

Ada User Journal Volumes 26, Number 1, March 2005

ADA
USER
JOURNAL

Volume 26
Number 1

March 2005

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

News 5

Conference Calendar 32

Forthcoming Events 40

Articles
 John Barnes

“Rationale for Ada 2005: 1 Object oriented model” 45

Ada-Europe 2004 Sponsors 64

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

2

Volumes 26, Number 1, March 2005 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volumes 26, Number 1, March 2005

Editorial

You will recall that the closing issue of the previous Volume of Journal contained the first installment in a series of articles
that will eventually compose the new Rationale document for Ada 2005. We plan to continue the publication of the
successive installments throughout the whole of Volume 26. We also plan, in the New Year, to publish a special issue of the
Journal, which will bundle the whole Rationale document. That should make a valuable gift to our readership! The
installment of the Rationale that we singled out for this issue describes the various (and numerous!) improvements that Ada
2005 makes to the object-oriented model of the language. For as much as I’d like, it is not for the editorial to enter the
technicalities of this topic: the 18-page article by John Barnes is there to give you the full picture of it. Of course, much
appreciation information value comes to this issue also from the usual News and Calendar sections that are prepared with
great dedication by the respective editors, Santiago Urueña and Dirk Craeynest. That’s all there is to say for now. Enjoy the
reading (and let us know you do)!

Tullio Vardanega
Padova

March 2005
Email: tullio.vardanega@math.unipd.it

 5

Ada User Journal Volume 26, Number 1, March 2005

News
Santiago Urueña
Technical University of Madrid. Email: suruena@datsi.fi.upm.es

Contents

Ada-related Events 5
Ada-related Resources 5
Ada and Education 9
Ada-related Tools 9
Ada-related Products 13
References to Publications 18
Ada and Java 20
Ada Inside 20
Ada in Context 22

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. --
su]

July 6-10 - 2004 Libre
Software Meeting
Ada Presentations
From: Lionel Draghi

<Lionel.Draghi@Ada-France.org>
Date: Fri, 26 Nov 2004 00:07:05 +0100
Subject: présentations RMLL 2004 dispos

(presentations Libre Software Meeting
2004 are available)

Newsgroups: fr.comp.lang.ada
[Translated from French – su] The
presentations given during the Ada
session in the “Rencontre Mondiale du
Logiciel Libre (RMLL” are available at
the address: http://www.ada-france.org/
article115.html. They are in English
and/or French. Many thanks to the
speakers and now see you all at
FOSDEM.
I take this opportunity to remind everyone
that the Ada-France site is open to all
contributions. Unlike Quentin Ochem,
everyone else should not have unbounded
documents to publish (http://www.ada-
france.org/article116.html).
To any rate: if you publish a short note on
the latest XPath library in Ada, that will
allow all who do not follow
comp.lang.ada to become aware that that
exists. And every time that anyone will
search for the term XML, he/she will get
to your note (as it occurs here at
http://www.ada-france.org/mot32.html?
var_recherche=xml). Overall, that will
have been a useful quarter of an hour.

Happy reading to everyone.
[See also "Libre Software Meeting" in
AUJ 25-3 (Sep 2004), p.117. -- su]

Jun 20-24 - Ada-Europe
2005 Conference
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Date: 4 Jan 2005 23:54:00 +0100
Subject: FINAL CfIP, Conference Reliable

Software Technologies, Ada-Europe
2005

Newsgroups:
comp.lang.ada,fr.comp.lang.ada

 Final Call For Industrial Presentations
10th International Conference on Reliable
Software Technologies - Ada-Europe
2005
 20 - 24 June 2005, York, UK
http://www.ada-europe.org/conference
2005.html
* DEADLINE Monday 10 JANUARY *
For more information please see the
conference Web site and select "Call for
Industrial Presentations".
The 10th International Conference on
Reliable Software Technologies (Ada-
Europe 2005) will take place in York,
UK. Following the usual style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
In addition to the usual call for papers,
this year we are also having a call for
presentations primarily aimed at
industrialists who have valuable
experience to report but who do not wish
to write a complete paper.
This separate call for presentations is
made for Experience Reports from
Industrial Projects and/or Experiments,
Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics,
Experience Reports on Education and
Training Activities with bearing on any of
the conference topics. See the conference
web site for further details.
Presenters are invited to submit a one-
page overview of the proposed
presentation to Rod Chapman
(rod.chapman@praxis-his.com) by
January 10th 2005. The Industrial

Committee will review the proposals. The
authors of selected presentations shall
prepare their final presentation by 20th
May 2005; they should aim to talk for 20
minutes. The authors of accepted
presentations will also be asked to derive
articles from them, for publication in the
Ada User Journal.
Schedule:
10 January 2005: Submission of one-page
overview
17 January 2005: Notification to authors
20 May 2005: Presentation required
20-24 June 2005: Conference
[See also same topic in AUJ 25-4 (Dec
2004) pp.181-183 -- su]

Ada-related Resources
6th Birthday of
AdaPower.com
From: David Botton <david@botton.com>
Date: Sat, 6 Nov 2004 23:45:52 -0500
Subject: Happy B-Day Ada Power
Newsgroups: comp.lang.ada
November 7, 2004 - Is the 6th Birthday of
AdaPower.com!
If you haven't had a chance to see the new
database driven design and contents (still
more sitting in my queue to be put in over
the next week). Now would be the perfect
time �
[See also "New AdaPower.com" in AUJ
25-4 (Dec 2004), p.184. -- su]

Searching all known Ada
sites
From: David Botton <david@botton.com>
Subject: AdaPower Search
Date: Mon, 1 Nov 2004 00:55:54 -0500
Newsgroups: comp.lang.ada
The new AdaPower is quickly being filled
up with the old contents and the new
(more than 250 links and articles already
in and more to come - I expect to have
everything imported and up to date by end
of week)!
So how do you find what you are looking
for?
Simple, AdaPower now features a search
box off the front page that will instantly
help you find the Package for reuse, code
example or more that you are looking for.

6 Ada-related Resources

Volume 26, Number 1, March 2005 Ada User Journal

The new AdaPower.com - more power,
more Ada, more coding excellence!
[See also "New AdaPower.com" in AUJ
25-4 (Dec 2004), p.184. -- su]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 1 Nov 2004 17:54:59 -0600
Subject: Re: AdaPower Search
Newsgroups: comp.lang.ada
Of course, if you want to search all
known Ada sites, including AdaPower
(and avoid all of the non-Ada stuff that
pops up on general search engines), you
can use the Ada-wide search engine at
http://www.adaic.com/site/wide-
search.html.
Randy Brukardt, Technical Webmaster,
adaic.com/.org
[See also "AdaIC Opens Ada Sites Search
Engine" in AUJ 24-2 (Jun 2003), pp.72-
73 -- su]

AdaWorld.com and
AdaPower.com
From: David Botton <david@botton.com>
Date: Wed, 3 Nov 2004 23:22:08 -0500
Subject: AdaWorld and AdaPower
Newsgroups: comp.lang.ada
(Stephane, not sure if this is the best place
to discuss this, so I am comfortable on the
admin-list @ AdaPower.com or in private
e-mails if you prefer).
Some time back we got in to some
discussion, but never really focused on
the different needs and roles our sites
could serve to the community.
AdaPower has always had its main focus
as being a practical "tool" for Ada the
language (it started as the Ada Source
Code Treasury off my home page and
grew in to AdaPower), but not really on
the Ada community (sure it does a bit of
that, but has never been "the" site for
that). I don't foresee that changing and in
fact with the new design and some future
plans, I see it becoming even more
focused on code, tutorials, articles, etc.
In fact if I was going to do another site, I
would add an Ada community center, I
would create something say called
AdaWorld :-)
AdaWorld has already made strong head
way in this regard. I would think that we
put our heads together on AdaWorld,
much as you have done so for AdaPower
in the past and now, and push forward
head strong in to it (I am ready to put my
money behind my mouth here so to speak
an be part of making this happen if you
would like also) and make it both the
compliment and to some degree the
umbrella in relationship to AdaPower and
other like sites.
Here is how I think AdaWorld can and
should become the Ada Community Site
(perhaps you or others see more):

* Current events that relate to the Ada
community
- Conferences / Call to papers
A fantastic list is currently kept up to date
by Dirk Craeynest at
http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/events/index.html. That list could
be mirrored at AdaWorld and reach more
people.
- Product Announcements
Perhaps a form that would output press
releases and announcements for Ada
product releases, releases of new versions
of code packages for reuse, etc. It could
automatically send out a message to CLA,
a list that people could join off of
AdaWorld, and perhaps Team-Ada. I
realize that there is a list at Ada IC, but
very sadly it is focused on supporting
ARA vendors and not the Ada community
as a whole (although certainly this does so
on many levels, but not in the capacity at
hand). An AdaWorld open alternative for
Ada PR stories / announcements would be
a welcome addition to the Ada World :-)
- Ada course announcements
There are courses being given on Ada
even for free in various places.
For example, I am considering doing a
series of live web cast tutorials on Ada.
Getting some others to do the same. A
good community center would be key to
making this type of work a success.
* Ada Advocacy (in general and for the
common man)
A center for collecting together much as
AdaPower does for code and packages, of
advocacy information. There is tons of it
spread thin all over the net. While there
are some Ada advocacy sites, they are
fairly centered on certain themes. Some
oriented around dependability, others
coding readability, etc. etc. They also
target varied markets. One market not
being focused on and should be a big part
of this is the common man, the
application developer and the IT dude.
The Big Linux book goes a long way to
reach out to the common man, but a solid
resource for Ada advocacy to non-critical
engineering types is _very badly_ needed!
* Community Guide (as a guided tour)
A step by step guide in a "tour" book
format to getting started in the Ada
community.
- Where to go for code for reuse.
- Where to talk about Ada and get help.
- The history of Ada
- Where Ada is going and where it has
been
- Key things to try out in Ada that will
make you want to stick with the language
And much more.
* Cool Factor Factory

Ada needs to be cool. The very thing that
has "killed" Ada can be what makes it the
biggest "turn on". When I find a good
geeky high schooler / CS1er around that I
want to convert to Ada, I tell him using
Ada via GNATCOM you can program
missiles to fire from a word document
(and that is a fact!). I tell him stuff like:
Ada - Military Grade Programming!
If you can get it to compile man, you just
about know its goin' to work. Check this
out (examples shown)
I am not going to sell the M$ generation
on reality, damn M$ already made us
believe bugs are features too :-) Vote for,
Bug rights now!
If I could see straight (its getting late), I'd
write more, but I think the picture is clear
as to the need for an Ada community site.
AdaWorld has already started to dance in
that space, the other sites that exist are too
focused and/or not maintained. I think and
would want to be part of an AdaWorld
taking the lead in this space.
My 2 dollars and 43 cents :-)
David Botton, http://www.adapower.com
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Thu, 04 Nov 2004 11:28:26 GMT
Subject: Re: AdaWorld and AdaPower
Newsgroups: comp.lang.ada
No problem discussing this here at all. :-).
If I'm gonna push towards a community
website, I might as well talk to the
community no? :-). See my comments
distributed (logically I hope) in your post.
I remember that, indeed we never went
into details but we already seemed to
agree that different websites should work
together with other websites instead of
imitating them. There should be no
competition but rather a synergy between
existing websites.
When I started Ada World (coincidence?
hehe) I wanted it to be somewhat of a
community center in a way yes, maybe
even a non regular date Ada Magazine (at
the time I didn't want to abide to any
Volume/Issue dated release :-) to some
point too. I wanted people visiting the
website to get a good glimpse at what's
out there (the actively developed projects
as well as basically who's using it and
why). So yes a Community / Magazine
oriented website (with a bit of
_______________ fill in the blank to go
and get interest from other programmers
in other languages).
Two heads are definitely better than one.
And I'm always open to suggestions from
you and anyone else that would like to see
something they're not seeing yet. :-).
[...] A company that recently discovered
my website asked me to add their
products in a "magazine" kind of way
about a week ago. And that got me
thinking in that direction. Of course not

Ada-related Resources 7

Ada User Journal Volume 26, Number 1, March 2005

just for products, for anything that's going
on :-).
[...] I wasn't thinking exactly what to put
in, but I was thinking that something like
that might be fun. I was about to start
asking around get an idea if this kind of
thing could have a potential interest. ;-) It
just wasn't this detailed in my head yet ;-)
*It was late for you when you wrote this,
it's way too early for me right now, not
enough caffeine running through my
veins yet :-).
[...] I haven't been in the Ada community
long enough yet to notice what you're
saying [about Ada Advocacy]. Other than
if I'm looking for non targeted advocacy, I
haven't seen too many in my searches. But
I won't say I haven't seen any :-).
I think Ada is cool ;-). But yeah, I know
what you mean here. I've been saying it
for a while, but people have a "software
engineering" point of view of Ada. In a
way they're right and that's what makes
the strength of Ada, readability too of
course, and many more things. GNAVI
when completed I think will definitely
help with the cool part. Being Ada's reply
to Delphi, the outside world will have
something they know (Delphi) to compare
the reply (GNAVI). And I think we need
more this in and out of Ada to compare
Ada.
[...] There will be daylight tomorrow too,
we got time to talk :-). Me I'm still
waiting for daylight to start showing itself
(early like I said). But yeah, there's room
for Ada World to grow. And so far, what
you said here, even if it was late last
night, fits Ada World's Future plans pretty
good. So we can talk about here (maybe
get opinions and ideas from people here)
to push us in the right direction and well
then start walking ;-).
I'm Canadian, so this was my 3 dollars
and 69 cents :-).
Stephane Richard ("Ada World"
webmaster), http://www.adaworld.com
From: Tom <8f27iw6z@canada.com>
Date: 5 Nov 2004 15:51:34 -0800
Subject: Re: AdaWorld and AdaPower
Newsgroups: comp.lang.ada
May I make a suggestion: Instead of just
product announcements is there any way
to add reviews to the products? I am
thinking of something like an article that
compares and contrasts the new product
with existing products. What would be
also helpful is if there were a way for
current users to add their opinions to the
end of the article. I am probably dreaming
in Technicolor, but could the articles also
include the prices of the products?
Along the same line is there a way to get
an article written that discusses all the
major products in a product field. What I
am thinking is an article that compares the
major strengths and weaknesses for
example of the ten most used Ada IDEs

(including their compilers). Something
like what CNET does when it compares
groups of products. User feedback would
also be useful here.
If you did both the reviews of all the
products and major evolution it would
very helpful in showing the new comers
how the products are actually evaluated.
Another benefit would be to make it
easier to find the lesser known but great
products; because, they have a great
possibility of being mentioned by users
who are giving their opinions about the
reviewed products.
[For the section "Community Guide"] I
have a suggestion also: How about
articles by developers in the field? For
instance, I would find it very interesting
to see what programmers in the scientific
and engineering arenas have to say about
products needed or desired for doing
numerical programming. Why were the
particular IDEs and other programs used
or desired. Also I would like to see the
opinions of the readers of the articles
included.
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Sat, 06 Nov 2004 00:41:01
Subject: Re: AdaWorld and AdaPower
Newsgroups: comp.lang.ada
That's a very interesting suggestion Tom.
I can definitely see it happening too. As
far as the prices, well I wouldn't mind
showing them, but as long as visitors
recognize that the prices shown are valid
for that time / date the article was written
:-) Not sure I'd want to run back through
the articles to update prices :-).
Do you mean comparison charts?
Columnized data for quick comparison of
features/capacities? That will require
research, but I know I'd like that (even if
it's not what you meant :-) but yeah I see
your point of view. As in: "Hey I need
something that does this or that, which
one offers more/less/fastest etc etc" in a
quickly readable format.
I aim at more than just the newcomer. I
want to go get the non newcomer too if it
can be said that way :-). I want anyone
that happens to come visit Ada World to
say "hey, what's this all about?," and
actually be able to answer that question. I
think these two would definitely help in
answering these questions and although
they would represent research, it's a small
investment to make to mark up the quality
of what they can find on Ada World, and
I'm ready to commit myself to it.
This is not that hard to accomplish,
today's most popular CMS (content
management systems) already are setup
with articles and comments/reviews
already in place. I do like the industry
specific point of view approach idea. It's
definitely noted in big characters (bold,
italic and underlined ;-) on my "to
consider" list. If I have anything to say

about it, it should be there...Wait a
minute, it's my website. I do have
something to say about it ;-) I hope
hehe...but yeah seriously, I like the
industry specific areas like that.
Definitely.
Those are excellent suggestions and as I
write this reply I can tell you that they are
already thrown on the discussion table :-).
Thank you and feel free to suggest more.
That goes for everyone reading this too ☺
From: David Botton <david@botton.com>
Date: Sat, 6 Nov 2004 19:33:28 -0500
Subject: Re: AdaWorld and AdaPower
Newsgroups: comp.lang.ada
I think that is an amazing idea. [...]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 4 Nov 2004 14:20:26 -0600
Subject: Re: AdaWorld and AdaPower
Newsgroups: comp.lang.ada
This description of what AdaIC does is
not quite correct, so let me explain. The
AdaIC announcement list is a *filtered*
list of announcements. We try to run only
things of wide-spread interest. I know I
don't want to see press releases about
some company you've never heard of
choosing someone's product for a project,
and I don't much care that version 3.1.8.7a
of something is now available, either. The
vendor should use their customer mailing
lists to get that sort of information out.
So we only run announcements of *new*
Ada-related products, *major*
conferences, and the like. Otherwise, the
list would fill your mailbox with enough
useless junk that you'd start thinking it
was spam.
Yes, we do give priority (and relax the
filters a bit) for ARA vendor articles. But
the real problem is that hardly anyone
sends us announcements, and there is only
so much that can be scavenged off of
comp.lang.ada (and that leads heavily to
non-commercial stuff -- we want a
balance). I've probably missed a few
announcements for new
products/bindings/etc. here (thinking that
they were just another release, or
forgetting about them altogether); but it
works better if you send them to us at
webmaster@adaic.com.
Another thing you should know is that the
powers that be are planning a
redesign/refresh of the AdaIC site with
the intent of increasing its Ada Advocacy
focus. I'm under orders to do as little as
possible with the current site (especially
not page corrections) in order to not
duplicate effort (meaning that there won't
be much new content beyond news and
jobs for a while). I have no idea what the
ultimate result of that redesign/refresh
will be.
From: David Botton <david@botton.com>
Date: Wed, 24 Nov 2004 23:24:19 -0500
Subject: About the Ada FAQ

8 Ada-related Resources

Volume 26, Number 1, March 2005 Ada User Journal

Newsgroups: comp.lang.ada
I will be opening up the Ada FAQ for
wiki style editing soon. In the mean time
please send complete text
(Category/Question/Answer) with
corrections or additions to me via the
AdaPower contact form or to
David@Botton.com

Ada at Wikipedia &
Wikibooks
From: Martin Krischik

<martin@krischik.com>
Date: Sat, 06 Nov 2004 11:48:26 +0100
Subject: Wiki on Ada
Newsgroups: comp.lang.ada
There are two main entries for Ada in
Wiki:
http://en.wiktionary.org/wiki/Ada
http://en.wikibooks.org/wiki/Programmin
g:Ada
But they could do with some
improvements. Especially the Wikibooks
Entry.
And it is very easy: Just grab a *random*
keyword which has no article yet and
write something about it. Everybody can
do that.
From: Preben Randhol

<randhol@bacchus.pvv.ntnu.no>
Date: Mon, 15 Nov 2004 07:34:13 +0000
Subject: Re: Wiki on Ada
Newsgroups: comp.lang.ada
Don't forget wikipedia which is huge:
http://en.wikipedia.org/wiki/Ada_programm
ing_language
http://en.wikipedia.org/wiki/Ada_Lovelace
From: Martin Krischik

<martin@krischik.com>
Date: Sun, 07 Nov 2004 09:40:12 +0100
Subject: Re: Wiki on Ada
Newsgroups: comp.lang.ada
Steve wrote:
> After reading the Programming:Ada

entry, which has a mix half truths and
misconceptions,

Sorry, haven't fixed them. Always feel a
bit uneasy on changing other people's
work. But I should not - it is Wiki after
all.
> it makes me wonder: Does Wikibooks

have any sort of reputation for
accuracy? If it does, some work needs
to be done.

Well I wanted information on say "Eiffel"
and came across Wiki on Eiffel I would
expect them to be correct. That is because
I would expect the Eiffel community and
Eiffel advocacy the have written them.
This expectation might be not be correct
but that's the way it is. And here lies the
problem: The Ada entries have not been
done by Ada advocates but just been
copied together by an Ada amateur. I

checked the other articles done by the
original Author and it looks like he is a
Wiki supporter just creating Wiki entries
for the sake of creation Wiki entries.
We should not leave them like they are.
We could of course delete them on the
base of being incorrect - But another Wiki
Advocate might create new one which
would not be helpful.
> If it is generally recognized as half

truths and misconceptions, then it is
probably not worth correcting.

I think it is always worth fixing it. Wiki is
a great change. That's why I wrote the call
in the first place. You have half an hour
spare? Write an article on
Programming:Ada:Operators:*. Got half a
quarter more? Write an article on
Programming:Ada:Operators:+ including
the use of type conversion operator.
Got a lot of time at hand?
Programming:Ada:Tasking.
The chance with Wiki is that each of us
doesn't need to spend lots of time on it.
A classic Website just needs a lot of time
for the Webmaster. And if you are not the
Webmaster then your articles might not
be accepted. Well, my articles for the
classic AdaPower where just ignored.
From: Martin Krischik

<martin@krischik.com>
Subject: Re: Wiki on Ada
Date: Sun, 07 Nov 2004 18:26:35 +0100
Newsgroups: comp.lang.ada
Björn Persson wrote:
> I tried to fix the broken link from

Wiktionary to Wikibooks, but I couldn't
figure out what was wrong with it.
Apparently I'd have to study the special
wiki language first.

Well, standard http://.... links are
automatically recognised. If you need a
title you enclose the link in [..] like
[http://ada.krischik.com My Ada Page]
Ok, I fixed it - my mistake - used the
syntax for wiki internal links [[...]] for an
external link.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 08 Nov 2004 11:39:52 +0100
Subject: Re: Wikibooks

Programming:Ada:Installing
Newsgroups: comp.lang.ada
Martin Krischik wrote:
> I added the Platforms I know of:

http://en.wikibooks.org/wiki/Programm
ing:Ada:Installing
Anything more? Especially Debian is
missing!

Not any more. :-)
But it would be popular if somebody
would add MacOS X to the list.
From: Martin Krischik

<martin@krischik.com>
Date: Wed, 17 Nov 2004 19:50:54 +0100

Subject: Wiki: Need some help from non
GNAT users.

Newsgroups: comp.lang.ada
Maybe some of you who don't use GNAT
could help me out with
http://en.wikibooks.org/wiki/Programmin
g:Ada:Packages:Standard
From: Martin Krischik

<martin@krischik.com>
Date: Tue, 23 Nov 2004 13:46:11 +0100
Subject: GWindows in wiki
Newsgroups: comp.lang.ada
Someone had the great Idea to add a
http://en.wikibooks.org/wiki/Programmin
g:Ada#Other_Language_Libraries section
to Programming:Ada. And - in line with
the fact that Programming:Ada is a
tutorial and not a link collection - he or
she added some demo code for
GWindows:
http://en.wikibooks.org/wiki/Programmin
g:Ada:Libraries:Database:GWindows
However there are some important
information missing. Could somebody
with GWindows experience fill in the
blanks. Look at
http://en.wikibooks.org/wiki/Programmin
g:Ada:Libraries:MultiPurpose:AdaCL
http://en.wikibooks.org/wiki/Programmin
g:Ada:Libraries:Container:Booch on what
it should look like.
From: Martin Krischik

<martin@krischik.com>
Date: Tue, 01 Feb 2005 09:26:02 +0100
Subject: Ada 2005 on wiki
Newsgroups: comp.lang.ada
I like to announce my new Wiki page on
Ada 2005:
http://en.wikibooks.org/wiki/Programmin
g:Ada:2005
It is intended as an index - the actual
features are added right into the main
"Programming:Ada" wikibook. I hope
that we have a free Ada 2005 tutorial right
along with with the Ada 2005 compilers.
Like almost all Wiki-Pages it's work in
progress and everybody is invited to
contribute.

Koders - Source Code
Search Engine
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Tue, 09 Nov 2004 19:11:57
Subject: Re: A source code search engine
Newsgroups: comp.lang.ada
Lionel Draghi wrote:
> http://www.koders.com/ is an

interesting search engine for free
licensed code. Unfortunately, Ada is
not yet listed in the 16 supported
languages.

And now it’s the time we find out if they
are open to improvements :-). I just
requested the addition of the Ada
programming language in their search

Ada-related Tools 9

Ada User Journal Volume 26, Number 1, March 2005

facilities. Stated a few sites where they
can find source code and emphasized the
existence of a considerable pool of Ada
source code equivalent to most other
languages out there if they "know" how to
search (much more politely of course ;-)
but we'll see what happens...I'll keep
everyone posted here.
From: Szymon Guz

<guzo@stud.ics.p.lodz.pl>
Subject: Re: A source code search engine
Date: Wed, 10 Nov 2004 00:13:39
Newsgroups: comp.lang.ada
Maybe it helps a little, but yesterday I
requested addition of the Ada too.
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Sat, 13 Nov 2004 01:49:27
Subject: Re: A source code search engine
Newsgroups: comp.lang.ada
Just to let you guys know. I've gotten a
reply to my request to add Ada to his
search engine. Perhaps others got this
reply too. But just in case, and/or for
those who haven't contacted them yet. I'm
including his reply below:
> Hi Stephane,

Ada support is certainly on the
roadmap. We have many languages to
add and we're going to try to support as
many as possible. As far as a deadline,
I'm unable to offer you anything
concrete.
Regards,
Ankur

So it's just a question of time :-). Soon
enough, Ada will be there.
From: Lionel Draghi

<Lionel.Draghi@Ada-France.org>
Date: Wed, 12 Jan 2005 21:08:23 +0100
Subject: Re: A source code search engine
Newsgroups: comp.lang.ada
The Koders source code search engine is
now Ada enabled:
http://www.koders.com/

Ada IRC channel on
Freenode
From: Genro Kane Gupta

<genro@niestu.com>
Date: 16 Jan 2005 20:41:18
Subject: [Announce] #Ada IRC channel on

Freenode
Newsgroups: comp.lang.ada
This is the annual reminder of the
existence of the #Ada channel on the
Freenode IRC network. Now entering its
fourth year, the channel is open to all
discussions related to the Ada language
and its use. We welcome beginners and
pros alike, and do our best to maintain a
friendly, productive, and informative
atmosphere.
Point your IRC client to irc.freenode.net
and join the #Ada channel. Come one,
come all!

[See also "Ada IRC Channel" in AUJ 25-
1 (Mar 2004), p.7. -- su]

Ada Conformity Assessment
Test Suite Updated
URL: http://www.adaic.org/compilers/acats/

2.5/mods/mods2_5l.html
Date: January 7, 2005
ACATS Modification List 2.5L and the
associated test files have been posted.

Ada and Education
Ada at
www.techtutorials.info
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Mon, 15 Nov 2004 13:01:42
Subject: Re: Windows Service (Ada)
Newsgroups: comp.lang.ada
David Amies wrote:
> I prefer to learn by reading manual's

and other web pages; however I can't
seem to find anything relevant to what I
am trying to do. Probably this is just
cause I'm new to this language and
don't know where to look, so I am
hoping for a few pointers to some
helpful relevant links.

[...] I would have to suggest brushing up
your Ada skills a bit, since it's been a long
time since you did C programming. Just
take a look here:
http://www.techtutorials.info/prada.html,
Ada Power has some interesting reading
material as well. Also, my website has a
learning center, take a look at the tutorials
there.

Ada Tutorials for C++
programmers
From: Quentin Ochem
Date: Thu, 25 Nov 2004
Title: Ada pour le programmeur C++
URL: http://www.ada-

france.org/article116.html
[Translated from French – su] The
attached document presents the Ada
programming language in comparison to
C++. That should allow users of the latter
to rapidly get acquainted with the notions
of the former. Thank you for forwarding
any comments you may have on to author,
at the address that appears in the
document.
From: Jeff Creem <jcreem@yahoo.com>
Date: Tue, 28 Dec 2004 13:36:54
Subject: Re: newbie - OOP in Ada Set and

Get Methods
Newsgroups: comp.lang.ada
You probably need to step back and read
a few of the Ada tutorials rather than
trying to hack-and-whack C++ in Ada.
[...] this tutorial is short and is a very good

starting point:
http://www.adahome.com/Ammo/cpp2ad
a.html [...]

Articles about Memory
Management in Ada
From: David Botton <david@botton.com>
Date: Sat, 27 Nov 2004 19:53:46 -0500
Subject: Re: Memory management in games
Newsgroups: comp.lang.ada
Please see these two articles in the
advanced section of the AdaPower Source
Code Treasury
Memory Management with Storage Pools
(Anh Vo)
http://www.adapower.com/index.php?Co
mmand=Class&ClassID=Advanced&CID
=222

Ada Answers - The Ada
Lecture Series
URL:

http://www.adacore.com/aa_lectures.php
The Ada Lecture Series
Learn more about Ada through this
informative series of university lectures
and conference presentations given by
some of the foremost experts on the
language.
“Course: Ada Past, Present and Future”
Robert B. K. Dewar is a professor at
NYU, President of AdaCore, and one of
the early figures in the development of
Ada. In this lecture given at the
Massachusetts Institute of Technology,
Mr. Dewar gives an overview of the
history of Ada, which includes the
motivation for its conception, the story of
its development, and the role Ada plays in
present day programming. The lecture
also covers the fundamental ideas behind
Ada, its influence on other languages, and
the truths and myths associated with the
language.

Ada-related Tools
Simple components 1.8
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 26 Dec 2004 20:35:30 +0100
Subject: ANN: Simple components v 1.8
Newsgroups: comp.lang.ada
The version 1.8 is here:
http://www.dmitry-kazakov.de/ada/
components.htm
It finally introduces an abstract persistent
storage interface. Storage interface
objects are accessed through handles an
so can be referred by persistent objects
which then may act as proxies to the
persistent storage rather than just being
saved and restored. (That is of course
possible too)

10 Ada-related Tools

Volume 26, Number 1, March 2005 Ada User Journal

A framework for concrete persistent
storage interfaces is provided for the data
bases capable to identify objects using
keys.
This version also provides ready-to-use
implementations of the interface:
1. An ODBC persistent storage interface
based on GNADE.
2. An APQ persistent storage interface
based on APQ 2.1 by Warren W. Gay
VE3WWG. (Though our disagreements
with Warren, I have decided to support it
along with ODBC)
Examples of use are supplied.
[See also same topic in AUJ 25-4 (Dec
2004), p.185. -- su]

PragmARC - PragmAda
Reusable Components
From: PragmAda Software Engineering

<pragmada@earthlink.net>
Date: Mon, 27 Dec 2004 04:59:14
Subject: New Release of the PragmAda

Reusable Components
Newsgroups: comp.lang.ada
A new release of the PragmAda Reusable
Components (PragmARCs) is now
available. This release primarily adds
some additional sorting algorithms.
The PragmARCs are available from:
http://home.earthlink.net/~jrcarter010/pra
gmarc.htm
Errors, suggestions, and comments are
welcome at pragmada@earthlink.net.
[See also same topic in AUJ 25-2 (Jun
2004), p.48. -- su]

ASIS for GNAT: GCC-3.4.4
From: Martin Krischik

<martin@krischik.com>
Date: Sun, 28 Nov 2004 19:47:41 +0100
Subject: [Announce] ASIS for GNAT

gcc-3.4.4-20041123 released
Newsgroups: comp.lang.ada
Hello,
It has been some time since I last prepared
an ASIS release. Nothing new, just
compiled for a current gcc-3.4.4.
See http://gnat-asis.sourceforge.net/
[See also "ASIS for GNAT: New Project
and First Versions" in AUJ 25-2 (Jun
2004), p.56 -- su]

AVR-Ada
From: Rolf Ebert <rolf.ebert@gmx.net>
Date: 25 Nov 2004 13:02:06 -0800
Subject: [Announce] AVR-Ada V0.2.1

released
Newsgroups:

comp.lang.ada,comp.arch.embedded
We are proud to announce a new release
of AVR-Ada, one of the first GCC based

Ada compilers targeting 8-bit
microcontrollers.
You can get the project description and
some documentation at:
avr-ada.sourceforge.net
The SF development pages with the
download section are at:
www.sourceforge.net/projects/avr-ada
AVR-Ada is available in source form
only. Binary packages of the cross
compiler hosted on Linux and Windows
are expected to appear with future
releases of cdk4avr
(cdk4avr.sourceforge.net) and WinAVR
(winavr.sourceforge.net).
Feel free to join the mailing list at:
http://lists.sourceforge.net/mailman/listinf
o/avr-ada-devel.
It has quite low traffic.
Please use SF's bug reporting system for
guiding future development of AVR-Ada.
The aim of the AVR-Ada project is to
make the gcc based Ada compiler GNAT
available for the AVR microcontrollers.
More specifically the project provides:
 - a working compiler based on the
existing AVR and Ada support in gcc (V
3.4.3)
 - a minimalist Ada runtime system
 - an AVR specific support library
containing all the necessary part
descriptions as Ada package specs.
The current distribution of AVR-Ada is
V0.2.1. It is based on gcc-3.4.3. The Ada
compiler of gcc-3.4 is considerably better
than gcc-3.3. In the AVR-Ada project I
had never problems with the Ada
compiler itself. It is very stable.
The Ada run time system (RTS) on the
other hand is not even a *run* time
system. It is more a compile time system
:-). All files in the RTS are only needed at
compile time. As a consequence we don't
have support for exceptions nor for
tasking (multithreading).
There is some AVR specific support.
Type and interface definitions, timing
routines, eeprom access, UART, and most
importantly the necessary definitions for
most AVR parts.
Sample programs in the apps/ directory
show how to use the compiler and the
library. This includes the tutorial program
from the avr-libc distribution translated to
Ada.
The documentation consists of the pages
at avr-ada.sourceforge.net. A copy of the
pages is in the directory AVR-Ada/web/
for offline reading.
We modified the compiler patches to fit
cleanly to gcc-3.4.3. They probably also
fit in previous gcc-3.4.x releases; I never
tried.
The "freestanding" patch is now
considerably shorter since part of what it

does (avoid some code in the binder file)
is now provided directly in gcc. The
corresponding binder options were
previously called "standalone", but that
expression is used elsewhere in GNAT.
You can now use "Library Projects" with
AVR-Ada. I.e. you can have gpr files with
"Library_Name", etc. The only permitted
value for "Library_Kind" is "static". This
feature is used for the Avr library.
gcc-3.4.3 now fully supports -fdata-
sections (PR14064) and -ffunction-
sections for AVR targets in C and Ada.
This is particularly useful for embedded
systems where code and static data must
not be wasted.
[See also "GNAT Compiler for AVR
Targets" in AUJ 25-1 (Mar 2004), pp.7-8.
-- su]

Ada 2005 Numerics Library
Implementation
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Wed, 02 Feb 2005 22:36:46 +0100
Subject: Re: Calculs et tracés numériques

en Ada
Newsgroups: fr.comp.lang.ada
[Translated from French – su]
> I am looking for the way to perform

rapid numerical calculations (hence,
with no interpreted language). I had
immediately thought of C++ and at a
dedicated library … I have also
considered Fortran, but I have been
wondering whether Ada might respond
to my needs.
In fact, I would simply like to
manipulate matrices and vectors as well
as perform additions, subtractions and
multiplications, scalar products, vector
products, member-to-members
multiplications (in the way of Scilab).
That library should also handle all
problems with incoherent dimensions.
Overall, I am looking for something
rather trustable.
Do you possibly have any suggestions?

There exits an ISO norm (ISO/IEC
13813:1996(E)) which defines a library
for matrix manipulation with Ada. That
norm should in principle be integrated
with Ada 2005. While waiting for that,
you may find an implementation of it at:
http://dflwww.ece.drexel.edu/research/ada
/ [...]
[See also "Ada0Y.Directories - AI-248
Implementation" in AUJ 24-3 (Sep 2003),
p.138. -- su]

GNAVI Progress
From: David Botton <david@botton.com>
Date: Fri, 19 Nov 2004 07:14:52 -0500
Subject: Not Announcement of GNAVI IDE
Newsgroups: comp.lang.ada

Ada-related Tools 11

Ada User Journal Volume 26, Number 1, March 2005

I wouldn't call this an announcement since
this isn't a release.... but GNAVI now has
a functional IDE that lets you:
Create new projects
Edit projects
Create new windows
Add windows already created to the
project
Delete windows from the project
Edit the body, spec and XML of the
window
You can compile and run from the IDE
Using the XML specs, you describe your
GUI and automatically the source of the
body and spec is modified (along with
other parts silently) with the changes.
The editor is lame and things need much
work, but progress is happening! The
outline and GUI layout views are already
in the works.
http://www.gnavi.org
[See also "A community Windows
binding" in AUJ 25-4 (Dec 2004),
pp.188-188, and "Delphi and GNAVI"
and "GUI Programming for Beginners" in
this issue -- su]
From: David Botton <david@botton.com>
Subject: GNAVI Updates
Date: Fri, 26 Nov 2004 11:28:07 PST
Newsgroup: comp.lang.ada
Figured I would let people know about
GNAVI progress:
Ok, I've got a fully working Outline view
for GUI building (ok, it still needs a more
work, but it is functioning). I am already
using it here and there now to do some of
the work on the GNAVI IDE as it is.
Here is today’s screen shot:
http://www.gnavi.org/images/snap1.jpg
It's ugly, but it works :-) It will all get
cleaned and polished in time.
I need to put in all the controls now in to
the datastore/controls.xml, set up the
properties and handlers to show even the
ones not set yet and a bit more. I am
itching to get on to the GUI layout view
very soon.
I don't have time to package a snapshot
today, but if any one wants to play, as
always it’s in CVS.
Just check out modules: gnatcom,
gwindows and gnavi (see
http://www.gnavi.org for information) [...]
From: David Botton <david@botton.com>
Date: Thu, 23 Dec 2004 00:34:52 -0500
Subject: GNAVI Progress
Newsgroups: comp.lang.ada
Just wanted to give people a heads up on
progress on the GNAVI project, The
Open Source Visual RAD answer to
Delphi/Kylix and the Visual Dark Side

The IDE is in full swing and can now
even do some basic Visual layouts of
controls, etc.
You can see a snap shot of the current
work on the IDE at:
http://www.gnavi.org/images/snap1.jpg
There is a Win32 snapshot (for the brave)
available at
http://www.gnavi.org/gnavi/gnavi.zip
For more information see:
http://www.gnavi.org

XIA - XPath In Ada
From: Marc A. Criley <mc@mckae.com>
Date: Fri, 31 Dec 2004 20:48:55
Subject: Announce: XIA 0.60 now available
Newsgroups: comp.lang.ada
Version 0.60 of XIA (XPath In Ada) is
now available on the McKae
Technologies website at
www.mckae.com/xia.html.
This version of XIA is a beta release that
completes the initial implementation of
the XPath 1.0 specification. Therefore this
release has sufficient capabilities
implemented that one may now consider
it for actual XML applications.
Improvements and fixes to known and to-
be-discovered bugs will be incorporated
into subsequent releases.
There are two significant bugs and a
known limitation: The parser treats "and",
"or", "not", "div", the axis names ("child",
"ancestor", etc.), and node type names
("text", etc.) as reserved words. Meaning
that if an XML document uses such a
term as an element tag, referencing it as
part of the path in an XPath expression
will generate a syntax error. Predicate
expressions that specify the union, via '|',
of two node-sets will also cause a syntax
error. Lastly, the id() core library function
is implemented, but inoperable, as
XMLAda does not yet implement the
Get_Element_By_ID function.
The txia_test.txt file, containing a list of
XPath queries that seriously exercise the
predicate filtering capabilities of XIA, has
been updated to 140 queries, and the
distribution now also includes an
"expected results" file for running the txia
test sequence.
As this is a beta release, reports of errors
(either in operation or in the nodes
retrieved) would be appreciated. Please
provide the XML document (or readable
fragment), the query that was submitted,
and a description of what was expected.
[See also same topic in AUJ 25-4 (Dec
2004), p.188. -- su]

Bindings for OpenAL (Open
Audio Library)
From: Aurele <aurele.vitali@gmail.com>
Date: 22 Jan 2005 17:30:20 -0800
Subject: OpenALada

Newsgroups: comp.lang.ada
OpenAL (for Open Audio Library) is a
software Application Program Interface
(API) to a computer's audio hardware.
OpenALada is a new Ada binding to
OpenAL.
[OpenALada is distributed under GNU
LGPL -- su]
Check it out here: www.OpenALada.com
From: Aurele <aurele.vitali@gmail.com>
Date: 4 Mar 2005 06:56:35 -0800
Subject: OpenALada
Newsgroups: comp.lang.ada
OpenALada and OpenALdemo v1.1 have
been updated and tested with ObjectAda
v7.2.2 and GNAT v3.15p.
www.OpenALada.com

Database Source Name
Parser
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Fri, 14 Jan 2005 07:35:25 +0100
Subject: [ANN] Data Source Name parser

(ODBC etc.)
Newsgroups: comp.lang.ada
Some time ago when discussing APQ or
Ada and databases, Brian May suggested
URL-like strings describing database
connections. A parser library for such
strings (data source names) is now
available at:
http://home.arcor.de/bauhaus/Ada/dsn.ht
ml
The library is at version 0b.2, that is, it
has bugs. Some are known, some are fun.
The distribution contains a small sample
program that allows interactive checking
of DSNs.
Documentation is available in source and
as:
http://home.arcor.de/bauhaus/Ada/dsn.pdf
I have tried to make the interface simple,
any comments as to whether it is usable or
whether it should go down the drain will
affect following versions.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Mon, 31 Jan 2005 21:24:53 +0100
Subject: [ANN] data source names (ODBC

etc) parser, v 0b.3
Newsgroups: comp.lang.ada
The second release of the data source
name parser library is now available at
http://home.arcor.de/bauhaus/Ada/dsn.ht
ml.
The most notable change is a further
simplified interface. My plan is to leave
the interface the way it is now, unless
comments and critique say that it should
change.
The library is stabilizing, but nevertheless
the version number, which is 0b.3,
announces beta software.

Ada-related Product 13

Ada User Journal Volume 26, Number 1, March 2005

A small interactive demo program,
contained in the distribution, shows what
this is all about, for correct, and for
incorrect input:
DSNT>
db2://georg@tcp+localhost:4321/parts
Yes.
- system name: db2
- user: georg
- password:
- protocol: tcp
- server: localhost
- port: 4321
- database: parts
- parameters:
DSNT>
db3://georg@tco+localhost:4321/parts
 1: database system name not known,
skipping "db3"
 13: not a known protocol, skipping "tco"
 1: input is not valid, but could be
corrected
Maybe.
The program is a simple demonstration of
how to use the library subprograms in an
application.

Ada+SQL
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Thu, 04 Nov 2004 13:20:36
Subject: Re: Linux mag de novembre
Newsgroups: fr.comp.lang.ada
[Translated from French – su] Chris
wrote:
> I am an Ada novice (I have already

ordered the book “Programming in
Ada”.)
I am looking for code examples or for a
“cook-book” site, especially about:
sqlite / prog objet / gtkada

In addition, another very compact SQL
system may interest you:
http://www.readyideas.com/ada+sql1.htm
It’s a method that seems capable of
integrating SQL with the Ada language.
[See also "PGSQL - PostgreSQL Minimal
Binding" in AUJ 25-4 (Dec 2004), p.190.
-- su]

Public Release of GNAT
Programming System IDE
(GPS)
From: Arnaud Charlet

<charlet@province.act-europe.fr>
Date: Wed, 22 Dec 2004 14:34:34 +0100
Subject: Announce: GNAT Programming

System 2.1.0
Newsgroups: comp.lang.ada
A Christmas present ;-)
Enjoy!
Ada Core is pleased to announce the
release of GPS 2.1.0 Academic Edition,
the GNAT Programming System IDE,

including binaries for the GNU/Linux,
Solaris and Windows platforms.
Designed by programmers for
programmers, the GPS IDE integrates the
GNAT Ada 95 tools within a single visual
development environment. GPS is Free
Software. This version is intended for use
in academic and Free Software projects.
GPS is available at
http://libre.adacore.com/gps
New features include, among other things:
- Integrated python interpreter
- More powerful customization
capabilities
- Better multi-language support (in
particular C and C++)
- Improved efficiency
- Generic Version Control support
From: Arnaud Charlet

<charlet@gnat.com>
Date: Mon, 3 Jan 2005 10:26:14 +0100
Subject: Re: Announce: GNAT

Programming System 2.1.0
Newsgroups: comp.lang.ada
> Is there any changelog for changes

since the 2.0.1 GAP bundle edition? I
installed it two days ago

You will find this information along with
GAP 1.1 which also includes GPS 2.1.0
and was released around the same time.
[See also "AdaCore - GPS 2.1.0" in AUJ
25-4 (Dec 2004), pp.193-194 and "ACT -
Public Release of GNAT Programming
System IDE (GPS)" in AUJ 24-3 (Sep
2003), p.146. -- su]

AdaDoc 2.1 - Documentation
tool for Ada Package
Specifications
From: Vincent Decorges <vega01@sf.net>
Date: Tue, 28 Dec 2004 09:00:52
Subject: ANN: AdaDoc 2.1
Newsgroups: comp.lang.ada
We are announcing the release of AdaDoc
version 2.1.
This version includes new modules to
generate Texinfo and StrongHelp
documentations.
Thanks to Bent Bracke and Stéphane
Rivière for their contributions.
AdaDoc is a tool for developers using the
Ada95 programming language. Its goal is
to create documentation in different
format from a specification package.
The program analyzes the specification
(by controlling its syntax), then the draft
to write a document with the desired
format. The format of exit depends on the
selected module. AdaDoc writes a file
XML (temporary) containing all
information necessary to the modules to
write the other formats (HTML, Latex,

etc...). The writing of a module for other
formats is very easy.
AdaDoc is freely available to the
following address: http://adadoc.sf.net
One can find there:
- binary versions for Linux and Windows.
- a user guide (English and French).
- a guide of creation of module (English
and French).
- sources of the software (English).
- the complete documentation of the
project (only in French).
- a mailing list to be informed of the new
release.
AdaDoc is under the GPL.
[See also "AdaDoc 2.01 - Documentation
tool for Ada Package Specifications" in
AUJ 24-3 (Sep 2003), pp.145-146 -- su]

Ada-related Products
AdaCore - GNAT Pro
Nominated for 'Product of
the Year'
Date: Wed, 26 Jan 2005
Subject: GNAT Pro Nominated 'Product of

the Year' in Jupiter Media's Datamation
Awards

New York, USA - January 26, 2005 -
AdaCore is proud to announce that its
flagship product, GNAT Pro has been
nominated for 'Product of the Year' in
Jupiter Media's Datamation Awards. Our
distinguished co-nominees are Mozilla's
Firefox, VMWare's Workstation and
Novell's SUSE Linux Enterprise Server.
The Datamation Product of the Year 2005
Awards recognize Datamation readers'
choices for achievement and innovation in
enterprise software and hardware
products.
To learn more about the awards (or better
yet, vote for GNAT Pro) [go to
http://awards.jupitermedia.com/index.php
/42311/ -- su]

AdaCore - GNAT Pro 5.03a
From: Jamie Ayre <ayre@adacore.com>
To: Ada User Journal
Date: Mon, February 21, 2005 4:19 pm
Subject: [Ada User Journal] AdaCore

articles for consideration
GNAT Pro 5.03a - new platforms, new
tools and new Ada 2005 support
This latest version of the GNAT Pro
toolsuite offers close to 100 new features
including support for new platforms and
targets, the introduction of the gnatmetric
and gprmake tools, and support for many
of the new Ada 2005 features.
The GNAT Pro list of supported
platforms and targets continues to grow

14 Ada-related Products

Volume 26, Number 1, March 2005 Ada User Journal

with the addition of ppc-darwin for Mac
OS users, ERC32 targets for the space
market, and Pentium targets for
VxWorks, among others.
Integrated into the GNAT Pro toolset,
gnatmetric calculates a set of commonly
used industry metrics, which allows you
to estimate the size and better understand
the structure of your source code base,
and also to satisfy the requirements of
certain software development
frameworks. Gprmake tool provides
gnatmake-like multi-language building
capabilities based on the GNAT project
files.
As part of the ongoing standardization
activities for Ada, the language is
reviewed periodically to see if corrections
or new features are warranted. AdaCore is
directly involved with the Ada 2005
language amendment process, and has
been steadily implementing the approved
new Ada 2005 features. For full details of
the new features already implemented in
GNAT, please read our paper "GNAT and
Ada 2005" available on our web page
dedicated to Ada 2005
(http://www.adacore.com/ada_2005.php)
GNAT Pro 5.03a also offers greater
efficiency and stability for its users:
- Zero Cost Exceptions support is now
available on many more platforms
including certain cross configurations.
- The 5.03a back end, derived from gcc
3.4, offers a high degree of maturity and
stability.
GNAT Pro's availability over an ever
increasing number of native and cross
platforms, combined with exceptional,
responsive support from Ada experts
provides for focused, time saving, project
development.
[See also "ACT - GNAT Pro 5.02a" in
AUJ 25-2 (June 2004), pp.58-59. -- su]

AdaCore - GNAT Pro
Toolsuite for ERC32
From: Jamie Ayre <ayre@adacore.com>
To: Ada User Journal
Date: Mon, February 21, 2005 4:19 pm
Subject: [Ada User Journal] AdaCore

articles for consideration
New GNAT Pro Toolsuite for ERC32
GNAT Pro for ERC32, a flexible cross-
compilation system supporting the
Ravenscar tasking profile on top of a bare
ERC32 computer, is now available. It is
designed for mission-critical real-time
space applications, especially those that
have to meet safety standards.
Developed under ESA (European Space
Agency) sponsorship, AdaCore targeted
the compiler to the ESA's standard
processor for spacecraft on-board
computer systems, the ERC32, which is a
radiation-tolerant SPARC V7 processor.

Available host platforms are x86 Linux
and SPARC Solaris.
The static and simple tasking model
defined by the Ravenscar profile allows a
streamlined implementation of the Ada
run-time library directly on top of bare
computers. Its reduced complexity,
together with its configurability, makes it
an excellent choice for mission-critical
space applications in which certification
or small size is needed.
The developer can choose from several
predefined run-time libraries, each
corresponding to a particular set of run-
time Ada features, or, even more flexibly,
configure a tailored library reflecting
exactly the set of features that are used.
Also as part of the ESA contract,
AdaCore has developed a comprehensive
test suite that checks compliance with the
Ravenscar profile and correct behavior of
specialized features (such as the last-
chance exception handler mechanism) and
supplemental tools (such as the
debugger).
IPL (www.ipl.com) were also involved in
the development providing their
AdaTEST 95 tool targeting the ERC32
compiler.
"We are very pleased with this
development which more than ever opens
the space market to Ada, and to the use of
a state-of-the-art software development
environment for mission-critical
applications." - Dr. José Ruiz, AdaCore
lead engineer tasked with completing the
port.

AdaCore - GNAT Pro
Available for Mac OS X
From: Jamie Ayre <ayre@adacore.com>
To: Ada User Journal
Date: Mon, February 21, 2005 4:19 pm
Subject: [Ada User Journal] AdaCore

articles for consideration
GNAT Pro Compiler and Debugger
Available for Mac OS
As part of the 5.03a release, AdaCore is
pleased to announce the availability of the
GNAT Pro toolsuite for the Mac OS X
and Mac OS X Server platforms, Apple's
award-winning UNIX-based operating
system.
GNAT Pro for Mac OS X/PowerPC,
brings together the exciting features of the
Ada programming language with the
innovative G5 processor, and makes a
perfect base for developing robust
applications from high-performance
routines to large-scale servers.
GNAT Pro is based on the same long-
standing compiler technology (GCC) as
Apple uses, ensuring it benefits from the
latest state-of-the-art developments, and
making it the best Ada solution on Mac
OS X.

GNAT Pro is already available on more
platforms that any other Ada compiler,
and in porting to Mac OS X, AdaCore
hopes to attract a whole new segment of
the developer communities to the Ada
programming language.
About AdaCore
AdaCore, a privately held company
founded in 1994 with major offices in
New York City and Paris, produces and
provides expert support for the GNAT Pro
family of open-source Ada 95 and multi-
language software development
environments. The GNAT Pro toolset is
used in a wide range of industries
including aerospace, defense, energy,
transportation, media, banking,
communications, automobile, and medical
software.
About GNAT Pro
Based on the GNU GCC technology,
GNAT Pro is available on more platforms
than any other Ada compiler and is the
only implementation of the complete Ada
95 language, including all the Specialized
Needs Annexes. GNAT Pro, the
professional edition of the GNAT
technology and the premier Ada and
multi-language development environment
on the market, is used on enterprise-
critical projects encompassing areas such
as low-level communications control,
high-integrity real-time applications and
large-scale distributed systems.

Aivosto - Visustin v3
flowcharts Ada code
From: Aivosto Oy <vbshop@aivosto.com>
To: Ada User Journal
Date: Wed, 9 Mar 2005 12:01:22 +0200
Subject: PR: Visustin v3 flowcharts Ada

code
For Immediate Release
Date: 9 March 2005
Contact: Tuomas Salste
(vbshop@aivosto.com)
Aivosto has updated Visustin, a
flowcharting tool. Visustin v3 reverse
engineers Ada code to diagrams. Recent
improvements include automated
flowcharting of an entire system, robust
charting of large modules, generation of
Visio flow diagrams and support for ASP,
JSP, PHP and Fortran code.
Visustin produces flow charts from
complex, unstructured source code in 18
programming languages. A detailed chart
visualizes all the code with comments
attached. A bird's eye view shows the core
logic leaving out unnecessary details.
Automated drawing of Microsoft Visio
flow diagrams is possible with Visustin.
Freeing the user from manual drawing,
Visustin can document existing systems
in a short time. The charts are useful as
technical documentation and for learning
how an algorithm works. Visustin

Ada-related Tools 15

Ada User Journal Volume 26, Number 1, March 2005

supports multi-page printing and saves the
charts in all standard image and web
formats.
Visustin flowcharts the following
languages: VB, VB.NET, VBA, ASP,
QuickBASIC, C/C++, C#, Java, JSP,
JavaScript, COBOL, Fortran,
Pascal/Delphi, Perl, PHP, T-SQL,
PL/SQL and Ada.
A functional evaluation copy is available
for free download at www.aivosto.com.
Pricing: US$299/Standard Edition,
US$449/Pro Edition.
Supported operating systems: Microsoft
Windows 95/98/ME/NT/2000/XP/2003
Optionally supports: Microsoft Visio
2002/2003
Tuomas Salste, Aivosto Oy
Kylanvanhimmantie 16, 00640 Helsinki,
Finland
vbshop@aivosto.com, www.aivosto.com

DDC-I - SCORE Challenges
Legacy DACS Product
Date: Fri, 29 Oct 2004
Subject: DDC-I's Versatile SCORE® IDE

Challenges Legacy DACS Product
URL:

http://www.ddci.com/news_SCORE_chal
lenges_DACS_release.shtml

DDC-I's Versatile SCORE® IDE
Challenges Legacy DACS Product
Venerable "small, tight code" generating
DACS goes head-to-head with SCORE in
a large customer application - with
surprising results
Phoenix, AZ - October 29, 2004 -
Responding to a customer query as to the
code size performance of the powerful
SCORE® (Safety Critical, Object-
oriented, Real-time Embedded) integrated
development environment (IDE)
compared to their legacy DACS toolset -
with a strong reputation for producing
tight code - DDC-I engineers proudly
reported back a not-so- surprising
discovery: a virtual dead heat.
"This project proves SCORE® is capable
of generating target executable code size
on par with DACS, while also facilitating
mixed use and debugging of multiple high
level languages targeting several key
embedded processors," explains DDC-I
Engineering Manager and SCORE®
Product Champion David Mosley. "We
also identified several improvements that
will soon allow SCORE® to produce
consistently smaller code than DACS."
Created as the logical successor to the
widely used DACS, SCORE® presents
powerful leverage to real-time embedded
system developers, mixing application
development among different languages,
including Fortran, C, Embedded C++ and
Ada 83/95, while realizing significant cost

and time savings during inevitable
transitions to new processor technologies.
The first multi-language, multi-target,
multi-host IDE for real-time safety-
critical embedded system developers
based on open standards, the latest beta
build of SCORE® (2.5) compiled and
linked the customer code alongside
DACS 4.7.14 for their current 80x86
protected mode target. Code size down to
the target was the benchmark, for a
complex application - including tasking,
storage management and exceptions -
consisting of 539 files and roughly
261,130 lines of Ada95 source code.
Minor changes were necessary for DACS
compilation in Ada83.
The initial results: DACS 1,196,966
bytes, SCORE® 1,231,306 bytes. Just 2.8
percent apart, attributable mainly to more
complex Ada95 tasking and exception
management requirements. As SCORE®
is also designed to take advantage of the
extended features and increased memory
in the latest generation of hardware,
simply "de-tuning" its capabilities
reduced the gap to 1.7 percent. Additional
changes are calculated to bring SCORE®
as much as 4.7% below DACS, with even
greater code size savings when auto-
inlining is suppressed. Optimizing access
to outer scope variables and a number of
other modifications will likely further
improve code size reduction.
Including a highly reliable compiler,
seamlessly integrated multi-language
debugger and two small, exceptionally
fast tasking & non-tasking run-time
systems, SCORE® offers developers with
a wealth of legacy code a mature means to
migrate to the latest technology, as well as
extending existing source with newer
embedded code. Based on Win32 and
OSF/Motif, the Windows- oriented
"point-and-click" character of the
SCORE® GUI incorporates project tools,
online help, tool activation and other
efficient features -- with the command-
line option always available for byte-
conscious power users.

DDC-I - SCORE Debuts
Fortran Compiler
Date: Mon, 29 Nov 2004
Subject: SCORE® Version 2.5 Debuts

Fortran Compiler
URL:

http://www.ddci.com/news_SCORE_vers
ion_2_5_debuts_fortran_release.shtml

SCORE® Version 2.5 Debuts Fortran
Compiler
New Fortran 77 compiler continues the
ever-expanding range of DDC-I's multi-
language, multi-target migration options
for legacy developers
Phoenix, AZ - November 29, 2004 - In
keeping with the ever-increasing
importance of legacy code migration

among embedded system developers,
DDC-I today announced the addition of a
native Fortran compiler in version 2.5 of
the maturing SCORE® (Safety Critical,
Object-oriented, Real-time Embedded)
integrated development environment
(IDE), in addition to several key
component updates.
"Several customer-driven improvements
to SCORE® are included in SCORE®
2.5," explains David Mosley, DDC-I
Engineering Manager and SCORE®
Product Champion, "but number one is
direct compilation and debugging of
Fortran, which dramatically decreases the
complexity of legacy code migration by
allowing developers to maintain code in
the original Fortran and enabling
programmers to move easily between Ada
95, C, Embedded C++, and Fortran
source."
According to Mosley, the new Fortran
compiler, based on the ANSI X3.9-1978
Fortran(77) standard, supports all current
processors, as well as the MIL-STD-
1750A, added to version 2.5. Full support
for the popular Dy4-181 PowerPC board
and multi-language debugger support for
the powerful Abatron JTAG probe are
also new.
Recently performance tested head-to-head
against its predecessor, DDC-I's mature
DACS compiler, at the request of a
customer, version 2.5 of the SCORE®
compiler generated final code size results
on par with DACS. Improvements found
during the test process are already being
integrated, beginning with support for
inlining of non-local programs. Constant
recognition has been greatly improved,
especially when dealing with complex
structured constants, resulting in
significantly smaller code and data.
Machine code insertions are now context-
sensitive.
Based on Win32 and OSF/Motif, the
Windows-oriented "point-and-click"
character of the SCORE® GUI
incorporates project tools, online help,
tool activation and other efficient features.
Today, COTS solutions regularly meet
project requirements at a fraction of the
cost of in-house development, while
integrated suites like SCORE® make the
next big leap, facilitating flexible
migration from different languages and
platforms into a uniform future. The
process improvements that modern tools
and languages make possible reach
directly to the bottom line, where
thousands of lines of reused code - now
including Fortran - can reduce costs and
increase programmer productivity.
Outdated tools migrated to SCORE® gain
multi-language, multi-target capability
while placing minimal restrictions on
future development.
For customers evaluating SCORE®,
DDC-I also offers their popular Migration

16 Ada-related Products

Volume 26, Number 1, March 2005 Ada User Journal

Assessment Packages, offering on-site
needs assessment, evaluation and a
comprehensive report describing the
complexity and functionality of software
migration including: current systems,
utilization, capacity and scalability,
resource and skills planning, education
and training, cost evaluation, risk
assessment and any additional
recommendations. MAPs are individually
shaped and priced, to help customers with
complex applications achieve project
goals on-time and budget.

DDC-I - SCORE Integrates
ARINC 653 RTOS
Date: Wed, 01 Dec 2004
Subject: SCORE® Integrates VxWorks'

ARINC 653 RTOS
URL:

http://www.ddci.com/news_SCORE_VxW
orks_ARINC_653_release.shtml

SCORE® Integrates VxWorks' ARINC
653 RTOS
DDC-I increases flexibility for SCORE
developers using Wind River's robust,
partitioned VxWorks AE653 RTOS
Phoenix, AZ - December 01, 2004 -
Always working to help safety-critical
embedded system software developers
control costs and compress time to
market, DDC-I today announced
integration of the versatile SCORE®
(Safety Critical, Object-oriented, Real-
time Embedded) integrated development
environment (IDE) with the Wind River
VxWorks® AE653 RTOS, offering
complete ARINC 653-1 compliance and
DO-178B Level A certification.
"Statistics show the code load of a typical
embedded system doubling about every
two years and an average of sixty-six
percent of projects over budget, while a
third fall short functionally," explains
DDC-I Engineering Manager and
SCORE® Product Champion David
Mosley. "Meeting software development
goals is getting harder all the time, and we
continue to increase the capabilities of
SCORE® specifically to help developers
keep beating the odds."
According to Mosley, the aerospace and
defense industry demands a standardized
OS with robust partitioning, which allows
uncertified applications to co-exist with
fully certified applications. An ARINC
653 compliant OS, such as VxWorks
AE653, meets this need.
Already chosen for development,
operation and maintenance of the systems
driving the fuel boom ACU on the new
767 Global Tanker Transport Aircraft,
integration of the VxWorks product
increases the functional reach of SCORE
for developers already using the AE653
RTOS.
Including a highly reliable compiler,
seamlessly integrated multi-language

debugger and the integrated AE653
RTOS, SCORE® offers developers with
valuable legacy code, especially in Ada
and Fortran, a mature means to migrate to
the latest targets and technology, as well
as the ability to extend existing source
with newer embedded code.
"Designed specifically for the
development of high-integrity embedded
systems, SCORE® provides a unified
ARINC 653 solution for the world's
highest performance aerospace
applications, while also offering a
flexible, integrated turnkey solution for
every application where safety and
reliability are number one," Mosley
concludes.

DDC-I - Product
Development Calendar for
2005
Date: Mon, 20 Dec 2004
Subject: DDC-I Product Development

Calendar for 2005
URL:

http://www.ddci.com/news_product_deve
lopment_calendar_2005.shtml

DDC-I Product Development Calendar
for 2005
Phoenix, AZ - December 20, 2004 - In
today's fast-moving technology
environment, embedded system
developers designing and maintaining
safety-critical systems face long-term
maintenance commitments that demand
uncompromising tool support from
vendors. With over two decades of
experience, DDC-I has long recognized
the value of maintaining an adaptable tool
development model capable of changing
as customer needs change.
"We see our work as a shared
commitment with our customers, counting
on their fresh input and ideas to keep our
products growing and adapting, as well as
pursuing our own development initiatives
based on trends and industry
developments," explains David Mosley,
DDC-I Engineering Manager.
According to Mosley, definitely on the
development calendar for 2005 are
support for Wind River's VxWorks and
the addition of VxWorks AE653 to the
SCORE® (Safety Critical, Object-
oriented, Real-time Embedded) integrated
development environment (IDE). As
SCORE's Product Champion, he confirms
the 2005 completion of current projects to
add the 1750A target and Fortran support
to the already well-developed IDE,
alongside current multi-language support
for C, Embedded C++, and Ada 95.
Also slated are scheduled updates to
mature DACS and TADS development
tools still flying high throughout the
safety-critical real-time embedded system
industry, reflecting DDC-I's standing
commitment to their customers.

Just over the horizon, a JOVIAL
rehosting to the Windows environment
looms likely, as well as the migration of
the SCORE® IDE to Eclipse and the
addition of support for Venturcom
(www.vci.com) RTX and Phar Lap to
SCORE®. Out beyond radar range, Java
and Linux support -- as well as i960 and
68xxx target additions -- are under
evaluation, with a weather eye on support
for the upcoming Ada 05 standard.
"With ten-year maintenance and support
agreements typical on the back-end of
most embedded systems development
programs," Mosley concludes,
"developers need software tools that can
adapt alongside the rapid technology
changes that necessarily drive their work -
and DDC-I remains committed to
building them."

DDC-I - Riding High with
Cassini-Huygens
Date: Tue, 01 Feb 2005
Subject: 2.2 Billion Miles and Counting:

Riding High with Cassini-Huygens
URL:

http://www.ddci.com/news_riding_high_
with_casini_huygens_update.shtml

2.2 Billion Miles and Counting: Riding
High with Cassini-Huygens
Working with three major project
contractors on Cassini-Huygens, software
coded with DDC-I tools is successfully
orbiting Saturn
February 1, 2005 -- Phoenix, AZ --
Burning the twilight Cape Canaveral sky,
a Titan IV-B/Centaur launch vehicle lifted
the Cassini-Huygens spacecraft toward
the stars on October 15, 1997, covering
the first miles of a 2.2-billion-mile-long
"slingshot" ride through the solar system
toward Saturn. Too large a mass to shoot
straight at the ringed planet, four separate
gravity-assisted "turns" hurled the
spacecraft along its interplanetary
trajectory, passing Venus (twice), the
Earth and Jupiter before approaching
Saturn in mid-2004.
Cassini-Huygens is the most complex
interplanetary spacecraft ever built; it
represents the best technical efforts of the
United States and 17 European nations
involved in the mission. Onboard the
dual-mission craft, consisting of the JPL-
built Cassini orbiter and an ESA-built
Huygens probe destined for the surface of
Saturn's largest moon Titan, is embedded
systems software coded by American and
European engineers using DDC-I
software developments tools.
Space missions define the outer
performance envelope of well-used
industry terms like "mission-critical," and
Cassini's systems have performed
flawlessly since lift-off. Cassini and the
Galileo spacecraft were used in concert to
study Jupiter between October 2000 and

Ada-related Tools 17

Ada User Journal Volume 26, Number 1, March 2005

March 2001, taking advantage of their
dual vantage points to observe the shape
of the magnetosphere and the effects of
solar wind. On July 1, 2004, the main
engine fired and Cassini-Huygens was
captured by Saturn. Angling through a
gap between Saturn's F and G rings, the
craft made its closest arc around the
planet to begin the first planned orbit of a
four-year primary mission.
Bolted to Cassini in "sleep mode" -- and
awakened once every six months for a
three-hour instrument and engineering
checkup -- the Huygens probe was
released before reaching Titan's
atmosphere, on December 24, 2004.
Umbilical cut, Huygens spun gently away
from Cassini on a ballistic trajectory
toward Titan. Two days later, Cassini
adjusted course to miss Titan and setup
optimal signal reception for telemetry
streaming back during the probe's descent.
The Cassini-Huygens mission will answer
fundamental questions about the evolution
of planets through extensive study of
Saturn, its rings, magnetosphere, Titan
and other icy moons. The Saturn system
represents a laboratory -- the equivalent of
a miniature solar system -- where
scientists can seek answers to
fundamental questions about the physics,
chemistry and evolution of planets and the
conditions that give rise to life. Saturn
may contain much of the primordial
cloud's gases not trapped by the Sun. The
largest moon Titan is thought to harbor
organic compounds important in the chain
of chemistry that led to life on Earth. Too
cold to support life now, it is a "frozen
vault" that may show what the early Earth
was like.
On January 14, 2005, Huygens entered
Titan's atmosphere at 13,500 miles per
hour. Designed to withstand the extreme
cold of space (about -330F) and the
intense heat of atmospheric entry (over
2,700F), the probe used atmospheric drag
to reduce speed until a series of
parachutes began deploying at 870 miles
per hour. During the descent, instruments
sampled the physical properties at
different levels in the atmopshere and
captured the first images of the moon's
surface.
An exotic world with geophysical
processes similar to Earth operating under
alien conditions, many of Earth's familiar
forms occur on Titan, but the chemistry
involved is quite different. Instead of
liquid water, Titan has liquid methane.
Rather than silicate rocks or dirt, Titan
has hydrocarbon particles settling out of
the atmosphere. On Titan volcanoes spew
ice. Huygens touched down in liquid
methane mud -- and quickly took more
samples. Thirty minutes later, Cassini's
antenna would be out of range.
Cassini's planned tour of the Saturn
system includes 52 close encounters with
seven of Saturn's 31 known moons.

Gravity-assist flybys of Titan, as close as
590 miles, will permit high-resolution
radar mapping of Titan's surface to
produce vivid topographic maps, as well
as providing "slingshot" propulsion. Each
orbital path is a mission: the imaging of
Titan, fly-bys of selected icy moons,
occultations in Saturn's rings and
crossings of the ring plane. Fly-bys will
be made of other major moons and
Saturn's Polar Regions and equatorial
zone. The prime mission officially
concludes on June 30, 2008, four years
after Saturn arrival and 33 days after the
final Titan flyby on May 28 aims Cassini
for a follow-on Titan flyby one month
later, ready to proceed with additional
missions if resources allow. A few
remarkable scientific discoveries and
several billion miles from now, DDC-I
will still be flying high among the rings of
Saturn.
[See also "Cassini-Huygens Reachs
Titan" -- su]

PegaSoft - BUSH AdaScript
Business Shell
From: Ken O Burtch

<kburtch@sympatico.ca>
Date: Sat, 15 Jan 2005 18:50:00 -0500
Subject: ANN: BUSH 1.0.1
Newsgroups: comp.lang.ada
BUSH (Business Shell) combines the
capabilities of a Unix shell, PHP, GCC
and PostgreSQL into a uniform design for
rapidly designing secure, reliable Web
templates. Using AdaScript, based on
GNAT, BUSH promotes code reuse:
scripts and templates can be compiled
with GNAT/GCC or ported to JVM with
JGNAT or .Net with A# with minor
changes. It can also work as a
replacement for a Bourne shell with
native SQL support, and is a general
scripting language. BUSH is part of
ABEE, a proposed Ada system-wide
development environment.
BUSH 1.0.1 was released January 15,
2005 for Linux or FreeBSD running
PostgreSQL. Recent changes include a
FreeBSD port, improved documentation
with new tutorials and a new debug mode
for web templates.
BUSH is available for download from
http://www.pegasoft.ca/bush.html.
Ports to other operating systems welcome.
[See also same topic in AUJ 25-1 (Mar
2004), p.11. -- su]

Praxis HIS - SPARK Team
honoured by ACM SIGAda
From: Rod Chapman

<rod.chapman@praxis-cs.co.uk>
Date: 11 Nov 2004 07:44:51 -0800
Subject: ANN: SPARK User Group meeting

- Final Programme
Newsgroups: comp.lang.ada

I'm pleased to say that the final
programme for the 2004 SPARK User
Group meeting is now available on
www.sparkada.com
If you're interested in attending (and we
haven't already invited you!) then please
drop us a line at sparkinfo@praxis-
his.com
Date: November 2004
Subject: SPARK Team honoured by ACM

SIGAda
URL: http://www.praxis-

his.com/sparkada/events.asp
We're pleased to announce that SPARK
Team has been awarded the 2004 ACM
SIGAda award for outstanding
contribution to the Ada community. At
the SPARK User Group meeting, the
award was dedicated to Professor Bernard
Carré - the founder of Program Validation
Limited and principal designer of
SPARK.

Praxis HIS - SPARK Release
7.2
From: Rod Chapman

<rod.chapman@praxis-cs.co.uk>
Date: 10 Jan 2005 09:30:54 -0800
Subject: ANN: SPARK Release 7.2
Newsgroups: comp.lang.ada
We're pleased to announce the immediate
availability of Release 7.2 of the SPARK
Language and Toolset.
This release incorporates several
significant improvements. Full details are
available in the Release Note, which is
available from www.sparkada.com.
For readers of the SPARK Textbook,
upgrade packages are also available from
www.sparkada.com including the new
language definition, manuals and
demonstration tools for IA32/Windows
and IA32/Linux. These upgrade packages
are also available from the "SPARK
Book" page of www.sparkada.com as
usual.
Supported professional customers are
being sent upgrades now. Academic users
and tool-partners will receive their
upgrades shortly.
Some technical highlights of this release
include:
Language:
Full-range record subtypes are now
supported.
Rules for passing array elements as "in
out" parameters have been relaxed (this
significantly eases the construction of
iterator algorithms.)
String constants that are constrained by
their initializing expression are allowed.
Finally, instantiation and use of
Unchecked_Conversion is permitted.
Examiner:

18 References to Publ icat ions

Volume 26, Number 1, March 2005 Ada User Journal

Flow analyser more accurately models
"for" loops that have a static range.
New VC Generator model of "for" loops
correctly models all loops, including those
with a dynamic range where variables
controlling the loop exit are modified in
the loop body.
Declaration of subprograms in the private
part of a package is implemented.
VC Generator produces hypotheses
showing that local variables are "in" their
designated subtype.
A new "brief" error message mode eases
integration with EMACS and GPS by
producing "gcc style" errors that can be
recognized by such environments.
Information flow errors are produced by
default in a new easier-to-read format.
Refinement proofs between the private
and full view of a private type are now
supported.
The VC Generator can now produce
replacement rules for composite
constants, under the control of a new
command-line switch and a new
annotation.
Simplifier:
New tactics for quantified expressions,
structured object updates and scalar
inequalities. These give a significant
improvement in Simplifier "hit rate" (aka
Completeness) for common SPARK
idioms, and particularly for proofs of
exception freedom.
SPARKSimp supports multi-processor
machines for improved throughout (NOT
available with the Demo toolset...)
Other:
A new utility "SPARKMake" that
automates the production of Examiner
index files and meta-files.
[See also "Praxis Critical Systems -
SPARK Book Upgrade Packages
Available" in AUJ 25-3 p.125. -- su]

References to
Publications
Article about GTK+ and
Ada at Linux Magazine
From: Lionel Draghi

<Lionel.DRAGHI@fr.thalesgroup.com>
Date: Thu, 4 Nov 2004 12:37:27 +0100
Subject: Linux mag de novembre
Newsgroups: fr.comp.lang.ada
[Translated from French – su] Folks, let
me this opportunity to advertise the
November issue of the GNU Linux
magazine in which Simon Descarpentries
has published a very favourable article on
Ada and GtkAda.
Perhaps that may be of use and I hope it
will stem many other such articles!

[The article is titled "Gtk+ et Ada: Le duo
gagnant?". See the contents of the GNU
Linux Magazine France issue 66 at the
URL http://www.linuxmag-
france.org/produit.php?produit=372 -- su]

DDC-I Online News
[Extracts from the table of contents. See
elsewhere in this News section for
selected items. -- su]
From: jc <jcus@ddci.com>
To: 17D November 2004 Online News US

<jcus@ddci.com>
Date: Mon, 1 Nov 2004 14:33:35
Organization: DDC-I
Subject: Real-time Industry Updates - News

from DDC-I
DDC-I Online News, Real-Time Industry
Updates - November 2004, Volume 5,
Number 11 -
[http://www.ddci.com/news_vol5num11.s
html] A monthly news update dedicated
to DDC-I customers & registered
subscribers.
This Month:
DDC-I Versatile SCORE IDE Challenges
Legacy DACS Product - Impressive
results prove SCORE can compete with
the best of the best!
Controlling Teams and Projects in
SCORE - White paper details how
SCORE's project structure allows good
team development
Thoughts from Thorkil - Tasking and
Priority Inversion in Ada
The Power of Gratitude - A small
investment with the possibility of huge
returns.
From: jc <jcus@ddci.com>
To: 20D December 2004 Online News US

<jcus@ddci.com>
Date: Wed, 1 Dec 2004 16:58:49 -0700

(MST)
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News, Real-Time Industry
Updates - December 2004, Volume 5,
Number 12 -
[http://www.ddci.com/news_vol5num12.s
html] A monthly news update dedicated
to DDC-I customers & registered
subscribers.
This Month:
SCORE(R) Integrates VxWorks' ARINC
653 RTOS - A flexible, integrated,
turnkey solution for safety critical
applications
DDC-I Releases SCORE(R) V.2.5 -
Debuts Fortran 77 compiler and other
updates
Tech Talk - Using
"Force_Reset_On_Quit" in the
SCORE(R) Multi-Language Debugger

Why Can't We All Play Nice - Ideas For
Team Development: Recognize Your
Differences and Focus on Shared
Concerns
From: jc <jcdk@ddci.com>
To: 21D January 2005 Online News US

<jcdk@ddci.com>
Date: Fri, 31 Dec 2004 12:34:07 -0700

(MST) (20:34 CET)
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News, Real-Time Industry
Updates - January 2005, Volume 6,
Number 1 -
[http://www.ddci.com/news_vol6num1.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
2004 Product Sales Above Forecast -
Customer Care Focus Widens Customer
Base
DDC-I Product Development Calendar
for 2005
Thoughts from Thorkil - Floating Point
Concepts and the 80x86 Implementation
Touching the Void - Be Prepared to Break
the Rules

AdaCore to Present Several
Papers at Ada Europe 2005
Date: Wed, 26 Jan 2005
Subject: AdaCore to Present Several Papers

at Ada Europe 2005
URL:
http://www.adacore.com/pressroom_13.php

Paris, France and New York, USA -
January 26, 2005 - AdaCore is pleased to
announce that it will be presenting the
following papers and tutorials at Ada
Europe 2005 which takes place this June
in York, England:
Ada 2005 Abstract Interfaces in GNAT,
Gary Dismukes and Javier Miranda
The Application of Compile-Time
Reflection to Software Fault Tolerance
using Ada 95, Andy Wellings and Pat
Rogers
GNAT Pro for On-Board Mission-Critical
Space Applications, José Ruiz
A Comparison of the Mutual Exclusion
Features in Ada and the Real-Time
Specification for Java, Ben Brosgol
ERB: The ESA Ravenscar Benchmark,
Roman Berrendonner, Jerome Guitton,
Nicholas Roche
Real-Time Java for Ada Programmers
(Tutorial), Ben Brosgol
Software Fault Tolerance (Tutorial), Pat
Rogers
More about Ada 2005 at:
http://www.adacore.com/ada_2005.php --
su]

20 Ada Inside

Volume 26, Number 1, March 2005 Ada User Journal

Ada and Java
JGNAT Portable Ada Code
From: Marc A. Criley <mc@mckae.com>
Date: Sun, 12 Dec 2004 13:37:57
Subject: Re: JGNAT
Newsgroups: comp.lang.ada
Andrew Carroll wrote:
> Can a program be created such that

JGNAT can be used as well as compile
without JGNAT? Like be able to
output both Java classes and regular
"executables" given one "set" of code?

Yes. But IF, and ONLY IF, you stick to
pure, vanilla Ada code. That means no
Java libraries for user interfaces or
anything. (You could of course always
create wrapper packages that are then
implemented either natively or with Java
libraries.)
And JGNAT 1.1 is pretty hoary by now; it
had bugs, and was almost production-
ready, but it was dropped as an AdaCore
maintained product some time ago. And if
I recall correctly (it's been over 3 years
since I last used it), while it worked pretty
good with JDK 1.2, tasking broke with
JDK 1.3, and I vaguely recall reports that
it just pretty much didn't work much at all
with 1.4.
Unless you want to pick up the JGNAT
sources and bring them up to snuff (which
would be great! :-), I'd be hard-pressed to
think of any practical use for it--unless
you want to play around with it on old
JDKs.
For something along the same lines, you
might want to look at A#, which is Ada
for the .NET platform. It is being actively
maintained, albeit as a university
computer science research project:
http://www.usafa.af.mil/dfcs/bios/mcc_ht
ml/a_sharp.html

Converting Java To Ada?
From: Brian May

<bam@snoopy.apana.org.au>
Date: Wed, 15 Dec 2004 13:48:35 +1100
Subject: Re: Converting Java To Ada?
Newsgroups: comp.lang.ada
Conrad wrote:
> Hi, are there any tools for converting

Java source to Ada source (i.e. adb and
ads)?

Yes.
It is called a "programmer". These tools
walk around on two legs and eat pizza.
Make sure you get the correct model, you
want a model that supports Ada and Java.
Also make sure you have plenty of pizza.
Sorry, couldn't resist ;-).
From: Nick Roberts

<nick.roberts@acm.org>
Date: Wed, 15 Dec 2004 04:43:35 +0000

Subject: Re: Converting Java To Ada?
Newsgroups: comp.lang.ada
In fact, I would concur with this answer.
If you only need to convert from Java to
Ada because a Java executive is not
available for the environment in which
you wish to run the program, then an
automated conversion tool might make
sense. But this seems like an unlikely
scenario, somehow.
If, on the other hand, you need to convert
a Java program into Ada, and then
subsequently maintain the program (in
Ada), then I suggest you use the
aforementioned bipedal pizzivorous tool.
There are good reasons for this. Ada
provides many language constructs that
have no direct analogy in Java (and there
are a few Java constructs whose Ada
analogues are ugly as hell). Probably,
only a human -- and a very skilled one, at
that -- can make the sophisticated
transformations required to convert the
Java idioms into appropriate Ada ones.
Oh, and I've heard that these humans
drink copious quantities of coke, as well
as eating pizza at all times of the day and
night (plus the occasional Alka-Seltzer).
From: Tommy Zhu <tommy@cnluton.com>
Date: Fri, 17 Dec 2004 13:19:32 +0000
Subject: Re: Converting Java To Ada?
Newsgroups: comp.lang.ada
I would suggest to add this topic to Ada
Faq: The Ada Funnies.

Ada Inside
Cassini-Huygens Reaches
Titan
From: Vinzent 'Gadget' Hoefler <nntp-

2005-01@t-domaingrabbing.de>
Date: Wed, 19 Jan 2005 15:27:12 +0000
Subject: Have you missed this great success

story?
Newsgroups: comp.lang.ada
Hey, what's up with you guys? Almost a
week ago we landed on Titan and nobody
here cares?
<URI:http://sci.esa.int/science-
e/www/object/index.cfm?fobjectid=33006
&fbodylongid=1099>:
> The software is based on a top-down

hierarchical and modular approach
using the Hierarchical Object-Oriented
Design (HOOD) method and, except
for some specific low level modules, is
coded in Ada. The software consists, as
much as possible, of a collation for
synchronous processes timed by a
hardware reference clock (eight Hz
repetition rate). In order to avoid
unpredictable behaviour, interrupt-
driven activities are minimised. Such a
design also provides for better software
observability and reliability.

I guess, a few links on Ada-Success
stories could be updated...
[See also "DDC-I - Riding High with
Cassini-Huygens" in this issue -- su]

About the Ada Job Market
From: Jeff C r e e.m <jcreem@yahoo.com>
Date: Tue, 14 Dec 2004 02:51:11
Subject: Re: Ada job market?
Newsgroups: comp.lang.ada
Mike wrote:
> Just a general question, how is the

market for ada programmers? Are
veterans programmers able to move
over to Ada?

The answer to both questions is that it
depends where you are. The job sites are
not the best gauge since some companies
don't include it as a requirement in the
listing (they assume no one has
experience)....
As near as I can tell half the places doing
embedded work put XP/Visual C++ in
their ads just because they think that is
what people want to see.
From: Luke A. Guest

<laguest@abyss2.demon.co.uk>
Date: Tue, 14 Dec 2004 14:07:07 +0000
Subject: Re: Ada job market?
Newsgroups: comp.lang.ada
Why put it there then? Surely they're not
doing their jobs properly by putting that?
But it's not like you can find jobs
anywhere else because all programming
jobs are through agencies, FFS. Agencies
are a joke!
From: Martin Dowie

<martin.dowie@baesystems.com>
Date: Tue, 14 Dec 2004 14:50:26 -0000
Subject: Re: Ada job market?
Organization: BAE SYSTEMS
Newsgroups: comp.lang.ada
Luke A. Guest wrote:
> Well, I've seen one which is for a

Junior programmer, they list the
Ada83 as a requirement as well as
having security clearance AND
experience of Rational Apex. That
makes me think they're not looking for
a junior at all. A junior (to me) would
be someone with no experience, who
can get SC and can learn Apex/Ada83
(who uses 83 anyway?)

Lots of projects!!!
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 14 Dec 2004 17:03:53 +0000

UTC
Subject: Re: Ada job market?
Newsgroups: comp.lang.ada
> What was the point of Ada 95 then? ;-)
Lot of _new_ projects!!! ;-)
From: Martin Krischik

<martin@krischik.com>
Date: Tue, 14 Dec 2004 09:23:03 +0100

Ada Inside 21

Ada User Journal Volume 26, Number 1, March 2005

Subject: Re: Ada job market?
Newsgroups: comp.lang.ada
I have seen lot's of offerings in the UK
(http://www.theitjobboard.com). While I
don't mind moving to the UK, and don't
mind working in defence - 90% of them
need security clearance. Well I am
german so my chances are pretty slim
here.
From: Martin Dowie

<martin.dowie@baesystems.com>
Date: Tue, 14 Dec 2004 09:59:39 -0000
Organization: BAE SYSTEMS
Subject: Re: Ada job market?
Newsgroups: comp.lang.ada
Not at all! You might be barred from
some jobs but I don't see much of a
problem working on loads of things, e.g.
Eurofighter Typhoon.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. -- su]
Date: Tue, 16 Nov 2004 15:00:00
Subject: Ada Programmer near Frederick

MD
URL: http://www.adaic.com/jobs/
Experienced Ada programmer needed for
federal office in suburban Maryland (near
Frederick). This is a permanent, full-time
position working on enhancement and
development to existing systems.
Excellent salary, benefits and growth
opportunities for right candidate. Prefer
4+ years background in Ada development
but will consider talented beginner. DoD
Secret clearance is needed for position -
will consider "clearable" experienced
candidates only.
Date: November 30, 2004 at 15:00:00
Subject: Ada Software Engineers -

Charleston SC area
URL: http://www.adaic.com/jobs/
We have a client located in the
Charleston, SC area that is beginning to
ramp up for an 18 month project. Need 6-
10 Software Engineers Junior through
Senior. Will be working with Ada and
C++. Experience with embedded systems
in a realtime avionics environment a plus.
U.S. Citizenship required. We will begin
deploying resources in January. If you
would be interested, please send your
resume and required W2 bill rate. Unless
incorporated and carrying appropriate
insurances.
Date: Wed, 5 Jan 2005 15:00:00
Subject: Experienced Ada Programmer - Ft.

Detrick MD
URL: http://www.adaic.com/jobs/
[...] seeking an experienced Ada
programmer to work as part of a team
maintaining and upgrading computer-
based communications system in a
military environment.

The selected candidate will have five or
more years of experience in software
development (Ada) and experience with
UNIX and Oracle. A DOD Secret
clearance (and the ability to obtain a Top
Secret clearance) is required.
This is an excellent opportunity to join a
well-established team in a nurturing
environment. We offer competitive
salaries as well as an excellent benefits
package.
Date: Mon, 10 Jan 2005 16:00:00
Subject: Senior Level Ada Developer -

Virginia
URL: http://www.adaic.com/jobs/
Job Description: Real-Time Embedded
Ada software Engineer, VxWorks,
Rational Apex as part of an established
team and established project. Clearance
not necessary.
Date: Thu, 30 Dec 2004 15:00:00
Subject: Ada 95 Software Engineer - San

Diego CA area
URL: http://www.adaic.com/jobs/
Wanted: Mid-Level Ada programmer.
San Diego location.
3-6 mos. contract to direct. Definitely will
convert the right person. May consider
direct placement. Not interested in a pure
contractor. Clearance is nice, but
clearability is vital. Benefits start on day 1
of direct hire and are very good (my
assessment.)
Job Description:
The NIDS II Project provides the
targeting capability for the U.S. Strategic
Command. The team is in need of a
skilled Ada/Ada95 software engineer for
a fun, new development effort involving
target/aimpoint optimization.
Development will be using the
GNAT/GLAD tools in a distributed Unix
environment.
Education: Bachelor's degree in Computer
Science or a scientific discipline.
Required Skills: 5+ years experience in
software engineering several years focus
with Ada or Ada95.
Desired Skills: Knowledge of J2EE,
CMMI and Unix a plus. A Secret
clearance is also desired.
Schedule and Status: Full-time (1st shift)
Able to Obtain Clearance: Top Secret
Possess Clearance: N/A
Relocation: Local or regional candidates
are preferred, as relocation is not
approved for this position.
Date: Sat, 18 Jan 2005 15:00:00
Subject: Embedded Software Engineer - San

Diego CA area
URL: http://www.adaic.com/jobs/
[...] technical staffing firm that assists
companies and organizations with
information technology staffing needs in

every industry. Our client has an excellent
Embedded Software Engineer opportunity
available for the right candidate. If you
are looking for an exciting, innovative
opportunity with the chance to excel, then
this is the opportunity for you.
Summary:
Temp to perm
Ada Development
Real-time Embedded Software
Object Oriented
C++, UML
Secret clearance recently active
Date: Thu, 23 Dec 2004
Subject: UNIX Software Developer

(Brussels, Belgium)
URL:

http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/jobs

Contract for one year in Brussels -
starting ASAP.
Participate in the development,
enhancement and testing of software
systems used for co-ordination in Air
Traffic Management (ATM) within Air
Traffic Flow Management (ATFM) and
between ATFM, Air Traffic Control, Air
Space Management, Airports and
Airlines.
The task includes analysis of
requirements, implementation constraints,
performance and reliability aspects.
Production of detailed technical
specifications, including test
specifications and participation in the
implementation of the ATFM applications
written mainly in Ada95.
 1. Detailed Design (specification of
parts of the system)
 2. Implementation (design, code & test)
 3. Participate in test automation
preparation and implementation
 4. Writing of documentation.
 5. Participation in on-call service.
Essential: Engineer with at least 2 years
of experience in design and
implementation of Application Software
using OO techniques. Mainly Ada. C++
knowledge is an advantage, Ada 95
knowledge is an advantage.
Date: Mon, 10 Jan 2005
Subject: Ada / C++ Analyst Developer

(Vlaams-Brabant, Belgium)
URL:

http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/jobs

[...] The service lines offered by [us, an IT
Service and Consulting company,] are:
* Information Systems Development
based on open platforms, techniques and
methods (J2EE, UML, SOAP,

22 Ada in Context

Volume 26, Number 1, March 2005 Ada User Journal

Application Servers, .NET, Relational
Databases, etc.)
* Application & Infrastructure Support
(system management [Unix or Windows],
network management, application
maintenance, etc.)
* Implementation of Document, Content
and Knowledge Management Systems
(documentary databases, classification
tools, conversion tools, portal building
technologies, XML/SGML, Business
Intelligence tools, etc.)
* Real-time Systems Development
(specialized languages, real time kernel,
etc.)
* Implementation of Quality Assurance
Processes (Quality Assurance & Control)
* Audits and Technical Architecture
Studies
We are current looking for an Ada / C++
Developer
* Several years of experience in a similar
function using Ada 95 / Linux.
* Experienced in Air Traffic Management
(ATM) is a major advantage.
* Full university level, or graduate in
Computer Science or engineering.
* Fluent in French, Dutch and English.
* Position Type: Full Time, Permanent.
Date: Mon, 24 Jan 2005
Subject: Ada 95 Software Developer

(Belgium)
URL:

http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/jobs

My client has an urgent requirement for a
Software Developer in Ada 95 on Linux.
You will have 3-5 years Ada 95
development experience within Air
Traffic (ATC) environment. Knowledge
of working on Air traffic control systems
or large mission critical systems is
desirable.
Your role will include:
 * Detailed Design (specification of
parts of the system)
 * Implementation (design, code & test)
 * Participate in test automation
preparation and implementation
 * Writing of documentation.
 * Excellent opportunity for a long term
contract.

Statistics about Ada
Adoption in Industry and
University
From: Adrian Hoe

<byhoe@greenlime.com>
Date: 30 Oct 2004 05:04:09 -0700
Subject: Need statistic for Ada
Newsgroups: comp.lang.ada

I am planning to write a paper about how
fast Ada has been adopted at work and
education over the last 5-10 years. Is there
any statistical data about the adoption of
Ada in the industries and universities?
Could someone provide me some pointer?

Ada in Context
Ada Suitability as a Game
Development Language
From: John B. Matthews

<jmatthews@wright.edu>
Date: Mon, 22 Nov 2004 03:00:10 GMT
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
Jeff Houck wrote:
> I'm new to Ada but have 15+ years

background in C/C++ and x86
assembly. I skipped Pascal and Java
(yuk)and have used the usual scripting
languages, Perl, Python, Tcl/Tk, etc...
I'm bored with coding C/C++ and
would like to try something new... 8^)
Anyway, I'm really intrigued by Ada
and I'd like to "go out on a limb" and
see how Ada measures up to C/C++ for
game development. I'm thinking about
both the 2D and 3D regimes, such as an
isometric style game in 2D and a FPS
for 3D.
You don't see Ada mentioned anywhere
(that I know of) in game development
circles. Is there a specific reason why?
I'd like to hear from any in this News
Group with an opinion or insight on the
subject. Thanks!

I've enjoyed tinkering with linxtris:
<http://sourceforge.net/projects/linxtris>
From: David Botton <david@botton.com>
Subject: Re: Ada suitability as a game dev

language
Date: Mon, 22 Nov 2004 18:10:06 -0500
Newsgroups: comp.lang.ada
You can find a list of known freely
available games with Ada source code at:
http://www.adapower.com/index.php?Co
mmand=Class&ClassID=Applications
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Mon, 22 Nov 2004 03:23:44 GMT
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
If you go to my website
(http://www.adaworld.com) in the Ada
Projects then Binding Projects
page....you'll see a project of interest
there...AdaOpenGL
Likewise, in the library projects you'll see
one called Engine_3D this one is 100%
Ada...no dependencies on other libraries,
and you'll see it's got a lot to offer.

From: Martin Krischik
<martin@krischik.com>

Date: Mon, 22 Nov 2004 09:15:28 +0100
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
If you don't mind 20% more typing and
90% less debugging than you are right
here ;-) .
Ada is true multi purpose language and
that includes games. Interesting for games
might be:
 * the ability to define you own float types
(speed vs. precision).
 * arbitrary sized integer (12 bit integer -
no prob).
 * packed or un-packed arrays and records
(speed vs. size).
 * true multi dimensional arrays.
 * choice OO or non-OO programming.
[...]
From: Nick Roberts

<nick.roberts@acm.org>
Date: Tue, 23 Nov 2004 21:39:17 -0000
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
The feature of Ada that Martin seems to
have egregiously omitted is its especial
support for multi-tasking, something that
can be of especial importance for some
kinds of games programming. Often it's
actually quite fun to write a game in Ada
where you simply have a task for each
automaton (or indeed every entity which
has individual behaviour). There is at
least one MUD written in Ada for
precisely this reason.
DoD (and other NATO) contractors often
use Ada to create (most of) the software
for military and commercial flight
simulators and related systems. This is
often because: they write real flight
systems in Ada, so they already have Ada
programmers and expertise; much of
those flight systems can be directly re-
used in the simulators anyway; Ada is
great at multi-tasking. If you consider a
flight simulator (or battlefield
management simulator, etc.) to be a kind
of grown-up's big game (and I know the
people who 'play' them do!), then you
could consider Ada to be a language
much used for games, in fact.
>> You don't see Ada mentioned

anywhere (that I know of) in game
development circles. Is there a specific
reason why?

> Because they don't know better. It takes
a month or two to see how cool Ada
truly is.

I suspect the answer is more accurately
"For all the same reasons that most
programming shops don't use Ada." Of
course, ignorance is undoubtedly one of
those reasons, but (as we have discussed

Ada in Context 23

Ada User Journal Volume 26, Number 1, March 2005

in this news group recently) the main
reason seems to be the lack of a big
commercial player willing to support and
promote the Ada language (or an
implementation of it).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 22 Nov 2004 09:36:02 +0100
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
I believe that Ada might be very
promising for game development. What
comes in mind first is:
1. Ada has much more carefully designed
numeric model than C++. 3D graphics
requires a lot of non-trivial computations.
2. Ada is highly portable. Games are
usually developed for many platforms.
3. Ada has integrated tasking. Real-time
strategy, simulation games etc.
4. Ada requires much less debugging.
Games are large and complex software
products with a very short testing phase.
From: Dale Stanbrough

<dstanbro@bigpoop.net.au>
Date: Mon, 22 Nov 2004 09:31:54 GMT
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
The major platforms would be (in no
particular order)...
 Windows
 XBox (windows again)
 Playstation
There is no Ada compiler for the
Playstation, so your argument has less
force than you think.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 22 Nov 2004 12:02:16 +0100
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
Probably you mean commercial games,
for you do not mention Linux and Apple.
But in that case, I believe it would be no
problem for a big software player to
persuade ACT, Aonix or RR software to
target Playstation. Or other platforms of
even greater interest like mobile phones,
for instance.
From: Luke A. Guest

<laguest@abyss2.demon.co.uk>
Date: Tue, 23 Nov 2004 08:20:50 +0000
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
David Botton wrote:
> Is there any GCC compiler for

Playstation? If so, than a port would not
be that problematic.

Yes, Sony provides it on their PS2 Pro
site with source.

SN Systems' compiler is based on GCC
and from what I can tell, so is
Metrowerk's PS2 compiler. These don't
come with source, but SN did provide the
home-brew people with their version of
the GCC compiler.
From: David Botton <david@botton.com>
Subject: Re: Ada suitablity as a game dev

language
Date: Mon, 22 Nov 2004 18:14:07 -0500
Newsgroups: comp.lang.ada
Alex R. Mosteo wrote:
> In Windows you may get away with

GNATCOM, but that's just for
Windows.

I have an example of doing Direct X
programming using Ada with GNAVI at:
http://www.gnavi.org/index.php?Comman
d=Class&ClassID=GWindowsWin32
From: Luke A. Guest

<laguest@abyss2.demon.co.uk>
Date: Mon, 22 Nov 2004 16:04:07 +0000
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
Well, like the others have said, Ada is a
multipurpose programming language,
much like C and C++ are. Anything that
can be done in C or C++ can also be done
in Ada.
The problems you'll find are bindings.
These you *can* do yourself with a little
bit of work, it's not that difficult to do,
just a bit confusing in certain areas, like
data types and getting something more
Ada like (a thick binding compared to a
thin binding), i.e. there is the Interfaces.C
package which gives you basic C types
like int, etc. You would then later prefer
thick bindings which use the native Ada
types or your own (preferable). This can
produce a lot of code due to all of the
conversions necessary to get the data into
the correct data types.
Now concerning types, In C/C++ you
normally define your own types which are
platform independent, e.g. a 32-bit signed
int, a 16-bit unsigned int. Now a question
that was raised in another thread
concerned me about this, a lot of people
suggested that you should let the compiler
decide what type to use for a value, which
is not what you want in games, you really
need to have something that is portable,
especially for data formats, i.e. I have a
field which specifies how many vertices I
have in a model, I've decided that that
needs to be a 32-bit type, therefore over
all platforms it needs to be a 32-bit type.
Now you can use representation clauses to
specify the size, but surely you need to
specify the type also?
Anyway, any C libs can be imported no
problems into Ada, C++ is not defined
and probably won't be.
As for platforms, GCC exists for
practically all platforms, yes even PS2,

Sony provide the source to it if you're a
registered developer. According to Robert
Dewar, the GCC-3.4.x MIPS code
generation needs work, so porting it to
PS2 could be tricky. Also, as Sony have
had the brilliant idea of combining all of
the GNU source (binutils, gcc, gdb,
newlib, etc.) all into one directory, and
they've modified the build scripts, it's not
possible to extract diffs for different
packages (easily). It's also not possible to
drop in GNAT-3.3 (I think that's the latest
version they support) into the gcc/gcc/
directory and expect an Ada compiler to
pop out, it won't, I've tried it.
Another problem will be porting the
runtime, there's practically no
documentation on it, so that'll be difficult.
For a game, you really need to conserve
space, so another thing you'll want to do
is to stop the compiler from generating
elaboration code for a lot of stuff (if not
all of it). GNAT can be told not to
produce any and everything seems to
work ok, yes I've even tried array's with
strange boundaries. You'll also need to do
this if you decide to use a very basic Ada
compiler without a runtime, also doable -
especially on a console. But it'd be better
with one.
Another problem that games programmers
hear is "don't use exceptions; it'll slow
down the game!!" Well, this might have
been true a long time ago, but GNAT
does provide a new exception mechanism
"zero-cost" which provides tables rather
than setjmp()/longjmp() calls. I haven't
tried it.
But for desktop platforms, it's a piece of
piss really. OpenGL bindings do exist,
I've been modifying them - haven't
touched them for a while, but they do
work. They're a combination of two sets
of bindings, although a generator really
needs to be written to take the opengl.spec
files and convert them to packages:
http://www.abyss2.demon.co.uk/projects/
ada/index.html
Believe me, there's nothing I'd rather do
than do develop in Ada, but for games, it's
just not viable...yet. Until other
companies start to realise that
programming massive games in C/C++ is
really a waste of time (and a lot of time at
that, because they have such stupid
schedules) it's just not going to happen.
My latest project (a game engine) is being
written in C++ basically, because I will be
able to sell it if it's written in a language
that other developers can use straight
away. If it's written in Ada, I won't be
able to sell it.
> You don't see Ada mentioned anywhere

(that I know of) in game development
circles. Is there a specific reason why?

And you won't, a lot of games
programmers haven't been to University,
and if they have, they didn't do computer
science, or they did but it's before Ada

24 Ada in Context

Volume 26, Number 1, March 2005 Ada User Journal

was being hyped (~1990's), so they
wouldn't have heard of it. They still have
the mentality of "everyone else uses
C/C++, so it must be great."
I thought about writing an article for
Gamasutra, but it ended up being a bit of
a rant (like this ;-)), so I didn't finish it.
Maybe I will when I leave this company
☺
From: Dani <danielcheagle@ig.com.br>
Date: Mon, 22 Nov 2004 22:28:21 -0200
Subject: Re: Ada suitablity as a game dev

language
Newsgroups: comp.lang.ada
My primary intent when I learnt Ada was
making games. I've not created a game yet
but it is my "heart's dream game" working
in progress, in my spare time.
The Key points (initially) in my choice
was: (my game is a massive on-line rpg;
server part is in Linux and the client part
is in Linux and windows, but can be
"easily" portable to others platforms if the
tools used exist on these other platforms
(normally "true"))
* "tasks" (concurrency directly in the
language) the compiler takes care for us
of OS dependency part. The source code
is really very more portable. pthreads,
native threads, win tasks,etc ? no... just
Ada tasks. The program takes advantage
automatically if exists more that one
processor/cpu, e.g. a server side game (to
support the load charge and the
responsiveness necessary). switch from
time-slicing only to true real-time and
time-slicing without
* speedy: because the Ada compiler
known much more aspects of the program
(see *.ali parts for one example) it can
easily make a program in Ada 2,5 more
rapid that the same program write in C.
(This is controlled with compiler
switches.)
 Other characteristics that made me very
very happy were
* Making a program, thinking 'in Ada' is
much more pleasure and much less
fatiguing.
* Reading a program written in Ada (e.g.
to maintain a program or to understand
what other programmer wrote) is more
understandable and much less stressful.
Ada privileged the reader.
* The compiler caught much more
mistakes in the code, making the final
program much more bugs free.
The libs and bindings I intend to use are:
*adasockets for the network part of the
engine.
*adaopengl combined with gtkada-gl-area
for the part of opengl. (Note: gtkada-gl-
area in MS-Windows environment is
more or less trick to compile (the lib). but
just for now this is not a problem.)

*GtkAda for the GUI and other
administrative parts.
The tools that I recommend are:
*Glade-2 for the initial GtkAda design
and looking the source code generated is a
good teaching for the guys that are not
genius guru in gtk (my case :-) (Please do
not confuse glade-2 (GUI generation)
with the glade (gnat part of annexe E
distributed Systems))
*Gnat-GPS to deal with source code.
And
* Gnat compiler (or gcc 3.4.x with Ada
support)
Well..., I hope that helped you.
</flame on> please no flames :-) <\flame
off>
It's of seven roughs, Dani.
From: David Botton <david@botton.com>
Date: Mon, 22 Nov 2004 18:08:43 -0500
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
Take a look at video 8. The folks at SGI
talk about why Ada was superb for use in
exactly the sort of task you are talking
about.
http://www.adapower.com/index.php?Co
mmand=Class&ClassID=AdvocacyVideo
s
From: Jeff Houck <jhouck@northrim.net>
Date: 24 Nov 2004 02:05:17 +0100
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
Wow! Thanks for all the insight,
information and useful URLs regarding
this post! I can see that interacting with
this newsgroup is going to be very
interesting... 8^)
I'm going to give this some serious
thought. In reading through everyones
comments and looking at the examples,
I'm convinced that Ada can, and perhaps
more importantly should, make a showing
in the game dev realm. Ada has simply
got so much going for it, how can it
continue to be "left out"?
But, before I get myself in too deep, I'm
going to work out a general specifications
list for the development of a simple
Ada/OpenGL/GLFW based engine.
Initially I expect it will do "2D in 3D"
(textured polys as sprites) and if that is
successful, a full 3D environment. The
OpenGL/GLFW part is entirely based on
David Holms AdaOpenGL work. I
recently contacted David inquiring about
his project and while he hasn't worked on
it for a little over a year, it's quite
complete. He would like to receive any
bug reports and screenshots showing the
library in action. Thanks David!
Please keep in mind that I'm looking to
produce a "proof of concept" at this stage.
This will be my first attempt at coding a

game engine so I'm sure it'll be a learning
experience. 8^)
I'll post again later with some ideas to
bounce off anyone who cares to reply or
possibly participate.
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Wed, 24 Nov 2004 20:26:38 +0100
Subject: Re: Ada suitability as a game dev

language
Newsgroups: comp.lang.ada
[...] There is a project on SourceForge
called the Generic GNU Game Core:
http://sourceforge.net/projects/g3c/
"G3C provides the main features for 3D-
game developers: 3D rendering engine
based on openGL, collision detection,
physical rules, p2p network... A game-
sample will be available, binding a war-
game, a flight simulator, a first person
shooter, a MMOG..." [...]
You will probably find that Ada, as a
language, has everything you need for
game development. Now, you need to
evaluate the surroundings of the language
and see if they meet your requirements:
- availability of an Ada compiler for your
target platforms
- availability of libraries or bindings
- ease of distribution of your work. Ada
programs require an Ada runtime library,
plus any other libraries you used.
If you are a hobbyist using and targeting
free software, you are in luck. The Ada
compiler is available (GNAT) and
included in most GNU/Linux distributions
and in FreeBSD. There are several free
libraries available (AdaSDL,
AdaOpenGL, Generic GNU Game Core,
GtkAda). The distribution maintainers
will package any libraries you require,
making distribution easy.
If you plan to write free software, you
may also want to look for other
developers to join you. This might be
difficult because few game developers are
willing to learn Ada. OTOH, with Ada
you would need less time and fewer
people to develop a game than you would
in C.
From: Nick Roberts

<nick.roberts@acm.org>
Date: Thu, 13 Jan 2005 17:51:59 +0000
Subject: Re: Use of Annex E in a game

server (Linux/GNAT)
Newsgroups: comp.lang.ada
Luke A. Guest wrote:
> I've been talking to a friend who has

written an online game and said he
needs a server, I offered to help out.
So, I've been thinking about it and not
only would Ada be a great choice for a
normal server, I was thinking about the
distributed annex, and using that to
balance the load over to more servers as
they get added/needed.
Can anyone advise on whether this is a

Ada in Context 25

Ada User Journal Volume 26, Number 1, March 2005

good thing to do? What to avoid (if
anything), tip, tricks, etc?

I can't give much personal advice, but
there is an Ada MUD project:
http://members.aol.com/drveg/mud/sam.h
tml
Maybe something there could be handy.
I guess you would have a tagged (abstract
limited) type to represent a server, and
then use remote access types to direct
calls to servers. Could be cool.

Ada Seen by Fortran
Programmers
From: Israel t <rambam@bigpond.net.au>
Subject: Obsolete like Fortran ? You wish !
Date: Sun, 09 Jan 2005 07:37:33
Newsgroups: comp.lang.ada
Brian May wrote:
> I think many people treat Ada as an

obsolete language, much like Fortran
(for example)

Fortran is very much in use. It is also
extensively used for new code, especially
in the HPC community.
Fortran 95 and F (a clean subset of
Fortran) continue to attract hundreds of
millions of dollars in new development.
The Fortran 2003 specification draft has
been finalised and is available at
http://www.kcl.ac.uk/kis/support/cit//fortr
an/john_reid_new_2003.pdf
From: James Van Buskirk

<not_valid@comcast.net>
Date: Mon, 31 Jan 2005 17:56:40 -0700
Subject: Re: Shortcut logicals (was: Re:

F200x)
Newsgroups:

comp.lang.fortran,comp.lang.ada
James Giles wrote:
> Well, I have the F2003 FCD open right

now, in §7.4.3 Masked array
assignment - WHERE. So, perhaps you
can point out what part of it resolves
the issue I raised:
cond1 .and. cond2 .andthen. cond3
.and. cond4
Is COND4 permitted to be evaluated or
not? I don't see that WHERE tells me.
It has a concept of "pending control"
which I see can be applied on nested
constructs, but in the above expression,
not of the terms actually present are
part of any "pending" condition. Or, are
you talking about some other aspect of
WHERE entirely?

OK, I have added comp.lang.ada, so
hopefully someone there can answer the
question about the effect of precedence on
your snippet, and also discuss the
ergonomics of Ada short- circuiting
logical operators, or whatever they call
them.
[...]
From: Dan Nagle <dannagle@verizon.net>

Date: Tue, 01 Feb 2005 17:55:09 GMT
Subject: Re: Shortcut logicals (was: Re:

F200x)
Newsgroups:

comp.lang.ada,comp.lang.fortran
Hello,
Martin Krischik wrote:
> This is of course a cross post with

comp.lang.fortran and I wonder how
they see our solution to the problem. Is
it suitable for Fortran 2003 as well or
do they need another solution?

This thread started in c.l.f discussing J3's
efforts to add andthen and orelse
operators to Fortran. J3 was unable to
form a consensus regarding the operator
precedence, and tried a different tack.
The way the Fortran standard is written
makes it fairly difficult to delay
evaluation of arguments to operators or to
functions.
J3 often examines the way Ada does
something when seeking ideas.
Personally, I believe Ada is a very well
designed language, and I'm much more
comfortable getting ideas from Ada than
from many other languages.
The fact that others disagree is probably
why this thread now appears beyond c.l.f.
From: James Giles

<jamesgiles@worldnet.att.net>
Date: Tue, 01 Feb 2005 18:25:23
Subject: Re: Shortcut logicals (was: Re:

F200x)
Newsgroups:

comp.lang.ada,comp.lang.fortran
Dan Nagle wrote:
> J3 often examines the way Ada does

something when seeking ideas.
Personally, I believe Ada is a very well
designed language, and I'm much more
comfortable getting ideas from Ada
than from many other languages.

Ada has a lot of very useful ideas. I was
against cross-posting this thread to the
Ada group because I had assumed that
Ada would indeed have a perfectly
sensible solution to the question, but it's
not necessarily the one Fortran should
use. It turns out that if Ada does indeed
require that the uses of the shortcut
operators (Ada calls them control forms)
must parenthesize for clarity, which is
indeed a sensible solution. It's also one of
the possibilities that occurred
independently. Maybe Fortran should
follow suit, but at present the proposed
feature solves the problem differently. At
any rate, the answer hardly needs to
concern the Ada newsgroup anymore, so I
for one will not cross-post any of the
further discussion.

Moving from Ada 83 to
Ada 95
From: Jeffrey Carter <jrcarter@acm.org>

Date: Thu, 25 Nov 2004 01:30:00
Subject: Re: Moving from Ada 83 to Ada 95
Newsgroups: comp.lang.ada
vrenna wrote:
> Has someone done such thing? I need to

move a huge application made in Ada
83 and installed on Solaris, to Ada 95
(probably on Linux)... looks very tough
but maybe there're automatic tools and
good advices out there. What do you
say?

I've moved large quantities simply by
recompiling. Actual incompatibilities in
the languages are quite rare. If the code is
designed for portability, then I'd be
surprised if you have a problem.
[Reports on industrial experiences of
language migration are posted under:
http://www.cs.kuleuven.ac.be/~dirk/papers
-- su]
From: Christoph Karl Walter Grein

<AdaMagica@web.de>
Date: Thu, 25 Nov 2004 08:44:50 +0100
Subject: Re: Moving from Ada 83 to Ada 95
Newsgroups: comp.lang.ada
I've moved a 800kLOC program from
Ada83 running on Motorola 68040 to
Ada95 running on IRIX, different
compiler vendors, in a few weeks. Mostly
an easy job - getting it to compile and run
was a few days. What took the rest of the
time was to find causes of crashes and
non-portable code.
Problem areas:
Original code used overlays (for A use at
X) for low level hardware access. If you
do such erroneous (in Ada83) things, take
care that alignments match or else you
will get segmentation error crashes.
Unchecked_Conversion often had
different sizes on Source and Target. This
leads to non-portability and funny results.
Additionally you have to be careful with
alignment issues (RM 13.9(7)). GNAT
however does the correct thing, even if
alignments do not match.

Software Engineering Ethics
From: Nick Roberts

<nick.roberts@acm.org>
Date: Sat, 8 Jan 2005 04:08:55
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
Jeffrey Carter wrote:
> I've seen some ads for a position

converting an Ada application to C++.
They say they'll train you in C++, as if
that were some sort of attraction.
Principle 3 of the ACM/IEEE-CS
Software Engineering Code of Ethics
says, "Software engineers shall ensure
that their products and related
modifications meet the highest
professional standards possible."
Principle 6 says, "Software engineers
shall advance the integrity and

26 Ada in Context

Volume 26, Number 1, March 2005 Ada User Journal

reputation of the profession."
Isn't anyone who takes this job
automatically in breach of these
principles?

Not automatically, I think. They probably
are, in actuality, but the problem is
proving it.
I'm pretty sure the most effective way to
evangelise the world about the advantages
of Ada (and about the problems with C++
and its siblings) is to demonstrate to
software businesses -- and their customers
-- that using Ada is cheaper (in the long
term) and helps make the product better.
From: Alexander E. Kopilovich

<aek@VB1162.spb.edu>
Date: Sat, 8 Jan 2005 21:14:43 +0300

(MSK)
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
There is a faith-based ethics and a caste-
based ethics.
Principle 3, which you mentioned, reflects
faith-based approach to ethics, while
Principle 6 reflects caste-based approach
to ethics.
For an individual, participation in porting
from Ada to C++ may (or may not)
constitute some breach of Principle 3, but
at the same time it may count as his/her
increased support for Principle 6.
Therefore, even for informed (and not too
hungry) individual this is a matter of
rather subtle choice.
And after all there are
programmers/software engineers who are
able to do porting from Ada to C++
without a breach of any reasonable
ethics... just because they understand the
matters deeply enough. (We have here in
c.l.a. at least one obvious example of such
a person.)
From: Cesar Rabak <crabak@acm.org>
Date: Fri, 07 Jan 2005 23:36:00 -0200
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
If porting code from one language to
another would break these principles, we
would be in mess ;-)
OTOH, if this post is trying to make a
judgement of the relative merits of the
two technologies/languages, you start to
skate in thin ice.
IMNSHO best use of this energy could be
try to contact the ads' responsible and
understand why this movement is being
made.

Ada Advocacy - Team-Ada
From: David Botton <david@botton.com>
Date: Wed, 24 Nov 2004 19:56:59 -0500
Subject: Ada Advocacy - Team-Ada
Newsgroups: comp.lang.ada
For those of you that are not familiar there
is an e-mail list called Team-Ada (see the
Ada FAQ - http://www.adapower.com/faq

- but to make things short you join by
sending the word subscribe to team-
ada@acm.org) where Ada advocacy is
discussed.
I've started this evening on the list the first
of what I hope will be many of my
suggestions to Juice Up Ada (There was
certainly tons of Juice flowing when the
Juice was on trial, perhaps we can get
some going with Ada a bit on trial).
I've posted the following (Please join and
respond on Team-Ada@acm.org for this
one):
Welcome to the Team-Ada group therapy
session #1
Suggestion #1:
A good article written not for academics
or professionals, but to newbies that are
just getting in to or interested in
programing in general as to why Ada
should be the language they embrace and
learn first (We all know not to learn Basic
first ;-).
- Think, if you were a student, would you
want to learn anything but Java or C++
given the current marketplace.
- Most would rather learn almost any
language in the world rather than Ada,
COBOL or Fortran....
Personally, I started by doing stuff like
looking up on a chart of 8080 instructions
and poking the values in memory using
trs-80 basic after converting from hex to
decimal, but I am a certified freak who
had nothing better to do when all his
friends had Apple and Commodore, and
was nine years old and not thinking about
a job, the future, etc... Others are another
matter:
So, the AdaPower challenge for the night
- Why should any one learn Ada as their
first language?
Let’s go, whose in for a post :-)

Delphi and GNAVI
From: Brian May

<bam@snoopy.apana.org.au>
Date: Sun, 09 Jan 2005 15:08:19 +1100
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
A job agency that contacted me recently
saw on my resume that I had been
involved in a Ada project. The
representative said "That must be really
old...". I said "No, it’s relatively recent".
No response. Either he realized he made a
mistake or he considered me a total idiot
for writing new software with an
"obsolete" language. Not sure which one,
although I suspect the later.
I think many people treat Ada as an
obsolete language, much like Fortran (for
example), without considering if this
really is the case. Old doesn't always
mean obsolete, not even with the rapid
progress made in IT.

The ironic thing is (to the best of my
knowledge), Borland still support Delphi,
which is based on Pascal, and Ada is
based on Pascal... I haven't heard anyone
complain about Pascal being obsolete.
From: Martin Krischik

<martin@krischik.com>
Date: Sun, 09 Jan 2005 11:24:01 +0100
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
But they renamed it to "Delphi" to get rid
of "old memory" and bundled it with a
rappid application development suite.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sun, 09 Jan 2005 19:27:04 GMT
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
I've heard Pascal called obsolete. For
many users, the Pascal in Delphi is
hidden, and even if they look at the code,
it's called Delphi, not Pascal.
From: David Botton <david@botton.com>
Date: Sun, 9 Jan 2005 16:55:03 -0500
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
That is one of the goals of the GNAVI
project (http://www.gnavi.org) you
program it in GNAVI ;-)
David Botton
http://www.gnavi.org - Open Source
Visual RAD
From: David Botton <david@botton.com>
Subject: Re: Software Engineering Ethics
Date: Thu, 13 Jan 2005 15:47:19 -0500
Newsgroups: comp.lang.ada
>> OK, but it needs a catchier (and

pronounceable) name. :-)
> Starts out like gnave and rhymes with

Navy. :-)
Actually I prefer to pronounce it: (silent
G) N ah V ee - or sometimes pronouncing
the g but still the same N ah V ee
Navi in Hebrew is prophet. Sort of a play
on Delphi :-)
There is a functional (but certainly
needing more work) IDE now and GUI
builder and of course GWindows has been
solid for years on Win32. Once the IDE
hits 1.0 in a few months or so I'll start
work on a marketing package, etc.
From: Nick Roberts

<nick.roberts@acm.org>
Date: Thu, 13 Jan 2005 18:06:07
Subject: Re: Software Engineering Ethics
Newsgroups: comp.lang.ada
> OK, but it needs a catchier (and

pronounceable) name. :-)
I'm not sure that it would be worthwhile
changing the name now, but the project
seems to lack a really bold, catchy logo.
Ideas, anyone?
[See also "GNAVI Progress" and "GUI
Programming for Beginners" in this issue
-- su]

28 Ada in Context

Volume 26, Number 1, March 2005 Ada User Journal

Ariane 5 FAQ
From: Alexander E. Kopilovich

<aek@VB1162.spb.edu>
Subject: Ariane5 FAQ, Observer's version,

8th draft
Date: 2004-11-27 14:17:28 PST
Newsgroup: comp.lang.ada
Q. Was the Ada language somehow
related to Ariane 5 crash in 1996?
A. Yes, at least some components of the
Ariane 5 software was written in Ada
language.
Q. Did that software cause the crash?
A. Yes and No. They simply put the
software written for previous model --
Ariane 4 (where it worked well) -- to new
Ariane 5, and did not bother themselves
with testing it on the new rocket before
the launch. So, when the Ariane 4
software appeared (in the flight)
incompatible with new Ariane 5 they
became very surprised -- and blamed the
software.
Q. But media told us that there was an
error in the software that caused that
crash. Is it right?
A. No, it is wrong. There was no such an
error in the software. The software
worked perfectly for the purpose, for
which it was created, that is, for Ariane 4.
The software was not created for Ariane
5, and there were no reasons to expect
that it should work for this new rocket.
So, the error, which caused the crash was
blinded use of a software created for
another job. And this error was severely
aggravated by subsequent error --
skipping mandatory test procedure before
the first flight.
Q. But why on earth they expected that it
should work if they have no reasons for
it? Are you implying that they were
idiots? (No conspiracy theories please.)
A. No. There was an unfortunate collision
of popular expectations about modern
high-tech devices with real difficult issues
of international collaboration in sensitive
technologies.
Ariane 5 was an international project
(within ESA = European Space Agency),
and at the same time it naturally belonged
to an area of high secrecy (which is, as
you probably know, traditionally
maintained within strictly national frame).
This created a difficult issue and caused
uncommonly massive involvement of
persons with political, diplomatic,
economical etc. rather than technical
background and/or experience into the
high management of the project.
Those persons naturally have mostly
consumer-like expectations about modern
high-tech devices. This means that while
they may be generally smart and able to
occupy some position within large
technical project, nevertheless they have

different (from an engineer) default
assumptions for many technical issues.
So they dealt with one critical part of the
equipment as if it was some regular
consumer market product from a reliable
vendor: they assumed that they may use
the device in all circumstances that aren't
explicitly and clearly prohibited in its
documentation. Because of their
insufficient engineering background
and/or experience they weren't aware of
the difference in this respect between a
complete product and its component part -
- they did not know well enough that for
the latter the defaults are opposite, that is,
you should not use the component device
in any circumstances that aren't explicitly
and clearly allowed.
Q. But certainly there were engineers
also, who can see possible consequences
of that approach. So why they weren't
alarmed enough?
A. This is difficult question indeed. An
explanation exists, which tells that the
informational paths within the project
were interspersed with those managers of
non-engineering kind, and because of that
no one of the engineers can obtain enough
information for recognition of the danger.
A contributing factor was the specifics of
communications and crossings of
responsibilities, which often manifests
itself within international projects. Here is
an insider's view on that specifics:
"As with many international projects,
some of the information is eyes only. This
is sometimes a burden for engineers that
write the software, since they have to rely
on good will and reliable deliveries of
sub-components. As you can imagine,
Ariane is a fairly complex system which
relies on many "sub-systems"; now
imagine that all those subsystems come
from a different supplier. The integration
of all of them is a very large and complex
project on is own."
Q. Still don't understand how they
managed to avoid testing?
A. They did not entirely avoid testing.
Actually they tested most of the rocket
equipment, except of the Inertial
Reference System (which then caused the
crash). This device was excluded from the
test procedure and replaced by its
simulator (for financial and perhaps
schedule reasons). The simulator was
written within Ariane 5 project. The
crucial thing was that the developers were
not given the documentation for the
software, but source code only. By that
administrative restriction some limitations
of the software (which were clearly stated
in the documentation) were obscured
from the developers of the simulator. As a
result, the simulator worked differently
from the real device. (It helped to test
other equipment, but no more -- the real
device remained untested for the new
rocket.) Subsequently, after the crash, the

original programmers of the Ariane 4
device were blamed for not stating the
limitations by comments within the
source code (additionally to the
documentation).
Q. So, if the limitations were clearly
reflected in comments within the source
code then most probably they would be
seen by the simulator's developers and the
disaster would be averted?
A. Probably No. Because simulation of
the alignment function of real device was
excluded from the contract for the
simulator development. Consequently, the
simulator's developers have no stimulus
(without the documentation, which was
not given to them) to look into the part of
the source code where the limitations
were violated in the flight. (They might
have looked there out of curiosity, but
time pressure and general stress
surrounding the project left too little room
for curiosity.)
The reason for omission of the alignment
function from the simulator was that for
Ariane 5 that function is not needed after
takeoff, and that before takeoff that
function was really identical for the
Ariane 4 and Ariane 5. What was
overlooked is that for the Ariane 4 that
function WAS executed after takeoff
(about 40 seconds), so the unchanged real
device would execute that function for the
Ariane 5 despite the absence of any need
for it there.
Q. Can you explain in several words what
was the actual cause of the launch failure,
technically?
A. There are several points which are
different for Ariane 5 vs. Ariane 4, one of
which was instrumental to the events:
Ariane 4 is a vertical launch vehicle
where as Ariane 5 is slightly tilted. Ariane
4 software was developed to tolerate
certain amount of inclination but not as
much as required by Ariane 5. The chain
of events was as follows:
- The on-board software detects that one
of the accelerometers is out of range
(actually, there was FPU exception
generated when float-to-integer
conversion exceeded the capacity of the
integer), this was interpreted as hardware
error and caused the backup processor to
take over;
- The backup processor also detects that
one of the accelerometers is out of range
(the same way), which caused the system
to advice an auto destruction.
Q. Where can I find official report for the
investigation of the Ariane 5 crash?
A. At the moment of writing this FAQ
this report was, for example, at:
http://www.dcs.ed.ac.uk/home/pxs/Book/
ariane5rep.html
But read it to the end, because your
overall impression will probably be
different (and wrong) if you stop in the

Ada in Context 29

Ada User Journal Volume 26, Number 1, March 2005

middle of it, deciding that you got it all
clear enough.
Q. Where this topic was discussed in
depth?
A. For example, in comp.lang.ada
newsgroup (several times). Search that
newsgroup for "Ariane 5", and you'll find
several threads discussing this topic (most
recent at the moment of starting this FAQ
was quite long thread with subject line
"Boeing and Dreamliner"; during the
development of this FAQ another long
thread with the subject line "Ariane5
FAQ" was running).
From: Mike Silva

<snarflemike@yahoo.com>
Date: 25 Nov 2004 10:28:24 -0800
Subject: Re: Would You Fly an Airplane

with a Linux-Based Control System?
Newsgroups: comp.lang.ada
David Botton <david@botton.com> wrote
in message
news:<2004112218292016807%david@b
ottoncom>...
> For a real understanding of the Ariane 5

event, see the Ada FAQ:
http://www.adapower.com/index.php?C
ommand=Class&ClassID=FAQ&CID=
328

A small but, I think, important correction.
The hardware at the center of the failure
was apparently built around the Motorola
68020/68881 chips, not the MIL-STD-
1750. The "Operand Error" that triggered
the failure is a hardware exception
generated by the FPU when, among other
conditions, a float-to-integer conversion
exceeds the capacity of the integer,
exactly as occurred. The reason this is
important is because it shows that the
exception was not generated by the Ada
compiler code but by the hardware, and
would therefore have occurred regardless
of the programming language used. If
that's the case then the "it wouldn't have
exploded if it were written in C" argument
evaporates, unless they want to argue that
the exception handler behavior would
have been specified differently if the
implementation language was C -- not
likely!
From: Alex R. Mosteo

<devnull@mailinator.com>
Date: Fri, 26 Nov 2004 11:11:26 +0100
Subject: Re: Would You Fly an Airplane

with a Linux-Based Control System?
Newsgroups: comp.lang.ada
> (...) If that's the case then (…) -- not

likely!
Anyway, isn't the C argument ridiculous?
I mean, is preferable to have a huge
explosive thing flying on corrupted data?
So it can by chance go where it should...
or not?
I know[*] in this particular case these
component had no further purpose in the
flight so it would have get away safely...
but that's not relevant IMO.

[*] (IIRC it was only used during some
limited time after lift-off).
From: Adrien Plisson <aplisson-

news@stochastique.net>
Date: Fri, 26 Nov 2004 14:40:29 +0100
Subject: Re: Would You Fly an Airplane

with a Linux-Based Control System?
Newsgroups: comp.lang.ada
> Anyway, isn't the C argument

ridiculous?
Well, it depends on the interpretation you
make of it.
It may be an argument against Ada and
for C: 'look, the bad Ada language made
the whole thing crash, whereas the good C
language would have made it fly' (where?
the argument does not tell, but surely not
on the original path); but it can also be
interpreted as an argument against C and
for Ada: 'look, the cool Ada language
prevented the whole thing to get out of
control, whereas the bad C language
would have continue to fly it without
notice'
So, the ridiculousness of the argument
depends on the interpretation, and I really
think you are misinterpreting there.
From: Enrique Laso Leon <enrique.laso-

leon@tele2.fr>
Date: Sat, 4 Dec 2004 19:58:07 +0100
Subject: Re: Would You Fly an Airplane

with a Linux-Based Control System?
Newsgroups: comp.lang.ada
I am wondering why people try to make
this accident an issue with the
programming language and not what it
was : a total failure in a software project
management.
The problem here was that the people
who designed the IRS for Ariane 4 used
an assumption on its trajectory in order to
avoid a check that would have made the
software tolerant to Ariane 5 trajectory
(but why ?). This is at best ignoring a
basic rule of engineering: expect your
design to be used in a way you did not
think about, because this is just what is
going to happen. It applies to machinery
as it applies to software. How many of us
use "bugs" or "safety flaws” in our
favorite applications in order to get things
done?
The other problem was with the baffling
lack of testing. Once more it comes from
a management belief that experimentation
is the root of all evil, for it takes time thus
money. Engineers there have much
responsibility for the existence of this
belief. We tend to sell as a strong point
that our design and analysis methods are
so perfect that we can produce zero fault
out of the box. This simply forgets: that
engineers, even when supported by the
most efficient methods and computing
tools, are human beings; that systems are
getting more complex than anything a
human organisation can cope with; and

that error is not only probable, it is
frequent; etc.
Tackle those two issues and you avoid
blowing up a brand new rocket and 4
satellites. Regardless of the programming
language.
From: Rod Haper

<rhaper@houston.rr.com>
Date: Sat, 27 Nov 2004 00:55:34
Subject: Re: Would You Fly an Airplane

with a Linux-Based Control System?
Newsgroups: comp.lang.ada
Marius Amado Alves wrote:
> Mike Silva wrote:
>> What was the bug? Since there wasn't

one, your answer should prove
interesting!

> Did they fix the hardware or the
software? The inevitable conclusion
from your answer should prove
interesting!

Butting into this eternal argument:
The "bug" that got "fixed" was the
specification. That in turn necessitated a
change to the software to comply with the
updated specification. The "error" was in
the old Ariane IV's specification's lack of
applicability to the new Ariane V's
requirements. The "failure" was one of
design, not software implementation, and
was independent of what language was or
might have been used for the
implementation.
What is your point vis-à-vis hardware or
software? The "conclusion" I draw is that
you seem to be hung up on some agenda
which ignores the simple facts of the case.
[See also "DDC-I - Riding High with
Cassini-Huygens" and "Cassini-Huygens
Reachs Titan" in this issue -- su]

GUI Programming for
Beginners
From: munnoch

<munnoch@btinternet.com>
Date: Tue, 16 Nov 2004 19:25:04
Subject: GUI programming --a hopeful

newbie =)
Newsgroups: comp.lang.ada
I was wondering if any of you guys could
point me to sites/books/etc. with
information about making a GUI (for
Windows) for an Ada program?
PS, as stated in the Subject, I'm a newbie
at this, so I'll welcome comments
regarding my need for more practise with
Ada before trying a GUI if that would be
beneficial =)
From: David Botton <david@botton.com>
Date: Thu, 18 Nov 2004 08:55:39 -0500
Subject: Re: GUI programming --a hopeful

newbie =)
Newsgroups: comp.lang.ada
As GWindows is going toward multi
platform now (already started on Mac OS

30 Ada in Context

Volume 26, Number 1, March 2005 Ada User Journal

X), if you are looking for Windows now
and Linux and Mac later, GWindows is a
superior solution as it offers a true native
binding to the host OS's toolkits.
It also happens to be extremely easy to
use even for a beginner, the GNAVI ICG
already allows complex GUIs to be
created and worked on easily with XML
specs (the GNAVI IDE / GUI Builder is
being built with it).
From: David Botton <david@botton.com>
Date: Thu, 18 Nov 2004 09:19:24 -0500
Subject: Re: GUI programming --a hopeful

newbie =)
Newsgroups: comp.lang.ada
Bernd Specht wrote:
> in this case I would suggest, that you

first start with console programming
until you get some experience with
programming in general and the Ada
language in special.

I disagree. There is no reason that a first
class in Ada should not be:
with GWindows.Message_Boxes;
use GWindows.Message_Boxes;
procedure Hello_World is
begin
 Message_Box ("My_App",
"Hello World!");
end Hello_World;

and a Second:
I am planning a series of on-line videos to
teach GNAVI / Ada programming and
intend on doing so.

Unless you have a captured audience
being forced to learn Ada, its time to start
thinking out of the box about how to
influence people to want to learn Ada!
> I think it would be too much at a time if

you want to learn all at once:
programming, Ada, *and* a GUI
system. Maybe you will become
frustrated soon.

Certainly not if you are using higher level
frameworks like GWindows, CLAW or
JEWL (and to some degree GtkAda).
I find trying to work with Ada.Text_IO
more complex to use or teach than GUI
programming with any of the above ;-)
> Switch to GUI development if you've

got some experience.
Start with it. No reason to live in a DOS /
UNIX prompt world in 2004.
> If you want concentrate on Windows

and Ada then look at GWindows.
Look at it any ways :-)
http://www.gnavi.org/gwindows
> If you think about writing (Windows-)

GUI not only with Ada but maybe with
Pascal or C, too, then look at the pure
Win32-API which is used very similar
with these other languages.

Look at learning GWindows and
understanding the source. If you are going
to program in C, you will want to use the
techniques there. If you are going to use
Pascal, than forget Delphi and get with
GNAVI.

> If you think of (maybe one day in the
far future) writing for Windows *and*
Linux, then have a look at GTK which
allows you to write portable GUIs.

GWindows will be on Linux in time, but
GtkAda is a good solution if your needs
are now.
From: David Botton <david@botton.com>
Subject: Re: GUI programming --a hopeful

newbie =)
Date: Thu, 18 Nov 2004 08:50:35 -0500
Newsgroups: comp.lang.ada
You should take a look at GNAVI -
http://www.gnavi.org
GNAVI is the Open Source answer to
Visual Basic and Delphi
The full IDE is being created now and a
working prototype will be available in the
next few weeks.
In the interim it includes:
GWindows - An easy to use for beginners
and highly extendable for the advanced,
full featured binding to Win32 that is
being ported to Mac OS X and Gtk
GNATCOM - For Active X control
creation and use
GNAVI ICG - A tool to generate or
modify a GWindows based application
based on an XML spec
The Mac OS X port is in progress, the
GTK port will likely start in a few
months.
[See also "GNAVI Progress" and "Delphi
and GNAVI" in this issue -- su]

32

Volume 26, Number 1, March 2005 Ada User Journal

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2005

April 02-08 Conference on Design, Analysis, and Simulation of Distributed Systems (DASD'2005), San

Diego, California, USA. Theme: "Making simulation and analysis successful through novel
distributed system design, methodologies, and management". Topics include: Distributed Systems,
Design and implementation approaches for complex systems using Petri nets, Distributed real-time
systems, Formal concepts and methods for validation and testing, High level architecture in
distributed systems, etc.

April 02-10 European Joint Conferences on Theory and Practice of Software (ETAPS'2005), Edinburgh,
Scotland, United Kingdom. Event includes: conferences from 4-8 April, 2005, satellite events on 2-3
and 9-10 April, 2005

April 02-03 3rd Workshop on Quantitative Aspects of Programming Languages (QAPL'2005).
Topics include: the design of probabilistic and real-time languages; of semantical
models for such languages; the discussion of methodologies for the analysis of
probabilistic and timing properties (e.g. security, safety, schedulability); applications
to safety-critical systems; etc.

April 02-10 8th International Conference on Fundamental Approaches to Software
Engineering (FASE'2005). Topics include: Systematic approaches towards evolution
management in large scale systems, continuous software engineering, and
improvement and adaptation of legacy systems to altered requirements; Rigorous
approaches to the design, testing, and maintenance of reactive, mobile, and distributed
software systems; Integration of formal concepts and current best practices in
industrial software development; Experience reports on best practices with
development tools, software development kits, ...; etc.

April 03 4th International Workshop on Compiler Optimization Meets Compiler
Verification (COCV'2005). Topics include: optimizing and verifying compilation,
and related fields such as translation validation, certifying and credible compilation,
but also programming language design and programming language semantics.

April 03 5th Workshop on Language Descriptions, Tools and Applications (LDTA'2005).
Topics include: Program analysis, transformation, and generation; Formal analysis of
language properties; Automatic generation of language processing tools.

April 04-08 14th International Conference on Compiler Construction (CC'2005). CC is
undergoing an expansion. Traditionally, CC has focused on compiler construction;
CC now seeks to become a conference for research on a broader spectrum of
programming tools, from refactoring editors to checkers to compilers to virtual
machines to debuggers. Topics include: compilation techniques, incl. program
representation and analysis, code generation and code optimization; run-time
techniques, incl. memory management; compilation techniques for embedded code;
compilers for parallel and distributed computing; compilation techniques for security
and safety; design of novel language constructs and their implementation; software
tools, incl. debuggers, profilers, code verifiers; etc.

April 07-09 International Symposium on Trustworthy Global Computing (TGC'2005). Topics
include: language-based security, reliability and business integrity, language concepts

Conference Calendar 33

Ada User Journal Volume 26, Number 1, March 2005

and abstraction mechanisms, type checkers, software principles to support debugging
and verification, etc.

☺ April 03-08 International Parallel and Distributed Processing Symposium (IPDPS'2005), Denver, Colorado,
USA. Topics include: Applications of parallel and distributed computing; Parallel and distributed
software, including parallel programming languages and compilers, operating systems, middleware,
libraries, programming environments and tools; etc.

☺ April 04 10th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2005). Topics include: Concepts and languages for
parallel and Grid programming (Component programming models, Refactoring of
existing applications into components, Language and platform interoperability,
Concurrent object-oriented programming, Extensions to traditional programming
models, ...); Supportive techniques and runtime environments (Compiler techniques,
...); Tools for high-level parallel programming; etc.

April 04 3rd International Workshop on Parallel and Distributed Systems: Testing and
Debugging (PADTAD'2005). Topics include: optimizing and verifying compilation,
and related fields such as translation validation, certifying and credible compilation,
but also programming language design and programming language semantics.

☺April 05-08 2nd Jahrestagung Fachbereich "Sicherheit - Schutz und Zuverlässigkeit" (2nd Annual Conference
on Safety and Security), Regensburg, Germany. Event includes: special session
"Informationssicherheit im Automobil", workshop "Privacy Respecting Incident Management", etc.
Contributions welcome in English or in German. Topics include (in German): Vertrauenswürdige
Softwarekomponenten; Zuverlässigkeit und Fehlertoleranz in Hardware- und Softwaresystemen;
Formale Techniken, Modellierung, Spezifikation und Verifikation; Betriebssicherheit unter extremen
Bedingungen; Standards und Normung; Sicherheitsevaluation und -zertifizierung; Kosten von
Sicherheit; etc.

April 06-08 Software & Systems Quality Conferences (SQC'2005), Düsseldorf, Germany. Event includes:
ICSTEST International Conference on Software Testing, SQM, a congress focussing on Software
Quality Management, and CSVHC Conference on Software Validation for Health Care.

April 10-13 The Conference for Software Practice Advancement (SPA'2005), Wyboston, Bedfordshire,
England. Topics include: Languages; Distributed, component-based development; Pervasive or
embedded systems; Patterns and pattern languages; Comparative experience (what we have learned or
can learn from other disciplines); Lessons learned/experience reports; etc.

April 11 2005 Ada-Belgium General Assembly, ULB, Brussels, Belgium. Program
includes: short product announcement by Patricia Langle (Aonix France) of an
Eclipse plug-in for Ada (ObjectAda or GNAT); technical presentation by Jean-Pierre
Rosen (Adalog, France) on “Web-enabling Ada Applications with AWS”.

April 11-13 12th Annual European Concurrent Engineering Conference (ECEC'2005), Toulouse, France.
Topics include: engineering of embedded systems, specification languages, distributed computing
environments, practical solutions, pitfalls and success stories, case studies, pilot projects and
experiments, etc.

April 11-13 9th International Conference on Empirical Assessment in Software Engineering (EASE'2005),
Keele University, UK. Topics include: Evaluation of products, components and services; Process and
tool evaluation; Quality assessment; Software experiments, case studies and observational studies;
etc.

☺April 18 ICRA2005 - Workshop on Principles and Practice of Software Development in Robotics,
Barcelona, Spain. Topics include: advanced software development techniques for building robotic
systems.

April 18-20 17th Conference on Software Engineering Education and Training (CSEET'2005), Ottawa, Canada

April 18-21 Annual Systems and Software Technology Conference (SSTC'2005), Salt Lake City, Utah, USA.

☺April 22 Computer Languages for Scientific Computing, Birmingham, UK. Topics include: specific
features in languages that support scientific programming, etc.

34 Conference Calendar

Volume 26, Number 1, March 2005 Ada User Journal

♦ April 25 2005 Ada-Spain Technical Meeting, Madrid, Spain. Topics include (in Spanish):
Next revision of the Ada language, Embedded systems, Distributed systems,
Industrial experiences. After the meeting, Ada-Spain will hold its 17th General
Assembly and the end of which the winners of the “Ada-Spain’s 13th Contest for the
best academic work in Ada” will be announced.

April 27-29 5th International SPICE Conference on Software Process Improvement and Capability dEtermination
(SPICE'2005), Klagenfurt, Austria.

☺April 30 Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS'2005),
Newark, Delaware, USA. Topics include: Implementation of Language Features, Compiler
Construction and Optimization Techniques, Languages and Compilers for Parallel Programming,
Design of Programming Languages, Type Checking, Teaching Programming Techniques, etc.

May 02-06 International Conference on Practical Software Quality and Testing (PSQT'2005 West), Las
Vegas, Nevada, USA. Theme: "Meeting the Software Security Challenge through Quality and
Testing".

☺May 15-21 27th International Conference on Software Engineering (ICSE'2005), St Louis, Missouri, USA.
Topics include: Software architectures and design; Software components and reuse; Software
security; Software safety and reliability; Reverse engineering and software maintenance; Software
economics; Empirical software engineering and metrics; Distribution and parallelism; Software tools
and development environments; Programming languages; Object-oriented techniques; Embedded and
real-time software; etc.

May 14-15 8th International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE'2005). Theme: "Software Components at Work". Topics include:
Static analysis and execution monitoring of system properties; Components for real-
time, secure, safety critical and/or embedded systems; etc.

May 15-16 13th IEEE International Workshop on Program Comprehension (IWPC'2005).
Topics include: Comprehension during large scale maintenance, reengineering, and
evolution of existing systems; Reverse engineering for the purpose of program
comprehension; etc.

☺May 17 Workshop on Architecting Dependable Systems (WADS'2005). Topics include: all
topics related to software architectures for dependable systems.

May 17 3rd Workshop on Software Quality (WoSQ'2005). Topics include: Software Product
Evaluation and Certification; Tradeoffs in Quality during software development;
Software Quality Education; Methods and Tools for Quality Assurance; Software
Quality at different stages of the development lifecycle; Building quality into software
products; Testing, Inspections, Walkthroughs and Reviews; etc.

May 22-25 5th International Conference on Computational Science (ICCS'2005), Atlanta, USA. Theme:
"Advancing Science through Computation". Topics include: Parallel and Distributed Computing, etc.

May 23-25 9th Brazilian Symposium on Programming Languages (SBLP'2005), Recife, PE, Brazil. Topics
include: programming language design and implementation, formal semantics of programming
languages, theoretical foundations of programming languages and teaching programming languages,
etc.

May 27 – June 01 3rd International Software Development Conference (SWDC'2005), Reykjavik, Iceland. Topics
include: Project success and failure analysis; Software project risk management; Software process
improvement; etc.

☺May 30 – June 02 DAta Systems In Aerospace (DASIA'2005), Edinburgh, Scotland, UK.

June 06-09 5th International Conference on Application of Concurrency to System Design (ACSD'2005), St
Malo, France. Topics include: Correct-by-construction design methods and integration of verification
techniques with the design process; etc.

June 06-10 25th International Conference on Distributed Computing Systems (ICDCS'2005), Columbus,
Ohio, USA. Sponsored by The IEEE Computer Society Technical Committee on Distributed

Conference Calendar 35

Ada User Journal Volume 26, Number 1, March 2005

Processing. Topics include: Fault Tolerance & Dependability, Middleware, Real-time & Embedded
Systems, Security, Formal Verification, etc.

June 13-17 17th Conference on Advanced Information Systems Engineering (CAiSE'2005), Porto, Portugal.
Topics include: Model and Software Reusability, Distributed and Open Architectures, Languages for
IS, etc.

☺June 14-17 34th International Conference on Parallel Processing (ICPP'2005), Oslo, Norway. Topics include:
Compilers and Languages, Programming Methodologies, Tools, Parallel Embedded Systems, etc.

June 15-17 7th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'2005), Athens, Greece. In conjunction with DAIS'2005 (Distributed Applications
and Interoperable Systems). Topics include: Formal techniques for specification, design or analysis;
Verification, testing and validation; Component-based design; Type systems for programming
languages; Formal models for security; Applications and experience, carefully described; etc.

June 15-17 5th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems
(DAIS'2005), Athens, Greece.

June 16-20 10th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2005), Shanghai, China. Topics include: Tools, environments, and languages for complex
systems; Formal methods for developing complex systems; Software and system development
processes for complex systems; Software review, inspection, and testing; Formal proof and model
checking; Human factors and collaborative aspects; Interoperability and standardization; Systems and
software safety and security; Industrial automation, embedded and/or real time systems; etc.

June 18-23 6th International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP'2005), Sheffield, UK. Topics include: Case studies, experiments and practioner's
reports; Scalability issues; Refactoring and continuous integration; Use of SW development tools and
environments; etc. Deadline for early registration: May 7, 2005.

♦ June 20-24 10th International Conference on Reliable Software Technologies - Ada-
Europe'2005, York, UK. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda.

June 27-29 10th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2005), Monte de Caparica, Portugal. Deadline for submissions: April 18, 2005 (working
group membership application).

June 27-30 2005 International Multiconference in Computer Science and Computer Engineering (IMCSE'2005),
Las Vegas, Nevada, USA.

☺ June 27-30 International Conference on Programming Languages and Compilers
(PLC'2005).

June 27-30 International Conference on Software Engineering Research and Practice
(SERP'2005). Topics include: Formal methods in software engineering, Software
engineering and high assurance systems, Software maintenance, Component-based
software engineering, Quality-based software engineering, Real-time software
engineering, Critical systems, Verification and validation, Software testing, Quality
management, Object-oriented software engineering, Case studies, etc.

July 06-10 17th International Conference on Computer-Aided Verification (CAV'2005), Edinburgh, Scotland,
UK. Topics include: Algorithms & tools for verifying models and implementations, Program analysis
and software verification, Applications and case studies, Verification in industrial practice, etc.

☺ July 11-14 OMG Annual Workshop on Distributed Object Computing for Real-time and Embedded
Systems, Washington, DC, USA. Topics include: Real-time systems; Embedded systems; Fault-
tolerant systems; High-availability systems; Safety-critical systems; Real-time middleware, including
real-time CORBA; Modelling notations (including Unified Modelling Language, UML); High-level
real-time programming models; etc.

July 11-15 32nd International Colloquium on Automata, Languages and Programming (ICALP'2005),
Lisbon, Portugal. Topics include: Parallel and Distributed Computing; Principles of Programming

36 Conference Calendar

Volume 26, Number 1, March 2005 Ada User Journal

Languages; Formal Methods; Program Analysis and Transformation; Specifications, Verifications
and Secure Programming; etc. Affiliated Workshops on July 9-10 and 16-17, 2005.

July 11-15 1st International Conference on Open Source Systems (OSS'2005), Genova, Italy. Topics include:
Introduction of OSS in companies and Public Administrations, Empirical analysis of OSS, Case
studies and experiments, etc.

July 17-20 24th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2005), Las Vegas, Nevada, USA. Topics include: all areas of distributed systems; including:
Distributed applications; Specification, semantics, and verification; Distributed middleware
platforms; etc. Deadline for submissions: May 1, 2005 (nominations Edsger W. Dijkstra Prize in
Distributed Computing).

July 18-22 13th International Symposium of Formal Methods Europe (FM'2005), Newcastle upon Tyne, UK.
Topics include: introducing formal methods in industrial practice (technical, organizational, social,
psychological aspects); reports on practical use and case studies (reporting positive or negative
experiences); tool support and software engineering; environments for formal methods; etc. Deadline
for submissions: May 09, 2005 (tools exhibition, demonstrations)

July 25-28 29th Annual International Computer Software and Applications Conference (COMPSAC'2005),
Edinburgh, Scotland, UK. Theme: "High Assurance Software Systems". Topics include: Dependable
service provision, Trustworthy software, Software safety, Software fault tolerance, High performance
software, Component-based software, Design patterns, Software certification, Software standards,
Software engineering education, Embedded systems, Middleware systems, Automotive telematics,
etc.

☺July 25-29 19th European Conference on Object-Oriented Programming (ECOOP'2005), Glasgow, Scotland,
UK. Topics include: Concurrent, real-time and parallel systems; Design patterns; Distributed systems;
Frameworks and software architectures; Language design and implementation; Programming
environments; Adaptability; Formal methods; Software evolution; etc. Deadline for submissions: May
6, 2005 (demos, posters, exhibitions).

☺July 26 Workshop on Practical Problems of Programming in the Large (PPPL'2005).
Topics include: The role of the software-architect in the phases requirements
engineering, software design and development; Negative results: what went wrong
although it should have worked according to software engineering folklore; Keeping
systems with large amounts of classes / objects / modules / components organised;
Refactoring, software evolution & migration; etc. Submission deadline: 6 May 2005.

August 29 – Sept. 02 13th IEEE International Requirements Engineering Conference (RE'2005), Paris, France.
Deadline for submissions: April 28, 2005 (doctoral symposium, posters, research demonstrations)

☺Aug. 30 – Sept. 02 11th International Conference on Parallel and Distributed Computing (Euro-Par'2005), Lisboa,
Portugal. Topics include: Support Tools and Environments; Scheduling and Load Balancing;
Compilers for High Performance; Distributed Systems and Algorithms; Parallel Programming:
Models, Methods, and Languages; etc.

August 30 – Sept. 03 31st EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO'2005), Porto, Portugal. Topics include: Component-Based Software Engineering,
Software Process and Product Improvement, Component Models for Dependable Systems, Value-
based Software Engineering, etc.

☺September 11-14 Workshop on Language-Based Parallel Programming Models (WLPP'2005), Poznan, Poland.
Topics include: Language and library implementations; Proposals for, and evaluation of, language
extensions; Applications development experiences; Comparisons between programming models;
Compiler Implementation and Optimization; etc. Deadline for submissions: April 31, 2005.

☺ September 12-14 18th International Conference on Parallel and Distributed Computing Systems (PDCS'2005). Las
Vegas, Nevada, USA Topics include: Parallel and Distributed Systems Software; Languages,
Compilers and Operating Systems; Libraries and Programming Environments; Message Passing and
Distributed Shared Memory Paradigms; Software Development, Services, Support, and Tools;
Middleware for Parallel and Distributed Computing; Embedded Systems; Parallel and Distributed
Applications; etc. Deadline for paper submissions: April 8, 2005.

Conference Calendar 37

Ada User Journal Volume 26, Number 1, March 2005

☺ September 13-16 International Conference on Parallel Computing 2005 (ParCo2005), Malaga, Spain. Topics
include: applications; software engineering methodologies, methods and tools for developing and
maintaining parallel software, incl. parallel programming models and paradigms, development
environments, languages, compiling and run-time tools; etc. Deadline for submissions: July 31, 2005
(draft full papers).

September 19-22 11th International Software Metrics Symposium (Metrics'2005), Como, Italy. Topics include:
Effort and cost estimation; Defect rate and reliability prediction; Quality Assurance; Empirical studies
of global software development projects, open source software projects, agile development projects;
etc. Deadline for submissions: April 1, 2005 (workshops, dissertation forum), May 30, 2005 (industry
track).

September 19-23 9th Int’l IEEE Enterprise Distributed Object Computing Conference (EDOC'2005), Enschede (NL).

September 25-30 21st IEEE International Conference on Software Maintenance (ICSM'2005), Budapest, Hungary.
Topics include: issues related to maintaining, modifying, enhancing, and testing operational systems,
and designing, building, testing, and evolving maintainable systems. Deadline for submissions: April
30, 2005 (industrial applications, panels, tool demonstrations, dissertation forum, tutorials).

September 26-30 3rd World Conference for Software Quality (3WCSQ), Munich, Germany. Topics include:
Software Construction, Integration and Testing, Verification and Validation, Risk Management and
Problem resolution, Training and Education, Maintenance and Customer Support, Reliability
Engineering, Embedded Systems, Medical Devices, Automotive and Automation, Avionics and
Transportation Systems, etc.

October 02-07 8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS'2005), Montego Bay, Jamaica. Formerly the UML series of conferences. Topics include:
Model-driven development methodologies, approaches, and languages; Empirical studies of modeling
and model-driven development; Tool support for any aspect of model-driven development or model
use; Semantics of modeling languages; etc. Deadline for submissions: April 4, 2005 (experience and
scientific full papers), May 6, 2005 (workshops), May 20, 2005 (educators' symposium), June 6, 2005
(tutorials), TBA (doctoral symposium, tools and exhibits, posters and demos).

☺ October 16-20 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA'2005), San Diego, California, USA. Sponsored by ACM
SIGPLAN in cooperation with SIGSOFT. Deadline for submissions: June 1, 2005 (Onward! Films,
Onward! Presentations), July 1, 2005 (Demonstrations, Posters, Doctoral Symposium Submissions,
Student Research Competitions papers).

October 25-26 International Conference on Software Testing (ICSTEST-E'2005), Bilbao, Spain. Topics include:
Transportation and Safety-Critical Systems, Industry real experiences, Verification and Validation,
Techniques for real time systems, Static and Dynamic analysis, Norms and standards, etc. Deadline
for submissions: April 15, 2005

☺ Oct. 31 – Nov. 04 7th International Symposium on Distributed Objects and Applications (DOA'2005), Agia Napa,
Cyprus. Topics include: Application case studies of distribution technologies; Design patterns for
distributed systems; Distribution technologies for embedded systems; Interoperability between object
systems and complementary technologies; Real-time solutions for distributed objects; Scalability for
distributed objects and object middleware; Security for distributed object systems; Specification and
enforcement of Quality of Service; Technologies for reliability and fault-tolerance; etc. Deadline for
submissions: May 24, 2005 (abstracts), May 31, 2005 (papers).

November 01-04 7th International Conference on Formal Engineering Methods (ICFEM'2005), Manchester, UK.
Topics include: all aspects of formal engineering methods, from theoretical work that promises
various benefits, to application to real production systems. Deadline for submissions: May 20, 2005.

♦ November 13-17 2005 ACM SIGAda Annual International Conference (SIGAda'2005), Atlanta,
Georgia, USA.

November 29 – Dec. 02 5th International Conference on Integrated Formal Methods (IFM'2005), Eindhoven, The
Netherlands. Deadline for submissions: May 18, 2005

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

44

Volume 26, Number 1, March 2005 Ada User Journal

Rationale for Ada 2005: 1 Object oriented model
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various important improvements
to the object oriented model for Ada 2005.
First an alternative more traditional prefixed notation
for calling operations has been introduced. A major
improvement is that Java-like interfaces are
introduced thereby permitting simple multiple
inheritance; null procedures have also been
introduced as a category of operation. Greater
general flexibility is provided by allowing type
extension at a more nested level than that of the
parent.
There are also explicit features for overcoming nasty
bugs which arise from confusion between overloading
and overriding.
Keywords: rationale, Ada 2005.

1 Overview of changes
The WG9 guidance document [1] identifies very large
complex systems as a major application area for Ada. It
says

"The main purpose of the Amendment is to address
identified problems in Ada that are interfering with Ada's
usage or adoption, especially in its major application areas
(such as high-reliability, long-lived real-time and/or
embedded applications and very large complex systems).
The resulting changes may range from relatively minor, to
more substantial."

Object oriented techniques are of course important in very
large systems in providing flexibility and extensibility. The
document later asks the ARG to pay particular attention to

B Improvements that will remedy shortcomings in Ada. It
cites in particular improvements in OO features,
including adding a Java-like interface feature and
improved interfacing to other OO languages.

Ada 2005 does indeed make many improvements in the
object oriented area. The following Ada Issues cover the
relevant changes and are described in detail in this paper:

218 Accidental overloading when overriding

251 Abstract interfaces to provide multiple inheritance

252 Object.Operator notation

260 Abstract formal subprograms & dispatching constructors

284 New reserved words

310 Ignore abstract nondispatching ops during overloading

344 Allow nested type extensions

348 Null procedures

391 Functions with controlling results on null extension

396 The "no hidden interfaces" rule

400 Wide and wide-wide images

401 Terminology for interfaces

405 Progenitors and Ada.Tags

407 Terminology and semantics for prefix names

411 Equality for types derived from interfaces

These changes can be grouped as follows.

First we discuss the fact that Ada 2005 has three new
reserved words, interface, overriding, and synchronized.
It so happens that these are all used in different aspects of
the OO model and so we discuss them in this paper (284).

Then there is the introduction of the Obj.Op notation used
by many other languages (252, 407). This should make Ada
easier to use, improve its image, and improve interfacing to
other languages.

A huge improvement is the addition of Java-like interfaces
which allow proper multiple inheritance (251, 396, 401,
411). A related change is the introduction of null
procedures as a category of operation somewhat like
abstract operations (348).

Type extension is now permitted at a more nested level
than that of the parent type (344). An important
consequence is that controlled types no longer need to be
declared at library level.

An interesting development is the introduction of generic
functions for the dynamic creation of objects of any type of
a class (260, 400, 405). These are sometimes called object
factory functions or just object factories.

Additional syntax permits the user to say whether an
operation is expected to be overriding or not (218). This
detects certain unfortunate errors during compilation which
otherwise can be difficult to find at execution time. A small
change to the overriding rules is that a function with a
controlling result does not "go abstract" if an extension is in
fact null (391). Finally, we discuss a minor but useful
change to the overloading rules; in a sense this is not about
OO at all since it concerns the rules for nondispatching
operations but it is convenient to discuss it here (310).

John Barnes 45

Ada User Journal Volume 26, Number 1, March 2005

There are in fact many other OO related improvements in
Ada 2005 concerning matters such as access types,
visibility, and generics. They will be described in later
papers.

2 Reserved words
Ada 2005 has three further reserved words namely
interface, overriding, and synchronized. Readers may
recall that Ada 95 had six more reserved words than Ada
83 and the fact that this meant that some programs were
incompatible and thus had to be rewritten loomed large in
the minds of many commentators.

When new syntax for the introduction of interfaces was
being discussed it was strongly felt that incompatibilities
should be avoided and that any new syntax words should be
unreserved. It was also noted that Interface was a popular
identifier and that making it a reserved word would cause
many programs to have to be rewritten.

However, it was soon realised that treating Interface as
unreserved would have permitted sequences such as

type T is interface;
subtype Interface is T;

in which Interface is a subtype of the interface T. This
would have been total madness. Some reviewers also had
memories of PL/I in which words such as IF were not
reserved so that one could write IF IF ... where the first IF
is a syntax word and the second is a user identifier.

Accordingly it was decided that the new words would have
to be reserved. No sensible alternative to interface could be
thought of although it would be irritating for users who had
packages called Interface -- actually a brief survey revealed
that most such packages had longer names such as
Radar_Interface so that the problem was more apparent
than real. The other new reserved words overriding and
synchronized clearly present less of a problem since they
are less likely to have been used as identifiers.

3 The prefixed notation
As mentioned in the Introduction, the Ada 95 object
oriented model has been criticized for not being really OO
since the notation for applying a subprogram (method) to
an object emphasizes the subprogram and not the object.
Thus given

package P is
 type T is tagged ... ;

 procedure Op(X: T; ...);
 ...
end P;

then we usually have to write

P.Op(Y, ...); -- subprogram first

in order to apply the operation to an object Y of type T
whereas an OO person would expect to write

Y.Op(...); -- object first

Some hard line OO languages such as Smalltalk take the
view that everything is an object and that all activities are
operations upon some object. Thus adding 2 and 3 can be
seen as sending a message to 2 instructing 3 to be added to
it. This is clearly an extreme view.

Older languages take the view that subprograms are
dominant and that they act upon parameters which might be
raw numbers such as 2 or denote objects such as a circle.
Ada 95 primarily takes this view which reflects its Pascal
foundation over 20 years ago. Thus if Area is a function
which returns the area of a circle then we write

A := Area(A_Circle);

However, when we come to tasks and protected objects
Ada takes the OO view in which the identity of the object
comes first. Thus given a task Actor with an entry Start we
call the entry by writing

Actor.Start(...);

So Ada 95 already uses the object notation although it only
applies to concurrent objects such as tasks. Other objects
and, in particular, objects of tagged types have to use the
subprogram notation.

A major irritation of the subprogram notation is that it is
usually necessary to name the package containing the
declaration of the subprogram thus

P.Op(Y, ...); -- package P mentioned

There are two situations when P need not be mentioned --
one is where the procedure call is actually inside the
package P, the other is where we have a use clause for P
(and even that sometimes does not give the required
visibility). But these are special cases.

In Ada 2005 we can replace P.Op(Y, ...); by the so-called
prefixed notation

Y.Op(...); -- package P never mentioned

provided that

▪ T is a tagged type,

▪ Op is a primitive (dispatching) or class wide operation
of T,

▪ Y is the first parameter of Op.

The reason there is never any need to mention the package
is that, by starting from the object, we can identify its type
and thus the primitive operations of the type. Note that a
class wide operation can be called in this way only if it is
declared at the same place as the primitive operations of T
(or one of its ancestors).

There are many advantages of the prefixed notation as we
shall see but perhaps the most important is ease of
maintenance from not having to mention the package
containing the declaration of the operation. Having to name
the package is often tricky because in complicated
situations involving several levels of inheritance it may not
be obvious where the operation is declared. This happens
especially when operations are declared implicitly and

46 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

when class-wide operations are involved. Moreover if we
change the structure for some reason then operations might
move.

As a simple example consider a hierarchy of plane
geometrical object types. All objects have a position given
by the two coordinates x and y (this is the position of the
centre of gravity of the object). There will be other specific
properties according to the type such as the radius of a
circle. In addition there might be general properties such as
the area of the object, its distance from the origin and
moment of inertia about it centre.

There are a number of ways in which such a hierarchy
might be structured. We might have a package declaring a
root abstract type and then another package with several
derived types.

package Root is
 type Object is abstract tagged
 record
 X_Coord: Float;
 Y_Coord: Float;
 end record;

 function Area(O: Object) return Float is abstract;
 function MI(O: Object) return Float is abstract;
 function Distance(O: Object) return Float;
end Root;

package body Root is
 function Distance(O: Object) return Float is
 begin
 return Sqrt(O.X_Coord**2 + O.Y_Coord**2);
 end Distance;
end Root;

This package declares the root type and two abstract
operations Area and MI (moment of inertia) and a concrete
operation Distance. We might then have

with Root;
package Shapes is
 type Circle is new Root.Object with
 record
 Radius: Float;
 end record;

 function Area(C: Circle) return Float;
 function MI(C: Circle) return Float;

 type Triangle is new Root.Object with
 record
 A, B, C: Float; -- lengths of sides
 end record;

 function Area(T: Triangle) return Float;
 function MI(T: Triangle) return Float;

-- and so on for other types such as Square

end Shapes;

(In the following discussion we will assume that use
clauses are not being used. This is quite realistic because
many projects forbid use clauses.)

Having declared some objects such as A_Circle and
A_Triangle we can then apply the operations Area,
Distance, and MI. In Ada 95 we write

A := Shapes.Area(A_Circle);
D := Shapes.Distance(A_Triangle);
M := Shapes.MI(A_Square);

Observe that the operation Distance is inherited and so is
implicitly declared in the package Shapes for all types
even though there is no mention of it in the text of the
package Shapes. However, if we were using Ada 2005 and
the prefixed notation then we could simply write

A := A_Circle.Area;
D := A_Triangle.Distance;
M := A_Square.MI;

and there is no mention of the package Shapes at all.

A clever friend then points out that by its nature Distance is
the same for all types so it would be safer to avoid the risk
of it getting changed by making it class wide. So we change
the declaration of Distance in the package Root thus

 function Distance(O: Object'Class) return Float;

and recompile our program. But the Ada 95 version won't
recompile. Why? Because class wide operations are not
inherited. So there is only one function Distance and it is
declared in the package Root. So all our calls of Distance
have to be changed to

D := Root.Distance(A_Triangle);

However, if we had been using the prefixed notation then
there would have been nothing to change.

Our manager might then read about the virtues of child
packages and tell us to restructure the whole thing as
follows

package Geometry is
 type Object is abstract ...

 ... -- functions Area, MI, Distance
end Geometry;

package Geometry.Circles is
 type Circle is new Object with
 record
 Radius: Float;
 end record;

 ... -- functions Area, MI
end Geometry.Circles;

package Geometry.Triangles is
 type Triangle is new Object with
 record
 A, B, C: Float;
 end record;

 ... -- functions Area, MI
end Geometry.Triangles;

-- and so on

John Barnes 47

Ada User Journal Volume 26, Number 1, March 2005

This is of course a much more beautiful structure and
avoids having to write Root.Object when doing the
extensions. But, horrors, our assignments in Ada 95 now
have to be changed to

A := Geometry.Circles.Area(A_Circle);
D := Geometry.Distance(A_Triangle);
M := Geometry.Squares.MI(A_Square);

But the lucky programmer using Ada 2005 can still write

A := A_Circle.Area;
D := A_Triangle.Distance;
M := A_Square.MI;

and have a refreshing coffee (or a relaxing martini) while
we are toiling with the editor.

Some time later the program might be extended to
accommodate triangles that are specialized to be
equilateral. This might be done by

package Geometry.Triangles.Equilateral is
 type Equilateral_Triangle is new Triangle with private;
 ...
private
 ...
end;

This type of course inherits all the operations of the type
Triangle. We might now realize that the object A_Triangle
of type Triangle was equilateral anyway and so it would be
better to change it to be of type Equilateral_Triangle. The
lucky Ada 2005 programmer will only have to change the
declaration of the object but the poor Ada 95 programmer
will have to change the calls on all its primitive operations
such as

A := Geometry.Triangles.Area(A_Triangle);

to the corresponding

A := Geometry.Triangles.Equilateral.Area(A_Triangle);

Other advantages of the prefixed notation were mentioned
in the Introduction. One is that it unifies the notation for
calling a function with a single parameter and directly
reading a component of the object. Thus we can write
uniformly

X := A_Circle.X_Coord;
A := A_Circle.Area;

Of course if we were foolish and had a visible component
Area as well as a function Area then we could not call the
function in this way.

But now suppose we decide to make the root type private
so that the coordinates cannot be changed inadvertently.
Moreover we decide to provide functions to read them. So
we have

package Geometry is
 type Object is abstract tagged private;
 function Area(O: Object) return Float is abstract;
 function MI(O: Object) return Float is abstract;
 function Distance(O: Object'Class) return Float;

 function X_Coord(O: Object'Class) return Float;
 function Y_Coord(O: Object'Class) return Float;

private
 type Object is tagged
 record
 X_Coord: Float;
 Y_Coord: Float;
 end record;

end Geometry;

Using Ada 95 we would now have to change statements
such as

X := A_Triangle.X_Coord;
Y := A_Triangle.Y_Coord;

into

X := Geometry.X_Coord(A_Triangle);
Y := Geometry.Y_Coord(A_Triangle);

or (if we had not been wise enough to make the functions
class wide) perhaps even

X := Geometry.Triangles.Equilateral.X_Coord(A_Triangle);
Y := Geometry.Triangles.Equilateral.Y_Coord(A_Triangle);

whereas in Ada 2005 we do not have to make any changes
at all.

Another advantage mentioned in the Introduction is that
when using access types explicit dereferencing is not
necessary. Suppose we have

type Pointer is access all Geometry.Object'Class;
...
This_One: Pointer := A_Circle'Access;

In Ada 95 (assuming that X_Coord is a visible component)
we have to write

Put(This_One.X_Coord); ...
Put(This_One.Y_Coord); ...
Put(Geometry.Area(This_One.all));

whereas in Ada 2005 we can uniformly write

Put(This_One.X_Coord); ...
Put(This_One.Y_Coord); ...
Put(This_One.Area);

and of course this remains unchanged if we make the
coordinates into functions whereas the Ada 95 statements
will need to be changed.

There are other structural changes that can occur during
program development which are much easier to cope with
using the prefix notation. For example, a class wide
operation might be moved. And in the case of multiple
interfaces to be described in the next section an operation
might be moved from one interface to another.

It is clear that the prefixed notation has significant benefits
both in terms of program clarity and for program
maintenance.

48 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

Other variations on the rules for the use of the notation
were considered. One was that the mechanism should apply
to untagged types as well but this was rejected on the
grounds that it might add to rather than reduce confusion in
some cases. In any event, untagged types do not have class
wide types so they are intrinsically simpler.

It is of course important to note that the first parameter of
an operation plays a special role since in order to take
advantage of the prefixed notation we have to ensure that
the first parameter is a controlling parameter. Treating the
first parameter specially can appear odd in some
circumstances such as when there is symmetry among the
parameters. Thus suppose we have a set package for
creating and manipulating sets of integers

package Sets is
 type Set is tagged private;
 function Empty return Set;
 function Unit(N: Integer) return Set;
 function Union(S, T: Set) return Set;
 function Intersection(S, T: Set) return Set;
 function Size(S: Set) return Integer;
 ...
end Sets;

then we can apply the function Union in the traditional way

A, B, C: Set;
...
C := Sets.Union(A, B);

The object oriented addict can also write

C := A.Union(B);

but this destroys the obvious symmetry and is rather like
sending 3 to be added to 2 mentioned at the beginning of
this discussion.

Hopefully the mature programmer will use the OO notation
wisely. Maybe its existence will encourage a more uniform
style in which the first parameter is always a controlling
operand wherever possible. Of course it cannot be used for
functions which are tag indeterminate such as

 function Empty return Set;
 function Unit(N: Integer) return Set;

since there are no controlling parameters. If a subprogram
has just one parameter (which is controlling) such as Size
then the call just becomes X.Size and no parentheses are
necessary.

Note that the prefix does not have to be simply the name of
an object such as X, it could be a function call so we might
write

N := Sets.Empty.Size; -- N = 0
M := Sets.Unit(99).Size; -- M = 1

with the obvious results as indicated.

4 Interfaces
In Ada 95, a derived type can really only have one
immediate ancestor. This means that true multiple

inheritance is not possible although curious techniques
involving discriminants and generics can be used in some
circumstances

General multiple inheritance has problems. Suppose that
we have a type T with some components and operations.
Perhaps

type T is tagged
 record
 A: Integer;
 B: Boolean;
 end record;

procedure Op1(X: T);
procedure Op2(X: T);

Now suppose we derive two new types from T thus

type T1 is new T with
 record
 C: Character;
 end record;

procedure Op3(X: T1);

-- Op1 and Op2 inherited, Op3 added

type T2 is new T with
 record
 C: Colour;
 end record;

procedure Op1(X: T2);
procedure Op4(X: T2);

-- Op1 overridden, Op2 inherited, Op4 added

Now suppose that we were able to derive a further type
from both T1 and T2 by perhaps writing

type TT is new T1 and T2 with null record; -- illegal

This is about the simplest example one could imagine. We
have added no further components or operations. But what
would TT have inherited from its two parents?

There is a general rule that a record cannot have two
components with the same identifier so presumably it has
just one component A and one component B. But what
about C? Does it inherit the character or the colour? Or is it
illegal because of the clash? Suppose T2 had a component
D instead of C. Would that be OK? Would TT then have
four components?

And then consider the operations. Presumably it has both
Op1 and Op2. But which implementation of Op1? Is it the
original Op1 inherited from T via T1 or the overridden
version inherited from T2? Clearly it cannot have both. But
there is no reason why it cannot have both Op3 and Op4,
one inherited from each parent.

The problems arise when inheriting components from more
than one parent and inheriting different implementations of
the same operation from more than one parent. There is no
problem with inheriting the same specification of an
operation from two parents.

John Barnes 49

Ada User Journal Volume 26, Number 1, March 2005

These observations provide the essence of the solution. At
most one parent can have components and at most one
parent can have concrete operations -- for simplicity we
make them the same parent. But abstract operations can be
inherited from several parents. This can be phrased as
saying that this kind of multiple inheritance is about
merging contracts to be satisfied rather than merging
algorithms or state.

So Ada 2005 introduces the concept of an interface which
is a tagged type with no components and no concrete
operations. The idea of a null procedure as an operation of
a tagged type is also introduced; this has no body but
behaves as if it has a null body. Interfaces are only
permitted to have abstract subprograms and null procedures
as operations.

We will outline the ways in which interfaces can be
declared and composed in a symbolic way and then
conclude with a more practical example.

We might declare a package Pi1 containing an interface
Int1 thus

package Pi1 is
 type Int1 is interface;
 procedure Op1(X: Int1) is abstract;
 procedure N1(X: Int1) is null;
end Pi1;

Note the syntax. It uses the new reserved word interface. It
does not say tagged although all interface types are tagged.
The abstract procedure Op1 has to be explicitly stated to be
abstract as usual. The null procedure N1 uses new syntax as
well. Remember that a null procedure behaves as if its body
comprises a single null statement; but it doesn't actually
have a concrete body.

The main type derivation rule then becomes that a tagged
type can be derived from zero or one conventional tagged
types plus zero or more interface types. Thus

type NT is new T and Int1 and Int2 with ... ;

where Int1 and Int2 are interface types. The normal tagged
type if any has to be given first in the declaration. The first
type is known as the parent so the parent could be a normal
tagged type or an interface. The other types are known as
progenitors. Additional components and operations are
allowed in the usual way.

(The term progenitors may seem strange but the term
ancestors in this context was confusing and so a new term
was necessary. Progenitors comes from the Latin
progignere, to beget, and so is very appropriate.)

It might have been thought that it would be quite feasible to
avoid the formal introduction of the concept of an interface
by simply saying that multiple parents are allowed provided
only the first has components and concrete operations.
However, there would have been implementation
complexities with the risk of violating privacy and
distributed overheads. Moreover, it would have caused
maintenance problems since simply adding a component to
a type or making one of its abstract operations concrete

would cause errors elsewhere in the system if it was being
used as a secondary parent. It is thus much better to treat
interfaces as a fundamentally new concept. Another
advantage is that this provides a new class of generic
parameter rather neatly without complex rules for
instantiations.

If the normal tagged type T is in a package Pt with
operations Opt1, Opt2 and so on we could now write

with Pi1, Pt;
package PNT is
 type NT is new Pt.T and Pi1.Int1 with ... ;
 procedure Op1(X: NT);
 -- possibly other ops of NT
end PNT;

We must of course provide a concrete procedure for Op1
inherited from the interface Int1 since we have declared NT
as a concrete type. We could also provide an overriding for
N1 but if we do not then we simply inherit the null
procedure of Int1. We could also override the inherited
operations Opt1 and Opt2 from T in the usual way.

Interfaces can be composed from other interfaces thus

type Int2 is interface;
...
type Int3 is interface and Int1;
...
type Int4 is interface and Int1 and Int2;
...

Note the syntax. A tagged type declaration always has just
one of interface, tagged and with (it doesn't have any if it
is not a tagged type). When we derive interfaces in this way
we can add new operations so that the new interface such
as Int4 will have all the operations of both Int1 and Int2 plus
possibly some others declared specifically as operations of
Int4. All these operations must be abstract or null and there
are fairly obvious rules regarding what happens if two or
more of the ancestor interfaces have the same operation.
Thus a null procedure overrides an abstract one but
otherwise repeated operations must have the same profile.

Class wide types also apply to interface types. The class
wide type Int1'Class covers all the types derived from the
interface Int1 (both other interfaces as well as normal
tagged types). We can then dispatch using an object of a
concrete tagged type in that class in the usual way since we
know that any abstract operation of Int1 will have been
overridden. So we might have

type Int1_Ref is access all Int1'Class;
NT_Var: aliased NT;
Ref: Int1_Ref := NT_Var'Access;

Observe that conversion is permitted between the access to
class wide type Int1_Ref and any access type that
designates a type derived from the interface type Int1. We
informally speak of a specific tagged type as implementing
an interface from which it is derived (directly or indirectly).
The phrase "implementing an interface" is not used

50 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

formally in the definition of Ada 2005 but it is useful for
purposes of discussion.

Interfaces can also be used in private extensions and as
generic parameters.

Thus

 type PT is new T and Int2 and Int3 with private;
 ...
private
 type PT is new T and Int2 and Int3 with null record;

An important rule regarding private extensions is that the
full view and the partial view must agree with respect to the
set of interfaces they implement. Thus although the parent
in the full view need not be T but can be any type derived
from T, the same is not true of the interfaces which must be
such that they both implement the same set exactly. This
rule is important in order to prevent a client type from
overriding private operations of the parent if the client
implements an interface added in the private part.

Generic parameters take the form

generic
 type FI is interface and Int1 and Int2;
package ...

and then the actual parameter must be an interface which
implements all the ancestors Int1, Int2 etc. The formal could
also just be type FI is interface; in which case the actual
parameter can be any interface. There might be
subprograms passed as further parameters which would
require that the actual has certain operations. The interfaces
Int1 and Int2 might themselves be formal parameters
occurring earlier in the parameter list.

Interfaces (and formal interfaces) can also be limited thus

type LI is limited interface;

We can compose mixtures of limited and nonlimited
interfaces but if any one of them is nonlimited then the
resulting interface must not be specified as limited. This is
because it must implement the equality and assignment
operations implied by the nonlimited interface. Similar
rules apply to types which implement one or more
interfaces.

There are other forms of interfaces, namely synchronized
interfaces, task interfaces, and protected interfaces. These
bring support for polymorphic, class wide object oriented
programming to the real time programming arena. They
will be described in a later paper.

Having described the general ideas in somewhat symbolic
terms, we will now discuss a more concrete example.

Before doing so it is important to emphasize that interfaces
cannot have components and therefore if we are to perform
multiple inheritance then we should think in terms of
abstract operations to read and write components rather
than the components themselves. This is standard OO
thinking anyway because it preserves abstraction by hiding
implementation details.

Thus rather than having a component such as Comp it is
better to have a pair of operations. The function to read the
component can simply be called Comp. A procedure to
update the component might be Set_Comp. We will
generally use this convention although it is not always
appropriate to treat the components as unrelated entities.

Suppose now that we want to print images of the
geometrical objects. We will assume that the root type is
declared as

package Geometry is
 type Object is abstract tagged private;
 procedure Move(O: in out Object'Class; X, Y: Float);
 ...
private
 type Object is abstract tagged
 record
 X_Coord: Float := 0.0;
 Y_Coord: Float := 0.0;
 end record;
 ...
end;

The type Object is private and by default both coordinates
have the value of zero. The procedure Move, which is class
wide, enables any object to be moved to the location
specified by the parameters.

Suppose also that we have a line drawing package with the
following specification

package Line_Draw is
 type Printable is interface;
 type Colour is ... ;
 type Points is ... ;
 procedure Set_Hue(P: in out Printable; C: in Colour)
 is abstract;
 function Hue(P: Printable) return Colour is abstract;
 procedure Set_Width(P: in out Printable; W: in Points)
 is abstract;
 function Width(P: Printable) return Points is abstract;

 type Line is ... ;
 type Line_Set is ... ;

 function To_Lines(P: Printable) return Line_Set
 is abstract;

 procedure Print(P: in Printable'Class);

private
 procedure Draw_It(L: Line; C: Colour; W: Points);

end Line_Draw;

The idea of this package is that it enables the drawing of an
image as a set of lines. The attributes of the image are the
hue and the width of the lines and there are pairs of
subprograms to set and read these properties of any object
of the interface Printable and its descendants. These
operations are of course abstract.

In order to prepare an object in a form that can be printed it
has to be converted to a set of lines. The function To_Lines
converts an object of the type Printable into a set of lines;

John Barnes 51

Ada User Journal Volume 26, Number 1, March 2005

again it is abstract. The details of various types such as Line
and Line_Set are not shown.

Finally the package Line_Draw declares a concrete
procedure Print which takes an object of type
Printable'Class and does the actual drawing using the slave
procedure Draw_It declared in the private part. Note that
Print is class wide and is concrete. This is an important
point. Although all primitive operations of an interface
must be abstract this does not apply to class wide
operations since these are not primitive.

The body of the procedure Print could take the form

procedure Print(P: in Printable'Class) is
 L: Line_Set := To_Lines(P);
 A_Line: Line;
begin
 loop
 -- iterate over the Line_Set and extract each line
 A_Line := ...
 Draw_It(A_Line, Hue(P), Width(P);
 end loop;
end Print;

but this is all hidden from the user. Note that the procedure
Draw_It is declared in the private part since it need not be
visible to the user.

One reason why the user has to provide To_Lines is that
only the user knows about the details of how best to
represent the object. For example the poor circle will have
to be represented crudely as a polygon of many sides,
perhaps a hectogon of 100 sides.

We can now take at least two different approaches. We can
for example write

with Geometry, Line_Draw;
package Printable_Geometry is
 type Printable_Object is abstract new Geometry.Object
 and Line_Draw.Printable with private;
 procedure Set_Hue(P: in out Printable_Object;
 C: in Colour);
 function Hue(P: Printable_Object) return Colour;
 procedure Set_Width(P: in out Printable_Object;
 W: in Points);
 function Width(P: Printable_Object) return Points;
 function To_Lines(P: Printable_Object) return Line_Set
 is abstract;

private
 ...
end Printable_Geometry;

The type Printable_Object is a descendant of both Object
and Printable and all concrete types descended from
Printable_Object will therefore have all the operations of
both Object and Printable. Note carefully that we have to
put Object first in the declaration of Printable_Object and
that the following would be illegal

type Printable_Object is abstract new Line_Draw.Printable
 and Geometry.Object with private; --illegal

This is because of the rule that only the first type in the list
can be a normal tagged type; any others must be interfaces.
Remember that the first type is always known as the parent
type and so the parent type in this case is Object.

The type Printable_Object is declared as abstract because
we do not want to implement To_Lines at this stage.
Nevertheless we can provide concrete subprograms for all
the other operations of the interface Printable. We have
given the type a private extension and so in the private part
of its containing package we might have

private
 type Printable_Object is abstract new Geometry.Object
 and Line_Draw.Printable with
 record
 Hue: Colour := Black;
 Width: Points := 1;
 end record;
end Printable_Geometry;

Just for way of illustration, the components have been
given default values. In the package body the operations
such as the function Hue are simply

 function Hue(P: Printable_Object) return Colour is
 begin
 return P.Hue;
 end;

Luckily the visibility rules are such that this does not do an
infinite recursion!

Note that the information containing the style components
is in the record structure following the geometrical
properties. This is a simple linear structure since interfaces
cannot add components. However, since the type
Printable_Object has all the operations of both an Object
and a Printable, this adds a small amount of complexity to
the arrangement of dispatch tables. But this detail is hidden
from the user.

The key point is that we can now pass any object of the
type Printable_Object or its descendants to the procedure

procedure Print(P: in Printable'Class);

and then (as outlined above) within Print we can find the
colour to be used by calling the function Hue and the line
width to use by calling the function Width and we can
convert the object into a set of lines by calling the function
To_Lines.

And now we can declare the various types Circle, Triangle,
Square and so on by making them descendants of the type
Printable_Object and in each case we have to implement
the function To_Lines.

The unfortunate aspect of this approach is that we have to
move the geometry hierarchy. For example the triangle
package might now be

package Printable_Geometry.Triangles is
 type Printable_Triangle is new Printable_Object with
 record
 A, B, C: Float;

52 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

 end record;
 ... -- functions Area, To_Lines etc
end;

We can now declare a Printable_Triangle thus

A_Triangle: Printable_Triangle :=
 (Printable_Object with A => 4.0, B => 4.0, C => 4.0);

This declares an equilateral triangle with sides of length
4.0. Its private Hue and Width components are set by
default. Its coordinates which are also private are by default
set to zero so that it is located at the origin. (The reader can
improve the example by making the components A, B and
C private as well.)

We can conveniently move it to wherever we want by using
the procedure Move which being class wide applies to all
types derived from Object. So we can write

A_Triangle.Move(1.0, 2.0);

And now we can make a red sign

Sign: Printable_Triangle := A_Triangle;

Having declared the object Sign, we can give it width and
hue and print it

Sign.Set_Hue(Red);
Sign.Set_Width(3);
Sign.Print; -- print thick red triangle

As we observed earlier this approach has the disadvantage
that we had to move the geometry hierarchy. A different
approach which avoids this is to declare printable objects of
just the kinds we want as and when we want them.

So assume now that we have the package Line_Draw as
before and the original package Geometry and its child
packages. Suppose we want to make printable triangles and
circles. We could write

with Geometry, Line_Draw; use Geometry;
package Printable_Objects is
 type Printable_Triangle is new Triangles.Triangle and
 Line_Draw.Printable with private;
 type Printable_Circle is new Circles.Circle and
 Line_Draw.Printable with private;
 procedure Set_Hue(P: in out Printable_Triangle;
 C: in Colour);
 function Hue(P: Printable_Triangle return Colour;
 procedure Set_Width(P: in out Printable_Triangle;
 W: in Points);
 function Width(P: Printable_Triangle) return Points;
 function To_Lines(T: Printable_Triangle)
 return Line_Set;
 procedure Set_Hue(P: in out Printable_Circle;
 C: in Colour);
 function Hue(P: Printable_Circle) return Colour;
 procedure Set_Width(P: in out Printable_Circle;
 W: in Points);
 function Width(P: Printable_Circle) return Points;
 function To_Lines(C: Printable_Circle)
 return Line_Set;
private

 type Printable_Triangle is new Triangles.Triangle and
 Line_Draw.Printable with
 record
 Hue: Colour := Black;
 Width: Points := 1;
 end record;

 type Printable_Circle is new Circles.Circle and
 Line_Draw.Printable with
 record
 Hue: Colour := Black;
 Width: Points := 1;
 end record;

end Printable_Objects;

and the body of the package will provide the various
subprogram bodies.

Now suppose we already have a normal triangle thus

A_Triangle: Geometry.Triangles.Triangle := ... ;

In order to print A_Triangle we first have to declare a
printable triangle thus

Sign: Printable_Triangle;

and now we can set the triangle components of it using a
view conversion thus

Triangle(Sign) := A_Triangle;

And then as before we write

Sign.Set_Hue(Red);
Sign.Set_Width(3);
Sign.Print_It; -- print thick red triangle

This second approach is probably better since it does not
require changing the geometry hierarchy. The downside is
that we have to declare the boring hue and width
subprograms repeatedly. We can make this much easier by
declaring a generic package thus

with Line_Draw; use Line_Draw;
generic
 type T is abstract tagged private;
package Make_Printable is
 type Printable_T is
 abstract new T and Printable with private;

 procedure Set_Hue(P: in out Printable_T;
 C: in Colour);
 function Hue(P: Printable_T) return Colour;
 procedure Set_Width(P: in out Printable_T;
 W: in Points);
 function Width(P: Printable_T) return Points;

private
 type Printable_T is abstract new T and Printable with
 record
 Hue: Colour := Black;
 Width: Points := 1;
 end record;
end;

John Barnes 53

Ada User Journal Volume 26, Number 1, March 2005

This generic can be used to make any type printable. We
simply write

package P_Triangle is new Make_Printable(Triangle);
type Printable_Triangle is new P_Triangle.Printable_T
 with null record;
function To_Lines(T: Printable_Triangle)
 return Line_Set;

The instantiation of the package creates a type Printable_T
which has all the hue and width operations and the required
additional components. However, it simply inherits the
abstract function To_Lines and so itself has to be an
abstract type. Note that the function To_Lines has to be
especially coded for each type anyway unlike the hue and
width operations which can be the same.

We now do a further derivation largely in order to give the
type Printable_T the required name Printable_Triangle and
at this stage we provide the concrete function To_Lines.

We can then proceed as before. Thus the generic makes the
whole process very easy -- any type can be made printable
by just writing three lines plus the body of the function
To_Lines.

Hopefully this example has illustrated a number of
important points about the use of interfaces. The key thing
perhaps is that we can use the procedure Print to print
anything that implements the interface Printable.

Earlier we stated that it was a common convention to
provide pairs of operations to read and update properties
such as Hue and Set_Hue and Width and Set_Width. This is
not always appropriate. Thus if we have related
components such as X_Coord and Y_Coord then although
individual functions to read them might be sensible, it is
undoubtedly better to update the two values together with a
single procedure such as the procedure Move declared
earlier. Thus if we wish to move an object from the origin
(0.0, 0.0) to say (3.0, 4.0) and do it by two calls

Obj.Set_X_Coord(3.0); -- first change X
Obj.Set_Y_Coord(4.0); -- then change Y

then it seems as if it was transitorily at the point (3.0, 0.0).
There are various other risks as well. We might forget to set
one component or accidentally set the same component
twice. And there could be big problems in a multitasking
program.

Finally, as discussed earlier, null procedures are a new kind
of subprogram and the user-defined operations of an
interface must be null procedures or abstract subprograms −
there is of course no such thing as a null function.

(Nonlimited interfaces do have one concrete operation and
that is predefined equality; it could even be overridden with
an abstract one.)

Null procedures will be found useful for interfaces but are
in fact applicable to any types. As an example the package
Ada.Finalization now uses null procedures for Initialize,
Adjust, and Finalize as described in the Introduction.

5 Nested type extension
In Ada 95 type extension of tagged types has to be at the
same level as the parent type. This can be quite a problem.
In particular it means that all controlled types must be
declared at library level because the root types Controlled
and Limited_Controlled are declared in the library level
package Ada.Finalization. The same applies to storage pools
and streams because again the root types
Root_Storage_Pool and Root_Stream_Type are declared in
library packages.

This has a cumulative effect since if we write a generic unit
using any of these types then that package can itself only be
instantiated at library level. This enforces a very flat level
of programming and hinders abstraction.

The problems can actually be illustrated without having to
use controlled types or generics. As a simple example
consider the following which is adapted from a text book
[3]. It manipulates lists of colours and we assume that the
type Colour is declared somewhere.

package Lists is
 type List is limited private;
 type Iterator is abstract tagged null record;
 procedure Iterate(IC: in Iterator'Class; L: in List);
 procedure Action(It: in out Iterator; C: in out Colour)
 is abstract;
private
 ...
end;

The idea is that a call of Iterate calls Action (by
dispatching) on each object of the list and thereby gives
access to the colour of that object. The user has to declare
an extension of Iterator and a specific procedure Action to
do whatever is required on each object.

Some readers may find this sort of topic confusing. It might
be easier to understand if we look at the private part and
body of the package Lists which might be

private
 type Cell is
 record
 Next: access Cell; -- anonymous type
 C: Colour;
 end record;

 type List is access Cell;
end;

package body Lists is
 procedure Iterate(IC: in Iterator'Class; L: in List) is
 This: access Cell := L;
 begin
 while This /= null loop
 Action(IC, This.C); -- dispatching call
 -- or IC.Action(This.C);
 This := This.Next;
 end loop;
 end Iterate;
end Lists;

54 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

Note the use of the anonymous access types which avoid
the need to have an incomplete declaration of Cell in the
private part and an explicit type conversion in the
procedure Iterate.

Now suppose we wish to change the colour of every green
object to red. We write (in some library level package)

type GTR_It is new Iterator with null record;

procedure Action(It: in out GTR_It; C: in out Colour) is
begin
 if C = Green then C := Red; end if;
end Action;

procedure Green_To_Red(L: in List) is
 It: GTR_It;
begin
 Iterate(It, L); -- or It.Iterate(L);
end Green_To_Red;

This works but is not ideal. The type GTR_It and the
procedure Action should not be declared outside the
procedure Green_To_Red since they are really only part of
its internal workings. But we cannot declare the type
GTR_It inside the procedure in Ada 95 because that would
be an extension at an inner level.

The extra facilities of the predefined library in Ada 2005
and especially the introduction of containers which are
naturally implemented as generic units forced a
reconsideration of the reasons for restricting type extension
in Ada 95. The danger of nested extension of course is that
values of objects could violate the accessibility rules and
outlive their type declaration. It was concluded that type
extension could be permitted at nested levels with the
addition of just a few checks to ensure that the accessibility
rules were not violated.

So in Ada 2005 the procedure Green_To_Red can be
written as

procedure Green_To_Red(L: in List) is
 type GTR_It is new Iterator with null record;

 procedure Action(It: in out GTR_It; C: in out Colour) is
 begin
 if C = Green then C := Red; end if;
 end Action;

 It: GTR_It;
begin
 Iterate(It, L); -- or It.Iterate(L);
end Green_To_Red;

and all the workings are now wrapped up within the
procedure as they should be.

Note incidentally that we can use the notation It.Iterate(L);
even though the type GTR_It is not declared in a package in
this case. Remember that although we cannot add new
dispatching operations to a type unless it is declared in a
package specification, nevertheless we can always override
existing ones such as Action.

This example is all quite harmless and nothing can go
wrong despite the fact that we have performed the
extension at an inner level. This is because the value It does
not outlive the execution of the procedure Action.

But suppose we have a class wide object Global_It as in the
following

with Lists; use Lists;
package body P is

 function Dodgy return Iterator'Class is
 type Bad_It is new Iterator with null record;

 procedure Action(It: in out Bad_It; C: in out Colour) is
 begin
 ...
 end Action;

 It: Bad_It;
 begin
 return It;
 end Dodgy;

 Global_It: Iterator'Class := Dodgy;
begin
 Global_It.Action(Red_For_Danger); -- dispatches
end P;

Now we are in deep trouble. We have returned a value of
the local type Bad_It, assigned it as the initial value to
Global_It and then dispatched on it to the procedure Action.
But the procedure Action that will be called is the one
inside Dodgy and this does not exist anymore since we have
left the function Dodgy. So this must not be allowed to
happen.

So various accessibility checks are required. There is a
check on the return from a function with a class wide result
that the value being returned does not have the tag of a type
at a deeper level than that of the function itself. So in this
example there is a check on the return from the function
Dodgy; this fails and raises Program_Error so all is well.

There are similar checks on class wide allocators and when
using T'Class'Input or T'Class'Output. Some of these can be
carried out at compile time but others have to be checked at
run time and they also raise Program_Error if they fail.

Moreover, in order to implement the checks associated with
T'Class'Input and T'Class'Output two additional functions
are declared in the package Ada.Tags; these are

function Descendant_Tag(External: String;
 Ancestor_Tag) return Tag;

function Is_Descendant_At_Same_Level
 (Descendant, Ancestor: Tag) return Boolean;

The use of these will be outlined in the next section.

6 Object factory functions
The Ada 95 Rationale (Section 4.4.1) [2] says "We also
note that object oriented programming requires thought
especially if variant programming is to be avoided. There is
a general difficulty in finding out what is coming which is

John Barnes 55

Ada User Journal Volume 26, Number 1, March 2005

particularly obvious with input-output; it is easy to write
dispatching output operations but generally impossible for
input." In this context, variant programming means messing
about with case statements and so on.

The point about input-output is that it is easy to write a
heterogeneous file but not so easy to read it. In the simple
case of a text file we can just do a series of calls of Put thus

Put ("John is "); Put(21, 0); Put(" years old.");

But text input is not so easy unless we know the order of
the items in the file. If we don't know the order then we
really have to read the wretched thing a line at a time and
then analyse the lines.

Ada 95 includes a mechanism for doing this relatively
easily in the case of tagged types and stream input-output.
Suppose we have a class of tagged types rooted at Root
with various derived specific types T1, T2 and so on. We
can then output a sequence of values X1, X2, X3 of a
variety of these types to a file identified by the stream
access value S by writing

Root'Class'Output(S, X1);
Root'Class'Output(S, X2);
Root'Class'Output(S, X3);
...

The various calls first write the tag of the specific type and
then the value of the type. The tag corresponding to the
type T1 is the string External_Tag(T1'Tag). Remember that
External_Tag is a function in the predefined package
Ada.Tags.

On input we can reverse the process by writing something
like

declare
 X: Root'Class := Root'Class'Input(S);
begin
 Process(X); -- now process the object in X

The call of Root'Class'Input first reads the external tag and
then dispatches to the appropriate function Tn'Input
according to the value of the tag. The function reads the
value and this is now assigned as the initial value to the
class wide variable X. We can then do whatever we want
with X by perhaps dispatching to a procedure Process
which deals with it according to its specific type.

This works in Ada 95 but it is all magic and done by smoke
and mirrors inside the implementation. The underlying
techniques are unfortunately not available to the user.

This means that if we want to devise our own stream
protocol or maybe just process some values in
circumstances where we cannot directly use dispatching
then we have to do it all ourselves with if statements or
case statements. Thus we might be given a tag value and
separately some information from which we can create the
values of the particular type. In Ada 95 we typically have to
do something like

The_Tag: Ada.Tags.Tag;
A_T1: T1; -- series of objects of each

A_T2: T2; -- specific type
A_T3: T3;
...
The_Tag := Get_Tag(...); -- get the tag value
if The_Tag = T1'Tag then
 A_T1 := Get_T(...); -- get value of specific type
 Process(A_T1); -- process the object
elsif The_Tag = T2'Tag then
 A_T2 := Get_T(...); -- get value of specific type
 Process(A_T2); -- process the object
elsif
 ...
end if;

We assume that Get_T is a primitive function of the class
rooted at Root. There is therefore a function for each
specific type and the selection in the if statements is made
at compile time by the normal overload rules. Similarly
Process is also a primitive subprogram of the class of
types.

This is all very tedious and needs careful maintenance if we
add further types to the class.

Ada 2005 overcomes this problem by providing a generic
object constructor function. Its specification is

generic
 type T (<>) is abstract tagged limited private;
 type Parameters (<>) is limited private;
 with function Constructor(Params: access Parameters)
 return T is abstract;
function Ada.Tags.Generic_Dispatching_Constructor
 (The_Tag: Tag; Params: access Parameters)
 return T'Class;

This generic function works for both limited and
nonlimited types. Remember that a nonlimited type is
allowed as an actual generic parameter corresponding to a
limited formal generic type. The generic function
Generic_Dispatching_Constructor is Pure and has
convention Intrinsic.

Note carefully the formal function Constructor. This is an
example of a new kind of formal generic parameter
introduced in Ada 2005. The distinctive feature is the use
of is abstract in its specification. The interpretation is that
the actual function must be a dispatching operation of a
tagged type uniquely identified by the profile of the formal
function. The actual operation can be concrete or abstract.
Remember that the overriding rules ensure that the specific
operation for any concrete type will always have a concrete
body. Note also that since the operation is abstract it can
only be called through dispatching.

In this example, it therefore has to be a dispatching
operation of the type T since that is the only tagged type
involved in the profile of Constructor. We say that T is the
controlling type. In the general case, the controlling type
does not itself have to be a formal parameter of the generic
unit but usually will be as here.

Formal abstract subprograms can of course be procedures
as well as functions. It is important that there is exactly one

56 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

controlling type in the profile. Thus given that TT1 and TT2
are tagged types then the following would both be illegal

with procedure Do_This(X1: TT1; X2: TT2) is abstract;
 -- illegal
with function Fn(X: Float) return Float is abstract;
 -- illegal

The procedure Do_This is illegal because it has two
controlling types TT1 and TT2. Remember that we can
declare a subprogram with parameters of more than one
tagged type but it can only be a dispatching operation of
one tagged type. The function Fn is illegal because it
doesn't have any controlling types at all (and so could never
be called in a dispatching call anyway).

The formal function Constructor is legal because only T is
tagged; the type Parameters which also occurs in its profile
is not tagged.

And now to return to the dispatching constructor. The idea
is that we instantiate the generic function with a (root)
tagged type T, some type Parameters and the dispatching
function Constructor. The type Parameters provides a
means whereby auxiliary information can be passed to the
function Constructor.

The generic function Generic_Dispatching_Constructor
takes two parameters, one is the tag of the type of the
object to be created and the other is the auxiliary
information to be passed to the dispatching function
Constructor.

Note that the type Parameters is used as an access
parameter in both the generic function and the formal
function Constructor. This is so that it can be matched by
the profile of the attribute Input whose specification is

function T'Input(Stream: access Root_Stream_Type'Class)
 return T;

Suppose we instantiate Generic_Dispatching_Constructor to
give a function Make_T. A call of Make_T takes a tag
value, dispatches to the appropriate Constructor which
creates a value of the specific tagged type corresponding to
the tag and this is finally returned as the value of the class
wide type T'Class as the result of Make_T. It's still magic
but anyone can use the magic and not just the magician
implementing stream input-output.

We can now do our abstract problem as follows

function Make_T is
 new Generic_Dispatching_Constructor
 (Root, Params, Get_T);

...
declare
 Aux: Params := ... ;
 A_T: Root'Class:= Make_T(Get_Tag(...), Aux);
begin
 Process(A_T); -- dispatch to process the object
end;

We no longer have the tedious sequence of if statements
and the calls of Get_T and Process are dispatching calls.

The previously magic function T'Class'Input can now be
implemented in a very natural way by something like

function Dispatching_Input is
 new Generic_Dispatching_Constructor
 (T, Root_Stream_Type'Class, T'Input);

function T_Class_Input
 (S: access Root_Stream_Type'Class) return T'Class is
 -- read tag as string from stream
 The_String: String := String'Input(S);
 -- convert to a tag
 The_Tag: Tag := Descendant_Tag(The_String, T'Tag);
 begin
 -- now dispatch to the appropriate function Input
 return Dispatching_Input(The_Tag, S);
end T_Class_Input;

for T'Class'Input use T_Class_Input;

The body could of course be written as one giant statement

return Dispatching_Input
 (Descendant_Tag(String'Input(S), T'Tag), S);

but breaking it down hopefully clarifies what is happening.

Note the use of Descendant_Tag rather than Internal_Tag.
Descendant_Tag is one of a few new functions introduced
into the package Ada.Tags in Ada 2005. Streams did not
work very well for nested tagged types in Ada 95 because
of the possibility of multiple elaboration of declarations (as
a result of tasking and recursion); this meant that two
descendant types could have the same external tag value
and Internal_Tag could not distinguish them. This is not an
important problem in Ada 95 as nested tagged types are
rarely used. In Ada 2005 the situation is potentially made
worse because of the possibility of nested type extension.

The goal in Ada 2005 is simply to ensure that streams do
work with types declared at the same level and to prevent
erroneous behaviour otherwise. The goal is not to permit
streams to work with the nested extensions introduced in
Ada 2005. Any attempt to do so will result in Tag_Error
being raised.

Note that we cannot actually declare an attribute function
such as T'Class'Input by directly using the attribute name.
We have to use some other identifier such as T_Class_Input
and then use an attribute definition clause as shown above.

Observe that T'Class'Output can be implemented as

procedure T_Class_Output
 (S: access Root_Stream_Type'Class; X: in T'Class) is
begin
 if not Is_Descendant_At_Same_Level(X'Tag, T'Tag) then
 raise Tag_Error;
 end if;
 String'Output(S, External_Tag(X'Tag));
 T'Output(S, X);
end T_Class_Output;

for T'Class'Output use T_Class_Output;

John Barnes 57

Ada User Journal Volume 26, Number 1, March 2005

Remember that streams are designed to work only with
types declared at the same accessibility level as the parent
type T. The call of Is_Descendant_At_Same_Level, which
is another new function in Ada 2005, ensures this.

We can use the generic constructor to create our own
stream protocol. We could in fact replace T'Class'Input and
T'Class'Output or just create our own distinct subsystem.
One reason why we might want to use a different protocol
is when the external protocol is already given such as in the
case of XML.

Note that it will sometimes be the case that there is no need
to pass any auxiliary parameters to the constructor function
in which case we can declare

type Params is null record;
Aux: aliased Params := (null record);

Another example can be based on part of the program
Magic Moments in [3]. This reads in the values necessary
to create various geometrical objects such as a Circle,
Triangle, or Square which are derived from an abstract type
Object. The values are preceded by a letter C, T or S as
appropriate. The essence of the code is

Get(Code_Letter);
case Code_Letter is
 when 'C' => Object_Ptr := Get_Circle;
 when 'T' => Object_Ptr := Get_Triangle;
 when 'S' => Object_Ptr := Get_Square;
 ...
end case;

The types Circle, Triangle, and Square are derived from the
root type Object and Object_Ptr is of the type access
Object'Class. The function Get_Circle reads the value of the
radius from the keyboard, the function Get_Triangle reads
the values of the lengths of the three sides from the
keyboard and so on.

The first thing to do is to change the various constructor
functions such as Get_Circle into various specific
overridings of a primitive operation Get_Object so that we
can dispatch on it.

Rather than just read the code letter we could make the user
type the external tag string and then we might have

function Make_Object is
 new Generic_Dispatching_Constructor
 (Object, Params, Get_Object);

...
S: String := Get_String;
...
Object_Ptr := new Object'
 (Make_Object(Internal_Tag(S), Aux));

but this is very tedious because the user now has to type the
external tag which will be an implementation defined mess
of characters. Observe that the string produced by a call of
Expanded_Name such as

OBJECTS.CIRCLE

cannot be used because it will not in general be unique and
so there is no reverse function. (It is not generally unique
because of tasking and recursion.) But Expanded_Name is
useful for debugging purposes.

In these circumstances the best way to proceed is to invent
some sort of registration system to make a map to convert
the simple code letters into the tag. We might have a
package

with Ada.Tags; use Ada.Tags;
package Tag_Registration is
 procedure Register(The_Tag: Tag; Code: Character);
 function Decode(Code: Character) return Tag;
end;

and then we can write

Register(Circle'Tag, 'C');
Register(Triangle'Tag, 'T');
Register(Square'Tag, 'S');

And now the program to read the code and then make the
object becomes simply

Get(Code_Letter);
Object_Ptr := new Object'
 (Make_Object(Decode(Code_Letter), Aux));

and there are no case statements to maintain.

The really important point about this example is that if we
decide at a later date to add more types such as 'P' for
Pentagon and 'H' for Hexagon then all we have to do is
register the new code letters thus

Register(Pentagon'Tag, 'P');
Register(Hexagon'Tag, 'H');

and nothing else needs changing. This registration can
conveniently be done when the types are declared.

The package Tag_Registration could be implemented
trivially as follows by

package body Tag_Registration is
 Table: array (Character range 'A' .. 'Z') of Tag :=
 (others => No_Tag);
 procedure Register(The_Tag: Tag; Code: Character) is
 begin
 Table(Code) := The_Tag;
 end Register;

 function Decode(Code: Character) return Tag is
 begin
 return Table(Code);
 end Decode;
end Tag_Registration;

The constant No_Tag is a value of the type Tag which does
not represent an actual tag. If we forget to register a type
then No_Tag will be returned by Decode and this will
cause Make_Object to raise Tag_Error.

A more elegant registration system could be easily
implemented using the container library which will be
described in a later paper.

58 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

Note that any instance of Generic_Dispatching_Constructor
checks that the tag passed as parameter is indeed that of a
type descended from the root type T and raises Tag_Error if
it is not.

In simple cases we could in fact perform that check for
ourselves by writing something like

 Trial_Tag: Tag := The_Tag;
loop
 if Trial_Tag = T'Tag then exit; end if;
 Trial_Tag := Parent_Tag(Trial_Tag);
 if Trial_Tag = No_Tag then raise Tag_Error; end if;
end loop;

The function Parent_Tag and the constant No_Tag are
further items in the package Ada.Tags whose specification
in Ada 2005 is

package Ada.Tags is
 type Tag is private;
 No_Tag: constant Tag;

 function Expanded_Name(T: Tag) return String;
 ... -- also Wide and Wide_Wide versions
 function External_Tag(T: Tag) return String;
 function Internal_Tag(External: String) return Tag;
 function Descendant_Tag(External: String;
 Ancestor: Tag) return Tag;
 function Is_Descendant_At_Same_Level(Descendant,
 Ancestor: Tag) return Boolean;
 function Parent_Tag(T: Tag) return Tag;
 type Tag_Array is (Positive range <>) of Tag;
 function Interface_Ancestor_Tags(T: Tag) return Tag;

 Tag_Error: exception;
private
 ...
end Ada.Tags;

The function Parent_Tag returns No_Tag if the parameter T
of type Tag has no parent which will be the case if it is the
ultimate root type of the class. As mentioned earlier, two
other new functions Descendant_Tag and
Is_Descendant_At_Same_Level are necessary to prevent
the misuse of streams with types not all declared at the
same level.

There is also a function Interface_Ancestor_Tags which
returns the tags of all the ancestors as an array. This
includes the tag of T itself, its parent, any progenitors and
all their ancestors as well.

Finally note that the introduction of 16- and 32-bit
characters in identifiers means that functions also have to
be provided to return the images of identifiers as a
Wide_String or Wide_Wide_String. So we have functions
Wide_Expanded_Name and Wide_Wide_Expanded_Name.

7 Overriding and overloading
One of the key goals in the design of Ada was to encourage
the writing of correct programs. It was intended that the
structure, strong typing, and so on should ensure that many
errors which are not detected by most languages until run

time should be caught at compile time in Ada.
Unfortunately the introduction of type extension and
overriding in Ada 95 produced a situation where careless
errors in subprogram profiles lead to errors which are
awkward to detect.

The Introduction described two typical examples. The first
concerns the procedure Finalize. Consider

with Ada.Finalization; use Ada.Finalization;
package Root is
 type T is new Controlled with ... ;
 procedure Op(Obj: in out T; Data: in Integer);
 procedure Finalise(Obj: in out T);
end Root;

We have inadvertently written Finalise rather than Finalize.
This means that Finalize does not get overridden as
expected and so the expected behaviour does not occur on
finalization of objects of type T.

In Ada 2005 we can prefix the declaration with overriding

 overriding
 procedure Finalize(Obj: in out T);

And now if we inadvertently write Finalise then this will be
detected during compilation.

Similar errors can occur in a profile. If we write

package Root.Leaf is
 type NT is new T with null record;
 overriding -- overriding indicator
 procedure Op(Obj: in out NT; Data: in String);
end Root.Leaf;

then the compiler will detect that the new procedure Op has
a parameter of type String rather than Integer.

However if we do want a new operation then we can write

 not overriding
 procedure Op(Obj: in out NT; Data: in String);

The overriding indicators can also be used with abstract
subprograms, null procedures, renamings, instantiations,
stubs, bodies and entries (we will deal with entries in the
paper on tasking). So we can have

overriding
procedure Pap(X: TT) is abstract;

overriding
procedure Pep(X: TT) is null;

overriding
procedure Pip(Y: TT) renames Pop;

not overriding
procedure Poop is new Peep(...);

overriding
procedure Pup(Z: TT) is separate;

overriding
procedure Pup(X: TT) is
begin ... end Pup;

John Barnes 59

Ada User Journal Volume 26, Number 1, March 2005

We do not need to apply an overriding indicator to both a
procedure specification and body but if we do then they
naturally must not conflict. It is expected that overriding
indicators will typically only be given on specifications but
they would be appropriate in the case of a body standing
alone as in the example of Action in the previous section.
So we might have

procedure Green_To_Red(L: in List) is
 type GTR_It is new Iterator with null record;

 overriding
 procedure Action(It: in out GTR_It; C: in out Colour) is
 begin
 if C = Green then C := Red; end if;
 end Action;
...

The overriding indicators are optional for two reasons. One
is simply for compatibility with Ada 95. The other concerns
awkward problems with private types and generics.

Consider

package P is
 type NT is new T with private;
 procedure Op(X: T);
private

Now suppose the type T does not have an operation Op.
Then clearly it would be wrong to write

package P is
 type NT is new T with private; -- T has no Op
 overriding -- illegal
 procedure Op(X: T);
private

because that would violate the information known in the
partial view.

But suppose that in fact it turns out that in the private part
the type NT is actually derived from TT (itself derived from
T) and that TT does have an operation Op.

private
 type NT is new TT with ... -- TT has Op
end P;

In such a case it turns out in the end that Op is in fact
overriding after all. We can then put an overriding indicator
on the body of Op since at that point we do know that it is
overriding.

Equally of course we should not specify not overriding for
Op in the visible part because that might not be true either
(since it might be that TT does have Op). However if we
did put not overriding on the partial view then that would
not in itself be an error but would simply constrain the full
view not to be overriding and thus ensure that TT does not
have Op.

Of course if T itself has Op then we could and indeed
should put an overriding indicator in the visible part since
we know that to be the truth at that point.

The general rule is not to lie. But the rules are slightly
different for overriding and not overriding. For
overriding it must not lie at the point concerned. For not
overriding it must not lie anywhere.

This asymmetry is a bit like presuming the prisoner is
innocent until proved guilty. We sometimes start with a
view in which an operation appears not to be overriding
and then later on we find that it is overriding after all. But
the reverse never happens -- we never start with a view in
which it is overriding and then later discover that it was
not. So the asymmetry is real and justified.

There are other similar but more complex problems with
private types concerning implicit declarations where the
implicit declaration turns up much later and is overriding
but has no physical presence on which to hang the
indicator. It was concluded that by far the best approach to
these problems was just to say that the overriding indicator
is always optional. We cannot expect to find all the bugs in
a program through syntax and static semantics; the key goal
here is to provide a simple way of finding most of them.

Similar problems arise with generics. As is usual with
generics the rules are checked in the generic itself and then
rechecked upon instantiation (in this case for uses within
both the visible part and private part of the specification).
Consider

generic
 type GT is tagged private;
package GP is
 type NT is new GT with private;
 overriding -- illegal, GT has no Op
 procedure Op(X: NT);
private

This has to be illegal because GT has no operation Op. Of
course the actual type at instantiation might have Op but
the check has to pass both in the generic and in the
instantiation.

On the other hand saying not overriding is allowed

generic
 type GT is tagged private;
package GP is
 type NT is new GT with private;
 not overriding -- legal, GT has no Op
 procedure Op(X: NT);
private

However, in this case we cannot instantiate GP with a type
that does have an operation Op because it would fail when
checked on the instantiation. So in a sense this imposes a
further contract on the generic. If we do not want to impose
this restriction then we must not give an overriding
indicator on the procedure Op for NT.

Another situation arises when the generic formal is derived

generic
 type GT is new T with private;
package GP is
 type NT is new GT with private;

60 Rat ionale for Ada 2005: 1 Object or iented model

Volume 26, Number 1, March 2005 Ada User Journal

 overriding -- legal if T has Op
 procedure Op(X: NT);
private

In this case it might be that the type T does have an
operation Op in which case we can give the overriding
indicator.

We might also try

generic
 type GT is tagged private;
 with procedure Op(X: GT);
package GP is
 type NT is new GT with private;
 overriding -- illegal, Op not primitive
 procedure Op(X: NT);
private

But this is incorrect because although GT has to have an
operation corresponding to Op as specified in the formal
parameter list, nevertheless it does not have to be a
primitive operation nor does it have to be called Op and
thus it isn't inherited.

It should also be observed that overriding indicators can be
used with untagged types although they have been
introduced primarily to avoid problems with dispatching
operations. Consider

package P is
 type T is private;
 function "+" (Left, Right: T) return T;
private
 type T is range 0 .. 100; -- "+" overrides
end P;

as opposed to

package P is
 type T is private;
 function "+" (Left, Right: T) return T;
private
 type T is new TT; -- "+" does not override
end P;

The point is that the partial view does not reveal whether
overriding occurs or not -- nor should it since either
implementation ought to be acceptable. We should
therefore remain silent regarding overriding in the partial
view. This is similar to the private extension and generic
cases discussed earlier. Inserting overriding would be
illegal on both examples, while not overriding would be
allowed only on the second one (which would constrain the
implementation as in the previous examples). Again, it is
permissible to put an overriding indicator on the body of
"+" to indicate whether or not it does override.

It is also possible for a subprogram to be primitive for more
than one type (this cannot happen for more than one tagged
type but it can happen for untagged types or one tagged
type and some untagged types). It could then be overriding
for some types and not overriding for others. In such a case
it is considered to be overriding as a whole and any
indicator should reflect this.

The possibility of having a pragma which would enforce
the use of overriding indicators (so that they too could not
be inadvertently omitted) was eventually abandoned largely
because of the private type and generic problem which
made the topic very complicated.

Note the recommended layout, an overriding indicator
should be placed on the line before the subprogram
specification and aligned with it. This avoids disturbing the
layout of the specification.

It is hoped that programmers will use overriding indicators
freely. As mentioned in the Introduction, they are very
valuable for preventing nasty errors during maintenance.
Thus if we add a further parameter to an operation such as
Op for a root type and all type extensions have overriding
indicators then the compiler will report an error if we do
not modify the operators of all the derived types correctly.

We now turn to a minor change in the overriding rules for
functions with controlling results.

The reader may recall the general rule in Ada 95 that a
function that is a primitive operation of a tagged type and
returns a value of the type, must always be overridden
when the type is extended. This is because the function for
the extended type must create values for the additional
components. This rule is sometimes phrased as saying that
the function "goes abstract" and so has to be overridden if
the extended type is concrete. The irritating thing about the
rule in Ada 95 is that it applies even if there are no
additional components.

Thus consider a generic version of the set package of
Section 3

generic
 type Element is private;
package Sets is
 type Set is tagged private;
 function Empty return Set;
 function Unit(E: Element) return Set;
 function Union(S, T: Set) return Set;
 function Intersection(S, T: Set) return Set;
 ...
end Sets;

Now suppose we declare an instantiation thus

package My_Sets is new Sets(My_Type);

This results in the type Set and all its operations being
declared inside the package My_Sets. However, for various
reasons we might wish to have the type and its operations
at the current scope. One reason could just be for simplicity
of naming so that we do not have to write My_Sets.Set and
My_Sets.Union and so on. (We might be in a regime where
use clauses are forbidden.) An obvious approach is to
derive our own type locally so that we have

package My_Sets is new Sets(My_Type);
type My_Set is new My_Sets.Set with null record;

John Barnes 61

Ada User Journal Volume 26, Number 1, March 2005

Another situation where we might need to do this is where
we wish to use the type Set as the full type for a private
type thus

 type My_Set is private;
private
 package My_Sets is new Sets(My_Type);
 type My_Set is new My_Sets.Set with null record;

But this doesn't work nicely in Ada 95 since all the
functions have controlling results and so "go abstract" and
therefore have to be overridden with wrappers thus

function Union(S, T: My_Set) return My_Set is
begin
 return My_Set(My_Sets.Union(My_Sets.Set(S),
 My_Sets.Set(T)));
end Union;

This is clearly a dreadful nuisance. Ada 2005 sensibly
allows the functions to be inherited provided that the
extension is visibly null (and that there is no new
discriminant part) and so no overriding is required. This
new facility will be much appreciated by users of the new
container library in Ada 2005 which has just this style of
generic packages which export tagged types.

The final topic to be discussed concerns a problem with
overloading and untagged types. Remember that the
concept of abstract subprograms was introduced into Ada
95 largely for the purpose of tagged types. However it can
also be used with untagged types on derivation if we do not
want an operation to be inherited. This often happens with
types representing physical measurements. Consider

type Length is new Float;
type Area is new Float;

These types inherit various undesirable operations such as
multiplying a length by a length to give a length when of
course we want an area. We can overcome this by
overriding them with abstract operations. Thus

function "*" (L, R: Length) return Length is abstract;
function "*" (L, R: Area) return Area is abstract;
function "*" (L, R: Length) return Area;

We have also declared a function to multiply two lengths to
give an area. So now we have two functions multiplying
two lengths, one returns a length but is abstract and so can
never be called and the other correctly returns an area.

Now suppose we want to print out some values of these
types. We might declare a couple of functions delivering a
string image thus

function Image(L: Length) return String;
function Image(L: Area) return String;

And then we decide to write

X: Length := 2.5;
...
Put_Line(Image(X * X)); -- ambiguous in 95

This fails to compile in Ada 95 since it is ambiguous
because both Image and "*" are overloaded. The problem is
that although the function "*" returning a length is abstract it
nevertheless is still there and is considered for overload
resolution. So we don't know whether we are calling Image
on a length or on an area because we don't know which "*"
is involved.

So declaring the operation as abstract does not really get rid
of the operation at all, it just prevents it from being called
but its ghost lives on and is a nuisance.

In Ada 2005 this is overcome by a new rule that says
"abstract nondispatching subprograms are ignored during
overload resolution". So the abstract "*" is ignored and there
is no ambiguity in Ada 2005.

Note that this rule does not apply to dispatching operations
of tagged types since we might want to dispatch to a
concrete operation of a descendant type. But it does apply
to operations of a class-wide type.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] Ada 95 Rationale (1995) LNCS 1247, Springer-
Verlag.

[3] J. G. P. Barnes (1998) Programming in Ada 95, 2nd
ed., Addison-Wesley.

© 2005 John Barnes Informatics

Stop press: Since the publication of the Introduction part of the Rationale for Ada 2005 in the previous issue of
Ada User Journal, some small changes have been made regarding a number of topics. The main change which
affects the level of detail given in the Introduction is that a gratuitous all is no longer allowed with anonymous
access types. This will be explained in detail in the instalment of the Rationale in the next issue of Ada User
Journal. Order your copy now!!

64

Volume 26, Number 1, March 2005 Ada User Journal

Ada-Europe 2004 Sponsors

8 Rue de Milan, F-75009 Paris, France ACT Europe
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@act-europe.fr
Fax: +33-1-49-70-05-52
URL: www.act-europe.fr

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix

Contact: Anne Chapey Tel: +33-1-41-48-10-10
Email : info@aonix.fr

Fax: +33-1-41-48-10-20
URL : www.aonix.fr

Suite 701, Eagle Tower, Montpellier Drive, Cheltenham, GL50 1TA, UK Artisan Software Tools Ltd

Contact: Emma Allen Tel: +44-1242-229300
Email : info.uk@artisansw.com

Fax: +44-1242-229301
URL : www.artisansw.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd

Contact: Christopher Smith Tel: +44-1962-829820
Email : chriss@ghs.com

Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix

Contact: Martin Stacey Tel: +44-1249-467-600
Email : info_euro@ilogix.com

Fax: +44-1249-467-610
URL : www.ilogix.com

24 Newtown Road, Newbury, Berkshire, RG14 7BN, UK LDRA Ltd
Contact: Jim Kelly Tel: +44-1635-528-828

Email: info@ldra.com
Fax: +44-1635-528-657
URL: www.ldra.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis Critical Systems Ltd

Contact: Rod Chapman Tel: +44-1225-823763
Email : sparkinfo@praxis-cs.co.uk

Fax: +44-1225-469006
URL : www.sparkada.com

321 N. Mall Drive Suite I-201, St. George, UT 84790, USA Scientific Toolworks Inc
Contact: Matthew Bergeson Tel: +1-435-627-2529

Email: sales@scitools.com
Fax: +1-877-512-0765
URL: www.scitools.com

Triad House, Mountbatten Court, Worrall Street, Congleton, Cheshire CW12 1DT,

UK
TNI Europe Limited
Contact: Pam Flood

Tel: +44-1260-29-14-49
Email: info@tni-europe.com

Fax: +44-1260-29-14-49
URL: www.tni-europe.com

	Contents
	Editorial
	News
	Conference Calendar
	Rationale for Ada 2005: 1 Object oriented model

