Blocking versus Non-Blocking
Shared-Memory Multicore Synchronization:

Programmability, Scalability and Performance

Shinhyung Yang?!, Seongho Jeong?, Byunguk Min?, Yeonsoo Kim?,

Bernd Burgstaller' and Johann Blieberger?

!Department of Computer Science, Yonsei University, Korea
%Institute of Computer Engineering, Automation Systems Group,
TU Wien, Austria

June 13, 2019

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 1/30

Table of Contents

@ Introduction
© Lock Elision

© Sequential Consistency

@ Concurrent Objects
@ Nonblocking stack: COstack

e Benchmark & Measurements

@ Locks: AdaPO-lock vs. POSIX & C++ Mutexes
Blocking Queue: Ada_TAS_MPMC
Non-blocking vs. Blocking Queues
Progress Guarantees
Performance gain of AR over SC

@ Conclusions and Future Work

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 2 /30

Synchronization

@ mutual exclusion locks

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Synchronization

@ mutual exclusion locks
e Ada’s protected objects (POs)

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Synchronization

@ mutual exclusion locks
e Ada’s protected objects (POs)
@ Entries and procedures of a PO execute one after another

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Synchronization

@ mutual exclusion locks
e Ada’s protected objects (POs)
@ Entries and procedures of a PO execute one after another

@ makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Synchronization

mutual exclusion locks
Ada'’s protected objects (POs)
Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

@ mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Synchronization

mutual exclusion locks

Ada'’s protected objects (POs)

Entries and procedures of a PO execute one after another
makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Synchronization

("]

mutual exclusion locks
Ada'’s protected objects (POs)
Entries and procedures of a PO execute one after another

makes it straight-forward for programmers to reason about
updates to the shared data encapsulated by a PO

mutual-exclusion property of (highly-contended) locks stands in
the way to scalability of parallel programs on many-core
architectures

locks do not allow progress guarantees, because a task may
fail inside a critical section, e.g., by entering an endless loop,
and thereby prevent other tasks from accessing shared data

= allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 3 /30

Lock Elision

Protecting shared-data with POs
@ A coarsed-grained lock is prone to task serialization
@ A fine-grained locking is error-prone and complex
@ Lock elision reduces serialization with lock-based code

Task A Task B Task C Task A Task B Task C
Time Time ; ; ;
ﬂ acquire ‘1 i xbegin { xbegin i xbegin
| update X | update X | update Y | update Z
of'[release ‘1 xend xend xend
@ [zcavixe Figure : Lock elision with Intel TSX

| update Y
“ release

function xbegin return uint32;
procedure xend;

1
2
nacquire 3 function xtest return uint32;
4 procedure xabort;
|update zZ

grercase| Listing 1: TSX lock elision

intrinsics

\/

Figure : Task serialization with locks

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 4 /30

Adapting GNU Ada Run-time Library (GNARL)

@ GNARL employs one POSIX lock per PO for synchronization

@ Lock elision is incorporated into Write_Lock

1 procedure Write_Lock -- GNARL lock acquisition procedure
2 result := Try_Elision -- Attempt lock elision

3 if result = fail then -- If failed:

4 acquire PO.lock - fall-back to acquire POSIX lock
5 end if

6 return

7 end Write_Lock

Adapted Write_Lock

© Invoke Try Elision

Q If failed:
o Fall-back to default routine to acquire POSIX lock

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 5 /30

Summary: Lock-elision of POs

= Without Elision
= Elision

8 16 24 32 40
@ Pros: L. .. Number of cores (total) .
e PO lock-elision shields programmers from non-blocking

synchronization problem
e high scalability in case of low probability of data-conflicts (e.g.,

hash-table)
e Cons: . . .
e requires HW support to be efficient. Not mainstream yet (e.g.,

not available on ARM platform)
o Intel TSX requires fallback-path (lock)
o Intel TSX capacity overflows with large amount of shared data
(e.g., linked lists)
o not generally applicable to all types of data structures

Ex: hash table

Time (normalized)
N
o

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 6 /30

Sequential Consistency

@ allow method calls to overlap in time

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 /30

Sequential Consistency

@ allow method calls to overlap in time

@ synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 /30

Sequential Consistency

@ allow method calls to overlap in time
@ synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

@ atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 /30

Sequential Consistency

@ allow method calls to overlap in time

@ synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

@ atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e e.g., CAS compare&swap operation

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 /30

Sequential Consistency

@ allow method calls to overlap in time
@ synchronization on a finer granularity within a method’s code,
via atomic read-modify-write (RMW) operations

@ atomic operations are provided either by the CPU’s instruction
set architecture (ISA), or the language run-time (with the help
of the CPU’s ISA)

e e.g., CAS compare&swap operation

e sequential consistency ensures that method calls act as if they
occurred in a sequential, total order that is consistent with
the program order of each participating task

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 7 /30

Non-blocking Synchronization Techniques

o difficult to implement

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 8 /30

Non-blocking Synchronization Techniques

o difficult to implement

@ the design of non-blocking data structures is an area of active
research

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 8 /30

Non-blocking Synchronization Techniques

o difficult to implement

@ the design of non-blocking data structures is an area of active
research

@ a programming language must provide a strict memory model

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 8 /30

Yang, Jeong, Min, Kim, Burgst., Bli

Lock-free Synchronization

-- Initial values:
Flag := False;
Data := 0;

-- Task 1:
Data := 1;
Flag := True;

Blocking versus Non-Blocking Sync.

June 13, 2019

9 /30

/

Lock-free Synchronization — Example

1 -- Initial values:
2 Flag := False;
3 Data := 0;

1 -- Task 1:
2 Data := 1;
3 Flag := True;

-- Task 2:
loop
R1 := Flag;
exit when R1;
end loop;
R2 := Data;

S IS B N R N

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 9 /30

Lock-free Synchronization — Example

1 -- Initial values:
2 Flag := False;
3 Data := 0;

1 -- Task 1:
2 Data := 1;
3 Flag := True;

-- Task 2:
loop
R1 := Flag;
exit when R1;
end loop;
R2 := Data;

S IS B N R N

store—store re-ordering of the assignments in lines 2 and 3 of
Task 1
= reading R2 = 0 in Line 6 of Task 2.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 9 /30

Lock-free Synchronization — Example

1 -- Initial values:
2 Flag := False;
3 Data := 0;

1 -- Task 1:
2 Data := 1;
3 Flag := True;

-- Task 2:
loop
R1 := Flag;
exit when R1;
end loop;
R2 := Data;

S IS B N R N

store—store re-ordering of the assignments in lines 2 and 3 of
Task 1
= reading R2 = 0 in Line 6 of Task 2.

1 Data : Integer with Volatile; -- Ada2012
2 Flag : Boolean with Atomic; -- Ada2012

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Ada’s Volatile Variables

@ guarantee that all tasks agree on the same order of updates

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 10 / 30

Ada’s Volatile Variables

@ guarantee that all tasks agree on the same order of updates

@ = sequentially consistent

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 10 / 30

Ada’s Volatile Variables

@ guarantee that all tasks agree on the same order of updates
@ = sequentially consistent

@ however: relaxing SC for the sake of performance on
contemporary CPU architectures

Yang, Jeong, Min, Kim, Burgst., Blieb.

Blocking versus Non-Blocking Sync. June 13, 2019 10 / 30

Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202,
Ada-Europe’l8, 2018, p. 53-69

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 /30

Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202,
Ada-Europe’l8, 2018, p. 53-69

@ support for weak memory model

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 /30

Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202,
Ada-Europe’l8, 2018, p. 53-69

@ support for weak memory model

e for non-blocking synchronization

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 /30

Concurrent Objects

J. Blieberger, B. Burgstaller, Safe Non-blocking Synchronization in Ada 202,
Ada-Europe’l8, 2018, p. 53-69

@ support for weak memory model
e for non-blocking synchronization
@ for synchronization on a finer granularity (RMW operations)

@ encapsulation of non-blocking synchronization by high-level
language construct

e what protected objects (POs) do for blocking synchronization

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 11 /30

Example — Generic Release-Acquire Object (1/2)

1 generic

2 type Data is private;

3 package Generic_Release_Acquire is

4

5 concurrent RA

6 is

7 procedure Write (d: Data);

8 entry Get (D: out Data);

9 private

10 Ready: Boolean := false with Synchronized,
11 Memory_Order_Read => Acquire,
12 Memory_Order_Write => Release;
13 Da: Data;

14 end RA;

15

16 end Generic_Release_Acquire;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 12 / 30

Example — Generic Release-Acquire Object (2/2)

19

21

concurrent body RA is

procedure Write (D: Data) is
begin

Da := D;

Ready := true;
end Write:

entry Get (D: out Data)
until Ready is
-- spin-lock until released,

package body Generic_Release_Acquire is

i.e., Ready = true;

-- only sync. variables and constants allowed

-- in guard expression
begin

D := Da;
end Get;

end RA;

end Generic_Release_Acquire;

Yang, Jeong, Min, Kim, Burgst., Blieb.

Blocking versus Non-Blocking Sync.

June 13, 2019

13/

Example Lock-free Stack (1/2)

1 subtype Data is Integer;

2

3 type List;

4 type List_P is access List;

5 type List is

6 record

7 D: Data;

8 Next: List_P;

9 end record;

10

11 Empty: exception;

12

13 concurrent Lock_Free_Stack

14 is

15 entry Push(D: Data);

16 entry Pop(D: out Data);

17 private

18 Head: List_P with Read_Modify Write,
19 Memory_Order_Read => Relaxed,

20 Memory_Order_Write_Success => Release,
21 Memory_Order_Write_Failure => Relaxed;
22 end Lock_Free_Stack;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Example Lock-free Stack (2/2)

1 concurrent body Lock_Free_Stack is
2 entry Push (D: Data)

3 until Head = Head’0LD is

4 New_Node: List_P := new List;
5 begin

6 New_Node.all := (D => D, Next => Head);
7 Head := New_Node; -- RMW

8 end Push;

9

10 entry Pop(D: out Data)

11 until Head = Head’OLD is

12 0ld_Head: List_P;

13 begin

14 0l1d_Head := Head;

15 if 01d_Head /= null then

16 Head := 0ld_Head.Next; -- RMW
17 D := 0ld_head.D;

18 else

19 raise Empty;

20 end if;

21 end Pop;

22 end Lock_Free_Stack;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync.

June 13, 2019

Benchmark Configuration

e Platform 1: 2 CPU Intel Xeon E5-2697 v3 system
o 14 x86_64 cores per CPU

e Platform 2: 4 CPU AWS Graviton on Amazon AWS
o 4 ARMv8 cores per CPU

@ Scalability experiment policies:

e One Ada task assigned per core

o Cores of a CPU populated consecutively

o Once all cores of a CPU are populated, the next CPU receives
tasks

@ Tasks run synchronization-constructs in tight-loop

e Incurs high contention
e Brings out the best in each synchronization-construct :)

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 16 / 30

COstack (1/2)

@ COstack: Non-blocking stack using C++11 atomic library with
weaker memory model

@ Function bool node.compare_exchange strong(type
xexpected, type *desired)

e Success: If the node has not been changed by other threads,
then the node is atomically changed to desired, and returns
true

e Fail: If the value of node has changed by other threads, then
the expected is atomically changed to node, and returns false

@ Push: RMW spins in the while loop until head is changed to
new node and returns true

1 void push(T const &data) {

2 node *const new_node = new node(data);

3 new_node->next = head.load(std::memory_order_acquire);
4 while (!'head.compare_exchange_strong(new_node->next,

new_node)) ; // RMW

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 17 / 30

COstack (2/2)

@ Pop: old head is in while loop until old_head is updated to
the latest head variable.

1 void pop() {

2 node *old_head = head.load();
3 do {

4 node *temp;

5 do {

6 temp = old_head;

7 0ld_head = head.load();

8 } while (old_head != temp);
9 } while (old_head &&

10 'head.compare_exchange_strong(old_head, old_head->next))
11 }

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 18 / 30

Non-blocking vs. Blocking Stacks

COstack (non-blocking) Bugn ™ COstack (non-blocking) Dol ™
C++ mutex stack (blocking) PP s 4 C++ mutex stack (blocking) P%P, .
o 5 IR 3
Intel x86 © |ARM v8 o
3 3
6K 3 10K =
0] o)
o] Q
o <]
> I =3
3K % 5K @

ok #0114 0K
K & v o » o & » ©

VRO ITOLOIT LD K
Number of cores (total) Number of cores (total)

@ non-blocking COstack mimics Concurrent Objects proposed for
Ada202x

@ actually implemented in C++
@ COstack performs better than blocking C++ mutex stack

@ more performance gains observed on ARMv8

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 19 / 30

Locks: AdaPO-lock vs. POSIX & C++ Mutexes

@ PO-lock using PO’s monitor-style synchronization:

1 protected body Lock is

2 procedure CriticalSection is

3 begin

4 null; -- Critical section code here...
5 end CriticalSection;

6 end Lock;

@ POSIX mutex consisting of lock-unlock primitives:

pthread_mutex_t mutex;

// Critical section code here...

1

2

3 pthread_mutex_lock (&mutex) ;

4

5 pthread_mutex_unlock (&mutex) ;

o C+-+ mutex:

std::mutex mtx;

1

2

3 mtx.lock();

4 // Critical section code here...
5

mtx.unlock () ;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Performance: PO-lock, POSIX & C4+4 Mutexes

~PO lock 1K -PO lock
=C++ mutex =C++ mutex 3K
=POSIX mutex =1| =POSIX mutex
0.8K 3
D
3 2K
05K &
[0}
Q
S 1K
02K &
Intel x86 |ok - ARMw8
v ro DNy O © & vy o v 9 X ¥ 0

LR PYTLE
Number of cores (total)

Number of cores (total)

@ All three locks provide mutual exclusion but no fairness
o (The egg-shell model applies only to entries)
@ PO adds noticeable performance-overhead compared to “plain”
mutexes
o Programmer-supplied PO configuration mechanism could help
to avoid this overhead

(spuooasijiw) awi |

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 21 /30

Ada TAS MPMC (Multi-Producer-Multi-Consumer

Queue) (1/2)

@ GCC atomic intrinsics are used for synchronization instead of
protected objects

@ type __sync lock test_and set 4 (type *ptr, type
value)
= It atomically writes value into *ptr, and return the previous
contents of *ptr. Size of *ptr and value is 4 byte each.

function TAS_4(
current: access Unsigned;
Newval: Unsigned) return Unsigned;
pragma Import (Intrinsic, TAS_4,
" sync_lock_test_and_set_4");

g A W N

@ _sync_lock release 4 (type *ptr)
= It releases the lock acquired by __sync_lock_test_and_set.
It atomically writes constant 0 to *ptr

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 22 /30

Ada_TAS_MPMC (2/2)

@ Lock & Unlock: Q.Locked is initialized as 0. By TAS_4 on
Q.Locked, lock is acquired. = By writing 0 to Q.Locked, lock
is released.

@ Producer: It enqueues to a queue Q for iter times.

@ Consumer: It dequeues element from Q to Data for iter times.
If Q is empty, release the lock, and redo inner loop.

1 Q: My_USQ.Queue;

2 task body Producer is

3 begin

4 for I in 1..iter loop

5 while TAS_4(Q.Locked’Access,1)=1 loop -- Acquire
6 null;

7 end loop;

8

9 Q.Enqueue (New_Item => i);

10

11 Lock_Release_4(Q.Locked’ Access) ; -- Release
12 end loop;

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Non-blocking vs. Blocking Queues

Intel x86

ARM v8

10°

/ |

/ Number of cores (total)

Y ¥ODONYOD D VN

vV “v ‘\/ ‘1/
Ada LockFree MPMC =Boost MPMC
—~Ada Synchronized MPMC —Boost SPSC

—B-Queue SPSC

@ Boost MPMC and Ada LockFree MPMC constitute identical

IR s mnunnun==<1 kg

(spuooasi|jiw) swi]

L 1 01 /—_ﬁ L
Number of cores (total)

© ® 9© v ¥ O

Ada LockFree MPMC =Boost MPMC

—Ada Synchronized MPMC —Boost SPSC

—B-Queue SPSC
@ SPSC-queues: lower sync. overhead, higher performance

concurrent data-structures (Algorithm of Michael & Scott)

@ Blocking MPMCs (Ada Synchronized, Ada TAS): clear
performance disadvantage

o
3
)
3
=
0]
Q
o)
=
o
2

Yang, Jeong, Min, Kim, Burgst., Blieb.

Blocking versus Non-Blocking Sync.

June 13, 2019

24 / 30

Non-blocking Locks and Progress Guarantees

= TATAS (none) | = TATAS (none)

ArrayLock (FIFO) 5K ArrayLock (FIFO) 3K
= CLH QueueLock (FIFO) —j | = CLH QueueLock (FIFO) 4
— FairLock ("Fair" 4K 3 % 3
m @ @
= 2KF
Intel x86 3k 3.|ARM v8 3
73 2
2K 8 8
S 4K S
o
2 2
1K 2 =

‘0K ‘0K

T oo v v o ®© o 9 »
Number of cores (total)

76"

&

Number of cores (total)
@ TATAS-lock permits starvation
o Optimizes throughput of task-ensemble as a whole

VoSN I o

@ CLH Queuelock and ArrayLock: FIFO progress-guarantee

@ FairLock: no task can enter critical section twice while another
task is waiting

o Weaker guarantee than FIFO

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 25 / 30

Performance gain ratio: AR over SC (1/3)

),
~)
) S
R R

AR Speedup over SC (%
3
X

H:

Intel x86 ‘

Cores:

A 3\6@ ABHBR ABBR A2 A 30P

A B3BP

LO
pereh e v\\\e‘” \e‘5°“ TN

Lock benchmarks

X
5”0(\5\;1 S

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync.

June 13, 2019

26 / 30

Performance gain ratio: AR over SC (2/3)

—~100% ARM v8
3
8 75%
o
3
o |
o 90%
S
e;
s 25%°
o o
w
o _
P N
#COres:| A 5810 A A8A0 A ABAD A2 AABAD A ABAD
A X 'S ook V3 ok
\ 00" .\ 0Ot oC \" oC \ O
N(a\J ?a\(\a F\\»&e(\«? e\e‘go < P\S\f p P:‘ p\s

Lock benchmarks

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 27 / 30

Performance gain ratio: AR over SC (3/3)

@ took considerable time and a lot of discussions to convert from
SC to AR version

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 28 / 30

Performance gain ratio: AR over SC (3/3)

@ took considerable time and a lot of discussions to convert from
SC to AR version

@ the same or even more to relax acquire and release operations
(here we got real performance gains)

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 28 / 30

Performance gain ratio: AR over SC (3/3)

@ took considerable time and a lot of discussions to convert from
SC to AR version

@ the same or even more to relax acquire and release operations
(here we got real performance gains)

@ some C++ memory fences turned out to be insufficient

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 28 / 30

Conclusions and Future Work (1/2)

@ Ada’s protected objects have advantages:

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30

Conclusions and Future Work (1/2)

@ Ada’s protected objects have advantages: (1) safe

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30

Conclusions and Future Work (1/2)

@ Ada’s protected objects have advantages: (1) safe (2) easy to
use

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30

Conclusions and Future Work (1/2)

@ Ada’s protected objects have advantages: (1) safe (2) easy to
use (3) easy to comprehend.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30

Conclusions and Future Work (1/2)

@ Ada’s protected objects have advantages: (1) safe (2) easy to
use (3) easy to comprehend.

o If performance is a major concern, lock-free implementations
outperform the blocking approach.

Yang, Jeong, Min, Kim, Burgst., Blieb.

Blocking versus Non-Blocking Sync. June 13, 2019

29 / 30

Conclusions and Future Work (1/2)

@ Ada’s protected objects have advantages: (1) safe (2) easy to
use (3) easy to comprehend.

o If performance is a major concern, lock-free implementations
outperform the blocking approach.

@ To gain higher performance for Ada 2012 =- intrinsics or
machine code insertions.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 29 / 30

Conclusions and Future Work (2/2)

@ Simply replacing PO locks with spin loops is not enough.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30/ 30

Conclusions and Future Work (2/2)

@ Simply replacing PO locks with spin loops is not enough.

@ Concurrent execution inside the methods is better.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30/ 30

Conclusions and Future Work (2/2)

@ Simply replacing PO locks with spin loops is not enough.
@ Concurrent execution inside the methods is better.

@ For Ada 2012 programs = calls to intrinsics.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019 30/ 30

Conclusions and Future Work (2/2)

@ Simply replacing PO locks with spin loops is not enough.
@ Concurrent execution inside the methods is better.
@ For Ada 2012 programs = calls to intrinsics.

e = adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Conclusions and Future Work (2/2)

o
(]
(]
]

Simply replacing PO locks with spin loops is not enough.
Concurrent execution inside the methods is better.
For Ada 2012 programs =- calls to intrinsics.

= adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Conclusions and Future Work (2/2)

o
(]
(]
]

Simply replacing PO locks with spin loops is not enough.
Concurrent execution inside the methods is better.
For Ada 2012 programs =- calls to intrinsics.

= adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

@ Set up benchmarks for reuse.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

Conclusions and Future Work (2/2)

o
(]
(]
]

Simply replacing PO locks with spin loops is not enough.
Concurrent execution inside the methods is better.
For Ada 2012 programs =- calls to intrinsics.

= adding concurrent objects (COs) and a strict memory
consistency model to Ada 202x.

Future container libraries for Ada 202x should also include
lock-free and wait-free data-structures.

(]

Set up benchmarks for reuse.

Prototype implementation for COs.

Yang, Jeong, Min, Kim, Burgst., Blieb. Blocking versus Non-Blocking Sync. June 13, 2019

	Introduction
	Lock Elision
	Sequential Consistency
	Concurrent Objects
	Nonblocking stack: COstack

	Benchmark & Measurements
	Locks: AdaPO-lock vs. POSIX & C++ Mutexes
	Blocking Queue: Ada_TAS_MPMC
	Non-blocking vs. Blocking Queues
	Progress Guarantees
	Performance gain of AR over SC

	Conclusions and Future Work

