
Blocking versus Non-Blocking

Shared-Memory Multicore Synchronization:

Programmability, Scalability and Performance

Shinhyung Yang1, Seongho Jeong1, Byunguk Min1, Yeonsoo Kim1,

Bernd Burgstaller1 and Johann Blieberger2

1Department of Computer Science, Yonsei University, Korea
2Institute of Computer Engineering, Automation Systems Group,

TU Wien, Austria

June 13, 2019

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 1 / 30



Table of Contents

1 Introduction

2 Lock Elision

3 Sequential Consistency

4 Concurrent Objects
Nonblocking stack: COstack

5 Benchmark & Measurements
Locks: AdaPO-lock vs. POSIX & C++ Mutexes
Blocking Queue: Ada TAS MPMC
Non-blocking vs. Blocking Queues
Progress Guarantees
Performance gain of AR over SC

6 Conclusions and Future Work

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 2 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 / 30



Lock Elision
Protecting shared-data with POs

A coarsed-grained lock is prone to task serialization
A fine-grained locking is error-prone and complex
Lock elision reduces serialization with lock-based code

Time
acquire

update X

release

Task A

acquire

update Y

release

Task B

acquire

update Z

release

Task C

Figure : Task serialization with locks

Figure : Lock elision with Intel TSX

1 f u n c t i o n x b e g i n r e t u r n uint32;

2 p r o c e d u r e xend;
3 f u n c t i o n x t e s t r e t u r n uint32;

4 p r o c e d u r e x a b o r t ;

Listing 1: TSX lock elision
intrinsics

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 4 / 30



Adapting GNU Ada Run-time Library (GNARL)

GNARL employs one POSIX lock per PO for synchronization

Lock elision is incorporated into Write Lock

1 p r o c e d u r e Write_Lock -- GNARL lock acquisition procedure

2 result := T r y E l i s i o n -- Attempt lock elision

3 i f result = fail then -- If failed:

4 a c q u i r e PO.lock -- fall -back to acquire POSIX lock

5 end i f
6 r e t u r n
7 end Write_Lock

Adapted Write Lock
1 Invoke Try Elision

2 If failed:

Fall-back to default routine to acquire POSIX lock

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 5 / 30



Summary: Lock-elision of POs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

8 16 24 32 40
T

im
e 

(n
or

m
al

iz
ed

)

Without Elision
Elision

Number of cores (total)

Ex: hash table

Pros:
PO lock-elision shields programmers from non-blocking
synchronization problem
high scalability in case of low probability of data-conflicts (e.g.,
hash-table)

Cons:
requires HW support to be efficient. Not mainstream yet (e.g.,
not available on ARM platform)
Intel TSX requires fallback-path (lock)
Intel TSX capacity overflows with large amount of shared data
(e.g., linked lists)

not generally applicable to all types of data structures

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 6 / 30



Sequential Consistency

allow method calls to overlap in time

synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 / 30



Sequential Consistency

allow method calls to overlap in time

synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 / 30



Sequential Consistency

allow method calls to overlap in time

synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 / 30



Sequential Consistency

allow method calls to overlap in time

synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 / 30



Sequential Consistency

allow method calls to overlap in time

synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 / 30



Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active
research

a programming language must provide a strict memory model

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 8 / 30



Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active
research

a programming language must provide a strict memory model

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 8 / 30



Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active
research

a programming language must provide a strict memory model

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 8 / 30



Lock-free Synchronization – Example

1 -- Initial values:

2 Flag := False;

3 Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 l o o p
3 R1 := Flag;

4 e x i t when R1;

5 end l o o p ;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of
Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 9 / 30



Lock-free Synchronization – Example

1 -- Initial values:

2 Flag := False;

3 Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 l o o p
3 R1 := Flag;

4 e x i t when R1;

5 end l o o p ;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of
Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 9 / 30



Lock-free Synchronization – Example

1 -- Initial values:

2 Flag := False;

3 Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 l o o p
3 R1 := Flag;

4 e x i t when R1;

5 end l o o p ;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of
Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 9 / 30



Lock-free Synchronization – Example

1 -- Initial values:

2 Flag := False;

3 Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 l o o p
3 R1 := Flag;

4 e x i t when R1;

5 end l o o p ;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of
Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 9 / 30



Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxing SC for the sake of performance on
contemporary CPU architectures

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 10 / 30



Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxing SC for the sake of performance on
contemporary CPU architectures

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 10 / 30



Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxing SC for the sake of performance on
contemporary CPU architectures

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 10 / 30



Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202x,

Ada-Europe’18, 2018, p. 53–69

support for weak memory model

for non-blocking synchronization

for synchronization on a finer granularity (RMW operations)

encapsulation of non-blocking synchronization by high-level
language construct

what protected objects (POs) do for blocking synchronization

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 / 30



Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202x,

Ada-Europe’18, 2018, p. 53–69

support for weak memory model

for non-blocking synchronization

for synchronization on a finer granularity (RMW operations)

encapsulation of non-blocking synchronization by high-level
language construct

what protected objects (POs) do for blocking synchronization

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 / 30



Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202x,

Ada-Europe’18, 2018, p. 53–69

support for weak memory model

for non-blocking synchronization

for synchronization on a finer granularity (RMW operations)

encapsulation of non-blocking synchronization by high-level
language construct

what protected objects (POs) do for blocking synchronization

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 / 30



Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202x,

Ada-Europe’18, 2018, p. 53–69

support for weak memory model

for non-blocking synchronization

for synchronization on a finer granularity (RMW operations)

encapsulation of non-blocking synchronization by high-level
language construct

what protected objects (POs) do for blocking synchronization

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 / 30



Example – Generic Release-Acquire Object (1/2)

1 g e n e r i c
2 t y p e Data i s p r i v a t e ;

3 package Generic_Release_Acquire i s
4

5 c o n c u r r e n t RA

6 i s
7 p r o c e d u r e Write (d: Data);

8 e n t r y Get (D: out Data);

9 p r i v a t e
10 Ready: Boolean := false w i t h S y n c h r o n i z e d ,

11 Memory Order Read => Acqu i re ,

12 Memory Order Write => R e l e a s e ;
13 Da: Data;

14 end RA;

15

16 end Generic_Release_Acquire;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 12 / 30



Example – Generic Release-Acquire Object (2/2)

1 package body Generic_Release_Acquire i s
2

3 c o n c u r r e n t body RA i s
4

5 p r o c e d u r e Write (D: Data) i s
6 b e g i n
7 Da := D;

8 Ready := true;

9 end Write:

10

11 e n t r y Get (D: out Data)

12 u n t i l Ready i s
13 -- spin -lock until released , i.e., Ready = true;

14 -- only sync. variables and constants allowed

15 -- in guard expression

16 b e g i n
17 D := Da;

18 end Get;

19 end RA;

20

21 end Generic_Release_Acquire;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 13 / 30



Example Lock-free Stack (1/2)

1 s u b t y p e Data i s Integer;

2

3 t y p e List;

4 t y p e List_P i s a c c e s s List;

5 t y p e List i s
6 r e c o r d
7 D: Data;

8 Next: List_P;

9 end r e c o r d ;

10

11 Empty: e x c e p t i o n ;

12

13 c o n c u r r e n t Lock_Free_Stack

14 i s
15 e n t r y Push(D: Data);

16 e n t r y Pop(D: out Data);

17 p r i v a t e
18 Head: List_P w i t h Read Modi fy Wr i te ,

19 Memory Order Read => Relaxed ,

20 M e m o r y O r d e r W r i t e S u c c e s s => R e l e a s e ,

21 M e m o r y O r d e r W r i t e F a i l u r e => R e l a x e d ;

22 end Lock_Free_Stack;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 14 / 30



Example Lock-free Stack (2/2)

1 c o n c u r r e n t body Lock_Free_Stack i s
2 e n t r y Push (D: Data)

3 u n t i l Head = Head ’OLD i s
4 New_Node: List_P := new List;

5 b e g i n
6 New_Node. a l l := (D => D, Next => Head);

7 Head := New_Node; -- RMW

8 end Push;

9

10 e n t r y Pop(D: out Data)

11 u n t i l Head = Head ’OLD i s
12 Old_Head: List_P;

13 b e g i n
14 Old_Head := Head;

15 i f Old_Head /= n u l l then
16 Head := Old_Head.Next; -- RMW

17 D := Old_head.D;

18 e l s e
19 r a i s e Empty;

20 end i f ;
21 end Pop;

22 end Lock_Free_Stack;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 15 / 30



Benchmark Configuration

Platform 1: 2 CPU Intel Xeon E5-2697 v3 system

14 x86 64 cores per CPU

Platform 2: 4 CPU AWS Graviton on Amazon AWS

4 ARMv8 cores per CPU

Scalability experiment policies:

One Ada task assigned per core
Cores of a CPU populated consecutively
Once all cores of a CPU are populated, the next CPU receives
tasks

Tasks run synchronization-constructs in tight-loop

Incurs high contention
Brings out the best in each synchronization-construct :)

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 16 / 30



COstack (1/2)

COstack: Non-blocking stack using C++11 atomic library with
weaker memory model
Function bool node.compare exchange strong(type
*expected, type *desired)

Success: If the node has not been changed by other threads,
then the node is atomically changed to desired, and returns
true

Fail: If the value of node has changed by other threads, then
the expected is atomically changed to node, and returns false

Push: RMW spins in the while loop until head is changed to
new node and returns true

1 v o i d push(T c o n s t &data) {

2 node * c o n s t new_node = new node(data);

3 new_node ->next = head.load(std:: memory_order_acquire);

4 w h i l e (!head.compare_exchange_strong(new_node ->next ,

new_node)) ; // RMW

5 }

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 17 / 30



COstack (2/2)

Pop: old head is in while loop until old head is updated to
the latest head variable.

1 v o i d pop() {

2 node *old_head = head.load();

3 do {

4 node *temp;

5 do {

6 temp = old_head;

7 old_head = head.load();

8 } w h i l e (old_head != temp);

9 } w h i l e (old_head &&

10 !head.compare_exchange_strong(old_head , old_head ->next))

;

11 }

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 18 / 30



Non-blocking vs. Blocking Stacks

0K

3K

6K

9K

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of cores (total)

T
im

e
 (m

illis
e

c
o

n
d

s
)

COstack (non-blocking)
pop
push

C++ mutex stack (blocking)
pop
push

(SC version of COstack is presented)

Intel x86

0K

5K

10K

15K

2 4 6 8 10 12 14 16

Number of cores (total)

T
im

e
 (m

illis
e

c
o

n
d

s
)

COstack (non-blocking)
pop
push

C++ mutex stack (blocking)
pop
push

(SC version of COstack is presented)

ARM v8

non-blocking COstack mimics Concurrent Objects proposed for
Ada202x

actually implemented in C++

COstack performs better than blocking C++ mutex stack

more performance gains observed on ARMv8

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 19 / 30



Locks: AdaPO-lock vs. POSIX & C++ Mutexes

PO-lock using PO’s monitor-style synchronization:
1 p r o t e c t e d body Lock i s
2 p r o c e d u r e CriticalSection i s
3 b e g i n
4 n u l l ; -- Critical section code here ...

5 end CriticalSection;

6 end Lock;

POSIX mutex consisting of lock-unlock primitives:
1 p t h r e a d m u t e x t mutex;

2

3 pthread_mutex_lock (&mutex);

4 // Critical section code here ...

5 pthread_mutex_unlock (&mutex);

C++ mutex:
1 std::mutex mtx;

2

3 mtx.lock();

4 // Critical section code here ...

5 mtx.unlock ();

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 20 / 30



Performance: PO-lock, POSIX & C++ Mutexes

0K

0.2K

0.5K

0.8K

1K

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of cores (total)

T
im

e (m
illiseconds)

Intel x86

C++ mutex
POSIX mutex

PO lock

0K

1K

2K

3K

2 4 6 8 10 12 14 16

Number of cores (total)

T
im

e (m
illiseconds)

ARM v8

C++ mutex
POSIX mutex

PO lock

All three locks provide mutual exclusion but no fairness
(The egg-shell model applies only to entries)

PO adds noticeable performance-overhead compared to “plain”
mutexes

Programmer-supplied PO configuration mechanism could help
to avoid this overhead

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 21 / 30



Ada TAS MPMC (Multi-Producer-Multi-Consumer

Queue) (1/2)

GCC atomic intrinsics are used for synchronization instead of
protected objects
type sync lock test and set 4 (type *ptr, type

value)

⇒ It atomically writes value into *ptr, and return the previous
contents of *ptr. Size of *ptr and value is 4 byte each.

1 f u n c t i o n TAS_4(

2 current: a c c e s s Unsigned;

3 Newval: Unsigned) r e t u r n Unsigned;

4 pragma Import (Intrinsic , TAS_4 ,

5 "__sync_lock_test_and_set_4");

sync lock release 4 (type *ptr)

⇒ It releases the lock acquired by sync lock test and set.
It atomically writes constant 0 to *ptr

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 22 / 30



Ada TAS MPMC (2/2)

Lock & Unlock: Q.Locked is initialized as 0. By TAS 4 on
Q.Locked, lock is acquired. ⇒ By writing 0 to Q.Locked, lock
is released.

Producer: It enqueues to a queue Q for iter times.

Consumer: It dequeues element from Q to Data for iter times.
If Q is empty, release the lock, and redo inner loop.

1 Q: My_USQ.Queue;

2 t a s k body Producer i s
3 b e g i n
4 f o r I i n 1.. iter l o o p
5 w h i l e TAS_4(Q.Locked ’Access ,1)=1 l o o p -- Acquire

6 n u l l ;
7 end l o o p ;

8

9 Q.Enqueue(New_Item => i);

10

11 Lock_Release_4(Q.Locked ’A c ce s s ); -- Release

12 end l o o p ;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 23 / 30



Non-blocking vs. Blocking Queues

101

102

103

104

105

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of cores (total)

T
im

e
 (m

illis
e

c
o

n
d

s
)

Ada Synchronized MPMC Boost SPSC
B-Queue SPSC

Ada LockFree MPMC Boost MPMC

Intel x86

101

101.5

102

102.5

103

103.5

104

2 4 6 8 10 12 14 16

Number of cores (total)

T
im

e
 (m

illis
e

c
o

n
d

s
)

Ada Synchronized MPMC Boost SPSC
B-Queue SPSC

Ada LockFree MPMC Boost MPMC

ARM v8

SPSC-queues: lower sync. overhead, higher performance

Boost MPMC and Ada LockFree MPMC constitute identical
concurrent data-structures (Algorithm of Michael & Scott)

Blocking MPMCs (Ada Synchronized, Ada TAS): clear
performance disadvantage

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 24 / 30



Non-blocking Locks and Progress Guarantees

0K

1K

2K

3K

4K

5K

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of cores (total)

T
im

e
 (m

illis
e

c
o

n
d

s
)

Intel x86

CLH QueueLock (FIFO)

ArrayLock (FIFO)

TATAS (none)

FairLock ("Fair")

(SC versions are presented)

0K

1K

2K

3K

2 4 6 8 10 12 14 16

Number of cores (total)

T
im

e
 (m

illis
e

c
o

n
d

s
)

ARM v8

CLH QueueLock (FIFO)

ArrayLock (FIFO)

TATAS (none)

FairLock ("Fair")

(SC versions are presented)

TATAS-lock permits starvation
Optimizes throughput of task-ensemble as a whole

CLH QueueLock and ArrayLock: FIFO progress-guarantee
FairLock: no task can enter critical section twice while another
task is waiting

Weaker guarantee than FIFO

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 25 / 30



Performance gain ratio: AR over SC (1/3)

ArrayLock

FairLock
FilterLock

PetersonLock

TASLock

TATASLock

Lock benchmarks

#Cores:

25%

50%

75%

100%
A

R
 S

p
e

e
d

u
p

 o
ve

r 
S

C
 (

%
) Intel x86

1 8 16 28 1 21 8 16 28 1 8 16 28 1 8 16 28 1 8 16 28

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 26 / 30



Performance gain ratio: AR over SC (2/3)

25%

50%

75%

100%

Lock benchmarks

A
R

 S
p

e
e

d
u

p
 o

ve
r 

S
C

 (
%

)

ArrayLock

FairLock
FilterLock

PetersonLock

TASLock

TATASLock

ARM v8

#Cores: 1 4 8 16 1 21 4 8 16 1 4 8 16 1 4 8 16 1 4 8 16

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 27 / 30



Performance gain ratio: AR over SC (3/3)

took considerable time and a lot of discussions to convert from
SC to AR version

the same or even more to relax acquire and release operations
(here we got real performance gains)

some C++ memory fences turned out to be insufficient

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 28 / 30



Performance gain ratio: AR over SC (3/3)

took considerable time and a lot of discussions to convert from
SC to AR version

the same or even more to relax acquire and release operations
(here we got real performance gains)

some C++ memory fences turned out to be insufficient

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 28 / 30



Performance gain ratio: AR over SC (3/3)

took considerable time and a lot of discussions to convert from
SC to AR version

the same or even more to relax acquire and release operations
(here we got real performance gains)

some C++ memory fences turned out to be insufficient

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 28 / 30



Conclusions and Future Work (1/2)

Ada’s protected objects have advantages:

(1) safe (2) easy to
use (3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30



Conclusions and Future Work (1/2)

Ada’s protected objects have advantages: (1) safe

(2) easy to
use (3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30



Conclusions and Future Work (1/2)

Ada’s protected objects have advantages: (1) safe (2) easy to
use

(3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30



Conclusions and Future Work (1/2)

Ada’s protected objects have advantages: (1) safe (2) easy to
use (3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30



Conclusions and Future Work (1/2)

Ada’s protected objects have advantages: (1) safe (2) easy to
use (3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30



Conclusions and Future Work (1/2)

Ada’s protected objects have advantages: (1) safe (2) easy to
use (3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30



Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30 / 30


	Introduction
	Lock Elision
	Sequential Consistency
	Concurrent Objects
	Nonblocking stack: COstack

	Benchmark & Measurements
	Locks: AdaPO-lock vs. POSIX & C++ Mutexes
	Blocking Queue: Ada_TAS_MPMC
	Non-blocking vs. Blocking Queues
	Progress Guarantees
	Performance gain of AR over SC

	Conclusions and Future Work

