

106 Forthcoming Events

Volume 29, Number 2, June 2008 Ada User Journal

SIGAda 2008
Annual International Conference on the

Ada Programming Language

October 26-30, 2008, Portland, Oregon, USA

University Place Hotel and Conference Center

310 SW Lincoln St., Portland, Oregon 97201 (USA)

Portland and Mt. Hood; Streetcar Near Conference Hotel

Advance Program coming in July 2008. Visit
http://www.sigada.org/conf/sigada2008

for details.

Forthcoming Events 107

Ada User Journal Volume 29, Number 2, June 2008

SIGAda 2008
Annual International Conference on the

Ada Programming Language
October 26-30, 2008, Portland, Oregon, USA

Special Anniversary Keynote Addresses
From Strawman to Ada 2005: a Socio-Technical Retrospective

Ben Brosgol, Senior Technical Staff, Adacore
Dr. Benjamin Brosgol, a senior member of the technical staff of AdaCore, has been involved with programming
language design and implementation for more than 25 years, concentrating on languages and technologies for
high-reliability systems. He led the development of the "Red" language candidate at Intermetrics, participated in
the design of both Ada 83 and Ada 95, and was editor of the Safety and Security Annex of the Ada 95 standard.
Under Sun Microsystems' Java Community Process Dr. Brosgol was a member of the Expert Group for JSR-001
(Real-Time Specification for Java, or "RTSJ"), and he is currently a member of the Expert Groups for JSR-282
(RTSJ v1.1) and JSR-302 (Safety-Critical Java Technology). Dr. Brosgol is a past chair of the ACM Special
Interest Group on Ada (SIGAda). He has spoken widely on safety-critical software technology. He holds a B.A. in
Mathematics from Amherst College, and M.S. and Ph.D. degrees in Applied Mathematics from Harvard
University.

30 Years after Steelman: Does DoD Still Have a Software Crisis?
Joyce Tokar, President, Pyrrhus Software

Joyce Tokar is the President of Pyrrhus Software, a software consultancy and training company. Over the past 20
years, Dr. Tokar has been working in the area of mission and safety critical, real-time, and embedded software
systems. She has been involved in research and development in the areas of software and systems architectures,
high level computing languages such as Ada, Ada 95, C/C++, and Java, and real-time analysis methodologies.
During this time she has co-authored the Society of Automotive Engineering (SAE) Architecture Analysis and
Design Language (AADL) standard. She has written the Programming Language Annex for the SAE AADL
standard. Dr. Tokar has also participated in the evolution of the Ada programming language both as a member of
the team defining the Ada 05 update and as a distinguished reviewer for Ada 95.
Dr. Tokar is also active in the area of secure software system development tools and environments. She is leading
a team in the analysis and evolution of the system of systems software for the US Department of Defense Future
Combat System (FCS).
From 1981-84 Dr. Tokar was responsible for the development of the Gensoft (Western Digital) Ada system. She
received her PhD in Computer Engineering from Clemson University in South Carolina. She holds an MS and a
BS in Computer Science from the University of Pittsburgh.

The Ada Paradox(es)
Jean-Pierre Rosen, President, Adalog

Jean-Pierre Rosen graduated from ENST (Ecole Nationale Supérieure des Télécommunications) in 1975, and
attained the PhD in 1986. He started as a software engineer at the computing center of ENST. After a Sabbatical
at New York University on the Ada/ED Project, he worked as Professor at ENST, where he was responsible for
the teaching of Software Engineering and Ada.
He has now formed Adalog, a company specialized in high level training, consultancy, and software development
in the fields of Ada and associated technologies (software engineering, object oriented methodologies).
J-P. Rosen is Chairman of the AFNOR (French standardization body) group for Ada, and a member of the ARG
(Ada Rapporteur Group), the group of experts in charge of maintenance and evolution of the language. He was a
member of the expert team who controlled the development of the validation suite for Ada 95.
He is the author of "Méthodes de Génie Logiciel avec Ada 95" (Software Engineering Methods with Ada 95) and
"HOOD: an industrial approach for software development".

108 Forthcoming Events

Volume 29, Number 2, June 2008 Ada User Journal

Call for Papers
14th International Conference on Reliable
Software Technologies – Ada-Europe 2009

8-12 June 2009, Brest, France
http://www.ada-europe.org/conference2009.html

General Information

The 14th International Conference on Reliable Software Technologies – Ada-Europe 2009 will take place in Brest, France.
Following its traditional style, the conference will span a full week, including a three-day technical program and vendor
exhibitions from Tuesday to Thursday, along with parallel tutorials and workshops on Monday and Friday.

Schedule

01 December 2008 Submission of regular papers, tutorial and workshop proposals
12 January 2009 Submission of industrial presentation proposals
09 February 2009 Notification to all authors
09 March 2009 Camera-ready version of regular papers required
11 May 2009 Industrial presentations, tutorial and workshop material required
08-12 June 2009 Conference

Topics

The conference has successfully established itself as an international forum for providers, practitioners and researchers into
reliable software technologies. The conference presentations will illustrate current work in the theory and practice of the
design, development and maintenance of long-lived, high-quality software systems for a variety of application domains. The
program will allow ample time for keynotes, Q&A sessions, panel discussions and social events. Participants will include
practitioners and researchers in representation from industry, academia and government organizations active in the promotion
and development of reliable software technologies. To mark the completion of the Ada language standard revision process,
contributions that present and discuss the potential of the revised language are particularly sought after.

Prospective contributions should address the topics of interest to the conference, which include but are not limited to those
listed below:

• Methods and Techniques for Software Development and Maintenance: Requirements Engineering, Object-Oriented

Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-engineering and Reverse Engineering,
Reuse, Software Management Issues, Model Engineering.

• Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development, Component and Class
Libraries, Component-based Design.

• Enabling Technologies: Software Development Environments and Project Browsers, Compilers, Debuggers, Run-time
Systems, Middleware Components.

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis, Verification, Validation,
Testing of Software Systems.

• Theory and Practice of High-integrity Systems: Real-Time, Distribution, Fault Tolerance, Security, Reliability, Trust
and Safety.

• Embedded Systems: Architecture Modeling, Co-Design, Reliability and Performance Analysis.
• Mainstream and Emerging Applications: Multimedia and Communications, Manufacturing, Robotics, Avionics,

Space, Health Care, Transportation.
• Ada Language and Technology: Programming Techniques, Object-Orientation, Concurrent and Distributed

Programming, Evaluation & Comparative Assessments, Critical Review of Language Features and Enhancements,
Novel Support Technology, HW/SW Platforms.

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches, Qualitative and
Quantitative Metrics.

• Ada and Education: Where does Ada stand in the software engineering curriculum; how learning Ada serves the
curriculum; what it takes to form a fluent Ada user; lessons learned on Education and Training Activities with bearing
on any of the conference topics.

Forthcoming Events 109

Ada User Journal Volume 29, Number 2, June 2008

Call for Regular Papers
Authors of regular papers which are to undergo peer review for acceptance are invited to submit original contributions. Paper
submissions shall be in English, complete and not exceeding 14 LNCS-style pages in length. Authors should submit their
work via the Web submission system accessible from the Conference Home page. The format for submission is solely PDF.
Should you have problems to comply with format and submission requirements, please contact the Program Chair.

Proceedings
The authors of accepted regular papers shall prepare camera-ready submissions in full conformance with the LNCS style, not
exceeding 14 pages and strictly by 9 March 2009. For format and style guidelines authors should refer to:
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference will prevent the paper
from appearing in the proceedings. The conference proceedings will be published in the Lecture Notes in Computer Science
(LNCS) series by Springer Verlag, and will be available at the start of the conference.

Awards
Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations
The conference also seeks industrial presentations which may deliver value and insight, but do not fit the selection process for
regular papers. Authors of industrial presentations are invited to submit a short overview (at least 1 page in size) of the
proposed presentation to the Conference Chair by 12 January 2009. The Industrial Program Committee will review the
proposals and make the selection. The authors of selected presentations shall prepare a final short abstract and submit it to the
Conference Chair by 11 May 2009, aiming at a 20-minute talk. The authors of accepted presentations will be invited to
derive articles from them for publication in the Ada User Journal, which will host the proceedings of the Industrial Program
of the Conference.

Call for Tutorials
Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or full-day
events. Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a
description of the presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience
experience and background, and a statement of the reasons for attending. Proposals should be submitted by e-mail to the
Tutorial Chair. The providers of full-day tutorials will receive a complimentary conference registration as well as a fee for
every paying participant in excess of 5; for half-day tutorials, these benefits will be accordingly halved. The Ada User Journal
will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops
Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-
day events, to be scheduled on either ends of the conference week. Workshop proposals should be submitted to the
Conference Chair. The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada
User Journal.

Call for Exhibitions
Commercial exhibitions will span the three days of the main conference. Vendors and providers of software products and
services should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and
time.

Grants for Students
A limited number of sponsored grants is expected to be available for students who would like to attend the conference or
tutorials. Contact the Conference Chair for details.

In cooperation with SIGAda
(approval pending)

 111

Ada User Journal Volume 29, Number 2, June 2008

* The complete Proceedings of the 13th International Real-Time Ada Workshop previously appeared in ACM Ada Letters, Volume XXVII, Number 2,
August 2007; reprinted with permission.

13th International Real-Time Ada Workshop

17-19 April 2007
Woodstock, Vermont

USA

Sessions:
Implementation Experience with Ada 2005

Beyond Ada 2005

from the Proceedings* edited by: Juan Antonio de la Puente

Program Committee
Alan Burns Javier Miranda José F. Ruiz
Ben Brosgol b Luis Miguel Pinho Tullio Vardanega
Michael González Harbour Juan Antonio de la Puente a Andy Wellings
Stephen Michell Jorge Real

a Program Chair b Local Chair

Workshop Participants

Name Institution
Mario Aldea Rivas Universidad de Cantabria, Spain
Neil Audsley University of York, UK
Ben Brosgol AdaCore, USA
Alan Burns University of York, UK
Michael González-Harbour Universidad de Cantabria, Spain
J. Javier Gutiérrez Universidad de Cantabria, Spain
Stephen Michell Maurya Systems, Canada
Brad Moore General Dynamics, Canada
Juan Antonio de la Puente Universidad Politécnica de Madrid (UPM), Spain
Jorge Real Universidad Politécnica de Valencia, Spain
José F. Ruiz AdaCore, France
J.C. Smart Department of Defense, USA
Santiago Urueña Universidad Politécnica de Madrid (UPM), Spain
Tullio Vardanega University of Padua , Italy
Andy Wellings University of York, UK
Rod White MBDA, UK
Curtis Winters Aonix, USA
Juan Zamorano Universidad Politécnica de Madrid (UPM), Spain

Sponsors

112

Volume 29, Number 2, June 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Session: Implementation Experience with
Ada 2005
Chair: Alan Burns
Rapporteur: Andy Wellings

Session Goals
The goals of this session were to

• Discuss implementation experience with the new real-
time features

• Review the support provided by the new real-time
features

• Review features proposed but omitted from Ada 2005

 Real-Time Utilities
Mario Aldea Rivas first gave an overview of the approach
their paper had taken on implementing the new Ada 2005
real-time services in MaRTE OS and GNAT. The most
important of these new services are:

• timing events

• execution-time clocks and timers

• dynamic priorities for protected objects

• immediate priority changes

• group execution-time budgets

• new scheduling and task dispatching mechanisms

Of these, the first five had already been implemented and
would be released by AdaCore in the near future. The rest
would be done during the summer of 2007.

For timing events, Mario indicated that it was not possible
to implement timing event straight from the clock interrupt
handler as there was no mechanisms provided by POSIX to
do so. He indicated that there were essentially two
approaches: one where run-time threads are introduced for
each timing event, the other where the OS is changed.

He said they had implemented both approaches and that by
changing the OS, there was a significant performance gain.
For execution-time clocks and handlers, Mario reported
that the implementation was much simpler as both the
POSIX and Ada 2005 standards took a similar stance. In
particular:

• Neither of the standards define which task/thread is
charged with the overheads of interrupt handlers and
run-time services on behalf of the system

• Both standards state that the execution time is set to
zero at the creation of the task /thread

• Ada 2005 says the time spent during task activation
must be charged to the task execution time clock – this
happens in GNAT since activation is executed by the
thread used to implement the Ada task.

As a consequence, no modifications to the compiler or to
the run-time system have been necessary. Mario reported
that execution time accounting introduces a small overhead
to context switch time (less than 5%) and that the time to
read execution time clocks is very similar to the time to
read the real-time clock.

Execution-timers had been built on top of the timers and
had caused no significant implementation problems. Group
execution time accounting, however, required significant
modifications to the OS as POSIX did not support thread
groups. The facility added an extra 9% overhead on context
switch times.

Juan Zamorano gave a presentation on their
implementation of the same facilities in the Open
Ravenscar Kernel on a bare board Leon (based on the
SPARC V8 architecture). Juan indicated that the scarce
hardware support for timers on that board meant that
significant software support was required. This had added a
50% increase in context switch times. The full details are
given in the paper.

Following the two presentations it was noted that the
Workshop was not aware of other projects implementing
2005 real-time facilities.

Discussions on the New Features
The main discussions following the presentations focused
on the overheads and inaccuracies of the CPU accounting
model.

The following issues were raised:

1. Context switch time – Mario reported that there was no
leakage of CPU time during context switches.

2. System and Application interrupts (e.g. clocks) – whil-
st Ada allowed interrupt handling to be charged to the
executing tasks there was concerns that this was a
significant inaccuracy.

3. Timing events code – it was again noted that the code
executed by timing event handlers was application
level code and therefore was not fixed. This would
again be charged inappropriately to the running task.

A. Burns, A. Wel l ings 113

Ada User Journal Volume 29, Number 2, June 2008

However, it was also pointed out that as the code was a
protected procedure, the time was at least bounded per
handler.

4. Proxy model of Protected Objects – concern was
expressed that the proxy model of implementation for
protected objects could result in a significant
inaccuracy as one task could execute a significant
amount of code on behalf of another.

There was a long discussion of whether the CPU
accounting model was useable given the inherent
inaccuracies. Various points were noted:

• The facilities could be used with a measurement-based
approach. Execution time could be measured during
system testing and this figure used at run-time.
However, this approach is fragile. Any small change to
the application code would mean that the system-level
timing measurements would have to be redone.

• For hard real-time systems, it was noted that there had
to be an associated analysis model. The worst-case
overheads could then be added to the execution time of
each task. However, this approach could be very
pessimistic as each task would be charged the worst
case overhead.

• It was also pointed out that the greatest error was on the
value of the worst-case execution time itself and that
adding a small error was at the noise level.

Another point raised was that the impact of handling low
priority interrupts on high priority task could be significant.

The workshop concluded that there is a need to investigate
the overheads and the extra cost of trying to do better
accounting. Also the overhead of a better model of
prioritized interrupt handling should be investigated.

Application-level Scheduling
Michael Gonzalez Harbour gave an overview of the current
status of application-defined scheduling work that had been
reported at the last workshop. Although this had failed to
get in to the standard, an implementation had been
produced and would be released as an extension to GNAT.
The hope was that people would use the facilities and that it
might eventually become a de facto standard. The
workshop reaffirmed its support for the need of such a
facility in Ada.

Ravenscar
This session of the Workshop concluded with a discussion
of the continuing experience with the Ravenscar profile.
Juan Antonio de la Puente raised the issue of execution
timers and group budgets. Although Ravenscar allows
execution-time clocks, it prohibits timers and group
budgets. He proposed that we should allow one timer per
task. The motivation is to make sure a task does not
consume more than its budget.

Whilst there was some support for this proposal, concern
was expressed on how a Ravenscar program would respond
to a timer expiring. There are not asynchronous interaction
mechanisms in Ravenscar. Juan Antonio indicated that this
was similar to the way task termination was handled. If a
task terminated in Ravenscar (which it should not), the
event is brought to the attention of the program and then it
is implementation-defined what mechanisms the
programmer can use.

It was pointed out that a monitor task could always read the
execution times of other tasks and discover the overrun.
However, there would clearly be a delay in doing this.
There was no consensus position reached.

The Workshop felt that adding Group budgets opened up a
new profile. This ought to be considered perhaps in a
context where there are more than one Ravenscar
applications (in effect, partitions) running on the same run-
time.

Summary
The following summarised the positions taken by the
Workshop during this session:

1. There is a need to investigate the overheads and the
extra cost of trying to do better accounting and of the
overheads of doing a better model of prioritized
interrupt handling.

2. There is continued support for application-defined
scheduling.

3. There is no consensus on adding CPU Timers into
Ravenscar (i.e. it is an open issue that needs further
investigation).

4. Group budgets and the coexistence of multiple
Ravenscar applications on a single processing node
needs further investigation.

114

Volume 29, Number 2, June 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

* This work has been partially funded by the IST Programme of the

European Commission under project IST-004033 (ASSERT) and the
Spanish Ministry of Science and Technology (MCYT), project
TICTIC2005-08665-C03-01 (THREAD).

Implementing the New Ada 2005 Real-Time
Features on a Bare Board Kernel*
S. Urueña, J. Pulido, J. Redondo, J. Zamorano
Universidad Politécnica de Madrid (UPM), Spain; email: {suruena@datsi.fi, pulido@dit, jredondoh@dit,
jzamora@datsi.fi}.upm.es

Abstract
A real-time kernel providing timing services is a key
component of any real-time system. The current
revision of the Ada standard provides a range of real-
time mechanisms that can be used to ensure the
required temporal behaviour of real-time tasks.
However, kernel timing services must be implemented
carefully in order to avoid overheads and
inaccuracies. This paper describes the implement-
tation of the Ada timing services in an evolved version
of the Open Ravenscar Kernel. The interrelation
among the different timing mechanisms is also
analysed and evaluated.

1 Introduction
High-integrity real-time systems usually have hard timing
requirements, which have to be guaranteed by using an
appropriate engineering approach for their design and
implementation (see e.g. [19]). Such an approach is usually
based on a computation model which enables the temporal
behaviour of a system to be analysed and adjusted if
necessary.

Ensuring the required real-time behaviour usually relies on
an accurate knowledge of the worst-case computation times
(WCET) of all the real-time tasks. Although some good
techniques for computing WCET are available [16], there is
still a large degree of uncertainty, especially when modern
processors with cache memories, speculative execution and
segmentation are used. Pessimistic WCET estimations lead
to an underutilisation of resources, and thus tight estimates
are usually sought. The risk with tight WCET estimates is,
on the other hand, to be optimistic, and then occasionally
get an actual execution time which is larger than the
estimated value. This situation is called an overrun, and
may give raise to a generalised miss of deadlines by tasks
by a domino effect.

The new Ada real-time mechanisms can be used to monitor
the run-time behaviour of tasks. In this way it is pos sible to
detect overruns and deadline misses and take corrective
actions before other tasks are affected [14]. This paper
presents the implementation of the Ada real-time features

on GNATforLEON, an open-source cross-compilation
system that implements Ravenscar tasking for LEON2 [10]
targets. GNATforLEON is a port to LEON2 targets of
GNAT Pro for ERC32 [17]. GNAT Pro for ERC32 and
thus GNATforLEON uses a version of the GNAT run-time
library (GNARL) specially developed to support the
Ravenscar profile on top of a bare board kernel which is an
evolved version of the Open Ravenscar Kernel (ORK) [5,
7].

2 The new Ada 2005 real-time
mechanisms
The current revision of the Ada standard provides a range
of real-time mechanisms that can be used to ensure the
required temporal behaviour of real-time tasks. The
Ada.Real_Time package includes a monotonic real-time
Clock as well as a definition of Time which are appropriate
for real-time systems. The package was already part of Ada
95 [12, Annex D] and can be used to check real-time
related properties, such as minimum inter-arrival times or
task deadlines. Real-time timers were not provided as such
in Ada 95, but delay statements and asynchronous transfer
of control (ATC) provided a similar functionality at a
higher abstraction level (see e.g. [4]). However, ATC is
excluded from the Ravenscar profile due to its complex
implementation. Nevertheless, there are new real-time
mechanisms which can be used to efficiently detect
deadline overruns in critical systems.

Timing events [1] is an Ada 2005 lower-level mechanism
that can be used with the Ravenscar profile [18, D.15] for
detecting deadline overruns [14]. Timing events are a light-
weight mechanism for specifying an action to be executed
at a given time without the need to use a task or a delay
statement. A timing event can be set to occur at an absolute
time or after a real-time interval. A protected procedure
handler is executed whenever the event occurs, unless it is
cancelled before that time. The functionalityof timing
events is provided by the library-level package Ada.Real_
Time.Timing_Events, in this way it is no needed to change
the compiler to implement this mechanism but just to add
the support to the Ada run-time library as well as to the
underlying kernel. It is worth noting that only library-level
timing events are allowed by the Ravenscar profile.

Ada 2005 also includes mechanisms for measuring and
monitoring execution-time, namely execution-time clocks

S. Urueña, J. Pul ido, J . Redondo, J. Zamorano 115

Ada User Journal Volume 29, Number 2, June 2008

and timers [2], and group execution-time budgets [3]. These
mechanisms can be used to estimate the execution time of
code segments, to handle some kinds of aperiodic events,
and to detect execution-time related temporal faults. These
mechanisms are also provided by library-level packages:
Ada.Execution_Time, Ada.Execution_Time.Timers, and
Ada.Execution_Time.Group_Budgets.

In Ada 2005 each task has an execution-time clock that
computes the amount of CPU time it has consumed,
including the run-time services invoked by the task. It
should be noticed that it is implementation-defined which
task is charged with the execution time for system services,
which include interrupt service routines, or even whether it
is charged to no task [18, D.14(13a/2)]. Execution-time
timers are objects that are associated with a task —and
hence with the task execution-time clock— when they are
declared. A timer can be armed to expire at an absolute
value of that clock or after some execution-time interval.
When the timer expires, a protected procedure handler is
executed. Setting again the handler replaces the handler and
the time of execution and the timer remains set. Group
execution-time budgets is a similar mechanism, which can
be used with a set of tasks instead of a single task. A task
can belong to at most one such group. A global budget of
execution-time can be allocated to the whole group, and
then it is decreased when any task in the group consumes
execution time. As with timers, a protected procedure
handler can be specified to be executed whenever the
budget is exhausted. The budget can also be replenished at
any time.

Execution-time clocks are allowed in the Ravenscar profile,
but timers and group budgets are not. However, we believe
that these mechanisms can be safely and efficiently used in
high-integrity systems, provided that they are only declared
at library level and there is at most one execution-time
timer per task [6].

3 Kernel support for timing services
The described timing services has been implemented on
GNATforLEON which is an evolved version of ORK for
LEON2 based computers. LEON2 is a radiation-hardened
implementation of the SPARC V8 architecture, which has
been adopted by the European Space Agency (ESA) as the
new standard processor for spacecraft on-board computer
systems as an upgrade of the ERC32 [9].

GNATforLEON provides direct support for the Ravenscar
profile [18, D.13.1], including the following Ada 2005
timing services:

• Global timing events;

• Execution-time clocks.

Execution-time timers and group budgets are also
supported by the kernel in spite of being not allowed by the
Ravenscar profile. These mechanisms are needed to enforce
temporal separation in logical partitioned systems where
subsystems with possibly different levels of criticality can
share computer nodes. This is a strong requirement for the

kind of on-board aerospace embedded systems envisaged in
the ASSERT project1[15].

The implementation of Ada.Real_Time.Clock and absolute
delays for ORK/ERC32 is thoroughly described in [21]. It
is based on the two 32-bit hardware timers of the ERC32
processor. That implementation has been ported to the
LEON2 processor which has two 24-bit hardware timers. It
is worth noting that Annex D of the Ada Language
Reference Manual [18] requirements for Ada.Real_
Time.Time lead to at least 41 bits for that type. As a result,
the implementation uses the hardware timer register as the
least significant part (LSP) of the clock and a 32-bit word
in memory as the most significant part (MSP). This
arrangement provides an accurate tick with low overhead.

Execution-time clocks and timers were also supported by
ORK/ERC32 whose implementation is described in [20].
The implementation only allows one execution-time timer
per task, as suggested in previous IRTAW discussions [8,
6] and permitted by the Ada Language Reference Manual
[18, D.14.1(28/2)]. Although execution-time timers are not
allowed in the Ravenscar profile, the Ravenscar profile
restrictions enable a simple and efficient implementation
which was ported to GNATforLEON. Group budgets were
not implemented in ORK but recently on GNATforLEON.
However, the implementation is built on top of the
execution-time timers one and thus only little support is
needed for group budgets at kernel level. The main part is
at Ada run-time level in the body of the Ada.Execution_
Time.Group_Budgets whereas at kernel level is only
needed a flag to record if the armed execution-time alarm
of the task correspond to its execution-time timer or to the
group budget timer at which the task belongs. In this way,
the proper handler may be invoked if the execution-time
alarm expires.

The overall implementation is schematically shown in
figure 1. As said, timer 1 is used in periodic mode to
support Ada.Real_Time.Clock and timer 2 is used in one-
shot mode and is armed to expire with the closest event.
This event can be an absolute delay or the execution-time
timer of the running task, which in turn could be its own
timer or the timer of its group budget. In a similar way to
real-time clock, the execution-time clock of the running
tasks is built up by using the hardware timer register and
the cumulated execution time. However, if the timer 2 is
armed with an absolute delay is more complex to build up
the execution-time clock of the running tasks.

4 Implementation of timing-events
The Ravenscar profile restrictions avoids delay cancellation
and therefore the alarm queue of figure 1 is simply linked.
However timing-events can be cancelled and the alarm
queue can not be efficiently used for this purpose.

1 ASSERT (Automated proof based System and Software Engineering for
Real-Time) is an FP6 Integrated Project coordinated by the European
Space Agency. The main goal of the project is to improve the system-
andsoftware development process for critical embedded real-time systems,
in the Aerospace and Transportation domains

116 Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel

Volume 29, Number 2, June 2008 Ada User Journal

Figure 1 Schema of clocks and timers implementation

Nevertheless it is possible to manage timing-events in the
same way of absolute delays, that is by inserting them in
the simply linked alarm queue and if a timing event is
cancelled its associate handler is set to null.

The overhead of the above approach could be intolerable in
applications with timing event cancellations. It should be
noticed that the processing of the timer interrupts implies
the execution of the preamble and the epilogue together
with the run-time alarm handler. This alarm handler has to
clear the interrupt, identify the type of the event, jump to an
Ada code which is the handler and finally look for the next
closest event in order to arm the hardware timer. In our
opinion, this is a pretty amount of instructions for a null
handler.

As a result, it was decided to use a new doubly linked
queue for timing events. Therefore, timing events can be
simply and efficiently located and removed when they are
cancelled. The timing event queue is also ordered by
absolute time in spite of the timing event was set by using
relative time, as it is the best approach [21].

Figure 2 Schema of event queues.

The figure 2 shows the new queues arrangement. In
general, it is more simple and efficient to maintain two
queues than the combined one and thus the implementation

has a lower overhead. It could be argued that it is needed to
compare among three events in order to identify the closest
event and therefore more comparisons are made in order to
arm the hardware timer than without a new queue. This is a
fallacy because the total number of comparisons is even
lower because it is made much more comparisons for
inserting the event in a longer queue.Finally, it must be said
that the implementation could be much more simple with a
little bit of hardware support. For instance, the
implementation of real-time clock and absolute delays of
the ORK version for PC computers is much more efficient
and simple because it takes advantage of the Time Stamp
Counter which can be found in Pentium processors. The
Time Stamp Counter is an up-count 64-bit timer and thus it
is able to maintain the monotonic real-time clock itself.
This is fairly convenient making more simple to operate the
alarm queue because reading the clock is just one
instruction.

5 Implementation inaccuracies
The described implementation allocates the time spent in
interrupt service routines to the currently running task,
which is allowed by Ada. However, it allocates the time
spent in timing event handlers too. It should be noticed that
to stop and restart the execution-time clock of the running
task is not easy because it is not just a matter of stopping
the hardware timer. As it is shown in figure 2, the hardware
timer 2 does not hold the remaining CPU time of the
running task when a timing event expires but the expired
timing event. As a result, the real-time clock should be
recorded at the beginning and the end of the hardware timer
2 interrupt handler in order to properly updated the
remaining CPU time of the running task by subtracting this
elapsed time.

In this way, it is not only complex to avoid the allocation of
the time spent in timing event handlers to the running task
but the time spent for avoiding this could be greater than
the time spent in the timing event handler itself. Indeed, it

S. Urueña, J. Pul ido, J . Redondo, J. Zamorano 117

Ada User Journal Volume 29, Number 2, June 2008

is a time-spending operation to read the clock with the little
hardware support of LEON2 processors.

Nevertheless, we believe that the implementation is
implicitly allowed by the standard because the Ada
Language Reference Manual [18, D.15(25/2)] says that
“The protected handler procedure should be executed
directly by the real-time clock interrupt mechanism”. As it
is implementation-defined which task is charged execution
time for the time spent in interrupt service routines, it can
be concluded that it is also allowed to charge the time spent
in timing event handlers. In our honest opinion, it should be
clarified in an Ada Issue.

Another source of inaccuracy of execution-time clocks is
the so-called proxy model for servicing the entries of
protected objects which is used by the GNAT compiler
[13]. With this approach the task exiting the eggshell
executes all the waiting entry calls whose barriers are open
on behalf the awaiting tasks and reevaluates the barriers
every time. As a result, this time spent for other tasks is
charged to the execution-time clock of the exiting task.

The Ravenscar profile only allows one awaiting task per
protected object and therefore this inaccuracy can be
bounded but as there is no language-imposed restriction on
the number of such calls that can be pending, the
inaccuracy could be intolerable for general Ada programs.
A way to avoid this inaccuracy could be to use the so-
called self- service model, although the number of context
switchings would increase. Moreover, the GNAT compiler
and the GNAT Ada run-time library should be modified in
order to do that.

6 Metrics
The Ada 2005 timing mechanisms have been implemented
by the authors on GNATforLEON, a compilation system
for the LEON2 processor, a radiation-hardened derivative
of the SPARCv8 RISC architecture for the space domain.
The implementation has been based on a previous
experimental implementation on top of the Open Ravenscar
kernel [20]. The modified compilation system is being used
as the execution platform for the ASSERT project.

The overhead of the new timing mechanisms (execution-
time timers, group budgets, and timing events) has been
measured by comparing footprint size and context switch
duration between GNATforLEON 1.0 and GNATforLEON
1.3. GNATforLEON 1.0 is the first version of the
compilation system which does not have the new timing
mechanisms. Conversely GNATforLEON 1.3 includes all
of them. The values shown in tables 1 and 2 have been
measured using a pilot application, and therefore should be
considered as average values, not as worst-case metrics.

Table 1 Context switch in GNATforLEON

Run-time system Context switch
(instructions)

GNATforLEON 1.0 405
GNATforLEON 1.3 606

Table 2 Memory footprint

 Section Size (kilobytes)
 GNATforLEON 1.0 GNATforLEON 1.3

 . text 79 87
 .data 8 8
 .bss 362 365
 Total 449 460

The overhead is moderate as about 200 new instructions
have to be executed per context switching to support
execution time clock and group budget on GNATforLEON.
The absolute timing impact depends highly on actual CPI
(Cycles Per Instruction) which in turns depends on the
status of pipeline, caches and register window. The ideal
CPI is 1 and the clock frequency of LEON2 processor is 50
MHz therefore the minimum absolute overhead is 4 µs.

Table 3 shows the instructions required for timing service
primitives. It should be noticed that 71 instructions are just
needed to read the clock and the implementation needs to
read the clock during context switching and timing service
primitives. As a result, the poor hardware support of
LEON2 processors highly impact on the duration of timing
service primitives.

Table 3 Primitives

Operation Instructions
Real_Time.Clock 71
Timing_Events.Set_Handler 240
Execution_Time.Timers.Set_Handler 271

Table 4 shows the latencies for executing the corresponding
handler when an execution time or group budget timer
expires. 400 instructions are needed from the first
instruction of the low-level interrupt handler to the first
instruction of the Ada handler. It is fairly low providing
that LEON2 is a RISC processor.

Table 4 Handler latencies

Operation Instructions
Timing event handler 396
Execution-time handler 415

The footprint increases in 11 kbytes which are mainly due
to the 8 kbytes augment in the code (text section). The
other 3 kbytes are due to the need of larger ATCB and
structures for individual objects. Table 5 shows the
footprint of the required structures.

Table 5 Memory size

Type Size (bytes)
Timing_Event 24
Execution_Time.Timers.Timer 20
Group_Budget 2064

118 Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel

Volume 29, Number 2, June 2008 Ada User Journal

7 Hardware support
The overhead introduced by real-time mechanisms in the
kernel primitives is moderate. However, as said above, 71
instructions are needed to read the clock and the clock must
be read to obtain the relative down-count that should be
loaded in the hardware register. In this way, the fourth part
of the extra instructions in a context switching are used just
for reading the clock. There are also another operations
which are time consuming such as to compare 64-bit time
values and to convert a relative time in the corresponding
value that should be load in the down-count timer register.

As a result, a significant part of the introduced overhead
can be avoided with just a little bit of hardware support.
Hardware timers are fairly simple devices and they can be
included in a processor board at a very low cost. It can be
envisage a very simple implementation of the described
real-time mechanisms just with four 64-bit up-count
hardware timers.

In this way, it can be used one timer to support the
monotonic real-time clock on hardware, as with the
Pentium Time Stamp Counter, without any software
support. A second one can be used for the absolute delay
queue which is ordered by absolute time and thus the
absolute expiration time would be loaded in the so-called
comparator value Register of the hardware timer.
Therefore, an interrupt request should be delivered when
the up-count timer reaches the comparator value. A
separate timer can be used for timing events which can be
managed with the same approach although the timing event
queue should be doubly linked. The last timer is dedicated
to count for the execution time of the running task, in this
way it would be easy read the execution-time clock of the
running task. Moreover, to stop and restart this timer would
be the needed simple operations to avoid charging the time
spent in interrupt service routines and timing events to the
running task.

Recently, Intel has specified the so-called High Precision
Event Timers [11] for the PC architecture. The
specification defines a block of up-count 64-bit timers and
each timer can be configured to generate a separate
interrupt. The specification allows for a block of 32 timers,
with support for up to 8 blocks, which allows a total of 256
timers.

The specification fulfils the requirements to implement the
real-time mechanism with a low overhead because timers
are implemented as a single up-counter with a set of
comparators. Each timer includes a match register and a
comparator, and can generate an interrupt when the value in
its match register equals the value of the free-running
counter. Moreover, the counters increases monotonically
and some of the timers can be enabled to generate a
periodic interrupt.

It can be easily envisage a very simple implementation of
the real-time services with such population of timers. Every
timing event could use its own hardware timer and thus
queueing is avoided. However, it should be needed to limit
the maximum number of timing events with the

corresponding pragma Restrictions. In a similar way, every
task could own a hardware timer in order to support its
execution-time clock and timer. As a result, the overhead in
context switching would be reduced to stop and restart the
corresponding timers of both tasks. It should be noticed that
the maximum number of tasks can be limited by a pragma
Restrictions and the implementation may limit the number
of timers that can be defined for each task to one, and thus
this implementation is allowed by the standard.

Finally, it could be possible to use a periodic timer to
activate each periodic task and to eliminate the alarm queue
too. Unfortunately, Ada has not a way of specifying the
period of a real-time periodic task and it would be needed
to add this feature by a specific implementation pragma.

8 Conclusions
The Ada 2005 real-time services are of paramount
importance for detecting temporal faults and thus they
enable the development of fault tolerant systems. The
implementation described in this paper has a moderate
overhead for a Ravenscar kernel and does not introduce
much complexity to the underlying kernel. Therefore, they
can be used for building high integrity systems.

It should be noticed that the hardware timer devices of
LEON2 processor are not adequate to support the real-time
features which are needed in a real-time system. Even the
monotonic real-time clock needs a significant software
support. We believe that the overhead can be highly
reduced with a little bit of hardware support which can be
found in the Intel PC architecture.

Additionally, some inaccuracies in the implementation of
execution-time timers are derived from this poor hardware
support, as well as due to the proxy model. These
inaccuracies can not be completely avoided in the general
case and implementation advices should be provided.

References
[1] Ada Rapporteur Group. Ada Issue 297 — Timing

events. Ada Letters, XXV(3), September 2005.

[2] Ada Rapporteur Group. Ada Issue 307 — Execution-
time clocks. Ada Letters, XXVI(1), April 2006.

[3] Ada Rapporteur Group. Ada Issue 354 — Group
execution-time budgets. Ada Letters, XXVI(2), August
2006.

[4] A. Burns and A. J. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 3 edition,
2001.

[5] J. A. de la Puente, J. F. Ruiz, and J. Zamorano. An
open Ravenscar real-time kernel for GNAT. In H. B.
Keller and E. Plöedereder, editors, Reliable Software
Technologies — Ada-Europe 2000, number 1845 in
LNCS, pages 5–15. Springer-Verlag, 2000.

[6] J. A. de la Puente and J. Zamorano. Execution-time
clocks and Ravenscar kernels. Ada Letters,
XXIII(4):82–86, December 2003. Proceedings of the

S. Urueña, J. Pul ido, J . Redondo, J. Zamorano 119

Ada User Journal Volume 29, Number 2, June 2008

12th International Ada Real-Time Workshop
(IRTAW12).

[7] J. A. de la Puente, J. Zamorano, J. F. Ruiz, R.
Fernández, and R. García. The design and
implementation of the Open Ravenscar Kernel. Ada
Letters, XXI(1), 2001.

[8] B. Dobbing and J. A. de la Puente. Session report:
Status and future of the Ravenscar profile. Ada Letters,
XXIII(4):55–57, December 2003. Proceedings of the
12th International Real-Time Ada Workshop (IRTAW
12).

[9] ESA. 32 Bit Microprocessor and Computer System
Development, 1992. Report 9848/92/NL/FM.

[10] GR. LEON2 Processor User’s Manual, 2005. Gaisler
Research.

[11] Intel Corporation. IA-PC HPET (High Precision Event
Timers) Specification, 2004. Intel Corporation.

[12] Ada 95 Reference Manual: Language and Standard
Libraries. International Standard ANSI/ISO/IEC-
8652:1995, 1995. Available from Springer-Verlag,
LNCS no. 1246.

[13] J. Miranda. A Detailed Description of the GNU Ada
Run Time. http://www.iuma.ulpgc.es/users/jmiranda/
gnat-rts/, 2003.

[14] J. A. Pulido, S. Urueña, J. Zamorano, and J. A. de la
Puente. Handling temporal faults in Ada 2005. In N.
Abdennadher and F. Kordon, editors, Reliable
Software Technologies — Ada-Europe 2007, number
4498 in LNCS, pages 15–28. Springer-Verlag, 2007.

[15] J. A. Pulido, S. Urueña, J. Zamorano, T. Vardanega,
and J. A. de la Puente. Hierarchical scheduling with
Ada 2005. In L. M. Pinho and M. González Harbour,
editors, Reliable Software Technologies — Ada-

Europe 2006, volume 4006 of LNCS. Springer Berlin /
Heidelberg, 2006.

[16] P. Puschner and A. Burns. A review of worst-case
execution time analysis. Real-Time Systems,
18(2/3):115–128, May 2000.

[17] J. F. Ruiz. GNAT Pro for on-board mission-critical
space applications. In T. Vardanega and A. Wellings,
editors, Reliable Software Technologies — Ada-
Europe 2005, volume 3555 of LNCS. Springer-Verlag,
2005.

[18] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder,
and P. Leroy, editors. Ada 2005 Reference Manual.
Language and Standard Libraries. International
Standard ISO/IEC 8652/1995(E) with Technical
Corrigendum 1 and Amendment 1. Number 4348 in
Lecture Notes in Computer Science. Springer-Verlag,
2006.

[19] T. Vardanega. Development of on-board embedded
real-time systems: An engineering approach. Technical
Report ESA STR-260, European Space Agency, 1999.

[20] J. Zamorano, A. Alonso, J. A. Pulido, and J. A. de la
Puente. Implementing execution-time clocks for the
Ada Ravenscar profile. In A. Llamosí and A.
Strohmeier, editors, Reliable Software Technologies —
Ada-Europe 2004, volume 3063 of LNCS. Springer-
Verlag, 2004.

[21] J. Zamorano, J. F. Ruiz, and J. A. de la Puente.
Implementing Ada.Real_Time.Clock and absolute
delays in real-time kernels. In A. Strohmeier and D.
Craeynest, editors, Reliable Software Technologies —
Ada-Europe 2001, number 2043 in LNCS, pages 317–
327. Springer-Verlag, 2001.

120

Volume 29, Number 2, June 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Operating System Support for Execution Time
Budgets for Thread Groups
Mario Aldea Rivas, Michael González Harbour
Universidad de Cantabria, 39005-Santander, Spain; email:{mgh, aldeam}@unican.es

Abstract
The recent Ada 2005 standard introduced a number
of new real-time services, with the capability of
creating and managing execution time budgets for
groups of tasks. This capability has many practical
applications in real-time systems in general, and
therefore it is also interesting for real-time operating
systems. In this paper we present an implementation
of thread group budgets inside a POSIX real-
operating system, which can be used to implement the
new Ada 2005 services. The architecture and details
of the implementation are shown, as they may be
useful to other implementers of this functionality
defined in the new standard.
Keywords: Real-time systems, Execution time budgets,
Thread groups, CPU time, Ada 2005.

1 Introduction1
In hard real-time systems it is essential to monitor the
execution times of all tasks and detect situations in which
the estimated worst-case execution time (WCET) is
exceeded. This detection was usually available in systems
scheduled with cyclic executives, because the periodic
nature of its cycle allowed checking that all initiated work
had been completed at each cycle. In event-driven
concurrent systems the same capability should be available,
and can be accomplished with execution time clocks and
timers.

This need for managing execution time is recognized in
standards related to real-time systems. The POSIX standard
[4] defines services for execution time measurement and
budget overrun detection, and its associated real-time
profiles [5] require implementations to support these
services. The recent Ada 2005 standard introduced a
number of new real-time services intended to provide
applications with a higher degree of flexibility. In particular
this standard defines capabilities for measuring the
execution time of individual tasks, and the ability to detect
and handle execution-time budget overruns.

1 This work has been funded by the Plan Nacional de I+D+I of the

Spanish Government under grant TIC2005-08665-C03 (THREAD
project), by Ada Core, and by the European Union’s Sixth Framework
Programme under contracts FP6/2005/IST/5-034026 (FRESCOR
project) and IST-004527 (ARTIST2 NoE). This work reflects only the
author’s views; the EU is not liable for any use that may be made of the
information contained herein.

As real-time applications evolve towards an increased
complexity level, issues such as composability of
independently developed application components and
support for legacy code introduce the need for supporting
different levels of hierarchy in the scheduling mechanism,
leading to a hierarchical concurrency model with different
layers, and with capabilities for establishing boundaries for
the protection of different parts of the application. In this
context of hierarchical scheduling it is often required to
bound the execution time of a group of activities that are
inside the same protection boundary, so that they cannot
interfere with other activities in other protection boundaries
by using up more resources than they should. This need
introduces a requirement on the underlying implementation
to support the measurement of the execution times of
groups of tasks, and the handling of potential budget
overruns, in a way similar to what is usually done for
individual tasks.

Following this general requirement, the Ada 2005 standard
defines services for execution-time budgets for groups of
tasks, and is now a step forward in relation to the real-time
extensions to POSIX, which still has no such service.

In this paper we propose an implementation of a
mechanism to support execution-time budgets for thread
groups inside a POSIX operating system. The API of this
implementation could be used as a basis for a future
extension to POSIX. It will also be used to implement the
task group budgets defined in Ada 2005. The architecture
and details of the implementation are shown, as they may
be useful to other implementers of this functionality
defined in the new standard. Some performance metrics are
provided.

The paper is organized as follows. Section 2 discusses the
current services that are available in the platform chosen
for this implementation, MaRTE OS and GNAT, and that
are related to thread group budgets. Section 3 introduces
the services designed to represent sets of threads. Section 4
discusses the implementation of the execution time clocks
for groups of threads, while Section 5 does the same for
budgets and their associated handlers. Section 6 provides
some performance metrics and, finally, Section 7 gives our
conclusions.

2 Background
The implementation of execution time budgets for thread
groups presented in this paper has been developed in

M. Aldea Rivas, M. González Harbour 121

Ada User Journal Volume 29, Number 2, June 2008

MaRTE OS [1] [2], which is a real-time operating system
(RTOS) that follows the POSIX.13 [5] minimum real-time
system profile, and is mostly written in Ada. It is available
for the ix86 architecture as a bare machine, and it can also
be configured as a POSIX-thread library for GNU/Linux.
The GNAT run-time library has been adapted to run on top
of MaRTE OS, which is itself being extended in a joint
effort between Ada Core and the University of Cantabria
with the objective of providing a platform fully compliant
with Ada 2005, available for industrial, research, and
teaching environments. The implementation of thread
group budgets presented in this paper is part of the effort to
achieve this objective.

Two of the new Ada 2005 real-time services are closely
related to the thread group budgets and are already avail-
able in MaRTE OS and GNAT [3]:

• Timing events are defined in Ada 2005 as an effective
and efficient mechanism to execute user-defined time-
triggered procedures without the need to use a task.
They are very efficient because the event handler may
be executed directly in the context of the interrupt
handler, avoiding the need for a server task.

• Execution time clocks and timers are defined in Ada
2005 as a standardized interface to obtain the execution
time consumption of a task, together with a mechanism
that allows creating handlers that are triggered when the
execution time of a task reaches a given value,
providing the means to execute a user-defined action
when the execution time assigned to a specific task
expires.

Timing events have been implemented in MaRTE OS
through a service that we call “timed handlers”, which are
not only useful to implement their Ada counterpart, but are
also useful to other applications as a general-purpose RTOS
mechanism.

MaRTE OS supports the execution-time clocks and timers
defined in POSIX.1, which would be appropriate to
implement their couterparts in Ada. However, the timers
defined in POSIX to detect execution time overruns use an
operating system signal to notify about their expiration.
Signals are a very scarce resource inside an RTOS.
Besides, the signal is usually handled through a thread that
is waiting to accept the signal, but this is a mechanism that
introduces relatively high overheads, mainly due to the
need for the handler to be a thread, with the associated
costs in context switches. This leads to the same reason for
introducing the new "timing events" mechanism for regular
time management.

As a consequence, the Ada implementation of execution
time clocks and timers has been achieved in MaRTE
through the "timed handler" mechanism, which allows a
direct handling of the event inside the hardware timer
interrupt handler, thus avoiding the use of a signal and the
subsequent double context switch that would be necessary
otherwise.

To implement thread group budgets inside MaRTE OS we
will follow an approach similar to that followed for
execution time budgets for individual threads, creating the
appropriate execution time clocks for thread groups and
extending the "timed handler" mechanism to also support
these new clocks.

3 Thread sets
Before creating the execution time clocks for thread groups
or sets, it is necessary to specify a mechanism to represent
the groups themselves. Instead of defining a mechanism
specific to execution-time clocks, we have chosen to create
an independent RTOS object that represents a group of
threads. In this way, we will be able to address future
extensions that require handling groups of threads using
these same objects. Examples of such new services might
be related to the requirements for supporting hierarchical
scheduling, for instance to suspend or resume a group of
threads atomically.

A thread set is implemented by a record that may be
extended in the future to add functionality. This record has
the following fields:

• Set : A list of the threads belonging to the set.

• Iterator: A reference to the current thread in the list,
used when iterating through marte_threadset_first and
marte_threadset_next.

A restriction has been made so that a thread can belong to
only one thread set. This restriction is also made in the Ada
2005 standard, and its rationale is that in the hierarchical
scheduling environment for which thread groups are useful,
threads only belong to one specific scheduling class, and
therefore to one specific set. This restriction allows a more
efficient implementation, because at each context switch
only one of the Consumed_Time fields of the set to which
the running thread belongs needs to be updated.

Threads can be added/removed to/from a thread set
dynamically. Every thread has a pointer in its thread control
block (TCB) to the set it belongs to. This field is null if the
thread doesn’t belong to any thread set.

The C language API to manage thread sets from the
application level is the following:

 // create an empty thread set
 int marte_threadset_create (

marte_threadset_id_t *set_id);
 // destroy a thread set
 int marte_threadset_destroy (

marte_threadset_id_t set_id);
 // empty an existing thread set
 int marte_threadset_empty (

marte_threadset_id_t set_id);
 // add a thread to a set
 int marte_threadset_add (

marte_threadset_id_t set_id,
 pthread_t thread_id);

122 Operat ing System Support for Execution Time Budgets for Thread Groups

Volume 29, Number 2, June 2008 Ada User Journal

 // delete a thread from a set
 int marte_threadset_del (

marte_threadset_id_t set_id,
pthread_t thread_id);

 // check thread membership
 int marte_threadset_ismember (

marte_threadset_id_t set_id,
pthread_t thread_id);

 // reset the iterator and get the first thread id
 int marte_threadset_first (

marte_threadset_id_t set_id,
pthread_t *thread_id);

 // advance the iterator and get next thread id
 int marte_threadset_next (

marte_threadset_id_t set_id,
pthread_t *thread_id);

 // check whether the iterator can be advanced
 int marte_threadset_hasnext (

marte_threadset_id_t set_id)
 // get the set associated with the given thread
 int marte_threadset_getset (

marte_threadset_id_t *set_id)
pthread_t thread_id);

4 Execution time clocks for thread groups
To implement execution time clocks for groups of threads
we add the following information to the object that
represents a thread set:

• Consumed_Time: CPU-time consumed for all the task
in the group. Every time a thread of a given set leaves
the CPU, the time consumed by this task since its last
activation is added to the Consumed_Time of its thread
set, even if there is no timed event associated with it,
because the value of the execution-time clock may be
read at any time by the application.

• Group_Timed_Event : A reference to the internal RTOS
execution time event, used by the scheduling
mechanism. A set can be associated with at most one
such event.

The API to obtain an execution-time clock from a thread
set is:

 // destroy a thread set
 Int marte_getgroupcpuclockid (

marte_threadset_id_t set_id,
clockid_t *clock_id);

The returned id represents a clock that can be read and set
through the standard POSIX API for clocks, i.e., using
functions clock_gettime, clock_settime, ... They can also be
used as the base for POSIX timers and MaRTE OS timed
events as any other clock defined in the system. They can
not however be used as the base for the clock_nanosleep
operation, as is also the case with the single-thread CPU-
time clocks. POSIX leaves this behavior as unspecified and
Ada does not define execution time as a type that can be
used in the equivalent delay statements.

POSIX requires type clockid_t to be defined as an arithmetic
type, and therefore clock ids are implemented using a

unsigned number of 32 bits. The value stored in a clock id
can have different interpretations:

• Special values for the regular calendar-time clock
CLOCK_REALTIME, the execution time clock of the
current thread CLOCK_THREAD_CPUTIME_ID, and the
monotonic clock CLOCK_MONOTONIC.

• A pointer to a thread control block when the clock is a
thread CPU-time clock of a particular thread.

• A pointer to a thread set when it is a thread group clock.

5 Timed events based on a group clock
Group clocks can be used as the base of timers and timed
handlers. When a timer or a timed handler is armed, a
MaRTE OS timed event is enqueued in the system event
queues. Time-based events in MaRTE OS are of two kinds:
standard time and execution time. They are kept in separate
priority queues because they cannot be compared with each
other for ordering. Events based on group clocks are a
special case of execution time events. An execution time
event has the following information:

• CPU_Time: The event will expire when the execution
time consumed by the associated task reaches this value

• Group_Expiration_Time: The event will expire when
the Consumed_Time field of the task set associated with
the event reaches this value. This field is only used in
events based on a group clock.

• Is_Based_On_Group_Clock: This is a boolean used to
identify events based on group clocks

• Base_Clock: A clock id representing the clock used as
the timing base of the event. It could be a thread CPU-
time clock or a group clock.

• Task_Where_Queued : A pointer to the task that has
queued the event.

Execution time events are kept in a queue associated with
the task on which the event is based on, and stored as the
CPU_Time_Timed_Event_Queue in the task control block.
Every time a new thread gets the CPU, the events at the
head of the standard-time events queue and of the running
task´s CPU_Time_Timed_Event_Queue queue are compa-
red. The hardware timer is programmed to expire at the
most urgent of the two.

Events based on group clocks are special CPU-time events
that “jump” between the CPU_Time_Timed_Event_Queue
of the threads in the group. Each time the system schedules
a task included in a thread set that has an event associated,
the following actions are performed in the Do_Scheduling
internal kernel operation:

 - - Set CPU_Time of the event according to the
 - - time consumed by T
 T.Set.Group_TE_Ac.CPU_Time :=
 T.Used_CPU_Time +
 (T.Set.Group_TE_Ac.Group_Expiration_Time -
 T.Set.Consumed_Time);

M. Aldea Rivas, M. González Harbour 123

Ada User Journal Volume 29, Number 2, June 2008

 - - Move Group_TE_Ac from one task to another
 if T.Set.Group_TE_Ac.Task_Where_Queued /= null
 then
 - - Dequeue from the list it was queued
 Dequeue (T.Set.Group_TE_Ac,
 T.Set.Group_TE_Ac.Task_Where_Queued.
 CPU_Time_TEs_Q);
 end if;
 - - Enqueue in T's list
 Enqueue_In_Order (T.Set.Group_TE_Ac,
 T.CPU_Time_TEs_Q);
 T.Set.Group_TE_Ac.Task_Where_Queued := T;

Dequeue and enqueue operations are very fast, because the
number of CPU-time events associated to a task usually
will be very small, either one or two: a CPU-time event and
a “group event”. Consequently the number of extra
operations required at each context switch to manage these
clocks is kept small, and the implementation can efficiently
schedule the threads with an acceptable overhead, as can be
seen in the following performance metrics section.

6 Performance metrics
The support for group budgets has already been
implemented in MaRTE OS. Execution time accounting
introduces a small overhead: enabling this service in
MaRTE OS increments the context switch time by less than
5%. Group execution time accounting increments the
context switch time by another 4%, representing a total of
9% increment with respect to a system with no CPU-time
accounting in an x86 architecture.

The overheads of the budget overrun detection are also
relatively small. Table 1 shows a comparison of the
overheads of two detection mechanisms, as measured in a
3.4GHz Pentium IV. The first one is implemented using a
regular POSIX timer that sends a signal when the budget
expires, and a handler thread that blocks waiting to accept
the signal. The second mechanism is implemented using
the new timed handler service. We can see that the
overhead of the second mechanism is much smaller.

Table 1 Overhead of budget overrun notification mechanism

Time (⎧s) Time (⎧s)
Metric (using timer and (using timed
 auxiliary thread) handlers)

From user´s thread to 1.1 0.4
handler

From handler to user´s 0.8 0.7
thread

Total time: 1.9 1.1

7 Conclusion
As the complexity of real-time systems evolves,
hierarchical scheduling and partitioning are mechanisms

used to cope with it, by helping in establishing protection
boundaries and easing the composability of independently-
developed application components. One of the
requirements of this partitioning is the time protection
among the different groups of tasks in the hierarchy, which
can be achieved by using thread group budgets as those
specified in the new Ada 2005 standard.

This paper has presented an implementation of the support
needed to provide such budgeting services in a real-time
operating system called MaRTE OS. The paper describes
the architecture and details of the implementation, together
with the rationale for the main design decisions, so that this
information can be used by other implementers of this
functionality, either as part of Ada run-time systems, or as
part of a general-purpose RTOS. The implementation has
proven to be straightforward, and the overheads introduced
are small, both in the context switch times and in the
budget overrun notification mechanism.

As future work, the functionality defined in Ada 2005 for
group budgets will be implemented. It is anticipated that
support for the Ada group budgets will be a simple package
built on top of the MaRTE OS implementation described in
this paper.

References
[1] Aldea Rivas M. and González Harbour M. MaRTE OS:

Minimal Real-Time Operating System for Embedded
Applications. Universidad de Cantabria.
http://marte.unican.es/

[2] Aldea Rivas M. and González Harbour M. MaRTE OS:
An Ada Kernel for Real-Time Embedded Applications.
Proceedings of the International Conference on
Reliable Software Technologies, Ada-Europe-2001,
Leuven, Belgium, Lecture Notes in Computer Science,
LNCS 2043, May, 2001, ISBN:3-540-42123-8, pp.
305,316.

[3] Aldea Rivas M. and Ruiz J.F.. Implementation of new
Ada 2005 real-time services in MaRTE OS and GNAT.
International Conference on Reliable Software
Technologies, Ada-Europe-2007, Switzerland.

[4] IEEE Std. 1003.1:2004 Edition, Information
Technology — Portable Operating System Interface
(POSIX). The Institute of Electrical and Electronics
Engineers.

[5] IEEE Std. 1003.13-2003. Information Technology –
Standardized Application Environment Profile- POSIX
Realtime and Embedded Application Support (AEP).
The Institute of Electrical and Electronics Engineers.

[6] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt,
Erhard Ploedereder, Pascal Leroy (Eds.). Ada-2005
Reference Manual. Language and Standard Libraries.
International Standard ISO/IEC 8652/1995(E) with
Technical corrigendum 1 and Amendment 1. Springer,
Number 4348 in Lecture Notes in Computer Science,
Springer-Verlag (2006).

124

Volume 29, Number 2, June 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Session: Beyond Ada 2005
Chair: Jorge Real
Rapporteur: Stephen Michell

1 Session Goals :
To consider future directions in computing, and what
changes would be required for Ada to effectively use new
features.

Related Papers

1. Beyond Ada2005: Allocating Tasks to Processors in
SMP Systems; A.J.Wellings and A. Burns.

2. Suggestions for Stream Based Parallel Systems in Ada;
M. Ward and N.C. Audsley

2 Stream-Based Parallelism
Neil Audsley gave a look at a possible future in
computation based on massive parallel architectures. The
presentation began with current architectures, including

a) single CPU with L1, L2 cache and memory, and

b) double CPU with L1, L2 cache and memory,
cache coherence at L2 memories

The presentation noted that these architectures are
unscalable beyond a few (4-6) CPUs, because the
replication of processors (CPU) on each chip, separation of
L2 cache onto dedicated chips, distances and switching
speeds of circuits when using multiple chips increase delays
and power requirements.

An alternative view was presented that was called “System
on a chip". Such a system has:

• Heterogeneous CPUs,

• Non uniform memory,

• Special devices.

It is expected that this will soon be followed by "Network
on a chip", which consists of:

• Multiple systems-on-chip connected by networks

• No common notion of time

• Packet switched network

An example of such a system has been developed by the
authors, that amounts to "Field Programmable System on a
chip". Such a system is highly reprogrammable and can be
reprogrammed in milliseconds, using an almost Ravenscar
compliant system.

The authors identified some issues for the Ravenscar
Tasking Profile.

Open Issue 1.1: Lack of a shared lock for Protected
Entries

This was expressed as Ravenscar's restriction to a single
entry per protected object or a single caller task per entry,
but discussion highlighted that the problem is fundamental
in Ada's specification of protected operations.

Protected functions in Ada permit a shared access to a
protected object, but lack any synchronization. Protected
entries provide synchronization, but lack the ability for a
collective release of waiting tasks and each released task
maintains a sequential lock. The need in highly parallel
systems is to release collections of tasks that will read their
dedicated data and not update protected data, hence
behaving as a function once released.

The Ravenscar restrictions of a single entry and a single
queue element per entry exacerbate this problem. It was
agreed that this was a problem that requires a proposal to
the Ada Rapporteur Group to solve these issues. Solutions
could resemble a pragma Simultaneous_Release, or the
addition of functions that block to protected objects.

The workshop agreed that this deserved further study.

2 Synchronous Multiprocessing
Andy Wellings presented a summary of the paper “Beyond
Ada2005: Allocating Tasks to Processors in SMP Systems”
and then lead a discussion on the topic through an
interactive slide presentation. The paper, presentation and
discussion assume a model of a shared memory
multiprocessor environment and additions required for Ada
2005 to better support such an environment.

The author noted that Ada nominally addresses the
multiprocessor environment, but assumes that there is an
OS-level or implementation-level of support that simplifies
the view of multiprocessing to make it seamless.
Specifically, the paper notes that Ada is currently silent on
how the runtime maps tasks to specific processors, and
proposes the use of pragmas to let an application guide
such mappings.

The authors claim that better schedulability can be obtained
by supporting static allocation of tasks to CPUs. They also
claim that the approach is not scalable to multicore
architectures that are Non Uniform Memory Access
(NUMA). The authors also note that there is still no
standardization of support for SMP in OS community,
which affects any choices that Ada makes because Ada
implementations may rely upon services that are not

J. Real , S. Michel l 125

Ada User Journal Volume 29, Number 2, June 2008

supplied, or may make choices that differ significantly
from those eventually chosen by an OS. The challenge is to
provide set of mechanisms that can be both expressive
enough to support a wide range of application
requirements, yet be implemented on a wide range of OS's.

Platform variability is a very significant issue for
multiprocessor systems. An assumption is made that a
concurrent program running on a SMP system will often
not be the only program executing, that the hardware
resources available to it will not be constant throughout the
execution of a single execution, and that some processors
may have capabilities or interfaces that are not available to
other processors.

For example,

a) An underlying operating system may dynamically
change set of processors allocated to a program
during execution and may or may not inform the
executing program of such changes.

b) There may be hardware registers, interfaces to the
external environment or interrupts available to
some processors but not to all.

It is hoped that such changes would be done in a safe
manner, but at present there is no language mechanism to
manage these issues. The workshop decided that the
minimal level of support that a program requires is to be
able to determine how many processors are available to it.
A proposed Ada service is shown in paper [1].

Another issue raised was that Ada 2005’s support of task
groups should interoperate with processor affinity. An
extension of Set_Affinity to a task group would be useful.
Another issue raised was that some aspects of memory
maps may be processor-specific, and that ways to specify
memory affinities should be considered. There were no
specific set of calls proposed to provide such capability.

Throughout the presentation and discussion, there were a
number of “Open Issues” that were raised and discussed.

Open Issue 2.1: Should the mapping of tasks be by-
partition?

There was general agreement that this was the desired
model.

Open Issue 2.2: Should there be Affinity Inheritance?

There was some discussion but no strong conclusion. It was
generally agreed that such a model would work, in that
nested tasks would start with the same processor affinity
and could explicitly change that affinity with a call. It was
noted that a pragma, such as pragma priority could be used
for static affinity control.

Open Issue 2.3: Dispatching policies

There was agreement that dispatching policies must be
partition-wide. A discussion was held about specific Ada
dispatching policies and how they would be affected by the
SMP model.

a) Dispatching policy FIFO_Within_Priorities
should imply that a task can be migrated between
its allocated processors whenever it is preempted.

b) Dispatching policy Non_Preemptive_FIFO_With-
in_Priorities should mean that a task, once
dispatched to a processor, will not be migrated
from that processor while it is still executable
(because it cannot be preempted).

c) The meaning of the dispatching policy EDF_-
Across_Priorities is unclear if the tasks assigned
to the priority range have a disjoint set of
processors.

d) This raises the need for a new dispatching policy,
FIFO_Within_Priorities_Without_Migration,
where a preempted task cannot be migrated from
the processor from which it was preempted while
it is still runnable.

The discussion also considered the ramifications of affinity
to scheduling policies. The ARM view of priorities states
that high priority tasks ready for execution should always
be executed in preference to lower priority tasks. Examples
were given where a high priority task executing on a single
processor (say HI with affinity {A}) could preempt a
medium priority task (say MED on A with affinity {A, B}).

Open Issue 2.4: Interrupt handlers, Protected Objects
& Tasks.

Ada's nominal mapping of interrupts is to protected objects,
but tasks also often initiate and complete interrupt-level
operations. If interrupts are processor-specific, there must
be a way to map protected objects and tasks to the
processor. An alternative procedure Set_Handler was
proposed that would include the affinity mapping, but it
was noted that task-processor affinity could also be a
requirement. A further complication would result if a single
task called 2 protected objects that had different affinities.

The workshop decided that this was an area of interest and
for further study.

Open Issue 2.5: Consistent notion of time.

Timers and relative delay were discussed and considered to
be consistent. Absolute notions of time could be a problem,
but should be satisfactory within a single partition. CPU
time, however, could be problematic as processors may not
all have the same clock speeds, and reduction or increase
on the processor set could hinder calculations that optimize
CPU-time.

It was agreed that at a minimum should be standardized for
symmetric multiprocessing with static processor
allocations.

Open Issue 2.6: Is it important how an OS manages
SMP's?

The consensus was that Ada programs sit above OS
implementations and cannot rely upon specifics of the OS-
to-processor decisions.

126 Session: Beyond Ada 2005

Volume 29, Number 2, June 2008 Ada User Journal

Open Issue 2.7: Mapping Tasks to Processors:

The next discussion considered the mapping of tasks to
processors. There was a general consensus that the
mapping should be task-based, as opposed to partition-
based. There was also sentiment that such a mapping
should include mapping of data-specific regions, cache
description and interrupts to processors. The following
mapping choices for tasks-processors were enumerated,

1) Task → Processor

2) Task → {Processor}

3) {Task} → Processor

4) {Task} → {Processor}

5) {Task} → {Processor} + return to same processor.

It was agreed that the mapping proposal enumerated above
is a reasonable beginning, but that pragmas should be
included for the static mappings and memory mappings
should be considered.

The workshop noted that affinity and pre-emption can lead
to cascading preemptions. A case in point,

• HI on A, MED with affinity {A, B}, LOW on any.

• HI preempts, but can't preempt LOW because LOW is
on a processor for which HI has no affinity,

• HI therefore preempts MED which must then preempt
LOW.

Other scenarios can be constructed where priority inversion
occurs, i.e. HI preempts MED but MED cannot preempt
LOW because MED has no affinity for the processor
executing LOW.

Round-robin scheduling was discussed, and it was
concluded that as long as all tasks participating in the
round-robin at the same priority level had identical
processor affinities, placing a task that has just finished its
quantum at the end of the queue for all processors in the
affinity set would suffice.

EDF was thought to be generally ok, but will cause
preemption cascading. Further research is required.

Open Issue 2.8: What happens if OS removes a
processor?

This is a serious issue if the processor causes significant
perturbations in the affinity set of some tasks, such as
giving a task a null affinity set. The call-back notification
discussed earlier may suffice, as long as there was prior
notification of the removal so that tasks could
synchronously change their affinity sets.

Open Issue 2.9: Asynchronous Task Control and
Affinity

There was a proposal to be able to add to
Aynchronous_Task_Control the ability to change affinity.
This proposal received insufficient support.

Open Issue 2.10: Protected Objects and Processor
Affinities.

There are some significant issues in giving protected
objects affinities. The requirement is clear since processor-
specific mappings such as interrupts and registers may be
utilized with no task thread, or may be called by a task
without affinity for the processor in question. This is most
likely if the implementation had proxy execution of
protected entries, and a task with the wrong processor
affinity tried to execute a protected entry on behalf of
another task. There is, however, no current concept of
Protected_Object_ID similar to Task_ID to build such a
mapping.

It was noted that the existing Ada pragma Attach_Handler
requires extension to include processor information where
applicable. Similarly, a pragma to provide affinity could
provide static affinities for protected objects.

It was decided that this topic needed further research.

3 Conclusions
As the session wrapped up, it was decided to continue
developing proposals for the next workshop, and for the
Ada Rapporteur Group to consider as they are developed.

 127

Ada User Journal Volume 29, Number 2, June 2008

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Beyond Ada 2005: Allocating Tasks to Processors
in SMP Systems
A.J. Wellings and A. Burns
Department of Computer Science, University of York, UK; email: {andy,burns}@cs.york.ac.uk

Abstract
Ada 2005 has added no new facilities to support
applications that want to run on multiprocessor
systems. Following the example set by Ada 95, the
language facilitates multi-processor implementations
but provides no direct support for an application-
controlled mapping of tasks to processors. Such
partitioning is often required to obtain feasible real-
time systems. This paper argues that multiprocessors
systems are becoming so prevalent that the current
position is no longer tenable. A proposal for minimal
support is presented.

1 Introduction
Multiprocessors system are becoming more prevalent. In
particular SMP systems are often the default platform for
large real-time systems rather than a single processor
system. The scheduling of processes on these systems can
be

1. global – all processors can execute all processes

2. fully partitioned – each process is executed only
by a single processor; the set of processes is
partitioned between the set of processors

3. mixed – each process can be executed by a subset
of the processors; hence the tasks set may be
partitioned into groups and each group can be
executed on a subset of the processors.

The Ada Reference Manual allows a program’s
implementation to be on a multiprocessor system.
However, it provides no direct support that allows
programmers to partition their tasks onto the processor in
the given system. The following ARM quotes illustrate the
approach.

“NOTES 1 Concurrent task execution may be
implemented on multicomputers, multiprocessors, or
with interleaved execution on a single physical
processor. On the other hand, whenever an
implementation can determine that the required
semantic effects can be achieved when parts of the
execution of a given task are performed by different
physical processors acting in parallel, it may choose
to perform them in this way.” ARM Section 9 par
11.

This simply allows multiprocessor execution and also
allows parallel execution of a single task if it can be
achieved, in effect, “as if executed sequentially”.

“In a multiprocessor system, a task can be on the
ready queues of more than one processor. At the
extreme, if several processors share the same set of
ready tasks, the contents of their ready queues is
identical, and so they can be viewed as sharing one
ready queue, and can be implemented that way.
Thus, the dispatching model covers multi-processors
where dispatching is implemented using a single
ready queue, as well as those with separate
dispatching domains.” D.2.1 par 15.

This allows the full range of partitioning identified above.
However, currently the only way that an implementation
can provide the mechanisms to allow the programmers to
partition their tasks amongst the available processors is via
implementation-defined pragmas, or non standard library
packages.

This paper argues that multiprocessor systems are
becoming so prevalent that it is now time for the language
to provide more direct support.

Unfortunately, as of yet, there has been no standardisation
of support for multiprocessor systems in the operating
system community. Hence, if Ada is being implemented on
top of a real-time operating system, it is difficult to know
what facilities it can rely on. Consequently, the challenge is
to provide a set of mechanisms that can be both expressive
enough to support a wide range of application requirements
and yet can be implemented (possibly with degraded
services) on a wide range of operating systems.

This paper proposes the introduction of a new package
System.Processor_Elements to capture the interface
between the programmer and the underlying system’s
multiprocessor architecture. A new pragma, Affinity is also
introduced. The focus is on support for SMP (Symmetric
MultiProcessor) Systems.

The paper is structured as follows. In Section 2 we present
the main motivations for wanting to provide more explicit
support for multiprocessor systems. In Section 3 we briefly
review the support that has been discussed or provided by
current operating systems. Drawing on this work, we then
present (in Section 4) some initial thoughts on how to

128 Beyond Ada 2005: Al locat ing Tasks to Processors in SMP Systems

Volume 29, Number 2, June 2008 Ada User Journal

integrate multiprocessor support into Ada. Finally we
present our conclusions.

2 Motivation
Whilst many applications do not need more control over
the mapping of tasks to processors in an SMP environment,
there are occasions when such control is important. They
include:

• To allow more flexible approaches to scheduling. –
Although the state of the art in schedulability analysis
for multiprocessor systems continues to advance [2], the
current state is such that partitioned systems offer more
guaranteed schedulability than global systems. Quoting
from [3]:

“The choice between global and partitioned approaches
to multiprocessor scheduling is a conundrum. Setting
aside pragmatic questions about queue contention
overhead and differences in cache behavior, the
theoretical results are equivocal.

In favor of global scheduling, it has long been known
from queueing theory that single-queue (global) FIFO
multiprocessor scheduling is superior to queue-per-
processor (partitioned) FIFO scheduling, with respect to
average response time.

Apparently in favor of partitioned scheduling, the
application of well-known single processor scheduling
algorithms appears superior to the global application of
those same algorithms for some task sets with hard-
deadlines.

For example, it is known that all periodic implicit-
deadline task sets with utilization below m(21/2 −1) can
be scheduled on m processors using a first-fit-
decreasing-utilization (FFDU) partitioning algorithm
and and local rate monotonic scheduling, but Dhall’s
example shows that there are hard-deadline periodic
task sets with total utilization arbitrarily close to 1.0 that
cannot meet all deadlines if scheduled on m processors
using global rate monotonic scheduling.

Dhall’s example also applies to global EDF scheduling,
yet FFDU partitioned EDF scheduling is guaranteed up
to utilization (m + 1)/2. However, the supposed
advantage of partitioned scheduling above disappears if
one considers hybrid global priority schemes. The Dhall
example can easily be handled by the EDF − U S(1/2)
or EDF(kmin) schemes, in which top priority is given to
a few ”heavy” tasks, as can any implicit deadline
sporadic task system with utilization up to (m+1)/2.
This is exactly the same bound as for FFDU partitioned
scheduling!

The experiments we performed on large numbers of
pseudo-randomly generated task sets were intended to
provide some additional evidence on which to base a
choice between these two approaches. From those
experiments, statistically, the chance of being able to
satisfy all the deadlines of a randomly chosen periodic
or sporadic task set appears to be highest with

partitioned scheduling. In particular, the partitioned
EDF scheduling appeared to be the overall best
performer in this statistical sense. At the same time,
there are certainly specific task sets where global
scheduling is more effective.

While the schedulability tests used in the experiments
probably could be improved, it remains unclear whether
they can be improved enough to erase the statistical
margin of partitioned scheduling with the available
schedulability tests.”

• To support temporal isolation. – Where an application
consists of tasks of mixed criticality level, some form of
protection between the different levels is required. The
strict typing model of Ada provides a strong degree of
protection in the spatial domain. The CPU budgeting
facility provides a limited form of temporal protection
but at the expense of flexibility. More flexible temporal
protection is obtainable by allowing tasks in each
criticality level to be executed on partitions of the
processor set.

• To obtain performance benefits. – For example,
dedicating one CPU to a particular process will ensure
maximum execution speed for that process. Restricting
a process to run on a single CPU also prevents the
performance cost caused by the cache invalidation that
occurs when a process ceases to execute on one CPU
and then recommences execution on a different CPU
[4].

• To be able to respond to dynamic changes to the
processor set. – In a parallel computing environment the
set of processors allocated to an application may vary
depending on the global state of the system. An
application may be able to optimize its algorithms if it
is informed when these changes in the processor set
occur.

One of the application areas where use of Ada remains
strong is in high-integrity systems. It is important to
anticipate how the requirements on these systems will
change over the coming years so that we can ensure that
Ada remains competitive.

Currently there is limited use of general multiprocessor
shared memory systems in Safety Critical Systems.
Traditionally, where multiprocessors are required they are
used in a distributed processing mode: with boards or boxes
interconnected by communications busses, and bandwidth
allocation, and the timing of message transfers etc carefully
managed. This “hard” partitioning simplified certification
and testing since one application cannot affect another
except through well-defined interfaces. More recently,
there has been a move towards more integrated distributed
systems where functions are more distributed across a
single computing infrastructure (e.g. Integrated Modular
Avionics). The goal of this approach is to save space and
weight, reduce wiring, provide cheaper fault toleranc and
reduce overall costs. Partitioning here is “softer” and is
supported by a combination of hardware and software
techniques (e.g. memory management support to protect

A.J. Wel l ings and A. Burns 129

Ada User Journal Volume 29, Number 2, June 2008

address spaces, some form of CPU budgeting to enforce
temporal firewalls, and TDMA on the network).

There has been some use of shared memory modules
between processors but access to these memory modules
are very restricted and typically only used to coordinate
computational activity. Where it has been necessary to use
an SMP, only one processor has been enabled[1].

However, there is evidence that future systems will use
SMP. For example, the LynxSecure Separation Kernel has
recently been announced. The following is taken verbatim
from their web site1:

• Optimal security and safety – the only operating system
to support CC EAL-7 and DO-178B level A

• Real time – time-space partitioned real-time operating
system for superior determinism and performance

• Virtualization technology – supports multiple
heterogeneous operating system environments on the
same physical hardware

• Highly scalable – supports Symmetric MultiProcessing
(SMP) and 64-bit addressing for high-end scalability

• Support for open standards – supports 100% binary
compatibility for Linux or POSIX-based software
application to migrate to a highly robust, secure
environment

• Faster time to market – enables developers to begin
early development for secure applications

This work has been undertaken by Intel and LynuxWorks
to demonstrate the MILS (Multiple Independent Levels of
Security/Safety) architecture2.

3 Review
Although POSIX currently does not provide specific
support for SMP systems, the issue has been raised [5].
POSIX.1 defines the ”Scheduling Allocation Domain” as
the set of processors on which an individual thread can be
scheduled at any given time. POSIX states that [6]:

• “For application threads with scheduling allocation
domains of size equal to one, the scheduling rules
defined for SCHED FIFO and SCHED RR shall be
used;”

• “For application threads with scheduling allocation
domains of size greater than one, the rules defined for
SCHED FIFO, SCHED RR, and SCHED SPORADIC
shall be used in an implementation-defined manner.”

• “The choice of scheduling allocation domain size and
the level of application control over scheduling
allocation domains is implementation-defined.
Conforming implementations may change the size of

1 http://www.lynuxworks.com/rtos/secure-rtos-kernel.php.
2 See http://www.intel.com/technology/itj/2006/v10i3/5-communicat-
ions/6-safety-critical.htm.

scheduling allocation domains and the binding of
threads to scheduling allocation domains at any time.”

With this approach, it is only possible to write strictly
conforming applications with real-time scheduling
requirements for single-processor systems. If an SMP
platform is used, there is no portable way to specify a
partitioning between threads and processors.

Additional APIs have been proposed but currently these
have not been standardized. The approach has been to set
the initial allocation domain of a thread as part of its
thread-creation attributes. The proposal is only draft and so
no decision has been taken on whether to support
dynamically changing the allocation domain.

Since Kernel version 2.5.8, Linux has provided support for
SMP systems [4] via the notion of CPU affinity. Each
process in the system can have its CPU affinity set
according to a CPU affinity mask. A process’s CPU affinity
mask determines the set of CPUs on which it is eligible to
run.

 #include <sched.h>

 int sched_setaffinity(pid_t pid,
 unsigned int cpusetsize,
 cpu_set_t *mask);

 int sched_getaffinity(pid_t pid,
 unsigned int cpusetsize,
 cpu_set_t *mask);

 void CPU_CLR(int cpu, cpu_set_t *set);

 int CPU_ISSET(int cpu, cpu_set_t *set);

 void CPU_SET(int cpu, cpu_set_t *set);

 void CPU_ZERO(cpu_set_t *set);

A CPU affinity mask is represented by the cpu_set_t
structure, a “CPU set”, pointed to by the mask. Four
macros are provided to manipulate CPU sets. CPU_ZERO
clears a set. CPU_SET and CPU_CLR respectively add and
remove a given CPU from a set. CPU_ISSET tests to see if
a CPU is part of the set. The first available CPU on the
system corresponds to a cpu value of 0, the next CPU
corresponds to a cpu value of 1, and so on. A constant
CPU_SETSIZE (1024) specifies a value one greater than
the maximum CPU number that can be stored in a CPU set.

sched_setaffinity sets the CPU affinity mask of the process
whose ID is pid to the value specified by mask.

If the process specified by pid is not currently running on
one of the CPUs specified in mask, then that process is
migrated to one of the CPUs specified in mask.

sched_getaffinity allows the current mask to be obtained.

An error is returned if the affinity bitmask mask contains
no processors that are physically on the system, or

130 Beyond Ada 2005: Al locat ing Tasks to Processors in SMP Systems

Volume 29, Number 2, June 2008 Ada User Journal

cpusetsize is smaller than the size of the affinity mask
used by the kernel.

The affinity mask is actually a per-thread attribute that can
be adjusted independently for each of the threads in a
thread group. The value returned from a call to gettid (get
thread id) can be passed in the argument pid.

Other operating systems provide slightly different facilities.
For example IBM’s AIX allows a kernel thread to be bound
to a particular processor3. Further more, the set of
processors (and the amount of memory) allocated to a
partition in AIX can change dynamically. In AIX a
partition appears to be a subset of resources allocated to a
particular subsystem.

The Expert Group responsible of development of the Real-
Time Specification for Java (JSR 282) is also considering
the appropriate level to support SMP systems. The proposal
given here is compatible with their current view.

4 Proposal
In the general case, the following may be supported by the
underlying platform (operating system and hardware).

1. An application program may be allocated (by the
operating system) the full set of the processors in
the system or only a subset of them. An initial
allocation is performed at the start of program
execution time.

2. The operating system may only support global
scheduling of threads or it may allow threads to be
constrained to one or more processors in the set
allocated to the program.

3. The operating systems may dynamically change
the allocation of processors allocated to a program
during the program’s execution. If it does this, it is
done in a safe manner.

4. Mechanisms may be provided by the operating
system to inform the application (if the operating
system supports task to processor allocation) or
they may not (if it only supports global
scheduling).

From an Ada perspective, there are two possible
approaches to supporting task to processor allocation:

1. associate Ada partitions with processor sets

2. associate individual tasks with processor sets

We use the latter approach, as partitions in Ada are more a
unit of distribution (or at least implies that each partition
executes in a separate address space) and are not first class
entities. Here, we are concerned with entities that share
memory. Hence the mechanisms we define here are on a
per partition basis and we allow tasks to set their processor
affinity.

3 See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/-
com.ibm.aix.basetechref/doc/basetrf1/bindprocessor.htm

The mechanisms supported by the proposed package (see
Figure 1) have been designed with the constraints that
should degrade if the program is executing

1. on a single processor system

2. under an operating system which imposes a global
partitioning approach.

3. under an operating system that does not change
the processor set allocated to a program.

The minimum functionality is for the operating system to
allow an Ada program to determine how many processors
are available to it.

The API allows for systems that support the dynamic
addition and removal of processors from the set allocated to
the program. If an operating system does not support this
facility then the set will not dynamically change. An
operating system is also allowed to maintain a set of logical
processors allocated to the program and to transparently
change its logical to physical mapping. Again, from the
Ada programs perspective the set has not changed.
However, it should be noted that this may have an impact
on the application if a) it is handling interrupts directly on
the processor or b) if the change undermines any feasibility
analysis assumptions. For many Ada applications this may
not be a problem. In all of the above circumstances
Dynamic_Set_Changes_ Supported is set to False in the
following package.

If the operating system does support dynamic changes to
the processor set, the assumption is that it will inform the
Ada program of the changes (e.g. via a signal). The Ada
run-time system will pass this information to the
application via the calling of a protected procedure. In this
circumstances, Dynamic_Set_Changes_Supported is set to
True.

The assumption is that the application will maintain its own
list of which tasks are mapped to which processors (logical
or physical). It will then undertake whatever
reconfiguration it deems appropriate.

If a processor fails and the platform cannot transparently
recover, the Ada program abnormally ends (with assumed
fail stop semantics). Any recovery must be performed
outside of the Ada program. This is because a processor
failure can leave the application in an inconsistent state
(e.g. with a corrupted heap) from which it is unlikely to be
able to recover.

The API supports the setting of the affinity tasks by the
programmer. If the operating system doesn’t support this
facility then all of the associated operations, raise the
Unsupported_Operation exception, and Processor_ Affinity_
Supported is set to False.

The full API is shown in the AFigure 1, annotated with the
semantics of the subprograms. For convenience, the affinity
mask is shown as a boolean array. In practice, a more
efficient representation of the affinity mask would be
needed.

A.J. Wel l ings and A. Burns 131

Ada User Journal Volume 29, Number 2, June 2008

with Ada.Task_Identification; use Ada.Task_Identification;
package System.Processor_Elements is

Affinity_Error : exception;
Unsupported_Operation : exception;

type Processors is range 0 .. <<implementation-defined>>;
- - The number of processors available on this system.
- - Each processor has a logical Id in the range.
- - On a single processor system, the range is 0..0

type Processor_Set is array(Processors) of Boolean;
- - A set of processors. A boolean set to True, indicates
- - that the logical processor is included in the set

function Available_Processors return Processor_Set;
- - Indicates which of the processors in the system are
- - current available to the program. In some
- - systems this will never change, others it may.

Dynamic_Set_Changes_Supported : constant Boolean := <<implementation-defined>>;
- - Indicates if the current system might dynamically change the
- - Available_Processor set

Processor_Affinity_Supported : constant Boolean := <<implementation-defined>>;
- - Indicates whether the system allows a task’s affinity to be
- - set by the programmer

function Set_Default_Affinity(Processors: Processor_Set) return Processor_Set;
- - Raises Unsupported_Operation if Processor_Affinity_Supported = False
- - Raise Affinity_Error if Processors is incompatible with Available_Processors

function Get_Default_Affinity return Processor_Set;
- - The default affinity is the set of processors that can
- - execute a newly created task. The initial system default is
- - the set returned from Available_Processors, i.e. global
- - scheduling on any of the processors available to the system.
- - If Processor_Affinity_Supported = False, then this always
- - returns Available_Processors

function Set_Affinity(Processors : Processor_Set; TID :Task_Id := Current_Task)
return Processor_Set;
- - Sets the affinity for a particular task.
- - Raises Unsupported_Operation if Processor_Affinity_Supported = False
- - Raises Affinity_Error if Processors is in conflict with Available_Processors
- - The new affinity is set immediately if the task is not executable.
- - If it is current executable,
- - the new affinity is set when the task next becomes non-executable
- - Returns the old set allocated???

function Get_Affinity(TID :Task_Id := Current_Task) return Processor_Set;
- - Returns the current affinity of the task

type Change_Handler is access protected procedure(Processor : Processor_Set);

procedure Set_Available_Processor_Changed_Handler(
New_Handler : in Change_Handler; Old_handler : out Change_Handler);
- - Raises Unsupported_Operation if Dynamic_Set_Changes_Supported = False
- - If the system allows processors to be added to or subtracted
- - from the Available_Processors, then the program can request
- - notification of these changes via a call to a protected
- - procedure. Here a new call of Set_Available_Processor_Changed_Handler
- - overwrites any previous call. Whenever a change occurs, the
- - system calls the last set handler.

end System_Processor_Elements;

Figure 1 Proposed API

132 Beyond Ada 2005: Al locat ing Tasks to Processors in SMP Systems

Volume 29, Number 2, June 2008 Ada User Journal

Open Issues

• Defaults – The current proposal has default affinity
arrays. In Ada, the default priority of a task is the same
as its parent, and a pragma is defined to allow the
priority to be set at task creation time. Hence, a pragma
such as pragma Set_Affinity(Mask’Access) could be
provided.

• Dispatching Policies – Where a task can be executed on
more than one processor it may be appropriate to define
a new dispatching policy to obtain efficient use of
caching. For example, the current policies could be
extended and a new one added as follows:

- FIFO_Within_Priorities. With this policy, a
task can be migrated between its allocated
processors whenever it is preempted.

- Non_Preemptive_FIFO_Within_Priorities.With
this policy, a task once dispatched to a
processor will not be migrated from that
processor whilst it is still executable.
Furthermore, it cannot be preempted.

- FIFO_Within_Priorities_Without_Migration. A
new policy, a preempted task cannot be
migrated from the processor from which it
was preempted whilst it is still runnable.

- EDF_Across_Priorities. It is not clear what
this policy means if the tasks assigned to the
priority range can be executed on a possible
disjoint set of processors.

• Interrupt handling – Some SMPs allow the affinity of

an IRQ to be set. Hence, certain interrupt handlers can
only run on that processor set (e.g. on Red-hat linux
/proc/irq/IRQ#/smp affinity specifies which target
CPUs are permitted for a given IRQ (Interrupt ReQuest
line) source). An alternative version of the
Attach_Handler pragma could be provided to allow the
mask to be set. Also a new subprogram in
Ada.Interrupts could allow the mask to be set in the
dynamic case.

• Asynchronous task control – The current definition of
Ada.Asynchronous_Task_Control seems to work
adequately for the multiprocessor case. However,
setting the affinity of a task to be “no processors” also
needs to be considered in this context. In particularly
when it is waiting at an accept/select statement.

• Current Processor – A mechanism may be needed for a
task to determine the actual processor upon which it is
currently executing. Such a facility could be provided in
the above package.

5 Conclusions
Historically, Ada has always taken a neutral position on
multiprocessor implementations. On the one hand, it tries to
define its semantics so that they are valid on a
multiprocessor. On the other hand, it provides no direct
support for allowing a task set to be partitioned. This paper
has argued that multiprocessors are becoming more
ubiquitous, and that there are advantages to be gained by
allowing the program more control over which task
executes where. Unfortunately the POSIX standards do not
currently address this issue, and consequently it is difficult
to know what mechanisms Ada can rely on existing in the
underlying execution platform. Consequently, the paper has
proposed an API which can gracefully degrade according to
the facilities provided.

Acknowledgements
The authors gratefully acknowledge the contributions of the
JSR 282 and JSR 302 Expert Groups where many of the
ideas presented in this paper have been discussed (albeit
from within a Java context).

References
[1] B.S. Anderson. Saftey critical systems and SMPs,

private communication, 2006.

[2] T.P. Baker. An analysis of fixed-priority schedulability
on a multiprocessor. Real-Time Systems, 32 (1-2):41 –
71, 2006.

[3] T.P. Baker. Global versus partitioned scheduling in
multiprocessor systems, private communication, 2006.

[4] Linux Manual Page. sched setaffinity(), 2006.

[5] Michael Gonzalez Harbour. Supporting SMPs in
POSIX, private communication, 2006.

[6] Open Group/IEEE. The open group base specifications
issue 6, ieee std 1003.1, 2004 edition. IEEE/1003.1
2004 Edition, The Open Group, 2004.

 133

Ada User Journal Volume 29, Number 2, June 2008

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

* This work was supported by BAE SYSTEMS

Suggestions for Stream Based Parallel Systems
in Ada
M. Ward* and N. C. Audsley
Real Time Systems Group, University of York, York, England; email: (mward,neil)@cs.york.ac.uk

Abstract
Ada provides good support for the implementation of
dependable, real-time, control systems. However, its
support for other styles of systems is not as good. This
paper explores the support available for
implementing parallel, stream based systems. The
paper presents an implementation of an image
manipulation system which highlights deficiencies in
the support for such systems in the Ada language.
Two additional semantics are proposed for addition
to the Ada language which will provide for the needs
of these systems. The broadcast semantic allows the
same data to be written to several POs
simultaneously. The guarded protected function
semantic permits several readers to wait on an entry
and simultaneously read data from the PO.

1 Motivation
The Ada language [1] has found a niche in the
implementation of dependable real-time systems. This has
traditionally revolved around the use of periodic tasks to
implement control systems. However, there are other styles
of system that would benefit from the various attributes that
Ada offers. The main advantages of Ada are its support for
real-time systems, and its support for concurrency within
its semantics. This paper looks at the effects of trying to
implement dependable, stream based, parallel systems in
the Ada language. These have high performance demands,
and require substantial support for efficient
implementation.

This paper is presented in two parts: the experience of
using Ada to implement such a system; and suggestions to
improve the language support for them. Section 2 presents
an overview of the implementation of an image
manipulation system. This covers the motivation for
moving away from the traditional implementation method,
through the ideal solution, and the changes required to
allow it to be programmed in Ada, to a description of the
final system. Section 3 contains suggestions for additions to
the Ada language to provide for the needs of such systems
that are not supported within the language.

2 The Image Manipulation System
Image manipulation systems work on video streams in real-
time. With both source and output streams, the system

applies a transformation to the streams. These can be
simple, pixel-based, manipulations (e.g. greyscale, sharpen,
edge detect), or a more complex, frame-based,
transformations (e.g. image warping or morphing). Whilst
frame based manipulations need more buffering than pixel
based ones, their implementation is similar.

The traditional approach to the implementation of these
systems uses graphical libraries implemented on a
processor. The processor can be either a general purpose
processor or a graphics specific processor which provides
support for common graphical functionality. In the general
case, these techniques provide ample performance for most
image processing techniques. However, the use of these
techniques for dependable systems raises a number of
issues.

A dependable system needs to be proved to be correct to its
specification. This requires analysis of both the
functionality of the system, as well as its timeliness
(amongst other things). The traditional implementation
techniques fall foul of these needs:

• General purpose processors have good best case
performance, but due to the architectural features to do
this, have poor worst case performance. This limits the
available processing power and restricts the overall
system performance.

• Specific processors generally do not have the same
amount of evidence to prove they are correct that a
general purpose processor will have. Though due to the
specific instructions they have less need of architectural
speed up features.

• Graphics libraries are not written for dependability,
generally they are written for speed. This makes
proving them correct difficult, especially when their
size is considered.

As such, high-performance dependable image manipulation
systems are difficult to build. This makes high resolution,
high frame-rate image manipulations difficult to do with
traditional implementation techniques. This produces a
need for a different implementation technique.

2.1 The Problem
The problem arose from a request by BAE Systems to
implement a dependable image manipulation system
capable of dealing with high-resolution, high-refresh video
streams. The system had to be dependable, preferably using

134 Programming Execut ion-Time Servers in Ada 2005

Volume 29, Number 2, June 2008 Ada User Journal

Ada as limited by the SPARK [2] and Ravenscar [3]
subsets. The use of Ada will allow reuse of existing
software code. In addition to this, the system needed
minimal delay on the output stream. The initial
demonstration of this system should be an image warping
application (e.g. correcting imperfect optics or pre-
distortion for display on shaped surfaces).

2.2 Solution Suggestion
A block diagram of the initial suggested solution can be
found in figure 1. This solution relies on parallelism to
provide the processing power to perform the
transformations. As the manipulation is to be done on a
frame by frame basis, the video stream is first read into a
screen buffer. To provide for multiple accesses this buffer
is replicated a number of times dependant on the needs of
the application. This can be a replication of the entire
buffer, or buffers that each contain part of the image. The
image processing is undertaken by a number of parallel
tasks. Each task is responsible for part of the output image,
and can access any of the input buffers that it needs to. The
generated image is collected in a single output buffer (since
each pixel is only written once), and this is used to generate
the output video stream. It is intended that the system
would be implemented on FPGA using YHAC to generate
the circuits from Ada source code, giving a truly parallel
solution.

2.3 YHAC
The York Hardware Ada Compiler (YHAC) [4, 5, 6]
allows Ada programs to be targeted directly to hardware.
Using the SPARK subset and Ravenscar tasking profile
gives a static language, which can be transformed to
hardware. The compilation process uses template
instantiation over the statements within the program. The
templates build up to form a hardwired state-machine
which controls the program flow Expressions are built up
in a similar manner to produce expression trees. Complex
expressions are split to allow multi-cycle evaluation.
Concurrency is implemented using separate circuits,
providing a truly parallel implementation. The only
interference experienced by a task is over access to shared
data.

In the domain of dependable and real-time systems,
implementation via YHAC has several advantages:

• The produced circuit is traceable back to the source
code.

• The program is implemented as a circuit, meaning there
are no hardware bottlenecks, which need no
architectural speed-up features.

• The final circuit can be easily analysed for resource
usage. As the circuit is built up by template
instantiation, analysis can be done from the source
code. This covers both its space utilisation on the
FPGA, and the timing of the program.

• Provides performance equivalent to a mid-range
processor for single threaded applications.

Figure 1 Diagram of the initial solution

• Concurrent applications get a significant performance
boost due to parallelism. No longer sharing single
processing resource reduces the level of inter-task
interference.

• Designed to give the same semantics for all code in
hardware as software. Ignores some implementation
techniques (e.g. suspension objects) to maintain this
consistency.

2.4 Solution
The solution presented above has several problems:

• There is no broadcast semantic in Ada. This makes
filling multiple buffers difficult. Cannot broadcast the
data to multiple POs, which needs more time per input
pixel, but the timing of the video stream is fixed.

• There is no way to simultaneously release multiple
tasks. Whilst entry queues allow multiple releases, these
cannot happen simultaneously (each task has to enter
the PO in turn). The Ravenscar profile exacerbates this
problem as it outlaws entry queues.

• Working with video streams requires accurate timing in
the circuit to ensure no pixels are lost. Whilst YHAC
allows timing properties to be determined, it doesn’t
give definite control over the timing.

These problems require some changes to the original
solution. By including dedicated hardware to interface with
the video-streams, the lack of definite timing in YHAC is
no longer an issue. This hardware can also handle some of
the image pre-processing required, such as conversion of
the data into RGB format, and clipping the input stream to
the visible area. The buffers are also encapsulated within
the hardware as this removes the need for a broadcast
within Ada, and the structure of the compiler prevents the
sharing of memory used in the buffers between dedicated
hardware and Ada circuit. One advantage of encapsulating
the buffers is that the accesses can be pipelined, improving
their performance, allowing a smaller number of buffers to
be used. The resulting change to the structure of the
solution can be found in figure 2.

2.5 Implementation
The final system solution was implemented using a
Celoxica RC203e development board. This board provides
a Xilinx Virtex2 3000 FPGA as the logic resource, and a

M. Ward and N. C. Audsley 135

Ada User Journal Volume 29, Number 2, June 2008

Figure 2 Diagram of the final solution

wide selection of interfaces, including video input and
output. The board also provides 4MB of off chip memory.
The drivers for all the interfaces are provided in Handel-C,
Celoxica’s C-based hardware language.

The implementation can be divided into two parts: the
framework, which implements the video interfacing and
buffering; and the application, which contains the
transformation encoding. The implementation of these parts
is described below:

• Framework
As the device drivers are written in Handel-C, the
dedicated hardware has been implemented in the same
language. The these read in the video stream into
multiple double buffers. Once a frame has been put into
the buffers, the buffers are swapped, and a signal given
to the application to start processing on the frame.
Whilst this is happening, the next frame is being placed
into the other set of buffers. On the output side, the
transmission of a frame waits for the previous frame to
finish, at which point the buffers are swapped and the
new frame started. This double buffering introduces a
delay of 1 frame plus the delay in the application. This
cannot be reduced if full frame transformations are
being dealt with. It can be seen that the maximum
application delay is 1 frame - if it is slower, frames will
only be part complete when transmission commences.
There is no synchronisation between the input and
output streams, so there is no additional cost over the
delay of the application.

• Application
The example implementation is an image warper. This
takes a good image, and distorted it to give a fish-eyed
image. Due to restrictions on the memory capacity on
the board, the image is restricted to a resolution of 640
x 480. The image processing is implemented in 9
parallel tasks, each of which is responsible for part of
the image. There are a number of ’helper’ POs in the
system, an interrupt handler PO for each task which
detects the start processing signal from the framework
and release the tasks, and a finish detector which
provides the signal to the framework. Each task
implements a simple transformation, which is pre-
computed to save time in the processing. The
transformation is done in under 1/2 frame, giving a
delay of 1 1/2 frames overall.

The complete system took about a month to design and
implement. The framework took most of this time, mostly
in altering the provided sequential access buffers mostly in
altering the provided sequential access buffers to allow the
random access needed by the applications, and integrating
the Handel-C and Ada circuits. The application took about
1 day to implement, half for application coding, the other
half generating an acceptable transform. Due to the tool-
chains needed in targeting hardware, the compile-test-
correct cycle can take a while (a small value change still
requires a complete re-compilation and synthesis), which
extended the time needed to generate the transform.
Alteration of the application is easy as the transform is
coded algorithmically within the processing tasks.

The implemented system only uses 15% of the resources
available on the FPGA, leaving plenty of scope for more
complex transforms, or faster implementations. At present,
most of the resource is taken by the framework, with the
application itself using about 3%. By introducing more
tasks, a faster implementation is possible, at the cost of
higher resource usage. Alternatively extra resource can be
used by making the transformation more complicated. If a
lower resource usage is needed, the number of tasks can be
reduced and the speed dropped to give a full frame’s delay.
The main limitation to the ultimate performance of the
system, is the buffer throughput rate, but this can be
increased by providing more buffers, at the cost of needing
more memory buses on the device.

3 Language Suggestions
In designing the IMS, there appeared a need for two extra
bits of functionality in the Ada language: a broadcast
semantic, and a parallel release semantic. These are
described below:

3.1 Broadcast
The broadcast semantic would allow a task to write data to
a set of protected objects in a single call.

It is envisioned that the protected objects being targeted
would be declared as an array of protected objects. This
would allow existing array syntax to be used for the
declaration of the POs, for selection of POs within the call,
and permits a subset of the array to be selected. This gives
the suggested syntax as shown in figure 3.

Two alternatives are presented for the broadcast to all
elements of the array. The first uses the reserved word all to
indicate that the entire array is being referenced, the second
uses a slice that covers all elements of the array. A third,
though discounted option would use the others keyword.
These have their advantages and disadvantages:

All – The reserved word all in the name.all context is an
explicit dereference of an access type. To use the same
syntax here would overload it to be a reference to all
elements within the array. There is also the problem of
what happens when the array is accessed via an access
type. However, the use of all does convey the meaning to
the programmer that the entire array is being accessed.

136 Programming Execut ion-Time Servers in Ada 2005

Volume 29, Number 2, June 2008 Ada User Journal

1 protected type po_type is
2 procedure call(val : integer);
3 end p type;
4
5 po_array : array (1..10) of po_type;
6
7 po_array(7).call(37); - - single instance call
8 po_array.all.call(25); - - broadcast to all

 elements of po array
9 po_array(1..10).call(25); - - alternative broadcast

 to all elements of po array
10 po_array(2..5).call(13); - - broadcast to restricted
 range of elements

Figure 3

Whole slice – Using an entire range slice maintains
consistency in the selection of the parts of the array to use.
There is no change in the structure of the selection,
simplifying the compiler implementation. However, there is
poor readability as it is not possible to tell that the entire
array is being accessed. Similarly, if the array size is
changed in a program, every whole slice will need to be
changed, which does not aid program maintenance.

Others – The others keyword could also be used to indicate
all elements in an array. This would follow from its use in
aggregate expressions, but does not sit well out of the
aggregate form. In addition, it does not have the same
readability as the other forms.

On balance, the name.all form seems to offer the better
balance, providing an obvious indication that the entire
array is being accessed.

The implementation of the broadcast semantic can fit easily
into both concurrent and parallel system implementations.
Within a concurrent system, the calls to the protected
procedures in the broadcast can be done by iterating
through the array. In a parallel system, all the accesses can
be initiated in parallel, provided sufficient processing
elements are available. When there aren’t enough
processors there needs to be some iteration over the calls.

The envisioned implementation raises a couple of issues
with semantics of the call. Since the calls may be done
iteratively, to preserve the atomicity of the operation, there
are two conditions that must hold. First, the call must be
none-blocking. As the calls are being done iteratively, a
block will delay the later calls. Secondly, there should be
no pre-emption between calls, that is, the entire access
should be considered a single protected action.

3.2 Guarded Protected Function
A guarded protected function semantic would allow
multiple, read-only, accesses to wait on a guard value.
When the guard becomes true, all accesses are allowed to
enter immediately. On completion of these accesses the
guard is automatically reset to false. These threads must be
read only, as multiple threads would be active in the
protected object. This preserves the access rules for

protected actions and effectively gives a function based
equivalent of an entry.

Since a guarded protected function is effectively a function
based entry, a mix of the current function and entry call
syntax would seem appropriate. A suggested syntax is
shown in figure 4. The function specification follows that
of a normal entry, with the addition of the return value type
specification before the guard. There are two restrictions on
the specification: the parameters to the entry can only be of
in mode; and the guard expression must be a single boolean
variable. The body of the entry will follow the rules of both
functions and entries: no side-effects, that is, no change of
PO state including the guard expression; no potentially
blocking operations; and there must be a return statement in
all paths through the body. The no side-effects rule
prevents the guard from being reset inside the function, and
hence the need for the automatic reset of the guard.

The calling of the guarded protected function remains the
same as any other function call. There is an issue with this
syntax in that forcing the entry call to be a function call
may not reflect its use. In cases where it is used to allow
multiple tasks to collect the same data on release, the use of
the function call syntax is sensible. Where the only purpose
is to effect a simultaneous release of multiple tasks (as in
the example) the return value is not needed, but must still
be used. Whilst this can be ignored by a compiler (a
constant return value can be implemented as a local
assignment after the call), it reduces the readability (and
elegance) of the program code. However, making the call a
procedure call would change the declaration syntax (and
need a new reserved keyword to describe it) and require
that out mode parameters be allowed. This is to allow data
to be returned from the call, which also means that
assignment to local parameters needs to be permitted,
making the no side-effects rule harder to enforce.

An alternative syntax to that proposed in figure 4 would
make no change to the syntax of the language. As
mentioned above, the guarded function is a function-based
equivalent of an entry. By changing the concept from a
function call to a parallel entry call, it can be implemented
without a syntax change. Restricting an entry to have only
out mode parameters, a simple guard variable, and no side-
effects would allow parallel access to it. The requirement
for such an entry to be used as a parallel entry could be
indicated using a pragma. This pragma would indicate to
the compiler that this entry could be accessed in parallel,
that the entry needed to be checked for conformity to the
above requirements, and that the guard variable needed to
be automatically reset. Whilst this does not require
additional language syntax, it overloads the entry syntax
with a different semantic, which could cause issues with
readability and maintainability.

Again, this new semantic can be implemented in both
parallel and concurrent systems. Within a parallel system,
the readers are allowed access as soon as the protected
procedure that set the guard to true completes. Since they
are only reading the data within the PO, this can be done

M. Ward and N. C. Audsley 137

Ada User Journal Volume 29, Number 2, June 2008

1 protected type po_type is
2 function par_entry return integer when allow_entry;
3 procedure release;
4 private
5 allow_entry : boolean := false;
6 end po_type;
7
8 protected body po_type is
9 function par_entry return integer when allow_entry is
10 begin
11 return 0;
12 end par_entry;
13 procedure release is
14 begin
15 allow_entry := true;
16 end release;
17 end po_type;
18
19 task waiter is
20 null : integer
21 begin
22 while true
23 null := par_entry;
24 - - do something
25 end while;
26 end waiter;

Figure 4

without violating the protection rules. Once the final reader
has left the PO, and the protected action completes, the
guard value is reset to false (hence the requirement that it
be a single variable). The concurrent implementation
cannot have all the accesses happening at once, so they
must be allowed to happen one after the other, all within
the same protected action, and with the completion of the
last access causing the guard variable to be reset to false. In
this way it behaves in similarly to a ”last one out closes the
door” implementation on an entry queue. In both these
implementations, the resetting of the guard occurs as a
result of the completion of the protected action that sets it.
This allows for a simple definition of the semantics.

Both the suggestions for the guarded protected function
semantic have used an automatic return of the guard to
false after all the waiting calls have completed. This can be
considered poor deign, as it hides some semantics of the
call. An alternative solution would be to leave the resetting
of the guard variable to the programmer. This can be easily
accomplished using an entry guarded by the count attribute
of the guarded function. Leaving this to the programmer
will give a greater flexibility, at the cost of leaving open the
possibility of bugs caused by programming errors.

3.3 Other Thoughts
Both of these suggestions are related to protected objects.
In full Ada (as opposed to Ravenscar Ada), entries exist in
both tasks and protected objects. This raises the question of
whether the broadcast and parallel entry semantics be
extended to tasks.

It would seem that a task broadcast would be a useful
semantic to have. This would allow data to be broadcast
directly to tasks, rather than forcing the use of POs between
the tasks. However, the PO broadcast semantics use
protected procedure calls, whereas the tasks only offer
entries. Protected procedure calls, though subject to
possible delay, are deemed to be non-blocking. Task entries
are, however, deemed to be blocking and therefore provide
a different semantic. As an entry call can only proceed
when the task allows it, the broadcast can be held up by a
single non-responsive task.

A task can only have a single thread of control. This makes
a parallel entry impossible to implement as the calls would
have to be handled serially as for a normal entry queue. In
this case, accepting the first call would require that all were
handled without interruption until the queue was empty. Of
course, both of these would be outside the scope of the
Ravenscar profile.

Finally, it should be noted that both the parallel entry and
the broadcast can be emulated by the other, though with
restrictions on the effectiveness of the emulation. A
broadcast could be programmed through the parallel entry
semantic, with the data to be broadcast being written to the
PO and the waiting tasks allowed to read it. This provides a
broadcast to the waiting task, any task that was wot waiting
when the write happened would never be able to access that
data, and would have to wait for the next broadcast.
Similarly, the parallel entry can be emulated by
broadcasting to multiple POs, each of which has a task
waiting on an entry. This would allow each task to release
once. However, the release time could not be guaranteed -
in the parallel entry, only those tasks waiting get released;
in the broadcast the task will release on the broadcast, or
when it next tries to access, rather than being forced to wait
for the next broadcast.

4 Conclusions
This paper has looked at the issues surrounding using Ada
to implement a parallel stream based system. The problems
were illustrated through the development of an Ada based
image manipulation system. As a result of this, two
suggestions for new language semantics as a result of
problems encountered were presented.

The image manipulation system, developed to meet a set of
industrial requirements, uses Ada to implement a stream
based, parallel, image morpher. Whilst the implemented
solution provides a framework for efficient image
processing, it highlighted two shortcomings in the Ada
language. There is no facility for easily splitting an input
stream into several buffers, nor is there the ability to
simultaneously release multiple tasks.

From the problems encountered in the implementation of
the system, two new semantics have been proposed. The
broadcast semantic will allow the same data to be written to
multiple protected objects at the same time. The guarded
protected function semantic provides a function based
equivalent of an entry with the ability to release multiple

138 Programming Execut ion-Time Servers in Ada 2005

Volume 29, Number 2, June 2008 Ada User Journal

tasks simultaneously. Together, these would provide better
support for parallel streaming applications.

References
[1] Ada 95 Reference Manual. Intermetrics, January 1995.

[2] J. Barnes. High Integrity Ada: The SPARK Approach.
Addison-Wesley, 1997.

[3] A. Burns, B. Dobbing, and G. Romanski. The
Ravenscar Tasking Profile for High Integrity Real-
Time Programs. In Reliable Software Technologies,
Proceedings of the Ada Europe Conference, Uppsala,

volume 1411, pages 263–275. LNCS, Springer-Verlag,
1998.

[4] M. Ward and N. C. Audsley. Hardware Compilation of
Sequential Ada. In Proceedings of CASES 2001, pages
99–107, 2001.

[5] M. Ward and N. C. Audsley. Hardware Implemanation
of the Ravenscar Tasking Profile. In Proceedings of
CASES 2002, pages 59–68, 2002.

[6] M. Ward and N. C. Audsley. Hardware
Implementation of Programming Languages for Real-
Time. In Proceedings of RTAS 2002, pages 276–285,
2002.

140

Volume 29, Number 2, June 2008 Ada User Journal

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Ada Gem #19 — XML streaming of
Ada objects
Pascal Obry, EDF R&D
Date: 26 November 2007

Let’s get started…
Since Ada 95 it has been possible to stream any object. Using
'Input/'Output or 'Read/'Write attributes, any object (tagged or
not) can be streamed using a binary representation. This means
that objects can be written into a file or sent over a socket, for
example.
Let’s take a simple object hierarchy to illustrate this feature.
We’ll have a Point (x and y coordinate) and a Pixel (a Point
with a color).

 package Object is

 type Point is tagged record
 X, Y : Float;
 end record;

 type Color_Name is (Red, Green, Blue);

 type Pixel is new Point with record
 Color : Color_Name;
 end record;
 end Object;

When writing a Point or a Pixel the first bytes in the stream are
the tag external representation, and then the object’s attribute
values.

 declare
 File : File_Type;
 P : Point'Class := ...;
 begin
 Create (File, Out_File, "streamed.data");
 Point'Class'Output (Text_Streams.Stream (File), P);
 Close (File);
 end;

The stream will contain something like (where is the character
hexadecimal code):

<01> <00> <00> <00> <0C> <00> <00> <00> O B J E C T .
P I X E L <9A> <99> <99> <3f> <66> <66> <06> <41>
<00>

The tag is an important part as it will be used to be able to
create the proper object instance out of the stream.

 P := constant Point'Class :=
 Point'Class'Input (Text_Streams.Stream (File));

All is well! No, there is a little missing feature. There is no
way to control how the external tag is streamed. In fact, it is a
string and the bounds (lower and upper) are first output into
the stream. These bounds are plain numbers written in binary.
In the above example we have the four first bytes for lower
bound (equal to 1) and the four following bytes for the upper
bound (equal to 12) then the twelve bytes for the external tag
full name OBJECT.PIXEL.
In Ada 95 there is no way to stream a textual representation of
objects!
But the good news is… Ada 2005 can do this. Ada 2005 goes
further by adding support to control finely the external
representation of any objects. This means that it is now
possible to create a textual representation of such an object
using the 'Class'Input and 'Class'Output attributes.
Let’s put in place the missing pieces.
First the 'Read and 'Write attributes to output or read the XML
representation of a Point or a Pixel.

 with Ada.Streams;

 package Object is

 type Point is ...

 procedure Read (S : access Root_Stream_Type'Class;
 O : out Point);
 for Point'Read use Read;

 procedure Write (S : access Root_Stream_Type'Class;
 O : in Point);
 for Point'Write use Write;

 type Pixel is ...

 procedure Read (S : access Root_Stream_Type'Class;
 O : out Pixel);
 for Pixel'Read use Read;

 procedure Write (S : access Root_Stream_Type'Class;
 O : in Pixel);
 for Pixel'Write use Write;

The Read routines could be implemented using a full featured
XML parser like XML/Ada. For conciseness, we will use two
very simple XML oriented routines:

 procedure Skip_Tag
 (S : access Ada.Streams.Root_Stream_Type'Class;
 Ending : in Character := '>');
 - - Skip the next tag on stream S, returns
 when Ending is found

Ada Gems 141

Ada User Journal Volume 29, Number 2, June 2008

 function Get_Value
 (S : access Ada.Streams.Root_Stream_Type'Class)
 return String;
 - - Returns the current value read on stream S

Using those routines the 'Read and 'Write implementation are
straightforward. Here is the implementation for a Point:

 procedure Read (S : access Root_Stream_Type'Class;
 O : out Point) is

 begin
 Skip_Tag (S); O.X := Float'Value (Get_Value (S));
 Skip_Tag (S, ASCII.LF);
 Skip_Tag (S); O.Y := Float'Value (Get_Value (S));
 Skip_Tag (S, ASCII.LF);
 end Read;

 procedure Write (S : access Root_Stream_Type'Class;

 O : in Point) is
 begin
 String'Write (S, " <x>" & Float'Image (O.X) &
 "</x>" & ASCII.LF);
 String'Write (S, " <y>" & Float'Image (O.Y) &
 "</y>" & ASCII.LF);
 end Write;

The last missing piece is the handing of the tag. We want the
tag to be simply: <point> and <pixel> (no bound and just the
name of the object instead of the full name prefixed by the
enclosing package name). To set the proper tag name we use
the External_Tag attribute:

 package Object is
 type Point is ...
 for Point'External_Tag use "point";

 type Pixel is ...
 for Pixel'External_Tag use "pixel";

Then we want to plug in our own XML oriented
implementation of the 'Class'Input and 'Class'Output
attributes. This is necessary only for the root type Point:

 package Object is

 type Point is ...
 for Point'External_Tag use "point";

 procedure Class_Output
 (S : access Ada.Streams.Root_Stream_Type'Class;
 O : in Point'Class);
 for Point'Class'Output use Class_Output;

 function Class_Input
 (S : access Ada.Streams.Root_Stream_Type'Class)
 return Point'Class;
 for Point'Class'Input use Class_Input;

The Class_Output routine must output the opening XML tag,
output the object itself and then the closing XML tag. Quite
simple to do; the following is the commented code:

 procedure Class_Output
 (S : access Ada.Streams.Root_Stream_Type'Class;
 O : in Point'Class) is

 begin
 - - Write the opening tag <tag_name>
 Character'Write (S, '<');
 String'Write (S, Ada.Tags.External_Tag (O'Tag));
 String'Write (S, '>' & ASCII.LF);

 - - Write the object, dispatching call to Point/Pixel'Write
 Point'Output (S, O);

 - - Write the closing tag </tag_name>
 String'Write (S, "</");
 String'Write (S, Ada.Tags.External_Tag (O'Tag));
 String'Write (S, '>' & ASCII.LF);
 end Class_Output;

 function Class_Input
 (S : access Ada.Streams.Root_Stream_Type'Class)
 return Point'Class
 is
 function Dispatching_Input is new
 Ada.Tags.Generic_Dispatching_Constructor

 (T => Point,
 Parameters =>
 Ada.Streams.Root_Stream_Type'Class,
 Constructor => Point'Input);
 input : String (1 .. 20);
 input_Len : Natural := 0;
 begin
 - - On the stream we have <tag_name>,
 - - we want to get "tag_name"
 - - Read first character, must be '<'
 Character'Read (S, Input (1));
 if Input (1) /= '<' then
 raise Ada.Tags.Tag_Error with "Starting with " &
 Input (1);
 end if;

 - - Read tag
 Input_Len := 0;
 for I in Input'range loop
 Character'Read (S, Input (I));
 Input_Len := I;
 exit when Input (I) = '>';
 end loop;

 - - Check ending tag
 if Input (Input_Len) /= '>'
 or else Input_Len <= 1
 then - - Empty tag
 raise Ada.Tags.Tag_Error with "empty tag";
 else
 Input_Len := Input_Len - 1;
 end if;

 declare
 External_Tag : constant String :=
 Input (1 .. Input_Len);
 O : constant Point'Class :=
 Dispatching_Input (
 Ada.Tags.Internal_Tag (External_Tag), S);

142 Ada Gems

Volume 29, Number 2, June 2008 Ada User Journal

 - - Dispatches to appropriate
 - - Point/Pixel'Input depending on
 - - the tag name.
 begin
 - - Skip closing object tag
 Skip_Tag (S, ASCII.LF);
 return O;
 end;
 end Class_Input;

At this point the code shown at the start will still work without
modification. The fact that the object is streamed using an
XML representation is transparent to the users of the Object
package.
As a final note, for conciseness, the code as-is does not output
conformant XML documents as there is no XML header and
there are multiple root nodes. This is left as an exercise to the
reader.

Ada Gem #21: How to parse an
XML text
Emmanuel Briot, AdaCore
Date: 10 December 2007

Abstract: The World Wide Web Consortium (W3C) develops
various specifications around the XML file format. In
particular, it specifies various APIs to load, process and write
an XML file. Although these APIs are not specified for Ada,
XML/Ada tries to conform as closely as possible to them. This
gem describes how to use XML/Ada to parse an XML file.

Let’s get started…
There are two main APIs to parse an XML file. One (the
Document Object Model, DOM) reads the file and generates a
tree in memory representing the whole document. Typically,
because of the amount of operations mandated by the
specifications, this tree is several times larger than the
document itself, and thus depending on the amount of memory
on your machine, it might limit the size of documents your
application can read. On the other hand, it provides a lot of
flexibility in the handling of these trees.
The other method (SAX) is based on callbacks, which are
called when various constructs are seen while reading the
XML file. This requires almost no memory, but makes the
processing of the XML file additional work for your
application. It is however very well suited when you want to
store the XML data in an application-specific data structure. In
fact, XML/Ada itself uses SAX to build the DOM tree.
In both cases, XML/Ada needs an object (an “input_source”)
to read the actual XML data. This data can be found either on
the disk, in memory, read from a socket, or any other possible
source you can imagine. XML/Ada is carefully constructed so
that it doesn’t require the whole document in memory, and can
just read one character at a time, which makes it adaptable to
any possible input. This gem does not cover how to write your
own input streams. This is in general quite easy, the only
difficulty is to properly convert the bytes you are reading to
unicode characters.
Here is a small example on using the DOM API to create a
tree in memory. In this example, we are assuming the most

frequent case of an XML file on the disk, and therefore we are
using a File_Input as the input. The second object we need is
the XML parser itself. When we want to create a DOM tree,
we need to use a Tree_Reader, or a type derived from it. As
we will see later, this is in fact a SAX parser (that is an event-
based XML parser) whose callbacks are implemented to create
the DOM tree. You can of course override its primitive
operations if you want to do additional things (like verbose
output, redirect error messages, pre-processing of the XML
nodes,…).

 with Input_Sources.File; use Input_Sources.File;
 with DOM.Readers; use DOM.Readers;
 with DOM.Core; use DOM.Core;

 procedure Read_XML_File (Filename : String) is
 Input : File_Input;
 Reader : Tree_Reader;
 Doc : Document;
 begin
 Open (Filename, Input);
 Parse (Reader, Input);
 Close (Input);

 Doc := Get_Tree (Reader);
 ...
 Free (Reader);
 end Read_XML_File;

The first three lines read the file into memory. The fourth line
gets a handle on the tree itself, which you can then manipulate
with the various subprograms found in the DOM.Core.*
packages (and that are mandated by the W3C specifications).
When we are done, we simply free the memory.
There are various settings that can be set on the reader before
we actually parse the XML stream, for instance whether it
should support XML namespaces, whether we want to validate
the input, and so on.
As we mentioned before, there exists a second, lower-level
API called SAX which is event-based. It defines one tagged
type, a Reader, which has several primitive operations that act
as callbacks. You can override the ones you want. In general,
the result of calling them is to create an in-memory
representation of the XML input (which is what the DOM
interface does, really).
The following short example only detects the start of elements
in the XML file, and prints their name on standard output. It
has little interest in real applications, but is a good framework
on which to base your own SAX parsers.

 with Sax.Attributes;
 with Sax.Readers; use Sax.Readers;
 with Unicode.CES; use Unicode.CES;

 package Debug_Parsers is
 type Debug_Reader is new Reader with null record;
 overriding procedure Start_Element
 (Handler : in out Debug_Reader;
 Namespace_URI : Unicode.CES.Byte_Sequence := "";
 Local_Name : Unicode.CES.Byte_Sequence := "";
 Qname : Unicode.CES.Byte_Sequence := "";
 Atts : Sax.Attributes.Attributes'Class);
 end Debug_Parsers;

Ada Gems 143

Ada User Journal Volume 29, Number 2, June 2008

Here is the implementation of the Start_Element callback. We
are assuming, in this simple example, that the console on
which we are printing the output can accept unicode characters
(in fact, all Put_Line does is to print a series of bytes, which
are interpreted by the console to do the proper rendering of
unicode glyphs).

 with Ada.Text_IO; use Ada.Text_IO;

 package body Debug_Parsers is
 procedure Start_Element
 (Handler : in out Debug_Reader;
 Namespace_URI : Unicode.CES.Byte_Sequence := "";
 Local_Name : Unicode.CES.Byte_Sequence := "";
 Qname : Unicode.CES.Byte_Sequence := "";
 Atts : Sax.Attributes.Attributes'Class)
 is
 begin
 Put_Line ("Found start of " & Qname);
 end Start_Element;
 end Debug_Parsers;

And finally here is a short example of a program using that
parser. Notice how it closely mimics what we did for DOM
(which is not so surprising, since, once again, the DOM parser
itself is really a special implementation of a SAX parser).

 with Input_Sources.File; use Input_Sources.File;
 with Debug_Parsers; use Debug_Parsers;

 procedure Test_Sax is
 Input : File_Input;
 Reader : Debug_Reader;
 begin
 Open (Filename, Input);
 Parse (Reader, Input);
 Close (Input);
 end Test_Sax;

144

Volume 29, Number 2, June 2008 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada in Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

