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SIGAda 2008 
Annual International Conference on the 

Ada Programming Language 
October 26-30, 2008, Portland, Oregon, USA 

Special Anniversary Keynote Addresses 
From Strawman to Ada 2005: a Socio-Technical Retrospective 

Ben Brosgol, Senior Technical Staff, Adacore  
Dr. Benjamin Brosgol, a senior member of the technical staff of AdaCore, has been involved with programming 
language design and implementation for more than 25 years, concentrating on languages and technologies for 
high-reliability systems. He led the development of the "Red" language candidate at Intermetrics, participated in 
the design of both Ada 83 and Ada 95, and was editor of the Safety and Security Annex of the Ada 95 standard.  
Under Sun Microsystems' Java Community Process Dr. Brosgol was a member of the Expert Group for JSR-001 
(Real-Time Specification for Java, or "RTSJ"), and he is currently a member of the Expert Groups for JSR-282 
(RTSJ v1.1) and JSR-302 (Safety-Critical Java Technology). Dr. Brosgol is a past chair of the ACM Special 
Interest Group on Ada (SIGAda). He has spoken widely on safety-critical software technology. He holds a B.A. in 
Mathematics from Amherst College, and M.S. and Ph.D. degrees in Applied Mathematics from Harvard 
University. 

30 Years after Steelman: Does DoD Still Have a Software Crisis? 
Joyce Tokar, President, Pyrrhus Software 

Joyce Tokar is the President of Pyrrhus Software, a software consultancy and training company. Over the past 20 
years, Dr. Tokar has been working in the area of mission and safety critical, real-time, and embedded software 
systems. She has been involved in research and development in the areas of software and systems architectures, 
high level computing languages such as Ada, Ada 95, C/C++, and Java, and real-time analysis methodologies. 
During this time she has co-authored the Society of Automotive Engineering (SAE) Architecture Analysis and 
Design Language (AADL) standard. She has written the Programming Language Annex for the SAE AADL 
standard. Dr. Tokar has also participated in the evolution of the Ada programming language both as a member of 
the team defining the Ada 05 update and as a distinguished reviewer for Ada 95. 
Dr. Tokar is also active in the area of secure software system development tools and environments.  She is leading 
a team in the analysis and evolution of the system of systems software for the US Department of Defense Future 
Combat System (FCS). 
From 1981-84 Dr. Tokar was responsible for the development of the Gensoft (Western Digital) Ada system. She 
received her PhD in Computer Engineering from Clemson University in South Carolina.  She holds an MS and a 
BS in Computer Science from the University of Pittsburgh. 

The Ada Paradox(es) 
Jean-Pierre Rosen, President, Adalog 

Jean-Pierre Rosen graduated from ENST (Ecole Nationale Supérieure des Télécommunications) in 1975, and 
attained the PhD in 1986. He started as a software engineer at the computing center of ENST. After a Sabbatical 
at New York University on the Ada/ED Project, he worked as Professor at ENST,  where he was responsible for 
the teaching of Software Engineering and Ada. 
He has now formed Adalog, a company specialized in high level training, consultancy, and software development 
in the fields of Ada and associated technologies (software engineering, object oriented methodologies). 
J-P. Rosen is Chairman of the AFNOR (French standardization body) group for Ada, and a member of the ARG 
(Ada Rapporteur Group), the group of experts in charge of maintenance and evolution of the language. He was a 
member of the expert team who controlled the development of the validation suite for Ada 95. 
He is the author of "Méthodes de Génie Logiciel avec Ada 95" (Software Engineering Methods with Ada 95) and 
"HOOD: an industrial approach for software development". 
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Call for Papers 
14th International Conference on Reliable  
Software Technologies – Ada-Europe 2009 

8-12 June 2009, Brest, France 
http://www.ada-europe.org/conference2009.html 

 

General Information 

The 14th International Conference on Reliable Software Technologies – Ada-Europe 2009 will take place in Brest, France. 
Following its traditional style, the conference will span a full week, including a three-day technical program and vendor 
exhibitions from Tuesday to Thursday, along with parallel tutorials and workshops on Monday and Friday. 

 
Schedule 

01 December 2008 Submission of regular papers, tutorial and workshop proposals 
12 January 2009  Submission of industrial presentation proposals 
09 February 2009  Notification to all authors 
09 March 2009 Camera-ready version of regular papers required 
11 May 2009  Industrial presentations, tutorial and workshop material required 
08-12 June 2009  Conference 

 
Topics 

The conference has successfully established itself as an international forum for providers, practitioners and researchers into 
reliable software technologies. The conference presentations will illustrate current work in the theory and practice of the 
design, development and maintenance of long-lived, high-quality software systems for a variety of application domains. The 
program will allow ample time for keynotes, Q&A sessions, panel discussions and social events. Participants will include 
practitioners and researchers in representation from industry, academia and government organizations active in the promotion 
and development of reliable software technologies. To mark the completion of the Ada language standard revision process, 
contributions that present and discuss the potential of the revised language are particularly sought after.  
 
Prospective contributions should address the topics of interest to the conference, which include but are not limited to those 
listed below: 
 
• Methods and Techniques for Software Development and Maintenance: Requirements Engineering, Object-Oriented 

Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-engineering and Reverse Engineering, 
Reuse, Software Management Issues, Model Engineering. 

• Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development, Component and Class 
Libraries, Component-based Design. 

• Enabling Technologies: Software Development Environments and Project Browsers, Compilers, Debuggers, Run-time 
Systems, Middleware Components. 

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis, Verification, Validation, 
Testing of Software Systems. 

• Theory and Practice of High-integrity Systems: Real-Time, Distribution, Fault Tolerance, Security, Reliability, Trust 
and Safety. 

• Embedded Systems: Architecture Modeling, Co-Design, Reliability and Performance Analysis. 
• Mainstream and Emerging Applications: Multimedia and Communications, Manufacturing, Robotics, Avionics, 

Space, Health Care, Transportation. 
• Ada Language and Technology: Programming Techniques, Object-Orientation, Concurrent and Distributed 

Programming, Evaluation & Comparative Assessments, Critical Review of Language Features and Enhancements, 
Novel Support Technology, HW/SW Platforms. 

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches, Qualitative and 
Quantitative Metrics. 

• Ada and Education: Where does Ada stand in the software engineering curriculum; how learning Ada serves the 
curriculum; what it takes to form a fluent Ada user; lessons learned on Education and Training Activities with bearing 
on any of the conference topics. 
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Call for Regular Papers 
Authors of regular papers which are to undergo peer review for acceptance are invited to submit original contributions. Paper 
submissions shall be in English, complete and not exceeding 14 LNCS-style pages in length. Authors should submit their 
work via the Web submission system accessible from the Conference Home page. The format for submission is solely PDF. 
Should you have problems to comply with format and submission requirements, please contact the Program Chair. 
 

Proceedings 
The authors of accepted regular papers shall prepare camera-ready submissions in full conformance with the LNCS style, not 
exceeding 14 pages and strictly by 9 March 2009. For format and style guidelines authors should refer to:  
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference will prevent the paper 
from appearing in the proceedings. The conference proceedings will be published in the Lecture Notes in Computer Science 
(LNCS) series by Springer Verlag, and will be available at the start of the conference.  
 

Awards 
Ada-Europe will offer honorary awards for the best regular paper and the best presentation. 
 

Call for Industrial Presentations 
The conference also seeks industrial presentations which may deliver value and insight, but do not fit the selection process for 
regular papers. Authors of industrial presentations are invited to submit a short overview (at least 1 page in size) of the 
proposed presentation to the Conference Chair by 12 January 2009. The Industrial Program Committee will review the 
proposals and make the selection. The authors of selected presentations shall prepare a final short abstract and submit it to the 
Conference Chair by 11 May 2009, aiming at a 20-minute talk. The authors of accepted presentations will be invited to 
derive articles from them for publication in the Ada User Journal, which will host the proceedings of the Industrial Program 
of the Conference. 
 

Call for Tutorials 
Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or full-day 
events. Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a 
description of the presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration 
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience 
experience and background, and a statement of the reasons for attending. Proposals should be submitted by e-mail to the 
Tutorial Chair. The providers of full-day tutorials will receive a complimentary conference registration as well as a fee for 
every paying participant in excess of 5; for half-day tutorials, these benefits will be accordingly halved. The Ada User Journal 
will offer space for the publication of summaries of the accepted tutorials. 
 

Call for Workshops 
Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-
day events, to be scheduled on either ends of the conference week. Workshop proposals should be submitted to the 
Conference Chair. The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada 
User Journal. 
 

Call for Exhibitions 
Commercial exhibitions will span the three days of the main conference. Vendors and providers of software products and 
services should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and 
time. 
 

Grants for Students 
A limited number of sponsored grants is expected to be available for students who would like to attend the conference or 
tutorials. Contact the Conference Chair for details. 
 
 

In cooperation with SIGAda 
(approval pending) 
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* The complete Proceedings of the 13th International Real-Time Ada Workshop previously appeared in ACM Ada Letters, Volume XXVII, Number 2, 
August 2007; reprinted with permission. 

 

13th International Real-Time Ada Workshop 
 

17-19 April 2007 
Woodstock, Vermont  

USA 
 

Sessions: 
Implementation Experience with Ada 2005 

Beyond Ada 2005 
 

from the Proceedings* edited by: Juan Antonio de la Puente 
 
 

Program Committee 
Alan Burns  Javier Miranda  José F. Ruiz  
Ben Brosgol b  Luis Miguel Pinho  Tullio Vardanega  
Michael González Harbour  Juan Antonio de la Puente a Andy Wellings  
Stephen Michell  Jorge Real   

a Program Chair  b Local Chair  
 

 
  

Workshop Participants 
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Neil Audsley     University of York, UK   
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Alan Burns    University of York, UK  
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J. Javier Gutiérrez    Universidad de Cantabria, Spain  
Stephen Michell    Maurya Systems, Canada  
Brad Moore    General Dynamics, Canada  
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José F. Ruiz    AdaCore, France  
J.C. Smart    Department of Defense, USA  
Santiago Urueña    Universidad Politécnica de Madrid (UPM), Spain  
Tullio Vardanega    University of Padua , Italy  
Andy Wellings    University of York, UK  
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Juan Zamorano    Universidad Politécnica de Madrid (UPM), Spain  
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This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

Session: Implementation Experience with  
Ada 2005  
Chair: Alan Burns 
Rapporteur: Andy Wellings 
 

Session Goals 
The goals of this session were to 

• Discuss implementation experience with the new real-
time features 

• Review the support provided by the new real-time 
features 

• Review features proposed but omitted from Ada 2005 

 Real-Time Utilities 
Mario Aldea Rivas first gave an overview of the approach 
their paper had taken on implementing the new Ada 2005 
real-time services in MaRTE OS and GNAT. The most 
important of these new services are: 

• timing events 

• execution-time clocks and timers 

• dynamic priorities for protected objects 

• immediate priority changes 

• group execution-time budgets 

• new scheduling and task dispatching mechanisms 

Of these, the first five had already been implemented and 
would be released by AdaCore in the near future. The rest 
would be done during the summer of 2007. 

For timing events, Mario indicated that it was not possible 
to implement timing event straight from the clock interrupt 
handler as there was no mechanisms provided by POSIX to 
do so. He indicated that there were essentially two 
approaches: one where run-time threads are introduced for 
each timing event, the other where the OS is changed. 

He said they had implemented both approaches and that by 
changing the OS, there was a significant performance gain. 
For execution-time clocks and handlers, Mario reported 
that the implementation was much simpler as both the 
POSIX and Ada 2005 standards took a similar stance. In 
particular: 

• Neither of the standards define which task/thread is 
charged with the overheads of interrupt handlers and 
run-time services on behalf of the system 

• Both standards state that the execution time is set to 
zero at the creation of the task /thread 

• Ada 2005 says the time spent during task activation 
must be charged to the task execution time clock – this 
happens in GNAT since activation is executed by the 
thread used to implement the Ada task. 

As a consequence, no modifications to the compiler or to 
the run-time system have been necessary. Mario reported 
that execution time accounting introduces a small overhead 
to context switch time (less than 5%) and that the time to 
read execution time clocks is very similar to the time to 
read the real-time clock. 

Execution-timers had been built on top of the timers and 
had caused no significant implementation problems. Group 
execution time accounting, however, required significant 
modifications to the OS as POSIX did not support thread 
groups. The facility added an extra 9% overhead on context 
switch times. 

Juan Zamorano gave a presentation on their 
implementation of the same facilities in the Open 
Ravenscar Kernel on a bare board Leon (based on the 
SPARC V8 architecture). Juan indicated that the scarce 
hardware support for timers on that board meant that 
significant software support was required. This had added a 
50% increase in context switch times. The full details are 
given in the paper. 

Following the two presentations it was noted that the 
Workshop was not aware of other projects implementing 
2005 real-time facilities. 

Discussions on the New Features 
The main discussions following the presentations focused 
on the overheads and inaccuracies of the CPU accounting 
model. 

The following issues were raised: 

1. Context switch time – Mario reported that there was no 
leakage of CPU time during context switches. 

2. System and Application interrupts (e.g. clocks) – whil-
st Ada allowed interrupt handling to be charged to the 
executing tasks there was concerns that this was a 
significant inaccuracy. 

3. Timing events code – it was again noted that the code 
executed by timing event handlers was application 
level code and therefore was not fixed. This would 
again be charged inappropriately to the running task. 
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However, it was also pointed out that as the code was a 
protected procedure, the time was at least bounded per 
handler. 

4. Proxy model of Protected Objects – concern was 
expressed that the proxy model of implementation for 
protected objects could result in a significant 
inaccuracy as one task could execute a significant 
amount of code on behalf of another. 

There was a long discussion of whether the CPU 
accounting model was useable given the inherent 
inaccuracies. Various points were noted: 

• The facilities could be used with a measurement-based 
approach. Execution time could be measured during 
system testing and this figure used at run-time. 
However, this approach is fragile. Any small change to 
the application code would mean that the system-level 
timing measurements would have to be redone. 

• For hard real-time systems, it was noted that there had 
to be an associated analysis model. The worst-case 
overheads could then be added to the execution time of 
each task. However, this approach could be very 
pessimistic as each task would be charged the worst 
case overhead. 

• It was also pointed out that the greatest error was on the 
value of the worst-case execution time itself and that 
adding a small error was at the noise level.  

Another point raised was that the impact of handling low 
priority interrupts on high priority task could be significant.  

The workshop concluded that there is a need to investigate 
the overheads and the extra cost of trying to do better 
accounting. Also the overhead of a better model of 
prioritized interrupt handling should be investigated. 

Application-level Scheduling 
Michael Gonzalez Harbour gave an overview of the current 
status of application-defined scheduling work that had been 
reported at the last workshop. Although this had failed to 
get in to the standard, an implementation had been 
produced and would be released as an extension to GNAT. 
The hope was that people would use the facilities and that it 
might eventually become a de facto standard. The 
workshop reaffirmed its support for the need of such a 
facility in Ada. 

Ravenscar 
This session of the Workshop concluded with a discussion 
of the continuing experience with the Ravenscar profile. 
Juan Antonio de la Puente raised the issue of execution 
timers and group budgets. Although Ravenscar allows 
execution-time clocks, it prohibits timers and group 
budgets. He proposed that we should allow one timer per 
task. The motivation is to make sure a task does not 
consume more than its budget. 

Whilst there was some support for this proposal, concern 
was expressed on how a Ravenscar program would respond 
to a timer expiring. There are not asynchronous interaction 
mechanisms in Ravenscar. Juan Antonio indicated that this 
was similar to the way task termination was handled. If a 
task terminated in Ravenscar (which it should not), the 
event is brought to the attention of the program and then it 
is implementation-defined what mechanisms the 
programmer can use. 

It was pointed out that a monitor task could always read the 
execution times of other tasks and discover the overrun. 
However, there would clearly be a delay in doing this. 
There was no consensus position reached. 

The Workshop felt that adding Group budgets opened up a 
new profile. This ought to be considered perhaps in a 
context where there are more than one Ravenscar 
applications (in effect, partitions) running on the same run-
time. 

Summary 
The following summarised the positions taken by the 
Workshop during this session: 

1. There is a need to investigate the overheads and the 
extra cost of trying to do better accounting and of the 
overheads of doing a better model of prioritized 
interrupt handling. 

2. There is continued support for application-defined 
scheduling. 

3. There is no consensus on adding CPU Timers into 
Ravenscar (i.e. it is an open issue that needs further 
investigation). 

4. Group budgets and the coexistence of multiple 
Ravenscar applications on a single processing node 
needs further investigation. 
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* This work has been partially funded by the IST Programme of the 

European Commission under project IST-004033 (ASSERT) and the 
Spanish Ministry of Science and Technology (MCYT), project 
TICTIC2005-08665-C03-01 (THREAD). 

Implementing the New Ada 2005 Real-Time 
Features on a Bare Board Kernel* 
S. Urueña, J. Pulido, J. Redondo, J. Zamorano 
Universidad Politécnica de Madrid (UPM), Spain; email: {suruena@datsi.fi, pulido@dit, jredondoh@dit, 
jzamora@datsi.fi}.upm.es 

 

Abstract 
A real-time kernel providing timing services is a key 
component of any real-time system. The current 
revision of the Ada standard provides a range of real-
time mechanisms that can be used to ensure the 
required temporal behaviour of real-time tasks. 
However, kernel timing services must be implemented 
carefully in order to avoid overheads and 
inaccuracies. This paper describes the implement-
tation of the Ada timing services in an evolved version 
of the Open Ravenscar Kernel. The interrelation 
among the different timing mechanisms is also 
analysed and evaluated. 

1   Introduction 
High-integrity real-time systems usually have hard timing 
requirements, which have to be guaranteed by using an 
appropriate engineering approach for their design and 
implementation (see e.g. [19]). Such an approach is usually 
based on a computation model which enables the temporal 
behaviour of a system to be analysed and adjusted if 
necessary. 

Ensuring the required real-time behaviour usually relies on 
an accurate knowledge of the worst-case computation times 
(WCET) of all the real-time tasks. Although some good 
techniques for computing WCET are available [16], there is 
still a large degree of uncertainty, especially when modern 
processors with cache memories, speculative execution and 
segmentation are used. Pessimistic WCET estimations lead 
to an underutilisation of resources, and thus tight estimates 
are usually sought. The risk with tight WCET estimates is, 
on the other hand, to be optimistic, and then occasionally 
get an actual execution time which is larger than the 
estimated value. This situation is called an overrun, and 
may give raise to a generalised miss of deadlines by tasks 
by a domino effect. 

The new Ada real-time mechanisms can be used to monitor 
the run-time behaviour of tasks. In this way it is pos sible to 
detect overruns and deadline misses and take corrective 
actions before other tasks are affected [14]. This paper 
presents the implementation of the Ada real-time features 

on GNATforLEON, an open-source cross-compilation 
system that implements Ravenscar tasking for LEON2 [10] 
targets. GNATforLEON is a port to LEON2 targets of 
GNAT Pro for ERC32 [17]. GNAT Pro for ERC32 and 
thus GNATforLEON uses a version of the GNAT run-time 
library (GNARL) specially developed to support the 
Ravenscar profile on top of a bare board kernel which is an 
evolved version of the Open Ravenscar Kernel (ORK) [5, 
7]. 

2   The new Ada 2005 real-time 
mechanisms 
The current revision of the Ada standard provides a range 
of real-time mechanisms that can be used to ensure the 
required temporal behaviour of real-time tasks. The 
Ada.Real_Time package includes a monotonic real-time 
Clock as well as a definition of Time which are appropriate 
for real-time systems. The package was already part of Ada 
95 [12, Annex D] and can be used to check real-time 
related properties, such as minimum inter-arrival times or 
task deadlines. Real-time timers were not provided as such 
in Ada 95, but delay statements and asynchronous transfer 
of control (ATC) provided a similar functionality at a 
higher abstraction level (see e.g. [4]). However, ATC is 
excluded from the Ravenscar profile due to its complex 
implementation. Nevertheless, there are new real-time 
mechanisms which can be used to efficiently detect 
deadline overruns in critical systems. 

Timing events [1] is an Ada 2005 lower-level mechanism 
that can be used with the Ravenscar profile [18, D.15] for 
detecting deadline overruns [14]. Timing events are a light-
weight mechanism for specifying an action to be executed 
at a given time without the need to use a task or a delay 
statement. A timing event can be set to occur at an absolute 
time or after a real-time interval. A protected procedure 
handler is executed whenever the event occurs, unless it is 
cancelled before that time. The functionalityof timing 
events is provided by the library-level package Ada.Real_ 
Time.Timing_Events, in this way it is no needed to change 
the compiler to implement this mechanism but just to add 
the support to the Ada run-time library as well as to the 
underlying kernel. It is worth noting that only library-level 
timing events are allowed by the Ravenscar profile.  

Ada 2005 also includes mechanisms for measuring and 
monitoring execution-time, namely execution-time clocks 
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and timers [2], and group execution-time budgets [3]. These 
mechanisms can be used to estimate the execution time of 
code segments, to handle some kinds of aperiodic events, 
and to detect execution-time related temporal faults. These 
mechanisms are also provided by library-level packages: 
Ada.Execution_Time, Ada.Execution_Time.Timers, and 
Ada.Execution_Time.Group_Budgets.  

In Ada 2005 each task has an execution-time clock that 
computes the amount of CPU time it has consumed, 
including the run-time services invoked by the task. It 
should be noticed that it is implementation-defined which 
task is charged with the execution time for system services, 
which include interrupt service routines, or even whether it 
is charged to no task [18, D.14(13a/2)]. Execution-time 
timers are objects that are associated with a task —and 
hence with the task execution-time clock— when they are 
declared. A timer can be armed to expire at an absolute 
value of that clock or after some execution-time interval. 
When the timer expires, a protected procedure handler is 
executed. Setting again the handler replaces the handler and 
the time of execution and the timer remains set. Group 
execution-time budgets is a similar mechanism, which can 
be used with a set of tasks instead of a single task. A task 
can belong to at most one such group. A global budget of 
execution-time can be allocated to the whole group, and 
then it is decreased when any task in the group consumes 
execution time. As with timers, a protected procedure 
handler can be specified to be executed whenever the 
budget is exhausted. The budget can also be replenished at 
any time.  

Execution-time clocks are allowed in the Ravenscar profile, 
but timers and group budgets are not. However, we believe 
that these mechanisms can be safely and efficiently used in 
high-integrity systems, provided that they are only declared 
at library level and there is at most one execution-time 
timer per task [6]. 

3 Kernel support for timing services 
The described timing services has been implemented on 
GNATforLEON which is an evolved version of ORK for 
LEON2 based computers. LEON2 is a radiation-hardened 
implementation of the SPARC V8 architecture, which has 
been adopted by the European Space Agency (ESA) as the 
new standard processor for spacecraft on-board computer 
systems as an upgrade of the ERC32 [9]. 

GNATforLEON provides direct support for the Ravenscar 
profile [18, D.13.1], including the following Ada 2005 
timing services: 

• Global timing events; 

• Execution-time clocks. 

Execution-time timers and group budgets are also 
supported by the kernel in spite of being not allowed by the 
Ravenscar profile. These mechanisms are needed to enforce 
temporal separation in logical partitioned systems where 
subsystems with possibly different levels of criticality can 
share computer nodes. This is a strong requirement for the 

kind of on-board aerospace embedded systems envisaged in 
the ASSERT project1[15]. 

The implementation of Ada.Real_Time.Clock and absolute 
delays for ORK/ERC32 is thoroughly described in [21]. It 
is based on the two 32-bit hardware timers of the ERC32 
processor. That implementation has been ported to the 
LEON2 processor which has two 24-bit hardware timers. It 
is worth noting that Annex D of the Ada Language 
Reference Manual [18] requirements for Ada.Real_ 
Time.Time lead to at least 41 bits for that type. As a result, 
the implementation uses the hardware timer register as the 
least significant part (LSP) of the clock and a 32-bit word 
in memory as the most significant part (MSP). This 
arrangement provides an accurate tick with low overhead. 

Execution-time clocks and timers were also supported by 
ORK/ERC32 whose implementation is described in [20]. 
The implementation only allows one execution-time timer 
per task, as suggested in previous IRTAW discussions [8, 
6] and permitted by the Ada Language Reference Manual 
[18, D.14.1(28/2)]. Although execution-time timers are not 
allowed in the Ravenscar profile, the Ravenscar profile 
restrictions enable a simple and efficient implementation 
which was ported to GNATforLEON. Group budgets were 
not implemented in ORK but recently on GNATforLEON. 
However, the implementation is built on top of the 
execution-time timers one and thus only little support is 
needed for group budgets at kernel level. The main part is 
at Ada run-time level in the body of the Ada.Execution_ 
Time.Group_Budgets whereas at kernel level is only 
needed a flag to record if the armed execution-time alarm 
of the task correspond to its execution-time timer or to the 
group budget timer at which the task belongs. In this way, 
the proper handler may be invoked if the execution-time 
alarm expires. 

The overall implementation is schematically shown in 
figure 1. As said, timer 1 is used in periodic mode to 
support Ada.Real_Time.Clock and timer 2 is used in one-
shot mode and is armed to expire with the closest event. 
This event can be an absolute delay or the execution-time 
timer of the running task, which in turn could be its own 
timer or the timer of its group budget. In a similar way to 
real-time clock, the execution-time clock of the running 
tasks is built up by using the hardware timer register and 
the cumulated execution time. However, if the timer 2 is 
armed with an absolute delay is more complex to build up 
the execution-time clock of the running tasks. 

4   Implementation of timing-events 
The Ravenscar profile restrictions avoids delay cancellation 
and therefore the alarm queue of figure 1 is simply linked. 
However timing-events can be cancelled and the alarm 
queue can not be efficiently used for this purpose. 
                                                           
1 ASSERT (Automated proof based System and Software Engineering for 
Real-Time) is an FP6 Integrated Project coordinated by the European 
Space Agency. The main goal of the project is to improve the system-
andsoftware development process for critical embedded real-time systems, 
in the Aerospace and Transportation domains 



116  Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel 

Volume 29, Number 2, June 2008 Ada User Journal 

 
Figure 1   Schema of clocks and timers implementation 

Nevertheless it is possible to manage timing-events in the 
same way of absolute delays, that is by inserting them in 
the simply linked alarm queue and if a timing event is 
cancelled its associate handler is set to null.  

The overhead of the above approach could be intolerable in 
applications with timing event cancellations. It should be 
noticed that the processing of the timer interrupts implies 
the execution of the preamble and the epilogue together 
with the run-time alarm handler. This alarm handler has to 
clear the interrupt, identify the type of the event, jump to an 
Ada code which is the handler and finally look for the next 
closest event in order to arm the hardware timer. In our 
opinion, this is a pretty amount of instructions for a null 
handler. 

As a result, it was decided to use a new doubly linked 
queue for timing events. Therefore, timing events can be 
simply and efficiently located and removed when they are 
cancelled. The timing event queue is also ordered by 
absolute time in spite of the timing event was set by using 
relative time, as it is the best approach [21]. 

 
Figure 2   Schema of event queues. 

The figure 2 shows the new queues arrangement. In 
general, it is more simple and efficient to maintain two 
queues than the combined one and thus the implementation 

has a lower overhead. It could be argued that it is needed to 
compare among three events in order to identify the closest 
event and therefore more comparisons are made in order to 
arm the hardware timer than without a new queue. This is a 
fallacy because the total number of comparisons is even 
lower because it is made much more comparisons for 
inserting the event in a longer queue.Finally, it must be said 
that the implementation could be much more simple with a 
little bit of hardware support. For instance, the 
implementation of real-time clock and absolute delays of 
the ORK version for PC computers is much more efficient 
and simple because it takes advantage of the Time Stamp 
Counter which can be found in Pentium processors. The 
Time Stamp Counter is an up-count 64-bit timer and thus it 
is able to maintain the monotonic real-time clock itself. 
This is fairly convenient making more simple to operate the 
alarm queue because reading the clock is just one 
instruction. 

5   Implementation inaccuracies 
The described implementation allocates the time spent in 
interrupt service routines to the currently running task, 
which is allowed by Ada. However, it allocates the time 
spent in timing event handlers too. It should be noticed that 
to stop and restart the execution-time clock of the running 
task is not easy because it is not just a matter of stopping 
the hardware timer. As it is shown in figure 2, the hardware 
timer 2 does not hold the remaining CPU time of the 
running task when a timing event expires but the expired 
timing event. As a result, the real-time clock should be 
recorded at the beginning and the end of the hardware timer 
2 interrupt handler in order to properly updated the 
remaining CPU time of the running task by subtracting this 
elapsed time. 

In this way, it is not only complex to avoid the allocation of 
the time spent in timing event handlers to the running task 
but the time spent for avoiding this could be greater than 
the time spent in the timing event handler itself. Indeed, it 
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is a time-spending operation to read the clock with the little 
hardware support of LEON2 processors.  

Nevertheless, we believe that the implementation is 
implicitly allowed by the standard because the Ada 
Language Reference Manual [18, D.15(25/2)] says that 
“The protected handler procedure should be executed 
directly by the real-time clock interrupt mechanism”. As it 
is implementation-defined which task is charged execution 
time for the time spent in interrupt service routines, it can 
be concluded that it is also allowed to charge the time spent 
in timing event handlers. In our honest opinion, it should be 
clarified in an Ada Issue. 

Another source of inaccuracy of execution-time clocks is 
the so-called proxy model for servicing the entries of 
protected objects which is used by the GNAT compiler 
[13]. With this approach the task exiting the eggshell 
executes all the waiting entry calls whose barriers are open 
on behalf the awaiting tasks and reevaluates the barriers 
every time. As a result, this time spent for other tasks is 
charged to the execution-time clock of the exiting task.  

The Ravenscar profile only allows one awaiting task per 
protected object and therefore this inaccuracy can be 
bounded but as there is no language-imposed restriction on 
the number of such calls that can be pending, the 
inaccuracy could be intolerable for general Ada programs. 
A way to avoid this inaccuracy could be to use the so-
called self- service model, although the number of context 
switchings would increase. Moreover, the GNAT compiler 
and the GNAT Ada run-time library should be modified in 
order to do that. 

6   Metrics 
The Ada 2005 timing mechanisms have been implemented 
by the authors on GNATforLEON, a compilation system 
for the LEON2 processor, a radiation-hardened derivative 
of the SPARCv8 RISC architecture for the space domain. 
The implementation has been based on a previous 
experimental implementation on top of the Open Ravenscar 
kernel [20]. The modified compilation system is being used 
as the execution platform for the ASSERT project.  

The overhead of the new timing mechanisms (execution-
time timers, group budgets, and timing events) has been 
measured by comparing footprint size and context switch 
duration between GNATforLEON 1.0 and GNATforLEON 
1.3. GNATforLEON 1.0 is the first version of the 
compilation system which does not have the new timing 
mechanisms. Conversely GNATforLEON 1.3 includes all 
of them. The values shown in tables 1 and 2 have been 
measured using a pilot application, and therefore should be 
considered as average values, not as worst-case metrics. 

Table 1   Context switch in GNATforLEON 

Run-time system Context switch 
(instructions) 

GNATforLEON 1.0 405 
GNATforLEON 1.3 606 

 

Table 2   Memory footprint 

 Section   Size (kilobytes) 
 GNATforLEON 1.0  GNATforLEON 1.3 

 . text  79  87 
 .data  8 8 
 .bss  362  365 
 Total  449  460 

The overhead is moderate as about 200 new instructions 
have to be executed per context switching to support 
execution time clock and group budget on GNATforLEON. 
The absolute timing impact depends highly on actual CPI 
(Cycles Per Instruction) which in turns depends on the 
status of pipeline, caches and register window. The ideal 
CPI is 1 and the clock frequency of LEON2 processor is 50 
MHz therefore the minimum absolute overhead is 4 µs. 

Table 3 shows the instructions required for timing service 
primitives. It should be noticed that 71 instructions are just 
needed to read the clock and the implementation needs to 
read the clock during context switching and timing service 
primitives. As a result, the poor hardware support of 
LEON2 processors highly impact on the duration of timing 
service primitives. 

Table 3   Primitives 

Operation Instructions 
Real_Time.Clock  71 
Timing_Events.Set_Handler  240 
Execution_Time.Timers.Set_Handler  271 

 

Table 4 shows the latencies for executing the corresponding 
handler when an execution time or group budget timer 
expires. 400 instructions are needed from the first 
instruction of the low-level interrupt handler to the first 
instruction of the Ada handler. It is fairly low providing 
that LEON2 is a RISC processor. 

Table 4   Handler latencies 

Operation Instructions 
Timing event handler 396 
Execution-time handler 415 

 

The footprint increases in 11 kbytes which are mainly due 
to the 8 kbytes augment in the code (text section). The 
other 3 kbytes are due to the need of larger ATCB and 
structures for individual objects. Table 5 shows the 
footprint of the required structures. 

Table 5   Memory size 

Type Size (bytes) 
Timing_Event 24 
Execution_Time.Timers.Timer 20 
Group_Budget 2064 
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7   Hardware support 
The overhead introduced by real-time mechanisms in the 
kernel primitives is moderate. However, as said above, 71 
instructions are needed to read the clock and the clock must 
be read to obtain the relative down-count that should be 
loaded in the hardware register. In this way, the fourth part 
of the extra instructions in a context switching are used just 
for reading the clock. There are also another operations 
which are time consuming such as to compare 64-bit time 
values and to convert a relative time in the corresponding 
value that should be load in the down-count timer register. 

As a result, a significant part of the introduced overhead 
can be avoided with just a little bit of hardware support. 
Hardware timers are fairly simple devices and they can be 
included in a processor board at a very low cost. It can be 
envisage a very simple implementation of the described 
real-time mechanisms just with four 64-bit up-count 
hardware timers. 

In this way, it can be used one timer to support the 
monotonic real-time clock on hardware, as with the 
Pentium Time Stamp Counter, without any software 
support. A second one can be used for the absolute delay 
queue which is ordered by absolute time and thus the 
absolute expiration time would be loaded in the so-called 
comparator value Register of the hardware timer. 
Therefore, an interrupt request should be delivered when 
the up-count timer reaches the comparator value. A 
separate timer can be used for timing events which can be 
managed with the same approach although the timing event 
queue should be doubly linked. The last timer is dedicated 
to count for the execution time of the running task, in this 
way it would be easy read the execution-time clock of the 
running task. Moreover, to stop and restart this timer would 
be the needed simple operations to avoid charging the time 
spent in interrupt service routines and timing events to the 
running task. 

Recently, Intel has specified the so-called High Precision 
Event Timers [11] for the PC architecture. The 
specification defines a block of up-count 64-bit timers and 
each timer can be configured to generate a separate 
interrupt. The specification allows for a block of 32 timers, 
with support for up to 8 blocks, which allows a total of 256 
timers. 

The specification fulfils the requirements to implement the 
real-time mechanism with a low overhead because timers 
are implemented as a single up-counter with a set of 
comparators. Each timer includes a match register and a 
comparator, and can generate an interrupt when the value in 
its match register equals the value of the free-running 
counter. Moreover, the counters increases monotonically 
and some of the timers can be enabled to generate a 
periodic interrupt. 

It can be easily envisage a very simple implementation of 
the real-time services with such population of timers. Every 
timing event could use its own hardware timer and thus 
queueing is avoided. However, it should be needed to limit 
the maximum number of timing events with the 

corresponding pragma Restrictions. In a similar way, every 
task could own a hardware timer in order to support its 
execution-time clock and timer. As a result, the overhead in 
context switching would be reduced to stop and restart the 
corresponding timers of both tasks. It should be noticed that 
the maximum number of tasks can be limited by a pragma 
Restrictions and the implementation may limit the number 
of timers that can be defined for each task to one, and thus 
this implementation is allowed by the standard. 

Finally, it could be possible to use a periodic timer to 
activate each periodic task and to eliminate the alarm queue 
too. Unfortunately, Ada has not a way of specifying the 
period of a real-time periodic task and it would be needed 
to add this feature by a specific implementation pragma. 

8   Conclusions 
The Ada 2005 real-time services are of paramount 
importance for detecting temporal faults and thus they 
enable the development of fault tolerant systems. The 
implementation described in this paper has a moderate 
overhead for a Ravenscar kernel and does not introduce 
much complexity to the underlying kernel. Therefore, they 
can be used for building high integrity systems. 

It should be noticed that the hardware timer devices of 
LEON2 processor are not adequate to support the real-time 
features which are needed in a real-time system. Even the 
monotonic real-time clock needs a significant software 
support. We believe that the overhead can be highly 
reduced with a little bit of hardware support which can be 
found in the Intel PC architecture. 

Additionally, some inaccuracies in the implementation of 
execution-time timers are derived from this poor hardware 
support, as well as due to the proxy model. These 
inaccuracies can not be completely avoided in the general 
case and implementation advices should be provided. 
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Abstract 
The recent Ada 2005 standard introduced a number 
of new real-time services, with the capability of 
creating and managing execution time budgets for 
groups of tasks. This capability has many practical 
applications in real-time systems in general, and 
therefore it is also interesting for real-time operating 
systems. In this paper we present an implementation 
of thread group budgets inside a POSIX real-
operating system, which can be used to implement the 
new Ada 2005 services. The architecture and details 
of the implementation are shown, as they may be 
useful to other implementers of this functionality 
defined in the new standard. 
Keywords: Real-time systems, Execution time budgets, 
Thread groups, CPU time, Ada 2005. 

1   Introduction1 
In hard real-time systems it is essential to monitor the 
execution times of all tasks and detect situations in which 
the estimated worst-case execution time (WCET) is 
exceeded. This detection was usually available in systems 
scheduled with cyclic executives, because the periodic 
nature of its cycle allowed checking that all initiated work 
had been completed at each cycle. In event-driven 
concurrent systems the same capability should be available, 
and can be accomplished with execution time clocks and 
timers.  

This need for managing execution time is recognized in 
standards related to real-time systems. The POSIX standard 
[4] defines services for execution time measurement and 
budget overrun detection, and its associated real-time 
profiles [5] require implementations to support these 
services. The recent Ada 2005 standard introduced a 
number of new real-time services intended to provide 
applications with a higher degree of flexibility. In particular 
this standard defines capabilities for measuring the 
execution time of individual tasks, and the ability to detect 
and handle execution-time budget overruns. 

                                                           
1  This work has been funded by the Plan Nacional de I+D+I of the 

Spanish Government under grant TIC2005-08665-C03 (THREAD 
project), by Ada Core, and by the European Union’s Sixth Framework 
Programme under contracts  FP6/2005/IST/5-034026 (FRESCOR 
project)  and IST-004527 (ARTIST2 NoE).  This work reflects only the 
author’s views; the EU is not liable for any use that may be made of the 
information contained herein. 

As real-time applications evolve towards an increased 
complexity level, issues such as composability of 
independently developed application components and 
support for legacy code introduce the need for supporting 
different levels of hierarchy in the scheduling mechanism, 
leading to a hierarchical concurrency model with different 
layers, and with capabilities for establishing boundaries for 
the protection of different parts of the application. In this 
context of hierarchical scheduling it is often required to 
bound the execution time of a group of activities that are 
inside the same protection boundary, so that they cannot 
interfere with other activities in other protection boundaries 
by using up more resources than they should. This need 
introduces a requirement on the underlying implementation 
to support the measurement of the execution times of 
groups of tasks, and the handling of potential budget 
overruns, in a way similar to what is usually done for 
individual tasks.  

Following this general requirement, the Ada 2005 standard 
defines services for execution-time budgets for groups of 
tasks, and is now a step forward in relation to the real-time 
extensions to POSIX, which still has no such service. 

In this paper we propose an implementation of a 
mechanism to support execution-time budgets for thread 
groups inside a POSIX operating system. The API of this 
implementation could be used as a basis for a future 
extension to POSIX. It will also be used to implement the 
task group budgets defined in Ada 2005. The architecture 
and details of the implementation are shown, as they may 
be useful to other implementers of this functionality 
defined in the new standard. Some performance metrics are 
provided.  

The paper is organized as follows. Section 2 discusses the 
current services that are available in the platform chosen 
for this implementation, MaRTE OS and GNAT, and that 
are related to thread group budgets. Section 3 introduces 
the services designed to represent sets of threads. Section 4 
discusses the implementation of the execution time clocks 
for groups of threads, while Section 5 does the same for 
budgets and their associated handlers. Section 6 provides 
some performance metrics and, finally, Section 7 gives our 
conclusions. 

2   Background 
The implementation of execution time budgets for thread 
groups presented in this paper has been developed in 
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MaRTE OS [1] [2], which is a real-time operating system 
(RTOS) that follows the POSIX.13 [5] minimum real-time 
system profile, and is mostly written in Ada. It is available 
for the ix86 architecture as a bare machine, and it can also 
be configured as a POSIX-thread library for GNU/Linux. 
The GNAT run-time library has been adapted to run on top 
of MaRTE OS, which is itself being extended in a joint 
effort between Ada Core and the University of Cantabria 
with the objective of providing a platform fully compliant 
with Ada 2005, available for industrial, research, and 
teaching environments. The implementation of thread 
group budgets presented in this paper is part of the effort to 
achieve this objective. 

Two of the new Ada 2005 real-time services are closely 
related to the thread group budgets and are already avail- 
able in MaRTE OS and GNAT [3]: 

• Timing events are defined in Ada 2005 as an effective 
and efficient mechanism to execute user-defined time-
triggered procedures without the need to use a task. 
They are very efficient because the event handler may 
be executed directly in the context of the interrupt 
handler, avoiding the need for a server task.  

• Execution time clocks and timers are defined in Ada 
2005 as a standardized interface to obtain the execution 
time consumption of a task, together with a mechanism 
that allows creating handlers that are triggered when the 
execution time of a task reaches a given value, 
providing the means to execute a user-defined action 
when the execution time assigned to a specific task 
expires. 

Timing events have been implemented in MaRTE OS 
through a service that we call “timed handlers”, which are 
not only useful to implement their Ada counterpart, but are 
also useful to other applications as a general-purpose RTOS 
mechanism. 

MaRTE OS supports the execution-time clocks and timers 
defined in POSIX.1, which would be appropriate to 
implement their couterparts in Ada. However, the timers 
defined in POSIX to detect execution time overruns use an 
operating system signal to notify about their expiration. 
Signals are a very scarce resource inside an RTOS. 
Besides, the signal is usually handled through a thread that 
is waiting to accept the signal, but this is a mechanism that 
introduces relatively high overheads, mainly due to the 
need for the handler to be a thread, with the associated 
costs in context switches. This leads to the same reason for 
introducing the new "timing events" mechanism for regular 
time management. 

As a consequence, the Ada implementation of execution 
time clocks and timers has been achieved in MaRTE 
through the "timed handler" mechanism, which allows a 
direct handling of the event inside the hardware timer 
interrupt handler, thus avoiding the use of a signal and the 
subsequent double context switch that would be necessary 
otherwise. 

To implement thread group budgets inside MaRTE OS we 
will follow an approach similar to that followed for 
execution time budgets for individual threads, creating the 
appropriate execution time clocks for thread groups and 
extending the "timed handler" mechanism to also support 
these new clocks. 

3   Thread sets 
Before creating the execution time clocks for thread groups 
or sets, it is necessary to specify a mechanism to represent 
the groups themselves. Instead of defining a mechanism 
specific to execution-time clocks, we have chosen to create 
an independent RTOS object that represents a group of 
threads. In this way, we will be able to address future 
extensions that require handling groups of threads using 
these same objects. Examples of such new services might 
be related to the requirements for supporting hierarchical 
scheduling, for instance to suspend or resume a group of 
threads atomically. 

A thread set is implemented by a record that may be 
extended in the future to add functionality. This record has 
the following fields: 

• Set : A list of the threads belonging to the set. 

• Iterator: A reference to the current thread in the list, 
used when iterating through marte_threadset_first and 
marte_threadset_next. 

A restriction has been made so that a thread can belong to 
only one thread set. This restriction is also made in the Ada 
2005 standard, and its rationale is that in the hierarchical 
scheduling environment for which thread groups are useful, 
threads only belong to one specific scheduling class, and 
therefore to one specific set. This restriction allows a more 
efficient implementation, because at each context switch 
only one of the Consumed_Time fields of the set to which 
the running thread belongs needs to be updated. 

Threads can be added/removed to/from a thread set 
dynamically. Every thread has a pointer in its thread control 
block (TCB) to the set it belongs to. This field is null if the 
thread doesn’t belong to any thread set. 

The C language API to manage thread sets from the 
application level is the following: 

   // create an empty thread set 
   int marte_threadset_create ( 

marte_threadset_id_t *set_id); 
   // destroy a thread set 
   int marte_threadset_destroy ( 

marte_threadset_id_t set_id); 
   // empty an existing thread set 
   int marte_threadset_empty ( 

marte_threadset_id_t set_id); 
   // add a thread to a set 
   int marte_threadset_add ( 

marte_threadset_id_t set_id,  
   pthread_t thread_id); 
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   // delete a thread from a set 
   int marte_threadset_del ( 

marte_threadset_id_t set_id,  
pthread_t thread_id); 

   // check thread membership 
   int marte_threadset_ismember ( 

marte_threadset_id_t set_id, 
pthread_t thread_id); 

   // reset the iterator and get the first thread id 
   int marte_threadset_first ( 

marte_threadset_id_t set_id,  
pthread_t *thread_id); 

   // advance the iterator and get next thread id 
   int marte_threadset_next ( 

marte_threadset_id_t set_id,  
pthread_t *thread_id); 

   // check whether the iterator can be advanced 
   int marte_threadset_hasnext ( 

marte_threadset_id_t set_id) 
   // get the set associated with the given thread 
   int marte_threadset_getset ( 

marte_threadset_id_t *set_id) 
pthread_t thread_id); 

4   Execution time clocks for thread groups 
To implement execution time clocks for groups of threads 
we add the following information to the object that 
represents a thread set: 

• Consumed_Time: CPU-time consumed for all the task 
in the group. Every time a thread of a given set leaves 
the CPU, the time consumed by this task since its last 
activation is added to the Consumed_Time of its thread 
set, even if  there is no timed event associated with it, 
because the value of the execution-time clock may be 
read at any time by the application. 

• Group_Timed_Event : A reference to the internal RTOS 
execution time event, used by the scheduling 
mechanism. A set can be associated with at most one 
such event. 

The API to obtain an execution-time clock from a thread 
set is: 

   // destroy a thread set 
   Int marte_getgroupcpuclockid ( 

marte_threadset_id_t set_id, 
clockid_t *clock_id); 

The returned id represents a clock that can be read and set 
through the standard POSIX API for clocks, i.e., using 
functions clock_gettime, clock_settime, ... They can also be 
used as the base for POSIX timers and MaRTE OS timed 
events as any other clock defined in the system. They can 
not however be used as the base for the clock_nanosleep 
operation, as is also the case with the single-thread CPU-
time clocks. POSIX leaves this behavior as unspecified and 
Ada does not define execution time as a type that can be 
used in the equivalent delay statements. 

POSIX requires type clockid_t to be defined as an arithmetic 
type, and therefore clock ids are implemented using a 

unsigned number of 32 bits. The value stored in a clock id 
can have different interpretations:  

• Special values for the regular calendar-time clock 
CLOCK_REALTIME, the execution time clock of the 
current thread CLOCK_THREAD_CPUTIME_ID, and the 
monotonic clock CLOCK_MONOTONIC. 

• A pointer to a thread control block when the clock is a 
thread CPU-time clock of a particular thread. 

• A pointer to a thread set when it is a thread group clock. 

5   Timed events based on a group clock 
Group clocks can be used as the base of timers and timed 
handlers. When a timer or a timed handler is armed, a 
MaRTE OS timed event is enqueued in the system event 
queues. Time-based events in MaRTE OS are of two kinds: 
standard time and execution time. They are kept in separate 
priority queues because they cannot be compared with each 
other for ordering. Events based on group clocks are a 
special case of execution time events. An execution time 
event has the following information: 

• CPU_Time: The event will expire when the execution 
time consumed by the associated task reaches this value 

• Group_Expiration_Time: The event will expire when 
the Consumed_Time field of the task set associated with 
the event reaches this value. This field is only used in 
events based on a group clock.  

• Is_Based_On_Group_Clock: This is a boolean used to 
identify events based on group clocks 

• Base_Clock: A clock id representing the clock used as 
the timing base of the event. It could be a thread CPU-
time clock or a group clock. 

• Task_Where_Queued : A pointer to the task that has 
queued the event. 

Execution time events are kept in a queue associated with 
the task on which the event is based on, and stored as the 
CPU_Time_Timed_Event_Queue in the task control block. 
Every time a new thread gets the CPU, the events at the 
head of the standard-time events queue and of the running 
task´s CPU_Time_Timed_Event_Queue queue are compa-
red. The hardware timer is programmed to expire at the 
most urgent of the two. 

Events based on group clocks are special CPU-time events 
that “jump” between the CPU_Time_Timed_Event_Queue 
of the threads in the group. Each time the system schedules 
a task included in a thread set that has an event associated, 
the following actions are performed in the Do_Scheduling 
internal kernel operation: 

   - - Set CPU_Time of the event according to the 
   - - time consumed by T 
   T.Set.Group_TE_Ac.CPU_Time :=  
       T.Used_CPU_Time +  
      (T.Set.Group_TE_Ac.Group_Expiration_Time - 
       T.Set.Consumed_Time); 
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    - - Move Group_TE_Ac from one task to another 
   if T.Set.Group_TE_Ac.Task_Where_Queued /= null 
   then 
      - - Dequeue from the list it was queued 
      Dequeue (T.Set.Group_TE_Ac, 
            T.Set.Group_TE_Ac.Task_Where_Queued. 
            CPU_Time_TEs_Q); 
   end if; 
   - - Enqueue in T's list 
   Enqueue_In_Order (T.Set.Group_TE_Ac, 
            T.CPU_Time_TEs_Q); 
   T.Set.Group_TE_Ac.Task_Where_Queued := T; 

Dequeue and enqueue operations are very fast, because the 
number of CPU-time events associated to a task usually 
will be very small, either one or two: a CPU-time event and 
a “group event”. Consequently the number of extra 
operations required at each context switch to manage these 
clocks is kept small, and the implementation can efficiently 
schedule the threads with an acceptable overhead, as can be 
seen in the following performance metrics section. 

6   Performance metrics 
The support for group budgets has already been 
implemented in MaRTE OS. Execution time accounting 
introduces a small overhead: enabling this service in 
MaRTE OS increments the context switch time by less than 
5%. Group execution time accounting increments the 
context switch time by another 4%, representing a total of 
9% increment with respect to a system with no CPU-time 
accounting in an x86 architecture.  

The overheads of the budget overrun detection are also 
relatively small. Table 1 shows a comparison of the 
overheads of two detection mechanisms, as measured in a 
3.4GHz Pentium IV. The first one is implemented using a 
regular POSIX timer that sends a signal when the budget 
expires, and a handler thread that blocks waiting to accept 
the signal. The second mechanism is implemented using 
the new timed handler service. We can see that the 
overhead of the second mechanism is much smaller. 

Table 1   Overhead of budget overrun notification mechanism 

Time (⎧s) Time (⎧s) 
Metric (using timer and (using timed 
 auxiliary thread) handlers) 

From user´s thread to 1.1 0.4 
handler 

From handler to user´s 0.8 0.7 
thread  

Total time: 1.9 1.1 

 

7   Conclusion 
As the complexity of real-time systems evolves, 
hierarchical scheduling and partitioning are mechanisms 

used to cope with it, by helping in establishing protection 
boundaries and easing the composability of independently-
developed application components. One of the 
requirements of this partitioning is the time protection 
among the different groups of tasks in the hierarchy, which 
can be achieved by using thread group budgets as those 
specified in the new Ada 2005 standard. 

This paper has presented an implementation of the support 
needed to provide such budgeting services in a real-time 
operating system called MaRTE OS. The paper describes 
the architecture and details of the implementation, together 
with the rationale for the main design decisions, so that this 
information can be used by other implementers of this 
functionality, either as part of Ada run-time systems, or as 
part of a general-purpose RTOS. The implementation has 
proven to be straightforward, and the overheads introduced 
are small, both in the context switch times and in the 
budget overrun notification mechanism. 

As future work, the functionality defined in Ada 2005 for 
group budgets will be implemented. It is anticipated that 
support for the Ada group budgets will be a simple package 
built on top of the MaRTE OS implementation described in 
this paper. 
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Session: Beyond Ada 2005 
Chair: Jorge Real 
Rapporteur: Stephen Michell 
 

1   Session Goals : 
To consider future directions in computing, and what 
changes would be required for Ada to effectively use new 
features.   

Related Papers  

1. Beyond Ada2005: Allocating Tasks to Processors in 
SMP Systems; A.J.Wellings and A. Burns. 

2. Suggestions for Stream Based Parallel Systems in Ada; 
M. Ward and N.C. Audsley  

2   Stream-Based Parallelism 
Neil Audsley gave a look at a possible future in 
computation based on massive parallel architectures. The 
presentation began with current architectures, including  

a) single CPU with L1, L2 cache and memory, and 

b) double CPU with L1, L2 cache and memory, 
cache coherence at L2 memories 

The presentation noted that these architectures are 
unscalable beyond a few (4-6) CPUs, because the 
replication of processors (CPU) on each chip, separation of 
L2 cache onto dedicated chips, distances and switching 
speeds of circuits when using multiple chips increase delays 
and power requirements. 

An alternative view was presented that was called “System 
on a chip". Such a system has: 

• Heterogeneous CPUs,   

• Non uniform memory,   

• Special devices. 

It is expected that this will soon be followed by "Network 
on a chip", which consists of: 

• Multiple systems-on-chip connected by networks 

• No common notion of time 

• Packet switched network 

An example of such a system has been developed by the 
authors, that amounts to "Field Programmable System on a 
chip". Such a system is highly reprogrammable and can be 
reprogrammed in milliseconds, using an almost Ravenscar 
compliant system. 

The authors identified some issues for the Ravenscar 
Tasking Profile. 

Open Issue 1.1: Lack of a shared lock for Protected 
Entries 

This was expressed as Ravenscar's restriction to a single 
entry per protected object or a single caller task per entry, 
but discussion highlighted that the problem is fundamental 
in Ada's specification of protected operations. 

Protected functions in Ada permit a shared access to a 
protected object, but lack any synchronization. Protected 
entries provide synchronization, but lack the ability for a 
collective release of waiting tasks and each released task 
maintains a sequential lock. The need in highly parallel 
systems is to release collections of tasks that will read their 
dedicated data and not update protected data, hence 
behaving as a function once released. 

The Ravenscar restrictions of a single entry and a single 
queue element per entry exacerbate this problem. It was 
agreed that this was a problem that requires a proposal to 
the Ada Rapporteur Group to solve these issues. Solutions 
could resemble a pragma Simultaneous_Release, or the 
addition of functions that block to protected objects. 

The workshop agreed that this deserved further study. 

2   Synchronous Multiprocessing 
Andy Wellings presented a summary of the paper “Beyond 
Ada2005: Allocating Tasks to Processors in SMP Systems” 
and then lead a discussion on the topic through an 
interactive slide presentation. The paper, presentation and 
discussion assume a model of a shared memory 
multiprocessor environment and additions required for Ada 
2005 to better support such an environment.  

The author noted that Ada nominally addresses the 
multiprocessor environment, but assumes that there is an 
OS-level or implementation-level of support that simplifies 
the view of multiprocessing to make it seamless. 
Specifically, the paper notes that Ada is currently silent on 
how the runtime maps tasks to specific processors, and 
proposes the use of pragmas to let an application guide 
such mappings. 

The authors claim that better schedulability can be obtained 
by supporting static allocation of tasks to CPUs. They also 
claim that the approach is not scalable to multicore 
architectures that are Non Uniform Memory Access 
(NUMA). The authors also note that there is still no 
standardization of support for SMP in OS community, 
which affects any choices that Ada makes because Ada 
implementations may rely upon services that are not 
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supplied, or may make choices that differ significantly 
from those eventually chosen by an OS. The challenge is to 
provide set of mechanisms that can be both expressive 
enough to support a wide range of application 
requirements, yet be implemented on a wide range of OS's. 

Platform variability is a very significant issue for 
multiprocessor systems. An assumption is made that a 
concurrent program running on a SMP system will often 
not be the only program executing, that the hardware 
resources available to it will not be constant throughout the 
execution of a single execution, and that some processors 
may have capabilities or interfaces that are not available to 
other processors. 

For example,   

a) An underlying operating system may dynamically 
change set of processors allocated to a program 
during execution and may or may not inform the 
executing program of such changes.   

b) There may be hardware registers, interfaces to the 
external environment or interrupts available to 
some processors but not to all.  

It is hoped that such changes would be done in a safe 
manner, but at present there is no language mechanism to 
manage these issues. The workshop decided that the 
minimal level of support that a program requires is to be 
able to determine how many processors are available to it. 
A proposed Ada service is shown in paper [1].  

Another issue raised was that Ada 2005’s support of task 
groups should interoperate with processor affinity. An 
extension of Set_Affinity to a task group would be useful. 
Another issue raised was that some aspects of memory 
maps may be processor-specific, and that ways to specify 
memory affinities should be considered. There were no 
specific set of calls proposed to provide such capability. 

Throughout the presentation and discussion, there were a 
number of “Open Issues” that were raised and discussed. 

Open Issue 2.1: Should the mapping of tasks be by-
partition?  

There was general agreement that this was the desired 
model. 

Open Issue 2.2:  Should there be Affinity Inheritance?  

There was some discussion but no strong conclusion. It was 
generally agreed that such a model would work, in that 
nested tasks would start with the same processor affinity 
and could explicitly change that affinity with a call. It was 
noted that a pragma, such as pragma priority could be used 
for static affinity control.  

Open Issue 2.3: Dispatching policies 

There was agreement that dispatching policies must be 
partition-wide. A discussion was held about specific Ada 
dispatching policies and how they would be affected by the 
SMP model.  

a) Dispatching policy FIFO_Within_Priorities 
should imply that a task can be migrated between 
its allocated processors whenever it is preempted.   

b) Dispatching policy Non_Preemptive_FIFO_With-
in_Priorities should mean that a task, once 
dispatched to a processor, will not be migrated 
from that processor while it is still executable 
(because it cannot be preempted). 

c) The meaning of the dispatching policy EDF_-
Across_Priorities is unclear if the tasks assigned 
to the priority range have a disjoint set of 
processors.    

d) This raises the need for a new dispatching policy, 
FIFO_Within_Priorities_Without_Migration, 
where a preempted task cannot be migrated from 
the processor from which it was preempted while 
it is still runnable.   

The discussion also considered the ramifications of affinity 
to scheduling policies. The ARM view of priorities states 
that high priority tasks ready for execution should always 
be executed in preference to lower priority tasks. Examples 
were given where a high priority task executing on a single 
processor (say HI with affinity {A}) could preempt a 
medium priority task (say MED on A with affinity {A, B}). 

Open Issue 2.4: Interrupt handlers, Protected Objects 
& Tasks.   

Ada's nominal mapping of interrupts is to protected objects, 
but tasks also often initiate and complete interrupt-level 
operations. If interrupts are processor-specific, there must 
be a way to map protected objects and tasks to the 
processor. An alternative procedure Set_Handler was 
proposed that would include the affinity mapping, but it 
was noted that task-processor affinity could also be a 
requirement. A further complication would result if a single 
task called 2 protected objects that had different affinities.  

The workshop decided that this was an area of interest and 
for further study. 

Open Issue 2.5: Consistent notion of time. 

Timers and relative delay were discussed and considered to 
be consistent. Absolute notions of time could be a problem, 
but should be satisfactory within a single partition. CPU 
time, however, could be problematic as processors may not 
all have the same clock speeds, and reduction or increase 
on the processor set could hinder calculations that optimize 
CPU-time. 

It was agreed that at a minimum should be standardized for 
symmetric multiprocessing with static processor 
allocations. 

Open Issue 2.6: Is it important how an OS manages 
SMP's?  

The consensus was that Ada programs sit above OS 
implementations and cannot rely upon specifics of the OS-
to-processor decisions.  
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Open Issue 2.7: Mapping Tasks to Processors: 

The next discussion considered the mapping of tasks to 
processors. There was a general consensus that the 
mapping should be task-based, as opposed to partition-
based. There was also sentiment that such a mapping 
should include mapping of data-specific regions, cache 
description and interrupts to processors. The following 
mapping choices for tasks-processors were enumerated, 

1) Task → Processor 

2) Task → {Processor} 

3) {Task} → Processor 

4) {Task} → {Processor} 

5) {Task} → {Processor} + return to same processor.  

It was agreed that the mapping proposal enumerated above 
is a reasonable beginning, but that pragmas should be 
included for the static mappings and memory mappings 
should be considered.   

The workshop noted that affinity and pre-emption can lead 
to cascading preemptions. A case in point,   

• HI on A, MED with affinity {A, B}, LOW on any. 

• HI preempts, but can't preempt LOW because LOW is 
on a processor for which HI has no affinity,   

• HI therefore preempts MED which must then preempt 
LOW.  

Other scenarios can be constructed where priority inversion 
occurs, i.e. HI preempts MED but MED cannot preempt 
LOW because MED has no affinity for the processor 
executing LOW.   

Round-robin scheduling was discussed, and it was 
concluded that as long as all tasks participating in the 
round-robin at the same priority level had identical 
processor affinities, placing a task that has just finished its 
quantum at the end of the queue for all processors in the 
affinity set would suffice.   

EDF was thought to be generally ok, but will cause 
preemption cascading. Further research is required.   

Open Issue 2.8: What happens if OS removes a 
processor?  

This is a serious issue if the processor causes significant 
perturbations in the affinity set of some tasks, such as 
giving a task a null affinity set. The call-back notification 
discussed earlier may suffice, as long as there was prior 
notification of the removal so that tasks could 
synchronously change their affinity sets. 

Open Issue 2.9: Asynchronous Task Control and 
Affinity  

There was a proposal to be able to add to 
Aynchronous_Task_Control the ability to change affinity. 
This proposal received insufficient support. 

Open Issue 2.10: Protected Objects and Processor 
Affinities.   

There are some significant issues in giving protected 
objects affinities. The requirement is clear since processor-
specific mappings such as interrupts and registers may be 
utilized with no task thread, or may be called by a task 
without affinity for the processor in question. This is most 
likely if the implementation had proxy execution of 
protected entries, and a task with the wrong processor 
affinity tried to execute a protected entry on behalf of 
another task. There is, however, no current concept of 
Protected_Object_ID similar to Task_ID to build such a 
mapping.    

It was noted that the existing Ada pragma Attach_Handler 
requires extension to include processor information where 
applicable. Similarly, a pragma to provide affinity could 
provide static affinities for protected objects.   

It was decided that this topic needed further research. 

3   Conclusions 
As the session wrapped up, it was decided to continue 
developing proposals for the next workshop, and for the 
Ada Rapporteur Group to consider as they are developed. 
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Abstract 
Ada 2005 has added no new facilities to support 
applications that want to run on multiprocessor 
systems. Following the example set by Ada 95, the 
language facilitates multi-processor implementations 
but provides no direct support for an application-
controlled mapping of tasks to processors. Such 
partitioning is often required to obtain feasible real-
time systems. This paper argues that multiprocessors 
systems are becoming so prevalent that the current 
position is no longer tenable. A proposal for minimal 
support is presented. 

1   Introduction 
Multiprocessors system are becoming more prevalent. In 
particular SMP systems are often the default platform for 
large real-time systems rather than a single processor 
system. The scheduling of processes on these systems can 
be  

1. global – all processors can execute all processes 

2. fully partitioned – each process is executed only 
by a single processor; the set of processes is 
partitioned between the set of processors 

3. mixed – each process can be executed by a subset 
of the processors; hence the tasks set may be 
partitioned into groups and each group can be 
executed on a subset of the processors. 

The Ada Reference Manual allows a program’s 
implementation to be on a multiprocessor system. 
However, it provides no direct support that allows 
programmers to partition their tasks onto the processor in 
the given system. The following ARM quotes illustrate the 
approach. 

“NOTES 1 Concurrent task execution may be 
implemented on multicomputers, multiprocessors, or 
with interleaved execution on a single physical 
processor. On the other hand, whenever an 
implementation can determine that the required 
semantic effects can be achieved when parts of the 
execution of a given task are performed by different 
physical processors acting in parallel, it may choose 
to perform them in this way.” ARM Section 9 par 
11. 

 

This simply allows multiprocessor execution and also 
allows parallel execution of a single task if it can be 
achieved, in effect, “as if executed sequentially”. 

“In a multiprocessor system, a task can be on the 
ready queues of more than one processor. At the 
extreme, if several processors share the same set of 
ready tasks, the contents of their ready queues is 
identical, and so they can be viewed as sharing one 
ready queue, and can be implemented that way. 
Thus, the dispatching model covers multi-processors 
where dispatching is implemented using a single 
ready queue, as well as those with separate 
dispatching domains.” D.2.1 par 15. 

This allows the full range of partitioning identified above. 
However, currently the only way that an implementation 
can provide the mechanisms to allow the programmers to 
partition their tasks amongst the available processors is via 
implementation-defined pragmas, or non standard library 
packages. 

This paper argues that multiprocessor systems are 
becoming so prevalent that it is now time for the language 
to provide more direct support. 

Unfortunately, as of yet, there has been no standardisation 
of support for multiprocessor systems in the operating 
system community. Hence, if Ada is being implemented on 
top of a real-time operating system, it is difficult to know 
what facilities it can rely on. Consequently, the challenge is 
to provide a set of mechanisms that can be both expressive 
enough to support a wide range of application requirements 
and yet can be implemented (possibly with degraded 
services) on a wide range of operating systems. 

This paper proposes the introduction of a new package 
System.Processor_Elements to capture the interface 
between the programmer and the underlying system’s 
multiprocessor architecture. A new pragma, Affinity is also 
introduced. The focus is on support for SMP (Symmetric 
MultiProcessor) Systems. 

The paper is structured as follows. In Section 2 we present 
the main motivations for wanting to provide more explicit 
support for multiprocessor systems. In Section 3 we briefly 
review the support that has been discussed or provided by 
current operating systems. Drawing on this work, we then 
present (in Section 4) some initial thoughts on how to  
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integrate multiprocessor support into Ada. Finally we 
present our conclusions. 

2   Motivation 
Whilst many applications do not need more control over 
the mapping of tasks to processors in an SMP environment, 
there are occasions when such control is important. They 
include: 

• To allow more flexible approaches to scheduling. – 
Although the state of the art in schedulability analysis 
for multiprocessor systems continues to advance [2], the 
current state is such that partitioned systems offer more 
guaranteed schedulability than global systems. Quoting 
from [3]: 

“The choice between global and partitioned approaches 
to multiprocessor scheduling is a conundrum. Setting 
aside pragmatic questions about queue contention 
overhead and differences in cache behavior, the 
theoretical results are equivocal. 

In favor of global scheduling, it has long been known 
from queueing theory that single-queue (global) FIFO 
multiprocessor scheduling is superior to queue-per-
processor (partitioned) FIFO scheduling, with respect to 
average response time. 

Apparently in favor of partitioned scheduling, the 
application of well-known single processor scheduling 
algorithms appears superior to the global application of 
those same algorithms for some task sets with hard-
deadlines. 

For example, it is known that all periodic implicit-
deadline task sets with utilization below m(21/2 −1) can 
be scheduled on m processors using a first-fit-
decreasing-utilization (FFDU) partitioning algorithm 
and and local rate monotonic scheduling, but Dhall’s 
example shows that there are hard-deadline periodic 
task sets with total utilization arbitrarily close to 1.0 that 
cannot meet all deadlines if scheduled on m processors 
using global rate monotonic scheduling. 

Dhall’s example also applies to global EDF scheduling, 
yet FFDU partitioned EDF scheduling is guaranteed up 
to utilization (m + 1)/2. However, the supposed 
advantage of partitioned scheduling above disappears if 
one considers hybrid global priority schemes. The Dhall 
example can easily be handled by the EDF − U S(1/2) 
or EDF(kmin) schemes, in which top priority is given to 
a few ”heavy” tasks, as can any implicit deadline 
sporadic task system with utilization up to (m+1)/2. 
This is exactly the same bound as for FFDU partitioned 
scheduling! 

The experiments we performed on large numbers of 
pseudo-randomly generated task sets were intended to 
provide some additional evidence on which to base a 
choice between these two approaches. From those 
experiments, statistically, the chance of being able to 
satisfy all the deadlines of a randomly chosen periodic 
or sporadic task set appears to be highest with 

partitioned scheduling. In particular, the partitioned 
EDF scheduling appeared to be the overall best 
performer in this statistical sense. At the same time, 
there are certainly specific task sets where global 
scheduling is more effective. 

While the schedulability tests used in the experiments 
probably could be improved, it remains unclear whether 
they can be improved enough to erase the statistical 
margin of partitioned scheduling with the available 
schedulability tests.” 

• To support temporal isolation. – Where an application 
consists of tasks of mixed criticality level, some form of 
protection between the different levels is required. The 
strict typing model of Ada provides a strong degree of 
protection in the spatial domain. The CPU budgeting 
facility provides a limited form of temporal protection 
but at the expense of flexibility. More flexible temporal 
protection is obtainable by allowing tasks in each 
criticality level to be executed on partitions of the 
processor set. 

• To obtain performance benefits. – For example, 
dedicating one CPU to a particular process will ensure 
maximum execution speed for that process. Restricting 
a process to run on a single CPU also prevents the 
performance cost caused by the cache invalidation that 
occurs when a process ceases to execute on one CPU 
and then recommences execution on a different CPU 
[4]. 

• To be able to respond to dynamic changes to the 
processor set. – In a parallel computing environment the 
set of processors allocated to an application may vary 
depending on the global state of the system. An 
application may be able to optimize its algorithms if it 
is informed when these changes in the processor set 
occur. 

One of the application areas where use of Ada remains 
strong is in high-integrity systems. It is important to 
anticipate how the requirements on these systems will 
change over the coming years so that we can ensure that 
Ada remains competitive. 

Currently there is limited use of general multiprocessor 
shared memory systems in Safety Critical Systems. 
Traditionally, where multiprocessors are required they are 
used in a distributed processing mode: with boards or boxes 
interconnected by communications busses, and bandwidth 
allocation, and the timing of message transfers etc carefully 
managed. This “hard” partitioning simplified certification 
and testing since one application cannot affect another 
except through well-defined interfaces. More recently, 
there has been a move towards more integrated distributed 
systems where functions are more distributed across a 
single computing infrastructure (e.g. Integrated Modular 
Avionics). The goal of this approach is to save space and 
weight, reduce wiring, provide cheaper fault toleranc and 
reduce overall costs. Partitioning here is “softer” and is 
supported by a combination of hardware and software 
techniques (e.g. memory management support to protect 
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address spaces, some form of CPU budgeting to enforce 
temporal firewalls, and TDMA on the network). 

There has been some use of shared memory modules 
between processors but access to these memory modules 
are very restricted and typically only used to coordinate 
computational activity. Where it has been necessary to use 
an SMP, only one processor has been enabled[1].  

However, there is evidence that future systems will use 
SMP. For example, the LynxSecure Separation Kernel has 
recently been announced. The following is taken verbatim 
from their web site1: 

• Optimal security and safety – the only operating system 
to support CC EAL-7 and DO-178B level A  

• Real time – time-space partitioned real-time operating 
system for superior determinism and performance 

• Virtualization technology – supports multiple 
heterogeneous operating system environments on the 
same physical hardware 

• Highly scalable – supports Symmetric MultiProcessing 
(SMP) and 64-bit addressing for high-end scalability 

• Support for open standards – supports 100% binary 
compatibility for Linux or POSIX-based software 
application to migrate to a highly robust, secure 
environment 

• Faster time to market – enables developers to begin 
early development for secure applications 

This work has been undertaken by Intel and LynuxWorks 
to demonstrate the MILS (Multiple Independent Levels of 
Security/Safety) architecture2. 

3   Review 
Although POSIX currently does not provide specific 
support for SMP systems, the issue has been raised [5]. 
POSIX.1 defines the ”Scheduling Allocation Domain” as 
the set of processors on which an individual thread can be 
scheduled at any given time. POSIX states that [6]: 

• “For application threads with scheduling allocation 
domains of size equal to one, the scheduling rules 
defined for SCHED FIFO and SCHED RR shall be 
used;” 

• “For application threads with scheduling allocation 
domains of size greater than one, the rules defined for 
SCHED FIFO, SCHED RR, and SCHED SPORADIC 
shall be used in an implementation-defined manner.” 

• “The choice of scheduling allocation domain size and 
the level of application control over scheduling 
allocation domains is implementation-defined. 
Conforming implementations may change the size of 

                                                           
1 http://www.lynuxworks.com/rtos/secure-rtos-kernel.php. 
2 See http://www.intel.com/technology/itj/2006/v10i3/5-communicat-
ions/6-safety-critical.htm. 

scheduling allocation domains and the binding of 
threads to scheduling allocation domains at any time.” 

With this approach, it is only possible to write strictly 
conforming applications with real-time scheduling 
requirements for single-processor systems. If an SMP 
platform is used, there is no portable way to specify a 
partitioning between threads and processors. 

Additional APIs have been proposed but currently these 
have not been standardized. The approach has been to set 
the initial allocation domain of a thread as part of its 
thread-creation attributes. The proposal is only draft and so 
no decision has been taken on whether to support 
dynamically changing the allocation domain. 

Since Kernel version 2.5.8, Linux has provided support for 
SMP systems [4] via the notion of CPU affinity. Each 
process in the system can have its CPU affinity set 
according to a CPU affinity mask. A process’s CPU affinity 
mask determines the set of CPUs on which it is eligible to 
run. 

   #include <sched.h> 
 
   int sched_setaffinity(pid_t pid, 
        unsigned int cpusetsize, 
        cpu_set_t *mask); 
 
   int sched_getaffinity(pid_t pid, 
        unsigned int cpusetsize, 
        cpu_set_t *mask); 
 
   void CPU_CLR(int cpu, cpu_set_t *set); 
 
   int CPU_ISSET(int cpu, cpu_set_t *set); 
 
   void CPU_SET(int cpu, cpu_set_t *set); 
 
   void CPU_ZERO(cpu_set_t *set); 
 
A CPU affinity mask is represented by the cpu_set_t 
structure, a “CPU set”, pointed to by the mask. Four 
macros are provided to manipulate CPU sets. CPU_ZERO 
clears a set. CPU_SET and CPU_CLR respectively add and 
remove a given CPU from a set. CPU_ISSET tests to see if 
a CPU is part of the set. The first available CPU on the 
system corresponds to a cpu value of 0, the next CPU 
corresponds to a cpu value of 1, and so on. A constant 
CPU_SETSIZE (1024) specifies a value one greater than 
the maximum CPU number that can be stored in a CPU set. 

sched_setaffinity sets the CPU affinity mask of the process 
whose ID is pid to the value specified by mask. 

If the process specified by pid is not currently running on 
one of the CPUs specified in mask, then that process is 
migrated to one of the CPUs specified in mask. 

sched_getaffinity allows the current mask to be obtained. 

An error is returned if the affinity bitmask mask contains 
no processors that are physically on the system, or 
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cpusetsize is smaller than the size of the affinity mask 
used by the kernel. 

The affinity mask is actually a per-thread attribute that can 
be adjusted independently for each of the threads in a 
thread group. The value returned from a call to gettid (get 
thread id) can be passed in the argument pid. 

Other operating systems provide slightly different facilities. 
For example IBM’s AIX allows a kernel thread to be bound 
to a particular processor3. Further more, the set of 
processors (and the amount of memory) allocated to a 
partition in AIX can change dynamically. In AIX a 
partition appears to be a subset of resources allocated to a 
particular subsystem. 

The Expert Group responsible of development of the Real-
Time Specification for Java (JSR 282) is also considering 
the appropriate level to support SMP systems. The proposal 
given here is compatible with their current view. 

4   Proposal 
In the general case, the following may be supported by the 
underlying platform (operating system and hardware). 

1. An application program may be allocated (by the 
operating system) the full set of the processors in 
the system or only a subset of them. An initial 
allocation is performed at the start of program 
execution time. 

2. The operating system may only support global 
scheduling of threads or it may allow threads to be 
constrained to one or more processors in the set 
allocated to the program. 

3. The operating systems may dynamically change 
the allocation of processors allocated to a program 
during the program’s execution. If it does this, it is 
done in a safe manner. 

4. Mechanisms may be provided by the operating 
system to inform the application (if the operating 
system supports task to processor allocation) or 
they may not (if it only supports global 
scheduling).  

From an Ada perspective, there are two possible 
approaches to supporting task to processor allocation: 

1. associate Ada partitions with processor sets 

2. associate individual tasks with processor sets 

We use the latter approach, as partitions in Ada are more a 
unit of distribution (or at least implies that each partition 
executes in a separate address space) and are not first class 
entities. Here, we are concerned with entities that share 
memory. Hence the mechanisms we define here are on a 
per partition basis and we allow tasks to set their processor 
affinity. 

                                                           
3 See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/-
com.ibm.aix.basetechref/doc/basetrf1/bindprocessor.htm 

The mechanisms supported by the proposed package (see 
Figure 1) have been designed with the constraints that 
should degrade if the program is executing 

1. on a single processor system 

2. under an operating system which imposes a global 
partitioning approach. 

3. under an operating system that does not change 
the processor set allocated to a program. 

The minimum functionality is for the operating system to 
allow an Ada program to determine how many processors 
are available to it. 

The API allows for systems that support the dynamic 
addition and removal of processors from the set allocated to 
the program. If an operating system does not support this 
facility then the set will not dynamically change. An 
operating system is also allowed to maintain a set of logical 
processors allocated to the program and to transparently 
change its logical to physical mapping. Again, from the 
Ada programs perspective the set has not changed. 
However, it should be noted that this may have an impact 
on the application if a) it is handling interrupts directly on 
the processor or b) if the change undermines any feasibility 
analysis assumptions. For many Ada applications this may 
not be a problem. In all of the above circumstances 
Dynamic_Set_Changes_ Supported is set to False in the 
following package. 

If the operating system does support dynamic changes to 
the processor set, the assumption is that it will inform the 
Ada program of the changes (e.g. via a signal). The Ada 
run-time system will pass this information to the 
application via the calling of a protected procedure. In this 
circumstances, Dynamic_Set_Changes_Supported is set to 
True. 

The assumption is that the application will maintain its own 
list of which tasks are mapped to which processors (logical 
or physical). It will then undertake whatever 
reconfiguration it deems appropriate.  

If a processor fails and the platform cannot transparently 
recover, the Ada program abnormally ends (with assumed 
fail stop semantics). Any recovery must be performed 
outside of the Ada program. This is because a processor 
failure can leave the application in an inconsistent state 
(e.g. with a corrupted heap) from which it is unlikely to be 
able to recover. 

The API supports the setting of the affinity tasks by the 
programmer. If the operating system doesn’t support this 
facility then all of the associated operations, raise the 
Unsupported_Operation exception, and Processor_ Affinity_ 
Supported is set to False. 

The full API is shown in the AFigure 1, annotated with the 
semantics of the subprograms. For convenience, the affinity 
mask is shown as a boolean array. In practice, a more 
efficient representation of the affinity mask would be 
needed. 
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with Ada.Task_Identification; use Ada.Task_Identification; 
package System.Processor_Elements is 

Affinity_Error : exception; 
Unsupported_Operation : exception; 
 
type Processors is range 0 .. <<implementation-defined>>; 
- - The number of processors available on this system. 
- - Each processor has a logical Id in the range. 
- - On a single processor system, the range is 0..0 
 
type Processor_Set is array(Processors) of Boolean; 
- - A set of processors. A boolean set to True, indicates 
- - that the logical processor is included in the set 
 
function Available_Processors return Processor_Set; 
- - Indicates which of the processors in the system are 
- - current available to the program. In some 
- - systems this will never change, others it may. 
 
Dynamic_Set_Changes_Supported : constant Boolean := <<implementation-defined>>; 
- - Indicates if the current system might dynamically change the 
- - Available_Processor set 
 
Processor_Affinity_Supported : constant Boolean := <<implementation-defined>>; 
- - Indicates whether the system allows a task’s affinity to be 
- - set by the programmer 
 
function Set_Default_Affinity(Processors: Processor_Set) return Processor_Set; 
- - Raises Unsupported_Operation if Processor_Affinity_Supported = False 
- - Raise Affinity_Error if Processors is incompatible with Available_Processors 
 
function Get_Default_Affinity return Processor_Set; 
- - The default affinity is the set of processors that can 
- - execute a newly created task. The initial system default is 
- - the set returned from Available_Processors, i.e. global 
- - scheduling on any of the processors available to the system. 
- - If Processor_Affinity_Supported = False, then this always 
- - returns Available_Processors 
 
function Set_Affinity(Processors : Processor_Set; TID :Task_Id := Current_Task) 
return Processor_Set; 
- - Sets the affinity for a particular task. 
- - Raises Unsupported_Operation if Processor_Affinity_Supported = False 
- - Raises Affinity_Error if Processors is in conflict with Available_Processors 
- - The new affinity is set immediately if the task is not executable. 
- - If it is current executable, 
- - the new affinity is set when the task next becomes non-executable 
- - Returns the old set allocated??? 
 
function Get_Affinity(TID :Task_Id := Current_Task) return Processor_Set; 
- - Returns the current affinity of the task 
 
type Change_Handler is access protected procedure(Processor : Processor_Set); 
 
procedure Set_Available_Processor_Changed_Handler( 
New_Handler : in Change_Handler; Old_handler : out Change_Handler); 
- - Raises Unsupported_Operation if Dynamic_Set_Changes_Supported = False 
- - If the system allows processors to be added to or subtracted 
- - from the Available_Processors, then the program can request 
- - notification of these changes via a call to a protected 
- - procedure. Here a new call of Set_Available_Processor_Changed_Handler 
- - overwrites any previous call. Whenever a change occurs, the 
- - system calls the last set handler. 

end System_Processor_Elements; 

Figure 1   Proposed API
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Open Issues 

• Defaults – The current proposal has default affinity 
arrays. In Ada, the default priority of a task is the same 
as its parent, and a pragma is defined to allow the 
priority to be set at task creation time. Hence, a pragma 
such as pragma Set_Affinity(Mask’Access) could be 
provided. 

• Dispatching Policies – Where a task can be executed on 
more than one processor it may be appropriate to define 
a new dispatching policy to obtain efficient use of 
caching. For example, the current policies could be 
extended and a new one added as follows: 

- FIFO_Within_Priorities. With this policy, a 
task can be migrated between its allocated 
processors whenever it is preempted. 

- Non_Preemptive_FIFO_Within_Priorities.With 
this policy, a task once dispatched  to a 
processor will not be migrated from that 
processor whilst it is still executable. 
Furthermore, it cannot be preempted. 

- FIFO_Within_Priorities_Without_Migration. A 
new policy, a preempted task cannot be 
migrated from the processor from which it 
was preempted whilst it is still runnable. 

- EDF_Across_Priorities. It is not clear what 
this policy means if the tasks assigned to the 
priority range can be executed on a possible 
disjoint set of processors. 

 
• Interrupt handling – Some SMPs allow the affinity of 

an IRQ to be set. Hence, certain interrupt handlers can 
only run on that processor set (e.g. on Red-hat linux 
/proc/irq/IRQ#/smp affinity specifies which target 
CPUs are permitted for a given IRQ (Interrupt ReQuest 
line) source). An alternative version of the 
Attach_Handler pragma could be provided to allow the 
mask to be set. Also a new subprogram in 
Ada.Interrupts could allow the mask to be set in the 
dynamic case. 

• Asynchronous task control – The current definition of 
Ada.Asynchronous_Task_Control seems to work 
adequately for the multiprocessor case. However, 
setting the affinity of a task to be “no processors” also 
needs to be considered in this context. In particularly 
when it is waiting at an accept/select statement. 

• Current Processor – A mechanism may be needed for a 
task to determine the actual processor upon which it is 
currently executing. Such a facility could be provided in 
the above package. 

5   Conclusions 
Historically, Ada has always taken a neutral position on 
multiprocessor implementations. On the one hand, it tries to 
define its semantics so that they are valid on a 
multiprocessor. On the other hand, it provides no direct 
support for allowing a task set to be partitioned. This paper 
has argued that multiprocessors are becoming more 
ubiquitous, and that there are advantages to be gained by 
allowing the program more control over which task 
executes where. Unfortunately the POSIX standards do not 
currently address this issue, and consequently it is difficult 
to know what mechanisms Ada can rely on existing in the 
underlying execution platform. Consequently, the paper has 
proposed an API which can gracefully degrade according to 
the facilities provided. 
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Abstract 
Ada provides good support for the implementation of 
dependable, real-time, control systems. However, its 
support for other styles of systems is not as good. This 
paper explores the support available for 
implementing parallel, stream based systems. The 
paper presents an implementation of an image 
manipulation system which highlights deficiencies in 
the support for such systems in the Ada language. 
Two additional semantics are proposed for addition 
to the Ada language which will provide for the needs 
of these systems. The broadcast semantic allows the 
same data to be written to several POs 
simultaneously. The guarded protected function 
semantic permits several readers to wait on an entry 
and simultaneously read data from the PO. 

1   Motivation 
The Ada language [1] has found a niche in the 
implementation of dependable real-time systems. This has 
traditionally revolved around the use of periodic tasks to 
implement control systems. However, there are other styles 
of system that would benefit from the various attributes that 
Ada offers. The main advantages of Ada are its support for 
real-time systems, and its support for concurrency within 
its semantics. This paper looks at the effects of trying to 
implement dependable, stream based, parallel systems in 
the Ada language. These have high performance demands, 
and require substantial support for efficient 
implementation. 

This paper is presented in two parts: the experience of 
using Ada to implement such a system; and suggestions to 
improve the language support for them. Section 2 presents 
an overview of the implementation of an image 
manipulation system. This covers the motivation for 
moving away from the traditional implementation method, 
through the ideal solution, and the changes required to 
allow it to be programmed in Ada, to a description of the 
final system. Section 3 contains suggestions for additions to 
the Ada language to provide for the needs of such systems 
that are not supported within the language. 

2   The Image Manipulation System 
Image manipulation systems work on video streams in real-
time. With both source and output streams, the system 

applies a transformation to the streams. These can be 
simple, pixel-based, manipulations (e.g. greyscale, sharpen, 
edge detect), or a more complex, frame-based, 
transformations (e.g. image warping or morphing). Whilst 
frame based manipulations need more buffering than pixel 
based ones, their implementation is similar. 

The traditional approach to the implementation of these 
systems uses graphical libraries implemented on a 
processor. The processor can be either a general purpose 
processor or a graphics specific processor which provides 
support for common graphical functionality. In the general 
case, these techniques provide ample performance for most 
image processing techniques. However, the use of these 
techniques for dependable systems raises a number of 
issues. 

A dependable system needs to be proved to be correct to its 
specification. This requires analysis of both the 
functionality of the system, as well as its timeliness 
(amongst other things). The traditional implementation 
techniques fall foul of these needs: 

• General purpose processors have good best case 
performance, but due to the architectural features to do 
this, have poor worst case performance. This limits the 
available processing power and restricts the overall 
system performance. 

• Specific processors generally do not have the same 
amount of evidence to prove they are correct that a 
general purpose processor will have. Though due to the 
specific instructions they have less need of architectural 
speed up features. 

• Graphics libraries are not written for dependability, 
generally they are written for speed. This makes 
proving them correct difficult, especially when their 
size is considered. 

As such, high-performance dependable image manipulation 
systems are difficult to build. This makes high resolution, 
high frame-rate image manipulations difficult to do with 
traditional implementation techniques. This produces a 
need for a different implementation technique. 

2.1   The Problem 
The problem arose from a request by BAE Systems to 
implement a dependable image manipulation system 
capable of dealing with high-resolution, high-refresh video 
streams. The system had to be dependable, preferably using 
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Ada as limited by the SPARK [2] and Ravenscar [3] 
subsets. The use of Ada will allow reuse of existing 
software code. In addition to this, the system needed 
minimal delay on the output stream. The initial 
demonstration of this system should be an image warping 
application (e.g. correcting imperfect optics or pre-
distortion for display on shaped surfaces). 

2.2   Solution Suggestion 
A block diagram of the initial suggested solution can be 
found in figure 1. This solution relies on parallelism to 
provide the processing power to perform the 
transformations. As the manipulation is to be done on a 
frame by frame basis, the video stream is first read into a 
screen buffer. To provide for multiple accesses this buffer 
is replicated a number of times dependant on the needs of 
the application. This can be a replication of the entire 
buffer, or buffers that each contain part of the image. The 
image processing is undertaken by a number of parallel 
tasks. Each task is responsible for part of the output image, 
and can access any of the input buffers that it needs to. The 
generated image is collected in a single output buffer (since 
each pixel is only written once), and this is used to generate 
the output video stream. It is intended that the system 
would be implemented on FPGA using YHAC to generate 
the circuits from Ada source code, giving a truly parallel 
solution. 

2.3   YHAC 
The York Hardware Ada Compiler (YHAC) [4, 5, 6] 
allows Ada programs to be targeted directly to hardware. 
Using the SPARK subset and Ravenscar tasking profile 
gives a static language, which can be transformed to 
hardware. The compilation process uses template 
instantiation over the statements within the program. The 
templates build up to form a hardwired state-machine 
which controls the program flow Expressions are built up 
in a similar manner to produce expression trees. Complex 
expressions are split to allow multi-cycle evaluation. 
Concurrency is implemented using separate circuits, 
providing a truly parallel implementation. The only 
interference experienced by a task is over access to shared 
data. 

In the domain of dependable and real-time systems, 
implementation via YHAC has several advantages:  

• The produced circuit is traceable back to the source 
code. 

• The program is implemented as a circuit, meaning there 
are no hardware bottlenecks, which need no 
architectural speed-up features. 

• The final circuit can be easily analysed for resource 
usage. As the circuit is built up by template 
instantiation, analysis can be done from the source 
code. This covers both its space utilisation on the 
FPGA, and the timing of the program. 

• Provides performance equivalent to a mid-range 
processor for single threaded applications.  

 
Figure 1   Diagram of the initial solution 

• Concurrent applications get a significant performance 
boost due to parallelism. No longer sharing single 
processing resource reduces the level of inter-task 
interference. 

• Designed to give the same semantics for all code in 
hardware as software. Ignores some implementation 
techniques (e.g. suspension objects) to maintain this 
consistency. 

2.4   Solution 
The solution presented above has several problems: 

• There is no broadcast semantic in Ada. This makes 
filling multiple buffers difficult. Cannot broadcast the 
data to multiple POs, which needs more time per input 
pixel, but the timing of the video stream is fixed.  

• There is no way to simultaneously release multiple 
tasks. Whilst entry queues allow multiple releases, these 
cannot happen simultaneously (each task has to enter 
the PO in turn). The Ravenscar profile exacerbates this 
problem as it outlaws entry queues. 

• Working with video streams requires accurate timing in 
the circuit to ensure no pixels are lost. Whilst YHAC 
allows timing properties to be determined, it doesn’t 
give definite control over the timing. 

These problems require some changes to the original 
solution. By including dedicated hardware to interface with 
the video-streams, the lack of definite timing in YHAC is 
no longer an issue. This hardware can also handle some of 
the image pre-processing required, such as conversion of 
the data into RGB format, and clipping the input stream to 
the visible area. The buffers are also encapsulated within 
the hardware as this removes the need for a broadcast 
within Ada, and the structure of the compiler prevents the 
sharing of memory used in the buffers between dedicated 
hardware and Ada circuit. One advantage of encapsulating 
the buffers is that the accesses can be pipelined, improving 
their performance, allowing a smaller number of buffers to 
be used. The resulting change to the structure of the 
solution can be found in figure 2. 

2.5   Implementation 
The final system solution was implemented using a 
Celoxica RC203e development board. This board provides 
a Xilinx Virtex2 3000 FPGA as the logic resource, and a 
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Figure 2   Diagram of the final solution 

wide selection of interfaces, including video input and 
output. The board also provides 4MB of off chip memory. 
The drivers for all the interfaces are provided in Handel-C, 
Celoxica’s C-based hardware language. 

The implementation can be divided into two parts: the 
framework, which implements the video interfacing and 
buffering; and the application, which contains the 
transformation encoding. The implementation of these parts 
is described below: 

• Framework 
As the device drivers are written in Handel-C, the 
dedicated hardware has been implemented in the same 
language. The these read in the video stream into 
multiple double buffers. Once a frame has been put into 
the buffers, the buffers are swapped, and a signal given 
to the application to start processing on the frame. 
Whilst this is happening, the next frame is being placed 
into the other set of buffers. On the output side, the 
transmission of a frame waits for the previous frame to 
finish, at which point the buffers are swapped and the 
new frame started. This double buffering introduces a 
delay of 1 frame plus the delay in the application. This 
cannot be reduced if full frame transformations are 
being dealt with. It can be seen that the maximum 
application delay is 1 frame - if it is slower, frames will 
only be part complete when transmission commences. 
There is no synchronisation between the input and 
output streams, so there is no additional cost over the 
delay of the application. 

• Application 
The example implementation is an image warper. This 
takes a good image, and distorted it to give a fish-eyed 
image. Due to restrictions on the memory capacity on 
the board, the image is restricted to a resolution of 640 
x 480. The image processing is implemented in 9 
parallel tasks, each of which is responsible for part of 
the image. There are a number of ’helper’ POs in the 
system, an interrupt handler PO for each task which 
detects the start processing signal from the framework 
and release the tasks, and a finish detector which 
provides the signal to the framework. Each task 
implements a simple transformation, which is pre-
computed to save time in the processing. The 
transformation is done in under 1/2 frame, giving a 
delay of 1 1/2 frames overall. 

The complete system took about a month to design and 
implement. The framework took most of this time, mostly 
in altering the provided sequential access buffers mostly in 
altering the provided sequential access buffers to allow the 
random access needed by the applications, and integrating 
the Handel-C and Ada circuits. The application took about 
1 day to implement, half for application coding, the other 
half generating an acceptable transform. Due to the tool-
chains needed in targeting hardware, the compile-test-
correct cycle can take a while (a small value change still 
requires a complete re-compilation and synthesis), which 
extended the time needed to generate the transform. 
Alteration of the application is easy as the transform is 
coded algorithmically within the processing tasks. 

The implemented system only uses 15% of the resources 
available on the FPGA, leaving plenty of scope for more 
complex transforms, or faster implementations. At present, 
most of the resource is taken by the framework, with the 
application itself using about 3%. By introducing more 
tasks, a faster implementation is possible, at the cost of 
higher resource usage. Alternatively extra resource can be 
used by making the transformation more complicated. If a 
lower resource usage is needed, the number of tasks can be 
reduced and the speed dropped to give a full frame’s delay. 
The main limitation to the ultimate performance of the 
system, is the buffer throughput rate, but this can be 
increased by providing more buffers, at the cost of needing 
more memory buses on the device. 

3   Language Suggestions 
In designing the IMS, there appeared a need for two extra 
bits of functionality in the Ada language: a broadcast 
semantic, and a parallel release semantic. These are 
described below: 

3.1   Broadcast 
The broadcast semantic would allow a task to write data to 
a set of protected objects in a single call.  

It is envisioned that the protected objects being targeted 
would be declared as an array of protected objects. This 
would allow existing array syntax to be used for the 
declaration of the POs, for selection of POs within the call, 
and permits a subset of the array to be selected. This gives 
the suggested syntax as shown in figure 3. 

Two alternatives are presented for the broadcast to all 
elements of the array. The first uses the reserved word all to 
indicate that the entire array is being referenced, the second 
uses a slice that covers all elements of the array. A third, 
though discounted option would use the others keyword. 
These have their advantages and disadvantages: 

All – The reserved word all in the name.all context is an 
explicit dereference of an access type. To use the same 
syntax here would overload it to be a reference to all 
elements within the array. There is also the problem of 
what happens when the array is accessed via an access 
type. However, the use of all does convey the meaning to 
the programmer that the entire array is being accessed. 
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1    protected type po_type is 
2       procedure call(val : integer); 
3    end p type; 
4 
5    po_array : array (1..10) of po_type; 
6 
7    po_array(7).call(37);       - - single instance call 
8    po_array.all.call(25);       - - broadcast to all  

      elements of po array 
9    po_array(1..10).call(25); - - alternative broadcast  

                     to all elements of po array 
10   po_array(2..5).call(13);   - - broadcast to restricted  
             range of elements 

Figure 3 

Whole slice – Using an entire range slice maintains 
consistency in the selection of the parts of the array to use. 
There is no change in the structure of the selection, 
simplifying the compiler implementation. However, there is 
poor readability as it is not possible to tell that the entire 
array is being accessed. Similarly, if the array size is 
changed in a program, every whole slice will need to be 
changed, which does not aid program maintenance. 

Others – The others keyword could also be used to indicate 
all elements in an array. This would follow from its use in 
aggregate expressions, but does not sit well out of the 
aggregate form. In addition, it does not have the same 
readability as the other forms. 

On balance, the name.all form seems to offer the better 
balance, providing an obvious indication that the entire 
array is being accessed. 

The implementation of the broadcast semantic can fit easily 
into both concurrent and parallel system implementations. 
Within a concurrent system, the calls to the protected 
procedures in the broadcast can be done by iterating 
through the array. In a parallel system, all the accesses can 
be initiated in parallel, provided sufficient processing 
elements are available. When there aren’t enough 
processors there needs to be some iteration over the calls. 

The envisioned implementation raises a couple of issues 
with semantics of the call. Since the calls may be done 
iteratively, to preserve the atomicity of the operation, there 
are two conditions that must hold. First, the call must be 
none-blocking. As the calls are being done iteratively, a 
block will delay the later calls. Secondly, there should be 
no pre-emption between calls, that is, the entire access 
should be considered a single protected action. 

3.2   Guarded Protected Function 
A guarded protected function semantic would allow 
multiple, read-only, accesses to wait on a guard value. 
When the guard becomes true, all accesses are allowed to 
enter immediately. On completion of these accesses the 
guard is automatically reset to false. These threads must be 
read only, as multiple threads would be active in the 
protected object. This preserves the access rules for 

protected actions and effectively gives a function based 
equivalent of an entry. 

Since a guarded protected function is effectively a function 
based entry, a mix of the current function and entry call 
syntax would seem appropriate. A suggested syntax is 
shown in figure 4. The function specification follows that 
of a normal entry, with the addition of the return value type 
specification before the guard. There are two restrictions on 
the specification: the parameters to the entry can only be of 
in mode; and the guard expression must be a single boolean 
variable. The body of the entry will follow the rules of both 
functions and entries: no side-effects, that is, no change of 
PO state including the guard expression; no potentially 
blocking operations; and there must be a return statement in 
all paths through the body. The no side-effects rule 
prevents the guard from being reset inside the function, and 
hence the need for the automatic reset of the guard. 

The calling of the guarded protected function remains the 
same as any other function call. There is an issue with this 
syntax in that forcing the entry call to be a function call 
may not reflect its use.  In cases where it is used to allow 
multiple tasks to collect the same data on release, the use of 
the function call syntax is sensible. Where the only purpose 
is to effect a simultaneous release of multiple tasks (as in 
the example) the return value is not needed, but must still 
be used. Whilst this can be ignored by a compiler (a 
constant return value can be implemented as a local 
assignment after the call), it reduces the readability (and 
elegance) of the program code. However, making the call a 
procedure call would change the declaration syntax (and 
need a new reserved keyword to describe it) and require 
that out mode parameters be allowed. This is to allow data 
to be returned from the call, which also means that 
assignment to local parameters needs to be permitted, 
making the no side-effects rule harder to enforce. 

An alternative syntax to that proposed in figure 4 would 
make no change to the syntax of the language. As 
mentioned above, the guarded function is a function-based 
equivalent of an entry. By changing the concept from a 
function call to a parallel entry call, it can be implemented 
without a syntax change. Restricting an entry to have only 
out mode parameters, a simple guard variable, and no side-
effects would allow parallel access to it. The requirement 
for such an entry to be used as a parallel entry could be 
indicated using a pragma. This pragma would indicate to 
the compiler that this entry could be accessed in parallel, 
that the entry needed to be checked for conformity to the 
above requirements, and that the guard variable needed to 
be automatically reset. Whilst this does not require 
additional language syntax, it overloads the entry syntax 
with a different semantic, which could cause issues with 
readability and maintainability. 

Again, this new semantic can be implemented in both 
parallel and concurrent systems. Within a parallel system, 
the readers are allowed access as soon as the protected 
procedure that set the guard to true completes. Since they 
are only reading the data within the PO, this can be done 
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1     protected type po_type is 
2        function par_entry return integer when allow_entry; 
3        procedure release; 
4     private 
5        allow_entry : boolean := false; 
6     end po_type; 
7 
8     protected body po_type is 
9        function par_entry return integer when allow_entry is 
10      begin 
11         return 0; 
12      end par_entry; 
13      procedure release is 
14      begin 
15         allow_entry := true; 
16      end release; 
17   end po_type; 
18 
19   task waiter is 
20      null : integer 
21    begin 
22      while true 
23         null := par_entry; 
24             - - do something 
25       end while; 
26    end waiter; 

Figure 4 

without violating the protection rules. Once the final reader 
has left the PO, and the protected action completes, the 
guard value is reset to false (hence the requirement that it 
be a single variable). The concurrent implementation 
cannot have all the accesses happening at once, so they 
must be allowed to happen one after the other, all within 
the same protected action, and with the completion of the 
last access causing the guard variable to be reset to false. In 
this way it behaves in similarly to a ”last one out closes the 
door” implementation on an entry queue. In both these 
implementations, the resetting of the guard occurs as a 
result of the completion of the protected action that sets it. 
This allows for a simple definition of the semantics. 

Both the suggestions for the guarded protected function 
semantic have used an automatic return of the guard to 
false after all the waiting calls have completed. This can be 
considered poor deign, as it hides some semantics of the 
call. An alternative solution would be to leave the resetting 
of the guard variable to the programmer. This can be easily 
accomplished using an entry guarded by the count attribute 
of the guarded function. Leaving this to the programmer 
will give a greater flexibility, at the cost of leaving open the 
possibility of bugs caused by programming errors. 

3.3   Other Thoughts 
Both of these suggestions are related to protected objects. 
In full Ada (as opposed to Ravenscar Ada), entries exist in 
both tasks and protected objects. This raises the question of 
whether the broadcast and parallel entry semantics be 
extended to tasks. 

It would seem that a task broadcast would be a useful 
semantic to have. This would allow data to be broadcast 
directly to tasks, rather than forcing the use of POs between 
the tasks. However, the PO broadcast semantics use 
protected procedure calls, whereas the tasks only offer 
entries. Protected procedure calls, though subject to 
possible delay, are deemed to be non-blocking. Task entries 
are, however, deemed to be blocking and therefore provide 
a different semantic. As an entry call can only proceed 
when the task allows it, the broadcast can be held up by a 
single non-responsive task. 

A task can only have a single thread of control. This makes 
a parallel entry impossible to implement as the calls would 
have to be handled serially as for a normal entry queue. In 
this case, accepting the first call would require that all were 
handled without interruption until the queue was empty. Of 
course, both of these would be outside the scope of the 
Ravenscar profile. 

Finally, it should be noted that both the parallel entry and 
the broadcast can be emulated by the other, though with 
restrictions on the effectiveness of the emulation. A 
broadcast could be programmed through the parallel entry 
semantic, with the data to be broadcast being written to the 
PO and the waiting tasks allowed to read it. This provides a 
broadcast to the waiting task, any task that was wot waiting 
when the write happened would never be able to access that 
data, and would have to wait for the next broadcast. 
Similarly, the parallel entry can be emulated by 
broadcasting to multiple POs, each of which has a task 
waiting on an entry. This would allow each task to release 
once. However, the release time could not be guaranteed - 
in the parallel entry, only those tasks waiting get released; 
in the broadcast the task will release on the broadcast, or 
when it next tries to access, rather than being forced to wait 
for the next broadcast. 

4   Conclusions 
This paper has looked at the issues surrounding using Ada 
to implement a parallel stream based system. The problems 
were illustrated through the development of an Ada based 
image manipulation system. As a result of this, two 
suggestions for new language semantics as a result of 
problems encountered were presented. 

The image manipulation system, developed to meet a set of 
industrial requirements, uses Ada to implement a stream 
based, parallel, image morpher. Whilst the implemented 
solution provides a framework for efficient image 
processing, it highlighted two shortcomings in the Ada 
language. There is no facility for easily splitting an input 
stream into several buffers, nor is there the ability to 
simultaneously release multiple tasks. 

From the problems encountered in the implementation of 
the system, two new semantics have been proposed. The 
broadcast semantic will allow the same data to be written to 
multiple protected objects at the same time. The guarded 
protected function semantic provides a function based 
equivalent of an entry with the ability to release multiple 
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tasks simultaneously. Together, these would provide better 
support for parallel streaming applications. 
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Ada Gems 
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and 
related files, can be found at http://www.adacore.com/category/developers-center/gems/. 

 

Ada Gem #19 — XML streaming of 
Ada objects 
Pascal Obry, EDF R&D 
Date: 26 November 2007 
 
Let’s get started… 
Since Ada 95 it has been possible to stream any object. Using 
'Input/'Output or 'Read/'Write attributes, any object (tagged or 
not) can be streamed using a binary representation. This means 
that objects can be written into a file or sent over a socket, for 
example. 
Let’s take a simple object hierarchy to illustrate this feature. 
We’ll have a Point (x and y coordinate) and a Pixel (a Point 
with a color). 

   package Object is 
 
      type Point is tagged record 
         X, Y : Float; 
      end record; 
 
      type Color_Name is (Red, Green, Blue); 
 
      type Pixel is new Point with record 
         Color : Color_Name; 
      end record; 
   end Object; 

When writing a Point or a Pixel the first bytes in the stream are 
the tag external representation, and then the object’s attribute 
values. 

   declare 
      File : File_Type; 
      P    : Point'Class := ...; 
   begin 
      Create (File, Out_File, "streamed.data"); 
      Point'Class'Output (Text_Streams.Stream (File), P); 
      Close (File); 
   end; 

The stream will contain something like (where is the character 
hexadecimal code): 

<01> <00> <00> <00> <0C> <00> <00> <00> O B J E C T . 
P I X E L <9A> <99> <99> <3f> <66> <66> <06> <41> 
<00> 

The tag is an important part as it will be used to be able to 
create the proper object instance out of the stream. 

   P := constant Point'Class := 
          Point'Class'Input (Text_Streams.Stream (File)); 

All is well! No, there is a little missing feature. There is no 
way to control how the external tag is streamed. In fact, it is a 
string and the bounds (lower and upper) are first output into 
the stream. These bounds are plain numbers written in binary. 
In the above example we have the four first bytes for lower 
bound (equal to 1) and the four following bytes for the upper 
bound (equal to 12) then the twelve bytes for the external tag 
full name OBJECT.PIXEL. 
In Ada 95 there is no way to stream a textual representation of 
objects! 
But the good news is… Ada 2005 can do this. Ada 2005 goes 
further by adding support to control finely the external 
representation of any objects. This means that it is now 
possible to create a textual representation of such an object 
using the 'Class'Input and 'Class'Output attributes. 
Let’s put in place the missing pieces. 
First the 'Read and 'Write attributes to output or read the XML 
representation of a Point or a Pixel. 

   with Ada.Streams; 
 
   package Object is 
 
      type Point is ... 
 
      procedure Read (S : access Root_Stream_Type'Class;  
 O : out Point); 
         for Point'Read use Read; 
 
      procedure Write (S : access Root_Stream_Type'Class;  
 O : in Point); 
         for Point'Write use Write; 
 
      type Pixel is ... 
 
      procedure Read (S : access Root_Stream_Type'Class;  
 O : out Pixel); 
         for Pixel'Read use Read; 
 
      procedure Write (S : access Root_Stream_Type'Class;  
 O : in Pixel); 
         for Pixel'Write use Write; 

The Read routines could be implemented using a full featured 
XML parser like XML/Ada. For conciseness, we will use two 
very simple XML oriented routines: 

   procedure Skip_Tag 
      (S      : access Ada.Streams.Root_Stream_Type'Class; 
      Ending : in     Character := '>'); 
   - -  Skip the next tag on stream S, returns  
       when Ending is found 
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   function Get_Value 
     (S : access Ada.Streams.Root_Stream_Type'Class)     
      return String; 
   - -  Returns the current value read on stream S 

Using those routines the 'Read and 'Write implementation are 
straightforward. Here is the implementation for a Point: 

   procedure Read (S : access Root_Stream_Type'Class;  
  O : out Point) is 

   begin 
      Skip_Tag (S); O.X := Float'Value (Get_Value (S)); 
      Skip_Tag (S, ASCII.LF); 
      Skip_Tag (S); O.Y := Float'Value (Get_Value (S));  
      Skip_Tag (S, ASCII.LF); 
   end Read; 
 
   procedure Write (S : access Root_Stream_Type'Class;  

  O : in Point) is 
   begin 
      String'Write (S, "   <x>"  & Float'Image (O.X) &  
                           "</x>" & ASCII.LF); 
      String'Write (S, "   <y>"  & Float'Image (O.Y) &  
                           "</y>" & ASCII.LF); 
   end Write; 

The last missing piece is the handing of the tag. We want the 
tag to be simply: <point> and <pixel> (no bound and just the 
name of the object instead of the full name prefixed by the 
enclosing package name). To set the proper tag name we use 
the External_Tag attribute: 

   package Object is 
      type Point is ... 
      for Point'External_Tag use "point"; 
 
      type Pixel is ... 
      for Pixel'External_Tag use "pixel"; 

Then we want to plug in our own XML oriented 
implementation of the 'Class'Input and 'Class'Output 
attributes. This is necessary only for the root type Point: 

   package Object is 
 
      type Point is ... 
      for Point'External_Tag use "point"; 
 
      procedure Class_Output 
            (S : access Ada.Streams.Root_Stream_Type'Class;  
             O : in Point'Class); 
      for Point'Class'Output use Class_Output; 
 
      function Class_Input 
            (S : access Ada.Streams.Root_Stream_Type'Class)  
         return Point'Class; 
      for Point'Class'Input use Class_Input; 

The Class_Output routine must output the opening XML tag, 
output the object itself and then the closing XML tag. Quite 
simple to do; the following is the commented code: 

   procedure Class_Output 
          (S : access Ada.Streams.Root_Stream_Type'Class;  
           O : in Point'Class) is 

   begin 
      - -  Write the opening tag <tag_name> 
      Character'Write (S, '<'); 
      String'Write (S, Ada.Tags.External_Tag (O'Tag)); 
      String'Write (S, '>' & ASCII.LF); 
 
      - -  Write the object, dispatching call to Point/Pixel'Write 
      Point'Output (S, O); 
 
      - -  Write the closing tag </tag_name> 
      String'Write (S, "</"); 
      String'Write (S, Ada.Tags.External_Tag (O'Tag)); 
      String'Write (S, '>' & ASCII.LF); 
   end Class_Output; 
 
   function Class_Input 
            (S : access Ada.Streams.Root_Stream_Type'Class)      
      return Point'Class  
   is 
      function Dispatching_Input is new  
 Ada.Tags.Generic_Dispatching_Constructor 

     (T => Point, 
                     Parameters  =>  
                     Ada.Streams.Root_Stream_Type'Class, 
                     Constructor => Point'Input); 
         input     : String (1 .. 20); 
         input_Len : Natural := 0; 
   begin 
      - -  On the stream we have <tag_name>,  
      - - we want to get "tag_name" 
      - -  Read first character, must be '<' 
      Character'Read (S, Input (1)); 
      if Input (1) /= '<' then 
         raise Ada.Tags.Tag_Error with "Starting with " &  
                  Input (1); 
      end if; 
 
      - -  Read tag 
      Input_Len := 0; 
      for I in Input'range loop 
         Character'Read (S, Input (I)); 
         Input_Len := I; 
         exit when Input (I) = '>'; 
      end loop; 
 
      - -  Check ending tag 
      if Input (Input_Len) /= '>' 
        or else Input_Len <= 1 
      then - - Empty tag 
         raise Ada.Tags.Tag_Error with "empty tag"; 
      else 
         Input_Len := Input_Len - 1; 
      end if; 
 
      declare 
         External_Tag : constant String :=  
               Input (1 .. Input_Len); 
         O : constant Point'Class :=  
                   Dispatching_Input ( 
                   Ada.Tags.Internal_Tag (External_Tag), S); 
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         - -  Dispatches to appropriate  
         - - Point/Pixel'Input depending on 
         - -  the tag name. 
      begin 
         - -  Skip closing object tag 
         Skip_Tag (S, ASCII.LF); 
         return O; 
      end; 
   end Class_Input; 

At this point the code shown at the start will still work without 
modification. The fact that the object is streamed using an 
XML representation is transparent to the users of the Object 
package. 
As a final note, for conciseness, the code as-is does not output 
conformant XML documents as there is no XML header and 
there are multiple root nodes. This is left as an exercise to the 
reader. 

Ada Gem #21: How to parse an  
XML text 
Emmanuel Briot, AdaCore 
Date: 10 December 2007 
 
Abstract:  The World Wide Web Consortium (W3C) develops 
various specifications around the XML file format. In 
particular, it specifies various APIs to load, process and write 
an XML file. Although these APIs are not specified for Ada, 
XML/Ada tries to conform as closely as possible to them. This 
gem describes how to use XML/Ada to parse an XML file.  
 
Let’s get started… 
There are two main APIs to parse an XML file. One (the 
Document Object Model, DOM) reads the file and generates a 
tree in memory representing the whole document. Typically, 
because of the amount of operations mandated by the 
specifications, this tree is several times larger than the 
document itself, and thus depending on the amount of memory 
on your machine, it might limit the size of documents your 
application can read. On the other hand, it provides a lot of 
flexibility in the handling of these trees. 
The other method (SAX) is based on callbacks, which are 
called when various constructs are seen while reading the 
XML file. This requires almost no memory, but makes the 
processing of the XML file additional work for your 
application. It is however very well suited when you want to 
store the XML data in an application-specific data structure. In 
fact, XML/Ada itself uses SAX to build the DOM tree. 
In both cases, XML/Ada needs an object (an “input_source”) 
to read the actual XML data. This data can be found either on 
the disk, in memory, read from a socket, or any other possible 
source you can imagine. XML/Ada is carefully constructed so 
that it doesn’t require the whole document in memory, and can 
just read one character at a time, which makes it adaptable to 
any possible input. This gem does not cover how to write your 
own input streams. This is in general quite easy, the only 
difficulty is to properly convert the bytes you are reading to 
unicode characters. 
Here is a small example on using the DOM API to create a 
tree in memory. In this example, we are assuming the most 

frequent case of an XML file on the disk, and therefore we are 
using a File_Input as the input. The second object we need is 
the XML parser itself. When we want to create a DOM tree, 
we need to use a Tree_Reader, or a type derived from it. As 
we will see later, this is in fact a SAX parser (that is an event-
based XML parser) whose callbacks are implemented to create 
the DOM tree. You can of course override its primitive 
operations if you want to do additional things (like verbose 
output, redirect error messages, pre-processing of the XML 
nodes,…). 

   with Input_Sources.File;  use Input_Sources.File; 
   with DOM.Readers;         use DOM.Readers; 
   with DOM.Core;            use DOM.Core; 
 
   procedure Read_XML_File (Filename : String) is 
     Input  : File_Input; 
     Reader : Tree_Reader; 
     Doc    : Document; 
   begin 
     Open (Filename, Input); 
     Parse (Reader, Input); 
     Close (Input); 
      
     Doc := Get_Tree (Reader); 
     ... 
     Free (Reader); 
   end Read_XML_File; 

The first three lines read the file into memory. The fourth line 
gets a handle on the tree itself, which you can then manipulate 
with the various subprograms found in the DOM.Core.* 
packages (and that are mandated by the W3C specifications). 
When we are done, we simply free the memory. 
There are various settings that can be set on the reader before 
we actually parse the XML stream, for instance whether it 
should support XML namespaces, whether we want to validate 
the input, and so on. 
As we mentioned before, there exists a second, lower-level 
API called SAX which is event-based. It defines one tagged 
type, a Reader, which has several primitive operations that act 
as callbacks. You can override the ones you want. In general, 
the result of calling them is to create an in-memory 
representation of the XML input (which is what the DOM 
interface does, really). 
The following short example only detects the start of elements 
in the XML file, and prints their name on standard output. It 
has little interest in real applications, but is a good framework 
on which to base your own SAX parsers. 

   with Sax.Attributes; 
   with Sax.Readers;     use Sax.Readers; 
   with Unicode.CES;     use Unicode.CES; 
 
   package Debug_Parsers is 
      type Debug_Reader is new Reader with null record; 
      overriding procedure Start_Element 
        (Handler       : in out Debug_Reader; 
        Namespace_URI : Unicode.CES.Byte_Sequence := "";    
         Local_Name    : Unicode.CES.Byte_Sequence := ""; 
         Qname         : Unicode.CES.Byte_Sequence := ""; 
         Atts          : Sax.Attributes.Attributes'Class); 
   end Debug_Parsers; 
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Here is the implementation of the Start_Element callback. We 
are assuming, in this simple example, that the console on 
which we are printing the output can accept unicode characters 
(in fact, all Put_Line does is to print a series of bytes, which 
are interpreted by the console to do the proper rendering of 
unicode glyphs). 

   with Ada.Text_IO;   use Ada.Text_IO; 
 
   package body Debug_Parsers is 
      procedure Start_Element 
        (Handler       : in out Debug_Reader; 
        Namespace_URI : Unicode.CES.Byte_Sequence := ""; 
         Local_Name    : Unicode.CES.Byte_Sequence := ""; 
         Qname         : Unicode.CES.Byte_Sequence := ""; 
         Atts          : Sax.Attributes.Attributes'Class) 
      is 
      begin 
         Put_Line ("Found start of " & Qname); 
      end Start_Element; 
   end Debug_Parsers; 

And finally here is a short example of a program using that 
parser. Notice how it closely mimics what we did for DOM 
(which is not so surprising, since, once again, the DOM parser 
itself is really a special implementation of a SAX parser). 

   with Input_Sources.File;  use Input_Sources.File; 
   with Debug_Parsers;       use Debug_Parsers; 
 
   procedure Test_Sax is 
     Input  : File_Input; 
     Reader : Debug_Reader; 
   begin 
     Open (Filename, Input); 
     Parse (Reader, Input); 
     Close (Input); 
   end Test_Sax; 
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