
Using SPARK to ensure 
System to Software 

Integrity
Tonu Naks, M. Anthony Aiello, S. Tucker Taft

DeCPS workshop 2019, 14.06.2019 Warsaw

1



Agenda

▪ AdaCore System-to-Software Integrity (SSI) initiative

▪ Workflow in a nutshell

▪ Workflow demonstrated by a case study

▪ Challenges/open questions/next steps



SSI

System-to-software integrity is a desired 

trait of high-assurance systems engineering. 

▪ Ensure development process yields adequate assurance

▪ Link artifacts at different levels with formal properties & 

tool support

▪ Help engineers in moving from level to level with smart

translations

▪ Reduce information loss in communication of various

teams

System-level properties maintained through each 

development step until realized in software.

SSI Tooling Bridges Silos



Hard to engage with 
systems engineers and 
project managers with 

technology focused 
here!

SSI allows earlier 
engagement.

SSI

System-level properties 

maintained in software

▪ Hard for software engineers to identify 

application-specific properties

▪ Hard for systems engineers to think 

about software-level properties

▪ SSI allows early engagement and 

property continuity
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SSI

Property Identification

Formal Requirements +
Safety & Security Properties

Architecture Properties +
Component Contracts

Software Properties +
Software Contracts

Formal Verification of
Software Contracts
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1. Translation

2. Traceability

3. Analysis

4. Argument

SSI



SSI System-level properties maintained in software

1. Translation

▪ Translate Properties 

from one “level” to 

the next

▪ Example: properties 

for requirements -> 

properties as 

contracts in a design. 

▪ Property 

decomposition may 

be required

2. Traceability

▪ Bidirectional 

traceability of 

properties across 

“levels”

▪ Trace properties to 

models & code

▪ Monitor for broken 

links

3. Analysis

▪ Vertical: prove that 

properties are 

consistent across 

levels

▪ Horizontal: prove that 

decompositions 

satisfy higher-level 

properties

4. Argument

▪ SSI evidence may 

need logical induction 

to justify fully

▪ Present & justify 

evidence where 

deduction is not fully 

possible

▪ Provide support for 

certification



SSI tooling example
SysML Requirements Diagram Simulink Synchronous Observer SPARK Contracts

SysML Internal Block Diagram Simulink Subsystem SPARK Code

Manual Refinement

Translation

Translation

QGen Verifier

Translation

Translation

GNATProve



A Case Study



SysML →

Simulink →

SPARK

A sample workflow

▪ A simple demo application mimicking 

behavior of a car cruise controller 

▪ STM-32 board running the cruise 

control and car model

▪ LCD screen on the board emulating car 

cockpit displays

▪ A dashboard application allowing to 

control the board from PC



Stakeholders 

& Use-Cases

▪ Two types of users:

1. ModelUser: manipulates the system 

through physical controls on the demo 

box

2. PCUser: controls the system through 

PC application

▪ Both have access to the same use-cases



Main 

Components

▪ System divided into two main parts:

1. PhysicalModel: implements

▪ vehicle simulation and 

▪ cruise control

2. VirtualDasboard: allows access from 

PC 



High-level 

requirements

▪ Initially, requirements are defined 

textually

▪ Formalization of selected subset apply 

to 

▪ High-Level Requirements or 

▪ Low-Level Requirements



Internal 

Structure & 

Data Flows

▪ Defining the internal structure provides 

high-level division into software 

components

▪ Interface definitions provide names and 

types for further decomposition and 

formalization of the requirements



Low-Level 

Requirements

▪ Redefine the High-Level Requirements

▪ Use interface names defined in system 

high-level architecture 

▪ Specify functional behavior for each 

component



Requirement 

Formalization

▪ Rewrite requirements as constraints

▪ allows consistency checks between 

requirements, design, and 

implementation

▪ Allocate requirements to components

▪ Here, we have chosen SPARK as the 

language for formalization



Conversion to 

Simulink

▪ Aim of Simulink conversion:

▪ provide a skeleton for refining the 

design by defining computation 

algorithms

▪ validate the system definition by 

simulation



Internal 

Structure →

Simulink

▪ Convert blocks from IBD to Simulink

▪ Provide skeletons / containers for 

▪ control algorithms

▪ plant model



Requirements 

→ Simulink 

Observers

▪ The requirements formalized by 

constraints are inserted in Simulink as 

synchronous observers

▪ Block mask tells the code generator 

that subsystem contents should be 

handled as a post-condition



Observer 

Contents

▪ A QGen observer is a subsystem that

▪ takes signals from functional part of 

the model as input

▪ compares signal values with 

▪ each other

▪ an oracle defined by constraints in 

SysML

▪ raises an exception when comparison 

fails



Reasoning 

About Time

▪ A simplified way of inserting the time in  

constraints is to refer to previous 

computation steps

▪ Here the modeler has a choice to either

▪ insert the memory buffer explicitly and 

refer to this

▪ rely on ‘Old mechanism in Ada

▪ To mimic the ‘Old behavior in Simulink 
we use the UnitDelay block



Contract in 

generated 

code

▪ Each observer block is converted to a 

check function



Contract in 

generated 

code

▪ The check function is called from pre-

or postcondition of a functional 

subsystem

▪ Internal memory blocks in observers 

are replaced with ‘Old actuals



Formalizing requirements

▪ Parametric diagrams

▪ Good for physical phenomena – the „plant model“

▪ May need „creative interpretation“ while translating to software constraints

▪ Activity diagrams/state models

▪ Potential candidates for draft algorithm design or test oracle

▪ Equivalence proofs not trivial (if possible at all) after refinements in subsequent design steps

▪ Constraint blocks

▪ Good form for representing axiomatic definitions of properties and their relationships

▪ Easy to carry forward to the next levels and backpropagate changes



Why SPARK in 

SysML?

▪ Looking for axiomatic specifications

potentially with late binding

▪ OCL seems too strictly defined for this

purpose (e.g. pre and postconditions

bound to behaviors) => using a different

language rather than loosening the

constraints

▪ The current converter is easily

extensible to support OCL or some

other expression language



The Role of 

Simulink

▪ An appropriate tool for algorithm

design

▪ More natural choice for a control

engineer than activity or parametric

diagrams

▪ Qualifiable automated workflow from

Simulink to code already exists (QGen)



Observers in 

Simulink

▪ SPARK expression would be sufficient

for code generation and simulation

(using a s-function)

▪ Difficult to validate and modify in 

Simulink

▪ Block diagram simplifies contract

refinement at simulation time



Questions/challenges/next steps

▪ Relation between parametric diagrams and constraints?

▪ Good workflow for binding the constraint expression with block properties?

▪ Composability and validation of the constraints

▪ First formalization in SysML where the only validation mechanism is review

▪ Easy to validate in Simulink or source code but this is too late for systems engineer

▪ Achieving completeness assumes iterations between system design and algorithm design

▪ Support for automatic proof

▪ Need for additional hints about code to successfully prove postconditions



Thank you!
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