

Ada User Journal Volumes 25, Number 4, December 2004

ADA
USER
JOURNAL

Volume 25
Number 4

December 2004

Contents
Page

Editorial Policy for Ada User Journal 176

Editorial 177

News 179

Conference Calendar 209

Forthcoming Events 216

Articles
 Benjamin M Brosgol

“Real-Time Java™ for Ada Programmers” 220
 John Barnes

“Rationale for Ada 2005: Introduction” 228

Ada-Europe 2004 Sponsors 246

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

176

Volumes 25, Number 4, December 2004 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 177

Ada User Journal Volumes 25, Number 4, December 2004

Editorial
The December issue of the Ada User Journal marks the end of the calendar year 2004 with two article contributions that
symbolize the relay between the proceedings of the past year and the exciting highlights of the year to come, which promises
to be extremely rich with Ada-related events. Both articles are authored by important and valued members of the Ada
community. Ben Brosgol, the author of the first article, has kindly offered us an outline of the tutorial that he presented at
Ada-Europe 2004. With this contribution, the Journal has provided substantial coverage of the main tutorials that use to
complement the core programme of the Ada-Europe conference week. This coverage will continue for the future editions of
the conference. The second article is a very precious gift that the Journal is proud to make to its readership at large: thanks to
the support of Ada-Europe, starting with this issue, the Journal will be hosting a series of articles by John Barnes (a name that
needs no introduction) that cover the preliminary version of the Ada 2005 Rationale. Yes, there will be an Ada 2005
Rationale after all, to accompany the publication of the 2005 amendment of the Ada programming language, and yes, the
Rationale will be authored by John Barnes, a promise of very attractive, informative and witty read. We do hope that our
readers will enjoy this contribution as much as we do. The readers will also notice that this issue is thicker than usual, which
they should take as a token of the health of the Ada community and the wealth of its news and events, for which our News
editor, Santiago Urueña, and his long-time precessor Dirk Craeynest offer comprehensive coverage as usual.

A few words are in order to comment on the incident that caused the issue 25-3 of the Journal to come to you with a
disappointing number of character and printing errors. As you may have heard from your local distributor, the incident
occurred at a stage of the journal production that was beyond our control. We have taken immediate steps with the Printer to
make sure that an error-free version of the very same issue be dispatched to you in a timely fashion and that mishaps of this
kind do not occur again. We are hopeful that you will have received that correct version of AUJ 25-3 prior to receiving this
one.

In closing this editorial at last, I extend my best wishes for New Year to our whole readership, our fellow members of Ada-
Europe, its Board and its sibling national organisation

Tullio Vardanega
Padova

December 2004
Email: tullio.vardanega@math.unipd.it

 179

Ada User Journal Volume 25, Number 4, December 2004

News
Santiago Urueña
Technical University of Madrid. Email: suruena@datsi.fi.upm.es

Contents
 Page
Ada-related Organizations 179
Ada-related Events 181
Ada and Education 183
Ada-related Tools 184
Ada-related Products 193
Ada and CORBA 196
Ada and GNU/Linux 197
Ada and Microsoft 197
References to Publications 199
Ada Inside 199
Ada in Context 200

Ada-related
Organizations
ARTiSAN Software Tools
Relocates Corporate
Headquarters
ARTiSAN Software Tools Relocates to
Eagle Tower, Tallest Office Building in
Cheltenham, to Accommodate Projected
Growth
Cheltenham, UK - July 1, 2004 -
ARTiSAN Software Tools, a global
leader for UML-based, real-time systems
and software modeling tools, today
announced that they have relocated their
corporate headquarters to Eagle Tower,
one of Cheltenham's most exclusive
business addresses.
"The move marks an exciting time in
Artisan's history," noted Jeremy
Goulding, ARTiSAN's President and
CEO. "We're profitable and had double
digit quarter-to-quarter growth over the
last 6 quarters and it was time that we
moved into a building that can
accommodate our needs as this trend
continues. We're on one floor of the
Tower now, and with it having about
100,000 square feet of modern office
space on 12 floors, there's plenty of room
to meet the demands of our continued
growth."
"We've made a significant investment in a
state of the art training facility, and will
be growing in this area to support the
increasing customer demand for SysML,
UML 2.0, and specific object oriented
tool supported C++ & Ada language
training. There is much confusion over
the UML 2.0 standard, and people are
turning to ARTiSAN, as one of the
driving forces behind the standard, for
their training."

Eagle Tower represents one of the most
prestigious office addresses in
Gloucestershire and is a well-known local
landmark. Located in the heart of
Cheltenham's fashionable Montpellier
quarter, the tower is close to the renowned
shopping parade, the Promenade, and
many of the town's finest bars and
restaurants. A photo of the tower can be
seen at
http://www.artisansw.com/images/eagle.jpg.
The company's new address is:
ARTiSAN Software Tools, Ltd
Suite 701 Eagle Tower
Montpellier Drive
Cheltenham
Gloucestershire
GL50 1TA UK

AdaCore Partners with
Praxis Critical Systems on a
Joint Academic Initiative
Paris, France and London, UK - October
1, 2004
As part of the Ada Academic Program,
AdaCore is pleased to announce a joint
initiative with Praxis Critical Systems
Ltd. AdaCore's GNAT Academic
Program (GAP) will be linked to the
Praxis Academic Support Programme - a
fully supported professional SPARK
toolset offered free-of-charge to
university faculty members for teaching
and/or research. SPARK is a high-
integrity subset of the Ada programming
language. The SPARK Examiner checks
conformance of code against the rules of
SPARK, performs flow analysis and can
generate Verification-Conditions for full
formal proof of SPARK source code. In
conjunction with the SPADE Simplifier
and the SPADE Proof Checker, Praxis
provides a suite of tools capable of aiding
the development, testing and verification
of high integrity systems written in
SPARKAda.
"The unique properties of the SPARK
language and its support tools depend on
the solid foundations provided by the Ada
language so we are naturally delighted to
support AdaCore's far-sighted Ada
Academic Programme. The combination
of the AdaCore and Praxis programmes
provides a one stop resource offering the
very best in software engineering tools
and teaching materials". Peter Amey,
Chief Technical Officer, Praxis Critical
Systems.
"Our joint initiative with Praxis reinforces
the commitment to Ada within Academia

by widening the scope of on-line expertise
as well as expanding the wealth of
teaching materials available to instructors
in Ada, wherever their faculty may be
based." Louise Arkwright, Ada Academic
Program Manager, AdaCore."

Praxis Critical Systems
Limited and High Integrity
Systems Limited are
merging to create Praxis
High Integrity Systems
11 October 2004 - Praxis Critical Systems
Limited and High Integrity Systems
Limited are merging to create Praxis High
Integrity Systems, a company dedicated to
delivering the best in high integrity
systems engineering. The companies will
trade as Praxis High Integrity Systems
from 11th October 2004 and will formally
merge from 3rd January 2005.
The new company remains part of the
16,000 strong Altran Group, a recognised
global leader in innovative engineering
and technical partner to the Renault F1
team. Praxis High Integrity Systems will
lead the service offering in High
Technology Engineering for Altran's US
and Northern European business. Altran
expects to invest in further growth and
international development for the new
company, already employing 120
engineers and consultants known for the
superlative quality of their contribution to
developing vital systems across business
and industry.
For more than 20 years, Praxis and HIS
have already successfully delivered
systems and engineering consultancy
across the Aerospace and Defence,
Automotive, Rail, Nuclear,
Telecommunications and Finance sectors,
so the merged company will be a stronger
force in these markets in future.
Combining proven domain knowledge
and experience with new service offerings
such as Security Engineering and
Delivery Management means more
opportunities for new and existing clients
to work with the new team.
In a business environment where clients
want dependable supply partners able to
offer leading-edge services and innovative
solutions, Praxis High Integrity Systems
delivers. Our client-focussed approach is
specifically aimed at understanding
client's needs and challenges and adapting
our best-in-class principled engineering to
meet those needs. Our goal is always to

180 Ada-related Organizat ions

Volume 25, Number 4, December 2004 Ada User Journal

deliver the right solution at the right
quality - fit for purpose first time.
With 'lean' engineering processes
understood by all our staff, Praxis HIS
brings a team approach that makes rapid
strides in building resilient solutions to
highly complex problems. And to prove it
has ultimate confidence in its abilities to
do so, Praxis HIS regularly arranges fixed
price and gainshare contracts with clients.
Our mission is to be a successful and agile
company founded on technical
engineering excellence, capable of
creating and developing the best
engineering talent. The new organisation
is structured to deliver this with a mix of
Market Sector specialists and
Communities of Expertise (CoEx),
including Software Engineering, Systems
Engineering (including Requirements
Engineering), Project/Operational Risk
Management, Programme Delivery
Management, Safety Engineering,
Security Engineering and Human Factors.
Each CoEx is hard at work delivering not
just expertise into customer projects but
also Intellectual Property in the form of
software products, training courses, tool
templates and more.

Introducing a new look for
ACT Europe
From: Cyrille Comar

<comar@adacore.com>
Date: Mon, November 15, 2004 6:33 pm
To: announce@adacore.com
Subject: Introducing a new look for ACT

Europe
We are pleased to introduce a new name -
- AdaCore - and a new logo. This new
name reflects our ongoing commitment to
Ada. AdaCore is dedicated to providing
quality software and services, and our
new look serves to convey the
professionalism synonymous with our
GNAT Pro package.
What does the new name mean for you?
This change does not affect the products
or support we provide our customers. You
can use the new report address,
report@adacore.com to communicate
with our technical team. For sales
inquiries please send e-mail to
sales@adacore.com. The corporate
website is at www.adacore.com, and the
GNAT Tracker web server is available at
www.adacore.com/gnattracker. Of course
the old addresses will continue to work,
so you can switch to the new scheme at
your convenience.
If you have any questions about the name
change, please do not hesitate to contact
sales@adacore.com.

DDC-I "SCOREs"
Experienced Italian
Distributor
Phoenix, AZ - September 15, 2004 - In
response to increasing demand in Italian
industrial markets, DDC-I today
announces the signing of experienced
real-time vendor ARTiSAN Software
Tools (Srl) as exclusive distributor of
DDC-I tools in Italy, including the
versatile SCORE (Safety Critical, Object-
oriented, Real-time Embedded) integrated
development environment.
"Our relationship with ARTiSAN
represents an excellent opportunity for
real-time software developers in Italy,"
explains DDC-I President and CEO Dr.
Ole N. Oest. "SCORE's participation in
the European Open Microprocessor
Initiative presents it as a compelling
choice for every budget-conscious Italian
software developer."
Cheltenham, UK-based ARTiSAN - a
global leader in UML-based real-time
systems and software modeling tools -
appointed Carmelo Tommasi, an industry
veteran with over 25 years of
multinational management experience at
Mentor Graphics, Harris, Viewlogic and
Telelogic, to distribute ARTiSAN
Software Tools products in Italy.
ARTiSAN Software Tools Srl serves
important customers in aerospace and
telecom markets, thanks to Mr.
Tommasi's market awareness and first-
hand knowledge, recognizing increasing
customer demand for SysML, UML 2.0,
and specific object-oriented tools
supporting flexible development in C++
& Ada.
"Our current efforts are focused in
aerospace, due to the mission-critical
nature of the software development, and
on telecom, which has traditionally been
strong in Italy. Given the nature of the
Italian industrial market, small and
medium size companies also represent a
fertile field for tool vendors offering
flexible products like SCORE," Tommasi
concludes.

Aonix Joins Eclipse to
Provide Customers a
Common Platform
Product road map charts integration of
Eclipse plug-ins
San Diego, CA, Paris, France, June 10,
2004
Aonix, an independent global company
delivering complete solutions for safety-
and mission-critical applications, has
joined Eclipse, a community committed to
the implementation of an universal
platform for tools integration. In addition
to porting its Ada95, PERC and Ameos
tool suites to the Eclipse platform, Aonix

plans to deliver an Eclipse-based IDE
targeted to developers of mission- and
safety-critical solutions.
"The direction of the Eclipse Platform
complements our strategy of delivering
common platforms that enable embedded
developers to mix tools and secure former
and future development through
interoperable technologies," noted
Jacques Brygier, vice president of
marketing at Aonix. "In the mission- and
safety-critical market, our customers
come from a number of industry sectors,
each carrying its own certification
standards and specialized tools. Like
Eclipse, we have focused on the
development of common platforms,
particularly with our products based on
our SmartKernel real-time executives
family, in which our tools - or the next
vendors' - work seamlessly, enabling
developers to focus on building
applications, not on integrating tools."
"Aonix's support for Eclipse affirms the
benefits of a universal platform in
delivering mission- and safety-critical
tools," noted Mike Milinkovich, Eclipse
executive director. "We welcome Aonix
into Eclipse and look forward to
collaboration and future contributions as
they extend the Eclipse Platform into their
offerings and industry segment."
Aonix already offers different levels of
Eclipse integration with its PERC and
Ameos products. In the near future, Aonix
will integrate its Ada 95-based
development environment and the first
version of the SmartKernel product
family. The Eclipse-based IDE common
to all Aonix products is under
development and a beta copy will be
released in the second half of the year.
About Eclipse
Eclipse has established an open-source
eco-system of tools providers and
consumers by creating technology and an
open universal platform for tools
integration. The open-source Eclipse
community creates royalty-free
technology as a platform for tools
integration. Eclipse based tools give
developers freedom of choice in a multi-
language, multi-platform, multi-vendor
supported environment. Eclipse delivers a
plug-in based framework that makes it
easier to create, integrate and use software
tools, saving time and money. By
collaborating and sharing core integration
technology, tool producers can
concentrate on their areas of expertise and
the creation of new development
technology. The Eclipse Platform is
written in the Java language, and comes
with extensive plug-in construction
toolkits and examples. It has already been
deployed on a range of development
workstations including HP-UX, Solaris,
AIX, Linux, MAC OS X, QNX and
Windows based systems. Full details of
the Eclipse community and white papers

Ada-related Events 181

Ada User Journal Volume 25, Number 4, December 2004

documenting the design of the Eclipse
Platform are available at
www.eclipse.org.

Ada-related Events

[The announcements reported below are a
selection of the many Ada-related events
organized by local groups. If you are or-
ganizing such an event, feel free to inform
us as soon as possible. If you attended one
please consider writing a short report for
the Journal. -- su]

Nov 14-18 - SIGAda 2004
Conference
From: Ricky E. Sward

<ricky.sward@ix.netcom.com>
Date: 27 Aug 2004 07:57:58 -0700
Subject: SIGAda 2004 Conference
Newsgroups: comp.lang.ada
Conference Announcement - SIGAda
2004
14-18 November 2004, Atlanta, Georgia,
USA
Sponsored by ACM SIGAda
The SIGAda 2004 conference offers a
top-quality technical program focused on
important strengths of the Ada
programming language. Three days of
technical papers, keynotes, and invited
presentations will report on how Ada is
achieving success in the challenging
realm of software engineering. We are
pleased to announce that three leaders in
the software engineering community, Pam
Thompson from Lockheed Martin
Aeronautics, Watts Humphrey from the
Software Engineering Institute, and
Stephen Cross from the Georgia Tech
Research Institute, will provide keynote
addresses. We are also fortunate to have
key members of the WG9 Ada Rapporteur
Group (ARG) who will participate in a 3-
hour panel on the significant
improvements that WG9 has approved for
inclusion in the Ada 2005 Amendment.
The Panel will be chaired by IBM
Rational's Pascal Leroy, Chair of the
WG9 ARG.
Beyond the formal conference of selected
papers and presentations, SIGAda 2004
offers two days of outstanding tutorials
led by some of the most respected
technical leaders in the industry.
SIGAda's tutorials and workshops provide
full- or half-days for those working the
same issues to share with each other and
leverage everyone's accomplishments;
workshop products are "delivered" to the
community. The broad offerings of
career-enhancing tutorials include basic
Ada 95 introductions for software
engineers new to Ada, intermediate and
advanced Ada topics for practitioners
striving to expand their Ada expertise,
and several language-independent

technology topics. Join us in
understanding how these topics mutually
support the disciplined development and
evolution of serious, high quality software
systems.
The following tutorial was added after the
Advanced Program was published:
A#: Programming PDAs and .NET
devices with Ada
This tutorial describes A#, an Ada
environment for programming the
Windows .NET and .NET Compact
Frameworks. Attendees will learn how to
create Ada applications that take
advantage of the rich set of libraries
available with the .NET Framework, and
also how to deploy Ada applications onto
PDAs using the .NET Compact
Framework.
For more information on the conference
schedule, registration options, and hotel
information visit the SIGAda 2004 web
site at the following link.
http://www.acm.org/sigada/conf/sigada2004

Oct 06-07 - Ada-Deutschland
Tagung 2004
Ada Germany Conference 2004:
Automotive Safety and Security
"Security and Reliability for Automobile
Information Technology"
October 2004 - SofCheck Chairman and
CTO, Tucker Taft, presented the keynote
lecture "Ada 2005 - Putting It All
Together" to the Ada Germany
Conference 2004 on Reliable Software
Systems.
View the presentation in PDF format:
[http://www.sofcheck.com/news/adagerm
any2004rev3.pdf --su]
[See also the announcement (in German)
of this conference in AUJ 25-2 (Jun
2004), p.85. --su]

Feb 26-27 - Ada event at
FOSDEM 2005
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 5 Oct 2004 21:36:28 +0200
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Subject: AdaFosdem mailing list created for

Ada event at FOSDEM 2005
Newsgroups:

comp.lang.ada,fr.comp.lang.ada
Recently, there was a discussion on the
Ada-Belgium members' mailing list about
the possibility of organizing an Ada event
at FOSDEM 2005 in Brussels (Sat-Sun
26-27 February 2005, www.fosdem.org).
FOSDEM is the "Free and Open Source
Software Developers' European Meeting"
held annually in Brussels; the 4th edition
attracted some 2000 participants earlier
this year.

I'm pleased to announce that to coordinate
among potential speakers and attendants,
an AdaFosdem mailing list has been
created. Several relevant pre-list postings
have been included in the list's archives.
We hereby invite everyone interested in
an Ada event at FOSDEM 2005 to
subscribe (*) to the AdaFosdem mailing
list in order to contribute ideas and
suggestions. We recommend new
subscribers to browse the archives for
September and to offer comments.
To subscribe and to consult the list
archives, use URL
http://listserv.cc.kuleuven.ac.be/archives/a
dafosdem.html
To post to the list (after subscribing), send
e-mail to
adafosdem@listserv.cc.kuleuven.ac.be
Looking forward to see much activity on
the new list,
Ludovic Brenta, Ada at FOSDEM
coordinator, Ludovic.Brenta@insalien.org
Dirk Craeynest, Ada-Belgium &
AdaFosdem list owner,
Dirk.Craeynest@cs.kuleuven.ac.be
(*) AdaFosdem is an open mailing list
(anyone can subscribe), though
subscriptions have to be confirmed by e-
mail (to avoid spammers subscribing).
The list is not moderated, though only
subscribers can post (again to reduce the
risk of spamming). We hope this setup
will be a good compromise between high
availability of the list and low spam risk.
[See also "Libre Software Meeting" in
AUJ 25-3 (Sep 2004), p.117. --su]

Jun 20-24 - Ada-Europe
2005 Conference
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 7 Oct 2004 22:06:48 +0200
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Subject: 2nd CFP Conf. Reliable Software

Technologies, Ada-Europe 2005
Newsgroups:

comp.lang.ada,fr.comp.lang.ada
10th International Conference on Reliable
Software Technologies - Ada-Europe
2005
20 - 24 June 2005, York, UK
http://www.ada-europe.org/conference2005.
html
Organized, on behalf of Ada-Europe, by
the University of York, in cooperation
with ACM SIGAda (approval pending)
Ada-Europe organizes annual
international conferences since the early
80's. This is the 10th event in the
Reliable Software Technologies series,
previous ones being held at Montreux,
Switzerland ('96), London, UK ('97),
Uppsala, Sweden ('98), Santander, Spain

182 Ada-related Events

Volume 25, Number 4, December 2004 Ada User Journal

('99), Potsdam, Germany ('00), Leuven,
Belgium ('01), Vienna, Austria ('02),
Toulouse, France ('03), Palma de
Mallorca, Spain ('04).
General Information
The 10th International Conference on
Reliable Software Technologies (Ada-
Europe 2005) will take place in York,
UK. Following the usual style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
Schedule
7 November 2004: Submission of
proposed contributions
17 January 2005: Notification to authors
7 March 2005: Camera-ready papers
required
20-24 June 2005: Conference
Topics
In the last decade the conference has
established itself as an international forum
for providers and practitioners of, and
researchers into, reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events. Participants
will include practitioners and researchers
from industry, academia and government
organisations interested in furthering the
development of reliable software
technologies. To mark the completion of
the technical work for the Ada language
standard revision process, a special
session will be devoted to the presentation
and discussion of the prospects of the
revised language in the landscape of
mainstream language technologies.
For papers, tutorials, and workshop
proposals, the topics of interest include,
but are not limited to:
- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Formal Methods,
Re-engineering and Reverse Engineering,
Reuse, Software Management Issues
- Software Architectures: Patterns for
Software Design and Composition,
Frameworks, Architecture-Centered
Development, Component and Class
Libraries, Component-Based Design
- Enabling Technology: CASE Tools,
Software Development Environments and
Project Browsers, Compilers, Debuggers
and Runtime Libraries
- Software Quality: Quality Management
and Assurance, Risk Analysis, Program

Analysis, Verification, Validation,
Testing of Software Systems
- Critical Systems: Real-Time,
Distribution, Fault Tolerance, Information
Technology, Safety, Security
- Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
- Ada Language and Technology:
Programming Techniques, Object-
Oriented Programming, Concurrent
Programming, Bindings and Libraries,
Evaluation & Comparative Assessments,
Critical Review of Language
Enhancements, Novel Support
Technology
Call for Industrial Presentations
[Cf. the Forthcoming Events section in
this AUJ issue, pages 221-222. – su]
Submissions
Authors are invited to submit original
contributions. Paper submissions shall be
in English, should be complete and should
not exceed 20 double-spaced pages in
length. Extended abstracts and outlines of
presentations that provide a sufficient
insight into the intended contents of the
contributions will also be considered.
Authors of accepted extended abstracts
and/or presentations shall submit a
consolidated version of their contribution
to the Program Co-Chair Tullio
Vardanega for final acceptance, by
February 21, 2005. Authors should
submit their work via the Web submission
system accessible from the conference
Home page. The preferred format for
submission is PDF. Postscript can also be
accepted, as long as it was generated
selecting the "optimize for portability"
option in the used printer driver.
Submissions by other means and formats
will *not* be accepted. If you do not
have easy access to the Internet, or you do
not have an appropriate Web browser,
please contact the Program Co-Chair
Tullio Vardanega, whose address details
are on this call as well as on the
conference Home page.
Proceedings
The authors of accepted papers shall
prepare their camera-ready submissions in
full conformance with the LNCS style,
not exceeding 12 pages and strictly by
March 7, 2005. Authors should refer
to:
http://www.springer.de/comp/lncs/authors
.html for format and style guidelines.
Failure to comply will prevent the paper
from appearing in the conference
proceedings. The conference proceedings
including all accepted papers will be
published in the Lecture Notes in
Computer Science (LNCS) series by
Springer Verlag, which will be available
at the start of the conference. All other
accepted contributions will appear in the

Ada User Journal using the relevant
format and style.
Awards
Ada-Europe will offer honorary awards
for the best paper and the best
presentation, which will be presented
during the banquet and at the close of the
conference respectively.
Call for Tutorials
Tutorials should address subjects that fall
within the thrust of the conference and
may be proposed as either half- or a full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should
be submitted by e-mail to the Tutorial
Chair Iain Bate. The providers of full-day
tutorials will receive a complimentary
conference registration as well as a fee for
every paying participant in excess of 5;
for half-day tutorials, these benefits will
accordingly be halved. The Ada User
Journal will offer space for the
publication of summaries of the accepted
tutorial in issues preceding and/or
following the conference.
Call for Workshops
Workshops on themes within the
conference scope may be arranged to
discuss matters of immediate technical
interest as well as to foster action on
longer-term technical objectives.
Proposals may be submitted for half- or
full-day workshops, to be scheduled on
either ends of the main conference.
Workshop proposals should be submitted
by e-mail to the Program Co-Chair Tullio
Vardanega. The workshop organiser shall
also commit to preparing proceedings for
timely publication in the Ada User
Journal.
Exhibition
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair Rod Chapman as soon as
possible for further information and for
allowing suitable planning of the
exhibition space and time.

Ada and Educat ion 183

Ada User Journal Volume 25, Number 4, December 2004

Reduced Fees for Students
A small number of bursars are available
for students who will (co-)author and
present papers at the conference. A
reduction of 25% will be made to the
conference fee. Contact the Conference
Chair Alan Burns for details.
Organizing Committee
Conference Chair
Alan Burns, University of York, UK
burns@cs.york.ac.uk
Program Co-Chairs
Tullio Vardanega, University of Padua,
Italy, tullio.vardanega@math.unipd.it
Andy Wellings, University of York, UK,
andy@cs.york.ac.uk
Tutorial Chair
Iain Bate, University of York, UK,
ijb@cs.york.ac.uk
Exhibition Chair
Rod Chapman, Praxis Critical Systems,
rod.chapman@praxis-cs.co.uk
Publicity Co-Chairs
Ian Broster, University of York, UK,
ianb@cs.york.ac.uk
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium,
Dirk.Craeynest@cs.kuleuven.ac.be
Local Administrator
Sue Helliwell, University of York, UK,
sue@cs.york.ac.uk
Ada-Europe Conference Liaison
Laurent Pautet, ENST Paris, France,
pautet@enst.fr
Program Committee
Asplund Lars, Mälardalens Högskola,
Sweden
Alonso Alejandro, Universidad
Politecnica de Madrid, Spain
Barnes Janet, Praxis Critical Systems, UK
Bernat Guillem, University of York, UK
Blieberger Johann, Technische
Universität Wien, Austria
Burgstaller Bernd, Technische Universität
Wien, Austria
Burns Alan, University of York, UK
Cederling Ulf, Vaxjo University, Sweden
Craeynest Dirk, Aubay Belgium &
K.U.Leuven, Belgium
Crespo Alfons, Universidad Politecnica
de Valencia, Spain
Dencker Peter, Aonix GmbH, Germany
Devillers Raymond, Université Libre de
Bruxelles, Belgium
González-Harbour Michael, Universidad
de Cantabria, Spain
Hately Andrew, Eurocontrol - CEATS
Research Development Simulation
Centre, Hungary
Hommel Günter, Technischen Univesität
Berlin, Germany
Kauer Stefan, EADS Dornier, Germany
Keller Hubert, Institut für Angewandte
Informatik

Kermarrec Yvon, ENST Bretagne, France
Kienzle Jörg, McGill University, Canada
Kordon Fabrice, Université Pierre &
Marie Curie, France
Leroy Pascal, IBM, France
LLamosi Albert, Universitat de les Illes
Balears, Spain
Lundqvist Kristina, MIT, USA
Mazzanti Franco, Istituto di Scienza e
Tecnologie dell'Informazione, Italy
McCormick John, University of Northern
Iowa, USA
Miranda Javier, Universidad Las Palmas
de Gran Canaria, Spain
Morere Pierre, Aonix, France
de la Puente Juan A., Universidad
Politecnica de Madrid, Spain
Pautet Laurent, ENST Paris, France
Plödereder Erhard, Universität Stuttgart,
Germany
Romanovsky Alexander, University of
Newcastle upon Tyne, UK
Rosen Jean-Pierre, Adalog, France
Schonberg Edmond, New York
University & ACT, USA
Vardanega Tullio, Università di Padova,
Italy
Wellings Andy, University of York, UK
Winkler Jürgen, Friedrich-Schiller-
Universität, Germany

Ada and Education
Real-Time Ada
programming
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Thu, 16 Sep 2004 11:29:08 GMT
Subject: Re: RTeal-time Ada Programming

Rules ?
Newsgroups: comp.lang.ada
Armand Puccetti wrote:
> Does someone know about some good

guides with programming rules for real-
time Ada? I'm looking for detailed rules
used for developing embedded systems
within large companies or national
authorities (FAA, DoD,...), that can
give concrete hints to RT programmers.
Also, what reference text books on RT
Ada programming are worthwile
reading?

Here's one called "Real time scheduling
theory and Ada."
http://www.sei.cmu.edu/pub/documents/8
8.reports/pdf/tr33.88.pdf
And another called "Realtime Software
Engineering in Ada: Observations and
Guidelines"
http://www.sei.cmu.edu/pub/documents/8
9.reports/pdf/tr22.89.pdf
I think they'll make to good night reading
books for you :-). Might wanna pay a
visit to my website too (ada world
http://www.adaworld.com)

- In the Learning Center/ Free books and
references for another PDF file about the
Ravenscar tasking model.
- In the Ada Advocacy section for yet
another pdf file entitled "Targeting
Ada95/DSA for Distributed Simulation of
Multi Protocol Communication
Networks"

Free Seminar about SPARK
From: Joyce L. Tokar

<tokar@pyrrhusoft.com>
Date: Fri, 27 Aug 2004 00:12:09 GMT
Subject: FREE SEMINAR: SPARK: A

Safer Way to Program
Newsgroups: comp.lang.ada
SPARK: A Safer Way to Program
Friday 1 Oct 2004 13:00-16:00
Mustang Library Discussion Room
10101 N 90th St, Scottsdale, AZ 85258
There is an increasing need to produce
software that is safe, secure, and reliable.
As systems become more complex and
safety and security issues gain ground in
the world of real-time applications, there
is a greater demand for tools and
techniques that will enable the generation
of robust software in a cost-effective and
timely manner. Much of the emphasis on
the development of high integrity
software is placed on the testing cycle
near the end of the development process.
This methodology results in the need for a
large amount of time at the end of the
development process to test components
as well as integrated systems.
Yet, it is well known and documented that
the best time to find errors is at the start of
the development cycle when the problems
are smaller and better understood. The
cost of correcting errors that are
discovered early in the software life cycle
is considerably less expensive than those
that are found during integration and test.
The SPARK approach to developing
software provides the tools and
technology needed to construct correct
software from the start of the process.
This methodology reduces the cost of
development because the components are
built correctly from the start leading to a
shorter integration and test cycle with
fewer bugs discovered in this phase.
This free seminar will provide an
overview of the SPARK language and the
tools in the SPARK toolset that facilitate
the generation of safe and secure
software. The course is suitable for senior
software and systems engineers; the
seminar does not presume prior
knowledge of SPARK. The seminar is
also useful to software and systems
managers responsible for the development
and integration of complex critical
systems. The attendees should have an
understanding of the fundamentals of the
development of complex, critical real-
time software applications.

184 Ada-related Tools

Volume 25, Number 4, December 2004 Ada User Journal

If you would like to join us for a three-
hour presentation by Dr. Joyce L Tokar,
please complete the registration form on
our website and email it to
training@pyrrhusoft.com.
See our website for other dates and
locations of the seminar
www.pyrrhusoft.com.

Public SPARK Training in
2005
From: Rod Chapman

<rod.chapman@praxis-cs.co.uk>
Date: 11 Nov 2004 07:42:30 -0800
Subject: ANN: SPARK Training in 2005
Newsgroups: comp.lang.ada
I'm pleased to say that dates for public
SPARK Training for 2005 are now
available on www.sparkada.com
Note that there's a new, advanced "Black
Belt SPARK" course that concentrates on
the use of the SPARK Proof Tools and the
Proof-Directed design of SPARK
programs. Public course dates for this
course will be announced soon.

Public Ada 95 Courses
From: Ed Colbert <colbert@abssw.com>
Date: 12 Nov 2004 09:45:37 -0800
Subject: [Announcing] Public Ada 95

Courses 13-17 December 2004 in
Carlsbad CA

Newsgroups: comp.lang.ada
Absolute Software will be holding a
public Ada 95 course during the week of
13 [December] 2004 in Carlsbad, CA.
You can find a full description and
registration form on our web-site,
www.abssw.com. Click the Public
Courses button in the left margin. (We
also offer courses on object-oriented
methods and other object-oriented
languages.)
If there is anything you'd like to discuss,
please call, write, or send me E-mail.

Ada-related Resources
New AdaPower.com
From: David Botton <david@botton.com>
Date: Wed, 27 Oct 2004 19:06:14 -0400
Subject: New AdaPower.com
Newsgroups: comp.lang.ada
I have begun work on a new version of
AdaPower.com powered by PHP and
MySQL using portal code that runs a
number of my personal sites.
When complete, site updates can easily be
made from a control panel I wrote, etc.
etc.
More information to follow. You can
watch progress over the next few weeks
as things are put up, etc. at of course
http://www.adapower.com

The old AdaPower site is accessible via
http://www.adapower.org during the
transition.
From: David Botton <david@botton.com>
Date: Thu, 28 Oct 2004 02:27:05 -0400
Subject: AdaPower.com Links
Newsgroups: comp.lang.ada
The AdaPower Links Page is complete
now. So....
Are you a Compiler Vendor, Tool Vendor
or Offering Training and Consulting?
Then you should be on the
AdaPower.com Links page.
http://www.adapower.com/links
Please check to see if you are listed. If
not, please e-mail to david@botton.com
From: David Botton <david@botton.com>
Date: Thu, 28 Oct 2004 05:19:24 -0400
Subject: AdaPower.com Call For Projects
Newsgroups: comp.lang.ada
Do you have an active Ada project that
other people can join and be a part of?
There are many people that would love to
work with you on your Ada dreams.
The *new* AdaPower.com features a
section called "Ada Projects You Can
Join" where your Ada project can be
listed.
See http://www.adapower.com/projects
Contact me: david@botton.com to have
your project listed! Please include Name,
Description and URL
From: David Botton <david@botton.com>
Date: Fri, 29 Oct 2004 00:53:42 -0400
Subject: AdaPower.com Home Pages
Newsgroups: comp.lang.ada
Is your Ada home page listed on
AdaPower.com?
Take a look
http://www.adapower.com/index.php?Co
mmand=HomePages
If not let me know!
From: David Botton <david@botton.com>
Date: Fri, 29 Oct 2004 00:52:25 -0400
Subject: AdaPower.com RSS News Feeds
Newsgroups: comp.lang.ada
Did you know that the new
AdaPower.com has RSS News Feeds?
You can subscribe to either the main news
feed at
http://www.adapower.com/rss/index.xml
or the update feed for the last 20 updates
made to the site at
http://www.adapower.com/rss/latest/index
.xml
From: David Botton <david@botton.com>
Date: Fri, 29 Oct 2004 00:55:24 -0400
Subject: Source Code Example, Articles,

Etc.
Newsgroups: comp.lang.ada
Do you have Ada Packages for Reuse that
are not yet on AdaPower.com?

Most packages have been entered in to the
new AdaPower.com site. Make sure yours
is there.
If not, contact me and it will be in
instantly.
From: David Botton <david@botton.com>
Date: Tue, 9 Nov 2004 00:24:16 -0500
Subject: The NEW AdaPower.com NOW

COMPLETE
Newsgroups: comp.lang.ada
The entire contents of the old
AdaPower.com has now been moved in to
the databases running the new
AdaPower.com, links and code updated
when known and already a ton of new
stuff in.
From the AdaPower.com home page:
Ada Programming Articles, Examples and
Packages on AdaPower as of Nov 8,
2004: 433. So now there is a count :-)
Help me break 500 this week!
I am looking for examples of Ada
programing. Be it simple basic code,
advanced techniques or sample programs
to demonstrate the use of Ada libraries,
GUI programming with Ada, Web
programming with Ada, etc. etc.
Thanks!
From: David Botton <david@botton.com>
Date: Fri, 5 Nov 2004 01:46:49 -0500
Subject: Ada FAQ
Newsgroups: comp.lang.ada
AdaPower.com is almost done in the
transition to the new design and database
orientation and I've now picked up on an
old project, the Ada FAQ. As we all
know, the old Ada FAQs have been
kindly locked up in (c)s and the author
unresponsive to release them for many
years.
AdaPower had an FAQ project for a little
while and the FAQs from that project are
being imported in to the new Ada FAQ at:
http://www.adapower.com/faq
If you have an Ada question and answer,
please forward it to David@Botton.com
If you maintain an FAQ for an Ada
related site or product, please send a link
to the above address so I can add it to the
list of "Other Ada Related FAQs"
BTW - On November 7, AdaPower will
be 6 YEARS OLD! see
http://www.adapower.com

Ada-related Tools
AdaCL 4.2.0 - Ada Class
Library
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 26 Aug 2004 21:29:49 +0200
Subject: [Announcement] AdaCL 4.2.0

released.
Newsgroups: comp.lang.ada

Ada-related Tools 185

Ada User Journal Volume 25, Number 4, December 2004

Notes:
First Release with Björn Persson's
EAStrings and Orto. It's a Team now so
do use Tracker for bug reports.
Changes:
EAStrings support for non Latin 1 strings.
Orto Commandline parsing for non Latin
1 commandlines.
Extension to XML/Ada Unicode support.
And yes I do submit them to libre as well
and one is already approved.
Abstract:
AdaCL provides library services for
scriptig in Ada:
- A text search and replace library.
- a complete cgi binding.
- execution of external programms
inclusive I/O redirection with
Ada.Text_IO. Unlike GNAT.OS_Lib Ada
CL lets you wait on a given
asynchronous process instead of just the fi
rst to end.
- a garbage collector.
- booch components for indefinite
elements.
- trace feature - very handy for CGI (no
debugger, no console output).
- Control cdrecord and makeisofs.
- some cvs tools.
With Regards
Martin Krischik
mailto://krischik@users.sourceforge.net
http://www.ada.krischik.com

Simple components 1.6
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 9 Oct 2004 20:02:47 +0200
Subject: ANN: Simple components 1.6
Newsgroups: comp.lang.ada
I have uploaded version 1.6.
http://www.dmitry-
kazakov.de/ada/components.htm
Changes made are:
1. Added set of GC objects: the child
package Object.Handle.Generic_Set;
2. Erase operation was added to all
unbounded arrays;
3. Bug fix in Generic_Set. Now, binary
operations should work correctly when
both arguments are the same set.

Lego Mindstorms
From: Jerry Petrey

<jdpetrey@raytheon.com>
Date: Wed, 29 Sep 2004 10:00:10 -0700
Subject: Re: Ada and Robotics (for fun)?
Newsgroups: comp.lang.ada
Chris Humphries wrote:

> Just for fun, I thought it would be
interesting to do hobby like ada
programming on robots. From
searching google, most I got was
references to using Ada for lego
mindstorms. That seems like fun,
anyone have experience in this?
Here are some of the links for Lego
Mindstorm:
1)
http://www.faginfamily.net/barry/Papers/
AdaLetters.htm
2)
http://www.usafa.af.mil/dfcs/bios/mcc_ht
ml/adagide.html
3)
http://www.usafa.af.mil/dfcs/Ada_Mindst
orms_manual.htm
[4)
http://www.faginfamily.net/barry/Papers/I
TICSEWeb/using_ada.htm --su]
Hope this wasn't off-base with this, but
all programmers like to play in
programming that isn't "work"? Plus,
robots are cool.

Mr. Fagan has done a nice job with Ada
Mindstorms. I hope it continues to
evolve.
You can get the AdaGide add-on for Ada
Mindstorms at:
ftp://ftp.usafa.af.mil/pub/dfcs/fagin/adami
ndstorms-install.exe
[See also same topic in AUJ 23-3 (Sep
2002), pp.127-128. --su]

ECLAT Status
From: Nick Roberts

<nick.roberts@acm.org>
Date: Thu, 07 Oct 2004 23:52:57 +0100
Subject: ECLAT [was: Ada memory

management?]
Newsgroups: comp.lang.ada
Luke A. Guest wrote:
>> http://sourceforge.net/projects/eclat
> Erm, how far are you with this project

Nick? I've known about it for a while
and your page doesn't really have
anything on it (yet), how about an
update?

Honest truth is, not very far yet. There are
a few docs under the 'Docs' link.
> Also, are you using GCC at all? That

would be interesting; it might spur
some competition with ACT ;-D If
you're not using GCC, maybe you
should try using it to speed up
development.

I do want ECLAT to be (friendly :-)
competition for GNAT/GCC, both in the
front and and the back end. I think this is
a case where it makes sense to 'reinvent
the wheel'. If people who are new to Ada
ask "Are there any free compilers?", I
think it would sound a lot better to be able
to suggest two, rather than just one. (I
know there is ObjectAda, but it is really
only a demo version.)

There are some technical reasons why
GNAT and GCC are unsuited to what I
want to achieve.
GNAT's library model is based on source
code files directly representing the
library; this model isn't always ideal. I
want to provide a compiler that has the
more traditional model of a library being
stored in a set of files which contain all
the necessary information (to generate
executables) in a binary form.
I want ECLAT to be able to target the
AdaOS native executable format for the
IA-32 (NEAI/IA-32), which is segmented.
GCC emits code which is suitable (only)
for a 'flat' memory model, and I think
adapting it to generate code that supports
the NEAI/IA-32 segmented architecture
would be difficult.
[See also "ECLAT - Open Source Ada
2005 Compiler" in AUJ 25-3 (Sep 2004),
p.120. --su]

Distributed compilation
From: Martin Dowie

<martin.dowie@baesystems.com>
Date: Fri, 29 Oct 2004 11:50:05 +0100
Organization: BAE SYSTEMS
Subject: Re: Distributed compiles?
Newsgroups: comp.lang.ada
> A long shot, I know, but are there any

distributed compilers for Ada? Our
build process takes a couple of hours
and it would nice if we could spread the
load a bit...

Not quite what you're after but check out
the "-j" option for GNAT (under '6.2
switches for gnatmake'). On a twin Xeon
machine this should give you 4
compilations in parallel.
From: Jeff Creem <jcreem@yahoo.com>
Date: Fri, 29 Oct 2004 11:05:58 GMT
Subject: Re: Distributed compiles?
Newsgroups: comp.lang.ada
I've never tried this but perhaps cook
would be helpful
http://www.vaxxine.com/pegasoft/homes/
5.html#5.2
From: Georg Bauhaus <sb463ba@l1-

hrz.uni-duisburg.de>
Date: Wed, 3 Nov 2004 13:22:09
Subject: Re: Distributed compiles?
Newsgroups: comp.lang.ada
Not suggesting that you haven't already
done so, still, could you split the software
into independent subsystems that are built
separately and then use some distributed
file system?
From: Wes Groleau

<groleau+news@freeshell.org>
Date: Wed, 03 Nov 2004 19:48:10 -0500
Subject: Re: Distributed compiles?
Newsgroups: comp.lang.ada
With GNAT, you can specify gnatmake -j
5 and have five compiles running at once.

186 Ada-related Tools

Volume 25, Number 4, December 2004 Ada User Journal

If you set it up (it's possible, check the
docs) so that when it calls 'gcc' it actually
gets a script that runs the job on another
machine with the real gcc.
And, since gnatmake is written in Ada,
and compiled with GNAT, which
complies with the distributed systems
annex, it shouldn't be too hard for
someone with some time on their hands to
modify gnatmake as follows:
 -j n
where n is a positive number, just like
now
 -j "host1 host2 host3 host4"
farms out the compiles on all those hosts
(assumes mount points and paths are the
same)

Programming a PDA with
Ada
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Tue, 26 Oct 2004 11:54:29 GMT
Subject: Re: PDA's
Newsgroups: comp.lang.ada
> I'm looking for a PDA that I can

program. So I can basically put my own
buttons and information on.
Any information on a PDA that does
that, or specific software and PDA that
I can use, would be great.

As far as programmable PDAs goes,
There's more than one model. I've found
some programming language or another
on pretty much all of Palm's series of
PDAs. I have a PSION REVO+ which I
happen to like alot because of it's layout
and that one is programmable as well in
OPL (a somewhat BASIC like language)
C++ and Java and of course Assembler.
For palm: http://mobile.eric-
poncet.com/palm/tutorial.html
For PSION PDAs you can go to the
Symbian OS website
http://www.symbian.com/developer/
The good think about a Symbian OS
machine, is that Ada can be compiled to
Java bytecode and Symbian can/does run
Java.
From: Wes Groleau

<groleau+news@freeshell.org>
Subject: Re: PDA's
Date: Tue, 26 Oct 2004 22:27:00 -0500
Newsgroups: comp.lang.ada
Ada to J-code to Palm OS has also been
done.
From: Rob Veenker <veenker@xs4all.nl>
Date: Fri, 29 Oct 2004 09:12:38 +0200
Subject: Re: PDA's
Newsgroups: comp.lang.ada
Besides JGNAT, which works well on
most PDA's (the trick is to get a JVM :-)
there now is MGNAT for PDA's as well.
There will be a tutorial by Martin Carlisle
in the next SigAda conference in Atlanta.

I have already successfully ported (well
copied and compiled :-) some applications
on the iPAQ. It integrates even into the
Visual Studio .Net so you can debug the
Ada code as well on the emulated PDA.
For this, MGNAT generates debug info
into the .IL files
There should be an official release soon
From: Pascal Obry <pascal@obry.org>
Date: 26 Oct 2004 19:40:38 +0200
Subject: Re: PDA's
Newsgroups: comp.lang.ada
Stephane Richard wrote:
> The good thing about a Symbian OS

machine is that Ada can be compiled to
Java bytecode and Symbian can/does
run Java.

Do you have a step-by-step doc to do
that? I have a P900 and like to program it
in Ada. The JGNAT is ok for me, but I
have never installed a JVM into a
Symbian device. I know that there is some
information on the Sony Ericsson Web
site but this is far from being a step-by-
step approach!
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Tue, 26 Oct 2004 17:50:09 GMT
Subject: Re: PDA's
Newsgroups: comp.lang.ada
Maybe this website can help.
http://www.wirelessdevnet.com/channels/
pda/training/symbian2/

Fuzzy sets for Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 17 Oct 2004 14:19:36 +0200
Subject: ANN: Fuzzy sets for Ada version

3.7
Newsgroups: comp.lang.ada
Fuzzy sets for Ada is distributed under
terms of GMGPL. It provides
implementations of:
- Confidence factors with the operations
not, and, or, xor, +, *;
- Classical fuzzy sets with the set-
theoretic operations and the operations of
the possibility theory;
- Intuitionistic fuzzy sets with the
operations on them;
- Fuzzy logic based on the intuitionistic
fuzzy sets and the possibility theory;
- Fuzzy numbers both integer and
floating-point ones with conventional
arithmetical operations;
- Linguistic variables and sets of linguistic
variables with operations on them;
- String-oriented I/O is supported.
The version 3.7 is based on the latest
version of simple components.
[http://www.dmitry-
kazakov.de/ada/fuzzy.htm --su]

[See also same topic in AUJ 24-4 (Dec
2003), p.204. --su]

Infinite number sequences
From: Georg Bauhaus <sb463ba@l1-

hrz.uni-duisburg.de>
Date: Wed, 22 Sep 2004 21:15:54 +0000

UTC
Subject: [ANN] "functional" number

sequence device
Newsgroups: comp.lang.ada
A small programming device that has
helped me make "infinite" sequences
based on numbers in Ada is online at
http://home.arcor.de/bauhaus/Ada/fada.txt
It is modelled, in ML terms, after datatype
chain = Link of (int (int -> chain)).

Ada and OpenGL
From: Etienne Baudin <pfox@free.fr>
Date: Sun, 17 Oct 2004 17:30:17 +0200
Subject: Exemple d'application

Ada+Opengl
Newsgroups: fr.comp.lang.ada
[Translation from French – su] I am
offering code that implements a sort of
rudimentary viewer for 3d objects. It is
not really professional, but it shows that
one can put together nice toys with Ada.
http://pfox.free.fr/AdaOpenGL-
Exemple.tar.bz2
The software compiles on Linux as well
as on Windows (good live portability!).
Do not hesitate to let me have your
comments and to report any compilation
problems (cf. the relevant procedure
within the distribution).

Win_IO 2.0.1
From: Michael Gonzalez

<mgh@unican.es>
Date: Wed, 13 Oct 2004 11:50:46 +0200
Organization: Universidad de Cantabria
Subject: Win_IO 2.0.1 is now available
Newsgroups: comp.lang.ada
Version 2.0.1 of Win_IO is now available
in: http://www.ctr.unican.es/win_io/
This version is developed with GtkAda
2.2.X and is free software. It is the same
as version 2.0 except that it corrects a bug
in the function used to read an image from
disk.
Win_IO is a set of packages for graphical
input and output. It is designed specially
for students or Ada users who do not want
to spend their time learning a complex
graphical user interface, but who are
"tired" of the old-fashioned text-oriented
input and output. Win_IO has the same
goals as JEWL (John English Windows
Library,
http://www.it.bton.ac.uk/staff/je/jewl/),
but is simpler (and less powerful) and is
portable within UNIX, Linux and
Windows platforms. JEWL is currently
only provided for Windows.

Ada-related Tools 187

Ada User Journal Volume 25, Number 4, December 2004

See how you can code nice-looking
windows for input & output in a really
minimal program:
output:
http://www.ctr.unican.es/win_io/ow_exa
mple.html
input :
http://www.ctr.unican.es/win_io/iw_exam
ple.html
Win_IO is composed of the following
modules:
- Input_Windows: Provides a simple
window with I/O capabilities for data of
the types Integer, Float, and String.
Several data can be displayed and/or
retrieved on the same window.
- Output_Windows: Provides a simple
window with Output capabilities for data
of the types Integer, Float, and String.
Several data can be displayed on the same
window.
- Message_Windows: Provides a simple
window for displaying a short message. It
provides an OK button for closing the
window.
- Menu_Windows: Provides a simple
window with several buttons that enable
the user to select from a number of
options.It is a generic package that must
be instantiated with an enumeration type.
One button will be created for each value
in this type.
- Graphics_Windows: Provides a simple
window with drawing capabilities,
including the display of picture files.
- Plot_Windows: Provides a simple
window for drawing two-dimensional
graphs from sets of points.

A community Windows
binding
From: Stephen Leake

<stephen_leake@acm.org>
Date: 05 Oct 2004 19:28:03 -0400
Subject: A community Windows binding
Newsgroups: comp.lang.ada
I'd like to step back from the "GWindows
vs CLAW" debate and take stock.
David Botton has made several points in
favor of using GWindows as the starting
point for a community Ada binding. He
has also pointed out the existence of a
GWindows user/developer group on the
GNAVI mailing list; perhaps those people
have not been represented in the
discussions here.
My personal interest is in establishing a
community supported Free Software
Windows Ada binding. I can easily go
with either GWindows or CLAW as a
starting point.
I think the crucial issue is "how many
developers will actually join the project?".
I have volunteered to be the first
sysadmin of a SourceForge project for a

community Ada Windows binding. I'd
like to get started :).
[...] As the list stands now, there is a clear
preference for GWindows.
From: Frank Piron
Date: Thu, 07 Oct 2004 08:38:30 +0200
Subject: Re: A community Windows binding
Newsgroups: comp.lang.ada
Our position here at KonAd:
1) Every effort which leads to a broader
use of Ada should be supported.
2) Building a library or binding which for
easy construction of production quality
GUI interfaces on the windows operating
system is an effort in the sense of 1).
3) Last year we decided to extend
GWindows because we had to decide
something (otherwise no money) and
GWindows was there: free, available,
easy to use and to extend.
4) Of course we will participate in every
community effort concerning the further
development of GWindows.
From: Steve <steved94@comcast.net>
Date: Wed, 06 Oct 2004 14:04:04 GMT
Subject: Re: A community Windows binding
Newsgroups: comp.lang.ada
Georg Bauhaus wrote:
> I think the point is Windows

programming, not general GUI
programming. There are things that
make OSs and GUIs look and feel
different. In particluar, if your program
uses Windows specific features, how do
you define an interface that uses
Windows specific features on *BSD/X,
say?
How would you define an interface that
is capable of being ported to _both_
Windows and 8 1/2 (the Plan 9
graphical interface)?

IMHO,
The community Windows binding should
not get bogged down in building a system
that is compatible with other OS or
windowing systems.
I am a strong advocate of Ada. Ada is the
best general purpose programming
language I have met to date. I have met
several programming languages to date,
and continue to meet them (C# being the
latest).
I have come to the realization about
making the most economic and logical
choices: it doesn't matter.
When OS/2 was a more stable and
uniform OS, the bulk of new development
went to Windows and NT, which at the
time was comparatively unstable. OS/2
was a better choice... it doesn't matter.
Using Ada is the best choice for much of
the development done today. It doesn't
matter, development is rarely done in
Ada. I think that's why David Botton has

been away from this list for a long period
of time.
For the community windows binding, I
think it's best that we focus on Windows
and only Windows (even though it sucks).
From: Ross Higson

<rosshigson@optusnet.com.au>
Subject: Re: A community Windows binding
Newsgroups: comp.lang.ada
[...] I wish there was a good platform
independent GUI toolset, and I support
the goals of GtkAda in trying to fill this
gap even though I personally find it a bit
limited and more difficult to use than
GWindows. But I thought we were
talking here about a Windows specific
binding, and I think GWindows is the
right choice for that. It would also help
promote the use of Ada on the Windows
platform because it would be familiar
territory to any Windows programmers
who decided to try Ada.
From: Stephen Leake

<stephen_leake@acm.org>
Date: 10 Oct 2004 14:05:57 -0400
Subject: Re: A community Windows binding
Newsgroups: comp.lang.ada
Given the response so far, it is clear there
is much more support for using
GWindows as the base of a "community
Windows binding" than CLAW.
Also, it seems clear that SourceForge is
the platform to use. Using Gnu Arch is
appealing, but it requires that each
developer open their machines to outside
access. I'd rather let SourceForge worry
about the security implications of that.
The other hosts suggested don't seem as
well supported as SourceForge.
Before I actually create a SourceForge
project, I'd like to get at least one other
developer to commit to being a sysadmin
on the project. I don't think being
sysadmin will take much time; it mostly
consists of setting up accounts for
developers. When we get to doing
releases, there will be more work, but we
can deal with that then. [...]
From: David Botton <david@botton.com>
Subject: Re: A community Windows binding
Date: Sun, 10 Oct 2004 20:39:31 -0400
Newsgroups: comp.lang.ada
Stephen Leake wrote:
> Another minor issue is the name of the

project. We want to host GWindows
code (no need to change the name of
that package).

I recommend we use the original name of
the GWindows/GNATCOM project, ie.
GNAVI
> Also the Gnatcom code? I'm not clear if

this is available anywhere other than
AdaPower, or if it needs a CVS project.

CVS for GNATCOM and GWindows was
actively maintained by ACT when they
were supporting it for their customers. As

188 Ada-related Tools

Volume 25, Number 4, December 2004 Ada User Journal

far as I know this is not officially the case
any more.
> And possibly a version of

Ada.Collections, until they become
widely available from vendors. We
should start using that for any
collection needs in GWindows. Or we
could just redistribute a .tar.gz of
Matthew Heaney's current stuff.

I think just linking / redistributing
Matthew Heaney's current stuff is ideal.

Comparison of GUI libraries
for Ada
From: David Botton <david@botton.com>
Date: Sun, 3 Oct 2004 12:32:56 -0400
Subject: Re: GWindows and David Botton
Newsgroups: comp.lang.ada
[Discussing the development of a
community Windows binding (see above
thread) --su]
Stephen Leake wrote:
> We should compare Windex,

Gwindows, and Claw, and decide
which one makes the best starting
point.

I have a comparison between GWindows
and CLAW at:
http://www.adapower.com/gwindows/GW
indowsVsClaw.html
Stephen, I would suggest looking at the
event models in GWindows in particular
to see the major reason (in addition to
doing what was needed to allow for
COM/.Net/ActiveX controls which may
be the chief reason in the end) why I
didn't build off of Windex which is very
tightly bound to the Windows way of
doing things. Windex while in general a
smaller library than GWindows does have
some areas that it is better fleshed out in.
GWindows is also tuned toward the larger
project I was working on for a GNU
Delphi replacement. (GWindows +
GNATCOM + GNAVI IDE). So it is very
easy to target for a GUI builder based on
its dispatching model combined with
inheritance.
From: Marius Amado Alves

<amado.alves@netcabo.pt>
Date: Wed, 06 Oct 2004 19:56:55 +0100
Subject: Re: GWindows and David Botton
Newsgroups: comp.lang.ada
An update of our little table incorporating
the latest contributions. I have also put it
in the Universal Casbah wiki at
http://www.liacc.up.pt/~maa / Casbah /
Miscellany / GUIs_
For_Ada or
http://www.liacc.up.pt/~maa/cgi-
bin/casbah/casbah.cgi?operation=view&p
agename=GUIs_For_Ada so that
contributions can go there directly.
GUI/Windows products for Ada
comparison
(C) Guys de Cla

Product Binding License/OSes/Install
 Support/Remarks

AdaBindX C/Lesstif GPL* B,L d b
IntroClaw C/Win32 GPL* W easy free f
FullClaw C/Win32 prop W easy com f
Glade GTK+ GPL B,L,?
 d a
GtkAda C/GTK+ GPL* B,L,M,
 S,W d com
GWindows C/Win32 GPL* W
JEWL Win32 free W easy
RAPID c
TASH Tcl/Tk GPL* B,W,
 L e
Windex Win32 GPL* W free
Win32 C/Win32 free W

GPL* = GMGPL
(a) visual GUI builder and code generator
(gate) for GtkAda
(b) binding to Xlib, Xt, and Xm
(motif/lesstif)
(c) visual GUI builder
(d) Debian package
(e) Debian package no longer updated
(f) visual GUI builder available
Binding:
Underlying programming language /
library.
License:
prop=proprietary
OSes:
B = BSD
L = Linux
M = MacOS
S = Solaris
W = Windows
Install:
easy = installs out of the box
hard = requires a guru
Support:
free = dedicated volunteer structure e.g. a
maillist (not CLA)
com = commercial support
no = no support (but of course CLA
continues to exist)
Append "/doc" if documentation exists
(free)
Threads in comp.lang.ada *
GTK
GWindows and David Botton
URLs *
RAPID
ftp://sunsite.informatik.rwth-
aachen.de/pub/mirror/ftp.usafa.af.mil/pub/
dfcs/carlisle/usafa/rapid/index.html

XIA - XPath In Ada
From: Marc A. Criley <mc@mckae.com>
Date: Sat, 06 Nov 2004 15:22:19 GMT
Subject: Announce: XIA (XPath In Ada)
Newsgroups: comp.lang.ada
A limited capability beta version of XIA,
a native implementation of XPath In Ada,
is now available on the Mckae

Technologies website
(http://www.mckae.com/xia.html).
Version: 0.10
This current version of XIA is a limited-
capability beta release. It implements the
axes and the node tests, but does not yet
implement any predicate filtering. So an
XPath query returns all the nodes meeting
the node test along the given axes.
Predicate processing will be incrementally
added to XIA in subsequent releases, but
right now any additional node filtering
must be done by the XML-enabled
application itself.
As this is a beta release, reports of errors
(either in operation or in the nodes
retrieved) would be appreciated. Please
provide the XML document (or readable
fragment), the query that was submitted,
and a description of what was expected.
Send bug reports and questions to xia-
info@mckae.com

DOM and SAX parsing in
Ada
From: Steve <steved94@comcast.net>
Date: Tue, 09 Nov 2004 03:14:13 GMT
Subject: Re: DOM and SAX parsing in Ada
Newsgroups: comp.lang.ada
Tim Roede wrote:
> There is considerable interest in the

group I am working with to provide
XML parsing using both DOM and
SAX parsing. Does anyone have a
name or a link to a suitable Ada library
(similar to xerces)?

XML/Ada
http://libre.act-europe.fr/xmlada/
Includes a Unicode module, a SAX 2.0
module, and a DOM 2.0 module. The
code is released under the GMGPL.
Support is available for a fee from
AdaCore. In addition to the platforms
listed at the Libre site, I have successfully
used XML/Ada 1.0 with ObjectAda 7.2.2.
From: David Botton <david@botton.com>
Newsgroups: comp.lang.ada
Date: Mon, 8 Nov 2004 19:24:41 -0500
Subject: Re: DOM and SAX parsing in Ada
There are 2 XML libs listed here and I
will be adding another shortly:
See:
http://www.adapower.com/index.php?Co
mmand=Class&ClassID=AdaLibs
See: The Ada Source Code treasury on
http://www.adapower.com for an example
of using the Ada/XML DOM (more
examples to follow)
From: David Botton <david@botton.com>
Date: Mon, 8 Nov 2004 19:56:59 -0500
Subject: Re: DOM and SAX parsing in Ada
Newsgroups: comp.lang.ada

190 Ada-related Tools

Volume 25, Number 4, December 2004 Ada User Journal

There are so many XML and Web related
tools for Ada that I broke them now in to
their own category, so please see
http://www.adapower.com/reuse
From: David Botton <david@botton.com>
Date: Tue, 9 Nov 2004 08:25:32 -0500
Subject: Re: DOM and SAX parsing in Ada
Newsgroups: comp.lang.ada
> AdaCL.GCI is missing on "Ada Web

and XML"
Not any more.

Ada Binding to Pipes
From: Marc A. Criley <mc@mckae.com>
Date: Tue, 10 Aug 2004 07:58:58 -0500
Subject: Re: SSH Sessions?
Newsgroups: comp.lang.ada
Adam Ruth wrote:
> I'm doing this very thing myself, and

I'm just using the command line version
of ssh. I execute it using the system
call (the c library system (const char
*command) call). It's pretty
straightforward, since I don't need to do
much that's complicated, just execute a
remote command line program as
though it was being executed on my
local command line.

Just want to reacquaint everyone about
the existence of Jim Rogers' "Ada
Binding to Pipes"
(http://www.adapower.com/reuse/pipes.ht
ml). You can issue a command and all the
output is caught and easily read back in
for post-processing.
It's incredibly easy to use, effective and
reliable, and I use it almost exclusively
whenever I need to issue commands from
within an Ada program. Works great,
highly, highly recommended. (Thanks
Jim!)

PGSQL - PostgreSQL
Minimal Binding
From: "Alex R. Mosteo"

<devnull@mailinator.com>
Newsgroups: comp.lang.ada
Subject: Ada & Postgresql
Date: Fri, 03 Sep 2004 19:09:58 +0200
Anyone doing the above? I've found three
bindings:
Apq, Pgada, Gnade
I suppose I could test the three, but has
anyone already done that? I just need to
do fairly simple insertions.
From: Marius Amado Alves

<amado.alves@netcabo.pt>
Newsgroups: comp.lang.ada
Subject: Re: Ada & Postgresql
Date: Sat, 04 Sep 2004 12:41:09 +0100
>>Pgada
> Is this the pg2-stuff from Mario Amado

Alve? If so, I use this[0] ;) [0]
http://adi.thur.de/?show=adabill

Pgada /= Pg2. Nice to know Pg2 is being
used. Let me take the chance make a long
overdue update on this. On 2001 I've
replaced Pg2 with Pgsql, for use in the
European project SolEuNet, which ended
2003. I now make Pgsql available, at
http://www.liacc.up.pt/~maa/files.
There's no need to go rushing upgrading
your existing Pg2 application to Pgsql.
But if you're starting a new application, I
recommend Pgsql.
Pg2 was in my Adlib site which went
down around that time. I'll try to set up a
new shop soon with all the updated stuff
as well as an historical copy of Adlib.
From: Marius Amado Alves

<amado.alves@netcabo.pt>
Newsgroups: comp.lang.ada
Subject: Re: Ada & Postgresql
Date: Mon, 06 Sep 2004 12:36:09 +0100
GNADE vs. Pgsql.
Pgsql is a simple Ada binding to Postgres.
GNADE is a very big [1] Ada library
encompassing various database systems
(Postgres, MySQL, etc.) and protocols
(ODBC). Pick the proper thing for your
application. Use Pgsql when you simply
want to bind to Postgres and don't need
ODBC.
Now comparing oranges with oranges, i.e.
considering the Postgres binding of
GNADE, Gnu.Db.Postgres, vs. Pgsql.
As noted, Gnu.Db.Postgres has a leak in
the connection area. But has controlled
queries that automatically reclaim
memory on finalization. Pgsql has no
leaks per se, but in its current version the
types are not controlled, so the user has to
reclaim memory him self. Pick you
poison.
However, I think the main difference is in
the style of the Ada spec. Unfortunately
I'm not able to look at Gnu.Db.Postgres
right now [2], but from what I recall from
my examination of the landscape some
time ago, which has probably included
Gnu.Db.Postgres, they are much longer
and harder to use than Pgsql.
[1] The RPM has 6M, but I don't know
what's in it. See note 2.
[2] The Sourceforge site seems to only
provide RPM files. How do I read this in
my Windows XP laptop? Also, when I
click the version number on the site
(hoping to browse the files), I get XML
garbage.

Mine Detector Game 4.4
From: PragmAda Software Engineering

<pragmada@earthlink.net>
Date: Sun, 26 Sep 2004 18:40:31 GMT
Subject: Ann: New release of Mine Detector

for Windows
Newsgroups: comp.lang.ada
PragmAda Software Engineering is proud
to announce Version 4.4 of Mine

Detector. This version appears to correct
the errors that occurred with Version 4.3
under Windows 2000 and XP, but not
under 9X, ME, and Linux.
The Windows binary and source versions
are Version 4.4. The Linux binary version
remains at Version 4.3, since there is no
difference in appearance or behavior
between the two versions under Linux.
Mine Detector is available from
http://home.earthlink.net/~jrcarter010/min
det.html

War in Ada (the card game)
From: John B. Matthews

<jmatthews@wright.edu>
Date: Thu, 23 Sep 2004 03:19:02 GMT
Subject: Re: best ada integrated

development environment
Newsgroups: comp.lang.ada
Phil wrote:
> Hi, I have been out of the ada stuff for a

while and are just about to embark on a
project to simulate a blackjack card
game using Ada.

[...]
You might also be interested in my
simulation of war (the card game) in Ada:
<http://www.wright.edu/~john.matthews/
war.html>.

Documentation Tools for
Ada Sources
From: Alex R. Mosteo

<devnull@mailinator.com>
Date: Thu, 07 Oct 2004 12:40:55 +0200
Subject: Javadoc-like for Ada
Newsgroups: comp.lang.ada
I'm interested in some doc generation tool
à-la javadoc; i.e. that not only creates a
listing like gnathtml but also capable of
extracting explanations from properly
formatted comments in the specification.
I've heard good things about doxygen and
I'm going to review it to see if it's suitable
for Ada.
Any other options I should consider?
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Thu, 07 Oct 2004 11:46:16 GMT
Subject: Re: Javadoc-like for Ada
Newsgroups: comp.lang.ada
You might want to look at Ada Browse
which you can find here
http://home.tiscalinet.ch/t_wolf/tw/ada95/
adabrowse/
You might also want to look at AdaDoc
which you can find here.
http://sourceforge.net/projects/adadoc/
From: Lionel Draghi

<Lionel.Draghi@Ada-France.org>
Date: Tue, 12 Oct 2004 00:53:16 +0200
Subject: Re: Javadoc-like for Ada
Newsgroups: comp.lang.ada

Ada-related Tools 191

Ada User Journal Volume 25, Number 4, December 2004

http://www.naturaldocs.org/ does require
neither special tags in the code, nor ASIS.
Building a doc from your sources, or
whatever file that can be displayed in a
browser is easy.
NaturalDocs is far from being as good as
gnathtml/AdaDoc/AdaBrowse to extract
procedure parameters and so on, but as
this is clearly one of the most
uninteresting thing to put in a doc, I don't
care. I can use Emacs or GPS for this kind
of navigation.
On the other hand, NaturalDocs is very
good at extracting explanations from
comments, and this seems generally much
more interesting to me.

Campaign to get full
language support in Natural
Docs
From: Martin Dowie

<martin.dowie@baesystems.com>
Date: Thu, 21 Oct 2004 12:50:04 +0100
Organization: BAE SYSTEMS
Subject: Re: NaturalDocs - sponsor Ada

support
Newsgroups: comp.lang.ada
Martin Dowie wrote:
> Put your $10 where your mouth is and

get Ada support at
www.naturaldocs.org
http://www.naturaldocs.org/languages.h
tml

Actually, even if you don't want to pay,
you could consider voting for Ada support
for free!
[At this moment, Ada would be the
second in the ranking for full support,
only behind C/C++ and before languages
like Java, PHP or Python --su]

ASIS2XML
From: Simon Wright

<simon@pushface.org>
Date: 24 Oct 2004 08:05:42 +0100
Subject: ANN: ASIS2XML 20041024a
Newsgroups: comp.lang.ada
ASIS2XML converts a unit's ASIS
representation into XML, so as to make it
easier to develop transformational tools
using (for example) XSLT.
As supplied, it relies on GNAT; the only
ASIS-for-GNAT feature it relies on is that
Data_Decomposition.Size has been
extended to work for Subtype Indications;
and that only so that it can work out how
many bytes a record component will
occupy when streamed (this part is in
progress)
Not every ASIS feature is supported yet.
There is no XML Schema as yet
(however, the output's structure follows
that of ASIS as determined from the Ada
specs -- I'm not at all sure this is the Right
Thing for an XML representation).

This is an alpha release, and you can find
it at http://www.pushface.org/asis2xml/

Cheddar - Real-Time
Scheduling Simulator
From: Frank Singhoff

<singhoff@beru.univ-brest.fr>
Date: 8 Sep 2004 15:05:11 GMT
Organization: Universite de Bretagne

Occidentale
Subject: ANN : New release of Cheddar : a

real time scheduling simulator
Newsgroups: comp.lang.ada
The EA 2215 team is pleased to announce
a new release of Cheddar.
Cheddar is a free real time scheduling
tool. Cheddar is designed for checking
task temporal constraints and buffer sizes
of a real time application/system. It can
also help you for quick prototyping of real
time schedulers. Finally, it can be used for
educational purposes.
Cheddar is developed and maintained by
the EA 2215 Team, University of Brest.
Cheddar is composed of two independent
parts: an editor used to describe a real
time application/system, and a
framework. The editor allows you to
describe systems composed of several
processors which own tasks, shared
resources, buffers and which exchange
messages. The framework includes many
feasibility tests and simulation tools.
Feasibility tests can be applied to check
that task response times are met and that
buffers have bounded size. When
feasibility tests can not be applied, the
studied application can be analyzed with
scheduling and buffer simulations.
Cheddar provides a way to quickly define
"user-defined schedulers" to model
scheduling of ad-hoc applications/systems
(ex : ARINC 653).
Cheddar is written in Ada. The graphical
editor is made with GtkAda. Cheddar runs
on Solaris, Linux and Win32 boxes and
should run on every GNAT/GtkAda
supported platforms
The current release is now 1.3p3. If you
are a regular Cheddar's user, we strongly
advice you to switch to the 1.3p3 release
due to the large amount of 1.3p2 bugs that
we fixed.
Cheddar is distributed under the GNU
GPL license. It's a free software, and you
are welcome to redistribute it under
certain conditions; See the GNU General
Public License for details. Source code,
binaries and documentations can be freely
downloaded from http://beru.univ-
brest.fr/~singhoff/cheddar
1) Summary of features:
- Do scheduling simulations with classical
real time schedulers (Rate Monotonic,
Deadline Monotonic, Least Laxity First,
Earliest Deadline First, POSIX queuing
policies: SCHED_OTHERS,

SCHED_FIFO and SCHED_RR) with
different type of tasks (aperiodic,
periodic, task activated with a Poisson
process law, ...)
- Extract information from scheduling
simulation. (buffer utilization factor, task
response times, task missed deadlines,
number of pre-emption, ...)
- Apply feasibility tests on tasks and
buffers (without scheduling simulation) :
 + Compute task response time bounds.
 + Apply processor utilization tests.
 + Compute bound on buffer size (when
buffers are shared by periodic tasks)
- Shared resources support (scheduling
and blocking time analysis). Supported
protocols: PIP, PCP.
- Tools to express and do
simulations/feasibility tests with task
precedence:
 + Schedule tasks according to task
precedence
 + Compute Tindell end to end response
time.
 + Apply Chetto and Blazewicz
algorithms.
- Tools to run scheduling simulation in
the case of multiprocessors systems
- Do simulation when tasks are randomly
activated.
- Can run scheduling simulation on user-
defined scheduler and task arrival
patterns.
- Run user-defined analysis on scheduling
simulation.
- ...
2) Most of new features provided by
1.3p3:
- Fix many bugs of the previous release
(see BUGS file)
- Add a new user interface of the
scheduling simulation service. With
1.3p3, Cheddar provides two different
scheduling simulations: customized or un-
customized scheduling.
 + Un-customized simulation draws time
line and computes worst case response
time from simulation. This service is
called from the "Scheduling Simulation"
pixmap.
 + Customized simulation draws time
line and can compute many others
measures (eg. Worst/Best/Average cases
of shared resource blocking and response
time from simulation).
This service is called from the menu
"Tools/Scheduling/Scheduling
simulation" (F. Singhoff)
- Add a way to display or export event
tables produced by the scheduling
simulator engine. Event tables are XML
formatted. An event table is a set of data

192 Ada-related Tools

Volume 25, Number 4, December 2004 Ada User Journal

which stores a computed scheduling. (F.
Singhoff)
- Add a way to import event tables
computed by other tools. This service
allows you to run analysis on scheduling
produced by operating system, object
request broker or any applications. (F.
Singhoff).
- Add Partitioning tools for
multiprocessor systems scheduled with
Rate Monotonic. Several partitioning
strategies are provided (RM Best Fit, RM
Next Fit, RM First Fit, RMGT and
RMST) (M. Nivala)
- Fix errors on utilization factor feasibility
tests. In the previous release, preemptive
EDF and RM tests were applied by error
on other schedulers. (H. Martin, S.
Bothorel)
- Add user-defined event analyzers. User-
defined analyzer can be run on a given
scheduling to look for user specific
properties. User-defined event analyzers
are pieces of user code which scan and do
analysis on event tables. (F. Singhoff)
- Add user-defined task arrival pattern.
This feature should allow us to easily
define new task activation patterns (ex:
bursty task activation; jitter constraint
activation, sporadic activation,...) (H.
Huopana, F. Singhoff)
- Add a simple message scheduling.
Actually, message scheduling is limited
with constant communication delay
messages and with sending tasks which
send messages at the start of their
activation. This service have to be
extended in the next release to be really
usefull. (G. Oliva, F. Charlet)
- Add a sub-program To detect priority
inversion from scheduling simulation (F.
Singhoff)
- Add a C interface to call the framework
from C programs. (F. Singhoff)
- Shared resource states are displayed on
the time line. (E. Vilain)
3) Work in progress:
During the next year, we plan to improve
the tool with the following features:
- Update the user's guide according to the
new 1.3p3 features
- Improvement of the buffer analysis
features with queuing theory analysis
tools.
- Provide a way to import/export
application specifications in AADL.
- Improvement of message scheduling
with:
 + Allowing message sending at any
time of a task capacity
 + Providing a way to user-defined
message delay communication by
specification of user-defined message
scheduling (as user-defined scheduler)

- Fixing a buggy service which should
detects deadlock from simulation.
- Completing available services on event
tables.
[See also same topic in AUJ 24-4 (Dec
2003), p.207. --su]

RTLGnat - GNAT Port for
RT-Linux
From: Maurizio Ferracini

<maurizio.ferracini@gmail.com>
Date: 19 Oct 2004 03:21:13 -0700
Subject: Re: Gnat and priority level
Newsgroups: comp.lang.ada
[Getting more than 32 priorities in
Windows2000 --su]
> You can't (at least easily). Not only the

GNAT implementation uses just 32
priorities, but these are mapped to
underlying windows priorities, which
are only 7, if I remember correctly (yes,
there's overlapping).

And with a Real-Time Linux version like
RT-Linux? [...]
From: Jerome Hugues <hugues@nephilim-

pouet.enst.fr>
Date: Tue, 19 Oct 2004 11:50:15
Organization: ENST, France
Subject: Re: Gnat and priority level
Newsgroups: comp.lang.ada
Alex R. Mosteo wrote:
> mferracini wrote:

Firstly, I think that GNAT doesn't
target the RT capabilities of RT-Linux,
so you'll really have regular non-RT
linux threads. Unless someone has a
patch for it.

There exists one project on this subject:
http://bernia.upv.es/rtportal/apps/rtl-gnat/
Note that I've never tried it, so I cannot
comment on which GNAT version it uses,
ACATS results, etc
> Second, you can choose two threading

implementations with Gnat for Linux:
linux native threads, whose
particularities I don't know but some
Linux expert could tell you (BTW,
using the old 2.4 thread
implementation, not the new 2.6 one).
fsu-threads (I think) which if I
remember correctly are POSIX-
compliant or something-else-compliant
which native Linux's aren't.

Strict Annex D (real time) compliance.
See
http://gcc.gnu.org/onlinedocs/gnat_ugn_u
nw/Choosing-between-Native-and-FSU-
Threads-Libraries.html
for more details

About VAD - Visual Ada
Developer
From: Stephane Richard

<stephane.richard@verizon.net>

Date: Wed, 08 Sep 2004 17:29:12 GMT
Subject: About Visual Ada Developer

(VAD).
Newsgroups: comp.lang.ada
I've been trying to find the author of this
project (in the subject line) to see what's
going on with the project. The link to the
project doesn't work right now and I'd like
to know either where it is, or if it is still
actively developed somewhere. Anyone
have any information on this?
If the author of VAD, Leonid Dulman,
should happen to read this, please get in
touch with me either here or by email
(you should have my email address
already :-). And let’s talk.
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Thu, 09 Sep 2004 12:00:42 GMT
Subject: For those that wondered about

V.A.D.
Newsgroups: comp.lang.ada
Big announcement, lots to read, but I
think it's well worth it :-). I'm posting this
from a request I got from Leonid himself
he can't post to comp.lang.ada for some
reason and asked me to post this for him:
Visual Ada Developer (VAD)
VAD is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License
as published by the Free Software
Foundation; either version 2 of the
License, or (at your option) any later
version. VAD is distributed in the hope,
that it will be useful, but WITHOUT
ANY WARRANTY; without even the
implied warranty of
MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
VAD 6.4 Common description.
1. VAD (Visual Ada Developer) is a
Tcl/Tk oriented Ada-95(TCL) GUI
builder portable to difference platforms,
such as Windows NT/9x, Unix(Linux),
Mac and OS/2. You may use it as IDE for
any Ada-95 (C, C++, TCL) project. You
may use it to build TCL script only. VAD
generated ada sources you may compile
and build executable with GNAT in
Windows and Unix(Linux) or Aonix
ObjectAda 7.2 in Windows.
2. Used software
GNAT 3.15p (3.4.0) Ada-95 compiler
ftp://cs.nyu.edu/pub/gnat
TCL/TK 8.3.5.1
http://tcl.activestate.com/software/tcltk/
TCL/TK 8.4.7.0
http://tcl.activestate.com/software/tcltk/
TCL/TK 8.5.b2
http://tcl.activestate.com/software/tcltk/
W A R N I N G ! VAD 6.4 has three
realization for tcl/tk8.3.5, tcl/tk 8.4.6 and
tcl/tk 8.5x , you need to install and to
check tcl/tk before using of VAD.

Ada-related Products 193

Ada User Journal Volume 25, Number 4, December 2004

[For a complete (and long) list of used
components and a description of the
program files, see the original posting
from Stephane Richard at comp.lang.ada
--su]
In WEB Browser you may run VAD
Tutorial from vad/tutorial/vadtutor.htm
VAD 6.4 is available in
http://www.websamba.com/GUIBUILDE
R
You may dowload sources
vad64scr.tar.bz2, vadhlp.tar.bz2,
vadtutor.tar.bz2,
vadsmp.tar.bz2,vadaonix, adahlp.tar.bz2,
vadtcl.tar.bz2,
adastyle.tar.bz2,philosofers.tar.bz2,vadidl.
tar.bz2 and binaries vad64win.tar.bz2
(Windows 9x/NT) vad64lin.tar.bz2 (i386)
Any questions, any ideas, any problems,
any help Leonid
Dulman(leonid_dulman@yahoo.co.uk)
[See also "VAD 6.2 - Visual Ada
Developer" in AUJ 24-4 (Dec 2003),
pp.204-205. --su]

IDE for Ada on Mac OS X
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Sat, 30 Oct 2004 02:43:44 GMT
Subject: Re: IDE for Ada on Mac OS X?
Newsgroups: comp.lang.ada
Christopher J. Henrich wrote:
> What integrated development

environments that run on Mac OS X
10.can handle Ada? Does such a thing
exist?

http://macada.org/ is probably the best
place to start your search. Not sure if
there's an IDE right there but there's one
on the main picture so perhaps there they
could help you find a Mac IDE.
From: James E. Hopper

<hopperj@macconnect.com>
Date: Sun, 31 Oct 2004 01:42:47 GMT
Subject: Re: IDE for Ada on Mac OS X?
Newsgroups: comp.lang.ada
In addition to Apple’s Xcode (which
works very nicely with Ada) both
Codeforge and VisualSlickEdit works on
OS X and supports Ada. Oh, and of
course Ada mode in emacs is also
supported on OS X.
CodeForge
http://www.codeforge.com/products/
VisualSlickEdit
http://www.slickedit.com/purchase/pu_re
gtrial.php.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Tue, 02 Nov 2004 14:38:44 GMT
Subject: Re: IDE for Ada on Mac OS X?
Newsgroups: comp.lang.ada
Marius Amado Alves wrote:
> According to this you can use Xcode:

http://pyrite.truman.edu/~millerj/Adaon

OSX/
[...]

Well, several of the contributors, posting
in this thread, have been using Ada on
Mac since 1994. The present incarnation
for Mac OS X does indeed run with
Xcode, as shown on Dr. Miller's site
above. The integration is excellent: edit,
compile, debug, step, trace, breakpoint,
profile - all from the GUI. I also use
gnatmake from the command line
regularly. [...]

Auto_Text_IO & SAL
From: Stephen Leake

<stephen_leake@acm.org>
Date: 07 Aug 2004 12:22:56 -0400
Subject: new SAL, Auto_Text_IO releases
Newsgroups: comp.lang.ada
SAL version 1.70 is released.
Auto_Text_IO 3.03 is released.
SAL is my Ada library; it has containers,
spacecraft math, config files, other misc
stuff. New in this release is a small
collection of GtkAda widgets, some of
which work :). More importantly, there is
a test harness for automating GUI tests.
Also misc fixes in other SAL packages.
Auto_Text_IO is an ASIS-based tool that
generates Text_IO packages for types in
Ada packages; very useful for persistent
storage. New in this release are support
for Standard.Duration,
Standard.Character, misc other fixes.
For full information, and to download the
latest versions, see my web page
http://www.toadmail.com/~ada_wizard/
[See also same topic in AUJ 25-3 (Sep
2004), p.119. --su]

XAda - A Simple OS in Ada
From: xavier <xavier@ipnnarval.in2p3.fr>
Date: Wed, 25 Aug 2004 13:46:35 +0200
Subject: [annonce] XAda un os simple en

Ada
Newsgroups: fr.comp.lang.ada
[Translated from French – su]
I have started to adapt to Ada the series of
articles on the Linux Magazine « Do it
yourself » and this has given rise to XAda
(short for uniXAda).
XAda is a utility built for acquainting
oneself with the internals of a kernel and
for building them in Ada. This exercise
has already provided [me] with contracts
for a more substantial and longer-term
project: “Lovelace” a UNIX written in
Ada, which natively provides the Ada
runtime (among other initial objectives).
Should that be of your interest:
http://ipnnarval.in2p3.fr/~xavier/
All sorts of contributions and comments
are most welcome.

Ada-related Products
AdaCore - Ada Answers
From: Ed Falis <falis@verizon.net>
Date: Tue, 26 Oct 2004 21:28:01 GMT
Subject: Ada Answers
Newsgroups: comp.lang.ada
www.ada-answers.com launches!
As the need for robust and reliable
software systems increases, Ada
continues to prove to be an excellent
answer for many of today's most complex
programming challenges. "Ada Answers"
is dedicated to keeping developers and
project managers informed about Ada and
showcasing the particular strengths and
benefits of this extremely powerful
programming language. "Ada Answers" is
part of AdaCore's ongoing commitment to
promote the qualities of the Ada
programming language.
Features of the new site include:
- Real world examples of Ada in use,
including a comprehensive list of
companies and organizations that are
using Ada everyday.
- A growing collection of video
interviews in which developers and
managers speak about why they have
chosen Ada.
- Technical features of the Ada
programming language are explained,
showing how they translate into bottom-
line business benefits.
- A section dedicated to the wide range of
up-to-date Ada materials and resources
available on the web.
AdaCore is always looking for interesting
and innovative Ada stories. Please contact
us with yours. We plan to produce videos
of some of the stories, but all contributors
whose story is published will receive a
stylish Ada Answers T-shirt!

AdaCore - GPS 2.1.0
AdaCore is pleased to announce the
immediate release of GPS 2.1.0
GPS, the GNAT Programming System, is
an advanced IDE that streamlines your
software development process - from the
initial coding stage through testing,
debugging/verification and maintenance.
Designed by programmers for
programmers, GPS is an IDE that offers
the experience of designing software in a
uniquely comfortable environment.
The 2.1.0 version is a major release and
features many improvements, notably:
- Improved customization, in particular:
 + Extended python support
 + Ability to define new project
attributes

194 Ada-related Products

Volume 25, Number 4, December 2004 Ada User Journal

 + New commands for accessing GPS
internals and manipulating
menus/toolbars
 Emacs compatibility mode
 New help menus
 C/C++ improvements
 + Better integrated multi-language
build/link
 + More powerful indentation
GPS is available on an ever-growing
number of platforms including:
 Solaris SPARC
 GNU/Linux x86
 Windows (NT, 2000, XP)
 Tru64
 HP-UX
 IRIX

Aonix - Eclipse-based Ada
IDE for Mission- and Safety-
Critical Development
AonixADT opens Ada developers to a
gamut of third-party tools
San Diego, CA, Paris, France, July 26,
2004
Aonix®, an independent global company
delivering complete solutions for safety-
and mission-critical applications, is
pleased to announce the Beta release of
AonixADT - an Eclipse-based Integrated
Development Environment (IDE) for the
Ada language. Because Eclipse offers a
common platform for which many
companies have developed plug-ins,
Aonix has extended the wealth of
interoperable technologies and tool
flexibility available to Ada developers by
ensuring that AonixADT (Ada
Development Toolkit) builds on such a
universal platform.
In the mission- and safety-critical market,
developers come from a number of
industry sectors, each carrying its own
certification standards and specialized
tools. By delivering the power of the
standard Eclipse IDE with Ada
programming language awareness, Aonix
provides developers with built-in support
for the project manager, editor, difference
capability, compile, debug, and command
history. Developers can focus on building
applications, not on integrating tools since
AonixADT also retains a large set of
existing plug-ins for third-party tools,
including support for source-code
configuration management.
"Aonix is committed to providing the
mission- and safety-critical developer
with an integrated, flexible tool chain,"
noted Greg Gicca, Director of Product
Marketing, Ada Products, "Notably, the
release of AonixADT celebrates two first-
time achievements - it's the first Eclipse-
based Ada IDE and marks the first time
that Ada developers have been offered

such a wealth of third-party tools already
integrated through a universal platform."
AonixADT provides Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, along with a complete Ada
debugger interface. ADT project
awareness allows full library hierarchy
manipulation and Ada program units can
be conveniently inserted or removed from
Ada projects. The language-sensitive
editor provides complete language
awareness with syntax color coding and
template completion. Symbolic debugging
is integrated within the Ada-language
sensitive editor. The build interface offers
complete access to the Aonix ObjectAda
compile and build capabilities.
This first release of AonixADT supports
self-hosted development for the Windows
platform. Support for Solaris and Linux
development and cross compilation for
key embedded platforms will be
announced subsequently.
Shipping and Availability
AonixADT is available for free with
Aonix products. To purchase AonixADT
stand-alone, the package is available at
$995 per seat.

DDC-I - Comprehensive
Migration Assessment
Packages
A Valuable Resource for Migrating
Legacy Systems to Current Technology
Phoenix, AZ - Aug 2, 2004 - Experienced
embedded system software development
tools provider and safety-critical, real-
time industry leader DDC-I today
announced the availability of project-
specific Migration Assessment Packages
for current programs facing the daunting
task of stewarding valuable legacy code
into the future. Through a thorough
assessment of difficulty, cost and a
project timeline for migration to modern
technology, DDC-I can design and
implement a custom-tailored package for
each program's needs.
"Migrating legacy systems to current
technology requires careful planning and
support. Whether the situation demands
legacy system upgrades, application
retargeting, rehosting or language
migration, DDC-I brings over twenty
years of embedded system software
development experience to every project,"
explains David Mosley, DDC-I
Engineering Manager and Product
Champion for the SCORE® IDE.
According to Mosley, development tools
on outdated hosts can be migrated to
newer technology and can drastically
improve productivity and future
flexibility. For example, SCORE® from
DDC-I can instantly offer multi-language,
multi-target capability, placing fewer

restrictions on future work. Thousands of
lines of FORTRAN code, migrated to C,
can also generate substantial cost savings
in reuse - with no shortage of experienced
programmers. Why waste resources and
time discovering old tool limitations?
Process improvements realized using
modern development tools and languages
consistently reach straight to the bottom
line.
Positioning programs with five, ten and
twenty year lifecycles for the future also
requires replacement of obsolete target
hardware. While past custom solutions
were prohibitively expensive to develop
and unsuitable for mass production,
today's COTS solutions frequently meet
project requirements at a fraction of the
cost of in-house development.
Offering a full spectrum of consulting,
training and support services, individually
priced and shaped to help customers with
complex applications achieve project
goals on-time and on-budget, DDC-I
possesses broad knowledge and hands-on
expertise in every part of the
application/development/certification and
migration process.
DDC-I's Migration Assessment Package
begins with on-site migration needs
assessment and
application/data/infrastructure evaluation
culminating in a complete migration
assessment report. Once the assessment is
complete, the customer can make an
informed choice of how to move forward.
They can also choose to do the work
themselves, or let DDC-I handle it for
them.

DDC-I - WEB based
customer support: "Web
Pass" Atlas Support
Secure, Personalized Customer Service
Portal Provides Highly Targeted
Customer Information and Direct Access
to Developer Knowledge
Phoenix, AZ - Aug 3, 2004 - Software
developers designing and maintaining
safety-critical embedded system software
require powerful tools demanding
powerful support. Already providing a
robust back-line for DDC-I's complete
range of programming tools, their flexible
Atlas Support package now provides
personalized access for maintenance
customers via a password-protected web
portal with a dramatically expanded list of
features.
"Web Pass is designed to extend the reach
and responsiveness of the DDC-I support
department, providing Atlas members a
technical database to solve problems and
a direct line to the right person in
engineering as soon as they need one,"
explains David Mosley, DDC-I
Engineering Manager and SCORE®
Product Champion.

Ada-related Products 195

Ada User Journal Volume 25, Number 4, December 2004

The expanded library of product-specific
FAQ files, white papers and technical tips
in the new Web Pass area are joined by
web-based issue submission and t racking
and STR tracking features. Via Atlas,
project leaders and pre-assigned staff gain
direct access to DDC-I's lead product
developers - "Product Champions" -
experienced engineers directly
responsible for fielding technical
questions or product-specific problems.
Already serving a "who's who" clientele
distributed across the safety-critical, real-
time embedded systems software
industry, DDC-I's Atlas Support program
offers flexible support options to suit the
changing needs of customer programs
throughout the lifecycle, from
development to maintenance. As a
software development partner, DDC-I
offers a full range of services designed to
help maximize productivity at any stage
of the development cycle.
Atlas Premium offers special attention
during critical stages of development, as
software architecture is established and
prototyping takes place, when immediate
customer support response can make or
break a project. Atlas Advantage suits
customers past the critical project path,
often entering implementation, when
timely service and regular version
upgrades are essential. Atlas Choice
members custom-build a service package
combining options to best fit their
maintenance and migration needs.

DDC-I - TADS 1750A
Solaris Development System
Upgrade
TADS Ada Development System for
1750A Processors
Phoenix, AZ - Aug, 31 2004 - DDC-I
today announces the availability of the
maintenance upgrade release of
Sun/Solaris® hosted TADS-1750A Ada
Development System (v6.1.1) adding
additional run-time, linker and compiler
improvements to the full complement of
upgrades integrated during the recent
TADS rehost to PC/Windows® (v6.0).
"Responding to client needs by
consistently upgrading the tools our
clients' programs require for success is a
primary focus of DDC-I's 'Customer Care'
philosophy," explains DDC-I Senior
Software Engineer and TADS Product
Champion Harold "Bud" Blum. "A wide
range of programs depend on TADS for
safety-critical embedded system
development, alongside DDC-I's flexible
customer support and engineering
services."
A mature software development solution,
TADS generates the most compact code
available via the highly optimizing
compiler, selective linking, modular run-
time systems and an unsurpassed toolset.

Improvements to TADS-1750A Run-
Time System include: more reliable
handling of very rapid interrupt sequences
from peripheral hardware; more reliable
handling of critical timing delays in
multitasking configurations; and assured
protection of critical code sections from
interrupts under all memory model
configurations.
Version 6.1.1 also adds specific optional
Ada 95 extensions to the Ada 83
compiler, and linker improvements for
more reliable handling of memory
allocation by application programs. Also,
effective with TADS v6.0, the AdaTrak
Profiler is no longer offered, though
AdaTrak support for previous TADS
versions is naturally still available.
Pre-packaged and custom-built
engineering services are designed to help
customers maximize program
productivity at any stage in the
development cycle -- installation and
training with full user documentation,
basic hot-line support and additional high-
level engineering services, full program
consultation, and custom software
development to specialized requirements.
Leveraging extensive experience, DDC-I
specializes in migration support services,
particularly in the initial assessment
phase.
"Keeping TADS performance and support
at the highest level demonstrates DDC-I's
commitment to their customers, while
ongoing market demand and Ada's
advantages in code reliability, reusability,
readability, and portability continue to
prove the superiority of TADS for real-
time embedded system developers in
aerospace, avionics and defence - or any
safety- critical application where failure is
not an option," Blum concludes.

I-Logix - UML Model-
Driven Development Now
Available For SPARK Ada
Applications
Rhapsody in Ada Now Offers Rules
Based SPARK Ada Code Generation
From UML Designs and Integration With
the SPARK Examiner.
September 29, 2004 - Embedded systems
and software solutions provider I-Logix
and leading SPARK analysis tool
developer Praxis Critical Systems,
announced today a new capability to I-
Logix' UML Model-Driven Development
(MDD) product, Rhapsody that facilitates
the development of fully SPARK
compliant Ada applications. A joint
development effort between I-Logix and
Praxis Critical Systems now enables the
generation of SPARK Ada code directly
from UML models. This capability is
especially valuable for safety critical and
other high integrity applications, where
SPARK Ada is the language of choice.

SPARK Ada is a language specifically
designed to support the development of
software used in high integrity
applications. As an annotated and
semantically rigorous subset of Ada,
SPARK exploits the strengths of Ada
while eliminating potential ambiguities.
These properties, which include rigorous
definition, simple semantics, security,
expressive power, verifiability and
bounded resource requirements, allow
SPARK, in both its '83 and '95 variants, to
meet all the requirements for software
used in critical systems as well as
facilitating exceptionally deep and
efficient forms of analysis.
With this integration, Rhapsody users are
now able to introduce and fully integrate
safety critical elements very early on into
their design process. Pre- and post-
conditions can now be captured as part of
a UML design, further augmented to
reference proof functions that are tested
through the SPARK Examiner. In effect,
designers can "think SPARK" while
simultaneously taking advantage of the
benefits that UML Model-Driven
Development (MDD) provide.
Following are the key components of the
integration between Rhapsody in Ada and
the SPARK Examiner:
Complete SPARK Profile: Rhapsody in
Ada provides the system modeller with a
UML profile specific for SPARK. This
profile allows for an intuitive and highly
visible method of modelling and
communicating any SPARK design.
Rhapsody in Ada then fully generates the
SPARK source code and complete
SPARK annotations including
preconditions, post-conditions, and proof
functions. Additionally, Rhapsody in Ada
offers the flexibility and control of
directly capturing the SPARK
annotations, thus providing the end user
with an entry mechanism that best fits
their working style.
Seamless integration: Rhapsody in Ada
works seamlessly with SPARK Examiner
from Praxis Critical Systems. From
Rhapsody in Ada, the modeller can
invoke the Examiner to verify the
conformance of the model with the
SPARK rules, perform data and flow
analysis, and verify the proof contexts.
SPARK Examiner results are displayed
within Rhapsody in Ada, and a double-
click on an error or warning will bring the
modeller to the appropriate portion of the
design, increasing workflow efficiency.
Fine-tuned control: Rhapsody in Ada
allows the modeller to work incrementally
on any SPARK design. The modeller has
full control over the model elements and
the level of examination to be performed
by the Examiner. The design can begin
with no examination, and then have
certain model elements examined for data
flow, followed by a full information flow
analysis.

196 Ada and CORBA

Volume 25, Number 4, December 2004 Ada User Journal

The user has the choice to examine each
model element individually, or a group of
model elements at once, or the entire
model. This enables an incremental,
iterative and flexible design process that
is consistent with the recommended
workflow for SPARK while being driven
directly by the model.
Customizable SPARK Source Code
Generation: Rhapsody in Ada offers a
rules-based source code generator
allowing the customer total control over
every aspect of the model-to-code
transformation. From modifications of the
SPARK profile itself to changes in the
generated source and annotations,
Rhapsody maintains a seamless
integration for the system developer.
"We are very pleased to see the
comprehensive capability offered by
Rhapsody in Ada extended to support the
SPARK language. The editable rules
feature provides for a well-integrated
UML environment where designers can
leverage the process benefits offered by
SPARK Ada very early on in the
development process," said Rod
Chapman, SPARK Product Manager of
Praxis Critical Systems. "Additionally,
the generated code can be easily and
iteratively analyzed through the SPARK
Examiner. The result is a powerful
integration of SPARK and UML,
generating SPARK compliant code from
UML models that is readable, testable and
deployable. This combination of
individually leading technologies
provides much more than the sum of its
parts."
"We are very excited about extending our
UML based design environment to the
SPARK Ada community," said Neeraj
Chandra, I-Logix Senior Vice President of
Marketing and Corporate Development.
"Designers using SPARK Ada are now
able to leverage powerful capabilities
such as visual modelling with UML 2.0,
visual execution and debugging, both on
host and target, and flexible, rules based
automatic application generation. This
new capability allows users to design
even larger systems at a reduced cost and
higher quality. Combining the benefits of
UML with Praxis Critical Systems'
excellent SPARK analysis tools lead to a
significantly higher level of reliability,
safety and security as well."
For more information on any of the
company's embedded software products,
please feel free to contact us.
About Praxis: Praxis Critical Systems has
developed a global reputation in the fields
of systems and requirements engineering,
software development, safety assurance,
information security and risk management
and works with some of the leading
aerospace companies and other
organisations including; Boeing,
Lockheed Martin, BAE Systems,
ALSTOM Transport, Westinghouse Rail

Systems, The Civil Aviation Authority,
The Federal Aviation Administration and
National Air Traffic Services. The
Company's roots are in the application of
sound engineering principles to the
development of high-integrity software
systems whether safety-, business- or
security-critical. Its unique tools and
products have evolved from practical
experience in the most effective
approaches to developing such systems.
The Company has now diversified into
several new markets including financial
services, telecommunications, utilities and
automotive. For more information, please
visit www.praxis-cs.co.uk.
About I-Logix: Founded in 1987, I-Logix
is a leading provider of Model-Driven
Development (MDD) solutions for
systems design through software
development focused on real-time
embedded applications. These solutions
allow engineers to graphically model the
behaviour and functionality of their
embedded systems, analyze and validate
the system, and automatically generate
production quality code in a variety of
languages. I-Logix also offers iNotion®, a
product lifecycle management portal
designed for software; coupling product
development, quality assurance,
marketing and the customer by providing
instant, controllable, web-based access to
development artifacts and product
management services 24/7 worldwide.
For more information, please visit our
website www.ilogix.com.

McKae Technologies -
DTraq
From: Marc A. Criley <mc@mckae.com>
Date: Mon, 11 Oct 2004 08:03:03 -0500
Subject: ANN: DTraq 0.986 is available
Newsgroups: comp.lang.ada
McKae Technologies announces the
release of version 0.986 of DTraq, an Ada
95 data logging and review tool.
DTraq is a data logging and playback
debugging tool providing near realtime
data logging and analysis to aid
debugging and validation. Captured, or
'tapped' data from a program can be
viewed live while the program is running
or, since it is being logged to a file,
played back or printed out later for off-
line review and analysis.
DTraq differs from other logging and
playback tools in that no data layout maps
or byte interpretations or "data dumpers"
need to be manually created. Nor is the
application responsible for converting the
raw binary data to text form before
logging it. DTraq handles all conversion
automatically by scanning the
application's source code, identifying
tapped data items, and extracting the
information it needs to properly convert
and display the logged items-simple
scalar items as well as arrays and records.

When the layout of data items change,
rescanning automatically picks up the
changes.
DTraq requires GNAT 3.15p due to its
reliance on the Ada Semantic Interface
Specification (ASIS) and has been
validated on Red Hat 9 Linux.
Source and executables are available on
the DTraq home page:
http://www.mckae.com/dtraq.html, along
with the comprehensive and up-to-date
user manual --
http://www.mckae.com/dtq_common/DTr
aq.pdf.
DTraq usage is described, and screenshots
provided, starting at
http://www.mckae.com/dtq_usage/tapping
.html.
Updates to DTraq 0.986 (versus 0.985):
- Improved the handling of data tap
Suspension, particularly in situations
where tapped data is being received
sporadically.
- Reevaluated the generation of
informative messages to reduce text
clutter.

Ada and CORBA
Windows Support of
GLADE
From: Pascal Obry <pascal@obry.org>
Date: 14 Sep 2004 22:43:27 +0200
Subject: Re: GNAT and GLADE
Newsgroups: comp.lang.ada
Tom Bolick wrote:
> GNAT is cross platform, and seems to

work fairly well on Windows, can
GLADE work on windows? (We want
the option of running on one machine
in Windows or multiple machines in
Linux). There will always be one
machine in Windows for the User
Interface.

Yes, GLADE works perfectly well on
Windows. Also it is possible to have
partitions on different computers some on
GNU/Linux, some on Solaris and others
on Windows. All those partitions will be
able to talk to each others without trouble.
> We'd like to test on one machine and

then scale up, does GLADE do this? (It
looks like it does this very well.)

Yes.
> What do I need to use GLADE?
Well, GLADE obviously :) And GNAT of
course.

Ada and Microsoft 197

Ada User Journal Volume 25, Number 4, December 2004

From: Pascal Obry <pascal@obry.org>
Date: 16 Sep 2004 20:50:06 +0200
Subject: Re: GNAT and GLADE
Newsgroups: comp.lang.ada
Tom Bolick wrote:
> That all sounds great. So how do I get

started with GLADE under windows?
Do I have to recompile it?

Yes, I think so. This is not trivial but it is
not something very hard either. Download
GNAT 3.15p binary package and the
GLADE 3.15p sources from
http://libre.act-europe.fr/.

Ada and GNU/Linux
A# for Mono
From: David Botton <david@botton.com>
Date: Thu, 14 Oct 2004 20:01:12 -0400
Subject: A# for Mono / Linux
Newsgroups: comp.lang.ada
Martin Carlisle has been able to confirm
that the A# compiler (Martin's DotNet /
GNAT compiler) will compile under
Linux.
(See:
http://www.usafa.af.mil/dfcs/bios/mcc_ht
ml/a_sharp.html)
It is possible to create A# applications
that run under Windows, Linux and Mac
OS X using martins compiler be it on
Windows, Linux, Mac OS X or whatever,
since on Linux and Mac OS X, Mono, the
GNU DotNET implementation is
available.
The current version of Mono comes with
Gtk+.NET and therefore it is possible to
write GUI applications that run on
Windows and Linux using A#. A#
automatically generates the Ada bindings
needed from .NET / Mono components. It
is possible to also use Windows.Forms on
Windows which is also being ported to
Linux and Mac OS X for cross platform
GUI with native look and feel.
He doesn't have ready access to Linux
machines to maintain the port of the A#
compiler for Linux, but would be happy
to work with some one interested in doing
so.
If you can, please contact him at
carlislem@acm.org

Ada and Microsoft
GNATCOM -
COM/COM+/DCOM/Active
X for Ada 95
From: David Botton <david@botton.com>
Date: Sun, 24 Oct 2004 15:47:31 -0400
Subject: ANN: GNATCOM 1.4a Released
Newsgroups: comp.lang.ada
GNATCOM, the Professional Open
Source Ada 95

COM/COM+/DCOM/Active X binding
has been updated to GNATCOM 1.4a.
This release incorporates extensive
support of directly embedding and
controling ActiveX controls for
GWindows based applications.
Thanks to GNATCOM, the Ada 95
COM/DCOM/COM+ Development
Framework and Tools open every facet of
the Windows platforms to Ada 95
development. Never again will the cries
be heard, "but there are no bindings" on
the Windows platform!
GWindows is being made available under
the GNAT modified GNU GPL used by
GNAT's runtime library making it
availble for use in both GPL and
proprietary applications.
For more information on GNATCOM, to
view the on-line documentation, and to
download the product, please visit
http://www.gnavi.org/gnatcom
More information on GWindows can be
found at http://www.gnavi.org/gwindows

Microsoft & Ada
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Tue, 07 Sep 2004 01:03:23 GMT
Subject: Re: Microsoft & Ada ???
Newsgroups: comp.lang.ada
Stephen Thompson wrote:
> Couldn't help but notice that MS is a

platinum sponsor of SigAda 2004.
As far as I know this is the first time
this has happened.
What can we read into this ???.

That is interesting,
For Ada and for Microsoft too I would
say. I don't think they would sponsor if
they didn't think there was something
there for them, maybe, but I don't think so
:-). Microsoft Visual Ada Anyone? ;-)
But hey, if Microsoft is sponsoring, I
think it's great for both worlds :-).
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Tue, 07 Sep 2004 02:39:03 GMT
Subject: Re: Microsoft & Ada ???
Newsgroups: comp.lang.ada
Frank J. Lhota wrote:
> I recall that MS looked into developing

such a compiler, but decided not to go
forward with it.

Yep that's the way I remember it too.
So then, either they're thinking of hitting
the Ada market and/or (probably both :-)
See what they can do with that A#
project?
From: Jeff <jeff.huter@bigfoot.com>
Date: 10 Sep 2004 00:48:26 -0700
Subject: Re: Microsoft & Ada ???
Newsgroups: comp.lang.ada

Did you notice the following on the A#
website?
"Negotiations are in progress with
Microsoft to include Ada in Visual Studio
.NET"
I personally would love to see this
happen. I think it would greatly increase
the use of Ada. I'd also like to see the A#
project ported to *nix so that it could run
on the Mono and Portable DotNet. I think
this would fill a big void in using Ada for
desktop applications. Namely, the lack of
application frameworks and support
libraries.
From: Stephane Richard

<stephane.richard@verizon.net>
Date: Fri, 10 Sep 2004 12:07:46 GMT
Subject: Re: Microsoft & Ada ???
Newsgroups: comp.lang.ada
Yeah I noticed it (though quite recently) I
don't think it's been there that long. I
think you're right, if this was to happen, it
would be a good boost for Ada. I think
there's many other possibilities with
Microsoft too that could play a big role
for Ada aside A# too :-)....so I think it's all
good :-).
From: Pascal Obry <pascal@obry.org>
Date: 12 Sep 2004 09:56:38 +0200
Subject: Re: Microsoft & Ada
Newsgroups: comp.lang.ada
Ludovic Brenta wrote:
> I would be happy if Microsoft provided

an Ada compiler, provided that this is
really an Ada compiler (as defined by
the standard) and not a compiler for a
different language. If they call this
different language "Ada" or "Microsoft
Visual Ada", we're in trouble.

Visual C++ is just this: a different
language, and C++ is far from being in
trouble... I would love to see Ada in the
same level of troubles ! As I said earlier
Microsoft Visual Ada will be a good way
to introduce Ada in some projects... even
if you stick to Ada not the Visual version
of it coming from Microsoft :)
From: Ben Brosgol

<brosgol@world.std.com>
Date: Mon, 06 Sep 2004 23:39:37
Subject: Re: Microsoft & Ada ???
Newsgroups: comp.lang.ada
Rick Conn from Microsoft is the local
arrangements chair for SIGAda 2004, and
he has done an excellent job in getting his
company's support for the conference
(and also in publicizing the event to local
companies and colleges). Microsoft's
platinum sponsorship is one example of
Rick's success, but alas it should not be
read as evidence of a sudden language
transition within the company :-)

Ada Inside 199

Ada User Journal Volume 25, Number 4, December 2004

References to
Publications
Ada Article at ACM Queue
From: Rom Moran <tmoran@acm.org>
Date: Sun, 10 Oct 2004 17:51:02 GMT
Subject: ACM Queue Ada article
Newsgroups: comp.lang.ada
"There's Still Some Life Left in Ada",
Alexander Wolfe, ACM Queue Oct 2004

IEEE Spectrum mentions
Ada
From: Marc A. Criley <mc@mckae.com>
Date: Thu, 16 Sep 2004 08:11:36 -0500
Subject: Crash proof software -- when it

HAS to fly!
Newsgroups: comp.lang.ada
IEEE Spectrum Online has as their
weekly Feature Article "Crashproof
Code", "Flying an experimental
supersonic aircraft requires rock-solid
flight software ".
It's an interesting article, with the Ada
code getting a couple mentions.
http://www.spectrum.ieee.org/WEBONL
Y/publicfeature/sep04/0904air.html

Ada at the Embedded
Systems Conference
From: Jim Gurtner

<jgurtner@mindspring.com>
Date: Thu, 16 Sep 2004 23:57:09 GMT
Subject: Embedded Keynote Speaker

Mentions Ada
Newsgroups: comp.lang.ada
Is this an Ada put down?
Dan Saks said in a keynote speech at
Embedded Systems Conference in Boston
on Tuesday (Sept. 14):
"In embedded programming, learning a
less-popular language like Ada or Eiffel is
critical not so much because it is a
marketable skill but because it helps
programmers see what is possible with
more mainstream languages like C, C++
or Java."
Full article at:
http://www.embedded.com/showArticle.j
html?articleID=47208416

Mention of Ada at
Embedded Systems
Programming Magazine
From: Peter Hermann

<ica2ph@sinus.csv.ica.uni-stuttgart.de>
Date: Fri, 24 Sep 2004 16:45:01 +0000

UTC
Subject: fire
Newsgroups: comp.lang.ada

Great article of Jack Ganssle in
Embedded Systems Programming"
September 2004 pages 54-56 "Codifying
Good Software Design"
exciting
thoroughly investigated
compliment
http://www.embedded.com/showArticle.j
html?articleID=26806185
From: Jeff Creem <jcreem@yahoo.com>
Date: Sat, 04 Sep 2004 14:00:30 GMT
Subject: Embedded Systems Programming

Magazine - Ada Mention
Newsgroups: comp.lang.ada
Embedded Systems Programming
September 2004, page 56 in article
"Codifying Good Software Design"
makes a very brief Ada mention:
"Just as certain software technologies lead
to better code (for instance, C code is
generally at least an order of magnitude
buggier than code written in Ada), the
technology of fireproofing was well
understood long before ordinances
required their use."
[...]

DDC-I Online News
[Extracts from the table of contents. See
elsewhere in this news section for selected
items. -- su]
From: jc <jcus@ddci.com>
Date: Tue, 3 Aug 2004 17:22:34 -0700

(MST)
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
To: 7D August 2004 Online News US

<jcus@ddci.com>
DDC-I Online News, August 2004,
Volume 5, Number 8 -
[http://www.ddci.com/news_vol5num8.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
Migration Assessment Packages Now
Available! An assessment of difficulty,
cost & timeline for migrating legacy
systems to modern technology
Web Based Customer Support -
Announcing the New & Improved. Atlas
Web Pass. Personalized portal provides
highly targeted customer info & direct
access to developer knowledge
Thoughts from Thorkil: Exception
Handling (1)
We're All in This Together: Practical,
down-to-earth ways to help us all work
and play well together
From: jc <jcus@ddci.com>
Date: Wed, 1 Sep 2004 17:09:59
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I

To: 14D September 2004 Online News US
<jcus@ddci.com>

DDC-I Online News. September 2004,
Volume 5, Number 9 -
[http://www.ddci.com/news_vol5num9.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
Employee Experience Defines #1 in
Customer Care. Success a Direct Result
of Talented Staff and No-Nonsense
Customer Care Philosophy
Maintenance Upgrade for TADS-1750A.
Adds Additional Run-time, Linker, and
Compiler Improvements
Thoughts from Thorkil - TADS Ada
Static Dumper. Helpful Tool Offers Info
About Variables, Constants, Packages,
Tasks & Subprograms
Self-Organizing Teams. An Innovative
Approach for Any Team Situation
From: jc <jcus@ddci.com>
Date: Fri, 01 Oct 2004 12:53:53 -0700

(MST)
To: 17D October 2004 Online News US

<jcus@ddci.com>
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News. October 2004,
Volume 5, Number 10 -
[http://www.ddci.com/news_vol5num10.s
html] A monthly news update dedicated
to DDC-I customers & registered
subscribers.
DDC-I "SCORE's" Experienced Italian
Distributor. DDC-I tools now available
through ARTiSAN Software Tools (Srl)
new Milan sales and service facility.
Migration Assessment ... A Big Hit:
Enthusiastic response reveals many
customers looking into legacy upgrades.
Thoughts from Thorkil - Exception
Handling (2): SCORE's approach to
exception handling
It's A Relationship, Not A Sale: As a
customer, we want someone who cares
and will take action!

Ada Inside
Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. -- su]
URL: http://www.adaic.com/jobs/
Date: September 15, 2004 at 18:00:00
Subject: Ada Software Engineer
Job Description:
The job will include development of new,
and modification of existing, system
software and support software
components.

200 Ada in Context

Volume 25, Number 4, December 2004 Ada User Journal

Software engineers will work through the
entire software development life cycle
from requirements analysis and through
integration, test and delivery.
An object-oriented based, open
architecture with integrated COTS
applications are applied in the
development of new system software.
Opportunities exist in several domains
from device drivers, network
communications, infrastructure,
application development, tools,
simulations, and GUI.
Education:
Bachelors degree in Electrical
Engineering, Computer Engineering,
Computer Science, Mathematics, or
related field and minimum 5 years of
software development experience strongly
preferred.
Required Skills:
Software development experience in
several of the following areas is preferred:
Ada, Ada-95, UNIX, C++, C, GUI
design, UML, and Object Oriented
Methodology.
Knowledge of, Solaris architecture and
near-real-time asynchronous operations is
desirable for most positions.
A minimum of 5 years of software
engineering experience, is strongly
preferred.
Job offer is contingent upon obtaining
acceptance by the customer for program
access.
Active Top Secret clearance mandatory.
Will consider applicants with previously
held TS clearance.
Salary: 70k - 85k

Ada in Context
Advantages of Strong
Typing
From: Richard Riehle

<adaworks@earthlink.net>
Date: Fri, 20 Aug 2004 17:15:53 GMT
Subject: Re: Static vs. Dynamic typing (big

advantage or not)---WAS:
c.programming: OOP

Newsgroups:
comp.programming,comp.object,comp.la
ng.smalltalk,comp.lang.ada

Cristiano Sadun wrote:
> Dave Harris wrote:
> > I notice you mention, "different

primitive types". I suspect a fair
fraction of type errors in C/C++ are due
to mixing up the integers, int versus
short versus long versus bool versus
char versus wchar_t versus unsigned.
Sometimes it's useful to have that much
control, but often it just gets in the way
and makes opportunity for mistakes.

> Hm. It could be - but just why you
should want to declare something as,
say, short, if it isn't necessary? If int or
long fit all your situations, just declare
everything as int or long.

1) In languages that support automatic
type promotion, one is always at risk.
2) Type casting needs to be more
disciplined in some of those languages.
3) When I declare a type, with a given
bounds, it allows the compiler to check
whether I any objects of that type, when
used within my program, are likely to be
out of bounds (above or below the given
range). For example, (in Ada)
type T1 is range -473 .. 451;
type T2 is digits 7
 range -30_000.0 ... 100_000.0;
type Unsigned_Small_Integer is
 mod 256;
for Unsigned_Small_Integer'Size
 use 8;

 I could give many more examples
some of which would illustrate the ability
to create types of quite sophisticated
properties.
In type T1, I have defined a type with a
given upper and lower bounds. The
compiler can use this information. Also,
every Ada program sits on top of a small
run-time executive. The RTE is tiny, but
it does its job well. When something
occurs that causes an object of type T1 to
go out of bounds (not common, but
possible), the RTE raises a constraint
error.
In the case (contrived, I admit) of
Unsigned_Small_Integer, we have an
unsiged integer that can be represented in
eight bits. I use a representation clause
(for ... use 8) to force the size of the
representation eight. I could just as easily
force the size to 16 bits or 32 bits, and
then specified the alignment I want for
objects of that type. If I make an error,
the compiler immediately notifies me of
it.
Granted, when writing programs for less
critical systems, these features can be
overkill. For a large category of
embedded, real-time systems, particularly
those targeted to bare-board
environments), these features are a
blessing.
As several people have noted, it is not (or
should not be) a debate about the virtues
of static typing over non-static typing.
Rather the discussion should be about
when it is appropriate to use static typing
(if often is) and when it is appropriate, as
it often is, to use non-static typing. It
should not be a debate about Smalltalk or
Lisp, at one extreme, versus Ada, at the
other the other extreme. Instead, it should
be the case that we all learn the tools of
our profession, understand when to use
which tool, and not be so dogmatic about
one tool over another, that we fail to

understand the advantages of each tool in
different circumstances.
I personally like Smalltalk. I like, but am
not proficient in Lisp. I have seen enough
successful software in both languages to
have respect for both the developers and
the languages. At least one Smalltalk
aficionado of my acquaintance is smart
enough to understand that Smalltalk has
its limitations for certain classes of
problems. I readily admit that Ada may
not always be the right solution. Of
course, I continue to believe that there is
no situation where I would deliberately
choose C++, so I guess I am a bit
inflexible in that regard. That is, if I have
a choice of Ada versus C++, I would
almost always choose Ada. On the other
hand, if there were choice between Ada
and Smalltalk, Ada and Eiffel, Smalltalk
and Lisp, Perl and Eiffel, etc., I would
want to evaluate the context, the
circumstances, the architecture, and many
other considerations before making a
decision. Does that not seem a sensible
approach?
From: Richard Riehle

<adaworks@earthlink.net>
Date: Thu, 19 Aug 2004 00:37:08 GMT
Subject: Re: Static vs. Dynamic typing (big

advantage or not)---WAS:
c.programming: OOP and memory
management

Newsgroups:
comp.programming,comp.object,comp.la
ng.smalltalk,comp.lang.ada

> > Please give us an example of a type
definition that is difficult to catch and
fix.

> I don't understand what you're asking
him. Are you saying that you've never
seen a complicated model with a set of
types that was ever so slightly /off/ the
mark so that it was difficult to discover,
and also laborious to fix?

There are several parts to your question.
 1) Complicated model
 2) Incorrect types ("ever so slightly
/off/ the mark
 3) Difficult to discover
 4) Laborious to fix
My experience is primarily with Ada, so
these questions are not quite as relevant as
they might be in some other language.
Nevertheless, I will answer them.
I have seen designs where the there were
too many types defined. In particular,
people sometimes design too many
floating point types. For example,
package Real_Numbers is
 type Real is digits 8
 range -2000.0 .. 2000.0;
 type Degree is digits 6
 range 0.0 .. 360.0;
 -- and many more such
 -- definitions
end Real_Numbers;

Ada in Context 201

Ada User Journal Volume 25, Number 4, December 2004

In the above example, it might be more
useful to derived Degree from Real, or
create an Ada subtype (I will not define
the difference here, but it is different)
from Real for Degree. When there are too
many variations on floating point, one
often has to do too much type conversion
elsewhere within the program. However,
Ada never lets you get this wrong.
As to incorrect types, this will most often
occur in composite types, especially
record types. On might forget to include
a component of the type in the definition.
Since record types, in Ada, are most
frequently defined as "limited" types, they
are not part of the public part of a
specification. This makes it quite easy to
correct them without disturbing the
integrity of the underlying specification.
As to being difficult to discover, I have
not seen this very often in programming
with Ada. The language is designed so
the compiler will quickly highlight any
inconsistencies. The compilation process
is not based on textual information alone.
Each unit that depends on another unit
requires the unit on which it depends is
successfully compiled first. The compiler
will not even begin to compile a unit
unless its dependency relationships have
been resolved. This lends itself to rapid
discovery of problems with type
definitions.
When we consider laborious to fix, I
rarely find that to be a problem. In fact, I
cannot think of the last time (in nearly 20
years) where the problem with a type was
laborious to fix. Certainly, when I was a
novice there were problems I could not
easily resolve. With experience, I have
found that well-designed Ada does not
entertain me with the kind of mysterious
errors I sometimes encounter in other
languages.
I realize that most readers do not benefit
from the Ada static compilation model.
Still, that model does have the appeal, to
those who do enjoy it, of making the type
system a blessing rather than a nuisance.
[...]
From: Stephen Leake

<stephen_leake@acm.org>
Date: 19 Aug 2004 21:27:25 -0400
Subject: Re: Static vs. Dynamic typing (big

advantage or not)---WAS:
c.programming: OOP and memory

management
Newsgroups: comp.lang.ada
Thomas G. Marshall wrote:
> [...]

Because it was done in Java, a statically
typed language, there was a great deal
of energy spent in just turning the crank
of making sure that the types shifted
from prior strategy to the current one. I
hope I've been clear enough here.

I gather you believe it would have been
easier to do this redesign in some other
language? What language, and why?
If I had done the same thing in Ada (and I
have done similar redesigns (I call it
"refactoring")), I would expect to "turn
the crank" to get all the types right. That's
part of what static typing is for; the
compiler lets you know where stuff has to
be changed. But at each point, you need to
make sure that nothing _else_ needs to be
changed; often it does.
So I don't see why you feel "turning the
crank" is a Bad Thing here.

Ada Compiler Differences
From: Magnus <koma@lysator.liu.se>
Date: 18 Oct 2004 05:47:47 -0700
Subject: Ada compiler differences
Newsgroups: comp.lang.ada
Could someone please point me to a list
of things that may be implementation
dependent in different Ada compilers
and/or on different platforms?
I know that things like 'Access and
structures without [representation clauses]
may differ. But what else?
Or rather: How can I write code that
really is platform (and compiler)
independent in Ada?
From: Stephen Leake

<stephen_leake@acm.org>
Date: Tue, 19 Oct 2004 21:32:55 -0400
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Nick Roberts wrote:
> Generally, you cannot.
This is a gross overstatement, and a
horrible disservice to Ada.
The real answer is: "Generally, for
applications that do not deal directly with
hardware or other target-dependent
features, you can".
Part of the point of Ada is to allow users
to write portable code!
> However, you generally /can/ write Ada

programs that require very little
changes to be ported. Typically, the
best technique is to move everything
that might need to be changed during a
port into separate (library) packages, so
that the places where changes are
required are isolated from the rest of
the code.

That is good advice in any language.
> There are lots of subtle gotchas,

unfortunately, that you may need to
watch out for. I can list a few.
Re-entrancy of pre-defined
subprograms: on some
implementations, if two tasks make
simultaneous calls to a subprogram in
certain pre-defined library packages,
one or both will not work correctly.

This is also true independent of language.
When writing multi-threaded code, you
need to be aware of thread issues.
> If you are lucky, your program will just

crash; if you are unlucky, it will be a
source of subtle, intermittent,
infuriatingly uncatchable bugs.
Theoretically, this should never happen
unless both subprogram calls make
reference to the same variable (or file).
In practice, I think you'll find some
implementations are less than perfect in
this area.

Hmm. If the Language Reference Manual
does not _explicitly_ state that a particular
function is safe for calling from multiple
tasks, then you must assume it is not, and
provide your own layer of task protection
for it. I suspect Nick has been violating
this rule.
> If you are not careful, you can run into

re-entrancy problems with your own
subprograms, too. Since different
implementations can multitask in very
different ways, its often the case that a
potential re-entrancy problem doesn't
manifest itself until a program is
ported.

That is bad design, in any language. One
of the reasons Ada defines tasking in the
language is to allow people to write
portable multi-tasking code.
So the correct statement here is "If you
follow good multi-tasking design
principles, Ada lets you easily write
portable multi-tasking code".
> Aliasing: implementations are

sometimes allowed to choose whether
to pass a parameter by value or by
reference (indirectly). If it so happens
that a call to a subprogram effectively
passes the same variable as two
different (formal) parameters, the
subprogram has two different 'paths' to
the variable, without knowing it. The
order in which updates to the variable
occur could change from one
implementation to another, in this
situation. This can be a source of some
really mysterious bugs, when porting.

True. Also easy to avoid, once you are
aware of it. Hmm. There aught to be an
ASIS based tool to check for this.
> Order dependency: implementations are

generally allowed to choose in what
order they evaluate the expressions
passed as (actual) parameters to a
subprogram call. If more than one of
these expressions has a side-effect, and
the side-effects could interact in some
way, it possible that the order the
implementation chooses could affect
the behaviour of a program. This can be
a source of subtle and nasty bugs when
porting.

While technically true, I don't recall
anyone posting such a bug here. And I
have never encountered such a bug.

202 Ada in Context

Volume 25, Number 4, December 2004 Ada User Journal

Typical code just doesn't have this
problem.
> The values of everything declared in the

predefined package 'System' are all
implementation defined, as well as in
its children, and the subprograms will
all work differently. There may be extra
imp-def declarations, and some
declarations may be omitted or
different to what the standard states. So
use of these packages needs care, from
a portability perspective. It's best to
avoid using anything here if you can.

True.
Another area of non-portability is GUI
interfaces. Since the Ada standard does
not define a GUI library, code you write
using a GUI library is only as portable as
that library.
From: Mark H Johnson

<mark_h_johnson@raytheon.com>
Date: Mon, 18 Oct 2004 16:48:38 -0500
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
I would start with chapter 13 of the Ada
Reference Manual. Simple things like
Integer'Size (e.g., 32) might not equal
Natural'Size (e.g., 31) can trip you up in a
variety of different ways. I also had
problems with some code assuming 'Size
of the object was the same as 'Size of the
corresponding type.
I would also suggest a review of the
Annotated ARM as well. The annotations
are quite enlightening when trying to
determine the possible implementation
details of the language. [...]
To do that fully would require an
extensive list of issues and is often
constrained by the types of platforms you
expect to run on. For a simple example,
network order (for TCP/IP) is "big
endian". If you are on a little endian
machine, several values need to go
through htonl, htons, and similar
functions to be converted. If you "know"
you will always on a big endian machine
(same as network order), you might get
away without them, but that isn't portable.
That particular issue has nothing to do
with Ada; you have the same problem
with C or other languages.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 18 Oct 2004 16:01:50 +0200
Organization: CRS4, Center for Adv.

Studies, Research and Development in
Sardinia

Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
One advice:
 Don't depend on predefined types
(Integer, Float, Natural, etc.) where it
makes more sense to declare a specific
type for your specific use.
(you'll probably get more)

From: Nick Roberts
<nick.roberts@acm.org>

Date: Mon, 18 Oct 2004 20:55:15 +0100
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Luke A. Guest wrote:
> Yeah, you'll need to define your own

types, but surely these are going to be
"derived" from the default types, i.e.
type Chutney is new Integer
 range 1 .. 5;
Are you saying not to even do this?

Yes. Normally it is better to simply put:
 type Chutney is range 1..5;
and allow the implementation to select the
best base type.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Tue, 19 Oct 2004 02:11:45 GMT
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
I rarely do this. What is the point of
specifying the representation (except at
the edges of the application)? Why use 32
(or 64) bits for 5 values? Let the compiler
choose the best representation for the
target.
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Mon, 18 Oct 2004 21:03:36
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Leave as many aspects of the underlying
representation to the compiler. It knows
what the target is, so in this case it may
choose a 8-bit representation as opposed
to say a 32-bit one. Perhaps the target has
faster instructions for 8-bit data items.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Wed, 20 Oct 2004 01:16:54 GMT
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Luke A. Guest wrote:
> Even if you use a use clause to specify

how many bits you want it to take up
(i.e. even in a record)?

The only reason to do that is because you
need to map to something like hardware
where this is required, so it's a fairly rare
case (what I called the edges of software).
Even then, there's no advantage to using a
derived type. Indeed, using a derived type
is giving contradictory information to the
compiler: "use the same representation as
Integer" and "use only N bits".
From: Rod Chapman

<rod.chapman@praxis-cs.co.uk>
Date: 20 Oct 2004 01:02:48 -0700
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Write the code in SPARK, which has only
2 known implementation-defined features
- the range of predefined base types
(which can be added by way of
annotations), and the finer details of
floating point (signed zeros, rounding
mode etc.)

Example: the port of the SPARK
Examiner (written in SPARK of course...)
from Solaris to Linux took...about 20
minutes, most of which was spent
installing GNAT. The Examiner is about
70kloc, so hardly a trivial program.
From: Rod Chapman

<rod.chapman@praxis-cs.co.uk>
Date: 22 Oct 2004 01:13:59 -0700
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Larry Kilgallen wrote:
> I suppose an _unknown_

implementation-defined feature is
defined by the term "bug" :-)

If you can find _any_ implementation-
dependent, implementation-defined, or
erroneous behaviour in SPARK (other
than the 2 I mentioned above), then please
report it to sparkinfo@praxis-his.com
From: Stephen Leake

<stephen_leake@acm.org>
Date: Wed, 20 Oct 2004 09:05:50 -0400
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
Simon Wright wrote:
> Stephen Leake wrote:
> > Hmm. If the Language Reference

Manual does not _explicitly_ state that
a particular function is safe for calling
from multiple tasks, then you must
assume it is not, and provide your own
layer of task protection for it. I suspect
Nick has been violating this rule.

> What, even
Generic_Elementary_Functions.Arctan
?!

Well, you have a point. Although, on a
system without floating point hardware,
this _could_ use a global cache of
previously computed results, which
could be not task safe.
> On the other hand, anyone who called

Float_Random from two tasks *with
the same generator* would be entitled
to expect truly random results. I think
you have to be prepared to use your
wits sometimes ..

It could also be argued that the LRM
should say more about what is
guarranteed to be task safe.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 25 Oct 2004 19:28:57 -0500
Subject: Re: Ada compiler differences
Newsgroups: comp.lang.ada
This is wrong. As long as the tasks are not
passing the same objects, the language
requires that multiple tasks can call
predefined routines at the same time. See
A(3). (That's the third paragraph of the
introduction to Annex A.)
Any implementation that fails to do that
for any predefined subprogram is
incorrect. Of course, it is not unusual for
implementations to be incorrect,

Ada in Context 203

Ada User Journal Volume 25, Number 4, December 2004

especially in this area; and that seemed to
be Nick's original point.
It will be very important that this property
is true for the containers, for instance.

Ada and the GNU Build
System
From: Lutz Donnerhacke <lutz@iks-

jena.de>
Date: Wed, 4 Aug 2004 02:05:12
Subject: Re: GNAT and GNU build system
Newsgroups: comp.lang.ada
Tapio Kelloniemi wrote:
> I'm planning to seriously develop free

software packages in Ada. The problem
I have is GNAT's fitness for GNU
program building standards.

You don't need that. Ada comes with
portable interface definition capabilities.
> I would like to autoconfig my project

(not very bad, some M4 macros can be
found in GtkAda). But I would like to
use automake (my projects are in Ada
and C, because almost every free
software library is written in C).

The monkey argument is no argument for
C. You do not need autoconfig for Ada.
> If anyone has had any experience or

interest regarding this, please drop a
line.

I prefer redefining the standard C-header
in Ada. This is necessary, but nearly
impossible, because the C-library and
kernel-call interface generated depends on
the C-compiler version and flags used
when compiling the kernel and the libs.
That's why there is no generic way to
automatically determine the interface for
Ada. In order to do it in a portable way
you have to study the interface deeply and
redefine it in Ada yourself. Luckily the
ABI does not change this hard, but
depends on CPU and OS-version.
I'd recommend a libportable written in C,
generated with autoconfigure and all
those nifty workarounds about a missing
interface definition. This libportable
should convert the CPP-headers into C-
headers, so that preprocessor definitions
become linkable. The Ada code will be
constant and portable, because the value
of the day for a system constant can be
linked.
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Wed, 04 Aug 2004 21:21:40 +0200
Subject: Re: GNAT and GNU build system
Newsgroups: comp.lang.ada
I also tend to think that autoconf and
automake are poor hacks meant to
circumvent the deficiencies of C; just like
make in fact. However, I see one
situation where it makes sense to use
them in Ada, and that is when you want to
build a binding to a C library that has
platform-dependent parts. This is best

illustrated by Florist, which has a rather
convoluted build process:
1) It uses configure to generate a Makefile
and a config.h
2) The Makefile compiles a number of C
source files, and links them into an
executable, named c-posix
3) The Makefile executes c-posix, which
writes a gnatprep configuration file and a
C file, c-posix-signals.c
4) The Makefile runs gnatprep, with the
configuration file, to generate several Ada
files
5) The Makefile compiles and links c-
posix-signals.c
6) Executes c-posix-signals, which creates
posix_signals.ads
7) Compiles all the Ada files
8) Links the compiled files into a library
See
http://buildd.debian.org/fetch.php?&pkg=
libflorist-3.15p-1&ver=3.15p-
3&arch=sparc&stamp=1069154570&file
=log&as=raw
But the conclusion I draw from all this is:
do your very best to avoid such a
complicated build process if possible!
Unless you are interfacing to the
operating system, there is very little
reason to use the autotools. GNAT and
Florist together should provide you all the
portability you need (and yes, GNAT
does use autoconf/automake, because
GCC does).
From: Stephen Leake

<stephen_leake@acm.org>
Date: 04 Aug 2004 18:06:19 -0400
Subject: Re: GNAT and GNU build system
Newsgroups: comp.lang.ada
Sounds reasonable. Others have said "you
don't need automake with Ada". That's
almost true, but any _real_ project also
has tests, documentation, and distribution
needs which are beyond Ada's scope.
autoconf/automake help with those tasks,
and Ada needs to at least cooperate.
I'm using automake in an Ada project (a
GtkAda interface to a books database). It's
not ready for prime time yet, but I'd be
happy to exchange notes about autoconf
use.
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Wed, 04 Aug 2004 22:34:25 +0200
Subject: Re: GNAT and GNU build system
Newsgroups: comp.lang.ada
Tapio Kelloniemi wrote:
> I would really prefer typing:

./configure --prefix=/usr --enable-
goldobj

I understand your concern completely.
My concern, though, is the sheer
complexity of the ./configure script itself,
and that of the Makefile it generates.
Most of that complexity is unnecessary
with Ada programs, and in fact really gets
in the way. With Ada, you would
normally want to take full advantage of

GNAT project files. The only places
where ./configure may be of help are for
the installation target (--prefix), and
finding any Ada libraries you depend on.
<plug mode=shameless>
This problem is solved nicely in Debian
GNU/Linux. Each library has a GNAT
project file in a well-known location
(/usr/share/ada/adalib/library.gpr). Your
program just "withs" them as required.
</plug>
Furthermore, on non-Debian systems, the
GNU Ada Environment Specification[1]
says where library files should be
installed. Here again, you would not need
a ./configure at all; just use -aI and -aO as
necessary.
<plug mode="really_shameless">
Since Debian follows the GNAE, your
GNAT project file can be portable
without the need for ./configure.
</plug>
[1] http://cert.uni-
stuttgart.de/projects/ada/gnae.php
So, you could consider writing a
./configure script by hand, which would
generate a minimal Makefile containing
only the value of --prefix. Something
along the lines of:
PREFIX=/usr
all: my_program
my_program:
 gnatmake -Pmy_program.gpr
install: my_program
 cp my_program
$(PREFIX)/bin

If you need package-specific options (e.g.
--enable-gold-objects), then you can
extend the ./configure and generate
something like:
PREFIX=/usr
GOLD_OBJECTS=false
all: my_program
my_program:
 gnatmake -Pmy_program.gpr
-XGOLD_OBJECTS=$(GOLD_OBJECTS)
install: my_program
 cp my_program
$(PREFIX)/bin

From: Tapio Kelloniemi
<spam12@thack.org>

Date: Thu, 05 Aug 2004 08:50:37 GMT
Subject: Re: GNAT and GNU build system
Newsgroups: comp.lang.ada
And I think that autotools should also
cooperate. FSF says that free software
packages in GNU system should
cooperate with others. Luckily GNAT is
part of GNU project and I think autotools
writers could very well take a step
towards Ada from the complete C
centralism. (This C centralism is
unfortunately accepted by GNU projet
and very unfortunately even required by
the GNU coding standards.)

204 Ada in Context

Volume 25, Number 4, December 2004 Ada User Journal

[...] There are still things that cannot be
solved with Ada, consider such a real time
programming need as memory mapped
IO, which is very non-portable.
Configure could perhaps generate a
Makefile, which runs automake with the
appropriate GNAT project file (assuming
that GNAT is the only compiler to
support). The project file used could be
choosed by configure (eg. if --enable-
maintainer-mode is specified, choose
debug.gpr, instead super_optimise.gpr).
> This is true. So we need to start

generating patches to auto* that take
advantage of Ada's simplicity. Not an
easy task, but in the long run it is the
right solution.

Note that automaintainers are not allowed
to accept our patches (if longer than few
lines), if writer doesn't sign a paper that
he doesn't own the code (this is the FSF's
requirement). I really think that this
should be done in tight cooperation with
the GNU developers, because they have
deep knowledge of their tools and we
have that of ours.
> Hmm. Maybe rewriting auto* in Ada

first would be easier; I'm not sure :).
I think that using GNU tools is a good
idea not to couple efforts. Pure Ada
version would of course be easier, but in
mixed language projects, tools such as
autoscan, autoheader and others are also
needed.
Things that I think should be done to
auto* are:
- Autoconf should be able to generate
gnatprep definition files, perhaps from
template like config.adp.in:
-- Define this to true, if libfoo support
should be included.
HAVE_libFOO := @LIBFOO_SUPPORT@

Better even could be that configure would
generate this from scratch.
- Automake should be able to compile
Ada programs (in a way or another).
- Automake should know how to install
Ada libraries (unfortunately installing .so
and header is not enough.)
- Libtool (never used, don't know what
should be done to it)
- Gettext and autopoint (gettext should be
able to scan Ada sources for strings)
> Only if you have a pure Ada project. I

find this unlikely; I like LaTeX or
Texinfo for documentation, and I want
my makefiles to run test drivers.

You speak truly. Because almost every
library is written in C, C interfacing is
required, as ugly and unwanted as it is. It
is very often better to share than write
giant size programs which introduce bugs,
because somebody understood something
incorrectly.

From: Ludovic Brenta
<ludovic.brenta@insalien.org>

Date: Sun, 08 Aug 2004 16:45:15 +0200
Subject: Re: GNAT and GNU build system
Newsgroups: comp.lang.ada
The usual way to do configuration
management in Ada in these situations is
to have several bodies for a single spec,
and choose one body when configuring.
This can be done in several ways. The
GNAT way is to symlink the file
containing the particular body to the
canonical name. For example, one body
is "5msystem.ads" and it is symlinked to
"system.ads" before building. This
however is done from the Makefile and
does not, per se, require a configure
script.
Another way is to have one target-
dependent directory, and pass a variable
to a GNAT project file to select which
target-dependent directory should be
added to the Source_Dirs.
A third way, used by GPS, is to write a
GNAT configuration file containing
configuration pragmas. The compiler-
specific pragma Souce_File_Name can
associate a body with the selected file.
A fourth way could be to use gnatprep
(like Florist does).
[...] I would probably be better to use a
single project file, and pass variables on
the command line (you can have a case
statement in a project file).
As you can see, there is a lot you can do
to influence the build. Some of this has to
be done at configure time; some can be
done from within the Makefile.
I think that the general idea is to have a
minimal configure script that only does
what is strictly necessary, i.e. generates
the Makefile. I do not like GNU
configure because it tries to be everything
to all developers, and ends up in
unmaintainable and unnecessary
complexity.
If the Makefile can be written in a
portable way, then I would prefer not to
have a configure script at all (or a no-op
configure script, to please people with
pavlovian reflexes).

Memory Management in
Ada
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 07 Oct 2004 14:06:41 +0200
Subject: Re: Ada memory management?
Newsgroups: comp.lang.ada
> Since there is an allocator 'new' in Ada,

I was wondering if there is a 'delete'
too. I've heard there is a special
technique called Storage Pool in Ada to
write own memory managers, but what
is the default deallocator?

Two option open: Your Ada has garbage
collection or you use
Ada.Unchecked_Deallocation.
AFAIK: Only Ada [platforms] targeting
the JVM have garbage collection.
However for GNAT you can use the
Boehm Collector which is part of the
GCC.
Mind you: A good collection class library
will free you from almost all memory
management.
From: Nick Roberts

<nick.roberts@acm.org>
Date: Thu, 07 Oct 2004 18:24:21 +0100
Subject: Re: Ada memory management?
Newsgroups: comp.lang.ada
There are some Ada implementations
where memory never leaks (unless a bug
in the compiler or run time system causes
one, or the programmer causes it by poor
unchecked or external programming).
Automatic deallocation combined with
comprehensive memory reclamation is
called 'full garbage collection'. I think, in
reality, there is no native code Ada
compiler which supports full garbage
collection.
Personally, I regret this situation. The
compiler vendors all say they don't
support full garbage collection because
there is no demand, which is true
considering the paying Ada compiler
market is almost entirely made up of the
embedded, real-time, and safety-critical
arenas. But the fact that the Ada language
is capable of protecting the programmer
from the possibility of memory leaks used
to be, many years ago, one of the reasons
cited for its superiority. The complete
lack of support for full garbage collection
seems unfortunate to me. It is a proud
capability of many languages which have
since become far more popular than Ada.
I am trying to build my own (open source,
GPL) Ada compiler, and I hope to be able
to build in full garbage collection support,
if only to prove that it can be done. But I
do not have recourse to huge resources, so
don't hold your breath.
 http://sourceforge.net/projects/eclat
I am a (moderate) fan of full garbage
collection, but I concede that it is not, in
reality, as useful as you might think. One
could guess that 90% of 'desktop' Ada
programs would not benefit from the
availability of full garbage collection, for
one of the following reasons: the program
does little or no dynamic memory
allocation; the program does not give any
(or much) opportunity for automatic
deallocation until (near) the end of
program execution; more control over the
management of (most) dynamically
allocated variables is required; the
program must be written to be portable to
other Ada compilers (which do not or
may not support full garbage collection);
the program only uses pre-written
encapsulated 'containers' for dynamic data

Ada in Context 205

Ada User Journal Volume 25, Number 4, December 2004

storage, which all do their own memory
management anyway.
Many programs will only dynamically
allocate variables of a fixed size (known
at compile time). By having a separate
pool for each different size, the necessity
for memory reclamation (moving things
around) is obviated; only automatic
deallocation is useful. I do not know if
any existing native code Ada compiler
actually supports this technique (doing it
automatically). It could be done manually,
by implementing one's own storage pool.
Probably, full garbage collection would
never be used for an embedded or real-
time program, because it is a big-memory
technique, and does not conform to strict
timing requirements. I'm not quite sure
about safety-critical programs.
However, for the remaining 10% -- or
whatever the figure really is -- of desktop
programs, full garbage collection would
certainly be a useful facility, and I am
certain it is why many good programmers
often choose languages such as Python,
Ruby, and various others which support it,
in preference to a language which (in
practice) doesn't.

Ada Movies on
AdaPower.com
From: David Botton <david@botton.com>
Date: Tue, 9 Nov 2004 00:43:18 -0500
Subject: Ada Movies on AdaPower.com
Newsgroups: comp.lang.ada
Oldies but goodies :-)
Requires quick time.
AdaPower Cinema,
http://www.adapower.com/index.php?Co
mmand=Media
David Botton

Ada and Malicious Software
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Newsgroups: comp.lang.ada
Subject: Ada and malicious software
Date: Wed, 22 Sep 2004 09:21:42 GMT
Tom wrote:
> One question that I would like an

answer for is: Is Ada less susceptible to
computer virii than C++ and Java on
the Windows XP operating system?
Now that is a question that would come
up more often where I work.

If you mean true viruses then I can't see
that there would be any difference. The
choice of programming language doesn't
affect a program's ability to modify the
code of another program. (On the other
hand, choice of operating system does.)
If you mean malicious code in general,
then yes, Ada programs would be less
subjected to worms, cracking tools and
other things that exploit security holes.

Security holes are often buffer overflows,
and as Jean-Pierre Rosen said, Ada
programs do not have buffer overflows.
Arithmetic overflows also occur, and Ada
protects well against those too.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: Ada and malicious software
Date: Thu, 23 Sep 2004 09:33:02 +0200
Organization: Adalog
Newsgroups: comp.lang.ada
Warren W. Gay wrote:
> That should probably be tempered with

"not as susceptable" to buffer
overflows. If there was poor design
and/or testing, then a production mode
program that is compiled with the
checks "off", is still vulnerable,
although admitedly, much less likely.

Of course. You can write badly in Ada.
But the difference is, you have to ask for
it!

Scripting Languages and
Ada
From: Marius Amado Alves

<amado.alves@netcabo.pt>
Date: Fri, 03 Sep 2004 17:42:07 +0100
Subject: Re: Learning Ada83
Newsgroups: comp.lang.ada
> It would also be useful and practical to

learn one of the advanced scripting
languages like Perl or Python or
Ruby....

Wow, they're *advanced* scripting
languages now! And I thought real man
did all their scripting in Ada these days :-)
Now, less jestly, I find this a strange
advice in this list. If you want to go the
Great Ball of Mud way why not just
recommend PAM (PHP + Apache +
MySQL) and get done with it? (Sorry,
every now and then I can't resist a good
language battle.)
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 3 Sep 2004 18:47:58 -0500
Subject: Re: Advanced scripting languages

(was: Learning Ada83)
Newsgroups: comp.lang.ada
That's funny, because if it's complicated
enough that I can't write a batch file to do
it, I'll generally write it in Ada. Bat has If
and Goto, and that is enough for simple
tasks. Beyond that, I want to be able to fix
it and be able to insure that it works...
From: Kevin Cline

<kevin.cline@gmail.com>
Date: 4 Sep 2004 20:28:16 -0700
Subject: Re: Advanced scripting languages

(was: Learning Ada83)
Newsgroups: comp.lang.ada
Strong typing is handy, but it's not enough
to ensure that something works. Ada has
it's strengths, but it's not the tool for every
job. Why would you spend an hour
writing 50 or 100 lines of Ada code when

five minutes and a five-line Perl script
would do the job?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 7 Sep 2004 19:07:36 -0500
Subject: Re: Advanced scripting languages

(was: Learning Ada83)
Newsgroups: comp.lang.ada
Because it would take a week to learn Perl
well enough to use it that way. And it is
very rare that such a program is never
used again; my one experience with Perl
showed it to be a write-only language (it
took me two weeks to successfully
modify the code that runs the CVS on the
ada-auth.org site). And it is very rare that
I need to write a 100 line throwaway
program; most of my code has much more
permanence than that. Summary: It
doesn't make sense for me. YMMV.
From: Ken O. Burtch

<kburtch@sympatico.ca>
Date: Wed, 08 Sep 2004 09:38:12 -0400
Subject: Re: Advanced scripting languages

(was: Learning Ada83)
Newsgroups: comp.lang.ada
The documentation for the AdaScript
Business Shell
(http://www.pegasoft.ca/bush.html)
contains several arguments against tools
like Perl in favor of Ada-based scripting
languages, including:
1. Lower learning curve (a BUSH for loop
is an Ada for loop)
2. Lower overall cost for maintaining a
script project over its lifetime
3. Error messages that work for you, not
against you
4. Better readability when debugging
other people's scripts.
5. Sensible syntax shortcuts designed to
be typo-resistant.
6. Better portability.
7. Code reuse.
When you look at the big picture, Perl
projects increase costs and development
time. As always, use the right tool for the
job. But my experience with Perl
development over the past 2 years has
been negative. The idea of a 5 line Perl
script to replace 100 lines of Ada is a
myth.
Ken B.
Author of "Linux Shell Scripting with
Bash"

Mantainability of Ada, C++
and Perl
From: Kevin Cline

<kevin.cline@gmail.com>
Date: 21 Sep 2004 17:21:38 -0700
Subject: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
As promised in the Ada popularity thread,
I have taken one of the Charles examples
and reimplemented it in C++. I used only

206 Ada in Context

Volume 25, Number 4, December 2004 Ada User Journal

the standard C++ language and libraries.
The Ada/CHARLES main program body
is 118 (non-blank) lines of code, plus an
additional 40 lines of instantiations in
eight other specification files, for a total
of 158 lines and 9 files. The C++
implementation is 76 (non-blank) lines of
code in a single file. For grins, I also
wrote the program in Perl. That took 14
lines.
Summary:
Ada/Charles 158 lines, 9 files
C++ 76 lines
Perl 14 lines
You can compare the implementations at
http://www.geocities.com/kc0a/wordcoun
t.html
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Wed, 22 Sep 2004 08:50:05 GMT
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
Neat. Now let's take three identical
persons who haven't seen this program
before, give them one version each, and
see how long it takes them to understand
it.
In other words: What matters is how easy
the program is to read and maintain. The
line count is interesting only to the extent
that it affects the readability.
From: Benjamin Ketcham

<bketcham@drizzle.com>
Date: Wed, 22 Sep 2004 13:38:33 -0000
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
Well, the line count affects readability
rather profoundly, in this example! Not
being an expert in any of the languages
concerned, I can take a more objective
view of readability perhaps; and I can say
that if I had to figure out and maintain any
of these programs, the one that easily fits
in entirety on an 80x24 screen wins my
approval. I.e., this might not scale to
larger projects: I'm not at all sure I'd
rather read a 1400-line Perl program than
a 7600-line C++ program or a 15800-line
Ada program. Actually, "none of the
above" sounds most appealing.
OTOH, it does not appear that the three
programs actually implement the same
spec. E.g., error messages are different
(and missing in the Perl version), and if
I'm not mistaken the Perl version reads
input from stdin, the other two take a file
argument -- or is while(<>) in Perl
smart/twisted enough to read from a
filename in argv[] if present, else stdin? I
certainly recall that it has extensively
overloaded behaviour. Anyway, this is not
even a vaguely fair test until all three
actually have the same behaviour in
detail.
From: Cesar Rabak <crabak@acm.org>
Date: Wed, 22 Sep 2004 12:16:22 -0300

Subject: Re: Ada Popularity: Comparison of
Ada/Charles with C++ STL (and Perl)

Newsgroups: comp.lang.ada
I second this. And for a quick and dirty
comparison we have to figure out some
(unique for all implementations) test suite,
so we can check the overall behaviour
(not only performance).
From: James Alan Farrell
Date: Wed, 22 Sep 2004 11:27:01 -0400
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
Does this prove that perl is the best
language? If so, perhaps we should all
switch our avionics projects over to perl.
Must be it will be easier to code and
maintain, safer to fly, and run just as fast.
The things that make a language a "good"
language are many and complex, and are
different in different circumstances. If I
need a small utility that compares lines in
different text files, I find perl much easier
than Ada. On the other hand, if I have a
very large project that must always
perform "correctly", I've not found a
language that can beat Ada.
But then I've never used Eiffel.
From: Chris Humphries

<chris@unixfu.net>
Date: Mon, 27 Sep 2004 09:22:06 -0400
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
Kevin Cline wrote:
> Again, the original question was "Why

isn't Ada more popular?"
The answer I am giving is that most
programmers don't have such an
overriding concern for safety that they
are willing to write twice as much code
to get the additional safety.

[...]
Thanks, and good answer. Since then
asking that question, I have learned a lot
more about Ada. John Barnes' book,
"Programming in Ada 95, 2nd Edition"
helped tremendously. A very good book.
It is now nice to understand just what Ada
is, and not just another programming
language, but more an attempting at
progressing software engineering.
I also think I understand why Ada is not
more popular. Though I am very thankful
for open source, and feel very strongly
about about it, something bad has grown
out of it: bad programmers and programs.
Most open source projects seem to have
no formal software development process.
There is more an attitude of "shut up and
hack", which typically goes by whatever
they get features to do from, which may
be from whatever they want, if there is a
TODO list, then you are lucky. There is
usually no goals or anything actually
defined, no use cases (I would put money
on most do not even know what one is,

and if they did, what they would use it
for), no unit tests or any automated
framework for making sure the code does
as designed (which brings me to my next
one), no design documentation or even a
design process.
Many young/inexperienced programmers
do not even see why this is important, as
their code works, and generally they are
done with it then and there. In the real
world, and in my job, most of the time is
spend updating code. Good times are
when I get to design something new, most
the time is spent doing grunt work.
In a time when most programs are written
by having a 1-2 thought process of 1) I
want my program to do this and 2) type-
type-run-repeat, such languages that allow
you to do this easier are more popular,
such as php and perl.
Granted, I do code perl for some of the
legacy projects here (no I am not a web
developer, heh), and if standards are in
place, perl code can be very readable and
understandable. Coding standards are
nice, yet seem to be rarely used.
[...]
From: Kevin Cline

<kevin.cline@gmail.com>
Date: 27 Sep 2004 14:31:07 -0700
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
Bad programmers didn't come from open
source. There have always been bad
programmers, and there always will be.
Just as it is with music and writing and
film and art, 90% of all programming
sucks.
[...] On a good project, design is a
continuous process. Unfortunately, most
programs reach the point where any
change is so risky that developers spend
all their time trying to figure out how to
squeeze in a new feature without breaking
the existing features.
From: Brian May

<bam@snoopy.apana.org.au>
Date: Tue, 28 Sep 2004 09:51:48 +1000
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
I know of commercial programs that are
developed (designed, implemented, and
tested) very badly just as I know of open
source projects that appear to be handled
very well.
Commercial projects can be put under
pressure to cut corners, e.g. because
management sees a formal software
development process as an academic
exercise that is a complete waste of time
"in the real world"(TM), despite protests
from programmers. The same
management see software development as
a tedious and unreliable process, and don't
make the connection that the lack of a
proper development process could be

Ada in Context 207

Ada User Journal Volume 25, Number 4, December 2004

leading to the difficulties. They often give
solutions (that may be inadequate) rather
then requirements, turning the task of
programming into a guessing game.
Open source developers aren't under these
pressures, and have more scope for doing
the right thing.
(This isn't to imply that all open source
projects are developed correctly; some are
bad too; this doesn't imply all commercial
projects are developed badly either).
From: jayessay <j-anthony@rcn.com>
Date: 23 Sep 2004 15:30:11 -0400
Subject: Re: Ada Popularity: Comparison of

Ada/Charles with C++ STL (and Perl)
Newsgroups: comp.lang.ada
[...] Ole-Hjalmar Kristensen:
> Kevin Cline wrote:
>> But large projects in Ada or C++ or

Java or C# might be small or medium-
sized projects in a higher-level
language.

> Maybe. It depends on how large the
project is, and how good you are to
create reusable
components/abstractions within the
project, and how good a fit your
problem is to the facilites provided by
the "higher-level" language.

This is key. The robustness,
maintainability, evolvability, and
"correctness" of a program is directly and
closely related to how close its expression
is to the language of the problem domain.
In the case of Lisp, this is where the "Lisp
is a programmable programming
language" comes in. You can always
create a (possibly hierarchical set of)
domain specific language that directly
supports the most natural, clean, and
direct means of expressing the definitions
and process within the domain. People
often talk of "hoisting the language up to
the level of the domain".
It used to be (and I suppose in many
places still is the case) that people thought
this sort of thing could be done with
components and component libraries. But
this is an error. No library (no matter how
good it is - and most are very poor) will
ever have the level of expressiveness as
even a decent (let alone good) domain
specific language.
>> If you have a project that must always

perform "correctly", then you better
prove it correct. Strong typing can
help, but is not absolutely necessary to
that effort.
For the rest of us, the most important
thing is to get tested code done quickly.
I don't know about you, but I can write
and test 14 lines of code a whole lot
faster than I can write and test 80 or
160.

> I usually find that my ability to create
programs is limited by my thought
process, not my typing speed :-)

He's not referring to the same limitation,
and he's right.

Artistically creative
expression has no role in
software design
From: Marc A. Criley <mc@mckae.com>
Date: Mon, 19 Jul 2004 13:46:58 -0500
Subject: Artistically creative expression has

no role in software design
Newsgroups: comp.lang.ada
(Okay, now that I have your attention... :-)
In spectating the "SCO vs Linux" lawsuit
(www.groklaw.net), a lot of documents of
various types get posted. One of the
recent references was a paper titled, "The
case against Copyright Protection of Non-
literal Elements of Computer Software"
http://tinyurl.com/3tjqj, by Christopher
Heer of the University of Toronto.
The paper analyzes something called the
"Abstration-Filtration-Comparison test
(AFC test), which is a court created
means for attempting to determine
copyright infringement of software where
no _literal_ copying was involved, or
perhaps was obscured.
One of the interesting conclusions of this
paper is this:
"Since the design of computer software is
forever driven by its intended
functionality and efficiency concerns, the
room for artistically creative expression
never arises. [...] It is more appropriate to
consider the software objects of a
computer program as analogous to the
gears, pulleys, and levers of a mechanical
invention, as by its very nature, the design
of computer software is intended to
optimize functionality by making a
program run faster, use less memory, or
be easier for the programmer to modify."
Since programming in Ada has been
sneered at as requiring that a programmer
"lose their programming freedom" and
likened to "programming in a
straitjacket", this article argues that those
are in fact proper characteristics in the
development of correctly functioning,
optimized software!
Software is pure function; there are inputs
(data and time), transformations, and then
outputs; although the software's design
and implementation may be formulated in
a specific way that promotes one or more
of Heer's three functionality optimization
axes. Arguably then, for the first two
axes, more speed and less memory, there
should be an optimal design and an
optimal implementation.
Add in the overriding requirement that the
software must be _correct_, and Ada
shines--its definition supports establishing
and verifying programming correctness--
and subsets with supporting tools like
SPARK (www.sparkada.com) even take
that a serious step further.

Ada's case for the third axis of
optimization, "easier for the programmer
to modify" (which is subjective), can be
strongly made as well. With its design
goal of readability, fully object-oriented
capabilities, and the strong typing that
makes it easier to modify software
correctly, again Ada shines.
After you get past the knee-jerk reaction
to Heer's conclusion (which I'll admit to),
sit back and really think about software,
its function, and how to achieve
correctness and _efficiency_ in design
and programming. Software development
starts to become less about creative
expression, and more like a quest, trying
to find the elegant implementation of
functionality. Refactoring, anyone?
From: Alexander E. Kopilovich

<aek@VB1162.spb.edu>
Date: Tue, 20 Jul 2004 05:45:33
Subject: Re: Artistically creative expression

has no role in software design
Newsgroups: comp.lang.ada
It seems that the author of that paper
knows far too little about art and
artistically created expressions. Perhaps
he thinks that art is overwhelmingly not
functional, but decorative... and that true
artists never worry about restrictions and
consequences, being driven by mystical
revelations.
I'd like to recall here an interesting (and
not rare) kind of art - propaganda art,
which from time to time thrives both in
literature and in movies (especially in war
or tension times). There are plenty of
examples of true art of this kind - and
certainly the ultimate purposes of those
things were and are functionality and
efficiency.
Another well-known generic example is
architecture - one may recall that so
beloved by many in software world
"design patterns" were largely originated
from the Christpher Alexander's work on
architectural patterns - and then read the
first book in that series - "Timeless Way
of Building" by Christopher Alexander -
and see the roles of functionality and
effectiveness in that art.
Then, the author of that paper holds
awfully narrow view for computer
software. It seems that he recognizes very
specific-purpose software only - because
he spoke about functionality as about a
compact and well-defined thing, which
does not need such artisitic features as
fine balancing between contradictory
criteria. He surely did not ask himself:
what is the functionality for a text editor
of MS Word kind, and how it differs - not
in general, but in all important details -
from the functionality of a text editor of,
say, Emacs kind.
So I think that the quoted paper does not
deserve further reading -;

 209

Ada User Journal Volume 25, Number 4, December 2004

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.

The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programmes, URLs, etc. and are updated regularly.

2005

January 03-06 Software Technology Track of the 38th Hawaii International Conference on System Sciences
(HICSS-38), Big Island of Hawaii, USA. Includes mini-tracks on: Distributed Object and
Component-based Software Systems; Strategic Software Engineering; Adaptive and Evolvable
Software Systems: Techniques, Tools, and Applications; etc.

January 12-14 32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2005), Long Beach, CA, USA. Topics include: fundamental principles and important
innovations in the design, definition, analysis, transformation, implementation and verification of
programming languages, programming systems, and programming abstractions.

January 21 1st International Workshop on Abstract Interpretation of Object-oriented Languages
(AIOOL'2005), Paris, France. Topics include: Abstract Domains for the analysis of Object-
oriented Languages, Semantics of Object-oriented Languages, Static Analysis of Object-oriented
Languages, Verification, etc

☺ February 26-27 Free and Open Source Software Developers' European Meeting (FOSDEM'2005), Brussels,
Belgium. Topics include: events on Ada and Open Source (tentative)

March 07-10 17th Software Engineering Process Group Conference (SEPG'2005), Seattle, Washington.
Topics include: building quality products on cost and on schedule, establishing and maintaining
continuous improvement efforts, etc.

March 09-11 11th International Conference on Languages and Models with Objects (LMO'2005), Bern,
Switzerland. Topics include: object-oriented programming, components and distributed objects,
object engineering, etc.

March 13-17 20th ACM Symposium on Applied Computing (SAC'2005), Santa Fe, New Mexico, USA.
Includes tracks on: Embedded Systems (topics include: RTOS for embedded systems,
Hardware/software support for real-time applications, Compilation strategies for performance
enhancement vs. footprint control, Program parallelization for embedded systems, Case studies,
etc.); Programming Languages (topics include: Compiling Techniques, Language Design and
Implementation, Practical Experiences with Programming Languages, Program Analysis and
Verification, etc.); Software Engineering (topics include: Software Reuse and Component-Based
Development, Software Reliability and Software Fault Tolerance, Reengineering, Reverse
Engineering and Software Maintenance, Real-Time Embedded Systems, etc.), etc.

March 14-18 4th International Conference on Aspect-Oriented Software Development (AOSD'2005),
Chicago, Illinois, USA

March 21-23 9th IEEE European Conference on Software Maintenance and Reengineering (CSMR'2005),
Manchester, UK. Theme: "Maintaining for Integration". Topics include: Evolution, maintenance
and reengineering; Experience reports (successes and failures); Migration, wrapping and
interfacing legacy systems; Reverse engineering of embedded systems; etc.

April 02-08 Conference on Design, Analysis, and Simulation of Distributed Systems (DASD'2005), San
Diego, California, USA. Theme: "Making simulation and analysis successful through novel
distributed system design, methodologies, and management". Topics include: Distributed Systems,
Design and implementation approaches for complex systems using Petri nets, Distributed real-time

210 Conference Calendar

Volume 25, Number 4, December 2004 Ada User Journal

systems, Formal concepts and methods for validation and testing, High level architecture in
distributed systems, etc.

April 02-10 European Joint Conferences on Theory and Practice of Software (ETAPS'2005), Edinburgh,
Scotland, United Kingdom. Event includes: conferences from 4-8 April, 2005, satellite events on
2-3 and 9-10 April, 2005

April 02-03 3rd Workshop on Quantitative Aspects of Programming Languages
(QAPL'2005). Topics include: the design of probabilistic and real-time
languages; of semantical models for such languages; the discussion of
methodologies for the analysis of probabilistic and timing properties (e.g.
security, safety, schedulability); applications to safety-critical systems; etc.

April 02-10 8th International Conference on Fundamental Approaches to Software
Engineering (FASE'2005). Topics include: Systematic approaches towards
evolution management in large scale systems, continuous software engineering,
and improvement and adaptation of legacy systems to altered requirements;
Rigorous approaches to the design, testing, and maintenance of reactive, mobile,
and distributed software systems; Integration of formal concepts and current best
practices in industrial software development; Experience reports on best
practices with development tools, software development kits, ...; etc.

April 03 4th International Workshop on Compiler Optimization Meets Compiler
Verification (COCV'2005). Topics include: optimizing and verifying
compilation, and related fields such as translation validation, certifying and
credible compilation, but also programming language design and programming
language semantics.

April 03 5th Workshop on Language Descriptions, Tools and Applications
(LDTA'2005). Topics include: Program analysis, transformation, and generation;
Formal analysis of language properties; Automatic generation of language
processing tools.

April 04-08 14th International Conference on Compiler Construction (CC'2005). CC is
undergoing an expansion. Traditionally, CC has focused on compiler
construction; CC now seeks to become a conference for research on a broader
spectrum of programming tools, from refactoring editors to checkers to
compilers to virtual machines to debuggers. Topics include: compilation
techniques, incl. program representation and analysis, code generation and code
optimization; run-time techniques, incl. memory management; compilation
techniques for embedded code; compilers for parallel and distributed computing;
compilation techniques for security and safety; design of novel language
constructs and their implementation; software tools, incl. debuggers, profilers,
code verifiers; etc.

April 07-09 International Symposium on Trustworthy Global Computing (TGC'2005).
Topics include: language-based security, reliability and business integrity,
language concepts and abstraction mechanisms, type checkers, software
principles to support debugging and verification, etc. Deadline for submissions:
January 14, 2005 (papers)

☺ April 04-08 International Parallel and Distributed Processing Symposium (IPDPS'2005), Denver,
Colorado, USA. Topics include: Applications of parallel and distributed computing; Parallel and
distributed software, including parallel programming languages and compilers, operating systems,
middleware, libraries, programming environments and tools; etc.

☺April 04 10th International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS'2005). Topics include: Concepts and
languages for parallel and Grid programming (Component programming
models, Refactoring of existing applications into components, Language and
platform interoperability, Concurrent object-oriented programming, Extensions
to traditional programming models, ...); Supportive techniques and runtime

Conference Calendar 211

Ada User Journal Volume 25, Number 4, December 2004

environments (Compiler techniques, ...); Tools for high-level parallel
programming; etc.

April 04 3rd International Workshop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD'2005). Topics include: optimizing and verifying
compilation, and related fields such as translation validation, certifying and
credible compilation, but also programming language design and programming
language semantics.

☺ April 05-08 2nd Jahrestagung Fachbereich "Sicherheit - Schutz und Zuverlässigkeit" (2nd Annual Conference
on Safety and Security), Regensburg, Germany. Event includes: special session
"Informationssicherheit im Automobil", workshop "Privacy Respecting Incident Management",
etc. Contributions welcome in English or in German. Topics include (in German):
Vertrauenswürdige Softwarekomponenten; Zuverlässigkeit und Fehlertoleranz in Hardware- und
Softwaresystemen; Formale Techniken, Modellierung, Spezifikation und Verifikation;
Betriebssicherheit unter extremen Bedingungen; Standards und Normung; Sicherheitsevaluation
und -zertifizierung; Kosten von Sicherheit; etc.

April 06-08 Software & Systems Quality Conferences (SQS'2005), Düsseldorf, Germany. Event includes:
ICSTEST International Conference on Software Testing, SQM, a congress focussing on Software
Quality Management, and CSVHC Conference on Software Validation for Health Care.

April 10-13 The Conference for Software Practice Advancement (SPA'2005), Wyboston, Bedfordshire,
England. Topics include: Languages; Distributed, component-based development; Pervasive or
embedded systems; Patterns and pattern languages; Comparative experience (what we have
learned or can learn from other disciplines); Lessons learned/experience reports; etc.

April 11-13 12th Annual European Concurrent Engineering Conference (ECEC'2005), Toulouse, France.
Topics include: engineering of embedded systems, specification languages, distributed computing
environments, practical solutions, pitfalls and success stories, case studies, pilot projects and
experiments, etc. Deadline for submissions: January 20, 2005 (final)

April 11-13 9th International Conference on Empirical Assessment in Software Engineering
(EASE'2005), Keele University, UK. Topics include: Evaluation of products, components and
services; Process and tool evaluation; Quality assessment; Software experiments, case studies and
observational studies; etc.

April 27-29 5th International SPICE Conference on Software Process Improvement and Capability
dEtermination (SPICE'2005), Klagenfurt, Austria.

May 02-06 International Conference on Practical Software Quality and Testing (PSQT'2005 West), Las
Vegas, Nevada, USA. Deadline for submissions: January 14, 2005 (papers, presentations)

☺ May 15-21 27th International Conference on Software Engineering (ICSE'2005), St Louis, Missouri, USA.
Topics include: Software architectures and design; Software components and reuse; Software
security; Software safety and reliability; Reverse engineering and software maintenance; Software
economics; Empirical software engineering and metrics; Distribution and parallelism; Software
tools and development environments; Programming languages; Object-oriented techniques;
Embedded and real-time software; etc.

May 14-15 8th International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE'2005). Topics include: Static analysis and execution
monitoring of system properties; Components for real-time, secure, safety
critical and/or embedded systems; etc. Deadline for submissions: January 7,
2005

May 15-16 13th IEEE International Workshop on Program Comprehension
(IWPC'2005). Topics include: Comprehension during large scale maintenance,
reengineering, and evolution of existing systems; Reverse engineering for the
purpose of program comprehension; etc. Deadline for submissions: January 21,
2005 (technical papers), February 4, 2005 (working sessions, tool
demonstrations)

212 Conference Calendar

Volume 25, Number 4, December 2004 Ada User Journal

☺May 17 Workshop on Architecting Dependable Systems (WADS'2005). Topics
include: all topics related to software architectures for dependable systems.
Deadline for submissions: January 21, 2005

May 17 3rd Workshop on Software Quality (WoSQ'2005). Topics include: Software
Product Evaluation and Certification; Tradeoffs in Quality during software
development; Software Quality Education; Methods and Tools for Quality
Assurance; Software Quality at different stages of the development lifecycle;
Building quality into software products; Testing, Inspections, Walkthroughs and
Reviews; etc. Deadline for submissions: February 21, 2005 (extended abstracts,
position papers)

May 22-25 5th International Conference on Computational Science (ICCS'2005), Atlanta, USA. Theme:
"Advancing Science through Computation". Topics include: Parallel and Distributed Computing,
etc.

May 23-25 9th Brazilian Symposium on Programming Languages (SBLP'2005), Recife, PE, Brazil. Topics
include: programming language design and implementation, formal semantics of programming
languages, theoretical foundations of programming languages and teaching programming
languages, etc. Deadline for submissions: February 28, 2005

May 27-June 01 3rd International Software Development Conference (SWDC'2005), Reykjavik, Iceland. Topics
include: Project success and failure analysis; Software project risk management; Software process
improvement; etc. Deadline for submissions: February 21, 2005

☺ May 30-June 02 DAta Systems In Aerospace (DASIA'2005), Edinburgh, Scotland, UK.

June 06-09 5th International Conference on Application of Concurrency to System Design (ACSD'2005),
St Malo, France. Topics include: Correct-by-construction design methods and integration of
verification techniques with the design process; etc. Deadline for submissions: February 4, 2005
(tool demonstrations)

June 06-10 25th International Conference on Distributed Computing Systems (ICDCS'2005), Columbus,
Ohio, USA. Sponsored by The IEEE Computer Society Technical Committee on Distributed
Processing. Topics include: Fault Tolerance & Dependability, Middleware, Real-time &
Embedded Systems, Security, Formal Verification, etc.

June 13-17 17th Conference on Advanced Information Systems Engineering (CAiSE'2005), Porto,
Portugal. Topics include: Model and Software Reusability, Distributed and Open Architectures,
Languages for IS, etc. Deadline for submissions: February 26, 2005 (posters), February 28, 2005
(Doctoral Consortium Papers)

☺ June 14-17 34th International Conference on Parallel Processing (ICPP'2005), Oslo, Norway. Topics
include: Compilers and Languages, Programming Methodologies, Tools, Parallel Embedded
Systems, etc. Deadline for submissions: January 3, 2005

June 15-17 7th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'2005), Athens, Greece. In conjunction with DAIS'2005 (Distributed
Applications and Interoperable Systems). Topics include: Formal techniques for specification,
design or analysis; Verification, testing and validation; Component-based design; Type systems
for programming languages; Formal models for security; Applications and experience, carefully
described; etc. Deadline for submissions: January 14, 2005 (abstracts), January 21, 2005 (full
papers)

June 15-17 5th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable
Systems (DAIS'2005), Athens, Greece. Deadline for submissions: February 1, 2005 (full papers),
February 15, 2005 (work-in-progress papers).

June 16-20 10th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2005), Shanghai, China. Topics include: Tools, environments, and languages for
complex systems; Formal methods for developing complex systems; Software and system
development processes for complex systems; Software review, inspection, and testing; Formal
proof and model checking; Human factors and collaborative aspects; Interoperability and

Conference Calendar 213

Ada User Journal Volume 25, Number 4, December 2004

standardization; Systems and software safety and security; Industrial automation, embedded and/or
real time systems; etc.

June 18-23 6th International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP'2005), Sheffield, UK. Topics include: Case studies, experiments and practioner's
reports; Scalability issues; Refactoring and continuous integration; Use of SW development tools
and environments; etc. Deadline for submissions: January 16, 2005 (papers), March 1, 2005
(tutorials, workshops, panels and activities, PhD Symposium, posters)

♦ June 20-24 10th International Conference on Reliable Software Technologies - Ada-
Europe'2005, York, UK. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda (approval pending). Deadline for submissions: January 10, 2005
(industrial presentations)

June 27-29 10th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2005), Monte de Caparica, Portugal. Deadline for submissions: February 14, 2005 (tips &
techniques summaries, posters, demos), April 18, 2005 (working group membership application)

June 27-30 2005 International Multiconference in Computer Science and Computer Engineering
(IMCSE'2005), Las Vegas, Nevada, USA. Deadline for submissions: February 16, 2005 (papers)

☺June 27-30 International Conference on Programming Languages and Compilers
(PLC'2005). Deadline for submissions: February 16, 2005 (papers)

June 27-30 International Conference on Software Engineering Research and Practice
(SERP'2005). Topics include: Formal methods in software engineering,
Software engineering and high assurance systems, Software maintenance,
Component-based software engineering, Quality-based software engineering,
Real-time software engineering, Critical systems, Verification and validation,
Software testing, Quality management, Object-oriented software engineering,
Case studies, etc. Deadline for submissions: February 26, 2005

July 06-10 17th International Conference on Computer-Aided Verification (CAV'2005), Edinburgh,
Scotland, UK. Topics include: Algorithms and tools for verifying models and implementations,
Program analysis and software verification, Applications and case studies, Verification in
industrial practice, etc. Deadline for paper submissions: January 21, 2005

July 11-15 32nd International Colloquium on Automata, Languages and Programming (ICALP'2005),
Lisbon, Portugal. Topics include: Parallel and Distributed Computing; Principles of Programming
Languages; Formal Methods; Program Analysis and Transformation; Specifications, Verifications
and Secure Programming; etc. Affiliated Workshops on July 9-10 and 16-17, 2005. Deadline for
submissions: February 13, 2005 (extended abstracts)

July 11-15 1st International Conference on Open Source Systems (OSS'2005), Genova, Italy. Topics
include: Introduction of OSS in companies and Public Administrations, Empirical analysis of
OSS, Case studies and experiments, etc. Deadline for submissions: January 15, 2005 (extended
abstracts), January 31, 2005 (tutorials, workshops, panels, demos), March 1, 2005 (abstracts for
Open Educational Symposium, research plans for PhD symposium)

July 17-20 24rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2005), Las Vegas, Nevada, USA. Topics include: all areas of distributed systems. Deadline
for submissions: February 7, 2005

July 18-22 13th International Symposium of Formal Methods Europe (FM'2005), Newcastle upon Tyne,
UK. Topics include: introducing formal methods in industrial practice (technical, organizational,
social, psychological aspects); reports on practical use and case studies (reporting positive or
negative experiences); tool support and software engineering; environments for formal methods;
etc. Deadline for submissions: January 24, 2005 (papers), March 07, 2005 (workshops, tutorials),
May 09, 2005 (tools exhibition, demonstrations)

July 25-28 29th Annual International Computer Software and Applications Conference
(COMPSAC'2005), Edinburgh, Scotland, UK. Theme: "High Assurance Software Systems"
Topics include: Dependable service provision, Trustworthy software, Software safety, Software

214 Conference Calendar

Volume 25, Number 4, December 2004 Ada User Journal

fault tolerance, High performance software, Component-based software, Design patterns, Software
certification, Software standards, Software engineering education, Embedded systems,
Middleware systems, Automotive telematics, etc. Deadline for submissions: February 15, 2005
(regular and workshop papers), March 21, 2005 (fast abstract submissions)

☺ July 25-29 19th European Conference on Object-Oriented Programming (ECOOP'2005), Glasgow,
Scotland, UK. Topics include: Concurrent, real-time and parallel systems; Design patterns;
Distributed systems; Frameworks and software architectures; Language design and
implementation; Programming environments; Adaptability; Formal methods; Software evolution;
etc. Deadline for submissions: March 18, 2005 (PhD workshop submissions), May 6, 2005
(demos, posters, exhibitions)

August 29-September 02 13th IEEE International Requirements Engineering Conference (RE'2005), Paris, France.
Deadline for submissions: February 7, 2005 (abstracts), February 14, 2005 (papers), March 11,
2005 (workshops, tutorials, panels), April 28, 2005 (doctoral symposium, posters, research
demonstrations)

☺ August 30-Sept. 02 11th International Conference on Parallel and Distributed Computing (Euro-Par'2005),
Lisboa, Portugal. Topics include: Support Tools and Environments; Scheduling and Load
Balancing; Compilers for High Performance; Distributed Systems and Algorithms; Parallel
Programming: Models, Methods, and Languages; etc. Deadline for submissions: January 31, 2005
(full papers)

August 30 – Sept. 03 31st EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO'2005), Lisboa, Portugal. Topics include: Component-Based Software Engineering,
Software Process and Product Improvement, Component Models for Dependable Systems, Value-
based Software Engineering, etc. Deadline for submissions: March 1, 2005 (papers)

☺ September 13-16 International Conference on Parallel Computing 2005 (ParCo2005), Malaga, Spain. Topics
include: applications; software engineering methodologies, methods and tools for developing and
maintaining parallel software, incl. parallel programming models and paradigms, development
environments, languages, compiling and run-time tools; etc. Deadline for submissions: January 31,
2005 (abstracts, mini-symposia proposals), July 31, 2005 (draft full papers)

September 19-22 11th International Software Metrics Symposium (Metrics'2005), Como, Italy. Topics include:
Effort and cost estimation; Defect rate and reliability prediction; Quality Assurance; Empirical
studies of global software development projects, open source software projects, agile development
projects; etc. Deadline for submissions: February 23, 2005 (abstracts), March 15, 2005 (technical
papers), April 1, 2005 (workshops, dissertation forum), May 30, 2005 (industry track)

September 19-23 9th International IEEE Enterprise Distributed Object Computing Conference (EDOC'2005),
Enschede, The Netherlands. Deadline for submissions: March 4, 2005 (abstracts), March 18, 2005
(papers, workshops)

September 25-30 21st IEEE International Conference on Software Maintenance (ICSM'2005), Budapest,
Hungary. Topics include: issues related to maintaining, modifying, enhancing, and testing
operational systems, and designing, building, testing, and evolving maintainable systems. Deadline
for submissions: March 21, 2005 (research papers), April 30, 2005 (industrial applications, panels,
tool demonstrations, dissertation forum, tutorials)

October 02-07 8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS'2005), Montego Bay, Jamaica. Formerly the UML series of conferences. Topics
include: Model-driven development methodologies, approaches, and languages; Empirical studies
of modeling and model-driven development; Tool support for any aspect of model-driven
development or model use; Semantics of modeling languages; etc. Deadline for submissions:
March 21, 2005 (experience and scientific abstracts), April 4, 2005 (experience and scientific full
papers), May 6, 2005 (workshops), June 6, 2005 (tutorials), TBA (doctoral symposium, tools and
exhibits, posters and demos)

♦ November 13-17 2005 ACM SIGAda Annual International Conference (SIGAda'2005),
Atlanta, Georgia, USA.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

220

Volume 25, Number 4, December 2004 Ada User Journal

Real-Time Java™ for Ada
Programmers
Benjamin M Brosgol
AdaCore, 79 Tobey Road, Belmont, MA 02478, USA; email: brosgol@adacore.com

Abstract
This full-day tutorial was an in-depth introduction to
the Real-Time Specification for Java (“RTSJ”), a
class library (and JVM constraints) designed to add
real-time behaviour and predictability to the Java
platform. The RTSJ comprises several kinds of
features: a scheduling framework and base scheduler,
memory management not subject to Garbage
Collection, synchronization / priority inversion
control, asynchronous event handling, asynchronous
transfer of control, time-related classes, and low-level
features. Several implementations are in progress,
and work is underway on designing a subset that is
appropriate for safety-critical applications.
Keywords: real-time, Java, priority inversion,
concurrency, garbage collection, asynchrony.

1 Background and Introduction
During the late 1990s Java’s growing popularity as an
alternative to C++ led to several workshops, organized by
the National Institute for Standards and Technology (NIST)
in the US, to assess the Java platform’s viability for real-
time applications. These culminated in a January 1999
meeting in San Diego hosted by Aonix and attended by
representatives of Sun Microsystems, hardware vendors,
RTOS suppliers, researchers, and users. Two obvious
major technical problems were noted: the unpredictability
caused by automatic garbage collection, and the lack of
deterministic scheduling for threads. It was felt that these
were solvable issues. A set of requirements was formulated
by NIST [1], and almost immediately two parallel efforts
got underway to design a compliant specification: one
under the auspices of Sun Microsystems’ Java Community
Process (JCP), and the other by a group known as the J-
Consortium (who had some issues with the JCP licensing
terms).

The Sun-sanctioned effort was a Java Specification
Request, JSR-001, that came to be known as the Real-Time
Specification for Java (“RTSJ”). This has gone through
several iterations: a pre-release in June 2000 led by Greg
Bollella (then at IBM); an initial JCP-approved version in
November 2001 let by Peter Haggar (IBM); and a JCP-
approved maintenance release in August 2004 led by Peter
Dibble (Timesys). As required by JCP rules, the
specification is accompanied by a Reference
Implementation and Technology Compatibility Kit, both
from Timesys. The RTSJ has been the subject of an initial
reference book by Bollella et. al. [2], and textbooks by

Dibble [3] and Wellings [4]. Additional information can be
found at the website www.rtj.org.

The J-Consortium published an alternative approach for
real-time Java in Fall 2000, the “Core Extensions”
document (Nilsen [5]). Despite a number of innovative
aspects (such as features that help predict Worst Case
Execution Time) the Core Extensions have not yet been
implemented.

The tutorial focused on the RTSJ rather than the Core
Extensions, since the RTSJ has much higher likelihood of
being implemented and used in practice.

2 Java and Real-Time Programming
In order to support real-time development, a programming
language needs to meet requirements in several areas:

• Appropriate reliability-oriented facilities, such as
strong typing and encapsulation.

• A concurrency mechanism with an adequate range of
priorities, well-defined scheduling semantics,
safe/efficient mutual exclusion that allows
management of priority inversion, and support for
common idioms such as periodic activities.

• Predictability of time and space utilization, particularly
in the area of memory management. Predictability
also applies more generally to program execution:
language semantics should be deterministic and should
avoid implementation dependence.

• Asynchronous event handling and also timeouts /
thread abort (“asynchronous transfer of control”).

• Adequate functionality for clocks / timers and low-
level support.

Performance is also a goal, although “real time” is not the
same as “real fast”. Indeed, there is sometimes a trade-off
between predictability and performance or throughput. An
interesting contrast between the RTSJ and the Core
Extensions is that the latter strove explicitly to attain run-
time efficiency comparable to traditional real-time
approaches.

Although Java meets many of the general reliability-
oriented criteria and has deterministic semantics for its
sequential features, it has some obvious deficiencies. In the
concurrency area, the priority range (10 values) is too
narrow, and these values do not necessarily map to distinct
priorities on the underlying native operating system. The
scheduling semantics are (intentionally) loose; indeed, the

B M Brosgol 221

Ada User Journal Volume 25, Number 4, December 2004

Java Language Specification [6] states that there is no
“guarantee that the highest priority thread will always be
running, and thread priorities cannot be used to reliably
implement mutual exclusion”. Priority may or may not be
used in the selection of which thread to run when a lock is
released, or which thread in a wait set to make ready when
a notify occurs. Unbounded priority inversion may occur.

Another major deficiency, which some may feel is a fatal
flaw, is Java’s need for garbage collection. Despite the
advances in “real-time GC”, this topic remains a research
area and is not in mainstream use. Thus any attempt to
adapt Java to meet real-time requirements must address the
issue of predictable memory management.

Asynchrony support in Java is weak. There is no special
mechanism for asynchronous event handling; the
programmer needs to realize such handlers as regular
threads, with the resulting loose semantics for scheduling.
Asynchronous transfer of control was simply not well
thought out in the original Java specification. The main
methods for realizing this behaviour – stop() and destroy()
– have been deprecated because of their dangers, and in any
event destroy() has never been implemented.

The other functional requirements noted above – support
for time and timers, and access to low-level hardware
features – are also insufficient or absent.

All of these issues presented challenges in the design of the
RTSJ.

3 RTSJ Overview
The contents of this section are based on Brosgol &
Wellings [7].

The RTSJ provides a flexible scheduling framework based
on the Schedulable interface and the Thread subclass
RealtimeThread that implements this interface. The latter
class overrides various methods with versions that add real-
time functionality, and supplies new methods for operations
such as periodic scheduling. The Schedulable interface is
introduced because certain schedulable entities (in
particular, handlers for asynchronous events) might not be
implemented as threads.

The RTSJ mandates a default POSIX-compliant preemptive
priority-based scheduler that supports at least 28 distinct
priority levels, and that enforces Priority Inheritance to
manage priority inversions. The implementation can
provide other schedulers (e.g., Earliest Deadline First) and
priority inversion control policies (e.g., Priority Ceiling
Emulation).

To deal with Garbage Collection issues, the RTSJ provides
various memory areas that are not subject to Garbage
Collection: “immortal memory”, which persists for the
duration of the application; and “scoped memory”, which is
a generalization of the run-time stack. Restrictions on
assignment prevent dangling references. The RTSJ also
provides a NoHeapRealtimeThread class; instances never
reference the heap, may preempt the Garbage Collector at
any time (even when the heap is in an inconsistent state),

and thus do not incur GC latency except in specialized
circumstances described below.

Java’s asynchrony issues are addressed through two main
features. First, the RTSJ allows the definition of
asynchronous events and asynchronous event handlers –
these are basically a high-level mechanism for handling
hardware interrupts or software “signals”. Secondly, the
RTSJ extends the effect of Thread.interrupt to apply not
only to blocked threads, but also to real-time threads and
asynchronous event handlers whether blocked or not.

The RTSJ supports absolute and relative high-resolution
time, as well as one-shot and periodic timers. It also
provides several classes for low-level programming. “Peek
and poke” facilities for integral and floating-point data are
available for “raw memory”, and “physical memory” may
be defined with particular characteristics (such as flash
memory) and used for general object allocation.

4 Scheduling
The RTSJ combines a priority-oriented scheduling
algorithm (the base scheduler) with an extensible
scheduling framework, support for on-line admission
control and feasibility analysis, and a unified treatment of
real-time threads and asynchronous event handers. A real-
time thread is an instance of the RTSJ’s RealtimeThread
class. Asynchronous event handlers will be described
below.

The base scheduler adds deterministic semantics (FIFO
within priority) to the rules for choosing which ready thread
to run, which wait set member to awaken after a notify(),
and which “stalled” thread to unblock when a lock is
released.

The extensible scheduling framework allows implementers
to provide additional schedulers such as Earliest Deadline
First or Round Robin.

Real-time threads and asynchronous event handlers are
termed schedulable objects. Constructors allow the
establishment of various sorts of “parameters”, including
scheduling parameters (priority), release parameters (cost,
deadline, cost overrun handler, and deadline miss handler),
and memory parameters (control over GC pacing). Support
for cost overrun detection is optional, given the
implementation difficulty on some platforms.

The RealtimeThread class is an extension of
java.lang.Thread that implements the Schedulable
interface, itself an extension of Runnable. Besides the run()
method, there are a number of methods related to feasibility
analysis.

Here is an example of a periodic real-time thread:
public class MyPeriodic extends RealtimeThread{

 public MyPeriodic(int priority,
 int periodMillis,
 int costMillis,
 int deadlineMillis){
 super(new PriorityParameters(priority),
 // SchedulingParameters
 new PeriodicParameters(

222 Real-Time Java™ for Ada Programmers

Volume 25, Number 4, December 2004 Ada User Journal

 // ReleaseParameters
 null, // 1st release is at start
 new RelativeTime(periodMillis, 0),
 new RelativeTime(costMillis, 0),
 new RelativeTime(deadlineMillis, 0),
 null, // No cost overrun handler)
 null) // No deadline miss handler
);
 }

 public void run(){
 while (true) {
 … // Work done during each release
 RealtimeThread.waitForNextPeriod();
 // Block till next release
 }
}

MyPeriodic mp = new MyPeriodic(30, 100, 20, 100);
// priority == 30, period ==100, cost ==20,
// deadline == 100

mp.start(); // Triggers initial release for mp

The arguments to the constructor for MyPeriodic establish
the priority, period, cost and deadline. These are in turn
passed to one of the superclass constructors via
corresponding parameters objects. The behaviour of the
periodic real-time thread is captured in the run() method,
which illustrates the RTSJ style for realizing periodicity:
invoking the waitForNextPeriod method. The implementa-
tion will arrange the next release automatically.

5 Memory Management
The RTSJ defines a general concept of a memory area,
which is a region used for object allocation. The Java heap
is one such memory area, represented by a singleton class.
Another memory area is immortal memory, also
represented by a singleton class; objects in this area are
never reclaimed or relocated.

Supplementing the heap and immortal areas are scoped
memory areas that are constructed under program control.
As suggested by the terminology, a scoped area has a
limited lifetime: it is reset (and all contained objects
finalized) when it is no longer referenced by the program.
Usage restrictions allow this to be implemented with a
reference counting scheme – one count per area, not one
per allocated object. Consistent with the Java language
principles, there is no explicit free operation. Assignments
are restricted to prevent dangling references: a reference to
an object in a scoped area is not allowed to be assigned to a
field in an object that resides in the heap, in immortal
memory, or in an outer scope. This rule is enforced by a
run-time check but could be optimized out by a clever
compiler.

A memory area can be used for a single object allocation,
but more typically it is “entered” and then used for all
object allocations during the “closure” of a method
invocation (i.e., by the method itself or other methods and
constructors directly or indirectly invoked). A memory
area can also be passed to a constructor for a schedulable
object, in which case it is used during the closure of the
schedulable object’s run() method.

The user can construct real-time threads that never access
the heap and that thus can pre-empt the Garbage Collector

even when the GC is not at a “safe” interruption point (i.e.,
when the heap is in an inconsistent state). Such real-time
threads, instances of the NoHeapRealtimeThread class, may
only reference immortal and scoped memory areas.

The rules for scoped memory are somewhat subtle, and the
workaround to the assignment restrictions typically
involves heavy use of immortal memory.

The following example shows one use of scoped memory.
The constructor for m creates a scoped area of size 100K
bytes. At each iteration of the loop, the area is used for
allocating objects that are created during execution of
r.run(). At the end of each iteration each object in the area
is finalized, and the area is emptied.

void foo(){
 LTMemory m = new LTMemory(100000, 100000);
 Runnable r = new Runnable(){
 public void run(){...}
 };
 while (someCondition()){
 m.enter(r);
 }
}

6 Synchronization
The RTSJ provides a general model for synchronization
control (to manage priority inversions), and specific
semantics that apply to the base scheduler.

Every object has a monitor control policy, assigned either
implicitly or explicitly. The default (implicit) policy is
Priority Inheritance (“PI”), but this can be changed at
system startup. (More specifically, the RTSJ defines an
abstract class MonitorControlPolicy and a singleton subclass
PriorityInheritance.) If an object governed by priority
inheritance is locked by a thread t1, and another thread t2
attempts to lock the object, then t1’s active priority will be
increased to that of t2. This is applied recursively if t1 is
stalled waiting for an object that is currently locked by
some other thread t3: the priority of t3 will be raised to that
of t2.

The RTSJ also defines a MonitorControlPolicy subclass
PriorityCeilingEmulation (“PCE”) corresponding to the
“highest lockers” / priority ceiling emulation policy. An
object governed by an instance of this class has a ceiling
that needs to be set (by the programmer) at least as high as
the highest active priority of any thread that could lock the
object. When a thread attempts to lock an object governed
by such a policy a check is made to ensure that the thread’s
priority does not exceed the object’s ceiling. If this
condition is met then either the thread’s active priority is
boosted to the ceiling and the thread acquires the lock (if
the object is unlocked) or the thread is queued (if the object
is locked). If the ceiling check fails, an exception is
thrown.

The combination of Priority Inheritance and PCE results in
some subtle interactions. For example, while a thread t1 is
holding locks on a PCE-governed object obj1 and a PI-
governed object obj2, a high priority thread t2 may attempt
to lock obj2. This would ordinarily result in t1’s inheriting
t2’s priority. However, if t2’s priority exceeds obj1’s

B M Brosgol 223

Ada User Journal Volume 25, Number 4, December 2004

ceiling, then the priority inheritance would cause t1 to have
a ceiling violation. Since throwing an exception in t1
would be asynchronous, the rules instead require the
exception to be thrown in t2.

The PriorityCeilingEmulation policy is optional, since the
RTSJ authors felt that it was not as widely supported as
priority inheritance in practice.

Unlike an Ada task executing a protected operation, a
thread is allowed to block when in synchronized code, and
thus the “no-lock” optimization for Ada’s protected objects
does not apply in the RTSJ. An implementation can
provide a lock-free version of PriorityCeilingEmulation as an
optimization, but there are a number of subtleties that will
make this optimization difficult.

When a thread suffers a loss of inherited priority it goes to
the ready queue for its new active priority; the RTSJ
recommends that it be placed at the head, but this is not a
requirement.

An object’s monitor control policy can be changed
dynamically; it may be governed by priority inheritance at
one point, and priority ceiling emulation at other times. It
can also be governed by PCE policies with different
ceilings at different times.

class Position{
 private double x, y;

 Position(double x, double y, int ceiling){
 this.x=x; this.y=y;
 MonitorControl.setMonitorControl(
 this,
 PriorityCeilingEmulation.instance(ceiling));
 }

 synchronized void setXY(double x, double y){
 this.x=x; this.y=y;
 }
 synchronized double[] getXY() {
 return new double[2]{x, y};
 }
}

class Sensor extends RealtimeThread{
 Sensor(Position p, int priority){...}
 ...
}

class Reporter extends RealtimeThread{
 Reporter(Position p, int priority){...}
 ...
}

class Test{
 public static void main(String[] args){
 Position p = new Position(0.0, 0.0, 16);
 Sensor s = new Sensor(p, 15);
 Reporter r = new Reporter(p, 10);
 s.start(); r.start();
 ...
 }
}

In this example, each Position instance is governed by PCE
and is given a ceiling a construction time. The main
method creates Sensor and Reporter real-time threads at
priority 15 and 10 respectively, and a Position object
(shared by the two real-time threads) at ceiling 16.

Communication between a no-heap realtime thread and a
heap-using thread raises an interesting issue. If they

attempt to synchronize on an object then the no-heap thread
may incur GC-induced latency. (This can arise if the heap-
using thread holds a lock on an object that the no-heap
realtime thread attempts to synchronize on, since the heap-
using thread may cause the GC to run.)

In order to help applications avoid this problem, the RTSJ
supplies two “wait-free queue” classes. The
WaitFreeWriteQueue is typically used by one writer (a no-
heap realtime thread) and any number of readers (heap-
using threads). The write() operation is non-blocking and
non-synchronized; read() is a blocking, synchronized
operation. The WaitFreeReadQueue is analogous.
Communication between a no-heap realtime thread and a
heap-using thread can use these queues and thus avoid the
need to synchronize on the same object.

7 Asynchrony
The RTSJ offers two types of asynchrony features:
asynchronous event handling, and asynchronous transfer of
control.

7.1 Asynchronous Events and their Handlers
A real-time program often has to cope with events that are
triggered asynchronously, either from hardware interrupts
or from software threads. The RTSJ uses the standard Java
“listener” pattern to model this situation, but extended for
applicability to real-time systems.

One part of the model is the AsyncEvent class, which has
methods that allow event handlers to be registered, and also
a method – fire() – that reflects the occurrence of the event.

The other part of the model is the AsyncEventHandler class.
This class has constructors similar to RealtimeThread: thus
asynchronous event handlers (“AEH”s) have scheduling
parameters, release parameters, etc. The class has a method
– handleAsyncEvent() – that will need to be overridden on
subclassing to supply the necessary logic for event
handling. AsyncEventHandler also has a run() method, but
this contains logic supplied by the implementation and is
not overridden.

In a simple scenario, when an event e is fired, all AEHs
registered to handle e are released and are then scheduled
based on their parameters. When an AEH is executed, its
run() method is invoked, which in turn invokes the
handleAsyncEvent() method.

In a more complicated situation, an event may be “bursty”:
when fired, it may already have an AEH running, having
been scheduled in response to a previous occurrence. In
this situation there is not another scheduling of the handler.
Instead, the implementation needs to keep track of the
number of pending event firings via a “fire count”; the
handler will invoke handleAsyncEvent() repeatedly as long
as the fire count is non-zero. Methods are available that
allow the handler to reset the fire count, since in some
situations the iterated invocation of handleAsyncEvent()
might not be desirable.

An AEH needs a thread of control to execute its run() and
handleAsyncEvent() methods. The RTSJ allows the user to

224 Real-Time Java™ for Ada Programmers

Volume 25, Number 4, December 2004 Ada User Journal

specify that an AEH is bound to a dedicated thread: this is
accomplished by the user subclassing BoundAsync-
EventHandler. Otherwise an AEH may share a thread with
other AEHs.

Here is an example of asynchronous event handling:
class Handler extends AsyncEventHandler{
 public void handleAsyncEvent(){
 System.out.println("Event handled");
 }

class Example{
 AsyncEvent e = new AsyncEvent();
 Handler h = new Handler();
 e.addHandler(h);
 e.fire();
}

When event e is fired, handler h is released. Its scheduling
and release parameters (here the defaults are implied)
determine when it runs, at which point it simply displays a
string.

7.2 Asynchronous Transfer of Control
Asynchronous Transfer of Control (“ATC”) is a transfer of
control within a thread, triggered not by the thread itself but
rather from some external source such as another thread or
an interrupt handler. It is a controversial feature. On the
one hand it is difficult to define, complicated to implement
(especially so if efficiency is important) and hard to use
correctly; the possibility of ATC makes program testing
and analysis complex. Nevertheless, there are several
common situations in practice for which ATC works better
(i.e. has lower latency) than polling. These include timing
out on a computation, and terminating a thread (e.g. as part
of a mode change).

The ATC design in the RTSJ was based on several design
principles, including the following:

• No syntactic extension. Any functionality had to be
realized by method calls versus new statements.

• Non-interruptibility as the default. Code that is
susceptible to asynchronous interruption must
explicitly indicate its permission.

• Deferral in critical sections. Code that must execute to
completion (specifically, synchronized code) is not
susceptible to ATC.

The ATC approach in the RTSJ combines low-level
“building blocks” with some higher level mechanisms. At
its foundation are several main elements:

• The complementary concepts of asynchronously-
interruptible (“AI”) and ATC deferred code

• A class AsynchronouslyInterruptedException (“AIE”),
a subclass of InterruptedException

• A generalization of Thread.interrupt() in regular Java
when applied to a real-time thread.

• A controlled form of asynchronous exception throwing

The only code that is asynchronously interruptible is that
contained textually within a method or constructor that

includes AIE on its throws clause, but that is not within
ATC-deferred code. Synchronized statements and methods,
and also methods and constructors that lack a throws AIE
clause, are ATC-deferred. Further, an AI method or
constructor will be ATC deferred if invoked from a regular
(i.e., non real-time) thread.

An ATC request always involves, either explicitly or
implicitly, a target real-time thread t and an AIE instance
aie. For example, the method call t.interrupt() posts an ATC
request to t, but the AIE instance (the system-wide
“generic” AIE) is implicit. Because of the special rules for
AIE exception propagation, t.interrupt() would typically be
used as a way to terminate t. It has an effect not simply
when t is blocked (which are regular Thread semantics) but
also when t is executing AI code. Here’s an example of
how to express a real-time thread’s logic so that it may be
terminated asynchronously by another thread:

class AbortableVictim extends RealtimeThread{
 private void body() throws AIE{
 ... // abortable here
 }
 public void run(){
 ... // not abortable here
 try{
 body(); // abortable here
 }
 catch(AIE e){
 ... // response to abort
 }
 finally{
 ... // unconditional pre-shutdown actions
 }
 }
}

If another thread has a reference to an AbortableVictim v,
then the method call v.interrupt() will cause an ATC in v if v
is executing the body() method, since body() has a “throws
AIE” clause.

Posting an ATC request to a real-time thread t basically
involves throwing an AIE instance asynchronously at t, but
subject to several restrictions and special rules:

• The throwing of the exception is deferred until t is
executing AI code. This avoids the problem of ATC
from synchronized code, which could leave an object
inconsistent.

• Handling an exception thrown as a result of ATC does
not automatically prevent the exception from
propagating. This rule prevents a real-time thread
from defeating a termination ATC by handling the
exception.

• An ATC request posted to a real-time thread has no
effect if performed too early (before the target thread
has initiated an interruptible method invocation
associated with the request) or too late (after such an
invocation has completed. This rule prevents an
asynchronous exception from being thrown in code not
prepared to handle it.

The last rule is captured in the Interruptible interface and the
doInterruptible and fire methods of AIE. The basic style is
as follows:

B M Brosgol 225

Ada User Journal Volume 25, Number 4, December 2004

• The target thread invokes aie.doInterruptible(i) where i
is an instance of Interruptible. The effect is to invoke
i.run() synchronously

• The relevant methods to implement in i are run(),
which should have a “throws AIE” clause, and
interruptAction.

• The run() method is the interruptible logic, and
interruptAction is to be invoked when run receives an
ATC

• Another thread needs to invoke aie.fire() to post the
ATC request to the target thread

The RTSJ supplies an AIE subclass, Timed, which
automates the firing of the AIE and serves as a basis for the
RTSJ idiom for expressing a timeout.

The ATC rules are complicated and sometimes
counterintuitive. For example, although it might seem that
finally clauses should be ATC-deferred (analogous to
Finalize being abort-deferred in Ada), this would cause
problems, since finally clauses are not manifest in the
bytecodes of the classfile. One of the constraints on the
RTSJ was that the spec should not force compilers to be
changed; requiring special handling for finally clauses
would violate this condition. Thus an ATC is possible from
a finally clause in an AI method, which complicates the
style for arranging non-interruptible cleanup.

8 Time and Timers
The RTSJ supplies an abstract HighResolutionTime class,
with non-abstract subclasses for AbsoluteTime and
RelativeTime. These classes support time measured in
milliseconds and nanoseconds, relative to some clock (by
default a monotonically non-decreasing real-time clock).
Various methods allow converting between absolute and
relative time, and perfoming relevant arithmetic operations
(e.g., adding millis and nanos to an absolute or relative time
value). The RTSJ also supplies a RationalTime class, as a
subclass of RelativeTime. This class was intended to allow
expressing frequency requirements (e.g., 17 times per
second) but has been deprecated because of several
anomalies that it caused.

The RTSJ defines an abstract class Timer as a subclass of
AsyncEvent,. It also provides OneShotTimer and Periodic-
Timer as subclasses of Timer. The AsyncEventHandler
mechanism may be used to realize the event handling logic.

9 Low-Level Features
Two basic mechanisms are provided for dealing with low-
level issues: “raw” memory, and “physical” memory.

The RTSJ supplies two classes for raw memory:
RawMemoryAccess and RawMemoryFloatAccess. The
former contains methods that allow the setting and retrieval
of integral values (byte, char, int, long) from specified
addresses. The latter contains all of these methods plus
ones to set and retrieve floating point values (float, double).
(The reason for the two classes is that some
implementations of the RTSJ might be on platforms that

lack floating-point arithmetic.) Neither allows the setting
or retrieval of references, since that would obviously defeat
Java’s strong typing and interfere with Garbage Collection.

Physical memory is part of the memory area mechanism
and allows the user to specify immortal or scoped areas that
have distinguished characteristics (e.g., flash memory or
memory-mapped I/O). It can be used for object allocations
in the same way as other memory areas.

10 Real-Time Java in Practice
This section highlights some current implementations and
other RTSJ-related developments.

• Reference Implementation

The Reference Implementation (“RI”) is part of the JSR
“product” required by Sun’s Java Community Process. The
current RI had previously been marketed by Timesys as
their commercial jTime offering. URL: www.timesys.com

• jRate (Java Real-Time Extension)

This effort at Washington University at St. Louis (US) is an
extension of the GNU GCJ front-end and run-time library,
to support the RTSJ.
URL: www.cs.wustl.edu/~corsaro/jRate

• OVM (OpenVM)

This is an open-source framework for language run-time
systems, with emphasis on an RTSJ-compliant JVM.
Participants are Purdue, State Univ. of New York in
Oswego, and Univ. of Maryland (US); and DL Tech
(Australia). It is sponsored by DARPA (US). URL:
www.ovmj.org

• Jamaica VM

This is a commercial implementation of the RTSJ by aicas,
using F. Siebert’s Garbage Collection algorithm [8]. URL:
www.aicas.com

• HIDOORS Project (High-Integrity Distributed Object-
Oriented Realtime Systems.)

Partially funded by the European Commision, this
consortium comprises organizations in Germany (FZI,
R.O.S.E. Informatik, aicas, EADS), Sweden (Linköpings
Univ.), France (Aonix), and Portugal (Skysoft). Their goal
as stated on their website is to provide “the full function-
ality of the modern programming language Java for the
development of distributed, realtime and safety critical
systems and to provide a powerful environment of tools
that support modeling, analysis, and proof of correctness of
systems developed in Java”. URL: www.hidoors.org

• HIJA Project (High-Integrity Java)

This consortium comprises The Open Group, aicas, Aonix,
Bellstream, Fiat Research Centre (CRF), FZI, Thales-
Avionics, Telecom Italia, Trialog, Universität Karlsruhe,
Universidad Politécnica de Madrid (DIT-UPM), and
University of York. According to their website, “the main
technical objective of HIJA is to demonstrate that Java

226 Real-Time Java™ for Ada Programmers

Volume 25, Number 4, December 2004 Ada User Journal

technology can form an appropriate Architecturally
Neutral, high-integrity Real-Time System.”
URL: www.hija.info

• The Open Group

Under the auspices of The Open Group’s Real-Time and
Embedded Systems Forum, work got underway in mid-
2003 to investigate a safety-critical Java profile that would
be based on the RTSJ and developed under the Java
Community Process. This effort is in progress, although as
of late 2004 an official JSR has not yet been initiated.
URL: www.opengroup.org

11 Conclusions
Although “real-time Java” may sound like a contradiction,
the RTSJ has attempted to address the deficiencies of
regular Java in a technical credible manner. The
combination of a priority-based default scheduler and user-
assignable monitor control policies provide deterministic
scheduling semantics and avoid unbounded priority
inversions. Scoped and immortal memory areas do not
suffer garbage collection, and no-heap realtime threads
need not incur GC latency. A general scheduling
framework provides extensibility and also supports on-line
feasibility analysis. The unifying concept of a schedulable
object allows both real-time threads and asynchronous
event handlers to be analyzed consistently. And a facility
for asynchronous transfer of control solves regular Java’s
ATC anomalies by borrowing the Ada concept of an abort-
deferred operation; the resulting mechanism deals with
common cases such as timeouts and thread termination.
All this is achieved within the Java framework (no new
syntax) and within the Java design philosophy (no explicit
memory freeing).

On the other hand, the RTSJ is not yet a proven technology.
It is forward-thinking and ambitious, but some features
(such as the memory area-related run-time assignment
checks) will require compiler optimizations in order to
avoid performance degradation. There are a number of
“rough edges” – inconsistencies or other minor errors that
are almost inevitable when a spec is finalized before it has
been implemented. Moreover, parts of the spec are rather
complex – most notably the scoped memory area
semantics, and also the ATC facility. This will complicate
the implementation and present a learning barrier to
potential users. One of the biggest advantages to Java is
that developers can largely ignore memory management
issues, but that does not hold true for the RTSJ. If careful
attention is not paid to how memory areas are used, the
program could incur a storage leakage or an assignment
error.

These issues notwithstanding, the RTSJ is receiving
attention from the real-time community, and several
projects are either evaluating it or committing to its usage.
It will most likely succeed in areas where there is already a
commitment to Java for other reasons; for example, an
enterprise project that has real-time components /
requirements.

The potential for the RTSJ in the traditional hard real-time
domain seems more questionable. That community’s
dominant language (and culture) is currently C, with some
Ada and also other languages. They generally remain
unconvinced of the purported benefits of OOP, and the
dynamic flexibility inherent in Java is treated with
suspicion in systems for which static analyzability is
important.

Regardless of the extent of its eventual usage, the RTSJ has
been a formidable technical accomplishment, illustrating
some interesting technology cross fertilization. A number
of ideas from Ada influenced the RTSJ (perhaps not too
surprising, since the RTSJ design group included several
members of the Ada real-time community). And in the
other direction, some aspects of the RTSJ may influence
future directions for the Ada language. Experience with the
RTSJ will likely determine the extent of that effect.

Acronyms Used in This Article
AEH Asynchronous Event Handler
AI Asynchronously Interruptible
AIE AsynchronouslyInterruptedException
ATC Asynchronous Transfer of Control
GC Garbage Collector
JCP Java Community Process
JSR Java Specification Request
JVM Java Virtual Machine
PCE PriorityCeiling Emulation
PI Priority Inheritance
RI Reference Implementation
RTOS Real-Time Operating System
RTSJ Real-Time Specification for Java

References
[1] www.nist.gov/rt-java

[2] G. Bollella, J.Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, M. Turnbull (2000); The Real-Time
Specification for Java; Addison-Wesley.

[3] P. Dibble (2002), Introduction to the Real-Time Java
Platform, Prentice-Hall.

[4] A. Wellings (2004), Concurrent and Real-Time
Programming in Java, John Wiley & Sons.

[5] K. Nilsen (2000); Real-Time Core Extensions for the
Java Platform; J-Consortium.

[6] J. Gosling, B. Joy, G. Steele, G. Bracha (2000); The
Java Language Specification (2nd ed.); Addison
Wesley.

[7] B. Brosgol and A. Wellings (2003); “A Comparison of
the Asynchronous Transfer of Control Facilities in Ada
and the Real-Time Specification for Java”, Proc. Ada
Europe 2003; Springer.

[8] F. Siebert (2002): Hard Realtime Garbage Collection
in Modern Object Oriented Programming Languages;
aicas Books.

228

Volume 25, Number 4, December 2004 Ada User Journal

Rationale for Ada 2005:
Introduction
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This is the first of a number of papers describing the
rationale for Ada 2005. In due course it is anticipated
that the papers will be combined (after appropriate
reformatting and editing) into a single volume for
formal publication.
This first paper covers the background to the
development of Ada 2005 and gives a brief overview
of the main changes from Ada 95. Later papers will
then look at the changes in more detail.
Keywords: rationale, Ada 2005.

1 Revision process
Readers will recall that the development of Ada 95 from
Ada 83 was an extensive process funded by the USDoD.
Formal requirements were established after comprehensive
surveys of user needs and competitive proposals were then
submitted resulting in the selection of Intermetrics as the
developer under the devoted leadership of Tucker Taft. The
whole technical development process was then
comprehensively monitored by a distinct body of
Distinguished Reviewers. Of course, the process was also
monitored by the ISO committee concerned and the new
language finally became an ISO standard in 1995.

The development of Ada 2005 from Ada 95 has been (and
continues to be) on a more modest scale. The work has
almost entirely been by voluntary effort with support from
within the industry itself through bodies such as the Ada
Resource Association and Ada-Europe.

The development is being performed under the guidance of
ISO/IEC JTC1/SC22 WG9 (hereinafter just called WG9)
chaired adroitly by James Moore whose deep knowledge
leads us safely through the minefield of ISO procedures.
This committee has included national representatives of
many nations including Belgium, Canada, France,
Germany, Italy, Japan, Sweden, Switzerland, the UK and
the USA. WG9 developed guidelines [1] for a revision to
Ada 95 which were then used by the Ada Rapporteur
Group (the ARG) in drafting the revised standard.

The ARG is a team of experts nominated by the national
bodies represented on WG9 and the two liaison
organizations, ACM SIGAda and Ada-Europe. The ARG
was originally led with Teutonic precision by Erhard
Plödereder and is currently led with Transalpine Gallic flair

by Pascal Leroy. The editor, who at the end of the day
actually writes the words of the standard, is the
indefatigable Randy (fingers) Brukardt.

Suggestions for the revised standard have come from a
number of sources such as individuals on the ARG,
national bodies on WG9, users via email discussions on
Ada-Comment and so on.

At the time of writing (November 2004), the revision
process is not quite finished. However, the details of all
individual changes are now clear. Nevertheless, integration
of the changes needs to be done and maybe a few tweaks
will be necessary before the final standard emerges in late
2005 or early 2006.

2 Scope of revision
The changes from Ada 83 to Ada 95 were large. They
included several major new items such as

▪ polymorphism through tagged types, class-wide types
and dispatching,

▪ the hierarchical library system including public and
private child packages,

▪ protected objects for better real-time control,

▪ more comprehensive predefined library, especially for
character and string handling,

▪ specialized annexes such as those for system
programming, real-time, and numerics.

By contrast the changes from Ada 95 to Ada 2005 are
relatively modest. Ada 95 was almost a new language
which happened to be compatible with Ada 83. However, a
new language always brings surprises and despite very
careful design things do not always turn out quite as
expected when used in earnest.

Indeed, a number of errors in the Ada 95 standard were
corrected in the Corrigendum issued in 2001 [2] and then
incorporated into the Consolidated Ada Reference Manual
[3]. But it was still essentially the same language and
further improvement needed to be done.

Technically, Ada 2005 is defined as an Amendment to
rather than a Revision of the Ada 95 standard and this
captures the flavour of the changes not being very
extensive.

J Barnes 229

Ada User Journal Volume 25, Number 4, December 2004

In a sense we can think of Ada 2005 as rounding out the
rough edges in Ada 95 rather than making major leaps
forward. This is perhaps not quite true of the Real-Time
Systems annex which includes much new material of an
optional nature. Nevertheless I am sure that the changes
will bring big benefits to users at hopefully not too much
cost to implementors.

The scope of the Amendment was guided by a document
issued by WG9 to the ARG in September 2002 [1]. The key
paragraph is:

"The main purpose of the Amendment is to address
identified problems in Ada that are interfering with Ada's
usage or adoption, especially in its major application areas
(such as high-reliability, long-lived real-time and/or
embedded applications and very large complex systems).
The resulting changes may range from relatively minor, to
more substantial."

Note that by saying "identified problems" it implicitly
rejects a major redesign such as occurred with Ada 95. The
phrase in parentheses draws attention to the areas where
Ada has a major market presence. Ada has carved an
important niche in the safety-critical areas which almost
inevitably are of a real-time and/or embedded nature. But
Ada is also in successful use in very large systems where
the inherent reliability and composition features are
extremely valuable. So changes should aim to help in those
areas. And the final sentence is really an exhortation to
steer a middle course between too much change and not
enough.

The document then identifies two specific worthwhile
changes, namely, inclusion of the Ravenscar profile [4] (for
predictable real-time) and a solution to the problem of
mutually dependent types across two packages (see Section
3.3 below).

The ARG is then requested to pay particular attention to

A Improvements that will maintain or improve Ada's
advantages, especially in those user domains where
safety and criticality are prime concerns. Within this
area it cites as high priority, improvements in the real-
time features and improvements in the high integrity
features. Of lesser priority are features that increase
static error checking. Improvements in interfacing to
other languages are also mentioned.

B Improvements that will remedy shortcomings in Ada. It
cites in particular improvements in OO features,
specifically, adding a Java-like interface feature and
improved interfacing to other OO languages.

So the ARG is asked to improve both OO and real-time
with a strong emphasis on real-time and high integrity
features. It is interesting that WG9 rejected the thought that
"design by contract" features should be added to the above
general categories.

The ARG is also asked to consider the following factors in
selecting features for inclusion:

▪ Implementability. Can the feature be implemented at
reasonable cost?

▪ Need. Do users actually need it? [A good one!]

▪ Language stability. Would it appear disturbing to current
users?

▪ Competition and popularity. Does it help to improve the
perception of Ada and make it more competitive?

▪ Interoperability. Does it ease problems of interfacing
with other languages and systems? [That's the third
mention of interfacing.]

▪ Language consistency. Is it syntactically and
semantically consistent with the language's current
structure and design philosophy?

An important further statement is that "In order to produce
a technically superior result, it is permitted to compromise
backwards compatibility when the impact on users is
judged to be acceptable." In other words don't be paranoid
about compatibility.

Finally, there is a warning about secondary standards. Its
essence is don't use secondary standards if you can get the
material into the RM itself. And please put the stuff on
vectors and matrices from ISO/IEC 13813 [5] into the
language itself. The reason for this exhortation is that
secondary standards have proved themselves to be almost
invisible and hence virtually useless.

The guidelines conclude with the target schedule. This
included WG9 approval of the scope of the amendment in
June 2004 (this was achieved) and final ISO/IEC JCT1
ballot in late 2005 (fingers crossed).

3 Overview of changes
It would be tedious to give a section by section review of
the changes as seen by the Reference Manual language
lawyer. Instead, the changes will be presented by areas as
seen by the user. There can be considered to be six areas:

1 Improvements to the OO model. These include a more
traditional notation for invoking an operation of an
object without needing to know precisely where the
operation is declared (the Obj.Op(...) style), Java-like
multiple inheritance using the concept of interfaces, the
introduction of null procedures as a category of
operation rather like an abstract operation, and the
ability to do type extension at a more nested level than
that of the parent type. There are also explicit features
for overcoming nasty bugs that arise from confusion
between overloading and overriding.

2 More flexible access types. Ada 95 access types have a
hair-shirt flavour compared with other languages
because of the general need for explicit conversions with
named access types. This is alleviated by permitting
anonymous access types in more contexts. It is also
possible to indicate whether an access type is an access
to a constant and whether a null value is permitted.
Anonymous access-to-subprogram types are also
introduced thus permitting so-called downward closures.

230 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

3 Enhanced structure and visibility control. The most
important change here is the introduction of limited with
clauses which allow types in two packages to refer to
each other (the mutual dependence problem referred to
in the WG9 guidelines). This is done by extending the
concept of incomplete types (and introducing tagged
incomplete types). There are also private with clauses
just providing access from a private part. And there are
significant changes to limited types to make them more
useful; these include initialization using limited
aggregates and composition using a new form of return
statement.

4 Tasking and real-time improvements. Almost all of the
changes are in the Real-Time Systems annex. They
include the introduction of the Ravenscar profile (as
explicitly mentioned in the WG9 guidelines) and a
number of new scheduling and dispatching policies.
There are also new predefined packages for controlling
execution time clocks and execution time budgets and
for the notification of task termination and similar
matters. A change related to the OO model is the
introduction of protected and task interfaces thereby
drawing the OO and tasking aspects of the language
closer together.

5 Improvements to exceptions, generics etc. There are
some minor improvements in the exception area,
namely, neater ways of testing for null occurrence and
raising an exception with a message. Two small but vital
numeric changes are a Mod attribute to solve problems
of mixing signed and unsigned integers and a fix to the
fixed-fixed multiplication problem (which has kept
some users locked into Ada 83). There are also a number
of new pragmas: Unsuppress to complement the
Suppress pragma, Assert which was already offered by
most vendors, No_Return which indicates that a
procedure never returns normally; and
Unchecked_Union to ease interfacing to unchecked
unions in C. There is also the ability to have more
control of partial parameters of generic formal packages
to improve package composition.

6 Extensions to the standard library. New packages
include a comprehensive Container library, mechanisms
for directory operations and access to environment
variables, further operations on times and dates, the
vectors and matrices material from ISO/IEC 13813 (as
directed in the WG9 guidelines) plus commonly
required simple linear algebra algorithms. There are also
wide-wide character types and operations for 32-bit
characters, the ability to use more characters in
identifiers, and improvements and extensions to the
existing string packages.

Of course, the areas mentioned above interact greatly and
much of 2 and 3 could be classed as improvements to the
OO model. There are also a number of changes not
mentioned which will mostly be of interest to experts in
various areas. These cover topics such as streams, object
factory functions, subtle aspects of the overload resolution

rules, and the categorization of packages with pragmas
Pure and Preelaborate.

The reader might feel that the changes are quite extensive
but each has an important role to play in making Ada more
useful. Indeed many other changes were rejected as really
unnecessary. These include old chestnuts such as in out and
out parameters for functions (ugh), extensible enumeration
types (a slippery slope), defaults for all generic parameters
(would lead one astray), and user-defined operator symbols
(a nightmare).

Before looking at the six areas in a little more detail it is
perhaps worth saying a few words about compatibility with
Ada 95. The guidelines gave the ARG freedom to be
sensible in this area. Of course, the worst incompatibilities
are those where a valid program in Ada 95 continues to be
valid in Ada 2005 but does something different. It is
believed that serious incompatibilities of this nature will
never arise. There are however, a very few minor and
benign such incompatibilities concerning the raising of
exceptions such as that with access parameters discussed in
Section 3.2.

However, incompatibilities whereby a valid Ada 95
program fails to compile in Ada 2005 are tolerable
provided they are infrequent. A few such incompatibilities
are possible. The most obvious cause is the introduction of
three more reserved words: interface, overriding, and
synchronized. Thus if an existing Ada 95 program uses any
of these as an identifier then it will need modification. The
introduction of a new category of unreserved keywords was
considered for these so that incompatibilities would not
arise. However, it was felt that this was ugly, confusing,
and prone to introducing nasty errors. In any event the
identifiers Overriding and Synchronized are likely to be rare
and although Interface is clearly a likely identifier
nevertheless to have it both as an identifier and as a
keyword in the same program would be nasty. Note also
that the pragma Interface which many compilers still
support from Ada 83 (although not mentioned by Ada 95 at
all) is being put into Annex J for obsolescent features.

3.1 The OO model
The Ada 95 OO model has been criticized as not following
the true spirit of the OO paradigm in that the notation for
applying subprograms to objects is still dominated by the
subprogram and not by the object concerned.

It is claimed that real OO people always give the object
first and then the method (subprogram). Thus given

package P is
 type T is tagged ... ;

 procedure Op(X: T; ...);
 ...
end P;

then assuming that some variable Y is declared of type T, in
Ada 95 we have to write

P.Op(Y, ...);

in order to apply the procedure Op to the object Y whereas
a real OO person would expect to write something like

J Barnes 231

Ada User Journal Volume 25, Number 4, December 2004

Y.Op(...);

where the object Y comes first and only any auxiliary
parameters are given in the parentheses.

A real irritation with the Ada 95 style is that the package P
containing the declaration of Op has to be mentioned as
well. (This assumes that use clauses are not being
employed as is usually the case.) However, given an object,
from its type we can find its primitive operations and it is
illogical to require the mention of the package P.
Moreover, in some cases involving a complicated type
hierarchy, it is not always obvious to the programmer just
which package contains the relevant operation.

The notation giving the object first is now permitted in Ada
2005. The essential rules are that a subprogram call of the
form P.Op(Y, ...); can be replaced by Y.Op(...); provided
that

▪ T is a tagged type,

▪ Op is a primitive (dispatching) or class wide operation
of T,

▪ Y is the first parameter of Op.

The new dotted notation has other advantages in unifying
the notation for calling a function and reading a component
of a tagged type. Thus consider the following geometrical
example which is based on that in a (hopefully familiar)
textbook [6]

package Geometry is
 type Object is abstract tagged
 record
 X_Coord: Float;
 Y_Coord: Float;
 end record;

 function Area(O: Object) return Float is abstract;
 function MI(O: Object) return Float is abstract;
end;

The type Object has two components and two primitive
operations Area and MI (Area is the area of an object and MI
is its moment of inertia but the fine details of Newtonian
mechanics need not concern us). The key point is that with
the new notation we can access the coordinates and the area
in a unified way. For example, suppose we derive a
concrete type Circle thus

package Geometry.Circle is
 type Circle is new Object with
 record
 Radius: Float;
 end record;

 function Area(C: Circle) return Float;
 function MI(C: Circle) return Float;
end;

where we have provided concrete operations for Area and
MI. Then in Ada 2005 we can access both the coordinates
and area in the same way

X:= A_Circle.X_Coord;
A:= A_Circle.Area; -- call of function Area

Note that since Area just has one parameter (A_Circle) there
are no parentheses required in the call. This uniformity is
well illustrated by the body of MI which can be written as

 function MI(C: Circle) is
 begin
 return 0.5 * C.Area * C.Radius**2;
 end MI;

whereas in Ada 95 we had to write
 return 0.5 * Area(C) * C.Radius**2;

which is perhaps a bit untidy.

A related advantage concerns dereferencing. If we have an
access type such as

type Pointer is access all Object'Class;
...
This_One: Pointer := A_Circle'Access;

and suppose we wish to print out the coordinates and area
then in Ada 2005 we can uniformly write

Put(This_One.X_Coord); ...
Put(This_One.Y_Coord); ...
Put(This_One.Area); ... -- Ada 2005

whereas in Ada 95 we have to write
Put(This_One.X_Coord); ...
Put(This_One.Y_Coord); ...
Put(Area(This_One.all)); ... -- Ada 95

In Ada 2005 the dereferencing is all implicit whereas in
Ada 95 some dereferencing has to be explicit which is ugly.

The reader might feel that this is all syntactic sugar for the
novice and of no help to real macho programmers. So we
shall turn to the topic of multiple inheritance. In Ada 95,
multiple inheritance is hard. It can sometimes be done
using generics and/or access discriminants (not my
favourite topic) but it is hard work and often not possible at
all. So it is a great pleasure to be able to say that Ada 2005
introduces real multiple inheritance in the style of Java.

The problem with multiple inheritance in the most general
case is clashes between the parents. Assuming just two
parents, what happens if both parents have the same
component (possibly inherited from a common ancestor)?
Do we get two copies? And what happens if both parents
have the same operation but with different
implementations? These and related problems are
overcome by placing firm restrictions on the possible
properties of parents. This is done by introducing the notion
of an interface.

An interface can be thought of as an abstract type with no
components – but it can of course have abstract operations.
It has also proved useful to introduce the idea of a null
procedure as an operation of a tagged type; we don't have
to provide an actual body for such a null procedure (and
indeed cannot) but it behaves as if it has a body consisting
of just a null statement. So we might have

package P1 is
 type Int1 is interface;
 procedure Op1(X: Int1) is abstract;
 procedure N(X: Int1) is null;
end P1;

Note carefully that interface is a new reserved word. We
could now derive a concrete type from the interface Int1 by

 type DT is new Int1 with record ... end record;
 procedure Op1(NX: DT);

232 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

We can provide some components for DT as shown
(although this is optional). We must provide a concrete
procedure for Op1 (we wouldn't if we had declared DT
itself as abstract). But we do not have to provide an
overriding of N since it behaves as if it has a concrete null
body anyway (but we could override N if we wanted to).

We can in fact derive a type from several interfaces plus
possibly one conventional tagged type. In other words we
can derive a tagged type from several other types (the
ancestor types) but only one of these can be a normal
tagged type (it has to be written first). So assuming that Int2
is another interface type and that T1 is a normal tagged type
then all of the following are permitted

type DT1 is new T1 and Int1 with null record;

type DT2 is new Int1 and Int2 with
 record ... end record;

type DT3 is new T1 and Int1 and Int2 ...

It is also possible to compose interfaces to create further
interfaces thus

type Int3 is interface and Int1;
...
type Int4 is interface and Int1 and Int2 and Int3;

Note carefully that new is not used in this construction.
Such composed interfaces have all the operations of all
their parents and further operations can be added in the
usual way but of course these must be abstract or null.

There are a number of simple rules to resolve what happens
if two parent interfaces have the same operation. Thus a
null procedure overrides an abstract one but otherwise
repeated operations have to have the same profile.

Some more extensive examples of the use of interfaces will
be given in a later paper.

Incidentally, the newly introduced null procedures are not
just for interfaces. We can give a null procedure as a
specification whatever its profile and no body is then
required or allowed. But they are clearly of most value with
tagged types and inheritance. Note in particular that the
package Ada.Finalization in Ada 2005 is

package Ada.Finalization is
 pragma Preelaborate(Finalization);
 pragma Remote_Types(Finalization);

 type Controlled is abstract tagged private;
 procedure Initialize(Object: in out Controlled) is null;
 procedure Adjust(Object: in out Controlled) is null;
 procedure Finalize(Object: in out Controlled) is null;

 -- similarly for Limited_Controlled
 ...
end Ada.Finalization;

The procedures Initialize, Adjust, and Finalize are now
explicitly given as null procedures. This is only a cosmetic
change since the Ada 95 RM states that the default
implementations have no effect. However, this neatly
clarifies the situation and removes ad hoc semantic rules.

Another important change is the ability to do type
extension at a level more nested than that of the parent
type. This means that controlled types can now be declared
at any level whereas in Ada 95, since the package

Ada.Finalization is at the library level, controlled types
could only be declared at the library level. There are similar
advantages in generics since currently many generics can
only be instantiated at the library level.

The final change in the OO area to be described here is the
ability to (optionally) state explicitly whether a new
operation overrides an existing one or not.

At the moment, in Ada 95, small careless errors in
subprogram profiles can result in unfortunate consequences
whose cause is often difficult to determine. This is very
much against the design goal of Ada to encourage the
writing of correct programs and to detect errors at
compilation time whenever possible. Consider

with Ada.Finalization; use Ada.Finalization;
package Root is
 type T is new Controlled with ... ;
 procedure Op(Obj: in out T; Data: in Integer);
 procedure Finalise(Obj: in out T);
end Root;

Here we have a controlled type plus an operation Op of that
type. Moreover, we intended to override the automatically
inherited null procedure Finalize of Controlled but, being
foolish, we have spelt it Finalise. So our new procedure
does not override Finalize at all but merely provides
another operation. Assuming that we wrote Finalise to do
something useful then we will find that nothing happens
when an object of the type T is automatically finalized at
the end of a block because the inherited null procedure is
called rather than our own code. This sort of error can be
very difficult to track down.

In Ada 2005 we can protect against such errors since it is
possible to mark overridden operations as such thus

 overriding
 procedure Finalize(Obj: in out T);

And now if we spell Finalize incorrectly then the compiler
will detect the error. Note that overriding is another new
reserved word. However, partly for reasons of
compatibility, the use of overriding indicators is optional;
there are also deeper reasons concerning private types and
generics which will be discussed in a later paper.

Similar problems can arise if we get the profile wrong.
Suppose we derive a new type from T and attempt to
override Op thus

package Root.Leaf is
 type NT is new T with null record;
 procedure Op(Obj: in out NT; Data: in String);
end Root.Leaf;

In this case we have given the identifier Op correctly but
the profile is different because the parameter Data has
inadvertently been declared as of type String rather than
Integer. So this new version of Op will simply be an
overloading rather than an overriding. Again we can guard
against this sort of error by writing

 overriding
 procedure Op(Obj: in out NT; Data: in Integer);

On the other hand maybe we truly did want to provide a
new operation. In this case we can write not overriding and

J Barnes 233

Ada User Journal Volume 25, Number 4, December 2004

the compiler will then ensure that the new operation is
indeed not an overriding of an existing one thus

 not overriding
 procedure Op(Obj: in out NT; Data: in String);

The use of these overriding indicators prevents errors
during maintenance. Thus if later we add a further
parameter to Op for the root type T then the use of the
indicators will ensure that we modify all the derived types
appropriately.

3.2 Access types
It has been said that playing with pointers is like playing
with fire – properly used all is well but carelessness can
lead to disaster. In order to avoid disasters, Ada 95 takes a
stern view regarding the naming of access types and their
conversion. However, experience has shown that the Ada
95 view is perhaps unnecessarily stern and leads to tedious
programming.

We will first consider the question of giving names to
access types. In Ada 95 all access types are named except
for access parameters and access discriminants. Thus we
might have

type Animal is tagged
 record Legs: Integer; ... end record;

type Acc_Animal is access Animal; -- named

procedure P(Beast: access Animal; ...); -- anonymous

Moreover, there is a complete lack of symmetry between
named access types and access parameters. In the case of
named access types, they all have a null value (and this is
the default on declaration if no initial value be given). But
in the case of access parameters, a null value is not
permitted as an actual parameter. Furthermore, named
access types can be restricted to be access to constant types
such as

type Rigid_Animal is access constant Animal;

which means that we cannot change the value of the Animal
referred to. But in the case of access parameters, we cannot
say

procedure P(Beast: access constant Animal); -- not 95

In Ada 2005 almost all these various restrictions are swept
away in the interests of flexibility and uniformity.

First of all we can explicitly specify whether an access type
(strictly subtype) has a null value. We can write

type Acc_Animal is not null access all Animal'Class;

This means that we are guaranteed that an object of type
Acc_Animal cannot refer to a null animal. And so on
declaration such an object should be initialized as in the
following sequence

type Pig is new Animal with ... ;
Empress_Of_Blandings: aliased Pig := ... ;

My_Animal: Acc_Animal := -- must initialize
 Empress_Of_Blandings'Access;

(The Empress of Blandings is a famous pig in the novels
concerning Lord Emsworth by the late P G Wodehouse.) If
we forget to initialize My_Animal then Constraint_Error is

raised; technically the underlying type still has a null value
but Acc_Animal does not. We can also write not null access
constant and not null access all of course.

The advantage of using a null exclusion is that when we
come to do a dereference

Number_of_Legs: Integer := My_Animal.Legs;

then no check is required to ensure that we do not
dereference a null pointer. This makes the code faster.

Exactly the same freedom also applies to access
parameters. Thus we can write all of the following in Ada
2005

procedure P(Beast: access Animal);
procedure P(Beast: access constant Animal);
procedure P(Beast: access all Animal);

procedure P(Beast: not null access Animal);
procedure P(Beast: not null access constant Animal);
procedure P(Beast: not null access all Animal);

A little quirk is that all doesn't do anything in this context
since access parameters always were general (that is, they
could refer to declared objects as well as to allocated ones).

Note what is in practice a minor incompatibility, the first of
the above now permits a null value as actual parameter in
Ada 2005 whereas it was forbidden in Ada 95. This is
actually a variation at runtime which is normally
considered abhorrent. But in this case it just means that any
check that will still raise Constraint_Error will be in a
different place – and in any event the program was
presumably incorrect.

Another change in Ada 2005 is that we can use anonymous
access types other than just as parameters (and
discriminants). We can in fact also use anonymous access
types in

▪ the declaration of stand-alone objects and components of
arrays and records,

▪ a renaming declaration,

▪ a function return type.

Thus we can extend our farmyard example
type Horse is new Animal with ... ;

type Acc_Horse is access all Horse;
type Acc_Pig is access all Pig;

Napoleon, Snowball: Acc_Pig := ... ;

Boxer, Clover: Acc_Horse := ... ;

and now we can declare an array of animals
Animal_Farm: constant array (Positive range <>) of
 access Animal'Class :=
 (Napoleon, Snowball, Boxer, Clover);

(With acknowledgments to George Orwell.) Note that the
components of the array are of an anonymous access type.
We can also have record components of an anonymous
type

type Ark is
 record
 Stallion, Mare: access Horse;
 Boar, Sow: access Pig;

234 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

 Cockerel, Hen: access Chicken;
 Ram, Ewe: access Sheep;
 ...
 end record;

Noahs_Ark: Ark := (Boxer, Clover, ...);

This is not a very good example since I am sure that Noah
took care to take actual animals into the Ark and not merely
their addresses.

A more useful example is given by the classic linked list. In
Ada 95 (and Ada 83) we have

type Cell;
type Cell_Ptr is access Cell;

type Cell is
 record
 Next: Cell_Ptr;
 Value: Integer;
 end record;

In Ada 2005, we do not have to declare the type Cell_Ptr in
order to declare the type Cell and so we do not need to use
the incomplete declaration to break the circularity. We can
simply write

type Cell is
 record
 Next: access Cell;
 Value: Integer;
 end record;

Here we have an example of the use of the type name Cell
within its own declaration. In some cases this is interpreted
as referring to the current instance of the type (for example,
in a task body) but the rule has been changed to permit its
usage as here.

We can also use an anonymous access type for a single
variable such as

List: access Cell := ... ;

An example of the use of an anonymous access type for a
function result might be in another animal function such as

function Mate_Of(A: access Animal'Class)
 return access Animal'Class;

We could then perhaps write
if Mate_Of(Noahs_Ark.Ram) /= Noahs_Ark.Ewe then
 ... -- better get Noah to sort things out
end if;

Anonymous access types can also be used in a renaming
declaration. This and other detailed points on matters such
as accessibility will be discussed in a later paper.

The final important change in access types concerns access
to subprogram types. Access to subprogram types were
introduced into Ada 95 largely for the implementation of
callback. But important applications of such types in other
languages (going back to Pascal and even Algol 60) are for
mathematical applications such as integration where a
function to be manipulated is passed as a parameter. The
Ada 83 and Ada 95 approach has always been to say "use
generics". But this can be clumsy and so a direct alternative
is now provided.

Recall that in Ada 95 we can write
type Integrand is access function(X: Float) return Float;

function Integrate(Fn: Integrand; Lo, Hi: Float)
 return Float;

The idea is that the function Integrate finds the value of the
integral of the function passed as parameter Fn between the
limits Lo and Hi. This works fine in Ada 95 for simple cases
such as where the function is declared at library level. Thus
to evaluate

⌠1
│ √x dx
⌡0

we can write
Result := Integrate(Sqrt'Access, 0.0, 1.0);

where the function Sqrt is from the library package
Ada.Numerics.Elementary_Functions.

However, if the function to be integrated is more elaborate
then we run into difficulty in Ada 95 if we attempt to use
access to subprogram types. Consider the following
example which aims to compute the integral of the
expression xy over the square region 0 ≤ x, y ≤ 1.

with Integrate;
procedure Main is
 function G(X: Float) return Float is
 function F(Y: Float) return Float is
 begin
 return X*Y;
 end F;
 begin
 return Integrate(F'Access, 0.0, 1.0); -- illegal in 95
 end G;

 Result: Float;
begin
 Result:= Integrate(G'Access, 0.0, 1.0); -- illegal in 95
 ...
end Main;

But this is illegal in Ada 95 because of the accessibility
rules necessary with named access types in order to prevent
dangling references. Thus we need to prevent the
possibility of storing a pointer to a local subprogram in a
global structure. This means that both F'Access and
G'Access are illegal in the above.

Note that although we could make the outer function G
global so that G'Access would be allowed nevertheless the
function F has to be nested inside G in order to gain access
to the parameter X of G. It is typical of functions being
integrated that they have to have information passed
globally – the number of parameters of course is fixed by
the profile used by the function Integrate.

The solution in Ada 2005 is to introduce anonymous access
to subprogram types by analogy with anonymous access to
object types. Thus the function Integrate becomes

function Integrate(Fn: access function(X: Float) return Float;
 Lo, Hi: Float) return Float;

Note that the parameter Fn has an anonymous type defined
by the profile so that we get a nesting of profiles. This may
seem a bit convoluted but is much the same as in Pascal.

The nested example above is now valid and no accessibility
problems arise. (The reader will recall that accessibility

J Barnes 235

Ada User Journal Volume 25, Number 4, December 2004

problems with anonymous access to object types are
prevented by a runtime check; in the case of anonymous
access to subprogram types the corresponding problems are
prevented by decreeing that the accessibility level is
infinite.)

Anonymous access to subprogram types are also useful in
many other applications such as iterators as will be
illustrated later.

Note that we can also prefix all access to subprogram types
both named and anonymous by not null in the same way as
for access to object types.

3.3 Structure, visibility and limited types
Structure is vital for controlling visibility and thus
abstraction. There were huge changes in Ada 95. The
whole of the hierarchical child unit mechanism was
introduced with both public and private children. It was
hoped that this would provide sufficient flexibility for the
future.

But one problem has remained. Suppose we have two types
where each wishes to refer to the other. Both need to come
first! Basically we solve the difficulty by using incomplete
types. We might have a drawing package concerning points
and lines in a symmetric way. Each line contains a list or
array of the points on it and similarly each point contains a
list or array of the lines through it. We can imagine that
they are both derived from some root type containing
printing information such as colour. In Ada 95 we might
write

type Object is abstract tagged
 record
 Its_Colour: Colour;
 ...
 end record;

type Point;
type Line;
type Acc_Point is access all Point;
type Acc_Line is access all Line;

subtype Index is Integer range 0 .. Max;
type Acc_Line_Array is array (1 .. Max) of Acc_Line;
type Acc_Point_Array is array (1 .. Max) of Acc_Point;

type Point is new Object with
 record
 No_Of_Lines: Index;
 LL: Acc_Line_Array;
 ...
 end record;

type Line is new Object with
 record
 No_Of_Points: Index;
 PP: Acc_Point_Array;
 ...
 end record;

This is very crude since it assumes a maximum number
Max of points on a line and vice versa and declares the
arrays accordingly. The reader can flesh it out more
flexibly. Well this is all very well but if the individual types
get elaborate and each has a series of operations, we might
want to declare them in distinct packages (perhaps child
packages of that containing the root type). In Ada 95 we

cannot do this because both the incomplete declaration and
its completion have to be in the same package.

The net outcome is that we end up with giant cumbersome
packages.

What we need therefore is some way of logically enabling
the incomplete view and the completion to be in different
packages. The elderly might remember that in the 1980
version of Ada the situation was even worse – the
completion had to be in the same list of declarations as the
incomplete declaration. Ada 83 relaxed this (the so-called
Taft Amendment) and permits the private part and body to
be treated as one list – the same rule applies in Ada 95. We
now go one step further.

Ada 2005 solves the problem by introducing a variation on
the with clause – the limited with clause. The idea is that a
library package (and subprogram) can refer to another
library package that has not yet been declared and can refer
to the types in that package but only as if they were
incomplete types. Thus we might have a root package
Geometry containing the declarations of Object, Max, Index
and so on and then

limited with Geometry.Lines;
package Geometry.Points is

 type Acc_Line_Array is array (1 .. Max) of
 access Lines.Line;

 type Point is new Object with
 record
 No_Of_Lines: Index;
 LL: Acc_Line_Array;
 ...
 end record;

 ...
end Geometry.Points;

The package Geometry.Lines is declared in a similar way.
Note especially that we are using the anonymous access
type facility discussed in Section 3.2 and so we do not even
have to declare named access types such as Acc_Line in
order to declare Acc_Line_Array.

By writing limited with Geometry.Lines; we get access to all
the types visible in the specification of Geometry.Lines but
as if they were declared as incomplete. In other words we
get an incomplete view of the types. We can then do all the
things we can normally do with incomplete types such as
use them to declare access types. (Of course the
implementation checks later that Geometry.Lines does
actually have a type Line.)

Not only is the absence of the need for a named type
Acc_Line a handy shorthand, it also prevents the
proliferation of named access types. If we did want to use a
named type Acc_Line in both packages then we would have
to declare a distinct type in each package. This is because
from the point of view of the package Points, the Acc_Line
in Lines would only be an incomplete type (remember each
package only has a limited view of the other) and thus
would be essentially unusable. The net result would be
many named access types and wretched type conversions
all over the place.

236 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

There are also some related changes to the notation for
incomplete types. We can now write

type T is tagged;

and we are then guaranteed that the full declaration will
reveal T to be a tagged type. The advantage is that we also
know that, being tagged, objects of the type T will be
passed by reference. Consequently we can use the type T
for parameters before seeing its full declaration. In the
example of points and lines above, since Line is visibly
tagged in the package Geometry.Lines we will thus get an
incomplete tagged view of Lines.

The introduction of tagged incomplete types clarifies the
ability to write

type T_Ptr is access all T'Class;

This was allowed in Ada 95 even though we had not
declared T as tagged at this point. Of course it implied that
T would be tagged. In Ada 2005 this is frowned upon since
we should now declare that T is tagged incomplete if we
wish to declare a class wide access type. For compatibility
the old feature has been retained but banished to Annex J
for obsolescent features.

Further examples of the use of limited with clauses will be
given in a later paper.

Another enhancement in this area is the introduction of
private with clauses which overcome a problem with
private child packages.

Private child packages were introduced to enable the details
of the implementation of part of a system to be decomposed
and yet not be visible to the external world. However, it is
often convenient to have public packages that use these
details but do not make them visible to the user. In Ada 95
a parent or sibling body can have a with clause for a private
child. But the specifications cannot. These rules are
designed to ensure that information does not leak out via
the visible part of a specification. But there is no logical
reason why the private part of a package should not have
access to a private child. Ada 2005 overcomes this by
introducing private with clauses. We can write

private package App.Secret_Details is
 type Inner is ...
 ... -- various operations on Inner etc
end App.Secret_Details;

private with App.Secret_Details;
package App.User_View is

 type Outer is private;
 ... -- various operations on Outer visible to the user

 -- type Inner is not visible here
private
 -- type Inner is visible here

 type Outer is
 record
 X: Secret_Details.Inner;
 ...
 end record;
 ...
end App.User_View;

thus the private part of the public child has access to the
type Inner but it is still hidden from the external user.

Note that the public child and private child might have
mutually declared types as well in which case they might
also wish to use the limited with facility. In this case the
public child would have a limited private with clause for
the private child written thus

limited private with App.Secret_Details;
package App.User_View is ...

In the case of a parent package, its specification cannot
have a with clause for a child (logically the specification
cannot know about the child because the parent must be
declared, that is put into the program library, first).
Similarly a parent cannot have a private with clause for a
private child. But it can have a limited with clause for any
child (thereby breaking the circularity) and in particular it
can have a limited private with clause for a private child.
So we might also have

limited private with App.Secret_Details;
package App is ...

The final topic in this section is limited types. The reader
will recall that the general idea of a limited type is to
restrict the operations that the user can perform on a type to
just those provided by the developer of the type and in
particular to prevent the user from doing assignment and
thus making copies of an object of the type.

However, limited types have never quite come up to
expectation both in Ada 83 and Ada 95. Ada 95 brought
significant improvements by disentangling the concept of a
limited type from a private type but problems have
remained.

The key problem is that Ada 95 does not allow the
initialization of limited types because of the view that
initialization requires assignment and thus copying. A
consequence is that we cannot declare constants of a
limited type either. Ada 2005 overcomes this problem by
allowing initialization by aggregates.

As a simple example, consider
type T is limited
 record
 A: Integer;
 B: Boolean;
 C: Float;
 end record;

in which the type as a whole is limited but the components
are not. If we declare an object of type T in Ada 95 then we
have to initialize the components (by assigning to them)
individually thus

 X: T;
begin
 X.A := 10; X.B := True; X.C := 45.7;

Not only is this annoying but it is prone to errors as well. If
we add a further component D to the record type T then we
might forget to initialize it. One of the advantages of
aggregates is that we have to supply all the components
(allowing automatic so-called full coverage analysis, a key
benefit of Ada).

Ada 2005 allows the initialization with aggregates thus
 X: T := (A => 10, B => True, C => 45.7);

J Barnes 237

Ada User Journal Volume 25, Number 4, December 2004

Technically, Ada 2005 just recognizes properly that
initialization is not assignment. Thus we should think of the
individual components as being initialized individually in
situ – an actual aggregated value is not created and then
assigned. (Much the same happens when initializing
controlled types with an aggregate.)

Sometimes a limited type has components where an initial
value cannot be given. This happens with task and
protected types. For example

protected type Semaphore is ... ;

type PT is
 record
 Guard: Semaphore;
 Count: Integer;
 Finished: Boolean := False;
 end record;

Remember that a protected type is inherently limited. This
means that the type PT is limited because a type with a
limited component is itself limited. It is good practice to
explicitly put limited on the type PT in such cases but it has
been omitted here for illustration. Now we cannot give an
explicit initial value for a Semaphore but we would still
like to use an aggregate to get the coverage check. In such
cases we can use the box symbol <> to mean use the default
value for the type (if any). So we can write

X: PT := (Guard => <>, Count => 0, Finished => <>);

Note that the ability to use <> in an aggregate for a default
value is not restricted to the initialization of limited types.
It is a new feature applicable to aggregates in general. But,
in order to avoid confusion, it is only permitted with named
notation.

Limited aggregates are also allowed in other similar
contexts where copying is not involved including as actual
parameters of mode in.

There are also problems with returning results of a limited
type from a function. This is overcome in Ada 2005 by the
introduction of an extended form of return statement. This
will be described in detail in a later paper.

3.4 Tasking and real-time facilities
Unless mentioned otherwise all the changes in this section
concern the Real-Time Systems annex.

First, the well-established Ravenscar profile is included in
Ada 2005 as directed by WG9. A profile is a mode of
operation and is specified by the pragma Profile which
defines the particular profile to be used. Thus to ensure that
a program conforms to the Ravenscar profile we write

pragma Profile(Ravenscar);

The purpose of Ravenscar is to restrict the use of many of
the tasking facilities so that the effect of the program is
predictable. This is very important for real-time safety-
critical systems. In the case of Ravenscar the pragma is
equivalent to the joint effect of the following pragmas

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);
pragma Locking_Policy(Ceiling_Locking);
pragma Detect_Blocking;

plus a pragma Restrictions with a host of arguments such as
No_Abort_Statements, No_Asynchronous_Control, and
No_Dynamic_Priorities.

The pragma Detect_Blocking plus many of the Restrictions
identifiers are new to Ada 2005. Further details will be
given in a later paper.

Ada 95 allows the priority of a task to be changed but does
not permit the ceiling priority of a protected object to be
changed. This is rectified in Ada 2005 by the introduction
of an attribute Priority for protected objects and the ability
to change it by a simple assignment such as

My_PO'Priority := P;

inside a protected operation of the object My_PO. The
change takes effect at the end of the protected operation.

The monitoring and control of execution time naturally are
important for real-time programs. Ada 2005 includes
packages for three different aspects of this

Ada.Execution_Time – this is the root package and enables
the monitoring of execution time of individual tasks.

Ada.Execution_Time.Timers – this provides facilities for
defining and enabling timers and for establishing a
handler which is called by the run time system when the
execution time of the task reaches a given value.

Ada.Execution_Time.Group_Budgets – this enables several
tasks to share a budget and provides means whereby
action can be taken when the budget expires.

The execution time of a task or CPU time as it is commonly
called is the time spent by the system executing the task
and services on its behalf. CPU times are represented by
the private type CPU_Time. The CPU time of a particular
task is obtained by calling the following function Clock in
the package Ada.Execution_Time

function Clock(T: Task_ID := Current_Task)
 return CPU_Time;

A value of type CPU_Time can be converted to a
Seconds_Count plus residual Time_Span by a procedure
Split similar to that in the package Ada.Real_Time.
Incidentally we are guaranteed that the granularity of CPU
times is no greater than one millisecond and that the range
is at least 50 years.

In order to find out when a task reaches a particular CPU
time we use the facilities of the child package
Ada.Execution_Time.Timers. This includes a discriminated
type Timer and a type Handler thus

type Timer(T: access Task_ID) is limited private;
type Handler is access
 protected procedure (TM: in out Timer);

We can then set the timer to expire at some absolute time
by

Set_Handler(My_Timer, Time_Limit, My_Handler'Access);

and then when the CPU time of the task reaches Time_Limit
(of type CPU_Time), the protected procedure My_Handler
is executed. Note how the timer object incorporates the
information regarding the task concerned using an access

238 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

discriminant and that this is passed to the handler via its
parameter. Another version of Set_Handler enables the
timer to be triggered after a given interval (of type
Time_Span).

In order to program various aperiodic servers it is necessary
for tasks to share a CPU budget. This can be done using the
child package Ada.Execution_Time.Group_Budgets. In this
case we have

type Group Budget is limited private;
type Handler is access
 protected procedure (GB: in out Group_Budget);

The type Group_Budget both identifies the group of tasks it
belongs to and the size of the budget. Various subprograms
enable tasks to be added to and removed from a group
budget. Other procedures enable the budget to be set and
replenished.

A procedure Set_Handler associates a particular handler
with a budget.

Set_Handler(GB => My_Group_Budget,
 Handler => My_Handler'Access);

When the group budget expires the associated protected
procedure is executed.

A somewhat related topic is that of low level timing events.
The facilities are provided by the package
Ada.Real_Time.Timing_Events. In this case we have

type Timing_Event is limited private;
type Timing_Event_Handler is access
 protected procedure (Event: in out Timing_Event);

The idea here is that a protected procedure can be
nominated to be executed at some time in the future. Thus
to ring a pinger when our egg is boiled after four minutes
we might have a protected procedure

protected body Egg is
 procedure Is_Done (Event: in out Timing_Event) is
 begin
 Ring_The_Pinger;
 end Is_Done;
end Egg;

and then
Egg_Done: Timing_Event;
Four_Min: Time_Span := Minutes(4);
...
Put_Egg_In_Water;
Set_Handler(Event => Egg_Done, In_Time => Four_Min,
 Handler => Egg.Is_Done'Access);
-- now read newspaper whilst waiting for egg

This facility is of course very low level and does not
involve Ada tasks at all. Note that we can set the event to
occur at some absolute time as well as at a relative time as
above. Incidentally, the function Minutes is a new function
added to the parent package Ada.Real_Time. Otherwise we
would have had to write something revolting such as
4*60*Milliseconds(1000). A similar function Seconds has
also been added.

There is a minor flaw in the above example. If we are
interrupted by the telephone between putting the egg in the
water and setting the handler then our egg will be
overdone. We will see how to cure this in a later paper.

Readers will recall the old problem of how tasks can have a
silent death. If something in a task goes wrong in Ada 95
and an exception is raised which is not handled by the task,
then it is propagated into thin air and just vanishes. It was
always deemed impossible for the exception to be handled
by the enclosing unit because of the inherent asynchronous
nature of the event.

This is overcome in Ada 2005 by the package
Ada.Task_Termination which provides facilities for
associating a protected procedure with a task. The protected
procedure is invoked when the task terminates with an
indication of the reason. Thus we might declare a protected
object Grim_Reaper

protected Grim_Reaper is
 procedure Last_Gasp(C: Cause_Of_Termination;
 T: Task_Id; X: Exception_Occurrence);
end Grim_Reaper;

We can then nominate Last_Gasp as the protected
procedure to be called when task T dies by

Ada.Task_Termination.Set_Specific_Handler(T'Identity,
 Last_Gasp'Access);

The body of protected procedure Last_Gasp might then
output various diagnostic messages

procedure Last_Gasp(C: Cause_Of_Termination;
 T: Task_Id; X: Exception_Occurrence) is
begin
 case C is
 when Normal => null;
 when Abnormal =>
 Put("Something nasty happened"); ...
 when Unhandled_Exception =>
 Put("Unhandled exception occurred"); ...
 end case;
end Last_Gasp;

There are three possible reasons for termination, it could be
normal, abnormal, or caused by an unhandled exception. In
the last case the parameter X gives details of the exception
occurrence.

Another area of increased flexibility in Ada 2005 is that of
task dispatching policies. In Ada 95, the only predefined
policy is FIFO_Within_Priorities although other policies are
permitted. Ada 2005 provides further pragmas, policies and
packages which facilitate many different mechanisms such
as non-preemption within priorities, the familiar Round
Robin using timeslicing, and the more recently acclaimed
Earliest Deadline First (EDF) policy. Moreover it is
possible to mix different policies according to priority level
within a partition.

Various facilities are provided by the package
Ada.Dispatching plus two child packages

Ada.Dispatching – this is the root package and simply
declares an exception Dispatching_Policy_Error.

Ada.Dispatching.Round_Robin – this enables the setting of
the time quanta for time slicing within one or more
priority levels.

Ada.Dispatching.EDF – this enables the setting of the
deadlines for various tasks.

J Barnes 239

Ada User Journal Volume 25, Number 4, December 2004

A policy can be selected for a whole partition by one of
pragma Task_Dispatching_Policy
 (Non_Preemptive_FIFO_Within_Priorities);

pragma Task_Dispatching_Policy
 (Round_Robin_Within_Priorities);

pragma Task_Dispatching_Policy
 (EDF_Across_Priorities);

In order to mix different policies across different priority
levels we use the pragma Priority_Specific_Dispatching with
various policy identifiers thus

pragma Priority_Specific_Dispatching
 (Round_Robin_Within_Priority, 1, 1);
pragma Priority_Specific_Dispatching
 (EDF_Across_Priorities, 2, 10);
pragma Priority_Specific_Dispatching
 (FIFO_Within_Priority, 11, 24);

This sets Round Robin at priority level 1, EDF at levels 2
to 10, and FIFO at levels 11 to 24.

The final topic in this section concerns the core language
and not the Real-Time Systems annex. Ada 2005
introduces a means whereby object oriented and real-time
features can be closely linked together through inheritance.

Recall from Section 3.1 that we can declare an interface
thus

type Int is interface;

We can also declare an interface to be limited,
synchronized, task, or protected thus

type Intlim is limited interface;
type Intsync is synchronized interface;
type Inttask is task interface;
type Intprot is protected interface;

A task interface or protected interface has to be
implemented by a task type or protected type respectively.
However, a synchronized interface can be implemented by
either a task type or a protected type. These interfaces can
also be composed with certain restrictions. Detailed
examples will be given in a later paper.

3.5 Exceptions, numerics, generics etc
As well as the major features discussed above there are also
a number of improvements in various other areas.

There are two small changes concerning exceptions. One is
that we can give a message with a raise statement, thus

raise Some_Error with "A message";

This is a lot neater than having to write (as in Ada 95)
Ada.Exceptions.Raise_Exception(Some_Error'Identity,
 "A message");

The other change concerns the detection of a null exception
occurrence which might be useful in a package analysing a
log of exceptions. The problem is that occurrences are of a
limited private type and so we cannot compare an
occurrence with Null_Occurrence to see if they are equal. In
Ada 95 applying the function Exception_Identity to a null
occurrence unhelpfully raises Constraint_Error. This has
been changed in Ada 2005 to return Null_Id so that we can
now write

procedure Process_Ex(X: Exception_Occurrence) is
begin
 if Exception_Identity(X) = Null_Id then
 -- process the case of a Null_Occurrence
 ...
end Process_Ex;

Ada 95 introduced modular types which are of course
unsigned integers. However it has in certain cases proved
very difficult to get unsigned integers and signed integers
to work together. This is a trivial matter in fragile
languages such as C but in Ada the type model has proved
obstructive. The basic problem is converting a value of a
signed type which happens to be negative to an unsigned
type. Thus suppose we want to add a signed offset to an
unsigned address value, we might have

type Offset_Type is range -(2**31) .. 2**31-1;
type Address_Type is mod 2**32;

Offset: Offset_Type;
Address: Address_Type;

We cannot just add Offset to Address because they are of
different types. If we convert the Offset to the address type
then we might get Constraint_Error and so on. The solution
in Ada 2005 is to use a new functional attribute S'Mod
which applies to any modular subtype S and converts a
universal integer value to the modular type using the
corresponding mathematical mod operation. So we can now
write

Address := Address + Address_Type'Mod(Offset);

Another new attribute is Machine_Rounding. This enables
high-performance conversions from floating point types to
integer types when the exact rounding does not matter.

The third numeric change concerns fixed point types. It was
common practice in some Ada 83 programs to define their
own multiply and divide operations, perhaps to obtain
saturation arithmetic. These programs ran afoul of the Ada
95 rules that introduced universal fixed operations resulting
in ambiguities. Without going into details, this problem has
been fixed in Ada 2005 so that user-defined operations can
now be used.

Ada 2005 has several new pragmas. The first is
pragma Unsuppress(Identifier);

where the identifier is that of a check such as
Range_Check. The general idea is to ensure that checks are
performed in a declarative region irrespective of the use of
a corresponding pragma Suppress. Thus we might have a
type My_Int that behaves as a saturated type. Writing

function "*" (Left, Right: My_Int) return My_Int is
 pragma Unsuppress(Overflow_Check);
begin
 return Integer(Left) * Integer(Right);
exception
 when Constraint_Error =>
 if (Left>0 and Right>0) or (Left<0 and Right<0) then
 return My_Int'Last;
 else
 return My_Int'First;
 end if;
end "*";

ensures that the code always works as intended even if
checks are suppressed in the program as a whole.

240 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

Incidentally the On parameter of pragma Suppress which
never worked well has been banished to Annex J.

Many implementations of Ada 95 support a pragma Assert
and this is now consolidated into Ada 2005. The general
idea is that we can write pragmas such as

pragma Assert(X >50);

pragma Assert(not Buffer_Full, "buffer is full");

The first parameter is a Boolean expression and the second
optional parameter is a string. If at the point of the pragma
at execution time, the expression is False then action can be
taken. The action is controlled by another pragma
Assertion_Policy which can switch the assertion mechanism
on and off by one of

pragma Assertion_Policy(Check);
pragma Assertion_Policy(Ignore);

If the policy is to check then the exception Assertion_Error
is raised with the message if any. This exception is declared
in the predefined package Ada.Assertions. There are some
other facilities as well.

The pragma No_Return is also related to exceptions. It can
be applied to a procedure (not to a function) and indicates
that the procedure never returns normally but only by
propagating an exception. Thus we might have

procedure Fatal_Error(Message: String);
pragma No_Return(Fatal_Error);

And now whenever we call Fatal_Error the compiler is
assured that control is not returned and this might enable
some optimization or better diagnostic messages.

Note that this pragma applies to the predefined procedure
Ada.Exceptions.Raise_Exception.

Finally there is the pragma Unchecked_Union. This is
useful for interfacing to programs written in C that use the
concept of unions. Unions in C correspond to variant types
in Ada but do not store any discriminant which is entirely
in the mind of the C programmer. The pragma enables a C
union to be mapped to an Ada variant record type by
omitting the storage for the discriminant.

If the C program has
union {
 spvalue double;
 struct {
 length int;
 first *double;
 } mpvalue;
} number;

then this can be mapped in the Ada program by
type Number(Kind: Precision) is
 record
 case Kind is
 when Single_Precision =>
 SP_Value: Long_Float;
 when Multiple_Precision =>
 MP_Value_Length: Integer;
 MP_Value_First: access Long_Float;
 end case;
 end record;
pragma Unchecked_Union(Number);

One problem with pragmas (and attributes) is that many
implementations have added implementation defined ones
(as they are indeed permitted to do). However, this can
impede portability from one implementation to another. To
overcome this there are further Restrictions identifiers so
we can write

pragma Restrictions(No_Implementation_Pragmas,
 No_Implementation_Attributes);

Observe that one of the goals of Ada 2005 has been to
standardize as many of the implementation defined
attributes and pragmas as possible.

Readers might care to consider the paradox that GNAT has
an (implementation-defined) restrictions identifier
No_Implementation_Restrictions.

Another new restrictions identifier prevents us from
inadvertently using features in Annex J thus

pragma Restrictions(No_Obsolescent_Features);

Similarly we can use the restrictions identifier
No_Dependence to state that a program does not depend on
a given language defined package. Thus we might write

pragma Restrictions(No_Dependence =>
 Ada.Command_Line);

The final new general feature concerns formal generic
package parameters. Ada 95 introduced the ability to have
formal packages as parameters of generic units. This
greatly reduced the need for long generic parameter lists
since the formal package encapsulated them.

Sometimes it is necessary for a generic unit to have two (or
more) formal packages. When this happens it is often the
case that some of the actual parameters of one formal
package must be identical to those of the other. In order to
permit this there are two forms of generic parameters. One
possibility is

generic
 with package P is new Q(<>);
package Gen is ...

and then the package Gen can be instantiated with any
package that is an instantiation of Q. On the other hand we
can have

generic
 with package R is new S(P1, P2, ...);
package Gen is ...

and then the package Gen can only be instantiated with a
package that is an instantiation of S with the given actual
parameters P1, P2 etc.

These mechanisms are often used together as in
generic
 with package P is new Q(<>);
 with package R is new S(P.F1);
package Gen is ...

This ensures that the instantiation of S has the same actual
parameter (assumed only one in this example) as the
parameter F1 of Q used in the instantiation of Q to create
the actual package corresponding to P.

J Barnes 241

Ada User Journal Volume 25, Number 4, December 2004

There is an example of this in one of the packages for
vectors and matrices in ISO/IEC 13813 which is now
incorporated into Ada 2005 (see Section 3.6). The generic
package for complex arrays has two package parameters.
One is the corresponding package for real arrays and the
other is the package Generic_Complex_Types from the
existing Numerics annex. Both of these packages have a
floating type as their single formal parameter and it is
important that both instantiations use the same floating type
(eg both Float and not one Float and one Long_Float)
otherwise a terrible mess will occur. This is assured by
writing (using some abbreviations)

with ... ;
generic
 with package Real_Arrays is
 new Generic_Real_Arrays(<>);
 with package Complex_Types is
 new Generic_Complex_Types(Real_Arrays.Real);
package Generic_Complex_Arrays is ...

Well this works fine in simple cases (the reader may
wonder whether this example is simple anyway) but in
more elaborate situations it is a pain. The trouble is that we
have to give all the parameters for the formal package or
none at all in Ada 95.

Ada 2005 permits only some of the parameters to be
specified, and any not specified can be indicated using the
box. So we can write any of

with package Q is new R(P1, P2, F3 => <>);
with package Q is new R(P1, others => <>);
with package Q is new R(F1 => <>, F2 => P2, F3 => P3);

Note that the existing form (<>) is now deemed to be a
shorthand for (others => <>). As with aggregates the form
<> is only permitted with named notation.

Examples using this new facility will be given in a later
paper.

3.6 Standard library
There are significant improvements to the standard library
in Ada 2005. One of the strengths of Java is the huge
library that comes with it. Ada has tended to take the
esoteric view that it is a language for constructing programs
from components and has in the past rather assumed that
the components would spring up by magic from the user
community. There has also perhaps been a reluctance to
specify standard components in case that preempted the
development of better ones. However, it is now recognized
that standardizing useful stuff is a good thing. And
moreover secondary ISO standards are not very helpful
because they are almost invisible. Ada 95 added quite a lot
to the predefined library and Ada 2005 adds more.

First, there are packages for manipulating arrays and
vectors already mentioned in Section 3.5 when discussing
formal package parameters. There are two packages,
Generic_Real_Arrays and Generic_Complex_Arrays. They
can be instantiated according to the underlying floating
point type used. There are also nongeneric versions as
usual.

These packages export types for declaring vectors and
matrices and many operations for manipulating them. Thus
if we have an expression in mathematical notation such as

y = Ax + z

where x , y and z are vectors and A is a square matrix, then
this calculation can be simply programmed as

X, Y, Z: Real_Vector(1 .. N);
A: Real_Matrix(1 .. N, 1 .. N);
...
Y := A * X + Z;

and the appropriate operations will be invoked. The
packages also include subprograms for the most useful
linear algebra computations, namely, the solution of linear
equations, matrix inversion and determinant evaluation,
plus the determination of eigenvalues and eigenvectors for
symmetric matrices (Hermitian in the complex case). Thus
to determine X given Y, Z and A in the above example we
can write

X := Solve(A, Y – Z);

It should not be thought that these Ada packages in any
way compete with the very comprehensive BLAS (Basic
Linear Algebra Subprograms). The purpose of the Ada
packages is to provide simple implementations of very
commonly used algorithms (perhaps for small embedded
systems or for prototyping) and to provide a solid
framework for developing bindings to the BLAS for more
demanding situations. Incidentally, they are in the
Numerics annex.

Another (but very trivial) change to the Numerics annex is
that nongeneric versions of Ada.Text_IO.Complex_IO have
been added in line with the standard principle of providing
nongeneric versions of generic predefined packages for
convenience. Their omission from Ada 95 was an
oversight.

There is a new predefined package in Annex A for
accessing tree-structured file systems. The scope is perhaps
indicated by this fragment of its specification

with ...
package Ada.Directories is
 -- Directory and file operations
 function Current_Directory return String;
 procedure Set_Directory(Directory: in String);
 ...
 -- File and directory name operations
 function Full_Name(Name: in String) return String;
 function Simple_Name(Name: in String) return String;
 ...
 -- File and directory queries
 type File_Kind is
 (Directory, Ordinary_File, Special_File);
 type File_Size is range 0 .. implementation-defined;
 function Exists(Name: in String) return Boolean;
 ...
 -- Directory searching
 type Directory_Entry_Type is limited private;
 type Filter_Type is array (File_Kind) of Boolean;
 ...
 -- Operations on directory entries
 ...
end Ada.Directories;

242 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

The package contains facilities which will be useful on any
Unix or Windows system. However, it has to be recognized
that like Ada.Command_Line it might not be supportable on
every environment.

There is also a package Ada.Environment_Variables for
accessing the environment variables that occur in most
operating systems.

A number of additional subprograms have been added to
the existing string handling packages. There are several
problems with the Ada 95 packages. One is that conversion
between bounded and unbounded strings and the raw type
String is required rather a lot and is both ugly and
inefficient. For example searching only part of a bounded
or unbounded string can only be done by converting it to a
String and then searching the appropriate slice.

In brief the additional subprograms are as follows

▪ three further versions of function Index with an
additional parameter From indicating the start of the
search are added to each of Strings.Fixed,
Strings.Bounded and Strings.Unbounded.

▪ a further version of function Index_Non_Blank is
similarly added to all three packages.

▪ a procedure Set_Bounded_String with similar behaviour
to the function To_Bounded_String is added to
Strings.Bounded. This avoids the overhead of using a
function. A similar procedure Set_Unbounded_String is
added to Strings.Unbounded.

▪ a function and procedure Bounded_Slice are added to
Strings.Bounded. These avoid conversions from type
String. A similar function and procedure
Unbounded_Slice are added to Strings.Unbounded.

As well as these additions there is a new package
Ada.Text_IO.Unbounded_IO for the input-output of
unbounded strings. This again avoids unnecessary
conversion to the type String. However, it has not been felt
necessary to add a similar package for bounded strings
partly because of the complexity involved since it would
need to be generic.

Finally, two functions Get_Line are added to Ada.Text_IO
itself. These avoid difficulties with the length of the string
which occurs with the existing procedures Get_Line.

In Ada 83, program identifiers used the 7-bit ASCII set. In
Ada 95 this was extended to the 8-bit Latin-1 set. In Ada
2005 this is extended yet again to the entire ISO/IEC
10646:2003 character repertoire. This means that identifiers
can now use Cyrillic and Greek characters. Thus we could
extend the animal example by

СTалин: access Pig renames Napoleon;
Πεγασυς: Horse;

In order to encourage us to write our mathematical
programs nicely the additional constant

π: constant := Pi;

has been added to the package Ada.Numerics in Ada 2005.

In a similar way types Wide_String and Wide_Character
were added to Ada 95. In Ada 2005 this process is also
extended and a set of wide-wide types and packages for 32-
bit characters are added. Thus we have types
Wide_Wide_String and so on.

A major addition to the predefined library is the package
Ada.Containers and its children plus two auxiliary child
functions of Ada.Strings. These are a very important and
considerable addition to the predefined capability of Ada
and brings the best in standard data structure manipulation
to the fingers of every Ada programmer. The scope is
perhaps best illustrated by listing the units involved.

Ada.Containers – this is the root package and just declares
types Hash_Type and Size_Type which are an
implementation-defined modular and integer type
respectively.

Ada.Strings.Hash and Ada.Strings.Unbounded.Hash – these
are functions that hash a string or unbounded string into
the type Hash_Type. There is no bounded version.

Ada.Containers.Vectors – this is a generic package with
parameters giving the index type and element type of a
vector plus "=" for the element type. This package
declares types and operations for manipulating vectors.
(These are vectors in the sense of flexible arrays and not
the mathematical vectors used for linear algebra as in the
vectors and matrices packages mentioned earlier.) As
well as subprograms for adding, moving and removing
elements there are also generic subprograms for
searching, sorting and iterating over vectors.

Ada.Containers.Doubly_Linked_Lists – this is a generic
package with parameters giving the element type and "="
for the element type. This package declares types and
operations for manipulating doubly-linked lists. It has
similar functionality to the vectors package. Thus, as
well as subprograms for adding, moving and removing
elements there are also generic subprograms for
searching, sorting and iterating over lists.

Ada.Containers.Hashed_Maps – this is a generic package
with parameters giving a key type and an element type
plus a hash function for the key, a function to test for
equality between keys and "=" for the element type. It
declares types and operations for manipulating hashed
maps.

Ada.Containers.Ordered_Maps – this is a similar generic
package for ordered maps with parameters giving a key
type and an element type and "<" for the key type and "="
for the element type.

Ada.Containers.Hashed_Sets – this is a generic package
with parameters giving the element type plus a hash
function for the elements and a function to test for
equality between elements. It declares types and
operations for manipulating hashed sets.

Ada.Containers.Ordered_Sets – this is a similar generic
package for ordered sets with parameters giving the
element type and "<" and "=" for the element type.

J Barnes 243

Ada User Journal Volume 25, Number 4, December 2004

There are then another six packages with similar
functionality but for indefinite types with corresponding
names such as Ada.Containers.Indefinite_Vectors.

Ada.Containers.Generic_Array_Sort – this is a generic
procedure for sorting arrays. The generic parameters
give the index type, the element type, the array type and
"<" for the element type. The array type is unconstrained.

Finally there is a very similar generic procedure
Ada.Containers.Generic_Constrained_Array_Sort but for
constrained array types.

It is hoped that the above list gives a flavour of the
capability of the package Containers. Some examples of the
use of the facilities will be given in a later paper.

Finally, there are further packages for manipulating times
(that is of type Ada.Calendar.Time and not
Ada.Real_Time.Time and thus more appropriate in a
discussion of the predefined library than the real-time
features). The package Ada.Calendar has a number of
obvious omissions and in order to rectify this the following
packages are added.

Ada.Calendar.Time_Zones – this declares a type
Time_Offset describing in minutes the difference
between two time zones and a function
UTC_Time_Offset which given a time returns the
difference between the time zone of Calendar at that
time and Greenwich Mean Time (alias UTC or
Coordinated Universal Time). It also has an exception
which is raised if the time zone of Calendar is not
known (maybe the clock is broken).

Ada.Calendar.Arithmetic – various types and operations for
coping with leap seconds.

Ada.Calendar.Formatting – further types and operations for
dealing with leap seconds and time zones and related
matters.

Most of the new calendar features are clearly only for the
chronological addict but the need for them does illustrate
that this is a tricky area. However, a feature that all will
appreciate is that the package Ada.Calendar.Formatting
includes the following declarations

type Day_Name is (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday, Sunday);

function Day_Of_Week(Date: Time) return Day_Name;

There is also a small change in the parent package
Ada.Calendar itself. The subtype Year_Number is now

subtype Year_Number is Integer range 1901 .. 2399;

This reveals confidence in the future of Ada by adding
another three hundred years to the range of dates.

4 Conclusions
This overview of Ada 2005 should have given the reader an
appreciation of the important new features in Ada 2005. As
mentioned earlier, integration of the final text to produce
the Amendment remains to be done and this might lead to
some very small adjustments. However, there should be

absolutely no changes at the level of detail presented here.
Some quite promising features failed to be included partly
because the need for them was not clear and also because a
conclusive design proved elusive. We might think of them
as Forthcoming Attractions for any further revision!

Some esoteric topics have been omitted in this overview;
they concern features such as: streams, object factory
functions, the partition control system in distributed
systems, partition elaboration policy for high integrity
systems, a subtlety regarding overload resolution, the title
of Annex H, quirks of access subtypes, rules for pragma
Pure, and the classification of various units as pure or
preelaborable.

Further papers will expand on the six major topics of this
overview in more detail.

It is worth briefly reviewing the guidelines (see Section 2
above) to see whether Ada 2005 meets them. Certainly the
Ravenscar profile has been added and the problem of
mutually dependent types across packages has been solved.

The group A items were about real-time and high-integrity,
static error checking and interfacing. Clearly there are
major improvements in the real-time area. And high-
integrity and static error checking are addressed by features
such as the overriding prefix, various pragmas such as
Unsuppress and Assert and additional Restrictions
identifiers. Better interfacing is provided by the pragma
Unchecked_Union and the Mod attribute.

The group B items were about improvements to the OO
model, the need for a Java-like interface feature and better
interfacing to other OO languages. Major improvements to
the OO model are brought by the Obj.Op notation and more
flexible access types. The Java-like interface feature has
been added and this provides better interfacing.

The final direct instruction was to incorporate the vectors
and matrices stuff and this has been done. There are also
many other improvements to the predefined library as we
have seen.

It seems clear from this brief check that indeed Ada 2005
does meet the objectives set for it.

Finally, I need to thank all those who have helped by
reviewing earlier drafts of this paper. There are almost too
many to name, but I must give special thanks to Randy
Brukardt, Pascal Leroy and Tucker Taft of the ARG, to my
colleagues on the UK Ada Panel (BSI/IST/5/-/9), and to
James Moore of WG9. I am especially grateful to a brilliant
suggestion of Randy Brukardt which must be preserved for
the pleasure of future generations. He suggests that this
document when complete be called the Ada Language
Enhancement Guide. This means that if combined with the
final Ada Reference Manual, the whole document can then
be referred to as the ARM and ALEG. Thanks Randy.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

244 Rat ionale for Ada 2005: Introduct ion

Volume 25, Number 4, December 2004 Ada User Journal

[2] ISO/IEC 8652:1995/COR 1:2001, Ada Reference
Manual – Technical Corrigendum 1.

[3] S. T. Taft et al (eds) (2001) Consolidated Ada
Reference Manual, LNCS 2219, Springer-Verlag.

[4] ISO/IEC TR 24718:2004 (2004) Guide for the use of
the Ada Ravenscar Profile in high integrity systems.
This is based on University of York Technical Report
YCS-2003-348 (2003).

[5] ISO/IEC 13813:1997 (1997) Generic packages of real
and complex type declarations and basic operations
for Ada (including vector and matrix types).

[6] J. G. P. Barnes (1998) Programming in Ada 95, 2nd
ed., Addison-Wesley.

© 2004 John Barnes Informatics.

246

Volume 25, Number 4, December 2004 Ada User Journal

Ada-Europe 2004 Sponsors

8 Rue de Milan, F-75009 Paris, France ACT Europe
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@act-europe.fr
Fax: +33-1-49-70-05-52
URL: www.act-europe.fr

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix

Contact: Anne Chapey Tel: +33-1-41-48-10-10
Email : info@aonix.fr

Fax: +33-1-41-48-10-20
URL : www.aonix.fr

Suite 701, Eagle Tower, Montpellier Drive, Cheltenham, GL50 1TA, UK Artisan Software Tools Ltd

Contact: Emma Allen Tel: +44-1242-229300
Email : info.uk@artisansw.com

Fax: +44-1242-229301
URL : www.artisansw.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd

Contact: Christopher Smith Tel: +44-1962-829820
Email : chriss@ghs.com

Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix

Contact: Martin Stacey Tel: +44-1249-467-600
Email : info_euro@ilogix.com

Fax: +44-1249-467-610
URL : www.ilogix.com

24 Newtown Road, Newbury, Berkshire, RG14 7BN, UK LDRA Ltd
Contact: Jim Kelly Tel: +44-1635-528-828

Email: info@ldra.com
Fax: +44-1635-528-657
URL: www.ldra.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis Critical Systems Ltd

Contact: Rod Chapman Tel: +44-1225-823763
Email : sparkinfo@praxis-cs.co.uk

Fax: +44-1225-469006
URL : www.sparkada.com

321 N. Mall Drive Suite I-201, St. George, UT 84790, USA Scientific Toolworks Inc
Contact: Matthew Bergeson Tel: +1-435-627-2529

Email: sales@scitools.com
Fax: +1-877-512-0765
URL: www.scitools.com

Triad House, Mountbatten Court, Worrall Street, Congleton, Cheshire CW12 1DT,

UK
TNI Europe Limited
Contact: Pam Flood

Tel: +44-1260-29-14-49
Email: info@tni-europe.com

Fax: +44-1260-29-14-49
URL: www.tni-europe.com

	Contents
	Editorial
	News
	Conference Calendar
	Real-Time Java™ for Ada Programmers
	Rationale for Ada 2005:Introduction

