Using SPARK to ensure
System to Software
Integrity

AdaCore

DeCPS workshop 2019, 14.06.2019 Warsaw

Agenda

= AdaCore System-to-Software Integrity (SSI) initiative
= Workflow in a nutshell
= Workflow demonstrated by a case study

= Challenges/open questions/next steps

SSI

System-to-software integrity is a desired
trait of high-assurance systems engineering.

= Ensure development process yields adequate assurance

= Link artifacts at different levels with formal properties &
tool support

= Help engineers in moving from level to level with smart
translations

= Reduce information loss in communication of various
teams

System-level properties maintained through each
development step until realized in software.

24N1081IYyoIy

By
)
O
-
=3
o)
3
@
5
=
»

Reqgs Design Devel
Tool »=& Tool ==& Tool

SSI Tooling Bridges Silos

Concept of
Operations
System
Requirements

High-Level
Design
Detailed
Design
Software
Development

SSI

System-level properties
maintained in software

= Hard for software engineers to identify
application-specific properties

= Hard for systems engineers to think
about software-level properties

=SSl allows early engagement and
property continuity

SSI

Concept of

Operations

System
Requirements

High-Level
Design
Detailed
Design
Software
Development

——3
=
%

SSI

System
Requirements
SSI High-Level
Design
Detailed
Design
Software

Development

Concept of
Operations

1. Translation

= Translate Properties
from one “level” to
the next

= Example: properties
for requirements ->
properties as

contracts in a design.

= Property
decomposition may
be required

SSI System-level properties maintained in software

2. Traceability

= Bidirectional
traceability of
properties across
“levels”

= Trace properties to
models & code

= Monitor for broken
'S

3. Analysis

= Vertical: prove that

properties are
consistent across
levels

Horizontal: prove that
decompositions
satisfy higher-level
properties

4. Argument

= SS| evidence may

need logical induction
to justify fully

Present & justify
evidence where
deduction is not fully
possible

Provide support for
certification

SSI tooling example

SysML Requirements Diagram Simulink Synchronous Observer SPARK Contracts

Translation S .

QGen Verifier

egrater_in_sesory e 0,00+99;
a _out_memory = {(qgen_base_workspace.¥_init) / (»

fontrolled_ingut.initStates (State.Controlled_isput_mesory);

Translation

SysML Internal Block Diagram Simulink Subsystem SPARK Code

A Ca Se St“dy Autopilot Simulator

SysML -
Simulink »
SPARK

A sample workflow

= Asimple demo application mimicking
behavior of a car cruise controller

= STM-32 board running the cruise
control and car model

= LCD screen on the board emulating car
cockpit displays

= A dashboard application allowing to
control the board from PC

Contents

Qe

Use Cases

od]

Context

e

System structure

od]

Value types

LLR -- Control

&

CarSystem

QGen Automotive demonstration
project -

The aim of this project is to develop a demo application mimicking behaviour of
car cruise controller.. The application consists .of. © .

* @ STM-32 hoard running the cruise controller and a car model

* an LCD screen on the board displaying the system status

*.a dashboard project.allowing to. control the application from.a PC

The model takes throttle-and brake input and outputs the car's speed,
RPM,. gear..It also provides-the user with a-cruise contrel that may- be
enabled, incremented or decremented, and outputs the corresponding
autorcr;atic throttle and brake values, cruise control state and target
speed:

Throttle and: brake input are provided using actual pedals devices. The
target'also communicates with-a separate dashboard application
displaying the outputs.

' - ~

—
-

e nl oM

uc [Package] Use Cases[Use Cases lJ

Stakeholders I/Eﬁgﬂtd
& Use-Cases

cruise control
Mude|uﬁ£;witch cruiEE_ s
= Two types of users: \aw}’/_ﬁcum

status
1. ModelUser: manipulates the system

through physical controls on the demo Q
b accelerate
oxX

2. PCUser: controls the system through
PC application

e

= Both have access to the same use-cases

]
M a I n bdd [Package] System structure [System structure lJ

swhlocks
QGen Automaotive Demo

hoard «hlocks
VirutalDashboard

physical Model

ablocks
= System divided into two main parts: == Modcl .
userContrals display
BBcics : ThrottlePressCheck BBl
1. PhysicalModel: implements UserControls Display
carSystem
. . . vechicle «hlocks vechicle
= vehicle simulation and EArEyatem
= cruise control vechicleDynamics controlSubsystem
apblocks: «blocks ‘
2. VirtualDasboard: allows access from e Erynamics powersubSYSl e subsy=tem
PC powerSubsystem ablocks: powerSubsystemn
PowerSubsystem

gearbox engine

ahlocks ahlocks
Gearbox Engine

High-level
requirements

= |nitially, requirements are defined
textually

= Formalization of selected subset apply
to

= High-Level Requirements or

= Low-Level Requirements

req [Package] HLR[HLR]

HMI

wrequireme nt«
SpeadUp
ld = "HMI-0O1"
Text = "The driver shall
be able to speed up the
vehicle."

wrequireme nt«
5 peed Presentation

id = "HMI-0D5"
Text = "Current speed

wrequire ments
SlowDown

[1d = "Hmi-ooze

Text = "The driver shall
be able te slow down the
vehicle and make it
sbp.ll

wragquire ments
StatusPresentation

[1d = "Hm-o0E

Text = "Current state of
cruise controll shall be
visible to the driver”

PRFIPrefarmance!

wragquire ments

Reach DesiredS peed

Id = "PRF-0DE"

Text = "Speed in the
legal driving range shall
be easily and guickly
reachable by the driver.”

wrequirerments
CoverLegal Range

[1d = "PRE-0O7"

Text = "Cruise control
shall cover the legal
driving range ifrom a
minimum speed).”

SAF (Safetyl

wrequire ments
ComfortableRange

Id = "SAF-005"

Text = "Acceleraticns
and braking shall remain
in a comfortable range
without harming the
driver and passengers."”

wrequirerments
SafefirakingRange

[1d = "zaF-ooE

Text = "Braking from a
given speed to null
speed shall be fast
encugh to stop when
reguired in common
driving situations."

wrequirements
EnableDisable

[1d = "HM-ooae

Text = "The driver shall
be able to enable or
dizable cruise control."”

w«regquirements
AsF asthAsManual

[1d = "PRF-DOE"

Text = "Time te reach a
tanyet speed using
cruise centrol shall be
cemparable to manual
cpeed-up. "

«requirements
Safef ccel eration

[1d = ear-po7m

Test = "Acceleration
shall be streng encugh
to avoid accidents in a
cemmen driving
situation.”

«regquirements
IncDecSpead

[1d = "Hm-oo4n

Text = "The driver shall
be able to increaze or
decrease vehicle speed
when cruise centrel is
enabled."

wregquirement=
Max5 peed Limit

[id = "=ar-poan

Text = "Maximum speed
shall remain beloy a

reasonable limit."

Internal
Structure &
Data Flows

= Defining the internal structure provides
high-level division into software
components

= Interface definitions provide names and
types for further decomposition and
formalization of the requirements

| ibd [8lock] Car5vstam | CarSystam |

Thrassvalus @ T

rottelmarfaoe

contrl Subsystem | ControlSubsystem

| Bracsiviaus

| oC_Togas

| ©C_IncSpeed

| CC_DacSpeed

powserSubs ystem | PowerSubsy stem

Thratte

Throsh=

3 3] AP
engine : Engine Enane

L effecveThroZevalue

EffmcrveT hroieivalus

EffeciveBrakevalue

EffeciveBrakevalus |

T _=naned

OC_Enaoled |

LiGmar

Gear |

C_TargeSpesd

OC_TargeSpeed |

Engne= AP

EngneaTargle

wechicleDy namics ; WechicleDynamics

ing-nTlo'\qJe
pearbox : Gearbox

GearRatd Sagrfato

e T

Low-Level
Requirements

= Redefine the High-Level Requirements

= Use interface names defined in system
high-level architecture

= Specify functional behavior for each
component

req [Package] CTR[LLR -- Contral 1]

wrequirement
[BrakeMoC hange
Id = 1o
Text = "Hawving a null
imput on the brake pedal
shall not provide any
change to the vehicle's
SPEED."

wrequirements
BrakePress

.|d = ngn

Text = "Pushing the
brake pedal down shall
slow down the vehicle at
a proportional input
rate."

wregquirement=
BrakeRelease

.|d= ugn

Text = "Releaszing the
brake pedal shall
decrease the effect of
slowing down the
vehicle"

wreguirement=
DecAction

lid = "18"

Text = "Teggling the
decrease button shall
decrement the
TARGET_SPEED by
CC_DELTASPEED."

wrequirements

Dec Speedin put
|d - ||13||
Text = "A button to
decrease cruise control
target speed shall be
made available to the
driver. (CC_DEC])"

wrequirements

ThrottleMoChange
Id = "g"
Text = "Hawving a null
imput on the throttle
pedal shall net provide
any change to the
vehicle's SPEED."

wrequirements
Toogledn

Id = "12"

Text = "Teggling the
button when cruise
coentrel is not enabled
shall enable it."

«reguirements
Enablefction

[id = v1an

Text = "Enabling cruise
control shall set the
TARGET_SPEED to the
current SPEED."

wrequire ments
ThrottlePress

.|d = ngn

Text = "Pushing the
thirottle pedal down shall
speed up the wehicle."

Refinement

|
| B
|

—
EnableDisable

“reguirements-
Inc Action

[1d = w150

Text = "Teggling the
increase butten shall
increment the
TARGET_SPEED by
CC_DELTASPEED."

wreguirement=
IncSpeadinput

[1d = 17"

Text = "A button t=
increase cruise control
target speed shall be
made available to the
driver. (CC_IMNC)"

“requirement«
Throttlefel ease

.|d= ugn

Text = "Releaszing the
theottle pedal shall slow
down the vehicle."

“require me nt«
ToogleDff

lid = "13"

Text = "Teggling the
button when cruise
coentrel i= enabled =hall
dizable it."

Requirement
Formalization

= Rewrite requirements as constraints

= allows consistency checks between
requirements, design, and
implementation

= Allocate requirements to components

= Here, we have chosen SPARK as the
language for formalization

req [Package] Constraints [EnableDisable]J

acatisfys

“requirements
ToggleOn

=

‘ splocks

—

ControlSubsystem

vechicle : CarSystem

wsatisfys

-
«satisfy]

Id ="12"

Text = "Toggling the
button when cruise
cantnol is not enabled
shall enable it."

«constraints
«QGenPostConditions

ToggleOnOff

e _=refines

“requiregments
ToggleOff

{(if CC_Togagle and then not CC_IncSpeed
and then not CC_DecSpeed
) and then BrakeValue == 0 then
“rEf“"_E”_.- 7| CurrentSpeed = CC_TargetSpeed else Truel}

Id ="13"

Text = "Toggling the
button when cruise
cantrol is enabled shall
disable it."

“requiregments
EnableAction

«constraints

Id ="14"

Text = "Enabling cruise
cantrol shall set the
TARGET_SPEED to the
cument SREED."

«QGenPostConditions
refines
=2

InitTargetSpeed

{BrakeValue=0 or else
[CC_Toggle and then CC_TargetSpeed=CurrentSpeed

or else not CC_Toggle)}

Conversion to
Simulink

= Aim of Simulink conversion:

= provide a skeleton for refining the
design by defining computation
algorithms

= validate the system definition by
simulation

"a|car_system_sysml b

irt1E [%6)

s

Throttleales

intl& (&)

)

int1& [:_.-!';.'
Brake\alue

G

boolean

()

CC_IncSpeed

boolean

()

CC_DecSpeed

CC enabled
Throttle Walue

CC Target Speed

Brake value
'\-'\-l:.]

CC Taggle

CC Inc Speed

Throtile_input
(i)

CC Dec Spead
Brake_input
{3

»(1)

CC_enabled

double -jkl:?v H",.T

C_TargetSpeed

RFM

(kmv'hi) .

Car speed

»(5)

Gear

int16 [;-!'-.' @

EffectiveThrattleValue

ar System

int16 [;-!'-.'

CifactiveBrakeValue

Internal
Structure -
Simulink =1

BrakeValue

3600/1000

EffactiveBrakevalue »

EffectiveBrakeValue
3} P CC_IncSpeed T .

-CC_Enabled L

C,C,_Decslm-eeu - CC_Enabled

= Convert blocks from IBD to Simulink s

CC_IncSpeed CumentSpeed

Throttle

= Provide skeletons / containers for o : [oo

CC_DecSpeed

CoNroISUDSySiem

= control algorithms

-GearRatio

EnginaRPm

= plant model

powerSubsystam

Torgue

GearRatio CarSpead

wechicleDynamics

I t
double
9 - = 5 Currentspaed
SI m u I I n k CurrentSpeed EffectiveBrakevahe
T EffectiveBrakeValue

intLE
EffectiveThrottleakee
intL6
1 Throttlevaluasst
hrottleValueSet baalean

CC_Enabled
boalear

CC_Topgle

" The requirements formalized by

CC_IncSpeed
constraints are inserted in Simulink as CCincspeed
2 baalear oc_pecspeed CC_TargetSpesd
synchronous observers A § CC_TargetSpeed
B controlsubsystem_impl |
= Block mask tells the code generator e et Dectag o oveed
and then BrakeValue <= 0 then
that subsystem contents should be CurrentSpeed = CC_TargetSpeed else True)

handled as a post-condition -~

(if BrakeValue == 0 and then CC_Toggle then

(if CC_Enabled_Old then not {CC_Enabled)
else CC_Enabled)

else True)

ToggleCnOff

Observer
Contents

= A QGen observer is a subsystem that

= takes signals from functional part of
the model as input

= compares signal values with
= each other

= an oracle defined by constraints in
SysML

" raises an exception when comparison
fails

boole

CC_Enabled

€) amm—
BrakeValu;r’
0

boolean

@D

o
AND

CC_Toggle

1

>
BrakeNoEnable

Reasoning
About Time

= Asimplified way of inserting the time in s DT
constraints is to refer to previous
computation steps

BrakeValue
= Here the modeler has a choice to either 0 j

. . . boolean AND
= insert the memory buffer explicitly and M >

. CC Toggle
refer to this —_logg BrakeNoEnable

1

= rely on ‘Old mechanism in Ada

= To mimic the ‘Old behavior in Simulink
we use the UnitDelay block

Contract in
generated
code

package ToggleOnOff is

function check
(CC Toggle : ;
CC _Enabled : ;
= Each observer block is converted to a BrakeValue : .

: CC_Enabled 0ld :)
check function return Boolean

is (if BrakeValue > 0 and then CC Toggle then
(1f CC Enabled 0ld then not CC Enabled
else CC Enabled)
else True);

end ToggleOnOff;

Contract in
generated
code

The check function is called from pre-
or postcondition of a functional
subsystem

Internal memory blocks in observers
are replaced with ‘Old actuals

package controlSubsystem 1is
procedure initStates (State : in out Ik
procedure initOutputs (State : in out);

procedure comp
(ThrottleValueSet
BrakeValue :
CC IncSpeed
CC DecSpeed
CurrentSpeed :
CC Toggle : ;
EffectiveThrottlevValue : out
EffectiveBrakeValue : out
CC Enabled : out
Gear : out ;
CC TargetSpeed : out
State : in out)
with
Post =>
(ToggleOnOff.check
(CC Toggle, CC Enabled, BrakeValue,
CC Enabled'0ld))

]
r

and
(InitTargetSpeed. check
(CurrentSpeed, CC Toggle, CC TargetSpeed,
CC IncSpeed, CC DecSpeed, BrakeValue));

procedure up (State : in out Ik

end controlSubsystem;

Formalizing requirements

= Parametric diagrams
III

= Good for physical phenomena — the ,plant mode
= May need ,creative interpretation” while translating to software constraints
= Activity diagrams/state models
= Potential candidates for draft algorithm design or test oracle
= Equivalence proofs not trivial (if possible at all) after refinements in subsequent design steps
= Constraint blocks
= Good form for representing axiomatic definitions of properties and their relationships

= Easy to carry forward to the next levels and backpropagate changes

Why SPARK In
SysML?

= Looking for axiomatic specifications
potentially with late binding

= OCL seems too strictly defined for this
purpose (e.g. pre and postconditions
bound to behaviors) => using a different
language rather than loosening the
constraints

= The current converter is easily
extensible to support OCL or some
other expression language

req [Package] Constraints [EnableDisable]J

acatisfys

“requirements
ToggleOn

A

=plocks
ControlSubsystem

—

vechicle : CarSystem

wsatisfys

-
«satisfy]

Id ="12"

Text = "Toggling the
button when cruise
cantnol is not enabled
shall enable it."

«constraints
«QGenPostConditions

ToggleOnOff

e _=refines

“requiregments
ToggleOff

{(if CC_Togagle and then not CC_IncSpeed
and then not CC_DecSpeed
) and then BrakeValue == 0 then
“rEf“"_E”_.- 7| CurrentSpeed = CC_TargetSpeed else Truel}

Id ="13"

Text = "Toggling the
button when cruise
cantrol is enabled shall
disable it."

“requiregments
EnableAction

«constraints

Id ="14"

Text = "Enabling cruise
cantrol shall set the
TARGET_SPEED to the
cument SREED."

«QGenPostConditions

refines InitTargetSpeed
= ~anSstraings

[CC_Toggle and then CC_TargetSpeed=CurrentSpeed

A‘{Brake‘u‘alue:\-ﬂ orelse

or else not CC_Toggle)}

The Role of ’

3600/1000

@—b TreottlevalueSet

]]
I I ThrottieValueln EffectiveThrottleValue

BrakeVake

ErakeValue EffactiveBrakevaiue

EffectiveBrakeValue
3} P CC_IncSpeed T .
CC_Toggle

ACC_Enabled

C,C,_Decslm-eeu - CC_Enabled

= An appropriate tool for algorithm s L

d e S i n . #{ Throtle
g CC_TargetSpeed . EngineTorgue
5 CC_Taggle

CC_DecSpeed

= More natural choice for a control oSy
engineer than activity or parametric e

EnginaRPm

d i a g ra m S Srake Voo power Subsystem

Gear '

Torgue RPM

= Qualifiable automated workflow from
Simulink to code already exists (QGen)

GearRatio CarSpead

wechicleDynamics

Observers in
Simulink

= SPARK expression would be sufficient
for code generation and simulation
(using a s-function)

= Difficult to validate and modify in
Simulink

= Block diagram simplifies contract
refinement at simulation time

(if BrakeValue <=0 and then CC_Toggle then

(if CC_Enabled_Old then not (CC_Enabled)
elze CC_Enabled)

alse True)

TogoleOnOff

boole

CC_Enabled

€) m—
BrakeValu;r,
0

boolean

>

AND

@D

CC_Toggle

1

.‘
BrakeNoEnable

Questions/challenges/next steps

= Relation between parametric diagrams and constraints?
= Good workflow for binding the constraint expression with block properties?
= Composability and validation of the constraints
= First formalization in SysML where the only validation mechanism is review
= Easy to validate in Simulink or source code but this is too late for systems engineer

= Achieving completeness assumes iterations between system design and algorithm design

= Support for automatic proof

= Need for additional hints about code to successfully prove postconditions

Thank you!

AdaCore

