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Synchronization

mutual exclusion locks

Ada’s protected objects (POs)

Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

⇒ allow method calls to overlap in time
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Lock Elision
Protecting shared-data with POs

A coarsed-grained lock is prone to task serialization
A fine-grained locking is error-prone and complex
Lock elision reduces serialization with lock-based code

Time
acquire

update X

release

Task A

acquire

update Y

release

Task B

acquire

update Z

release

Task C

Figure : Task serialization with locks

Figure : Lock elision with Intel TSX

1 f u n c t i o n x b e g i n r e t u r n uint32;

2 p r o c e d u r e xend;
3 f u n c t i o n x t e s t r e t u r n uint32;

4 p r o c e d u r e x a b o r t ;

Listing 1: TSX lock elision
intrinsics
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Adapting GNU Ada Run-time Library (GNARL)

GNARL employs one POSIX lock per PO for synchronization

Lock elision is incorporated into Write Lock

1 p r o c e d u r e Write_Lock -- GNARL lock acquisition procedure

2 result := T r y E l i s i o n -- Attempt lock elision

3 i f result = fail then -- If failed:

4 a c q u i r e PO.lock -- fall -back to acquire POSIX lock

5 end i f
6 r e t u r n
7 end Write_Lock

Adapted Write Lock
1 Invoke Try Elision

2 If failed:

Fall-back to default routine to acquire POSIX lock
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Summary: Lock-elision of POs
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Ex: hash table

Pros:
PO lock-elision shields programmers from non-blocking
synchronization problem
high scalability in case of low probability of data-conflicts (e.g.,
hash-table)

Cons:
requires HW support to be efficient. Not mainstream yet (e.g.,
not available on ARM platform)
Intel TSX requires fallback-path (lock)
Intel TSX capacity overflows with large amount of shared data
(e.g., linked lists)

not generally applicable to all types of data structures
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Sequential Consistency

allow method calls to overlap in time

synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e.g., CAS compare&swap operation

sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task
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Non-blocking Synchronization Techniques

difficult to implement

the design of non-blocking data structures is an area of active
research

a programming language must provide a strict memory model
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Lock-free Synchronization – Example

1 -- Initial values:

2 Flag := False;

3 Data := 0;

1 -- Task 1:

2 Data := 1;

3 Flag := True;

1 -- Task 2:

2 l o o p
3 R1 := Flag;

4 e x i t when R1;

5 end l o o p ;

6 R2 := Data;

store–store re-ordering of the assignments in lines 2 and 3 of
Task 1
⇒ reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer w i t h Volatile; -- Ada2012

2 Flag : Boolean w i t h Atomic; -- Ada2012
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Ada’s Volatile Variables

guarantee that all tasks agree on the same order of updates

⇒ sequentially consistent

however: relaxing SC for the sake of performance on
contemporary CPU architectures
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Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202x,

Ada-Europe’18, 2018, p. 53–69

support for weak memory model

for non-blocking synchronization

for synchronization on a finer granularity (RMW operations)

encapsulation of non-blocking synchronization by high-level
language construct

what protected objects (POs) do for blocking synchronization
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Example – Generic Release-Acquire Object (1/2)

1 g e n e r i c
2 t y p e Data i s p r i v a t e ;

3 package Generic_Release_Acquire i s
4

5 c o n c u r r e n t RA

6 i s
7 p r o c e d u r e Write (d: Data);

8 e n t r y Get (D: out Data);

9 p r i v a t e
10 Ready: Boolean := false w i t h S y n c h r o n i z e d ,

11 Memory Order Read => Acqu i re ,

12 Memory Order Write => R e l e a s e ;
13 Da: Data;

14 end RA;

15

16 end Generic_Release_Acquire;
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Example – Generic Release-Acquire Object (2/2)

1 package body Generic_Release_Acquire i s
2

3 c o n c u r r e n t body RA i s
4

5 p r o c e d u r e Write (D: Data) i s
6 b e g i n
7 Da := D;

8 Ready := true;

9 end Write:

10

11 e n t r y Get (D: out Data)

12 u n t i l Ready i s
13 -- spin -lock until released , i.e., Ready = true;

14 -- only sync. variables and constants allowed

15 -- in guard expression

16 b e g i n
17 D := Da;

18 end Get;

19 end RA;

20

21 end Generic_Release_Acquire;
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Example Lock-free Stack (1/2)

1 s u b t y p e Data i s Integer;

2

3 t y p e List;

4 t y p e List_P i s a c c e s s List;

5 t y p e List i s
6 r e c o r d
7 D: Data;

8 Next: List_P;

9 end r e c o r d ;

10

11 Empty: e x c e p t i o n ;

12

13 c o n c u r r e n t Lock_Free_Stack

14 i s
15 e n t r y Push(D: Data);

16 e n t r y Pop(D: out Data);

17 p r i v a t e
18 Head: List_P w i t h Read Modi fy Wr i te ,

19 Memory Order Read => Relaxed ,

20 M e m o r y O r d e r W r i t e S u c c e s s => R e l e a s e ,

21 M e m o r y O r d e r W r i t e F a i l u r e => R e l a x e d ;

22 end Lock_Free_Stack;
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Example Lock-free Stack (2/2)

1 c o n c u r r e n t body Lock_Free_Stack i s
2 e n t r y Push (D: Data)

3 u n t i l Head = Head ’OLD i s
4 New_Node: List_P := new List;

5 b e g i n
6 New_Node. a l l := (D => D, Next => Head);

7 Head := New_Node; -- RMW

8 end Push;

9

10 e n t r y Pop(D: out Data)

11 u n t i l Head = Head ’OLD i s
12 Old_Head: List_P;

13 b e g i n
14 Old_Head := Head;

15 i f Old_Head /= n u l l then
16 Head := Old_Head.Next; -- RMW

17 D := Old_head.D;

18 e l s e
19 r a i s e Empty;

20 end i f ;
21 end Pop;

22 end Lock_Free_Stack;
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Benchmark Configuration

Platform 1: 2 CPU Intel Xeon E5-2697 v3 system

14 x86 64 cores per CPU

Platform 2: 4 CPU AWS Graviton on Amazon AWS

4 ARMv8 cores per CPU

Scalability experiment policies:

One Ada task assigned per core
Cores of a CPU populated consecutively
Once all cores of a CPU are populated, the next CPU receives
tasks

Tasks run synchronization-constructs in tight-loop

Incurs high contention
Brings out the best in each synchronization-construct :)
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COstack (1/2)

COstack: Non-blocking stack using C++11 atomic library with
weaker memory model
Function bool node.compare exchange strong(type
*expected, type *desired)

Success: If the node has not been changed by other threads,
then the node is atomically changed to desired, and returns
true

Fail: If the value of node has changed by other threads, then
the expected is atomically changed to node, and returns false

Push: RMW spins in the while loop until head is changed to
new node and returns true

1 v o i d push(T c o n s t &data) {

2 node * c o n s t new_node = new node(data);

3 new_node ->next = head.load(std:: memory_order_acquire);

4 w h i l e (!head.compare_exchange_strong(new_node ->next ,

new_node)) ; // RMW

5 }
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COstack (2/2)

Pop: old head is in while loop until old head is updated to
the latest head variable.

1 v o i d pop() {

2 node *old_head = head.load();

3 do {

4 node *temp;

5 do {

6 temp = old_head;

7 old_head = head.load();

8 } w h i l e (old_head != temp);

9 } w h i l e (old_head &&

10 !head.compare_exchange_strong(old_head , old_head ->next))

;

11 }
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Non-blocking vs. Blocking Stacks
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ARM v8

non-blocking COstack mimics Concurrent Objects proposed for
Ada202x

actually implemented in C++

COstack performs better than blocking C++ mutex stack

more performance gains observed on ARMv8
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Locks: AdaPO-lock vs. POSIX & C++ Mutexes

PO-lock using PO’s monitor-style synchronization:
1 p r o t e c t e d body Lock i s
2 p r o c e d u r e CriticalSection i s
3 b e g i n
4 n u l l ; -- Critical section code here ...

5 end CriticalSection;

6 end Lock;

POSIX mutex consisting of lock-unlock primitives:
1 p t h r e a d m u t e x t mutex;

2

3 pthread_mutex_lock (&mutex);

4 // Critical section code here ...

5 pthread_mutex_unlock (&mutex);

C++ mutex:
1 std::mutex mtx;

2

3 mtx.lock();

4 // Critical section code here ...

5 mtx.unlock ();
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Performance: PO-lock, POSIX & C++ Mutexes
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All three locks provide mutual exclusion but no fairness
(The egg-shell model applies only to entries)

PO adds noticeable performance-overhead compared to “plain”
mutexes

Programmer-supplied PO configuration mechanism could help
to avoid this overhead
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Ada TAS MPMC (Multi-Producer-Multi-Consumer

Queue) (1/2)

GCC atomic intrinsics are used for synchronization instead of
protected objects
type sync lock test and set 4 (type *ptr, type

value)

⇒ It atomically writes value into *ptr, and return the previous
contents of *ptr. Size of *ptr and value is 4 byte each.

1 f u n c t i o n TAS_4(

2 current: a c c e s s Unsigned;

3 Newval: Unsigned) r e t u r n Unsigned;

4 pragma Import (Intrinsic , TAS_4 ,

5 "__sync_lock_test_and_set_4");

sync lock release 4 (type *ptr)

⇒ It releases the lock acquired by sync lock test and set.
It atomically writes constant 0 to *ptr
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Ada TAS MPMC (2/2)

Lock & Unlock: Q.Locked is initialized as 0. By TAS 4 on
Q.Locked, lock is acquired. ⇒ By writing 0 to Q.Locked, lock
is released.

Producer: It enqueues to a queue Q for iter times.

Consumer: It dequeues element from Q to Data for iter times.
If Q is empty, release the lock, and redo inner loop.

1 Q: My_USQ.Queue;

2 t a s k body Producer i s
3 b e g i n
4 f o r I i n 1.. iter l o o p
5 w h i l e TAS_4(Q.Locked ’Access ,1)=1 l o o p -- Acquire

6 n u l l ;
7 end l o o p ;

8

9 Q.Enqueue(New_Item => i);

10

11 Lock_Release_4(Q.Locked ’A c ce s s ); -- Release

12 end l o o p ;
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Non-blocking vs. Blocking Queues
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SPSC-queues: lower sync. overhead, higher performance

Boost MPMC and Ada LockFree MPMC constitute identical
concurrent data-structures (Algorithm of Michael & Scott)

Blocking MPMCs (Ada Synchronized, Ada TAS): clear
performance disadvantage
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Non-blocking Locks and Progress Guarantees
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TATAS-lock permits starvation
Optimizes throughput of task-ensemble as a whole

CLH QueueLock and ArrayLock: FIFO progress-guarantee
FairLock: no task can enter critical section twice while another
task is waiting

Weaker guarantee than FIFO
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Performance gain ratio: AR over SC (1/3)
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Performance gain ratio: AR over SC (2/3)
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Performance gain ratio: AR over SC (3/3)

took considerable time and a lot of discussions to convert from
SC to AR version

the same or even more to relax acquire and release operations
(here we got real performance gains)

some C++ memory fences turned out to be insufficient
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Conclusions and Future Work (1/2)

Ada’s protected objects have advantages:

(1) safe (2) easy to
use (3) easy to comprehend.

If performance is a major concern, lock-free implementations
outperform the blocking approach.

To gain higher performance for Ada 2012 ⇒ intrinsics or
machine code insertions.
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Conclusions and Future Work (2/2)

Simply replacing PO locks with spin loops is not enough.

Concurrent execution inside the methods is better.

For Ada 2012 programs ⇒ calls to intrinsics.

⇒ adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Set up benchmarks for reuse.

Prototype implementation for COs.
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