700

PDT
Subject: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
[…]
I was thinking about wxWidgets to target
Mac OS, because it ties to the underlying
platform (I do not want something which
would seem not to have been made for
Mac, especially on Mac) and because also
it will allow me to test on Windows (as I
do not own a Mac)… well, to be
exhaustive, the licensing terms are
appealing too.
So I've ended to learn about the Ada
binding for wxWidget, that is, wxAda, but
all links to this either brings me to Tigris
or SourceForge, which both do not
contain any file at all for this project, as
you can check yourself:
http://wxada.tigris.org/servlets/
ProjectDocumentList
(zero source files in SVN repository)
http://sourceforge.net/projects/
wxada/files/
(no source archives at all)
[…]
Do someone know how this adventure
turns out ?
[…]
From: Luke <Lucretia9000@yahoo.co.uk>
Date: Wed, 12 Aug 2009 06:01:24 -0700

PDT

Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
While I mention that it is dead on the
tigris page, I have recently started looking
at it again from a slightly different angle.
But currently, there is no usable version.
[…]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Thu, 13 Aug 2009 03:03:10 -0700

PDT
Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
[…]
What is the new way to bind to
wxWidgets you are thinking about ?
I guess its big work, as wxWidgets
(previously wxWindows) is all in C++,
and interfacing C++ with Ada, typically
requires an intermediate binding in C… a
tedious task.
If I can talk about my specific concerns: if
I cannot use wxAda, I will simply do as
for the Windows API, creating a binding
step by step, as comes the needs (the
standard Ada Windows API binding is not
like what I was looking for).
As I said, I was interested in wxWidget
rather than others, because of its license
terms and because it is an interface to the
underlying OS, not an emulation which
creates all its own widgets (I've seen
screenshots of GTK on Mac, it look like
GNOME on Linux, and Qt does an
emulation too, although it lies better).
To go further, Mac OS seems to like
wxWidget, as it seems there are
wxWidgets headers in the standard Mac
OS development environment (not GTK
nor Qt) beside of the system and system
framework headers. So wxWidgets seems
a good choice.
Back to the C++ implementation of
wxWidgets: the most recommended API
for Mac OS is Cocoa, which is Objective-
C, which can be interfaced as simply as C
(if I believe to the literature about it).
So one moment, I thought about simply
writing an Ada binding to Cocoa, but as I
do not own a Mac, I could not run any test
at all (this will be frightening).
If there was a Cocoa for Windows, this
would be all fine, I could run tests on
Windows.. but there is not.
From: Luke <Lucretia9000@yahoo.co.uk>
Date: Thu, 13 Aug 2009 04:19:07 -0700

PDT
Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
 […]
> What is the new way to bind to

wxWidgets you are thinking about ?
Well, to try to automate it using python
scripts (if this doesn't, work another
attempt with SWIG). Rather than define

Ada-related Tools 145

Ada User Journal Volume 30, Number 3, September 2009

all tagged types as non-limited types, they
will be limited and they will have to be
allocated dynamically, this is how other
bindings to C++ UI toolkits work and
really is the only way due to C++
semantics.
> I guess its big work, as wxWidgets

(previously wxWindows) is all in C++,
and interfacing C++ with Ada, typically
requires an intermediate binding in C...
a tedious task.

Yeah, bit job due to the size of
wxWidgets, although I have no intention
of supporting the entire lib, there's stuff
wxAda just doesn't require.
> As I said, I was interested in wxWidget

rather than others, because of its license
terms […]

Yup, the license and also the ease of
programming with wxWidgets is what got
me started with it in the first place.
I think at the moment your options are
this:
1) Use AdaGtk on all platforms for now.
2) Develop your UI code in whatever
language for whatever platform, e.g. C++
for Win32, Obj-C for Apple and then
create the app code in Ada providing
some sort of interface between the 2.
From: Luke <Lucretia9000@yahoo.co.uk>
Date: Thu, 13 Aug 2009 04:20:01 -0700

PDT
Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
[…]
> Is some one interested in sponsoring an

Ada to wxWidgets binding ?
Not that I know of and it is something I
have considered, but it would have to be
rather special as I have a full time job and
I'm not in a position to give it up yet.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Thu, 13 Aug 2009 04:52:52 -0700

PDT
Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
[…]
I've got full time, as I do not have a job,
so if someone is interested, I will be there.
I could follow your recommendations for
the implementation if you wish.
[…]
From: Micronian Coder

<micronian2@gmail.com>
Date: Thu, 13 Aug 2009 10:03:53 -0700

PDT
Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
[…]
There is a library called Agar that is
written in C. I have never used it, but I
found it interesting that someone added a
thin Ada binding to it. Currently, the Ada
binding depends on AdaSDL since Agar

depends on SDL and OpenGL. However,
version 1.4 of Agar is supposed to allow
for more variety of graphics drivers. In
addition, Agar is available for these
platforms: FreeBSD, IRIX, Linux,
MacOS Classic, MacOS X, NetBSD,
OpenBSD and Windows. It even
mentions Game Cube support for anyone
who is interested in that.
From the website libagar.org :
Agar is a modern open-source, cross-
platform toolkit for graphical applications
implemented in C, C++ and Ada (with
bindings to other languages in
development). Designed for ease of
integration, it follows the philosophy of
building the GUI around the application
and not the other way around. Unlike
most other GUI toolkits, Agar takes
maximum advantage of hardware
graphics acceleration when it is available
via OpenGL, but it also supports
traditional framebuffer interfaces such as
SDL direct video. The Agar API is
entirely thread-safe when Agar is
compiled with optional threads support.
The distribution includes two libraries:
Agar-GUI implements the base Agar GUI
system and a comprehensive set of
standard widgets. Agar-GUI is object-
oriented and relies heavily on inheritance,
virtual functions and virtual filesystems.
This functionality is implemented by the
GUI-independent Agar-Core library,
which also includes various utility and
portability interfaces.
The Agar distribution also includes some
more specialized libraries aimed at
specific applications, such as Agar-
MATH, Agar-RG, Agar-VG and Agar-
DEV. Some of our other toolkits which
extend (and rely on) Agar include
FreeSG, Edacious and cadtools.
Agar is free software. Its source code is
freely usable and re-usable by everyone
under a BSD license, which allows use in
commercial applications free of charge.
Agar is stable, well-maintained and has
been growing organically since early
2002. The Agar project is sponsored by
Csoft.net: Security conscious, high-
availability Unix hosting on redundant
server arrays.
[…]
From: Luke <Lucretia9000@yahoo.co.uk>
Date: Thu, 13 Aug 2009 10:44:48 -0700

PDT
Subject: Re: wxAda : is it vanished ?
Newsgroups: comp.lang.ada
[…]
I'm aware of it and know the person who
did the bindings. But, as the OP pointed
out, he is actually wanting per platform-
native widgets.

QtAda 3.0 and 2.2
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sun, 7 Jun 2009 12:07:40 -0700 PDT
Subject: Announce: QtAda 3.0 & QtAda 2.2
Newsgroups: comp.lang.ada
We are pleased to announce the
immediate availability of the QtAda 3.0.0
and QtAda 2.2.0. You can download
multi platform source code package or
Microsoft Windows binary package from
the our download page:
http://www.qtada.com/en/download.html
QtAda is an Ada2005 language bindings
to the Qt libraries and a set of useful tools.
QtAda allows easily to create cross-
platform powerful graphical user interface
completely on Ada 2005. QtAda
applications will work on most popular
platforms -- Microsoft Windows, Mac OS
X, Linux/Unix -- without any changes and
platform specific code. QtAda allows to
use all power of visual GUI development
with Qt Designer.
New in QtAda 2.2.0:
- GNAT Project Files are installed for all

examples
- improved support for QTextFormat and

subclasses
- improved support for QFileDialog
- many bugfixes in QtSql bindings
New in QtAda 3.0.0:
- bindings for all QObject and

QGraphicsItem classes and subclasses
was reimplemented completely

- subclassing of QObject and
QGraphicsItem classes and subclasses
was simplified significantly

New on QtAda site:
- documentation for QtAda 3.0 and QtAda

2.2 is available on-line for now
[see also "QtAda 2.1.0" in AUJ 30‑1
(Mar 2009), p.9 —mp]

QtAda 2.1.1 for Qt 4.5.2
From: Leonid Dulman

<leonid_dulman@yahoo.co.uk>
Date: Thu, 16 Jul 2009 14:00:33 +0300
Subject: Ann : QtAda version 2.1.1 rebuild

for Qt 4.5.2
Newsgroups: comp.lang.ada
QtAda is an Ada-95(05) interface to Qt4
graphics library Qt version 4.5.2 open
source and qt4c.dll(libqt4c.dll) built with
Microsoft Visual Studio 2005 and
MINGW GCC compiler in Windows and
(libqt4c.so) gcc 4.3.4 in Linux.
Package tested with GNAT GPL 2009
Ada compiler in Windows 32bit and 64bit
and Linux x86-64 Fedora 11 and Kubuntu
9.04 QtAda for Windows and Linux
(Unix) is available from

146 Ada-related Tools

Volume 30, Number 3, September 2009 Ada User Journal

http://users1.jabry.com/adastudio/
index.html

TclAdaShell 20090611
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Fri, 12 Jun 2009 14:58:52 -0700 PDT
Subject: tcladashell-20090611
Newsgroups: comp.lang.ada
This new release of TclAdaShell is
uploaded to
https://sourceforge.net/projects/
tcladashell/
It's a minor release: you no longer need
gprbuild (which is a fine utility, but not
everyone has it yet).
If you are on an Intel Mac, you won't be
able to use AdaCore's GNAT GPL 2009,
which is 64-bit only, whereas the Tk
framework is 32-bit only; there's a 32-bit
GNAT GPL 2009 at
https://sourceforge.net/project/
showfiles.php?group_id=12974&
package_id=258771
[see also "TASH 20090207" in AUJ 30‑1
(Mar 2009), p.9 —mp]

CairoAda 1.8
From: Damien Carbonne

<damien.carbonne@free.fr>
Date: Sat, 01 Aug 2009 11:59:47 +0200
Subject: ANN: CairoAda 1.8 update
Newsgroups: comp.lang.ada
A new version of CairoAda is available.
http://sourceforge.net/projects/cairoada
Main changes are related to:
⁃ Documentation
⁃ More style checks
⁃ User font API that was corrected
⁃ Improvement in GNAT project files

(checked on Linux and Windows)
⁃ Support of GNAT GPL 2009
⁃ Corrections in RSVG and addition of

missing functions (RSVG 2.26).
Notes:
1) RSVG / Gdk.Cairo work with GtkAda
provided with GNAT GPL 2009, but may
need changes to work with latest version
of GtkAda found on svn repository (there
was a change in Gdk_Pixbuf).
2) Latest version of RSVG is needed. On
Windows, no ready to use binary version
of librsvg 2.26 seems available yet (I
didn't find one and built one myself).
3) Support for FreeType should arrive
soon. A binding has been started but has
not been uploaded yet.
[…]
[see also "CairoAda 1.8" in AUJ 29‑4
(Dec 2008), p.232 —mp]

WinPCap/LibPCap
Wrappers
From: John McCabe
Date: Wed, 26 Aug 2009 16:43:16 +0100
Subject: WinPCap/LibPCap Wrappers?
Newsgroups: comp.lang.ada
[…]
Sorry to have to ask this here, but a web
search was a bit fruitless!
Does anyone know of an Ada wrapper to
the WinPCap and/or libpcap libraries?
I'd like to be able to read in files created
by Wireshark and manipulate the data in a
sensible way. I guess I could do it with
C++, but I'd much rather use Ada :-)
[…]
From: Björn <ssh9614@hotmail.com>
Date: Wed, 26 Aug 2009 13:17:18 -0700

PDT
Subject: Re: WinPCap/LibPCap Wrappers?
Newsgroups: comp.lang.ada
[…]
The following might be of help (only
tested with libpcap):
http://www.mediafire.com/?
sharekey=b27d9dbe9e00e3f4e62ea590dc
5e5dbbe04e75f6e8ebb871
From: Steve D
Date: Wed, 26 Aug 2009 21:04:55 -0700
Subject: Re: WinPCap/LibPCap Wrappers?
Newsgroups: comp.lang.ada
[…]
The files are kind of big, but I have had
wireshark dump the files as XML (one of
the options). It made it relatively easy to
sift through data.

Doxygen for Ada
From: Pablo Vieira Rego

<pablittto@gmail.com>
Date: Mon, 20 Jul 2009 08:38:42 -0700

PDT
Subject: Doxygen for Ada
Newsgroups: comp.lang.ada
Does someone knows some Doxygen
documentation script which runs over
Ada code?
From: Oliver Kellogg

<okellogg@freenet.de>
Date: Mon, 20 Jul 2009 11:50:30 -0700

PDT
Subject: Re: Doxygen for Ada
Newsgroups: comp.lang.ada
[…]
AdaBrowse
(http://home.datacomm.ch/t_wolf/tw/
ada95/adabrowse/) does not use the exact
Doxygen syntax but is useful,
nonetheless.
From: Pablo Vieira Rego

<pablittto@gmail.com>
Date: Wed, 22 Jul 2009 05:13:29 -0700

PDT

Subject: Re: Doxygen for Ada
Newsgroups: comp.lang.ada
[…]
Hi Oliver, thanks for the answer. I was
looking for a script which generates .tex
files, but meanwhile it's good.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Tue, 21 Jul 2009 01:07:07 -0700 PDT
Subject: Re: Doxygen for Ada
Newsgroups: comp.lang.ada
[…]
I have written a script that generates
pretty nice docs in the
Doxygen/Javadoc/etc. style, but it works
differently from other tools. Instead of
analyzing the code on the ASIS level it
assumes that the source code is "well
formatted" and processes it based on the
vertical and horizontal white space
patterns. Due to the regular structure of
the Ada grammar the whole task is
reduced to simple regexp crunching
without any serious compile-like analysis
- and is therefore blazing fast. I don't
claim that its language coverage is
complete, but it proved to be very useful.
The script generates a set of HTML pages
with indexes and stuff.
As pointed above, it works *only* when
the code is "well formatted", which means
that newlines and indentation should be
used according to common conventions.
Fortunately, most of the Ada code that
was ever written is well formatted in this
sense. I was able to use this script for the
libraries that come with GNAT, and also
for AWS, PolyORB, etc.
Please contact me privately […] if you are
interested in this script. If there will be a
wider interest I will publish it on the web.
[…]

Status of Hibachi
From: John McCabe

<john@nospam.assen.demon.co.uk>
Date: Mon, 08 Jun 2009 10:13:23 +0100
Subject: Hibachi - is it dead?
Newsgroups: comp.lang.ada
Just thought I'd ask as someone on here
might know.
From: britt.snodgrass@gmail.com
Date: Mon, 8 Jun 2009 08:11:47 -0700 PDT
Subject: Re: Hibachi - is it dead?
Newsgroups: comp.lang.ada
[…]
I haven't yet bothered to remove myself
from the "hibatchi-dev" list.
With one exception, the *only* list traffic
I've seen in over a year is this automatic
message posted every two months:
> Thomas,
> Projects are required to keep meta data

up to date using the MyFoundation

Ada-related Products 147

Ada User Journal Volume 30, Number 3, September 2009

 Portal (http://portal.eclipse.org/). The
following problems were found with
this project's meta-data:

 - There is no next/future release of this
project. All Eclipse projects must have
a "next release" planned and scheduled.

[…]
From: Tom Grosman <grosman@aonix.fr>
Date: Wed, 24 Jun 2009 16:01:23 +0200
Subject: Re: Hibachi - is it dead?
Newsgroups: comp.lang.ada
[…]
Sorry about the tardy response. I was on
holiday and your question got lost in the
pile when I got back.
We (Aonix) are still using and developing
the Hibachi technology via AonixADT,
our Eclipse IDE for ObjectAda, however
other than bug fixes, most of the work we
are doing has been specific to our
products (eg. adding support for specific
ObjectAda tool chains). We have not yet
rolled these changes into the Hibachi
sources.
There hasn't been any activity on the
Hibachi project in a while. I had to step
down as project leader for health reasons,
and since then there has not really been
anyone driving it. I had hopes that there
would be someone to pick up the baton
and move things forward, but
unfortunately, that didn't happen.
The project is still there, an excellent base
from which to create an extensible robust
Ada development framework, but for
various reasons, there hasn't been the
critical mass needed to support it.
[see also "Hibachi Project Lead" in AUJ
29‑3 (Sep 2008), p.156 —mp]

Zip-Ada v.33
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Thu, 2 Jul 2009 14:49:02 -0700 PDT
Subject: Ann: Zip-Ada v.33
Newsgroups: comp.lang.ada
[…]
A new version of the Zip-Ada library @
http://unzip-ada.sf.net/ is out:
⁃ Changes in '33', 18-Jun-2009:
 o UnZip: added extract_as_text option

(cf. UnZipAda with -a option)
 o Zip: Zip_comment function added (cf.

UnZipAda with -z option)
Zip-Ada is now used in the following
musical software:
http://www.huygens-fokker.org/scala/
[see also "Zip-Ada" in AUJ 30‑1 (Mar
2009), p.11 —mp]

L10n and i18n support
in Ada
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Fri, 7 Aug 2009 14:56:41 -0700 PDT
Subject: Announce: localization,

internationalization and globalization
for Ada

Newsgroups: comp.lang.ada
[…]
Ada standard library doesn't include
features for localization,
internationalization and globalization
which is very important for many kinds of
information systems. I am pleased to
announce the first release of library for
this domain.
It allows to manipulate string information
encoded using full Unicode character set,
supports upper/ lower case conversions,
normalization, collation (string
comparison in the user preferred order,
not in code point order), characters and
grapheme cluster cursors on strings. You
can download it here:
http://download.qtada.com/
matreshka-0.0.1.tar.gz
Any feedback is welcome!

Ada-related Products
AdaCore — GNAT Pro for
all Current VxWorks
Platforms
From: AdaCore Press Center
Date: Monday June 1, 2009
Subject: AdaCore Expands GNAT Pro

Offerings to All Current VxWorks
Platforms

URL: http://www.adacore.com/2009/06/01/
vxworks-67/

SAN DIEGO, NEW YORK and PARIS,
June 1, 2009 - Avionics USA - AdaCore,
a leading supplier of Ada development
tools and support services, today
announced the availability of GNAT Pro
on all active versions of Wind River’s
VxWorks real-time operating system.
This list includes VxWorks 5, VxWorks
6, supporting both asymmetric
multiprocessing (AMP) and symmetric
multiprocessing (SMP) configurations,
VxWorks 653, VxWorks DO-178B, and
VxWorks MILS. GNAT Pro now gives
Ada users the widest selection of
VxWorks platforms to choose from,
whether for new programs or for
migration of existing codebases to newer
operating systems. In addition, all Wind
River platforms supporting deployment in
DO-178B certified environments are also
supported.
The GNAT Pro product offering for
VxWorks satisfies a wide variety of
customer application requirements and

deployment environments. GNAT Pro for
VxWorks 5 and 6 are suitable for general-
purpose software development. The
specialized GNAT Pro High-Integrity
Edition for DO-178B, available for the
VxWorks 653 and VxWorks DO-178B
Platforms, is targeted to RTCA DO-178B
and IEC 61508 safety-critical systems.
For safety-certified environments,
AdaCore’s GNAT Pro High-Integrity
Edition supports three specific runtime
environments that optimize size,
performance, and certification effort.
⁃ The zero-foot-print (ZFP) library

simplifies safety certification for
sequential applications.

⁃ The Ravenscar library adds support for
tasking or multi-processing.

⁃ The Cert library adds ARINC653
awareness and supports advanced
integrated modular avionics (IMA)
features like inter-process or inter-
partition communication and
synchronization.

These certification libraries are used as a
part of multiple DO-178B Level A
certified systems.
GNAT Pro is also available for VxWorks
6, supporting both symmetric
multiprocessing (SMP) and asymmetric
multiprocessing (AMP) multicore
implementation models. This capability
allows customers to deploy Ada on
advanced multicore processors, and
enables high levels of optimization for a
variety of challenging multiprocessor
designs and configurations.
AdaCore’s GNAT Pro product for
VxWorks MILS brings a powerful
application development environment to
the aerospace and defense industry for
developing Ada applications within a
MILS (multiple independent levels of
security) architecture.
GNAT Pro for VxWorks MILS combines
with SPARK Pro (an Integrated
Development Environment combined
with the SPARK language tool set) to
support security certification of user
applications or their components to
Evaluation Assurance Level (EAL) 5 and
higher. SPARK is an Ada subset extended
with a contract language that allows a
program’s specification to be precisely
expressed and verified. It directly
supports semi-formal and formal methods
as required by EAL 5 and higher, and has
a strong track record for both safety-
critical and high-security systems. An
example of the latter is the NSA-
sponsored Tokeneer project (see:
http://www.adacore.com/2008/10/06/
nsa-releases-secure-software-project-to-
open-source-community/)
“Ada is an important technology for Wind
River aerospace and defense customers,
and AdaCore leads the way in providing
Ada toolsets across the full spectrum of

148 Ada and GNU/Linux

Volume 30, Number 3, September 2009 Ada User Journal

VxWorks platforms,” said Rob Hoffman,
Vice President and General Manager of
Aerospace and Defense at Wind River.“
Ada is well suited for the high-integrity
domains that we target, and we are
pleased to see GNAT Pro available for
our newest products, including VxWorks
6.7 and VxWorks MILS.”
“Wind River’s platforms are a key market
for AdaCore, so we placed a high priority
on making GNAT Pro available on all the
latest versions of VxWorks,” said Robert
Dewar, President and CEO of AdaCore.”
And our new support for VxWorks MILS,
in particular the SPARK Pro tool set,
provides a unique capability of creating
applications suitable for medium to high
assurance deployment. AdaCore’s
SPARK Pro tool set is the only program
analysis tool to directly help developers
certify their high assurance applications in
MILS architectures.”
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical.
AdaCore’s flagship product is the GNAT
Pro development environment, which
comes with expert on-line support and is
available on more platforms than any
other Ada technology. AdaCore has an
extensive world-wide customer base; see
http://www.AdaCore.com/home/
company/customers/ for further
information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railroad
systems, and medical devices, and in
security-sensitive domains such as
financial services.
AdaCore has North American
headquarters in New York and European
headquarters in Paris. www.AdaCore.com

AdaCore — GNAT GPL for
Lego Mindstorms NXT
From: AdaCore Libre Site
Date: Tuesday September 1, 2009
Subject: GNAT GPL for LEGO

MINDSTORMS NXT
URL: http://libre.adacore.com/libre/tools/

mindstorms/
GNAT for Lego Mindstorms NXT is a
GPL port for the GNAT compilation
system to the Lego Mindstorms NXT
robotic platform. Originally born as an
education-oriented project at MIT Media
Lab, the Lego Mindstorms has evolved
into a successful commercial product for
education in robotics in a multitude of
Universities and high schools across the
globe.

The latest revision of the platform
includes a 32-bit processor and supports
several different sensors able to detect
distance, colors and sounds and to
communicate via the Bluetooth protocol.
GNAT GPL Edition for the Lego
Mindstorms NXT platform brings the
possibility of experimenting with
embedded systems development using the
Ada 2005 and SPARK languages to an
education-oriented robotic platform.
Entire embedded systems, including
software, hardware and sensors
interfacing, and wireless communications
can be developed and verified using the
GPL editions of GNAT and SPARK.
Technical Details
GNAT GPL Edition for Lego Mindstorms
NXT relies on the nxtOSEK operating
system to manage real-time and
concurrent execution.
GNAT for Lego Mindstorms requires to
erase the original Lego firmware; the
original firmware can be however
restored if necessary.
Here's what's included:
⁃ GNAT GPL edition targeting the LEGO

MINDSTORMS NXT Platform
⁃ Bindings to nxtOSEK, an open, real-

time operating system providing
facilities for real-time and concurrent
systems

⁃ Bindings to access MINDSTORMS
hardware (processor, sensors and
motors), including Bluetooth

⁃ Getting Started material, examples of
applications which can be used as
teaching material

⁃ Availability for the LEGO
MINDSTORMS robotic building
system (coming soon).

Lego Mindstorms NXT NOT included
More information
[http://www.slideshare.net/AdaCore/
gnat-gpl-for-mindstorms?type=
powerpoint —mp]
[…]
Authors and Contributors
GNAT for LEGO MINDSTORMS is
developed and maintained by AdaCore.
Piotr Piwko contributed to the
development during his internship at
AdaCore in Autumn 2008.
For more information on the LEGO
MINDSTORMS NXT platform, see
http://mindstorms.lego.com
[verbatim from the project website —mp]

AdaLog — AdaControl
1.11r4
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 01 Jul 2009 11:13:52 +0200

Subject: New release of AdaControl
(1.11r4)

Newsgroups: comp.lang.ada
This is really a new release, not a new
version (i.e. no new rules).
Apart from some small bug fixes, the
main difference is that the compiled
versions are now for GNAT-GPL2009.
As usual, it can be downloaded from
http://www.adalog.fr/adacontrol2.htm
[see also "AdaLog — AdaControl 1.11r3"
in AUJ 30.2 (Jun 2009), p.78 —mp]

Ada and GNU/Linux
Static linking with gcc-4.4
From: Markus Schoepflin

<markus.schoepflin@comsoft.de>
Date: Fri, 07 Aug 2009 09:54:00 +0200
Subject: Static linking
Newsgroups: comp.lang.ada
[…]
up to now (gcc-4.3.x) we have been
happily using 'gnatmake … -largs -static'
to create statically linked executable. This
has stopped working with 4.4:

 > touch foo.adb && gnatmake foo -largs
 -static
gcc-4.4 -c foo.adb
gnatbind -x foo.ali
gnatlink foo.ali -static
/usr/bin/ld: cannot find -lgnat-4.4
collect2: ld returned 1 exit status
gnatlink: error when calling /usr/bin/gcc-
4.4
gnatmake: *** link failed.

Now I have been told that -static is a
binder, not a linker argument, and indeed
this works:

 > touch foo.adb && gnatmake foo
 -bargs -static
gcc-4.4 -c foo.adb
gnatbind -static -x foo.ali
gnatlink foo.ali

But this is not a static executable:

 > ldd foo
 linux-gate.so.1 => (0xb7f9e000)
 libc.so.6 => /lib/i686/cmov/libc.so.6
 (0xb7e2d000)
 /lib/ld-linux.so.2
 (0xb7f9f000)

Looking at the manual for the binder I'm
told: '-static Link against a static GNAT
run time.'.
OK, so this works as advertised, no
dynamic GNAT runtime used.
Now what is the correct way to create a
static executable? This seems to work, but
is it correct?

Ada and GNU/Linux 149

Ada User Journal Volume 30, Number 3, September 2009

 > touch foo.adb && gnatmake foo
 -bargs -static -largs -static
gcc-4.4 -c foo.adb
gnatbind -static -x foo.ali
gnatlink foo.ali -static
 > ldd foo
 not a dynamic executable

And why did only passing '-largs -static'
work for gcc-3.3.x?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 7 Aug 2009 03:15:38 -0700 PDT
Subject: Re: Static linking
Newsgroups: comp.lang.ada
> […] Looking at the manual for the

binder I'm told: '-static Link against a
static GNAT run time.'. OK, so this
works as advertised, no dynamic
GNAT runtime used.

> […]
libc6 does not exist as a static library
anymore; on GNU/Linux there is no way
to create a completely static executable;
you have to link against (at least) libc.so.6
dynamically. So, the executable you
obtain with -bargs -static is as static as
you can get :)
> > touch foo.adb && gnatmake foo -

bargs -static -largs -static
> gcc-4.4 -c foo.adb
> gnatbind -static -x foo.ali
> gnatlink foo.ali -static
> > ldd foo
> not a dynamic executable
>
> And why did only passing '-largs -static'

work for gcc-3.3.x?
I don't know and it seems strange to me
that it worked at all if the binder was not
called with -static. Maybe others on
comp.lang.ada have more to tell us?
From: Markus Schoepflin

<markus.schoepflin@comsoft.de>
Date: Fri, 07 Aug 2009 12:46:36 +0200
Subject: Re: Static linking
Newsgroups: comp.lang.ada
Now I'm really confused. The command
just below your answer in my original
mail works and gives me a static
executable.
[…]
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Wed, 12 Aug 2009 16:20:43 +0200
Subject: Re: Static linking
Newsgroups: comp.lang.ada
[…]
Not entirely sure is the same issue, but
maybe it helps our understanding. I got
also different results using some same
switches when using GNAT GPL 2008
and GPL 2009. I opened a GAP support

ticket and their reply was that some
defaults had changed, but you could force
the same results with explicit switches. In
my case it involved mixed Ada/C++
linking and they also said that they were
working on some internal cleaning that
would improve the situation.
There's another confusing issue in which
you don't have to check the ld
documentation but gcc/g++ one, which is
the one getting the switches in the end.
I don't know if I could quote the support
reply I got but, in addition to Ludovic
comment about "as static as it can be"
given the shared libc library, the switches
I'm using right now to control linking are:

 package Binder is
 for Default_Switches ("Ada")
 use ("-static");
 - - -static/-shared makes the gnat
 runtime static or shared
 end Binder;

 package Linker is
 for Default_Switches ("Ada") use
 ("-Wl,-Bstatic", - - Starts static
 linking section
 "-lz", - - Sample libraries that
 I want statically linked.
 "-lgsl",
 "-lgslcblas",
 "-Wl,-Bdynamic", - - Starts shared
 linking section
 "-ldl" - - Sample library
 dynamically linked in
);
 end Linker;

[…]

Cross-compilation for
sparc64-freebsd
From: Allison Phillips <cam@ally.com>
Date: Sat, 29 Aug 2009 10:53:23 +0200
Subject: compiling for sparc64
Newsgroups: comp.lang.ada
I have a linux-i686 pc and I need to cross-
compile a program with GNAT to a
sparc64-freebsd target.
Are there some parameters for the
compiler?
I searched in google and in the old
messages of this newsgroup, but no
answers.
I don't need to have a sparc64 version of
GNAT, only the compiled program.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 29 Aug 2009 07:45:30 -0700

PDT
Subject: Re: compiling for sparc64
Newsgroups: comp.lang.ada

You need to build a cross-compiler from
the gnat sources. GCC requires the native
and cross compilers to be from the same
sources; therefore you have to build your
cross-compiler from the exact same
sources as your native compiler.
To build a cross-compiler, follow the
installation instructions[1],
passing --target=sparc64-freebsd to
../src/configure.
[1] http://gcc.gnu.org/install/
[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 29 Aug 2009 07:57:19 -0700

PDT
Subject: Re: compiling for sparc64
Newsgroups: comp.lang.ada
I feel I have to add to this… All
UltraSPARC processors since circa 1994
are 64-bit but can also run 32-bit code
natively. There is a memory and
performance cost with running 64-bit
code because the larger addresses take
more room in the cache. For this reason,
on Solaris, Sun recommends that
applications that can work within 4 GiB
be compiled in 32-bit mode. The norm is
a 64-bit kernel running multiple 32-bit
apps and a few large 64-bit apps that
absolutely require the large address space
and trade some performance for it.
You may want to check whether that also
applies to FreeBSD or not.
GCC supports both sparc and sparc64.

Debian Squeeze — Status of
gnat-4.4
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 28 Jul 2009 11:59:08 -0700 PDT
Subject: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
My plan for the next release of Debian,
code-named Squeeze, is as follows:
2009-02-15: Debian 5.0 "Lenny" released
2009-07-28: gnat-4.4 reaches unstable
2009-09-30: libgnat-4.4 ABI freeze; start
of transition of all Ada packages
2010-02-15: end of support for Debian
4.0 "Etch" (i.e. Lenny+12 months)
2010-02-28: end of transition and,
probably, freeze of all packages in Debian
2010-03-*: removal of gnat-4.3 sometime
between 2010-08 and 2011-02: release of
Squeeze, i.e. between18 and 24 months
after Lenny.
Today marks the first milestone on this
roadmap. gnat-4.4 includes all of the
patches from gnat-4.3 (adjusted as
needed) but also some patches from GCC
4.5 needed to make the Distributed

150 Ada and GNU/Linux

Volume 30, Number 3, September 2009 Ada User Journal

Systems Annex work again (with
PolyORB).
I need your help testing the compiler and
its run-time libraries against your
programs and fixing any bugs you find.
During this time, I am willing to patch the
compiler and its run-time library as
needed for stability or even to backport
new features from the trunk (GCC 4.5).
After the ABI freeze, no changes will be
accepted to the run-time library anymore
(i.e. the .ali files will be frozen) so as to
guarantee binary compatibility of all Ada
packages.
If you have some software that you would
like to package for Debian, I encourage
you to use gnat-4.4, instead of gnat-4.3,
starting now. gnat-4.4 will be the only
Ada compiler in Debian Squeeze.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 30 Jul 2009 06:53:19 -0700 PDT
Subject: Re: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
[…]
I'm sorry but I'll have to change this plan
drastically. The recent announcement of
the new two-year time-based release
schedule [1] caught me by surprise,
especially the fact that Squeeze will
actually have a one-year release schedule
:(
[1] http://www.debian.org/News/2009/
20090729
This leaves only 4 months to complete the
transition of all Debian packages. Because
of this, I'm officially abandoning my goal
of providing support for multi-arch (32
and 64-bit) and cross compilers in
Squeeze and I will shorten the time for
compiler testing. The new schedule is:
2009-07-28: gnat-4.4 reaches unstable.
Immediate start of transition for other
packages.
2009-08-31: libgnat-4.4 ABI freeze and
re-upload of dependent packages as
necessary.
2009-09-30: compiler freeze.
2009-11-30: end of transition and package
freeze (release-critical bug fixes still
allowed).
2010-12-31: gnat-4.3 removed from
Debian.
It is possible that I cannot complete the
transition of all packages due to lack of
time (remember: I'm a volunteer working
on my spare time on Debian!). In such an
event, I will request *REMOVAL* of
some packages from Debian. The
packages that have a Request for Help or
Request for Adoption bug open against
them will be the first packages dropped;
they are:
gnat-gps (RFH: http://bugs.debian.org/
496905)

libtexttools (RFA: http://bugs.debian.org/
477474)
gnade (RFA: http://bugs.debian.org/
496787)
So, if you use or have any interest in those
packages, please help with the transition.
You do not have to be a Debian
Developer to help or even to adopt a
package officially. If I do not receive any
help, I will conclude that nobody is
interested enough to justify the effort and
simply drop the packages mentioned.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 10 Aug 2009 13:23:47 -0700

PDT
Subject: Re: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
Someone asked me privately, but I feel
this is of interest to everyone:
> Do you have plans to add gprbuild and

ASIS also?
I have plans to update ASIS to the GNAT
GPL 2009 version; this will be part of the
library transition that I announced here. I
will in fact update all existing packages.
As for gprbuild, this is a new package and
I'm not planning to do it myself as I am in
fact trying to concentrate on fewer
packages. If someone is interested in
packaging GPTBuild, please do not
hesitate; as I have said repeatedly:
⁃ I will help would-be packagers of Ada

software in Debian; just contact me
privately if you need pointers.

⁃ you do not have to be a Debian
Developer before you contribute (in fact
the opposite is true: you must own and
maintain packages in Debian before you
are even considered for Debian
Developer status).

The Debian release manager has admitted
that his announcement [1] concerning the
new release schedule was premature. So
the plan for a freeze in December 2009 is
officially abandoned [2]. A new plan and
schedule are due in September.
[1] http://www.debian.org/News/2009/
20090729
[2] http://www.debian.org/News/2009/
20090730
This does have an impact on my own
schedule and I am no longer in a big
hurry; I will await the decision in
September and, based on that, will decide
on my own release goals. Tentatively:
⁃ enable support for multiarch (i.e. for

i386/amd64 and others: emit 64-bit
binaries on 32-bit platforms and vice-
versa; for mips/mipsel, emit little-
endian code on big-endian platforms
and vice-versa). This is a new feature in
GCC 4.4.

⁃ enable support for the Distributed
Systems Annex through the addition of

PolyORB. Xavier Grave and Reto
Buerki are working on this and have
already managed to get CORBA and
MOMA (Message-Oriented Middleware
Architecture) working. I am sponsoring
the package for them.

The bottom line is: for now, please
continue to test gnat-4.4 as extensively as
you can, and please consider helping out
with a package you are particularly
interested in. I have already received
valuable feedback in the form of bug
reports (and encouragements, thanks for
that!) and I trust that Debian Squeeze will
not only be worthy of Debian's reputation,
but its support for Ada will raise the bar
even higher.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Thu, 30 Jul 2009 23:41:16 +0300
Subject: Re: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
> Where can one find gnat-4.4 binary

packages?
> I installed Sid inside Debian 5.0.1

chroot […]
Oh, and I am using i386 platform (no
access to amd64).
According to
http://packages.debian.org/sid/gnat-4.4,
there is no packages for i386, is this
correct?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 1 Aug 2009 06:02:27 -0700 PDT
Subject: Re: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
> […]
> The package built successfully on

i386[1] but apparently it has not
reached the archive yet. Funny that
hppa, s390 and sparc should reach the
archive before i386 does :)

> Please retry in a day or two; sorry for
the delay. I'll monitor that space and
complain to the Debian buildd admins
if the i386 package doesn't show up by
saturday evening.

The i386 packages are now in the archive;
i386 users rejoice :)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 5 Aug 2009 10:30:57 -0700

PDT
Subject: Re: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
[…]
> I think gnat-4.4 should either include

gcc as a dependency, call gcc-4.4, or
something like that.

It is normally patched to call gcc-4.4, yes.
I'll look into it. If there is a place where it
calls gnatgcc instead (which is part of

References to Publ icat ions 151

Ada User Journal Volume 30, Number 3, September 2009

package gnat), I'll fix it. Thanks for
reporting.
> Btw, I noticed that many Ada packages

(aws, adacontrol) still depend on gnat-
4.3, are those updated at some point
also?

Yes, when I get around to it. That will
involve updates to newer versions and
soname bumps.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 10 Aug 2009 13:43:37 -0700

PDT
Subject: Re: Ada in Debian: gnat-4.4 is in

unstable; please test
Newsgroups: comp.lang.ada
[…]
Before anyone who doesn't know GCC
very well asks: GCC has had support for
multiarch for several years now but the
Ada front-end was lagging behind; GCC
4.4 adds support for multiarch in the Ada
front-end.
Also, multiarch is difficult. There are
deep issues with holistic system
architectures and decisions to be made;
32/64-bit support is hairy enough as it is
but consider it only one particular case of
multi-arch support. I mentioned little-
endian/big-endian already and we can
have multiple combinations. For example,
I gather modern PowerPC processors can
run all four combinations of 32-bit/LE,
32-bit/ BE, 64-bit/LE and 64-bit/BE
concurrently, not to mention emulated
architectures, the Synergistic Processing
Units of the Cell processor and GPUs
used for number crunching.
[…]

Debian — On the mapping
of Ada tasks to OS threads
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 26 Aug 2009 14:20:31 +0200
Subject: [Debian] Switching tasking

implementation?
Newsgroups: comp.lang.ada
If I remember correctly, the version of
GNAT distributed with Debian supports
more than one tasking implementation.
Do I remember correctly? How do I
select which implementation to use?
[…]
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 26 Aug 2009 15:00:33 +0200
Subject: Re: Switching tasking

implementation?
Newsgroups: comp.lang.ada
[…] What I am interested in, is to
compare the performance of tasking based
on OS threads with tasking based on user-
space threads.
[…]

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Wed, 26 Aug 2009 10:38:28 -0700
PDT

Subject: Re: Switching tasking
implementation?

Newsgroups: comp.lang.ada
[…] the two run-time libraries shipped in
Debian allow you to choose either zero-
cost or setjump/longjump exception
handling mechanisms.
The tasking model always uses the 1:1
model where each Ada task corresponds
to a kernel thread. I vaguely remember
there used to be a n:1 model where all
Ada tasks would run in the same kernel
thread, doing scheduling in userspace. I'm
not sure whether this model is still
available or not nowadays. Could you
please look this up in the GCC installation
manual? This was a configure option
IIRC.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 27 Aug 2009 15:54:10 +0200
Subject: Re: Switching tasking

implementation?
Newsgroups: comp.lang.ada
[…]
Thanks. It doesn't look like it is an option
any more.

Ada and Microsoft
Implementation of a COM
interface
From: Pablo Vieira Rego

<pablittto@gmail.com>
Date: Thu, 30 Jul 2009 09:26:11 -0700 PDT
Subject: Component Object Model
Newsgroups: comp.lang.ada
Does someone know how to implement
COM interface in Ada? I found an article
which cites a how-to in adapower.com,
but the link does not exist there.
[…]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Thu, 30 Jul 2009 10:11:51 -0700 PDT
Subject: Re: Component Object Model
Newsgroups: comp.lang.ada
[…]
Did you heard about Orbit ? It is a
CORBA binding for Ada
You may see there to learn more :
http://orbitada.sourceforge.net/
http://sourceforge.net/projects/orbitada/
It seems to be a kind of a de-facto
standard (I often see mentions to Orbit in
the Ada area)
From: David Gressett

<gresset1@airmail.net>
Date: Thu, 30 Jul 2009 12:58:12 -0700 PDT

Subject: Re: Component Object Model
Newsgroups: comp.lang.ada
[…]
Look on SourceForge for the GNAVI
project.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Thu, 30 Jul 2009 12:37:04 -0700 PDT
Subject: Re: Component Object Model
Newsgroups: comp.lang.ada
Note: if the link which does not work is
the one of GNATCOM, I confirm it does
not work for me too.
More infos which may help you :
“CORBA vs COM/DCOM” (french - do
you read french ?)
http://www-lsr.imag.fr/users/
Christine.Plumejeaud/
NFE107-fichesLecture/
CORBA%20vs%20COM.ppt
“Interfacing Ada 95 to Microsoft COM
and DCOM Technologies” (PDF -
english, this one)
http://www.sigada.org/conf/sigada99/
proceedings/p9-botton.pdf
[…]

References to
Publications
COTS Journal — "Ada
Language Suits Real-Time
Safety-Critical Needs"
From: AdaCore Press Center
Date: Monday August 31, 2009
Subject: Ada Language Suits Real-Time

Safety-Critical Needs
URL: http://www.adacore.com/category/

press-center/articles/
[read the article at:
http://www.cotsjournalonline.com/
magazine/articles/view/100982/pg:1
—mp]

VME Critical Systems — On
language subsetting for
safety
From: AdaCore Press Center
Date: Wednesday June 24, 2009
Subject: When less is more: Programming

language technology for safety
URL: http://www.adacore.com/category/

press-center/articles/
[read the article at:
http://www.vmecritical.com/articles/
id/?4030 —mp]

152 Ada Inside

Volume 30, Number 3, September 2009 Ada User Journal

Embedded Computing
Design — "Making static
analysis a part of code
review"
From: AdaCore Press Center
Date: Friday June 19, 2009
Subject: Making static analysis a part of

code review
URL: http://www.adacore.com/category/

press-center/articles/
[read the article at:
http://www.embedded-computing.com/
articles/id/?4014 —mp]

Ada Inside
AdaCore — GNAT Pro used
for Airbus A350 XWB
From: AdaCore Press Center
Date: Monday June 1, 2009
Subject: Thales Aerospace Division Selects

GNAT Pro for Airbus A350 XWB (Xtra
Wide-Body)

URL: http://www.adacore.com/2009/06/01/
a350/

SAN DIEGO, NEW YORK and PARIS,
June 1, 2009 - Avionics USA - AdaCore,
a leading supplier of Ada development
tools and support services, today
announced that international electronics
and systems group Thales has chosen the
GNAT Pro technology, including several
safety-qualified tools, to develop critical
systems for the new Airbus A350 XWB
(Xtra Wide-Body) family.
Thales will use the GNAT Pro High-
Integrity Edition for DO-178B and the
Ada 2005 language to build the Air Data
Inertial Reference Unit (ADIRU) for the
A350 XWB (Xtra Wide-Body). The
ADIRU provides precise in-flight
positioning information, and the new
system will therefore need to be certified
to the highest safety levels. It will meet
Level A of the DO-178B standard and use
ARINC 653 multi-partition operating
system MACS2.
The project promises to advance the state
of the art in safety-critical development
through a number of innovations
including the application of Agile
Programming techniques and the safe use
of Object-Oriented Programming (OOP)
features. Thales will be using the Ada
2005 version of the Ada language, which
has introduced additional support for real-
time and safety-critical systems and for
safe/reliable OOP.
“When it comes to safety-critical systems,
the Ada language has an impressive
pedigree and track record,” said Francois
Brun, Software Design Authority at
Thales Aerospace Division - Navigation
Unit. “The combination of GNAT Pro and
Ada 2005 provides the technology we

need to develop the ADIRU software for
the new Airbus A350 XWB (Xtra Wide-
Body).”
AdaCore is also providing a Qualified
Code Standard Checker and a Coverage
tool for this program. These tools will be
key to the development process of the
ADIRU and the generation of safety
evidence. AdaCore’s Coverage solution
adopts an innovative approach by
providing MC/DC coverage information
on uninstrumented source code, through
the use of a PowerPC simulator. Tool
qualification material gives credit to the
output of the tools, which speeds up the
certification process.
“Thales is leading the way when it comes
to safety-critical and avionics system
development,” said Michaël Friess,
Technical Sales Manager of AdaCore.
“It is a pleasure to partner with such a
technically advanced team. Our long
collaboration with Thales and our regular
exchanges with their technical staff have
led to strategic advances in AdaCore’s
offering. ADIRU is another example of a
project that helps our technology
progress, and that shows customers that
they can count on AdaCore as a reliable
partner in their development process.”
The A350 XWB (Xtra Wide-Body)
Family is Airbus’ response to widespread
market demand for a series of highly
efficient, medium-capacity, long-range,
wide-body aircraft. With a range of up to
8,300 nm / 15,400 km, it is available in
three basic passenger versions: the A350-
800, the A350-900 and the A350-1000.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [United Kingdom]: Software
Engineer
The role is to develop Ada 95 software
applications and create tests based on
previously prepared UML use cases. The
Artisan Studio development environment
uses templates to help produce an Object-
oriented software framework for the
Tactical Processor system. The
application software is intended to run as
part of an open architecture.
General Requirements
⁃ Avionics experience desirable
⁃ Ability to work in a team under tight

timescales essential
⁃ Experience of DO-178B useful
Software Test Engineer
⁃ 5+ years test experience of large

systems at the system/ integration level
⁃ Not unit testers

⁃ Use case familiarisation - source of
requirements

⁃ Artisan Studio familiarisation -
exploring Artisan use case model (or
similar tool)

⁃ Writing test scripts against use cases
⁃ Hardware/Software integration
⁃ Target environment using 'Green Hills

AdaMULTI'
⁃ DOORS
Job offer [United Kingdom]: Software
Design Engineer
[…]
A Software Developer with expertise in
design, development, and integration of
real-time embedded software projects for
a major military and maritime helicopter.
Duties / Responsibilities:
The Software Developer will be
responsible for design, development and
unit test of elements of software. This will
include:
⁃ Planning and control of own work
⁃ Real time embedded software

development with UML
⁃ High-level and detailed design using

object-oriented methodologies and a
UML toolset (Artisan Studio)

⁃ Code development in Ada 95
Desirable Skills:
⁃ Development in Ada 95
⁃ Familiarity with using object oriented

methodologies (OOD) and a UML
toolset (Artisan Studio)

[…]
Job offer [United Kingdom]:
[…] 2x Ada 83/95 developers to start
ASAP on initial 6 month assignments.
Essential Skills:
⁃ Ada 83 and 95 development experience

(not test/verification)
⁃ Strong Ada/Hardware electronics

interfacing experience
Bonus Skills:
⁃ Rational Rose
⁃ HOOD
Job offer [United Kingdom]: Ada Unit
Test Engineers
[…]
Qualifications: Experience or
knowledge of battery charging systems
[…] strong skills in Ada95 and UML.
You will be working on the module
testing of Ada95 SPARK applications
written for the avionics industry to meet
DO-178B & DEF STAN-00-55 SIL 4
standards.
The design and requirements are in UML
(Artisan) and DOORS (Rational).

Ada in Context 153

Ada User Journal Volume 30, Number 3, September 2009

Any additional knowledge of automated
test tools such as VectorCAST or LDRA
would be useful.
[…]
Job offer [United Kingdom]: Senior
Software Engineer - Ada, C, Assembler
[…] an experienced software professional
to join a team designing real-time safety
critical software.
The position requires full-lifecycle
software design experience as your duties
include diagnosis of software failures and
integration testing.
[…]
Software Engineer Key Responsibilities:
⁃ Analysis of product software failures at

the high-level code and assembler levels
⁃ Performance profiling of product

software
⁃ Formal development of real-time safety

critical software (SIL2 and 4) -
Ada83/95, C, Assembler

⁃ Development of unit and integration test
environments

⁃ Creation of diagnostic and development
support tools

Software Engineer Skills and
Qualifications:
⁃ Graduate in relevant engineering

discipline or other numerate subject
⁃ Extensive experience in real-time

software design including software
architecture, scheduling and multi-lane
synchronization

⁃ Ability to comprehend new software
rapidly in order to diagnose the causes
of product failure

⁃ Experience of the software development
process for safety-related (SIL 2 and 4)
developments.

⁃ Proficient in Ada83, Ada95, C and
assembler in technical applications

⁃ Proficient in software unit test, software
integration test and hardware/software
integration test techniques.

Job offer [Belgium]:
[…] 2x Ada Developers to join a global
Transport organization at their offices in
Belgium.
To be successful you need:
⁃ Multi-year experience Ada83 and/or

Ada95 programming (5 years preferred)
⁃ Very strong C++ development

experience
⁃ Industrial experience required of multi-

threaded applications programming in
high-level languages

⁃ Experience of Microsoft Office tools
⁃ Good knowledge of the transport

industry

⁃ Very good communication skills in
English and French

Job offer [Italy]:
The ideal candidate must have at least 5
years' experience in C/C++ and/or Ada
programming (Ada 83 and Ada 95,
knowledge of Ada 2005 is desirable).
Required experience in the phases of
analysis, design, development and testing
of real-time applications.
[…]
Knowledge of the Structured Analysis
and Design Method, as well as Object-
Oriented Analysis and Design are an
advantage.
Knowledge of DODAF, SysML, UML
2.0, MDA and model-driven development
techniques are an advantage.
[…]
[Translated from Italian —mp]
Job offer [United States]:
The Software Engineer provides
functional and empirical analysis related
to the design, development, and
implementation of software systems,
including, but not limited to application
software, utility software, development
software, and diagnostic software. The
Software Engineer participates in the
development of test strategies, devices,
and systems. Have the technical
background and skills to perform in all
phases of software design, development,
documentation, and implementation. The
Software Engineer shall have the ability
to design and develop with of advanced
networking techniques.
Specific Duties:
⁃ Detailed software design
⁃ Design walkthroughs
⁃ Code implementation
⁃ Code walkthroughs
⁃ Unit and integration testing
⁃ Software documentation
⁃ Requirements management
⁃ Teamwork & team building
Required Knowledge - Skills - and
Abilities: Bachelors Degree required.
Additional Requirements:
[…]
⁃ Must be capable of developing software

or prototype applications in at least one
high-level programming language (such
as C/C++, Java, Ada) in a Windows or
Unix development environment.

⁃ Must be capable of implementing
advanced solutions based on
requirements specifications and user
feedback with minimal management
and technical supervision.

⁃ Must have a good understanding of the
software development process, object-

oriented development, and information
engineering or relevant CASE tools.

[…]
⁃ Must have demonstrated ability to

develop and debug applications in
desired programming language and
environment, with minimal
management and technical feedback.

Desired Knowledge - Skills - and
Abilities:
Preferred:
⁃ Master's Degree in computer science,

electronics engineering or other
engineering or technical discipline
preferred.

Ada in Context
Class attribute and
non-tagged incomplete types
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 1 Aug 2009 23:55:16 -0700 PDT
Subject: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
[…]
I've learned something mostly surprising
today: in Ada 95, it was allowed to use
the Class attribute with a prefix which
was an incomplete type… even not
tagged.
I've learned about it here :
http://www.adaic.org/standards/05rat/
html/Rat-1-3-3.html
>> ------------------
The introduction of tagged incomplete
types clarifies the ability to write
type T_Ptr is access all T'Class;
This was allowed in Ada 95 even though
we had not declared T as tagged at this
point. Of course it implied that T would
be tagged. In Ada 2005 this is frowned
upon since we should now declare that T
is tagged incomplete if we wish to declare
a class wide access type. For
compatibility the old feature has been
retained but banished to Annex J for
obsolescent features.
>> ------------------
The part of the mentioned annex J
>> ------------------
For the first subtype S of a type T
declared by an
incomplete_type_declaration that is not
tagged, the following attribute is defined:
S'Class
Denotes the first subtype of the
incomplete class-wide type rooted at T.
The completion of T shall declare a
tagged type. Such an attribute reference

154 Ada in Context

Volume 30, Number 3, September 2009 Ada User Journal

shall occur in the same library unit as the
incomplete_type_declaration.
>> ------------------
But why was it allowed ?
There was no way to declare an
incomplete tagged?
So why to allow reference to a Class
attribute in such circumstances?
This seems weird… to allow to make
reference to a class attribute of a none-
tagged type (even if the complete view is
tagged).
Was this a design error or were there
some reasons or is there something I did
not understand?
From: Adam Beneschan

<adam@irvine.com>
Date: Mon, 3 Aug 2009 08:26:24 -0700

PDT
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
> But why was it allowed ?
 There was no way to declare an

incomplete tagged ?
Correct. This just wasn't in the syntax.
> So why to allow reference to a Class

attribute in such circumstances ?
You could do that if you knew that the
type was going to be declared as tagged
when you got around to declaring the full
type.
Keep in mind that this isn't a privacy
issue. The main reason for incomplete
types is so that you can declare linked
lists and things like that. Allowing a
'Class reference to a type not yet declared
as tagged allowed things like this:

type Rec;
type Rec_Acc is access all Rec'Class;
type Rec is tagged record
 …
 Next : Rec_Acc;
end record;

so that you could have a heterogeneous
list of records.
> This seems weird … to allow to make

reference to a class attribute of a none-
tagged type (even if the complete view
is tagged)

It doesn't seem so weird to me; from a
programmer's point of view, the main
purpose of incomplete types is so that you
can define and refer to the type's name
ahead of time; therefore, there really isn't
any reason (for a programmer) to look at
the type as an untagged type at all. It's a
little different where private types are
concerned, because there are two views of
the type---the partial view, which is for
packages that can't see inside the private

part and thus can't see the full declaration
of the type; and the full view, for places
that *can* see the private part. It's
possible for the partial view to be
untagged and the full view to be tagged,
so allowing 'Class in a place where only
the partial view is visible would be
wrong. But the "two views" doesn't really
apply to incomplete types. (From the
compiler's standpoint, it does; but I'm
talking from a programmer's standpoint
here.)
There is one exception to all of the above,
and that's the case where an incomplete
type in the private part of a package is
completed in the package *body*. Not
having "tagged incomplete" types
prevented certain useful uses of the type,
so the "is tagged;" syntax was added. I
think that being able to use this in my Rec
example above, so that you can now
declare an incomplete type as tagged
before applying 'Class, was more of a side
benefit. (AI95-326)
> Was this a design error or were there

some reasons or is there something I
did not understand ?

You could call it a small design error, but
only a small one since the cases where it
made a difference were pretty obscure.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 3 Aug 2009 20:45:02 +0200
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
> […] The main reason for incomplete

types is so that you can declare linked
lists and things like that. […]

Well, I would argue that logically the
above could be rather:

type Rec;
type Rec_Acc is access all Rec;
type Rec'Root is tagged record
 …
 Next : Rec_Acc;
end record;
Here 'Root is defined so that
T'Class'Root = T. So Rec is class-wide.
Of course, from the stand point that any
type has a class rooted in it, Rec'Class is
fully OK. But if we wanted further to
pretend that some types are more "classy"
than others, we could maintain such
distinction in a way like above.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Aug 2009 20:50:47 -0500
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
> […] in Ada 95, this was allowed to use

the Class attribute with a prefix which
was an incomplete type.... even not
tagged.

Gee, guys, that's pretty boring. If you
want something mind blowing in this
area, look into 7.3.1(8-9)
(http://www.adaic.org/standards/05rm/
html/RM-7-3-1.html).
More than 90% of the ARG (that is,
everyone other than Tucker, and he only
had a vague recollection of it) was
unaware of this rule when I stumbled
across it updating notes. And no one can
remember why we would want such a rule
- it seems completely privacy breaking,
and for no good reason. But there is an
ACATS test for it, so it probably will
work in your favorite compiler…and thus
we were unwilling to take it out
(somebody probably depends on it, and
forcing a switch to a tagged private type
would have other consequences making it
not necessarily a trivial work-around).
A quick example:

package P is
 type Priv is private;
 type Acc is access all Priv'Class;
 - - Legal!!!!!!
private
 type Priv is tagged null record;
end P;

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Thu, 13 Aug 2009 11:18:47 +0300
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
[…]
I don't understand -- 7.3.1(9) says (both in
RM 95 and RM 05) that the 'Class
attribute is "allowed only from the
beginning of the private part in which the
full view is declared…"
> A quick example:
>
> package P is
> type Priv is private;
> type Acc is access all Priv'Class; --

Legal!!!!!!
> private
> type Priv is tagged null record;
> end P;
This conflicts with 7.3.1(9) because
Priv'Class is used before the private part.
GNAT (Debian Lenny) says:
p.ads:3:27: tagged type required, found
private type "Priv" defined at line 2
If the declaration of type Acc is moved
below "private", GNAT accepts the code,
as it should by 7.3.1(8-9).
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Thu, 13 Aug 2009 09:16:29 -0400
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada

Ada in Context 155

Ada User Journal Volume 30, Number 3, September 2009

[…]
I agree with Niklas. The above is illegal.
The purpose of the rule is so you can
create recursive types, as in:

package P is
 type Priv is private;
private
 type Acc is access all Priv'Class;
 - - Legal!!!!!!
 type Priv is tagged
 record
 Next : Acc;
 ... - -etc.
 end record;
end P;

without exposing the taggedness to
clients. Note that Acc is in the private
part, so there's no privacy-breaking going
on.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 13 Aug 2009 23:21:39 -0500
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
[…]
Another example of why you ought to
come to meetings more often. I don't
recall anyone figuring that out per-se
(although it is obvious that you can use it
in this way). All this special rule
eliminates is the need to declare an
incomplete type in this one unusual case
(the private type in cases like this is best
declared as tagged, so this shouldn't
happen very often). Seems like a pile of
work for an implementation and for the
language just to eliminate one line in a
private part.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Fri, 14 Aug 2009 15:01:15 -0400
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
[…]
> Seems like a pile of work for an

implementation and for the language
just to eliminate one line in a private
part.

The problem is that declaring that
incomplete type is illegal. Eliminating the
need for one _illegal_ line isn't such a bad
thing. ;-)

package P is
 type Priv is private;
private
 type Priv is tagged; - - Illegal!
 type Acc is access all Priv'Class;
 type Priv is tagged
 record
 Next : Acc;
 end record;

end P;

We could have made it legal, I suppose.
But having three views of a type might
make more trouble for the compiler than
the existing rules.
On the third hand, compilers have to deal
with:

package P is
 type Priv is private;
private
 task type Priv is ...;
end P;

package body P is
 task body Priv is separate;
end P;

separate (P)
task body Priv is ...;

where there are four things called Priv,
which are all really the same thing.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 14 Aug 2009 18:41:22 -0500
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada
> The problem is that declaring that

incomplete type is illegal.
> Eliminating the need for one _illegal_

line isn't such a bad thing.
Why is it illegal? Doesn't seem like it
ought to be on the face of it.
> We could have made it legal, I suppose.

But having three views of a type might
make more trouble for the compiler
than the existing rules.

Apparently, you haven't thought too hard
about the semantics of limited views. :-)
Every private type that can be used in a
limited view has (at least) three views (the
incomplete view from the limited view
being the third).
I believe we (Tucker and I? On the ARG
list? I don't remember) were discussing
eliminating some of the restrictions on the
declaration and completion of incomplete
types in order to make the use of
"incomplete instances" or "integrated
packages" or whatever we end up with
more useful.
(Many of the "derivation" problems go
away if you can simply declare an
incomplete type ahead of time to
introduce the proper name for the type.)
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sat, 15 Aug 2009 10:33:43 -0400
Subject: Re: Ada 95 and Class attribute for

none-tagged incomplete type
Newsgroups: comp.lang.ada

> Why is it illegal? Doesn't seem like it
ought to be on the face of it.

Umm... Because the RM says so? 7.3(4).
So why does the RM say so?
Because Jean Ichbiah wanted it that way,
I guess, and nobody thought it desirable
or important enough to change during
Ada 9X or Ada 0X projects.
> Apparently, you haven't thought to hard

about the semantics of limited views. :-
) *Every* private type that can be used
in a limited view has (at least) three
views (the incomplete view from the
limited view being the third).

Good point, although at the time the rule
we're talking about (allowing
Private_Type'Class before the full type)
was invented, there were no such things
as limited views.
> I believe we (Tucker and I? On the

ARG list? I don't remember)
We discussed it in a telephone meeting.
No doubt also on ARG list.
Yes, I think that's a good direction to go,
if we can make it work. A language
design goal should be: Never require the
use of pointers, except when reference
semantics is desired. Ada violates this
principle in several ways, and removing
one of them can be a good thing.
(C violates this principle even more, and
Java more still.)

On the serialization of
enumeration types
From: xorque

<xorquewasp@googlemail.com>
Date: Wed, 26 Aug 2009 03:22:08 -0700

PDT
Subject: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…]
I'm designing a package that uses a lot of
similar but distinct enumeration types.
At some point, those types need to be
encoded to be sent over the wire. The
encoding rules are simple:
The enumeration values are converted to
unsigned 32 bit integers with the first
value as 0 and increasing sequentially
with each new value. The 32 bit value is
packed into big-endian byte order.
The problem is: With so many
enumeration types, I now have about 300
lines of almost identical procedures (to be
used as stream attributes) that just call a
procedure that packs Unsigned_32 values
into Storage_Element arrays.
Is there some clever way I can just write
ONE 'Write attribute procedure and ONE
'Read attribute procedure and have all the
defined enumeration types use those?
Freezing rules prevented me from writing
a generic Packed_Enumeration_IO

156 Ada in Context

Volume 30, Number 3, September 2009 Ada User Journal

package ("representation item appears too
late").
From: Oliver Kellogg

<okellogg@freenet.de>
Date: Wed, 26 Aug 2009 04:00:52 -0700

PDT
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…]
If your enums are represented as you
describe then why do you need
representations?
You could rely on the natural Ada
representation (which happens to conform
with your encoding rules as far as the
enum values are concerned).
From: xorque

<xorquewasp@googlemail.com>
Date: Wed, 26 Aug 2009 04:33:37 -0700

PDT
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…] Where in the (2005) RM does it state
that enumerations are encoded at big-
endian 32 bit integers?
From: Oliver Kellogg

<okellogg@freenet.de>
Date: Wed, 26 Aug 2009 05:03:55 -0700

PDT
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…]
Perhaps I am misunderstanding - I
thought along following lines:

- - file:
 enum_to_big_endian_unsigned32.ads
with Interfaces;
generic
 type Enum_Type is (<>);
function
 Enum_To_Big_Endian_Unsigned32
 (Value : Enum_Type)
 return Interfaces.Unsigned_32;

- - file:
 enum_to_big_endian_unsigned32.adb
function
 Enum_To_Big_Endian_Unsigned32
 (Value : Enum_Type)
 return Interfaces.Unsigned_32 is
 function htonl
 (host_int : Interfaces.Unsigned_32)
 return Interfaces.Unsigned_32;
 pragma Import (C, htonl, "htonl");
begin
 return htonl (
 Enum_Type'Pos (Value));
end
Enum_To_Big_Endian_Unsigned32;

- - file: enum2u32_test.adb
- - Test Main Program
with Interfaces;
with
Enum_To_Big_Endian_Unsigned32;

procedure Enum2U32_Test is

 type Color_T is (Red, Green, Blue);

 function To_U32 is new
 Enum_To_Big_Endian_Unsigned32
 (Color_T);

 Result : Interfaces.Unsigned_32 :=
 To_U32 (Green);

begin
 - - application code …
 null;
end;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 26 Aug 2009 14:05:19 +0200
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
> […]
> The enumeration values are converted

to unsigned 32 bit integers with the first
value as 0 and increasing sequentially
with each new value. The 32 bit value
is packed into big-endian byte order.

We are using a chain code for same
purpose. It is better for shorter values and
is not limited from above.
> The problem is: With so many

enumeration types, I now have about
300 lines of almost identical procedures
(to be used as stream attributes) that
just call a procedure that packs
Unsigned_32 values into
Storage_Element arrays.

You can read/write
Enumeration_Type'Pos (Value), instead,
which is how we deal with this. The same
will work with other discrete types.
> Is there some clever way I can just write

ONE 'Write attribute procedure and
ONE 'Read attribute procedure and
have all the defined enumeration types
use those?

No, because there is no common ancestor
for these types. Another technique we are
using is that there are "comm" values of
tagged types rooted in the same abstract
parent, while Get and Set operations are
provided to get/set a type-specific non-
tagged value from/to. But in this case,
obviously, Get and Set must be
implemented for each specific type new.
Generic packages are used for that, which
then leads to a geometric explosion of

instances and an utter mess, as always
when you deal with generics.
> Freezing rules prevented me from

writing a generic
> Packed_Enumeration_IO
> package ("representation item appears

too late").
I don't understand why. It works to us,
however as I said above, a generic
solution is always bad, unless there is no
any alternative. So far Ada does not
provide alternatives (like ad-hoc
supertypes and interfaces etc).
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Wed, 26 Aug 2009 12:44:11 -0700
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…]
'Pos for enumeration types gives values
that satisfy this rule. They are
universal_integer, and so may be used
anywhere a value of your unsigned 32 bit
integer type is needed.
I don't know if this helps you, however.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Wed, 26 Aug 2009 13:17:46 +0200
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…]
Not exactly the same solution, but there
doesn't seem to be a problem with a
generic and Seuqential_IO; I might well
have misunderstood.
There is a #Gem at AdaCore's web site
explaining how to use different
representations for types derived from e.g.
enum types, if that is any help.

package Enums is

 type Color is (Red, Green, Blue);
 type Smell is (Good, Neutral, Bad);
private
 for Smell use (Good => 14,
 Neutral => 23, Bad => 100);
 for Smell'size use 32;
 for Color'size use 32;
end Enums;

generic
 type E is (<>);
procedure EG(extension : String);

with Ada.Sequential_IO;
with Interfaces; use Interfaces;
with Ada.Unchecked_Conversion;

procedure EG(extension : String) is
 package My_IO is new

Ada in Context 157

Ada User Journal Volume 30, Number 3, September 2009

 Ada.Sequential_IO(Unsigned_32);
 function To_Unsigned_32 is new
 Ada.Unchecked_Conversion
 (Source => E,
 Target => Unsigned_32);
 F : My_IO.File_Type;
begin
 My_IO.Create(F, My_IO.Out_File,
 "run." & extension);
 for K in E loop
 My_IO.Write(F, Item =>
 To_Unsigned_32 (K));
 end loop;
end EG;

with Enums, EG;
procedure Run is
 use Enums;
 procedure Color_Out is new
 EG(Color);
 procedure Smell_Out is new
 EG(Smell);
begin
 Color_Out("rgb");
 Smell_Out("snf");
end Run;

From: xorque
<xorquewasp@googlemail.com>

Date: Wed, 26 Aug 2009 04:35:17 -0700
PDT

Subject: Re: Generalized serialization for
enumeration types

Newsgroups: comp.lang.ada
[…]
Yes, I've seen that one (love the Gems
series) but as I'm not just writing enum
values (integers, booleans, strings, etc), I
need an IO package that can handle
heterogeneous data.
We're basically sending data to
GNAT.Socket streams.
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Wed, 26 Aug 2009 22:05:24 -0700

PDT
Subject: Re: Generalized serialization for

enumeration types
Newsgroups: comp.lang.ada
[…]
This _compiles_:

with Ada.Streams;
generic
 type E is (<>);
procedure Xorque_Writer_G (
 Stream : access
 Ada.Streams.Root_Stream
 _Type'Class;
 V : E);
procedure Xorque_Writer_G (
 Stream : access

 Ada.Streams.Root_Stream
 _Type'Class;
 V : E) is
begin
 null;
end Xorque_Writer_G;

with Xorque_Writer_G;
package Xorque is
 type E_Base is (A, B, C);
 procedure E_Base_Writer is new
 Xorque_Writer_G (E_Base);
 type E is new E_Base;
 for E'Write use E_Base_Writer;
end Xorque;

On the visibility of private
part in child packages
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Wed, 3 Jun 2009 22:45:43 -0700 PDT
Subject: Indirect visibility of private part in

child packages
Newsgroups: comp.lang.ada
[…]
I've meet a tortuous question with a set of
packages I'm converting from Pascal (as I
use Ada now, I'm taking the opportunity
to re-create a nicer design).
The question I'm facing deals with
visibility of private part in child package.
More precisely, an indirect visibility of a
private part.
An example will better show the case:
This can be reduced to three package
(specs and bodies).
The root package:

package P1 is
 type T1_Type is tagged private;
 - - Some primitives on T1_Type are
 specified here …
private
 type T1_Type is tagged record
 Low_Level_Data : Some_Type;
 end record; - - T1_Type
end P1;

The first child package (with this one,
every thing's Ok):

package P1.P2 is
 type T2_Type is new T1_Type with
private;
 - - Some primitives on T2_Type
 are specified here …
 procedure A_Primitive (
 Item : out T2_Type);
private

 type T2_Type is new T1_Type with
null record;
end P1.P2;

package body P1.P2 is
 procedure A_Primitive (
 Item : out T2_Type) is
 begin
 Item.Low_Level_Data := …;
 - - It works, beceause P1.P2 is a
 - - child package with a view on
 - - P1's private part
 end A_Primitive;
end P1.P2;

The second child package (the one which
turns into a subtle doubt):

with P1.P2;
package P1.P3 is
 type T3_Type is new P1.P2.T2_Type
 with private;
 - - Some primitives on T2_Type are
 specified here …
 procedure A_Primitive (
 Item : out T3_Type);
private
 type T3_Type is new P1.P2.T2_Type
 with null record;
end P1.P3;

package body P1.P3 is
 procedure A_Primitive (
 Item : out T3_Type) is
 begin
 Item.Low_Level_Data := …;
 - - It fails : the compiler complains
 - - there is no
 - - selector "Low_Level_Data"
 - - defined for T3_Type
 end A_Primitive;
end P1.P3;

As said in the last comment, it seems
P1.P3 cannot see the
T1_Type.Low_Level_Data member. But
as P3 is a child package of P1, it has a
view on P1's private part, and there is
indeed no trouble about it with P2. P3
know P2.T2_Type is derived from
P1.T1_Type, and P3 has a view on
T1_Type privates. But it seems the
compiler does not care about it.
There may be interpretation matter here :
does the private specification, means
"disallow access to private part" or does it
means "do not provide an access to the
private part". If it means "disallow access
to private part", then it ill explain why P3
cannot access T1_Type.Low_Level_Data
member. But if it means "do no provide
an access to private" part, then P3 should

158 Ada in Context

Volume 30, Number 3, September 2009 Ada User Journal

still be able to access
T1.Low_Level_Data, because it has an
access to this as a child package of P1.
What does long experienced lawyers
think about it ?
I've tried to look in section 8 of the "RM
2005", but either the answer was not there
or I missed it.
Note #1: I hope my example is clear
enough. If it is not, please, tell me, so that
I can attempt to reword it.
Note #2: I do not want to make P3 a child
package of P2, because it does not need to
access any internals of T2_Type. I want to
have some types, extending each others,
and doing so only relying on either public
interface or on the sole common private
part defined in P1.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 4 Jun 2009 00:50:10 -0700 PDT
Subject: Re: Indirect visibility of private

part in child packages
Newsgroups: comp.lang.ada
Maybe you can solve your problem like
this:

package body P1.P3 is
 procedure A_Primitive
 (Item : out T3_Type) is
 begin
 T1_Type (Item).Low_Level_Data :=
 ...;
 end A_Primitive;
end P1.P3;

I am undecided whether the compiler is
correct or wrong about the visibility of
Low_Level_Data. On the one hand, P1.P3
cannot see the full declaration of
T2_Type; on the other hand, it can see
that T2_Type publicly inherits from
T1_Type and can also see the full
declaration of T1_Type.
It seems that the public (partial) view of
T2_Type hides the full declaration of
T1_Type. So, I think my solution would
work by removing T2_Type out of the
way.
Another solution, which enforces
encapsulation better, would be:

package P1 is
 type T1_Type is tagged private;
private
 type Some_Type is …;
 type T1_Type is tagged record
 Low_Level_Data : Some_Type;
 end record;
 procedure Set (Item : out T1_Type;
 Data : in Some_Type);
end P1;

package body P1.P3 is
 procedure A_Primitive
 (Item : out T3_Type) is

 begin
 Set (Item, Data => …); -- OK, calls
 -- inherited primitive operation
 end A_Primitive;
end P1.P3;

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Thu, 4 Jun 2009 04:47:26 -0700 PDT
Subject: Re: Indirect visibility of private

part in child packages
Newsgroups: comp.lang.ada
> Maybe you can solve your problem like

this:
> package body P1.P3 is
> procedure A_Primitive (Item : out

T3_Type) is
> begin
> T1_Type (Item).Low_Level_Data

:=3D ...;
> end A_Primitive;
> end P1.P3;
I've just tried it, and it does not work
better. The compiler complains there are
not selector Low_Level_Data for
T1_Type.
> I am undecided whether the compiler is

correct or wrong about the visibility of
Low_Level_Data. […]

This is exactly the same think in my
mind. Perhaps the semantic is ambiguous
here.
> It seems that the public (partial) view of

T2_Type hides the full declaration of
T1_Type. So, I think my solution
would work by removing T2_Type out
of the way.

T2_Type is required ;) The purpose is to
have T2_Type and T3_Type, and may be
later some others, beside of each other.
> Another solution, which enforces

encapsulation better, would be:
> […]
I will try it soon and tell about the result.
But at first sight, I think that the compiler
is going to complain that Set is a primitive
of T1_Type and thus that it must be
defined in the public part. Furthermore, I
think Set would have to be redefined for
each T2_Type, T3_Type and etc.
[…]
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Thu, 04 Jun 2009 09:22:05 -0400
Subject: Re: Indirect visibility of private

part in child packages
Newsgroups: comp.lang.ada
> […]
> I've just tried it, and it does not work

better. The compiler complains there
are not selector Low_Level_Data for
T1_Type.

Are you sure? Converting to T1_Type
should work. P3 can see that T1_Type has
a Low_Level_Data component.
The reason your original example didn't
work is that the components of T2_Type
are "nailed down" at the point where it's
declared, and P3 can't see that. It can,
however, see that it's derived from
T1_Type, so converting should work.
> […] Furthermore, I think Set would

have to be redefined for each T2_Type,
T3_Type and etc.

You could make Set class-wide.
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 4 Jun 2009 09:06:28 -0700 PDT
Subject: Re: Indirect visibility of private

part in child packages
Newsgroups: comp.lang.ada
[…]
Here's why it doesn't work:
The "operation" of providing a selector
Low_Level_Data for T1_Type is made
visible in the private part of P1.
When T2_Type is declared as derived
from T1_Type, the operation of providing
the selector Low_Level_Data is inherited
from T1_Type, but it only becomes
visible where the original operation
becomes visible. Since the original
operation is visible in the private part of
P1, the inherited operation becomes
visible in the private part of P1.P2, which
is the first place that the private part of P1
is visible.
(It's not relevant that T2_Type is a private
extension; I believe it would work the
same if T2_Type were fully declared in
the visible part.)
When T3_Type is declared as derived as
T2_Type, the operation of providing the
selector Low_Level_Data is inherited
from T2_Type, but it only becomes
visible where the original operation (on
T2_Type!!) becomes visible, which is…
nowhere, because there isn't anywhere in
P1.P3 that is able to access P1.P2's private
part (and according to the above
paragraph, that's where the operation on
T2_Type is made visible---in P1.P2's
private part). That's why
Low_Level_Data isn't available for
T3_Type.
So the compiler is correct to reject your
original program. However, I think
Ludovic's fix (using a type conversion,
actually a view conversion) should work,
and it's a compiler bug if that is rejected.
One could argue that this rule is
anomalous, and that if a type is visibly
derived from a grandparent (or great-
grandparent, etc.) type in a situation like
this, then operations that are indirectly
inherited from the grandparent (etc.) type
should be visible if they're visible for the
grandparent, even if the inheritance comes
indirectly through a non-visible part of

Ada in Context 159

Ada User Journal Volume 30, Number 3, September 2009

some other package. There could be a
privacy problem if the operation could be
overridden in the non-visible part, but that
isn't possible here---there's nothing P1.P2
can do to change the meaning of the
Low_Level_Data selector. This issue is
related to AI05-125, but although a
couple of us think there's a flaw in the
language, others believe that it can't be
fixed without making things even more
confusing. In any event, it's not all that
important here since the view conversion
is an adequate workaround, assuming
your compiler isn't broken.
> I've tried to look in section 8 of the

"RM 2005", but either the answer was
not there or else, I missed it.

I think 7.3.1 and particularly 7.3.1(4) is
the important rule here, although I have to
admit that that section uses a lot of
slightly fuzzy generalities that I've had
problems interpreting occasionally.

Randomness tests in Ada
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Thu, 16 Jul 2009 12:41:59 -0700 PDT
Subject: Randomness tests
Newsgroups: comp.lang.ada
Does someone have some randomness
checking sources in Ada?
I am evaluating a fast random generator
(published long time ago in the Ada
letters), alternative to GNAT's
implementation.
Probably the most obvious test is to check
that it is well uniformly distributed.
From: jonathan

<johnscpg@googlemail.com>
Date: Fri, 17 Jul 2009 15:25:56 -0700 PDT
Subject: Re: Randomness tests
Newsgroups: comp.lang.ada
[…]
You can find several basic tests at
http://web.am.qub.ac.uk/users/
j.parker/miscellany
in the subdirectory: disorderly
see for example:
 gcd_4bytes_1.adb
 gcd_6bytes_1.adb
 rank_tst_2.adb
 bday_tst_1.adb
 gorilla_tst_demo_2.adb

(To use gcd_6bytes_1.adb, concatenate 2
of the 24 bit words generated by
Marsaglia's Universal generator.)
The greatest-common-divisor test,
gcd_6bytes_1.adb and gorilla tests are
from the Marsaglia, Tsang updated
diehard suite. To find their paper google
for "Some difficult-to-pass tests of
randomness", Marsaglia, Tsang.

The birthday test is a variant of
Marsaglia's birthday test. I include the
birthday test (bday_tst_1.adb) because the
present GNAT generator fails this. (It has
to. All short period generators fail this
test.)
I include Marsaglia's rank test
(rank_tst_2.adb) because it easily breaks
the Mersenne Twister.
(It has to. The Mersenne Twister is full-
period and linear; they all fail this test
catastrophically.) I would still prefer the
Mersenne Twister over the Marsaglia
Universal generator though .. it does quite
a bit more bit-mixing between outputs
than the Marsaglia Universal generator.
The site given above contains my own
version of the way I think Random
Number Generators ought to be done:
disorderly.ads. Generator Disorderly is
really just a non-linear 61-bit version of
Marsaglia's KISS generator. KISS
appeared about a decade after his
Universal generator. The KISS generator
is a combination generator that uses linear
component generators. Disorderly
includes a non-linear component
generator: X_{n+1} =3D X_n**2 mod M.
The X_{n+1} =3D X_n**2 mod M
component in Disorderly was inspired by
GNAT's generator. The GNAT generator
is a combination generator made from 2
of these non-linear component generators.
(If you use just the least significant bit of
each word output by the GNAT generator,
then its called the Blum-Blum-Schub
generator.)
A fast linear version of Disorderly is
included; seemed to be about 3 times
faster than the GNAT generator ..
produces 61 bits per call.
Here is the start of the README:
1. directory Disorderly contains
⁃ a package of new Random Number

Generators (package
Disorderly.Random) along with some
test/demo routines.

⁃ a package of Random Deviates
(package Disorderly.Random.Deviates)
with the following distributions:

 Uniform, Normal (Gaussian),
Exponential, Lorentzian (Cauchy),
Poissonian, Binomial, Negative
Binomial, Weibull, Rayleigh, Student_t,
Beta, Gamma, Chi_Squared,
Log_Normal, Multivariate_Normal.

 procedure Deviates_Demo_1 tests and
demonstrates usage of random deviates
(variates).

The procedure tests package
Disorderly.Random.Deviates.
procedure Basic_Deviates_Demo_1 tests
and demonstrates usage of random
deviates: Disorderly.Basic_Rand.Deviates
Uses Disorderly.Basic_Rand and

demonstrates usage of random deviates
(variates).
From: Cristoph Grein

<christoph.grein@eurocopter.com>
Date: Fri, 17 Jul 2009 01:10:41 -0700 PDT
Subject: Re: Randomness tests
Newsgroups: comp.lang.ada
Do you mean Marsaglias_Generator:
The algorithm was developed by George
Marsaglia, Supercomputer Computations
Research Institute, Florida State
University
(ref. to Ada LETTERS, Volume VIII,
Number2, March/April 1988).
I have an implementation of it. It
produces the results required for a correct
implementation.
From: Cristoph.Grein

<christoph.grein@eurocopter.com>
Date: Fri, 17 Jul 2009 12:05:52 -0700 PDT
Subject: Re: Randomness tests
Newsgroups: comp.lang.ada
[…]
> Christoph, Gautier,
 did you look at the open source
 GNAT:ada.numerics.[float][discrete]

random ?
Of course I know and use those. I just
wanted to know which Ada Letters
random generator Gautier wanted to test.
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Fri, 17 Jul 2009 13:41:03 -0700 PDT
Subject: Re: Randomness tests
Newsgroups: comp.lang.ada
> Please let us know your conclusions.
So - the mentioned package is indeed the
"universal" random generator from Dr.
George Marsaglia, which seems to have
appeared in the Ada
I've just "repimped" U_Rand with
generics, no more global variables but a
type Generator, and some Ada 95
A.N.Float_Random-style "renames",
which facilitates the switch between
random packages, like in this example:

 -- *** Choice of the floating-point type
used for the whole Portfolio Model:
 subtype Real is Long_Float;
 package Real_U_Rand is new
 U_Rand(Real);

 -- *** Choice of a random generator:
A.N.F_R, or U_Rand (faster), or...:

 package RRand renames
 -- Ada.Numerics.Float_Random;
 Real_U_Rand;
The funny thing is that RRand can be
plugged in its turn into another generic
package

160 Ada in Context

Volume 30, Number 3, September 2009 Ada User Journal

 package GRA is new
 Ada.Numerics.Generic_Real_Arrays
 (Real);

 package RCopulas is new Copulas(
 Real,
 RRand.Uniformly_Distributed,
 RRand.Generator,
 RRand.Random,
 GRA
);

In case someone is interested, mail me.
Anytime soon I'll open a SourceForge
project with various random variable
goodies.
From: Jeffrey R. Carter

<spam.jrcarter.not@nospam.acm.org>
Date: Thu, 16 Jul 2009 21:41:37 GMT
Subject: Re: Randomness tests
Newsgroups: comp.lang.ada
[…]
An interesting test is the "parking-lot"
test. Consecutive pairs of numbers from
the generator are treated as (x, y) pairs of
coordinates and plotted on a graph.
Poor generators create line segments;
good ones don't. (The test gets its name
from the 1st generator it was applied to,
which created short, parallel, diagonal
line segments that reminded people of the
lines in a parking lot.)
Apparently even generators that do well
on other tests can fail this one.
The generator in Turbo Pascal did
especially poorly on this test.
I know of one application in which
consecutive triples of numbers were
treated as (x, y, z) 3-D coordinates. A
generator which did well on other tests,
including the 2-D parking lot test, failed
the 3-D version.
Also note that the PragmAda reusable
components include the "universal"
random number generator, which is
supposed to be a very good generator, is
portable, and gives identical results on all
platforms.
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Thu, 16 Jul 2009 18:53:41 -0700 PDT
Subject: Re: Randomness tests
Newsgroups: comp.lang.ada
[…]
Thanks for the explanations about the
"parking-lot" method.
[…]
I was precisely considering that algorithm
(the famous u_rand).

Record type as generic
parameter
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Thu, 13 Aug 2009 02:52:52 -0700

PDT
Subject: Record type as generic parameter
Newsgroups: comp.lang.ada
[…]
Let's say I have an enumerated type called
Scenario, and I want to fill some data
structure with the following information:
for each scenario, I have a certain number
of items (of a defined type), which is
varying according to the scenario. That
information is stored in an array with
pairs (scenario, item). An item might by
appearing in several scenarios, it is why I
don't have simply an array(Item) of
Scenario. Everything fine up to now.
Now, I would like to make it generic,
since I have several sets of scenario - i.e.
different enumerated types like Scenario.
Then, my favourite Ada compiler doesn't
want a record as generic parameter:

 generic
 type Scenario is range <>;
 type Association is record
 scen: Scenario;
 it : Item;
 end record;
 scenario_definition:
 array(Positive range <>) of
 Association;
 procedure Fill_Scenarios;

Any nice workaround?
A not-so-nice one is to have two arrays,
one array of Scenario, one array of Item.
Ideally I would keep the type like
Association above.

 XY_scenario_definition:
 constant array(Positive range <>) of
 XY_Association:=
 (
 (Scen_abc, Item_56),
 (Scen_abc, Item_345),
 (Scen_uvw, Item_12),
 ..

The data are easier to pump from a
database directly as Ada sources, they are
then easier to read, and there is no chance
of messing positions as with the two
arrays solution.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 13 Aug 2009 12:30:38 +0200
Subject: Re: Record type as generic

parameter
Newsgroups: comp.lang.ada
[…]
A private type. With functions for
accessing the fields, if necessary.

From: Gautier de Montmollin
<gdemont@users.sourceforge.net>

Date: Thu, 13 Aug 2009 06:34:31 -0700
PDT

Subject: Re: Record type as generic
parameter

Newsgroups: comp.lang.ada
> Any reason why you cannot make a

generic package that would *export*
> Association and Scenario_Definition
No!
> (and procedure Fill_Scenarios),
Yes!
> rather than importing them?
So first of all, thanks for the very nice
idea!
The "Yes!" is because the exporting
generic package is in (or withed by) a
very low-level, satellite package,
DB_Data.Geo, that basically consists in
data pumped (once for all) from a
database in form of big enumerated types
and constant arrays. So it cannot "see" the
definitions needed for Fill_Scenarios.
But the "No!" is valid as well, considering
the types used for defining these
scenarios.
So the solution is:
1) In the low-level package
DB_Data.Geo.Links:

 generic
 type Scenario is (<>);
 package Scenario_framework is
 -- pairs:
 type Association is record
 scen: Scenario;
 it : Item;
 end record;
 -- list of pairs:
 type Scenario_definition is
 array(Positive range <>) of
 Association;
 end Scenario_framework;

 package Dept_Xyz is new
 Scenario_framework
 (DB_Data.Geo.Dept_Xyz_Scenario);

 dept_xyz_scenario_definition:
 constant
 Dept_Xyz.Scenario_definition:=
 (
 (Scen_abc, Item_56),
 (Scen_abc, Item_345),
 (Scen_uvw, Item_12),

2) In the high-level package:

 generic
 type Scenario is (<>);
 with package Framework is new
 Scenario_framework(Scenario);

Ada in Context 161

Ada User Journal Volume 30, Number 3, September 2009

 def: Framework.Scenario_definition;
 procedure Fill_Scenarios;

One instantiation is then:

 procedure Fill_Dept_Xyz_Scenarios is
 new Fill_Scenarios(
 Dept_Xyz_Scenario,
 Dept_Xyz,
 dept_xyz_scenario_definition
);
[…]

Warnings when overriding
Initialize and Finalize
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Fri, 10 Jul 2009 07:16:47 -0700 PDT
Subject: Got warnings when overriding

Initialize and Finalize
Newsgroups: comp.lang.ada
[…]
I got some warnings which still stick to
me when I want to override Initialize and
Finalize on controlled types.
Here is a reduced example of the matter:

with Ada.Finalization;
package Test is
 type T is tagged limited private;
private

type T is new Ada.Finalization.
 Limited_Controlled with null record;
overriding procedure Initialize
 (Object : in out T);

 overriding procedure Finalize
 (Object : in out T);
end Test;

This give me warnings like “warning:
declaration of "Initialize" hides one at line
xxx ” where xxx is the line of “ type T is
new Ada.Finalization.Limited_Controlled
with null record; ”. The same warning
appears for Finalize.
If there is no more private part, there is no
more warnings. Ex …

with Ada.Finalization;
 type T is new
 Ada.Finalization.Limited_Controlled
 with null record;

 overriding
 procedure Initialize (Object : in out T);
 overriding
 procedure Finalize (Object : in out T);
end Test;

… does not produce any warnings.
If I do the following, there is no warning
as well :

with Ada.Finalization;
package Test is
 type T is new
 Ada.Finalization.Limited_Controlled
 with private;

 overriding
 procedure Initialize (Object : in out T);
 overriding
 procedure Finalize (Object : in out T);
 private
 type T is new
 Ada.Finalization.Limited_Controlled
 with null record;
end Test;

Is it mandatory to declare overriding of
Initialize and Finalize in the public part
and thus to declare the T is an
Ada.Finalization.Limited_Controlled in
the public part as well ?
But the Annotated RM contains this small
excerpt :
AARM 7.6 17.h.2/1 says:

package P is
 type Dyn_String is private;
 Null_String : constant Dyn_String;
 …
 private
 type Dyn_String is new
 Ada.Finalization.Controlled with …
 procedure Finalize
 (X : in out Dyn_String);
 procedure Adjust
 (X : in out Dyn_String);

 Null_String : constant
 Dyn_String :=
 (Ada.Finalization.Controlled
 with …);
 …
end P;

So what to think about these warnings?
Is there something I am not seeing?
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 10 Jul 2009 08:34:17 -0700 PDT
Subject: Re: Got warnings when overriding

Initialize and Finalize
Newsgroups: comp.lang.ada
[…]
This looks like a compiler glitch to me.
There is a case, involving *untagged*
types, where overriding an operation in
the private part can lead to some
unexpected results:

package Pak2 is
 type T2 is new Pak1.T;

 - - inherits operation Op
 private
 overriding procedure Op (X : T2);
end Pak2;
Now, calling Op on an object of type T2
may give you either the inherited one or
the overriding one, depending on whether
the private part of Pak2 is visible at that
point. It may be that the compiler, with
this case in mind, displays a warning any
time there's an override in the private part
of a package; but it seems like it's going
overboard in this case. The compiler
needs to tailor its warnings a little better.
That's just my guess as to why you're
seeing the warnings. But there isn't
anything wrong with your original code.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Fri, 10 Jul 2009 09:12:04 -0700 PDT
Subject: Re: Got warnings when overriding

Initialize and Finalize
Newsgroups: comp.lang.ada
> Now, calling Op on an object of type T2

may give you either the inherited one or
the overriding one, depending on
whether the private part of Pak2 is
visible at that point.

Indeed, this example is a bad practice.
> It may be that the compiler, with this

case in mind, displays a warning any
time there's an override in the private
part of a package

 … and it does not take care it is a
tagged type so

Your idea of the reason why is clever.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 10 Jul 2009 20:10:25 -0500
Subject: Re: Got warnings when overriding

Initialize and Finalize
Newsgroups: comp.lang.ada
[…]
For the record, I agree with Adam. Claw
is full of overridings like this; our rule
was that overridings should be done in the
private part as there is no reason for the
client to know whether the routines are
overridden or just inherited. Looks like a
bogus warning to me (and Adam's
explanation makes sense to me, too).
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Tue, 14 Jul 2009 10:54:53 -0400
Subject: Re: Got warnings when overriding

Initialize and Finalize
Newsgroups: comp.lang.ada
[…]
For what it's worth, the latest version of
GNAT Pro does not give these bogus
warnings. I don't know if the fix has made
it into public version(s) yet.

Conference Calendar 163

Ada User Journal Volume 30, Number 3, September 2009

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2009

October 04-09 ACM/IEEE 12th International Conference on Model Driven Engineering Languages and Systems

(MoDELS'2009), Denver, Colorado, USA. Topics include: Development of domain-specific modeling
languages, Tools and meta-tools for modeling languages and model-based development, Evolution of
modeling languages and models, Experience stories in general (successful and unsuccessful), Issues
related to current model-based engineering standards, Experience with model-based engineering tools,
etc.

☺ October 06 2nd International Workshop on Model Based Architecting and Construction of
Embedded Systems (ACES-MB'2009). Topics include: model-oriented counterparts of
specific design and implementation languages with particularly well-behaved semantics,
such as synchronous languages and models (Lustre/SCADE, Signal/Polychrony,
Esterel), super-synchronous models (TTA, Giotto), scheduling-friendly models (HRT-
UML, Ada Ravenscar), etc.

October 05-06 2nd International Conference on Software Language Engineering (SLE'2009), Denver, Colorado,
USA. Topics include: the engineering of artificial languages used in software development including
general-purpose programming languages, domain-specific languages, modeling and meta-modeling
languages, data models, and ontologies.

October 07-09 14th International Real-Time Ada Workshop (IRTAW'2009), Portovenere, Italy.
In cooperation with Ada-Europe.

☺ October 11 5th Workshop on Programming Languages and Operating Systems (PLOS'2009), Big Sky, MT,
USA. Topics include: critical evaluations of new programming language ideas in support of OS
construction; type-safe languages for operating systems; language-based approaches to crosscutting
system concerns, such as security and run-time performance; language support for system verification;
the use of OS abstractions and techniques in language runtimes; etc.

☺ October 12-14 IMCSIT2009 - 2nd Workshop on Advances in Programming Languages (WAPL'2009), Mragowo,
Poland. Topics include: Compiling techniques; Domain-specific languages; Formal semantics and
syntax; Generative and generic programming; Languages and tools for trustworthy computing;
Language concepts, design and implementation; Metamodeling and modeling languages; Model-driven
engineering languages and systems; Practical experiences with programming languages; Program
analysis, optimization and verification; Program generation and transformation; Programming tools and
environments; Proof theory for programs; Specification languages; Type systems; etc.

October 13-16 16th Working Conference on Reverse Engineering (WCRE'2009), Lille, France. Topics include: all
areas of software maintenance, evolution, reengineering, and migration, such as Program
comprehension, Mining software repositories, Empirical studies in reverse engineering, Redocumenting
legacy systems, Reverse engineering tool support, Reengineering to distributed architectures, Software
architecture recovery, Program analysis and slicing, Reengineering patterns, Program transformation
and refactoring, etc.

October 15-16 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM'2009),
Lake Buena Vista, Florida, USA. Topics include: Reports on the benefits derived from using certain
technologies; Empirically-based decision making; Industrial experience in process improvement;
Quality measurement and assurance; Evidence-based software engineering; Effort and cost estimation,
defect rate and reliability prediction; etc.

164 Conference Calendar

Volume 30, Number 3, September 2009 Ada User Journal

☺ October 25-29 24th Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2009), Orlando, Florida, USA. Topics include: the intersection between programming
languages and software engineering; key programming models and programming methods and related
software engineering ideas, technologies, tools, and applications; critical evaluation of accepted
practices, proposals for new programming models, exploration and extension of well-established
models, and other novel approaches to building systems; etc.

☺ October 25 8th "Killer Examples" workshop. Topics include: examples that expose bad practice
and so lead to better appreciation of good practice, as obtained by following sound
object-oriented principles.

October 25 1st Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU'2009). Topics include: methods, metrics and techniques for evaluating the
usability of languages and language tools, such as empirical studies of programming
languages, methodologies and philosophies behind language and tool evaluation, user
studies of language features and software engineering tools, critical comparisons of
programming paradigms, such as object-oriented vs. functional, tools to support
evaluating programming languages, etc.

Oct 25-29 Onward! 09. Topics include: different ways of thinking about, approaching, and
reporting on programming languages and software engineering research.

October 26 3rd Workshop on Assessment of Contemporary Modularization Techniques
(ACoM.09). Topics include: Lessons learned from assessing new modularization
techniques; Empirical studies and industrial experiences; Comparative studies between
new modularization techniques and conventional ones; etc.

♦ Nov 01-05 ACM Annual International Conference on Ada and Related Technologies
(SIGAda'2009), St. Petersburg, Tampa Bay area, Florida, USA. Sponsored by ACM
SIGAda, in cooperation with SIGCAS, SIGCSE, SIGPLAN, Ada-Europe, and Ada
Resource Association.

☺ Nov 02-03 14th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2009),
Eindhoven, the Netherlands. Topics include: Design, specification, code generation and testing based on
formal methods; Verification and validation methods that address shortcomings of existing methods
with respect to their industrial applicability; Tools for the development of formal design descriptions;
Case studies and experience reports on industrial applications of formal methods, focusing on lessons
learned or identification of new research directions; Impact of the adoption of formal methods on the
development process and associated costs; Application of formal methods in standardization and
industrial forums; etc.

November 02-07 16th International Symposium on Formal Methods (FM'2009), Eindhoven, the Netherlands. Theme:
"Theory meets practice". Topics include: every aspect of the development and application of formal
methods for the improvement of the current practice on system developments; of particular interest are
papers on tools and industrial applications; etc.

November 02 Workshop on Verified Software: Theories, Tools, and Experiments (VSTTE'2009).
Topics include: Specification and verification techniques, Tool support for specification
languages, Automation in formal verification, etc.

November 04 8th International Workshop on Parallel and Distributed Methods in Verification
(PDMC'2009). Topics include: multi-core/distributed model checking, slicing and
distributing the state space, parallel/distributed theorem proving and constraints solving,
tools and case studies, industrial applications, etc.

November 06 2nd International Conference on Teaching Formal Methods (TFM'2009). Topics
include: experiences of teaching FMs, both successful and unsuccessful; educational
resources including the use of books, case studies and the internet; the advantages of
FM-trained graduates in the workplace; changing attitudes towards FMs in students,
academic staff and practitioners; etc.

Conference Calendar 165

Ada User Journal Volume 30, Number 3, September 2009

November 06 NIST SAMATE Static Analysis Tool Exposition Workshop (SATE'2009), Washington, D.C., USA.
Topics include: Contribution of static analysis to software security assurance; Integration of, or tradeoffs
between, static and dynamic analysis; Issues in scaling static analysis to deal with large systems; Flaw
catching vs. sound analysis; Benchmarks or reference datasets; Formal descriptions of weaknesses and
vulnerabilities; User experience drawing useful lessons or comparisons; Synergies of pre- and post-
production assurance; Case studies on real applications; etc. Deadline for submissions: October 2, 2009
(papers)

November 16-19 20th International Symposium on Software Reliability Engineering (ISSRE'2009), Mysuru-
Bengaluru, India. Topics include: Reliability, availability, and safety of software systems; Validation,
verification, and testing; Software quality and productivity; Software security; Fault tolerance,
survivability, and resilience of software systems; Open source software reliability engineering;
Supporting tools and automation; Industry best practices; etc.; Empirical studies of any of the above
topics.

☺ Nov 23-27 7th IEEE International Conference on Software Engineering and Formal Methods (SEFM'2009),
Hanoi, Vietnam. Topics include: formal methods technology transfer; software specification,
verification and validation; component-based development; programming languages and type theory;
program analysis; real-time, hybrid and embedded systems; safety-critical and fault-tolerant systems;
software architectures and their description languages; light-weight formal methods; CASE tools and
tool integration; applications of formal methods and industrial case studies; etc.

December 04-12 5th International Joint Conferences on Computer, Information, and Systems Sciences, and
Engineering (CISSE'2009), Internet on-line event. Includes 4 e-conferences. Topics include:
Programming Models and tools, Parallel and Distributed processing, Embedded Systems and
Applications, Programming Languages, Object Based Software Engineering, Parallel and Distributed
Computing, Real Time Systems, Multiprocessing, etc. Deadline for paper submissions: October 12,
2009.

☺ Dec 08-11 15th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2009), Shenzhen,
China. Topics include: Parallel and Distributed Applications and Algorithms, Multi-core and
Multithreaded Architectures, Resource Management and Scheduling, Security, Dependable and
Trustworthy Computing and Systems, Real-Time Systems, etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!
December 16-19 16th IEEE International Conference on High Performance Computing (HiPC'2009), Kochi(Cochin),

India. Topics include: Parallel and Distributed Algorithms, Parallel Languages and Programming
Environments, Scheduling, Fault-Tolerant Algorithms and Systems, Scientific/Engineering/Commercial
Applications, Embedded Applications, Compiler Technologies for High-Performance Computing,
Software Support, etc. Deadline for early registration: November 16, 2009.

2010

☺ January 20-22 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2010),

Madrid, Spain. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice.

☺ January 19 Workshop on Programming Languages meets Program Verification (PLPV'2010).
Topics include: research at the intersection of programming languages and program
verification; attempts to reduce the burden of program verification by taking advantage
of particular semantic and/or structural properties of the programming language; all
aspects, both theoretical and practical, of the integration of programming language and
program verification technology. Deadline for submissions: October 8, 2009 (papers).

January 25-27 5th International Conference on High Performance and Embedded Architectures and Compilers
(HiPEAC'2010), Pisa, Italy. Topics include: Compilation techniques for embedded processors;
Compilation and runtime support for multi- and many-core architectures; Tools and techniques for
simulation and performance analysis; Tools for analysis, design, testing and implementation of
embedded systems; etc. Deadline for submissions: November 13, 2009.

166 Conference Calendar

Volume 30, Number 3, September 2009 Ada User Journal

☺ January 23 2nd Workshop on GCC Research Opportunities (GROW'2010). Topics include:
current challenges in research and development of compiler analyses and optimizations
based on the free GNU Compiler Collection (GCC). Deadline for submissions:
November 13, 2009.

☺ February 03-04 2nd International Symposium on Engineering Secure Software and Systems (ESSoS'2009), Pisa,
Italy. Topics include: security architecture and design for software and systems, systematic support for
security best practices, programming paradigms for security, processes for the development of secure
software and systems, etc. Deadline for submissions: October 24, 2009 (tutorials).

February 15-18 4th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'2010),
Krakow, Poland. Includes track on: Software Engineering for Distributed Systems.

☺ Feb 15 International Workshop on Multi-Core Computing Systems (MuCoCoS'2010).
Topics include: multi-core embedded systems; programming languages and models;
applications for multi-core systems; performance modeling and evaluation of multi-core
systems; design space exploration; tool-support for multi-core systems; compilers,
runtime and operating systems; etc.

February 17-19 18th Euromicro International Conference on Parallel, Distributed and network-based Processing
(PDP'2010), Pisa, Italy. Topics include: Parallel Computer Systems (embedded parallel and distributed
systems, fault-tolerance, multi/many core systems, ...); Models and Tools for Parallel Programming
Environments: Advanced Applications (numerical applications with multi-level parallelism, real time
distributed applications, distributed business applications, ...); Languages, Compilers and Runtime
Support Systems (parallel languages, object-oriented languages, dependability issues, scheduling, ...);
etc.

March 09-11 16th French-speaking Conference on Object-Oriented Languages and Models (LMO'2010), Pau,
France. Deadline for submissions: October 10, 2009 (papers).

March 09-12 23rd IEEE-CS Conference on Software Engineering Education and Training (CSEET'2010),
Pittsburgh, PA, USA. Theme: "Bridging the Gap between Academia and Industry in Software
Engineering Education and Training". Topics include: Curriculum and teaching materials, Software
engineering professionalism, Internship and projects for students and graduates, Case studies of
educational or training practices, Industry-academia collaboration models, etc. Deadline for
submissions: October 1, 2009 (research papers, experience reports, short papers), October 15, 2009
(workshops, panels, tutorials).

☺ March 10-13 41st ACM Technical Symposium on Computer Science Education (SIGCSE'2010), Milwaukee,
Wisconsin, USA.

March 15-18 14th European Conference on Software Maintenance and Reengineering (CSMR'2010), Madrid,
Spain. Topics include: Experience reports and empirical studies on maintenance, reengineering, and
evolution; Description of education-related issues to evolution, maintenance and reengineering;
Mechanisms and techniques for reengineering systems as services; etc. Deadline for submissions:
October 9, 2009 (abstracts), October 16, 2009 (full papers), October 23, 2009 (workshops, industry track
submissions, tool demonstrations, doctoral symposium, European Projects track).

March 20-28 European Joint Conferences on Theory and Practice of Software (ETAPS'2009), Paphos, Cyprus.
Events include: FOSSACS, Foundations of Software Science and Computation Structures; FASE,
Fundamental Approaches to Software Engineering; ESOP, European Symposium on Programming; CC,
International Conference on Compiler Construction; TACAS, Tools and Algorithms for the
Construction and Analysis of Systems. Deadline for submissions: October 1, 2009 (abstracts), October
8, 2009 (full papers).

March 20-28 10th Workshop on Language Descriptions, Tools and Applications (LDTA'2010).
Topics include: applications of and tools for meta programming in a broad sense, such
as Program analysis, transformation, generation and verification; Reverse engineering
and reengineering; Refactoring and other source-to-source transformations; Language
definition and language prototyping; Debugging, profiling and testing; etc. Deadline for
submissions: November 27, 2009 (abstracts), December 04, 2009 (papers).

Conference Calendar 167

Ada User Journal Volume 30, Number 3, September 2009

March 22-26 25th ACM Symposium on Applied Computing (SAC'2010), Sierre and Lausanne, Switzerland.

☺ Mar 22-26 Track on Object-Oriented Programming Languages and Systems (OOPS'2010).
Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Components and modularity;
Distributed, concurrent or parallel systems; Interoperability, versioning and software
adaptation; etc.

☺ Mar 22-26 Track on Software Engineering (SE'2010). Topics include: technologies, theories, and
tools used for producing highly dependable software more effectively and efficiently;
such as Safety and Security; Dependability and Reliability; Fault Tolerance and
Availability; Architecture, Framework, and Design Patterns; Standards; Maintenance
and Reverse Engineering; Verification, Validation, and Analysis; Formal Methods and
Theories; Component-Based Development and Reuse; Empirical Studies, and Industrial
Best Practices; etc.

☺ Mar 22-26 Track on Real-Time Systems (RTS'2010). Topics include: all aspects of real-time
systems design, analysis, implementation, evaluation, and case-studies, including
scheduling and schedulability analysis; worst-case execution time analysis; modeling
and formal methods; validation techniques; reliability; compiler support; component-
based approaches; middleware and distribution technologies; programming languages
and operating systems; embedded systems; etc.

☺ Mar 22-26 Track on Programming Languages (PL'2010). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development and Model
Transformation, New Programming Language Ideas and Concepts, Practical
Experiences with Programming Languages, Program Analysis and Verification,
Programming Languages from All Paradigms, etc.

Mar 22-26 Track on Software Verification and Testing (SVT’2010). Topics include:
development of technologies to improve the usability of formal methods in software
engineering, tools and techniques for verification of large scale software systems, real
world applications and case studies applying software verification, static and run-time
analysis, correct by construction development, software certification and proof carrying
code, etc.

March 22-26 17th IEEE International Conference and Workshops on the Engineering of Computer Based
Systems (ECBS'2010), Oxford, UK. Topics include: Component-Based System Design; Design
Evolution; Distributed Systems Design; ECBS Infrastructure (Tools, Environments); Education &
Training; Embedded Real-Time Software Systems; Integration Engineering; Model-Based System
Development; Modelling and Analysis of Complex Systems; Open Systems; Reengineering & Reuse;
Reliability, Safety, Dependability, Security; Standards; Verification & Validation; etc. Deadline for
submissions: November 1, 2009 (abstracts), November 10, 2009 (papers). Deadline for early
registration: February 22, 2010.

March 24-26 15th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2010), Oxford, UK. Topics include: Verification and validation, Reverse engineering and
refactoring, Design by contract, Safety-critical & fault-tolerant architectures, Real-time and embedded
systems, Tools and tool integration, Industrial case studies, etc. Deadline for submissions: October 23,
2009 (abstracts), October 30, 2009 (papers).

April 06-09 3rd IEEE International Conference on Software Testing, Verification and Validation (ICST'2010),
Paris, France. Topics include: Verification & validation, Quality assurance, Empirical studies,
Inspections, Tools, Embedded software, Novel approaches to software reliability assessment, etc.
Deadline for submissions: October 2, 2009 (full papers).

☺ April 13-16 5th European Conference on Computer Systems (EuroSys'2010), Paris, France. Topics include:
various issues of systems software research and development, such as systems aspects of Dependable
computing, Distributed computing, Parallel and concurrent computing, Programming-language support,
Real-time and embedded computing, Security, etc. Deadline for submissions: October 23, 2009.

168 Conference Calendar

Volume 30, Number 3, September 2009 Ada User Journal

☺ April 19-23 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2010), Atlanta,
Georgia, USA. Topics include: Parallel and distributed algorithms; Applications of parallel and
distributed computing; Parallel and distributed software, including parallel and multicore programming
languages and compilers, runtime systems, middleware, libraries, parallel programming paradigms,
programming environments and tools, etc. Deadline for submissions: December 14, 2009 (PhD forum).

☺April 19 15th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2010). Topics include: all areas of parallel
applications, language design, compilers, run-time systems, and programming tools;
such as New programming languages and constructs for exploiting parallelism and
locality; Experience with and improvements for existing parallel languages and run-time
environments; Parallel compilers, programming tools, and environments; Programming
environments for heterogeneous multicore systems; etc. Deadline for submissions:
December 3, 2009.

April 26-29 22nd Annual Systems and Software Technology Conference (SSTC'2010), Salt Lake City, Utah,
USA.

☺ May 02-08 32nd International Conference on Software Engineering (ICSE'2010), Cape Town, South Africa.
Topics include: Engineering of distributed/parallel software systems; Engineering of embedded and
real-time software; Engineering secure software; Patterns and frameworks; Programming languages;
Reverse engineering and maintenance; Software architecture and design; Software components and
reuse; Software dependability, safety and reliability; Software economics and metrics; Software tools
and development environments; Theory and formal methods; etc. Deadline for submissions: October 5,
2009 (tutorials, education papers, software engineering in practice track, software engineering education
track); November 26, 2009 (doctoral symposium Papers); January 7, 2010 (research demonstration
papers, new and emerging results papers).

May 31 – June 02 10th International Conference on Computational Science (ICCS'2010), Amsterdam, The Netherlands.
Topics include: recent developments in methods and modelling of complex systems for diverse areas of
science, advanced software tools, etc. Deadline for submissions: January 1, 2010 (full papers). Deadline
for early registration: March 31, 2010.

June 14-15 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar'2010), Berkeley, CA, USA. Topics
include: the broad impact of multicore computing in all fields, including application design, languages
and compilers, systems, and architecture. Deadline for position paper submissions: January 24, 2010.

♦ June 14-18 15th International Conference on Reliable Software Technologies - Ada-
Europe'2010, Valencia, Spain. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda (approval pending). Deadline for submissions: November 16, 2009 (papers,
tutorials, workshops), January 11, 2010 (industrial presentations).

June 21-23 AMAST2010 - 10th International Conference on Mathematics of Program Construction
(MPC'2010), Québec City, Canada. Topics of interest range from algorithmics to support for program
construction in programming languages and systems, such as type systems, program analysis and
transformation, programming-language semantics, security, etc. Deadline for submissions: December 7,
2009 (abstracts), December 14, 2009 (full papers).

June 21-25 10th International Conference on Application of Concurrency to System Design (ACSD'2010),
Braga, Portugal. Topics include: (Industrial) case studies of general interest, gaming applications,
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design,
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc. Deadline for
submissions: January 10, 2010 (papers).

June 26-30 15th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2010), Ankara, Turkey.

☺ Jun 28 – Jul 02 48th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2010),
Malaga, Spain. Deadline for submissions: November 30, 2009 (workshops).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Forthcoming Events 169

Ada User Journal Volume 30, Number 3, September 2009

SIGAda 2009 Advance Program
ACM Annual International Conference

on Ada and Related Technologies:
Engineering Safe, Secure, and Reliable Software

Hilton St. Petersburg Bayfront Hotel
St. Petersburg (Tampa Bay area), Florida, USA

November 1-5, 2009

Sponsored by the ACM Special Interest Group on the Ada Programming Language (SIGAda)
in cooperation with Ada-Europe, Ada Resource Association, and ACM Special Interest Groups on Embedded Systems,

Programming Languages, Computers and Society, and Computer Science Education

Special Keynote Presentations

Echo: A New Approach to Formal Verification Based on Ada
The Technology, and Experience in Security and Medical Devices
John Knight
University of Virginia
Computer Science Department

Ada Through the Eyes of Developing Large, Mature, Reliable
Systems
Richard Schmidt
Lockheed Martin
Information Systems & Global Services - Civil Group

A Look at Ada from Both Sides Now:
Government and Defense Contractor Perspectives
J.C. Smart
Raytheon
Intelligence and Information Systems

Corporate Sponsors – Platinum Corporate Sponsors – Silver

VISIT http:/ /www.sigada.org/conf/sigada2009 TODAY

FOR UP-TO-THE-MINUTE TUTORIAL, PROGRAM, AND EXHIBIT INFORMATION
AND ONLINE REGISTRATION

170 Forthcoming Events

Volume 30, Number 3, September 2009 Ada User Journal

SIGAda 2009 VENUE & HOTEL
Hilton St. Petersburg Bayfront

333 First Street South
St. Petersburg, Florida 33701 (USA)

Tel: 1-727-894-5000
Fax: 1-727-823-4797

The SIGAda 2009 Conference will be held at the Hilton St. Petersburg Bayfront Hotel. This is a beautiful spot
located directly on Tampa Bay, Florida. The weather in November is typically in the high 70’s F (20 degrees C)
with minimal rain fall. It is easily accessible from either the Tampa or Clearwater/St Petersburg airports. And it is
about 1-1/2 hours away from the Orlando International Airport and its associated theme parks. The Tampa Bay
area also has the Busch Gardens theme park, the Salvador Dali museum, and numerous beaches on the Gulf
coast.
The hotel has reserved a block of rooms for the SIGAda 2009 conference. The conference rate is $95 for single or
double occupancy rooms, $105 for triple occupancy rooms, and $115 for quadruple occupancy rooms. A 12% tax
will be added per night. All reservations must be guaranteed by credit card. Reservations must be received by
October 1, 2009. For further information, see http://www.sigada.org/conf/sigada2009/hotel-rates.html

EXHIBITORS
SIGAda 2009 will include vendor participation, featuring presentations on their products and services. For specific
information, please contact the Exhibits Chair, Alok Srivastava, Northrup Grumman,
Alok.Srivastava@AUATAC.com.

GRANTS TO EDUCATORS
As in past years, SIGAda is offering grants to educators to attend the conference. Grants cover the registration and
tutorial fees; travel funds are not covered, but members of the GNAT Academic Program may be eligible for travel
funds from AdaCore. Applications must be sent by e-mail, no later than October 16, 2009. Grantees will receive
instructions for on-line registration, which will be accepted through October 28, 2009. Grant program details are
available from the conference website or Prof. Michael B. Feldman, mfeldman@gwu.edu.

WORKSHOPS / BOFS
Focused workshops are important in shaping Ada technology to better meet the needs of the Ada community.
Workshops are free for those registered for the conference. Workshop descriptions are listed at the SIGAda 2009
website. Additional workshops or Birds-of-a-Feather (BoF) sessions are welcome. Workshops have a focused
objective and result in a report to be published in ACM Ada Letters. BoFs are informal discussion groups. If you
would like to propose a Workshop or BoF, please contact the Workshops Chair, Bill Thomas,
BThomas@MITRE.Org

CONFERENCE TEAM
Conference Chair
Greg Gicca
AdaCore
gicca@adacore.com

Tutorial Chair
Richard Riehle
Naval Postgraduate School
rdriehle@nps.edu

SIGAda and Conference Treasurer
Geoff Smith
Lightfleet Corporation
gsmith@lightfleet.com

Program Chair
Jeff Boleng, Lt Col, USAF
US Air Force Academy
jeff.boleng@usafa.edu

Webmaster & Proceedings Chair
Clyde Roby
Institute for Defense Analyses
ClydeRoby@ACM.Org

SIGAda Vice Chr, Meetings/Conferences
Alok Srivastava
Northrop Grumman
Alok.Srivastava@AUATAC.Com

Workshops Chair
Bill Thomas
The MITRE Corporation
BThomas@MITRE.org

Publicity Co-Chair
Michael Feldman
George Washington University (ret.)
mfeldman@gwu.edu

SIGAda International Representative
Dirk Craeynest
K.U. Leuven (Belgium)
dirk.craeynest@cs.kuleuven.be

Exhibits Chair
Alok Srivastava
Northrop Grumman
Alok.Srivastava@AUATAC.Com
Local Arrangements Chair
Currie Colket
colket@acm.org

Publicity Co-Chair
Ron Price
Softcrafts
softcrafts@aol.com
SIGAda Chair
Ricky E. Sward
The MITRE Corporation
rsward@mitre.org

Registration Chair
Thomas A. Panfil
US Department of Defense
Phone and FAX +1 301-498-7313
Office Phone: +1 410 854-5818
tapanfil@acm.org

Forthcoming Events 171

Ada User Journal Volume 30, Number 3, September 2009

Preliminary Call for Papers
15th International Conference on
Reliable Software Technologies –

Ada-Europe 2010
14-18 June 2010, Valencia, Spain

http://www.ada-europe.org/conference2010.html

Conference Chair

Jorge Real
Universidad Politécnica de
Valencia, Spain
jorge@disca.upv.es

Program Co-Chairs
Jorge Real
Universidad Politécnica de
Valencia, Spain
jorge@disca.upv.es

Tullio Vardanega
University of Padua, Italy
tullio.vardanega@math.unipd.it

Tutorial Chair
Albert Llemosí
Universitat de les Illes Balears,
Spain
albert.llemosi@uib.cat

Exhibition Chair
Ahlan Marriott
White Elephant GmbH,
Switzerland
Ada@white-elephant.ch

Industrial Chair

Erhard Plödereder
University of Stuttgart, Germany
ploedere@informatik.uni-stuttgart.de

Publicity Chair
Dirk Craeynest
Aubay Belgium & K.U.Leuven,
Belgium
Dirk.Craeynest@cs. kuleuven.be

In cooperation with
ACM SIGAda

(approval pending)

General Information

The 15th International Conference on Reliable Software Technologies – Ada-Europe 2010 will take
place in Valencia, Spain. Following its traditional style, the conference will span a full week, including
a three-day technical program and vendor exhibition from Tuesday to Thursday, along with parallel
tutorials and workshops on Monday and Friday.

Schedule

Topics

The conference has successfully established itself as an international forum for providers, practitioners
and researchers into reliable software technologies. The conference presentations will illustrate current
work in the theory and practice of the design, development and maintenance of long-lived, high-
quality software systems for a variety of application domains. The program will allow ample time for
keynotes, Q&A sessions, panel discussions and social events. Participants will include practitioners and
researchers representing industry, academia and government organizations active in the promotion
and development of reliable software technologies. To gather experience on the latest periodic revision
of the Ada language standard, contributions that present and discuss the potential of the revised
language are especially welcome.

All prospective contributions, whether regular papers, industrial presentations, tutorials or workshops,
should address the topics of interest to the conference, which for this edition include but are not
limited to:

· Methods and Techniques for Software Development and Maintenance: Requirements Engineering,
Object-Oriented Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-
engineering and Reverse Engineering, Reuse, Software Management Issues.

· Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development,
Component and Class Libraries, Component-based Design and Development.

· Enabling Technologies: Software Development Environments, Compilers, Debuggers, Run-time
Systems, Middleware Components, Concurrent and Distributed Programming, Ada Language and
Technology.

· Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

· Theory and Practice of High-Integrity Systems: Real-Time, Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages Vulnerabilities.

· Embedded Systems: Multicore Architectures, Architecture Modeling, HW/SW Co-Design,
Reliability and Performance Analysis.

· Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health Care,
Transportation, Energy, Games and Serious Games, etc.

· Experience Reports: Case Studies and Comparative Assessments, Management Approaches,
Qualitative and Quantitative Metrics.

· Ada and Education: Where does Ada stand in the software engineering curriculum; how learning
Ada serves the curriculum; what it takes to form a fluent Ada user; lessons learned on Education
and Training Activities with bearing on any of the conference topics.

16 November 2009 Submission of regular papers, tutorial and workshop proposals
11 January 2010 Submission of industrial presentation proposals
1 February 2010 Notification of acceptance to all authors

1 March 2010 Camera-ready version of regular papers required
10 May 2010 Industrial presentations, tutorial and workshop material required

14-18 June 2010 Conference

172 Forthcoming Events

Volume 30, Number 3, September 2009 Ada User Journal

Program Committee

Alejandro Alonso, Universidad Politécnica de

Madrid, Spain
Ted Baker, Florida State University, USA
John Barnes, John Barnes Informatics, UK
Johann Blieberger, Technische Universität Wien,

Austria
Jørgen Bundgaard, Rovsing A/S, Denmark
Bernd Burgstaller, Yonsei University, Korea
Alan Burns, University of York, UK
Roderick Chapman, Praxis High Integrity Systems,

UK
Dirk Craeynest, Aubay Belgium & K.U.Leuven,

Belgium
Alfons Crespo, Universidad Politécnica de

Valencia, Spain
Juan A. de la Puente, Universidad Politécnica de

Madrid, Spain
Raymond Devillers, Université Libre de Bruxelles,

Belgium
Franco Gasperoni, AdaCore, France
Michael González Harbour, Universidad de

Cantabria, Spain
José Javier Gutiérrez, Universidad de Cantabria,

Spain
Andrew Hately, Eurocontrol CRDS, Hungary
Peter Hermann, Universität Stuttgart, Germany
Jérôme Hugues, ISAE Toulouse, France
Hubert Keller, Institut für Angewandte Informatik,

Germany
Albert Llemosí, Universitat de les Illes Balears,

Spain
Kristina Lundqvist, Mälardalen University, Sweden

& MIT, USA
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern Iowa,

USA
Julio Medina, Universidad de Cantabria, Spain
Stephen Michell, Maurya Software, Canada
Javier Miranda, Universidad Las Palmas de Gran

Canaria, Spain
Daniel Moldt, University of Hamburg, Germany
Laurent Pautet, Telecom Paris, France
Luís Miguel Pinho, Polytechnic Institute of Porto,

Portugal
Erhard Plödereder, Universität Stuttgart, Germany
Jorge Real, Universidad Politécnica de Valencia,

Spain
Alexander Romanovsky, University of Newcastle

upon Tyne, UK
Jean-Pierre Rosen, Adalog, France
Sergio Sáez, Universidad Politécnica de Valencia,

Spain
Ed Schonberg, AdaCore, USA
Theodor Tempelmeier, Univ. of Applied Sciences

Rosenheim, Germany
Jean-Loup Terraillon, European Space Agency,

The Netherlands
Santiago Urueña, Grupo de Mecánica de Vuelo,

Spain
Tullio Vardanega, Università di Padova, Italy
Francois Vernadat, LAAS-CNRS & INSA

Toulouse, France
Daniel Wengelin, Saab, Sweden
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller Universität,

Germany
Luigi Zaffalon, University of Applied Sciences,

Switzerland

Industrial Committee
Guillem Bernat, Rapita Systems, UK
Roderick Chapman, Praxis High Integrity Systems,

UK
Dirk Craeynest, Aubay Belgium & K.U.Leuven,

Belgium
Pierre Dissaux, Ellidiss Technologies, France
Franco Gasperoni, AdaCore, France
Hubert Keller, Forschungszentrum Karlsruhe

GmbH, Germany
Ismael Lafoz, EADS CASA, Spain
Ahlan Marriott, White-Elephant GmbH,

Switzerland
Erhard Plödereder, Universität Stuttgart, Germany
José Simó, Universidad Politécnica de Valencia,

Spain
Alok Srivastava, Northrop Grumman, USA
Rei Stråhle, Saab Systems, Sweden

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall be in English, complete and not exceeding 14 LNCS-
style pages in length. Authors should submit their work via the Web submission system accessible
from the Conference Home page. The format for submission is solely PDF. Should you have problems
to comply with format and submission requirements, please contact the Program Chairs.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series
by Springer, and will be available at the start of the conference. The authors of accepted regular
papers shall prepare camera-ready submissions in full conformance with the LNCS style, not
exceeding 14 pages and strictly by 1 March 2010. For format and style guidelines authors should refer
to the following URL: http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register
for the conference will prevent the paper from appearing in the proceedings.
The conference is ranked class A in the CORE ranking and is listed among the top quarter of
CiteSeerX Venue Impact Factor.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference also seeks industrial presentations which may deliver value and insight, but do not fit
the selection process for regular papers. Authors of industrial presentations are invited to submit a
short overview (at least 1 page in size) of the proposed presentation to the Conference Chair by 11
January 2010. The Industrial Program Committee will review the proposals and make the selection.
The authors of selected presentations shall prepare a final short abstract and submit it to the
Conference Chair by 10 May 2010, aiming at a 20-minute talk. The authors of accepted presentations
will be invited to submit corresponding articles for publication in the Ada User Journal, which will
host the proceedings of the Industrial Program of the Conference.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be proposed as
either half- or full-day events. Proposals should include a title, an abstract, a description of the topic,
a detailed outline of the presentation, a description of the presenter's lecturing expertise in general and
with the proposed topic in particular, the proposed duration (half day or full day), the intended level
of the tutorial (introductory, intermediate, or advanced), the recommended audience experience and
background, and a statement of the reasons for attending. Proposals should be submitted by e-mail to
the Tutorial Chair. The authors of accepted full-day tutorials will receive a complimentary conference
registration as well as a fee for every paying participant in excess of 5; for half-day tutorials, these
benefits will be accordingly halved. The Ada User Journal will offer space for the publication of
summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half- or full-day events, to be scheduled at either end of the conference week. Workshop
proposals should be submitted to the Conference Chair. The workshop organizer shall also commit to
preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and providers of
software products and services should contact the Exhibition Chair for information and for allowing
suitable planning of the exhibition space and time.

Grants for Students

A limited number of sponsored grants is expected to be available for students who would like to
attend the conference or tutorials. Contact the Conference Chair for details.

174

Volume 30, Number 3, September 2009 Ada User Journal

14th International Conference on
Reliable Software Technologies

Ada-Europe 2009

Brest, France,
June 8-12, 2009

“Workshop on Vulnerabilities”

Program

09:00 – 10:30
- Overview and Update of the ISO WG23 Technical Report on Vulnerabilites,

J. Benito/E. Ploedereder
- Expunging the C/C++ Bias, J.P. Rosen
- Ada and Programming Language Vulnerabilities, S. Michell

10:30 – 11:00 Break

11:00 – 12:30
- Ada and Programming Language Vulnerabilities (cont), S. Michell
- Argument for Language Subsetting, T. Vardanega

12:30 – 14:00 Lunch

14:00 – 15:30
- Concurrency and Vulnerabilities, A. Burns

15:30 – 16:00 Break

16:00 – 18:00
- Vulnerabilities Enumeration, R. Chapman
- Wrap-Up, J. Tokar

 175

Ada User Journal Volume 30, Number 3, September 2009

Ada Europe 2009 – Workshop on Software
Vulnerabilities
Joyce L. Tokar, PhD
Pyrrhus Software, PO Box 1352, Phoenix, AZ, 85001-1352, USA.; Tel: +1 602373 0713; email:
tokar@pyrrhusoft.com

Abstract
Given the large focus on software vulnerabilities in
the current market place, ISO/IEC JTC 1/SC 22/WG
23 has developed a Technical Report (TR) on
Vulnerabilities. A workshop was conducted at Ada
Europe 2009 to define the Ada Annex to the ISO WG
23 TR and to identify breaks and gaps in the TR with
respect to the programming language Ada. This
article provides and overview of the workshop and
introduces the position papers that were presented at
the workshop.
Keywords: software vulnerabilities, software
vulnerability, Ada, SPARK.

1 Introduction
Software vulnerabilities are defined as a property of a
system security, requirements, design, implementation, or
operation that could be accidentally triggered or
intentionally exploited and result in a security failure [1].
Presently, there is a large interest world-wide in software
vulnerabilities and how they enable software applications
to be infiltrated and corrupted. There are several activities
underway to identify and enumerate the collection of
software vulnerabilities in existing programming
languages. The work being conducted, for the International
Organization of Standards (ISO), under the auspices of the
Programming Languages Subcommittee (SC22), done by
Working Group 23 (WG23), is one such effort.

ISO WG23 has developed a Technical Report (TR) [2] that
captures the current view of software vulnerabilities.
Annexes to this document are being developed to identify if
the vulnerabilities defined in the TR exist in various
programming languages. This workshop focused on the
content of the Technical Report and its applicability to the
Ada and SPARK programming languages.

Several position papers were presented on the status of the
vulnerabilities in the Ada programming language. The
workshop initiated work on the Ada and SPARK Annexes
to the ISO WG23 Technical Report on Vulnerabilities. The
workshop also identified missing vulnerabilities in the TR.

2 Status of the WG 23 Technical Report
on Vulnerabilities
The workshop began with a presentation by John Benito,
Convener of WG23. John provided an update on the status

of the TR. It has been through the first technical ballot
within SC22. There were a lot of comments from various
groups which will need to be addressed before reballoting
the document.

WG23 is now soliciting Programming Language Groups
for Annexes to the TR. The C Annex is being written as
well as a FORTRAN Annex. WG23 is very interested in
receiving an Ada Annex and a SPARK Annex. WG23 is
planning to wait for a couple of Annexes to become
available before submitting the final document for
approval. These Annexes are intended to help identify
which vulnerabilities are language specific and which are
common to all languages. WG23 will review the Annexes
for content prior to publication. Expect the collection of
annexes to be available in 2010.

3 Workshop Position Papers
The majority of the workshop attendees developed position
papers for the workshop providing insights on key areas of
software vulnerabilities and the relationship with the
programming language Ada. The full set of papers is
provided in this journal.

JP Rosen initiated the workshop position paper
presentations with a discussion of the C/C++ bias of the
Technical Report. He postured that the TR would be more
beneficial to the software community at large if this bias
was expunged.

Steve Michell continued the position paper presentation
with a summary of the objectives of the WG23 TR, some of
the areas that are missing from the TR, such as
Concurrency, and a collection of examples of how the
vulnerabilities apply to Ada.

The presentation then went in a new direction with a
presentation by Tullio Vardanega of the benefits of
programming language subsets to eliminate vulnerable
features.

Alan Burns complemented Steve Michell’s presentation
with a detailed discussion of concurrency and software
vulnerabilities.

Rod Chapman closed the position paper session by
highlighting the benefits and weaknesses of enumerating
vulnerabilities.

176 Ada Europe 2009 – Workshop on Software Vulnerabi l i t ies

Volume 30, Number 3, September 2009 Ada User Journal

4 Software Vulnerabilities in Ada –
Developing the Ada and SPARK Annexes
Following the position paper discussion, the workshop
moved on to initiate the development of the Ada and
SPARK Annexes to the TR.

4.1 Ada Annex
The focus of this session was to get the description in the
Ada Annex to correspond to the issues raised in the
vulnerabilities section. The focus of the annex entry needs
to clarify how the vulnerability is provoked.

The introduction to the Ada Annex needs to include some
discussion on the specifics of the Ada programming
language environment such as failing to compile, erroneous
compilation, and structured name spaces. Additionally, it
needs to provide an explanation of how the Ada compiler
provides some of the mechanisms for checking for
vulnerabilities; other languages require separate tools.

WG23 had provided an outline of the suggested format for
the Programming Language Annexes. The annex template
suggests that for each vulnerability identified in the TR,
there should be a corresponding section in the annex.

The workshop participants worked together to establish an
understanding of this format, how to apply it in the
development of the Ada annex, and what modifications
should be suggested to WG23. In the end, the general
format of an entry section was as follows:

• Language-specific terminology and features – this
section will deal with terminology differences
between the body of the document and the
terminology used in the language standard. This
sub-section may also explain language specific
features and terminology that are applicable to the
subsequent sub-sections.

• Description of application vulnerability – this
section will provide a brief description why Ada is
susceptible to the vulnerability along with some
examples of the vulnerability in an Ada
application.

• Mechanism of Failure – the consequences of the
given vulnerability in the program application are
identified in this section.

• Avoiding the vulnerability or mitigating its effects
in Ada – this section specifies what the
programmer can do to avoid or mitigate the
vulnerability.

Upon completing the work on the format of the Ada
Annex, the workshop attendees were then assigned sections
of the TR to work on to develop the corresponding sections
for the Ada Annex. During the workshop, six examples
were written to be submitted to WG23 for evaluation. The
remaining sections of the TR will be addressed by a
Rapporteur Group within WG9 (the ISO/IEC JTC 1/SC 22
working group on Ada).

4.2 SPARK Annex
The workshop then considered the development of the
SPARK Annex. The first question considered was whether
SPARK could be included as an Annex given that it is a
proprietary language developed by Praxis. Rod Chapman,
from Praxis, explained that SPARK is Freely Licensed
Open Source Software (FLOSS), the definition of SPARK
is publicly available, and the latest version is always
publicly available.

SPARK is sufficiently distinct from a programming
language design point of view from Ada to warrant its own
annex in the TR. It is designed, taught, and verified
differently from Ada. It has different characteristics than
Ada from a vulnerabilities perspective

The workshop attendees agreed that the SPARK annex
should be developed in conjunction with the Ada annex.

References
[1] NIST Special Publication 268, “Source Code Security

Analysis Tool Functional Specification Version 1.0,”
May 2007.

[2] ISO/IEC PDTR 24772.2, Information Technology —
Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through
Language Selection and Use, May 2009.

 177

Ada User Journal Volume 30, Number 3, September 2009

On Removing Programming Language Bias from
the Vulnerabilities Document
J-P Rosen
Adalog, 19-21 rue du 8 mai 1945, 94110 ARCUEIL, France; Tel: +33 1 41 24 31 40; email:rosen@adalog.fr

Abstract
ISO/SC22/WG23 is currently working on a document
that identifies vulnerabilities in programming
languages. The document is structured as a core
report which is supposed to be independent of any
programming language, and annexes related to the
applicability of each vulnerabitlity in specific
languages. Unfortunately, the core exhibits in places
a bias, generally towards the C/C++ family of
languages. This paper identifies those places in the
report where the wording or intent was biased by the
features of certain programming languages, and
suggests improvements to remove them.
Keywords: Ada,C, C++, vulnerabilities.

1 Introduction
ISO/SC22/WG23 is a working group of ISO which has
been formed with the goal of producing a technical report
(TR) that identifies vulnerabilities in programming
languages. The official title of the TR is Guidance to
Avoiding Vulnerabilities in Programming Languages
through Language Selection and Use 0. Since the goal of
this TR is clearly to provide guidance in selecting a
programming language based on the vulnerabilities that
each language may exhibit, it is structured as a general core
study which does not refer to any programming language in
particular, with language annexes that describe how the
vulnerability applies, or not, to the given language. Since
the document originates from members of the C/C++
community (although there is strong participation from the
Ada community), it is unavoidable that some bias from
these languages has crept in the core document. For the
sake of simplicity, we'll use the name "C*" to designate the
C family of programming languages.

 This paper identifies places where this bias has been
introduced, and suggests improvements to remove them.

2 Typical C-isms
As noted above, it is very hard to keep the core document
totally language agnostic. For example, the description of
vulnerabilities often include examples, such examples are
very useful, but they have to be given with some
programming language. Moreover, vulnerabilities that exist
in only one language have to be addressed in the core
document, since the language annexes are not supposed to
be adding new vulnerabilities.

However, there are cases where the description of the
vulnerability reflects a C* approach (as opposed to C*
syntax). Conversely, there are vulnerabilities in some
languages that do not exist in C* due to the absence of
features that correspond to the vulnerability. Not addressing
these vulnerabilities is another hint of a C* bias.

For example, Pointer Arithmetic [RVG/6.22]1 addresses
(rightly) the vulnerabilities caused by arithmetic operations
on pointers. However, the recommendations mention
pointer arithmetic only as a way of indexing arrays.
Although other languages may provide pointer arithmetic,
C is the only language where pointer arithmetic is
connected to the indexing of arrays.

Another arguable statement is found in Argument Passing
to Library Functions [TRJ/6.48]. There is no definition of
what "library functions" are, but it seems that the intent is
to refer to standard libraries provided with the language.
The description states:

Libraries that supply objects or functions are in most
cases not required to check the validity of parameters
passed to them.

Although such a statement might be applicable to some C*
libraries, there is no reason to think that it is a general
principle that applies to all languages. There is a general
vulnerability connected to subprograms that do not check
their arguments, but there is no reason to limit this to
"libraries".

3 Lack of generality
Some vulnerabilities are related to functionalities that exist
in several programming languages, but whose scope and
features vary greatly among languages. For example,
generics/templates exist in Ada, C++, Eiffel... However, the
report describes mainly the C++ view:

"Many languages provide a mechanism that allows objects
and/or functions to be defined parameterized by type, and
then instantiated for specific types" (Templates and
Generics [SYM/ 6.25.1])

1 Each description of a vulnerability is identified with an arbitrary three-
letter code. This is intended to make them independent of any
renumbering of clauses that may happen during the preparation of the
document, but makes it harder to retrieve the place where it is defined. We
therefore refer to the vulnerabilities by their code, followed by the
corresponding clause number in the version of the document 0 that was
current as of June 8th, 2009.

178 On Removing Programming Language Bias f rom the Vulnerabi l i t ies Document

Volume 30, Number 3, September 2009 Ada User Journal

This formulation is clearly too restrictive for Ada, where
other entities (such as packages) can be generic, and where
the possible parameter kinds include subprograms,
constants, variables, and even other packages (through
formal instantiations).

Another example can be found in Likely Incorrect
Expression [KOA/6.32]. This vulnerability is mainly
concerned with the unintended use of "=" in place of "=="
in expressions. While it is true that this problem is haunting
every C programmer, it has no equivalent in other
languages. On the other hand, the description only
mentions in passing the confusion between "&" and " &&",
which does have equivalents in other languages ("and" and
"and then" in Ada). Note that this vulnerability should be
kept separate from the issue of order of evaluation, which is
addressed by Side-effects and Order of Evaluation
[SAM/6.31].

4 Left-out features
The introduction of [1] states that, due to the limited
amount of resources, vulnerabilities related to some
subjects were deliberately postponed. These subjects
include:

• Object-oriented language features
• Concurrency
• Numerical analysis
• Scripting languages
• Some issues related to inter-language operability

Although it is understandable that the subject of
vulnerabilities is gigantic, and that it is not possible to
address them all, the choice of left-out feature is another
indication of language bias: all of these features are either
not provided by C (even though some of them, and notably
object orientation, are provided by other languages of the C
family), or related to domains where C is not particularly fit
(like numerical analysis). To Ada users, for example,
addressing concurrency would seem a much more
important topic than syntactic ambiguity!

5 Abstracting the vulnerabilities
It should be understood that the C* bias found in the
description of some vulnerabilities does not invalidate the
value of the vulnerability; the issue is more on separating
the general, high level problem that it addresses (which
belongs to the core document) from how it shows in some
specific language (which belongs to the language annex).
This requires an effort for abstracting the vulnerability.

For example, String Termination [CJM/6.16] describes the
vulnerability caused by forgetting the null character that
terminates a string. The general vulnerability is about using
a sentinel value to mark the end of a data structure; there is
nothing specific to strings, not even to arrays, here.

Strangely enough, the document distinguishes Boundary
Beginning Violation [XYX/6.17], Unchecked Array
Indexing [XYZ/6.18], Unchecked Array Copying
[XYW/6.19], and Buffer Overflow [XZB/6.20]. All these

are variants of a single vulnerability: accessing an array
outside of its bounds. The origin of this distinction is that in
C, it is common practice to allocate arrays in the direction
where the stack is growing; therefore, addressing below the
array may ruin the return address, while addressing above it
does not. This is not even connected to a particular
language, but to a specific (although common)
implementation technic.

Similarly, there are subtle distinctions between Type System
[IHN/6.11], Numeric Conversion Errors [FLC/6.15],
Pointer Casting and Pointer Type Changes [HFC/6.21],
Sign Extension Error [XZI/6.29], and Type-breaking
Reinterpretation of Data [AMV/6.46]. They are all
occurrences of problems with conversions; the only
possible distinction could be between semantic-preserving
conversions (regular conversions in Ada) and non-
semantic-preserving conversions (Unchecked_Conversion
in Ada).

The same phenomenon appears with vulnerabilities related
to bad pointers: Pointer Arithmetic [RVG/6.22], Null
Pointer Dereference [XYH/6.23], Dangling Reference to
Heap [XYK/6.24], and Dangling References to Stack
Frames [DCM/6.40].

In the last two examples, we have clearly single
vulnerabilities that can appear, in the C* languages, in
various forms; the core should contain only the abstract
formulation (incorrect pointer value), leaving the variants
to the language annex.

6 Cross-references clauses
The standard vulnerability template includes a "Cross-
reference" clause to provide links to other documents
addressing the given concerns. All vulnerabilities have
links to C or C++ standards, and only those, although
Ravenscar and Spark (but not the HRG document) are
mentioned in the bibliography.

This is a clear indication that the selection of rules was
made from C* documents; although a good starting point,
documents from other languages should have been
considered right from the start. Otherwise, only C*
vulnerabilities will be addressed, especially considering
that at this point, it could be argued that it is too late to add
new vulnerabilities to the document.

7 Conclusion
There is no doubt that the vulnerabilities identified in the
document are real, and do happen in various programming
languages, including the C* family of languages. However,
the formulation of some of them, and the selection of
vulnerabilities, show a strong C* influence in some cases.

We suggest in this paper some improvements to make the
formulation more general and applicable to other
languages, and identify the parts that should be moved to
language specific annexes; we hope that, by following
theses advices, the generality and overall quality of the
document could be improved.

J.-P. Rosen 179

Ada User Journal Volume 30, Number 3, September 2009

References
[1] ISO/IEC PDTR 24772.2, as of 2009-05-29

[2] Alan Burns, Brian Dobbing and Tullio Vardanega
(June 2004). "Guide for the use of the Ada Ravenscar
Profile in high integrity systems". ACM SIGAda Ada
Letters XXIV (2): 1–74. Now part of annex D of

ISO/IEC 8652:1995 with cor. 1 and amdt 1
(Programming language Ada).

[3] John Barnes: "High Integrity Software: The SPARK
Approach to Safety and Security"

[4] ISO/IEC TR 15942:2000, Guidance for the Use of Ada
in High Integrity Systems.

180

Volume 30, Number 3, September 2009 Ada User Journal

Ada and Programming Language Vulnerabilities
Stephen Michell
Maurya Software Inc,Ottawa, Ontario, Canada, email: stephen.michell@maurya.on.ca

Abstract
ISO/IEC/JTC 1/SC 22/WG 23 has requested that
other SC22 language working groups prepare
annexes to their in-development document ISO/IEC
PDTR 24772 Guidance to Avoiding Vulnerabilities in
Programming Languages Through Language
Selection and Use. WG 9 is working on an anex to
this document for the Ada programming language.
Although Ada is a well designed language, and with
good programming practices, most vlnerabilities
discussed in PDTR 24772 do not arise in practice,
still there are mechanisms in Ada where many of
these vulnerabilities can occur. This paper addresses
six of the vulnerabilities and proposes writeups
suitable for an Ada annex.
Keywords: template, journal, Ada.

1 Introduction
Vulnerabilities are an extreme problem in the
interconnected world of millions of computers connected in
co-operative and no-co-operative ways. Lax operating
system design, network protocol design, language design,
application design, and end-user refusal to enable and
follow even basic security practices are resulting in the
anarchy that is being experienced on the internet. It is
imperative that we do everything possible to limit the
damage being experienced currently, and to begin to rectify
the situation by identifying what vulnerabilities exist, how
they are being misused to launch attacks on our
infastructure, and how such attacks can be mitigated
through improved computer systems design at all levels.

One common attack vector is to identify how an application
is weak because of exposed application vulnerabilities that
originate from the way that humans program using less
than perfect programming languages. These programming
languages have vulnerabilities that permit the program to
function in ways that were not intended by the designers or
developers, and that are not easily detectable by review or
tests.

ISO/IEC/JTC1/SC22/WG23, the Programming Languages
Vulnerabilities Working Group, was created to help
identify, document, and propose corrective action for
vulnerabilities that exist in programming languages. WG23
is producing an International Technical Report 24772
entitled “Guidance to Avoiding Vulnerabilities in
Programming Languages Through Language Selection and
Use'” [1]. This report does a good job of identifying
vulnerabilities across many programming languages. The
document is missing, however, some important

vulnerability classes and all of the annexes that will explain
how each vulnerability is addressed by an individual
programming language.

WG23 intends to include such annexes, but is relying upon
programming language committees to prepare and forward
these annexes to WG23 for inclusion. ISO/IEC/JTC 1/SC
22/WG 9 Ada Working Group is gathering resources in
order to build such an annex.

Of all of the programming languages that are in common
usage, Ada [2] is arguably the most robust language in
building applications that will operate in the way that the
programmer intended, even in the presents of faults and
attacks. However, Ada is not perfect as many of the
vulnerabilities identified by WG23 can be present in
programs written in Ada, given bad choices in the use of
features, bad choices in combination of features, and
inadequate reviews.

This paper summarizes the current state of ISO/IEC PDTR
24772, proposes a number of vulnerabilities that should be
added to those currently in the document, and presents
possible Ada writeups for vulnerabilities currently
identified in ISO/IEC/PDTR 24772 that could be put in an
Ada-Specific Annex. Proposed writeups are included with
this document as Annexes.

2 Problem Statement
Every computer system being developed, whether it is
targetted for deployment on the open internet, targetted for
a private network or designed forstanda-alone mode, must
be aware of the risks that are present in the development
environment, the acquisition environment, and the ultimate
deployment environment. Common attack vectors are not
only from direct attacks from over a network connection
that targets executing programs or systems, but can include
attacks on development systems that deposit malicious
code for later activation, and mistakes made during the
development of the application that result in unacceptable
behaviour.

One of the strengths that ISO/IEC/JTC 1/SC 22/WG23's
document PDTR 24772 has over other vulnerability
assessment systems such as the Common Weakness
Enumeration is that this document considers other attack
vectors and does not rely exclusively on the “over the
internet'” style of attack. It uses analysis as well as “found
in the wild” approaches to identify, categorize and analyze
vulnerabilities.

WG23, during the development of its technical report, has
identified to date 48 programming language vulnerabilities
to be considered. Most of these show up often in language

S. Michel l 181

Ada User Journal Volume 30, Number 3, September 2009

systems written in languages other than Ada, but an honest
Ada developer must acknowledge that many of these
vulnerabilities can happen in a system programmed in Ada
if good choices are not made. We will examine specific
issues with some of the issues that will be submitted in this
work.

3 General Positive Statements About Ada
Ada is a very strongly typed language. This means that
many of the worst mistakes found in weakly typed
programming languages are completely avoided, unless the
programmer takes obvious steps to disable some of these
features, such as using 'Unchecked_Conversion to defeat
the checking of conversions of unrelated types, using
Unchecked_Deallocation to defeat Ada's memory
management features, disabling runtime check suppression
which may permit out-of-bounds access to data, or
combining the program with libraries that cannot be
analysed by the compiler.

Ada's first line of defense is the integral static analysis in
the compiler. Attempts to abuse the program in source code
violate the language rules and are caught in that phase. This
checking cannot be disabled or forgotten, as it often is
when the analysis tools are an accessory to the language
translator, as must be the case with weakly typed
languages.

Ada's second line of defense is the runtime checks that
enforce the boundaries and typing system that was designed
into the application and the language. These checks occur
whenever the compiler cannot show statically that the rules
are being followed, and ensure that the boundaries on data
access and manipulation are consistent with the language
rules.

There are good guides for safely using Ada. In particular,
following the Ada Quality and Style Guide [3] and
International Technical Report 14592, “Guidance for the
Use of the Ada Programming Language in High Integrity
Systems” [4] will eliminate or all issues.

Another other positive statement about Ada is that it is a
language that has been designed for ease of reading and
comprehension. This means that domain-specific technical
people can reasonably read Ada code and determine the
correctness of the algorithm, especially if the units have
been coded as recommended in the Ada Quality and Style
Guide.

4 Early Submission of an Ada Annex
Another question that arises is whether or not WG9 should
submit an Annex to the version of the TR that will likely go
for DTR voting in late 2009 or early 2010. As a committee
member of WG23 and contributor to the TR, my
expectation is that there will be no completed annex
submissions from C, C++, COBOL and there may indeed
be no other language submissions. It would therefore be
counterproductive for Ada to submit its Annex, only to
have it the only Annex or one of the only Annexes in the
document. This could create the perspective that Ada's

issues are more serious than those of other languages, when
in fact the opposite is true.

5 Example Analysis, [CCB] Enumeration
Issues
As an example submission for consideration for an Ada
specific analysis for an Ada annex to PDTR 24772, a
summary of issues for “Enumeration issues” is presented.
This is section 6.15 [tag CCB] of the current
ISO/IEC/PDTR 24772.

Ada's enumeration types are a strong part of Ada's design.
Ada provides mechanisms to guarantee full coverage of any
case statement or aggregate that is built using enumeration
types. Poor programming practices, however, can lead to
behaviours as described in the TR, as follows:

• Using the “others” clause in case statements or
aggregates defeats a compiler's coverage analysis, but
there will be no branches outside of the case
alternatives. Addition of new literals to the
enumeration list and failing to put the new alternative
in a branch of the case statement or aggregate results
in unexpected transfers to the default handler, or
assignment of default value.

• Using knowledge of the representations of an object of
an enumeration with non-default representations
creates the potential that non-representable values can
be coereced into the object, or that arrays indexed by
the underlying type can contain ``holes''.itle
information is set across the whole page but
unjustified.

6. Example Analysis,[STR] Bit
Representation
As an example submission for consideration for an Ada
specific analysis for an Ada annex to PDTR 24772, a
summary of issues for “Bit Representation issues” is
presented. This is [tag STR] of the current ISO/IEC/PDTR
24772.

Ada provides two distinct mechanisms to manage explicitly
programmed bits in a system - records with mapped fields,
and modular types.

Records with mapped fields are statically checkable by the
compiler, and Ada provides facilities for placing, naming,
and manipulating bit fields , as well as ways to specify the
endianness of data. Mistakes can be made, especially in
placement and layout, but it has been found that such
mistakes are obvious quickly, usually in test.

Modular types mimic the “C” unsigned type, and, while
safer than in more weakly typed languages, have many of
the challenges of representation, arithmetic, and logical
operations that are discussed in the TR.

7 Writeups
The following writeups have been prepared, and are
submitted to the workshop for consideration for inclusion

182 Ada and Programming Languages Vulnerabi l i t ies

Volume 30, Number 3, September 2009 Ada User Journal

in a future Ada-specific annex to TR 24772. They are not
included in this document.

• Ada.3.8 Choice of Clear Names [NAI]

• Ada.3.11 Identifier Name Reuse [YOW]

• Ada.3.12 Type System [IHN]

• Ada.3.13 Bit Representation [STR]

• Ada.3.14 Floating Point Arithmetic [PLF]

• Ada.3.15 Enumeration Issues [CCB]

The following sections are included in the Annex, however,
since they reflect the work that meets the format and
content requested by WG 23.

• Ada 3.5 Deprecated Language Features [MEM]

• Ada 3.6 Preprocessor Directives [NMP]

• Ada 3.10 Identifier Name Reuse [YOW]

• Ada 3.47 Memory Leak [XYL]

8. Conclusions
This paper has shown some of the issues that need to be
considered in developing a language-specific annex to
ISO/IEC PDTR 24772. Many more issues must be
addressed and agreed to by the Ada community via
ISO/IEC/JTC 1/SC 22/ WG 9 the Ada Working Group,
before the annex is ready for inclusion in the TR. It is not
expected that the Ada annex will be available before the
first version of the PDTR is published.

Bibliography
[1] “The Ada Programming Language Reference Manual”,

ISO/IEC 8652:1995 with Technical Corrigendum
1:2001 and Amendment 1:2007, International
Standards Organization, Geneva, Switzerland,
available from http://ada-auth.org/arm.html

[2] International Preliminary Draft Technical Report
24772 “Guidance to Avoiding Vulnerabilities in
Programming Languages Through Language Selection
and Use”, International Standards Organization,
Geneva, Switzerland.

[3] Software Productivity Consortium, “Ada Quality and
Style Guide”, available from http://www.adaic.org/
docs/95style/html/cover.html

[4] International Preliminary Draft Technical Report
15942, “Guidance for the Use of Ada in High Integrity
System”, International Standards Organization,
Geneva, Switzerland

Annex - Writeups Ada Annex Items for
PDTR 24772
The writeups in this Annex reflect the work that was done
by the author in concert with ISO/IEC/JTC 1 /SC 22/WG 9.
After the submission of the original writeups to the
workshop, WG 9 assigned vulnerability writeups to various
individuals, but also recommended section numbering, title
and content changes to WG 23. WG 23 accepted some of

the changes but made subsequent chages. The writeups in
this annex reflect the work that was assigned to the author
written in the format that was requested by WG 23.

Ada.3.5 Deprecated Language Features
[MEM]
Ada.3.5.0 Status and history
July 2009 written by Stephen Michell

Ada.3.5.1 Ada specific terminology and features
Deprecated: Ada has a number of features that have been
declared "deprecated".

These are documented in Annex L of the Ada
Reference Manual.

Pragma restrictions:

Ada provides "pragma Retrictions" to let
developers remove from use language features that
are considered problematic by the developer(s). In
particular, the pragma
Restrictions(No_Obsolescent_Features) prohibits
the use of any deprecated features. This pragma is
a configuration pragma which means that all
program units compiled into the library must obey
the restriction.

3.5.2 Description of Vulnerability in Ada
If deprecated language features are used (i.e. the pragma
restriction is not applied), then the mechanism of failure for
the vulnerability is as described in the parent document.

If the pragma Restrictions(No_Obsolescent_Features) is
used then the vulnerability does not exist.

Ada.3.5.3 Avoiding the vulnerability or mitigating
its effects in Ada
Use pragma Restrictions(No_Obsolescent_Features) to
prevent the use of any deprecated features.

Ada.3.5.4 Implications for standardization in Ada
None.

Ada.3.6 Pre-Processor Directives [NMP]
Ada.3.6.0 Status and History
200908: created by S. Michell

The vulnerability is not applicable to Ada. Ada does not
have a preprocessor.

Ada.10 Identifier Name Reuse [YOW]
Ada.3.10.0 Status and history
200905: Submitted By Stephen Michell

20090609: Stephen Michell, JP Rosen – Ada Europe
Vulnerabilities Workshop

Ada.3.10.1 Terminology and features
Homograph: Two declarations are homographs if they have
the same name, and do not overload each other according
to the rules of the language.

S. Michel l 183

Ada User Journal Volume 30, Number 3, September 2009

Overriding: A subprogram overrides another if they have
identical names and signatures, except that the controlling
operand of one is a derived type of the overridden
subprogram.

Hiding: A declaration can be hidden, either from direct
visibility, or from all visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible at
all (neither using a direct_name nor a selector_name).
Where hidden from direct visibility, only direct visibility is
lost; visibility using a selector_name is still possible.

Ada.3.10.2 Description of vulnerability
Ada is a language that permits local scope, and names
within nested scopes can hide identical names declared in
an outer scope. As such it is susceptible to the vulnerability
of 6.10.

Examples of the problem:
package body P is
 I : Integer; -- static object called I
 procedure Calculate(X : in out Float;
 I : in Integer) is -- parameter called I
 begin

X := X * float(I*I); -- want to multiply
 -- static I * parameter I
 -- static I hidden, wrong
 -- product, no diagnostic

I := I + 1; -- want to increment static
 -- I, hidden by parameter I
 -- get compiler diagnostic
 -- since we cannot assign
 -- to an in parameter.
 end Calculate;
 …
end P;

Here, the parameter called I hides the static variable I
because they have exactly the same type and the parameter
hides” the outer name. This can be corrected by writing

package body P is
 I : Float; -- static object called P.I
 procedure Proc is

I : Integer -- local variable called P.Proc.I
 begin

I := 1; -- removal of local I causes diagnostic
-- since must say I := 1.0 for float

 end Proc;
end P;

Consider an example with more nested scope:

procedure P is
 type Age is range 0..125;
 I : Age;
begin
 <<INNER>> declare

I : Integer := 0;
 begin

P.Inner.I := P.Inner.I+1 -- increment local I
 -- removal of Inner.I

 -- causes diagnostic
P.I := P.I+1; -- increment outer I

 -- suceeds even if
-- inner.I removed

 end Inner;
end P;

In this example, P.I and P.Inner.I are expanded names.

The failure associated with hiding due to nested scopes
applies to Ada. For subprograms and other overloaded
entities the problem is reduced by the fact that hiding also
takes the signatures of the entities into account. Entities
with different signatures, therefore, do not hide each other.

The failure associated with common substrings of
identifiers cannot happen in Ada because all characters in a
name are significant (see section Ada.3.7).

Name collisions with keywords cannot happen in Ada
because keywords are reserved. Library names Ada,
System, Interfaces, and Standard can be hidden by the
creation of subpackages. For all except package Standard,
the expanded name Standard.Ada, Standard.System and
Standard.Interfaces provide the necessary qualification to
disambiguate the names.

Ada.3.10.3 Avoiding the vulnerability or
mitigating its effects
This vulnerability can be avoided or mitigated in Ada in the
following ways:

[1] A good way to be guaranteed to keep names
separated is to always use the expanded name.
This guarantees that, even if the simple name
could produce a conflict, there is never any doubt
as to usage in the mind of the human reader.
Indeed, high integrity system guidelines
recommend that distinct and representative names
be used of items, and that each usage of a name be
distinct.

Ada.3.10.4 Implications for standardization
Ada could define a pragma Restrictions identifier
No_Hiding that forbids the use of a declaration that result in
a local homograph.

Ada.3.10.5 Bibliography
None

Ada.3.47 Memory Leak [XYL]
Ada.3.47.0 Status and history
200907 written by Stephen Michell

Ada.3.47.1 Ada-specific terminology and features
Access type:

A type in Ada that references a value of another
type. An Access type is called a pointer in other
languages.

Allocator:

184 Ada and Programming Languages Vulnerabi l i t ies

Volume 30, Number 3, September 2009 Ada User Journal

 The Ada term for the construct that allocates
 storage from the heap or from a storage pool.

Storage Pool:

A named location in an Ada program where all of
the objects of a single access type will be
allocated. The advantage of a storage pool over
the use of the standard heap is that it can be sized
exactly to the requirements of the application (to
permit 10 items only to be allocated for example).
If an application has a storage leak in a storage
pool that is sized close to the maximum number of
items expected to be in use simultaneously, then
storage leaks will be detected early in the test
cycle and not in operation.

Furthermore, exceptions raised due to memory
failures in a storage pool will not adversely affect
storage allocation from other storage pools or
from the heap. Storage pools also eliminate the
fragmentation problem of generalized storage
systems where sufficient space may exist, but
there is no allocatable block of sufficient size for
an allocation.

Controlled type:

A controlled type is a specialized type in Ada
where an implementer can tightly control the
assignment, allocation and return of objects of the
type. If an access type is a controlled type, then
referencing counting techniques can be applied to
eliminate storage leaks for that type, i.e. When the
reference count is non zero for an object that is
dereferencing the object, then the object is not
returned to the pool; when the reference count is
zero after dereferencing, then the object is
returned to the pool or heap.

Pragma Restrictions(No_Allocators):
Pragma Restrictions(No_Local_Allocators):
Pragma Restrictions(No_Implicit_Heap_Allocations):

Pragma Restrictions(No_Unchecked_Deallocations):

These Ada restrictions prevent the application from using
any allocators. The first prevents all use of allocators. The
second prevents the use of allocators after the main
program has commenced. The third prevents the use of
allocators that would use the heap, but permits allocations
from storage pools. The final one
(No_Unchecked_Deallocations) prevents allocated storage
from being returned and hence effectively enforces storage
pool memory approaches or a completely static approach to
access types. Storage pools are not affected by this
restriction as explicit routines to free memory for a storage
pool can be created.

Ada.3.47.2 Description of Vulnerability in Ada
For objects that are allocated from the heap without the use
of reference counting, the memory leak vulnerability is
possible in Ada. For objects that must allocate from a
storage pool, the vulnerability can be present but the effects
are mitigated by the localization of memory references,
meaning that the failure in a single storage pool will not
affect memory in other storage pools, and the sizing of
memory close to the expected maximum will guarantee that
any memory leaks will be detected during test.For objects
that are objects of a controlled type that uses referencing
counting, the vulnerability does not exist.

Ada does not use a garbage collector.

Ada.3.47.3 Avoiding the vulnerability or
mitigating its effects in Ada

• Use storage pools where possible.

• Use controlled types and referencing counting to
implement explicit storage management systems
that cannot have storage leaks.

Ada.3.47.4 Implications for standardization in Ada
Future Standardization of Ada should consider:

Implementing a generic reference counting storage
management for objects.

 185

Ada User Journal Volume 30, Number 3, September 2009

An Argument for Language Subsetting
Tullio Vardanega
University of Padua, Department of Pure and Applied Mathematics, via Trieste 63, 35121 Padua, Italy.
Email: tullio.vardanega@math.unipd.it

Abstract
ISO/JTC1/SC22/WG23 is currently busy with the
production of a Technical Report entitled “Guidance
to Avoiding Vulnerabilities in Programming
Languages through Language Selection and Use”.
Language-specific annexes to that document are
called from language experts in the communities that
share the concerns addressed by WG23. This
initiative is an opportunity for the Ada community to
reflect on two dimensions of interest: Ada’s ability
(and the possible strengthening of it) to facilitate the
creation of language profiles that may help the user
circumvent vulnerabilities; and Ada’s stance in
comparison to other mainstream languages from the
standpoint of support tools that add to subsetting in
getting proven applications. This short position paper
discusses those two opportunities.
Keywords: Ada.

1 Introduction
In the context of programming languages, vulnerabilities
can be looked at from two distinct angles:

• as design faults, where the presence or absence of
certain, possibly fundamental features of the language
– which arise from explicit or implicit design choices –
makes the achievement of a provably correct
implementation of a solution exceedingly difficult and
onerous if not altogether impossible; concurrency,
distribution, object orientation are among the most
fundamental challenges of language design where
important faults may occur;

• as obstacles to use, when the language includes
constructs and exhibits features that may require either
the programmer or the programming environment, or
perhaps even both, exceeding capabilities to master the
resulting complexity and its inherent exposure to
obscure effects.

2 Vulnerabilities as design faults
A general classification of the former area of problem,
transversal across programming languages, is extremely
arduous to attain, if at all possible, because it is bound to
stir animosity across language camps and also because it
lacks universally agreed reference terms in the positive
direction. It is in fact so much easier to criticize a
programming language for what it does or doesn’t do, but it
is immensely more difficult and perhaps even futile to
sanction what the perfect language should do.

In the ideal world, one should consider attacking this
particular fact of the problem of programming language
vulnerabilities before facing the other. In practice however,
pragmatism and realism alike suggest that one should make
do with programming languages as they are in their
fundamental nature, and help their user see and understand
their defects and circumvent their weaknesses. This does of
course not stop the insightful from willing to help out
language standards to get better. One should reckon
however that language standards must necessarily only
evolve at the pace that does not undermine the user
community, their legacy and their investments.

That is seemingly the stand taken by the language-neutral
strand of the work carried out by ISO/JTC1/SC22/WG23,
chartered to produce a Technical Report entitled “Guidance
to Avoiding Vulnerabilities in Programming Languages
through Language Selection and Use” [1].

The inherent pragmatism of the chosen approach inevitably
diminishes the influence that this work may have on the
advancement of the addressed programming languages,
since it would not directly expose their design faults.
Moreover, so long as economic countermeasures exist
against the identified vulnerabilities, no major effort to
remove those design faults will likely be deemed viable.

A deeper level of introspection is also difficult and perhaps
even naïve to expect from the language-specific annexes
that are to be produced by the relevant expert bodies to
accompany the core document product of WG23.

3 Vulnerabilities as obstacles to use
As for the latter angle of the problem, the analysis of the
incidence of obstacles to use in a specific language, the
effort looks attractive and strategically important for Ada
because it should be expected that Ada ought to come out
very well positioned in that regard.

Two ISO reports that were produced in the past by the Ada
community should be regarded, in both approach and
contents, as a very useful basis for the production of the
Ada-specific annex of the WG23 Technical Report. Those
well-known reports were:

1. ISO/IEC TR 24718:2005, Guide for the Use of the Ada
Ravenscar Profile in High Integrity Systems [2]

2. ISO/IEC TR 15942:2000, Guide for the Use of the Ada
Programming Language in High Integrity Systems [3]

Interestingly, although different in vision and intent, both
documents take the view that language subsetting is the
only practical route to attaining traceable and reproducible

186 An Argument for Language Subsett ing

Volume 30, Number 3, September 2009 Ada User Journal

correlation between the external attributes of software in
use and the internal attributes of the corresponding program
code, and therefore, ultimately, of the features in use of the
implementation language.

I would argue that language subsetting should be left to
neither the user nor the application-domain cognizant, since
its very definition poses problems intrinsically analogous to
language design, which is instead the specialized job of
language designers.

The question therefore arises as to what approach should be
taken to identifying language features and constructs that
should be avoided to mitigate risks or contain verification
effort: enumerating language features that might incur
vulnerability when used at the application level in fact does
not in itself produce a language subset, as there is no
intrinsic coherence in the sequence of vulnerabilities
adopted in the WG23 TR (while there was some in ISO TR
15942:2000, and a lot of it in ISO TR 24718:2005).

4 Programming environments
Another angle to consider in that line of work is that the
programming language and the programming environment
(support and analysis tools) should complement one
another in the avoidance of vulnerabilities at application
level. The existence of mature analysis techniques that may
help the user single out problem areas in the source code
was a distinct concern in both ISO TR 15942:2000 and ISO
TR 24718:2005, and it should arguably continue to be so in
the development of the Ada-specific annex of the WG23
TR.

An important by-product of considering that particular
angle is that its discussion in an ISO document might
motivate the birth or perhaps the rejuvenation of good
support tools for Ada, with the SPARK environment as the
ideal model and the term of reference.

A good argument, which I encountered in a recent
discussion thread of WG23 and that I fully agree with, is
that when it comes to avoiding vulnerabilities, the language
itself is only one factor: a less well-defined language for
which there are good tools may in fact be no worse than a

better-defined language for which tools are less well
developed. Ada (in the general sense, thus above SPARK)
seems to be in the latter category when one considers the
density of good support tools. Yet, it must be certainly
acknowledged that, by virtue of the very motivations
behind the Ada language specification, the Ada compilers
are all most excellent support tools in the way of preventing
software defects from making into executable programs.
While this is certainly true, I would however argue that
compilers in their conventional sense need not and cannot
be the sole support tool apt to facilitate the production of
safe, secure and predictable applications. The wisdom to
this notion stems from the observation that the verification
of a program does not require and should perhaps not even
suggest the production of an executable (as in very
definition of static analysis) which is instead the
fundamental job of a compiler. That the Ada compiler may
have or may easily acquire the knowledge needs to support
a score of static analyses is an evidence I have often been
exposed to. I have also seen however numerous cases in
which that wealth of knowledge is ditched without the user
getting to seeing it. It is for this reason therefore that I feel
that an answer to the demand for additional support tools,
in the tune of “Ada has an all powerful compiler and does
therefore not need any further external support tools”
would miss out the target.

References
[1] ISO/IEC PDTR 24772.2, Information Technology —

Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through
Language Selection and Use, May 2009

[2] ISO/IEC. Information technology - programming
languages - guide for the use of the Ada Ravenscar
Profile in high integrity systems. Technical Report TR
24718, ISO/IEC, 2005.

[3] ISO/IEC. Information technology - programming
languages - guide for the Use of the Ada Programming
Language in High Integrity Systems. Technical Report
TR 15942, ISO/IEC, 2000.

 187

Ada User Journal Volume 30, Number 3, September 2009

Concurrency Vulnerabilities
A. Burns, A.J. Wellings
Real-Time Systems Group, Department of Computer Science, University of York, UK.

1 Introduction
The current draft of the ISO/IEC document on Language
Vulnerabilities [5] contains little on the subject of
concurrent language features. And yet concurrency is a
significant issue in the design and implementation of
systems. Sequential programming languages ignore such
issues and assume that the underlying operating system will
deal with the management of threads/tasks and their
inevitable interactions and synchronisations.

There are a number of motivations for wanting to write
concurrent programs and therefore to have the notion of
concurrency in the programming language. Concurrency
does however bring with it a number of new vulnerabilities,
and language features that support concurrent programming
need to be assessed in the same way that sequential features
are currently being scrutinized.

Note that the decision not to use a concurrent programming
language does not remove these vulnerabilities; many will
be present in the operating system (OS) and the API used
by the sequential program to access to the concurrency
features of the OS. Indeed many of the vulnerabilities will
be more extreme as they cannot easily be mitigated by
semantic restrictions in the language.

In this short position paper three topics are addressed:
concurrency, communication and synchronisation, and
scheduling. For each topic a series of issues are considered.

Note the concurrent entity that is termed a task, a thread, a
process or sometimes an event in the many different
concurrent programming languages is called a task in the
following descriptions.

2 Concurrency
Many different concurrency models can be found in
programming languages. There are distinguished by issues
such as: static or dynamic task creation, hierarchical task
structures, and the degree to which one task can
influence/interfere with the behaviour of other tasks.

Static task creation
The simplest task structure available is one in which there
is a fixed number of tasks that are created at the time of
program instantiation. All tasks then exist for the duration
of the program, which may be unbounded. Vulnerabilities
from this simple model include the following.

1. Not all tasks start their execution (e.g. they may fail
during activation).

2. Premature silent termination of a task or tasks.

3. Tasks executing with inappropriate initialisation
parameters.

4. Overflow of task-local data (task attributes).

The first two vulnerabilities result in the program executing
with only partial functionality. If tasks are relatively
independent of each other then this situation may not be
apparent to the tasks that are actually executing. A task
may fail for a number of reasons including functional
problems or execution issues such as stack overflow.

A common pattern for a real-time task is for it to be release
periodically (with period T) and for its execution urgency
to be influenced by its deadline (D) – both of these
measures being of some appropriate time. Such a task could
be instantiated with inappropriate values for its parameters.

The task may still function perfectly, but at the wrong rate
(or it may be more likely to miss a deadline). Where tasks
use attributes stored in the TCB (task control block) during
execution then an overflow of data may result in another
task’s TCB being corrupted. Similar issues apply to stack
usage.

A multi-tasking program is likely to behave differently on a
multiprocessor platform than it does on a single CPU.
Tasking always introduces some level of nondeterminacy;
this is not of itself a vulnerability as the correct behavior of
a program should be invariant over this

Dynamic and hierarchical task creation
If tasks can be created during the program’s execution then
many different program architectures can be constructed.
Task termination becomes a normal event, and
dependencies between tasks based on creation and
termination are possible. Additional vulnerabilities from
these features include the following.

5. Memory exhaustion due to dynamic object creation.

6. Memory exhaustion due to memory leakage.

7. Tasks indefinitely waiting for other tasks to terminate.

8. Tasks subject to errors propagating from child task
creation.

All dynamically created objects, whether tasks or not,
require memory and hence are subject to finite memory
constraints. In very dynamic programs where many tasks
are recreated and then terminate, it is important to ensure
that terminated tasks can (and do) relinquish all memory
allocated to them.

A common pattern in dynamic task programs is for one task
to create another, and to subsequently wait for its
termination. Creating a task may open up a vulnerability,

188 Concurrency Vulnerabi l i t ies

Volume 30, Number 3, September 2009 Ada User Journal

and waiting for another task to terminate will clearly lead to
indefinite postponement if that task does not in fact
complete.

Inter-task influence/interference
Task can usually communication data and synchronise their
executions via the language features that are described in
section 3. But there are languages features that allow other
forms of influence/interference. Some of these are via the
scheduling facilities, and are covered in section 4. Here we
cover abort, asynchronous exceptions, and asynchronous
transfer of control (ATC). All of these are used to get the
‘immediate’ attention of the designated task. Polling for a
state change is inappropriate. Vulnerabilities from these
features include the following.

9. Rogue task aborting correctly behaving task (rather
than visa versa).

10. Task (or program scope) terminated whilst holding
locks/resources.

11. Task being in an inappropriate state to handle ATC or
asynchronous exception.

The abort feature is one of the most controversial in that the
motivation for its inclusion (to remove a rogue task) is
mirrored by its main drawback (rogue task removing
others).

All task terminations can cause problems if the task is not
in the correct state for termination. But this is especially
true when termination is imposed from outside. If the task
is not terminating but its control is being influenced from
outside then again there is the problem of this influence
taking effect when the task is vulnerable, for example while
updating a shared complex data structure.

3 Communication and Synchronisation
Two general forms of communication are possible:
synchronous and asynchronous. Synchronisation can be
explicitly supported or programmed. Three combinations
are considered in turn.

Asynchronous communication via shared variable
Vulnerabilities from these features include the following.

12. Unintentional use of unprotected shared variables.
13. Mutual update problem.
14. Race conditions.
15. Livelocks.
16. Memory caching.

Shared variable are a well known error-prone language
feature. As a result no language relies only on such
variables.

But some languages do allow their use and require the
programmer to ensure that the intended behaviour is
delivered. Race conditions covers all situations where non-
determinacy allows (perhaps rarely) the ordering of
accesses to shared variables to be incorrect with respect to
the intended behaviour of the program. Livelocks occur

when tasks loop checking for the value of shared variable
to change – but the tasks responsible for making these
changes are also blocked in these busy loops. Memory
management may allow tasks to store copies of shared
variables in local registers. This may lead to updates not
been propagated as expected.

Asynchronous communication with
synchronisation support
A wide range of support features are available in different
languages; for example, semaphores, signals, monitors and
protected objects. Vulnerabilities from these features
include the following.

17. Race conditions.
18. Deadlocks.
19. Indefinite postponements.
20. Protocol failures.

Once a task can be suspended then deadlocks and
unbounded suspension become possible. Parts, or all, of the
program can fail to make adequate progress. If a low-level
primitive such as a signal or semaphore is used with shared
variables to support a protocol such as readers/writers then
errors can lead to rare race conditions and protocol failures.

Synchronous communication (eg. rendezvous)
Simple CSP-like primitives and extended rendezvous are
supported in different languages. Vulnerabilities from these
features include the following.

21. Race conditions.
22. Deadlocks.
23. Indefinite postponements.

Although a similar list to before, these vulnerabilities are
less severe with synchronous communications facilities.
Indeed modeling and proof systems can be used to show
the absence of these problems within programs, but only if
the rendezvous is a simple one.

4 Scheduling and Real-Time Issues
In this section there are a number of issues to consider.
First we will cover time and clock primitives, then
scheduling and related topics.

Clocks and time
For real-time systems it is necessary to have access to a
clock, measure time intervals and suspend a task for an
interval of time. Vulnerabilities from these features include
the following.

24. Drift between system clock and ‘real-time’.
25. Drift between clocks on a distributed platform.
26. Inappropriate incorporation (or not) of leap seconds

and time zone changes.
27. Mismatch between delay/sleep intent and clock

granularity.

These are all well known timing/clock issues [2, 3].

A. Burns, A.J. Wel l ings 189

Ada User Journal Volume 30, Number 3, September 2009

Asynchronous and synchronous task control
These language features allow one task to control the
executable state of another task. Vulnerabilities from these
features include the following.

28. Suspended tasks not being continued subsequently.
29. Tasks being suspended whilst holding locks/ resources.
30. Race conditions.

Similar arguments to those for banning the use of abort can
be applied to this level of task control. Being indefinitely
suspended is almost the same as being aborted.

Fixed priority scheduling
In this section the most common form of task dispatching is
considered. If the language does not directly support such a
policy then all scheduling must be under direct user control
using the synchronous/asynchronous task control methods
discussed above (and the dynamic priority scheme covered
below). For fixed priority scheduling the vulnerabilities
include the following.

31. Priority inversion.
32. Starvation.
33. Assumptions of scheduling analysis not been met by

the program, for example execution times, blocking
times, minimum times between sporadic tasks,
intensity of interrupts, overheads of run-time, garbage
collection overheads etc. requirements.

34. Excessive asynchronous traffic (interrupts/events)
generated.

Priority inversion occurs through the use of a
synchronisation primitive that does not take priority into
account. Starvation occurs when there is not enough
processing time available for the low priority tasks to make
adequate progress.

Program control over scheduling parameters or
policy
If a scheduling scheme such as fixed priority scheduling is
supported by the language then it is usual to allow the
program to exercise control over some of the scheduling
parameters, such as the assignment (static or dynamic) of
priorities to tasks and the periods and deadlines of the
tasks. Vulnerabilities from these features include the
following.

35. Loss of liveness (some tasks fail to make progress).
36. Loss of timeliness (some task failing to meet a

deadline).

5 Conclusions
This short paper has attempted to highlight the many
different vulnerabilities that exist with concurrent
programming languages. There are a large number (and
variety) of language features that support various aspects of
concurrent programming. Not all can be used safety and
there are many vulnerabilities that the above review has
highlighted. For many of these vulnerabilities it is possible
to define language-level mitigation. Some are simply to not
allow the use of (non-essential) features. Others point to
safe usage patterns. As noted in the introduction, the
decision not to use a concurrent programming language
does not remove these vulnerabilities; many will be present
in the operating system (OS) and the API used by the
sequential program to gain access to the concurrency
features of the OS.

It is possible to take an extensive set of language features,
such as those provided by Ada tasking, and define a subset
(and other restrictions) so that a profile is defined that has
adequate expressive power and a minimum of
vulnerabilities. One candidate for this would be the
Ravenscar profile for Ada [1, 4]. Similar profiles need to be
defined for other languages. We note that Java has started
to undertake this process under the auspices of the Java
Community Process (JSR 302).

References
[1] A. Burns, B.Dobbing, and T. Vardanega. Guide for the

use of the Ada Ravenscar Profile in high integrity
systems. Technical Report YCS-2003-348, University
of York, Department of Computer Science, 2003.

[2] A. Burns and A. J. Wellings. Real-Time Systems and
Programming Languages. Addison Wesley Longman,
4th edition, 2009.

[3] G.F. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems, Concepts and Design. Addison
Wesley, 4th edition, 2005.

[4] ISO/IEC. Information technology - programming
languages - guide for the use of the Ada Ravenscar
Profile in high integrity systems. Technical Report TR
24718, ISO/IEC, 2005.

[5] ISO/IEC. Information technology - programming
languages - guidelines to avoiding vulnerabilities in
language selection and use. Technical Report PDTR
24772 – draft, ISO/IEC, 2009.

190

Volume 30, Number 3, September 2009 Ada User Journal

The Pros and Cons of Enumerating
Programming Language Vulnerabilities
Roderick C. Chapman
SPARK Team, Praxis High Integrity Systems, 20 Manvers St,. Bath BA1 1PX, UK.; Tel: +44 1225 466991;
email: sparkinfo@praxis-his.com

Abstract
There are many on-going efforts to enumerate so-
called “Vulnerabilities” in programming languages.
This position paper considers the benefits, limitations
and potential dangers of such efforts.
Keywords: Vulnerabilities, CWE, Programming
Languages

1 Introduction
The recent concern over security in software has given rise
to several notable efforts to enumerate so-called
“Vulnerabilities” in programming languages and/or the way
such languages should or shouldn’t be used, such as the
CWE and CVE efforts, the ISO SC22 OWGV group, and
the SANS “Top 25” list. These vulnerabilities range from
simple well-known programming mistakes to subtle
application- and domain-specific properties. Some are
specific to particular languages, some are generic, and
some seem to have nothing to do with programming
languages at all.

This paper tries to lay out a “playing field” for describing
vulnerabilities, and goes on to point out some pros and cons
of the enumeration efforts.

2 A playing field for static analysis
This section lays out a simple scheme for categorizing
security-related vulnerabilities in software, mostly
according to the ease with which they can be described and
checked. These things are important—if we want
automated tools to check for the absence of such things,
then we must be willing to specify precisely what a
particular vulnerability is and is not. We must also
consider the soundness (false-negative rate), completeness
(false-positive rate), and efficiency with which tools can
check for such properties—asking tool vendors to solve
undecideable or NP-hard problems is unlikely to be
productive.

This paper sets out five categories:

Level 1 – Elementary Mistakes and Discipline
At this level, we have basic rules that avoid common
programming errors, enforcement of a subset language, and
so on. These can be enforced very efficiently in a manner
that is both sound and complete.

Example: Syntactic coding standard rules, such as “don’t
use templates”, “don’t use tasking” and so on.

Level 2 – Absence of Undefined Behaviour
Many common imperative languages, such as C, C++, Java
and Ada, list a set of behaviours that is said to be
“undefined” or “erroneous.” These problems are
particularly annoying, since they typically fall into the
category of “things we’d like to get rid of but are too hard
for a compiler to solve.” Compilers can do pretty much
anything they like with such things, and are under no
obligation to document their behaviour or even to be
consistent across compilations, compiler versions,
optimization levels and so on.

For code-analysis tools, these are a serious headache. The
absence of such issues is a clear goal, but in doing so we
are consciously asking verification tools to solve problems
that compilers can’t, but the same “laws of physics” (most
notably Rice’s Theorem[1]) still apply, making this
something of a tall order. Existing approaches fall into two
camps: language subsetting (i.e. making the problem
simpler until an acceptable solution can be achieved), or
admission of unsound behaviour (i.e. admit it’s a tough
problem, and do the best you can…)

Example: Elimination of uninitialized variables in
unsubsetted C.

Level 3 – Type Safety
“Type Safety”[2] is a concept used by programming
language designers. An accessible definition owes to
Wright and Felleisen:

• (Type-) preservation - "Well typedness" of programs
remains invariant under the transition rules (i.e.
evaluation rules or reduction rules) of the language.

• Progress - A well typed program never gets "stuck", i.e.,
never gets into an undefined state where no further
transitions are possible.

Robin Milner put it somewhat more briefly: “Well-typed
programs never go wrong.”

In terms of specific languages, type-safety can be thought
of as encompassing the absence of exceptions, buffer-
overflows, numeric under- or over-flow, the injection of
mal-formed input data and so on.

In some ways, type-safety mops up a great many common
vulnerabilities – for example, all input-data validation
vulnerabilities can be treated as just special cases of type-
safety in languages that provide facilities to describe such
conditions.

R. C. Chapman 191

Ada User Journal Volume 30, Number 3, September 2009

Example: Absence of buffer-overflow. Typically, these
properties are very hard to statically check soundly and
efficiently, and with an acceptably low false-positive rate.
These are definitely “non-trivial” program properties so are
subject to the limits imposed by Rice’s Theorem. Can be
attacked by analysis techniques such as model-checking,
abstract interpretation, or theorem-proving.

Level 4 – Application- and Domain-Specific
Properties
At level 4, things finally start to get interesting. Here we
have properties that are derived from the security policy
and requirements of your application and its environment,
not from some pre-defined list supplied by a committee or
from a book.

Example: Security Property 3 from the Tokeneer[3]
system: “Whenever the door is in an insecure state, then the
alarm is ringing.”

These properties can be extremely difficult to state,
especially in a form that is sufficiently formal for a tool to
check. Functional properties can be checked by theorem-
proving, model-checking and so on. Some properties (e.g.
absence of covert channels) remain beyond the state-of-the-
art.

Level 5 – Stuff we haven’t even thought of yet
We must acknowledge the existence of attacks and
vulnerabilities that we don’t even know about yet. Worse,
there may be vulnerabilities known to attackers, but
unknown to us – the developers.

 (Retrospective) example: Many smartcards in the late
1990s turned out to be susceptible to Differential Power
Analysis (DPA). At the time, this seemed fine, since DPA
hadn’t been invented (or at least wasn’t widely known.)

3 Observations and concerns
Returning to the issue of enumeration of vulnerabilities, I’d
like to offer a few observations:

Observation 1: For any given programming language,
there is a finite and well-known set of vulnerabilities at
levels 1, 2 and 3. These can be enumerated since the set is
finite.

Observation 2: Level 4 issues are application- and domain-
specific. They depend on your application, its environment
(including threats and attackers), and your security policy.
As such, the set of these things is so large as to be
effectively infinite. Therefore, efforts to enumerate such
vulnerabilities in general will never terminate.

Observation 3: Many existing enumerations, such as the
SANS “Top 25” include level 4 properties. For example, all
so-called “SQL injection” attacks fall into this category. To
check for the absence of such problems, a tool needs a
sufficiently precise description of what exactly constitutes a
“valid” SQL query, which is clearly dependent on the
application, its domain, the state of the database, and the
overall system security policy. Overly generic description
of the vulnerability (“i.e. warn about all SQL strings passed

to the database”) just leads to an overtly high false-alarm
rate.

Observation 4: Most Level 4 properties actually have
nothing to do with programming languages.

Reconsider the example Level 4 property shown above
from Tokeneer: “Whenever the door is in an insecure state,
then the alarm is ringing.”

If your program fails to enforce that property, is that a
“Vulnerability” of C, C++, Ada, or Java?!?! Obviously, this
is a ridiculous question, so why do we expect a general
“Programming Language X Vulnerability Checking Tool”
to verify such a thing?

Some tools can be specialized by describing properties that
we want to be verified. Two main camps exist – some tools
allow such additional properties to be expressed as user-
defined small “programs”, “rules”, or “checkers” which
extend the basic set of properties which are “built in” to the
tool. The Coverity Extend tool is such an example. In the
second camp, some languages allow desired properties to
be expressed as assertions or contracts which can be
checked by a tool. The most notable examples in this
second camp include Eiffel, SPARK, and JML for Java.
This leads to my next observation:

Observation 5: Our ability to express and verify Level 4
properties critically depends on the programming language
chosen. The ability to express such a property depends on
the presence of and the expressive power of the “rule” or
“assertion” language, and then there are the soundness,
completeness and efficiency of the tool’s checking
algorithm to consider.

4 The Pros and Cons of Enumerating
Vulnerabilities
So, to turn to some pros and cons of enumeration:

Pros
• An enumerated list gives the developer a tangible list of

items to check, as a starting point for further
verification.

• A list gives tool vendors a bare-minimum set of things
that should be checked for a given language.

• Compliance with a list can be used as a means to
compare the capabilities of different languages and
tools.

Cons
• Given that level 4 properties are innumerable, we must

accept that any finite list will be incomplete at the point
of publication and will rapidly become obsolete.

• Tool vendors will have a strong incentive to claim
“100% compliance” (whatever that means) with a list of
vulnerabilities, so once all the vendors claim they “tick
all the boxes” the efficacy of such a list as a basis for
users to compare tools and languages will rapidly fall to
zero.

192 The Pros and Cons of Enumerat ing Programming Language Vulnerabi l i t ies

Volume 30, Number 3, September 2009 Ada User Journal

• Users might get the impression that “ticking all the
boxes” is the end of the verification process, not the
beginning. We see the absence of such vulnerabilities as
a basic set of hygiene rules that should be observed
before the real verification (i.e. level 4 properties),
somewhat like a surgeon washing his or her hands
before starting the real work.

• Tools and languages which are unsound for basic
properties are dangerous, since they give a false sense
of security for verification at higher levels. What’s the
point of claiming verification of type-safety if a tool is
unsound for a more basic property like variable
initialization? Saying this doesn’t matter is like a
surgeon who claims to be so clever and skilled that they
don’t need to wash their hands (or at least it doesn’t
matter if they only wash one hand but not the other…)

• There is a trend that vulnerability descriptions should be
both language-independent and informal. This is
tempting for those writing the guidance since it widens
the “market” for the rules to a wide range of tool
vendors and users. On the other hand, this is rather
useless for tool builders, who inescapably need fully
formal and language-specific rules to implement. Given
informal descriptions, tool vendors will implement
whatever seems “good enough” or (more likely) will
claim that whatever their tool already does is “good
enough” to tick-the-box and claim compliance. This
leads to a “Tower of Babel” effect – all the tools claim

“100% compliance” yet all differ in their behaviour!
This is not a conjecture—it is exactly the state of the
market for MISRA C checking tools, and has not
improved much for a decade - arguably because the
editors of MISRA C Version 2 rejected the use a simple
formal notation that would have radically improved the
precision of the standard. I am dismayed to see the same
problem emerging for security vulnerability checking
tools. If language designers want tools that are sound
and precise, then fully formal and language-specific
specifications of properties are a must.

5 Conclusions
I believe that enumeration of vulnerabilities has a strong
role as a starting point for software verification, not an end-
point, but users must be educated to appreciate this. I hope
that enumeration will also give rise to a scientific
comparison of the capabilities of particular tools and
languages, and will not degenerate into a mere “ticking all
the boxes” exercise that will leave users none the wiser.

I hope this paper will serve as a starting point for
discussion within OWGV and other groups.

References
[1] http://en.wikipedia.org/wiki/Rice’s_theorem

[2] http://en.wikipedia.org/wiki/Type_safety

[3] http://www.adacore.com/tokeneer

194

Volume 30, Number 3, September 2009 Ada User Journal

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #46: Incompatibilities between
Ada 83 and Ada 95
Robert Dewar, AdaCore
Date: 29 September 2008

Abstract: Part 1, Unconstrained arrays in generics

Let’s get started…
For the most part, Ada 95 is entirely upwards compatible with
Ada 83, meaning that correctly written portable Ada 83 code
can be compiled with an Ada 95 compiler, and no changes are
required.
However, there are some cases of incompatibilities which have
to be addressed when dealing with legacy code. You can of
course compile in Ada 83 mode using the pragma Ada_83, or
the equivalent compiler switch -gnat83 (/83 if you are using
VMS). However, this means you can’t use any Ada 95 features
as you continue development, so it is better to fix these
incompatibilities if possible.
In this series of Gems we will address these incompatibilities.
Some are really easy, others trickier. In this first installment,
we address one of the most common cases.
Consider the following declaration,

 generic
 type T is private;
 package GP is
 …
 end GP;

In Ada 83 you could instantiate this generic with an
unconstrained type, for example:
 package NP is new GP (String);
This is no longer allowed in Ada 95, since this represents a so-
called “contract-model violation”. If you try to compile the
instantiation in Ada 95 mode, you will get an error:
 8. package NP is new GP (String);
 >>> actual for "T" must be a definite subtype
String is an indefinite subtype, meaning basically that it is
unconstrained. In contrast, a definite subtype means a subtype
whose bounds are constrained, so something like
 subtype S50 is String (1 .. 50);
 package NP is new GP (S50);
would be legal, but unconstrained String cannot be used.
The contract model for generics says that if a generic compiles
error free, then all possible instantiations must compile error
free. But if you allow the above instantiation, then whether this
is legal or not depends on whether the generic has a
declaration of a variable of type T. If it does, then the

instantiation is illegal, since you can’t have variables of type
String without specified bounds.
Let’s assume that we don’t have any illegal instantiations in
the legacy code. That means that, in a case like the above, in
fact there are no declarations of variables of type T. In that
case, all you have to do is to change the generic as follows:
 generic
 type T(<>) is private;
 package GP is
 …
 end GP;
The use of (<>) here means that instantiation with an
unconstrained subtype is allowed, and consequently the
generic will check to ensure that no variables of type T are
declared in the template, as you can see from this example:
 1. generic
 2. type T (<>) is private;
 3. package GP is
 4. Var : T;
 |
 >>> unconstrained subtype not allowed (need
 initialization)
 5. end;
So, following the Ada 95 rules, the contract-model violation is
now avoided. Either the generic allows unconstrained subtypes
or it does not, and the generic is properly checked when it is
compiled.
In summary, we do have a real incompatibility between Ada
83 and Ada 95 here, but it fixes a real hole in the language,
and it is easy to fix up old Ada 83 code to meet the new Ada
95 rules.

Gem #63: The Effect of Pragma
Suppress
Gary Dismukes, AdaCore
Date: 21 April 2009

Abstract: The features of Ada have generally been designed
to prevent violating the properties of data types, enforced
either by compile-time rules or, in the case of dynamic
properties, by using run-time checks. Ada allows run-time
checks to be suppressed, but not with the intent of allowing
programmers to subvert the type system.

Let’s get started…
One of Ada’s key strengths has always been its strong typing.
The language imposes stringent checking of type and subtype
properties to help prevent accidental violations of the type

Ada Gems 195

Ada User Journal Volume 30, Number 3, September 2009

system that are a common source of program bugs in other
less-strict languages such as C. This is done using a
combination of compile-time restrictions (legality rules), that
prohibit mixing values of different types, together with run-
time checks to catch violations of various dynamic properties.
Examples are checking values against subtype constraints and
preventing dereferences of null access values.
At the same time, Ada does provide certain “loophole”
features, such as Unchecked_Conversion, that allow selective
bypassing of the normal safety features, which is sometimes
necessary when interfacing with hardware or code written in
other languages.
Ada also permits explicit suppression of the run-time checks
that are there to ensure that various properties of objects are
not violated. This suppression can be done using pragma
Suppress, as well as by using a compile-time switch on most
implementations (in the case of GNAT, with the -gnatp
switch).
In addition to allowing all checks to be suppressed, Pragma
Suppress supports suppression of specific forms of check, such
as Index_Check for array indexing, Range_Check for scalar
bounds checking, and Access_Check for dereferencing of
access values. (See section 11.5 of the Ada Reference Manual
for further details.)
Here’s a simple example of suppressing index checks within a
specific subprogram:

 procedure Main is
 procedure Sort_Array (A : in out Some_Array) is
 pragma Suppress (Index_Check); - - eliminate check
 - - overhead
 begin
 …
 end Sort_Array;
 end Main;

Unlike a feature such as Unchecked_Conversion, however, the
purpose of check suppression is not to enable programs to
subvert the type system, though many programmers seem to
have that misconception.
What’s important to understand about pragma Suppress is that
it only gives permission to the implementation to remove
checks, but doesn’t require such elimination. The intention of
Suppress is not to allow bypassing of Ada semantics, but
rather to improve efficiency, and the Ada Reference Manual
has a clear statement to that effect in the note in RM-11.5,
paragraph 29:
There is no guarantee that a suppressed check is actually
removed; hence a pragma Suppress should be used only for
efficiency reasons.
There is associated Implementation Advice that recommends
that implementations should minimize the code executed for
checks that have been suppressed, but it’s still the
responsibility of the programmer to ensure that the correct
functioning of the program doesn’t depend on checks not
being performed.
There are various reasons why a compiler might choose not to
remove a check. On some hardware, certain checks may be
essentially free, such as null pointer checks or arithmetic
overflow, and it might be impractical or add extra cost to
suppress the check. Another example where it wouldn’t make
sense to remove checks is for an operation implemented by a

call to a run-time routine, where the check might be only a
small part of a more expensive operation done out of line.
Furthermore, in many cases GNAT can determine at compile
time that a given run-time check is guaranteed to be violated.
In such situations, it gives a warning that an exception will be
raised, and generates code specifically to raise the exception.
Here’s an example:

 X : Integer range 1..10 := …;
 ..
 if A > B then
 X := X + 1;
 ..
 end if;

For the assignment incrementing X, the compiler will
normally generate machine code equivalent to:

 Temp := X + 1;
 if Temp > 10 then
 raise Constraint_Error;
 end if;
 X := Temp;

If range checks are suppressed, then the compiler can just
generate the increment and assignment. However, if the
compiler is able to somehow prove that X = 10 at this point, it
will issue a warning, and replace the entire assignment with
simply:

 raise Constraint_Error;

even though checks are suppressed. This is appropriate,
because (1) we don’t care about the efficiency of buggy code,
and (2) there is no “extra” cost to the check, because if we
reach that point, the code will unconditionally fail.
One other important thing to note about checks and pragma
Suppress is this statement in the Ada RM (RM-11.5, paragraph
26):
If a given check has been suppressed, and the corresponding
error situation occurs, the execution of the program is
erroneous.
In Ada, erroneous execution is a bad situation to be in, because
it means that the execution of your program could have
arbitrary nasty effects, such as unintended overwriting of
memory. Note also that a program whose “correct” execution
somehow depends on a given check being suppressed might
work as the programmer expects, but could still fail when
compiled with a different compiler, or for a different target, or
even with a newer version of the same compiler. Other
changes such as switching on optimization or making a change
to a totally unrelated part of the code could also cause the code
to start failing.
So it’s definitely not wise to write code that relies on checks
being removed. In fact, it really only makes sense to suppress
checks once there’s good reason to believe that the checks
can’t fail, as a result of testing or other analysis. Otherwise,
you’re removing an important safety feature of Ada that’s
intended to help catch bugs.

Gem #68: Let’s SPARK! - Part 1
Yannick Moy, AdaCore
Date: 29 June 2009

196 Ada Gems

Volume 30, Number 3, September 2009 Ada User Journal

Abstract: In this Gem and the next one, we present a simple
walk-through of SPARK’s capabilities and its integration with
GPS. In this first Gem, we show how to set up a SPARK
project and prove that your SPARK programs are free from
uninitialized variable accesses and that they execute without
run-time errors.

Let’s get started…
With Praxis and AdaCore now teaming up to offer an
integration of SPARK technology inside GPS (see
http://www.adacore.com/home/products/sparkpro/), many
GPS users will be interested in trying out the proof capabilities
of SPARK on their own Ada programs. Of course it’s a little
more involved than that. SPARK is not only a set of tools for
verifying high-assurance systems, but also incorporates a
language that must be learned.
The SPARK language is made up of two parts, one of which is
a subset of Ada (whose features will obviously already be
familiar to Ada programmers!), meant to facilitate code
understanding and proofs, and the other part being a
specification language, meant to express properties of
programs. Quite conveniently, the SPARK specifications
(a.k.a. SPARK annnotations, to distinguish them from Ada
specifications) are expressed within stylized Ada comments of
the following form:

 --# <some annotation here>

so SPARK annotations don’t interfere with normal Ada
compilation.
This Gem and the next one demonstrate various of the
properties you can prove with SPARK, and how these relate to
the SPARK annotations written by the user. As a simple
example, we will take a procedure which searches linearly for
a value in an array, and returns the index, if any, at which the
value is found.
Here is the specification file search.ads:

package Search is
 type IntArray is array (Integer range <>) of Integer;
 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer);
end Search;

And the body file search.adb:

package body Search is
 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer)
 is
 I : Integer := 0;
 begin
 Found := False;
 while I <= Table’Last loop
 if Table(I) = Value then

 Found := True;
 Index := I;
 exit;
 end if;
 I := I + 1;
 end loop;
 end Linear_Search;
end Search;

Let’s first get set up for using SPARK:
1. Copy the files search.ads and search.adb into a directory

named search.
2. Open GPS with a default project in the same directory.
3. Expand file search.adb.
4. Select SPARK/SPARKMake from the menu. This

generates a file search.idx.
5. Copy the following code to a file called search.cfg:

 package Standard is
 type Integer is range -2**31 .. 2**31-1;
 end Standard;

6. From the Menu, select Project/Edit Project Properties.
7. Go to the page Switches/Examiner.
8. Select the following options:

 Index File : search.idx
 Configuration File : search.cfg
 Analysis : Data Flow only
 Generate VCs : yes (check it)

That’s it!
Now open search.adb and select SPARK/Examine File. The
SPARK Examiner runs and outputs the following messages:

 Flow Error 602 - The undefined initial value of Index
 may be used in the derivation of Index
 Warning 402 - Default assertion planted to cut the loop
 Note - Information flow analysis not carried out

The Flow Error indicates that, although Index is an out
parameter, it is not initialized on all paths through
Linear_Search. One could argue that our intent here is to
access Index only when Found is set to True. SPARK
considers initialization errors too serious to allow such
subtleties, and requires that all paths through the procedure
must initialize all out parameters. Let’s comply and initialize
Index:

 begin
 Found := False;
 Index := 0;

After we rerun the Examiner, we are left with a Note that is
simply a reminder of our choice of options, and a Warning that
we will explain in the next Gem.
Now, we can continue with proving that our procedure is free
from run-time errors, such as integer overflow and out-of-
bounds array accesses. Select SPARK/Simplify All. The
SPARK Simplifier runs. To see the result of this tool’s
execution, select SPARK/POGS. This opens a file search.sum,
which summarizes all the proofs in the following table:

Ada Gems 197

Ada User Journal Volume 30, Number 3, September 2009

VCs for procedure_linear_search :

--————————————————————————–

 | | | --—Proved In—– | | |

| From | To | vcg | siv | plg | prv | False | TO DO |

--————————————————————————–

1 | start | rtc check @ 13 | | YES | | | | |

2 | start | assert @ 15 | | YES | | | | |

3 | 15 | assert @ 15 | | YES | | | | |

4 | 15 | rtc check @ 16 | | | | | | YES |

5 | 15 | rtc check @ 18 | | YES | | | | |

6 | 15 | rtc check @ 21 | | | | | | YES |

7 | 15 | assert @ finish | YES | | | | | |

8 | 15 | assert @ finish | YES | | | | | |

--————————————————————————–

Each line corresponds to a Verification Condition (VC), which
must be proved in order to guarantee that the program is free
from run-time errors. Each column corresponds to the result of
the proof attempt. If YES appears in one of the 4 “Proved In”
columns, the proof was successful. If YES appears in the
“False” column, there is something definitely wrong. If “YES”
appears in the “TO DO” column, we don’t know: either the
program is wrong, or it is too complex to prove.
Since column “TO DO” is not empty here, not all proofs were
successful. In the next Gem, we will give you more details
about failed proofs. The reason for the failures here is that
program Linear_Search is incorrect, meaning that run-time
errors can be raised. To see this, just complete the program
with the following code in main.adb, and build the executable.

with Search;
use Search;
procedure Main is
 Table : IntArray(1..10) := (others => 0);
 Found : Boolean;
 Index : Integer;
begin
 Linear_Search(Table, 0, Found, Index);
end Main;

Now run the executable, and it raises an exception:

 raised CONSTRAINT_ERROR : search.adb:16
 index check failed

This is because we are passing an array to Linear_Search that
starts at index 1 in its parameter Table, whereas Linear_Search
loop assumes that the array starts at index 0. SPARK correctly
assumes that we can pass in such an array to Linear_Search,
and thus it fails to prove that Linear_Search is free from run-
time errors.
Let’s correct the code of Linear_Search:

 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer) is
 begin
 Found := False;
 Index := 0;

 for I in Integer range Table’Range loop
 if Table(I) = Value then
 Found := True;
 Index := I;
 exit;
 end if;
 end loop;
 end Linear_Search;

Let’s do it again: Examine, Simplify All, POGS …
This time, columns “False” and “TO DO” are empty, meaning
that all proofs were successful.

VCs for procedure_linear_search :

--————————————————————————–

 | | | --—Proved In—– | | |

| From | To | vcg | siv | plg | prv | False | TO DO |

--————————————————————————–

1 | start | rtc check @ 11 | | YES | | | | |

2 | start | rtc check @ 13 | | YES | | | | |

3 | start | assert @ 13 | | YES | | | | |

4 | 13 | assert @ 13 | | YES | | | | |

5 | 13 | assert @ 13 | | YES | | | | |

6 | 13 | rtc check @ 14 | | YES | | | | |

7 | 13 | rtc check @ 16 | | YES | | | | |

8 | 13 | assert @ finish | YES | | | | | |

9 | 13 | assert @ finish | YES | | | | | |

--————————————————————————–

198 Ada Gems

Volume 30, Number 3, September 2009 Ada User Journal

Thus, we have proved that procedure Linear_Search is free
from run-time errors.
In the next Gem, after the summer break, we will prove that
procedure Linear_Search actually respects a given contract.

Gem #69: Let’s SPARK! - Part 2
Yannick Moy, AdaCore
Date: 7 Sepetmber 2009

Abstract: In this Gem and the previous one, we give you a
simple walkthrough of SPARK’s capabilities and its
integration with GPS. In the previous Gem, we showed how to
set up a SPARK project and prove that your SPARK programs
are free from uninitialized variable accesses and that they
execute without run-time errors. In this Gem, we show how to
prove that your SPARK programs respect given contracts.

Let’s get started…
In the last Gem, we proved that procedure Linear_Search was
free from uninitialized variable accesses and run-time errors,
which are safety properties of Linear_Search.
Now we can try to prove a specific behavioral property of
Linear_Search, expressed as a contract between Linear_Search
and its callers. A contract will consist of a precondition that
callers of Linear_Search are responsible for establishing,
before calling Linear_Search, and a postcondition that
Linear_Search must establish, before returning to the caller. If
not present, a default “true” pre- or postcondition is assumed.
Let’s prove that when Linear_Search returns with Found =
True, the value of Table at Index is Value. This can be
expressed in SPARK as a postcondition on procedure
Linear_Search that is located after its declaration in
search.ads:

 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer);
 --# post Found -> Table(Index) = Value;

Notice the implication symbol ->, which is only defined in
SPARK annotations.
Let’s call the SPARK tools, as we did in the previous Gem:
Examine, Simplify All, POGS …
This time, the column “TO DO” is not empty [Table in the end
of the page – editor note].
If we right-click on this line and select SPARK/Show
Simplified VC, GPS opens a file linear_search.siv, which
shows that the unproved VC corresponds precisely to the
postcondition we just added:

 C1: found -> element(table, [index]) = value .

This is the conclusion (C) that the prover tries to prove with
the set of hypotheses (H) above it. If we look at the
hypotheses, we see that the conclusion cannot indeed be
proved. This has to do with the warning which we already saw
in the previous Gem:

 Warning 402 - Default assertion planted to cut the loop

To prove a property of a procedure with a loop, we cannot
unroll the loop an unbounded number of times. Therefore,
SPARK “cuts” the loop with a loop invariant, which is a
property that the loop maintains. Unless you provide such a
loop invariant, SPARK assumes by default that nothing is
maintained through the loop. If you provide one, SPARK will
prove three things:
1) the loop invariant holds when control enters the loop for the
first time
2) the loop invariant is maintained during an arbitrary run
through the loop
3) the loop invariant is sufficient to prove the postcondition
What is missing in our case is the information that Found
remains False throughout the loop. Let’s add it, with the
following syntax in search.adb:

for I in Integer range Table’Range loop
 --# assert Found = False;

Let’s do it again: Examine, Simplify All, POGS …
Notice that the warning about a default assertion disappeared.
This time, the “TO DO” column is empty, so we have
successfully proved Linear_Search’s postcondition!

VCs for procedure_linear_search :

--————————————————————————–

 | | | --—Proved In—– | | |

| From | To | vcg | siv | plg | prv | False | TO DO |

--————————————————————————–

1 | start | rtc check @ 11 | | YES | | | | |

2 | start | rtc check @ 13 | | YES | | | | |

3 | start | assert @ 13 | | YES | | | | |

4 | 13 | assert @ 13 | | YES | | | | |

5 | 13 | rtc check @ 14 | | YES | | | | |

6 | 13 | rtc check @ 16 | | YES | | | | |

7 | 13 | assert @ finish | | YES | | | | |

8 | 13 | assert @ finish | | | | | | YES |

--————————————————————————-

Ada Gems 199

Ada User Journal Volume 30, Number 3, September 2009

Finally, let’s see how SPARK deals with global variables,
by adding a counter to Linear_Search, which is
incremented by one each time the call succeeds. We need
to state explicitly that Counter is part of the state of this
package, which we do using an “own” annotation below.
We also need to state explicitly that Counter is initialized
using an “initializes” annotation. The following declaration
should go into search.ads:

 package Search
 --# own Counter;
 --# initializes Counter;
 is
 Counter : Natural := 0;

Now, we increment Counter in Linear_Search’s body in
search.adb:

 if Table(I) = Value then
 Counter := Counter + 1;

If we try to run the Examiner at this point, it flags an error:

 Semantic Error 1 - The identifier Counter is either
 undeclared or not visible at this point

This is because reads and writes of global variables are part of
a subprogram specification in SPARK. Since Linear_Search
does not declare in its specification that it reads or writes a
global variable, it is not allowed to do so in its body. So let’s
add a SPARK annotation to state that Linear_Search reads and
writes Counter.

 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer);
 --# global in out Counter;
 --# post Found -> Table(Index) = Value;

Let’s do it again: Examine, Simplify All, POGS …
We get a new unproved VC in the column “TO DO”, which
corresponds to the following conclusion:

 C1: counter <= 2147483646 .

This time, it is because SPARK has detected a problem during
the proof that the update of Counter does not overflow. Indeed,
it could overflow! The solution is to add a precondition to
Linear_Search, that promises that it will never be called in a
state where Counter is the largest integer value.

 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer);
 --# global in out Counter;
 --# pre Counter < Integer’Last;
 --# post Found -> Table(Index) = Value;

As before, we must modify the loop invariant. Here, we just
have to repeat this information in the loop invariant:

 for I in Integer range Table’Range loop
 --# assert Found = False and Counter < Integer’Last;

Let’s do it again: Examine, Simplify All, POGS …
Everything is proved!
Notice that the promise made by the precondition will have to
be proved by callers of Linear_Search …
Finally, let’s add to the SPARK annotation of Linear_Search
that Counter is incremented by one when Linear_Search
returns Found = True. This can be expressed as a
postcondition relating the value of Counter at procedure entry,
denoted Counter~, and the value of Counter at procedure exit,
denoted Counter:

 procedure Linear_Search
 (Table : in IntArray;
 Value : in Integer;
 Found : out Boolean;
 Index : out Integer);
 --# global in out Counter;
 --# pre Counter < Integer’Last;
 --# post Found -> (Table(Index) = Value and Counter =
 Counter~ + 1);

Notice that in the precondition we simply use Counter to
denote the value at procedure entry, because the precondition
is precisely evaluated at procedure entry.
As before, we update the loop invariant to state that the current
value of Counter is the same as the one at procedure entry:

 for I in Integer range Table’Range loop
 --# assert Found = False and Counter < Integer’Last
 --# and Counter = Counter~;

Let’s do it a last time: Examine, Simplify All, POGS …
Everything is proved!
Remember though that we can only prove a contract we wrote,
which may be very different from saying abstractly that
procedure Linear_Search is “correct”. Who knows what the
correct behaviour of Linear_Search means for the human who
programmed it?
Let’s recap what we have seen so far. SPARK is a language
that combines a strict subset of Ada with annotations written
inside stylized Ada comments. We have seen various kinds of
SPARK annotations: preconditions introduced by pre;
postconditions introduced by post; loop invariants introduced
by assert; frame conditions introduced by global, own, and
initializes. The SPARK tools allow us to check that a
procedure is free from uninitialized variable accesses, that it
executes without run-time errors, and that it respects a given
contract, written next to its declaration, that callers can rely on.
In later Gems we will explore in more depth the capabilities of
SPARK and its integration with GPS. In the meantime, you
can learn more about SPARK in the SPARK tutorial at
http://www.adacore.com/home/products/sparkpro/tokeneer/dis
covery/.

200

Volume 30, Number 3, September 2009 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	Workshop on Vulnerabilities
	Ada Europe 2009 – Workshop on Software Vulnerabilities
	On Removing Programming Language Bias from the Vulnerabilities Document
	Ada and Programming Language Vulnerabilities
	An Argument for Language Subsetting
	Concurrency Vulnerabilities
	The Pros and Cons of Enumerating Programming Language Vulnerabilities
	Ada Gems

