

Summary
Ø Introduction
Ø Project	Goals
Ø A	Real-time	Data	Streaming	Framework
Ø Evaluations
Ø Conclusions

Introduction
Java	8	has	introduced	Streams and	lambda expressions	to	
support	the	efficient	processing	of	in-memory	static data	
sources	(e.g.	a	Java	Collection)
//myList = ["a1", "a2", "b1", "c2", "c1"]

myList.parallelStream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.forEach(System.out::println);

Introduction
v Pipeline	– A	sequence	of	operations	and	the	data	

source
v A	pipeline	consists	zero	or	more	intermediate	

operations,	and	a	terminal	operation
v Intermediate	operations	return	a	new	stream
v Terminal	operations	force	the	evaluation	of	a	stream,	and	return	

a	result

Introduction
§ Sequential	Case

Performing	all	the	operations	in	the	pipeline	on	each	data	
element	sequentially	by	the	thread	which	invoked	its	terminal	
operation

v Parallel	Case
Parallel	stream	will	partition	the	processing,	and	all	the	
created	parts	will	be	evaluated	in	parallel	with	the	help	of	a	
ForkJoin thread	pool

Project	Goals
• Develop	a	streaming	data	framework	for	real-time	

(RTSJ)	Java	applications
• Using	the	facilities	of	Java	8	Streams	

The	Nature	of	Real-Time	Streaming
v Data	item	processing	is	sensitive	to	the	latency
v Data	items	arrive	sporadically
v Micro	batching (i.e.,	collect	the	individual	data	items	

into	micro	batches)	improves	efficient	of	processing,	
for	example	the	Spark	streaming	framework

v In	addition,	makes	it	possible	to	use	Java	8	(Parallel)	
Stream	operations,	e.g.	map,	filter,	reduce	etc.,	when	
processing	data	flows	in	real-time

Using	Micro	Batching
Ø Latency	 à Timeout

i.e.,	data	must	be	processed	within	a	finite	time	after	arriving	
For	example,	data	items	rate	is	1/second,	processing	time	is	
50ms,	max	latency	is	200	msà Timeout should	be	at	most	
150ms

Ø Sporadicallyà Batch	size
i.e.,	data	must	be	processed	once	batch	reaches	a	size
For	example,	same	data	flow,	but	occasionally has	bursts	(3	
items	at	the	same	time),	à

timeout=50		is	inefficient ✘

Batch	size	should	be	3

The	Real-Time	Micro	Batching

Batcher

RT	Processing	Framework

Output

v Batcher
groups	a	streaming	data	source	into	batched	data

v Processing	Framework
Java	8	streams	and	our	real-time	ForkJoin thread	pool

RT	ForkJoin Pool

Determine	The	Micro	Batch	Size
The	processing	of	each	micro	batch	
is	triggered	by	two	factors:
• Either,	the	input	data	volume

Incoming	data	is	buffered	up	to	an	
application-defined	maximum	 amount	
and	once	the	buffer	is	full	the	batch	is	
processed

• Or,	timeout
A	micro	batch	must	be	released	 early	if	
the	processing	 time	of	the	batch	is	such	
that	a	data	item	may	miss	 its	deadline

Start

Collect	data	input

Release	Handler

Set	timeout

Timeout	Expires

Set	Timeout

Buffer	is	full

The	Real-Time	Data	Streaming	Framework
v Receiver	– receives	data	from	a	data	source

v Timer	–maintains	the	timeout

v Handler	– does	the	actual	processing	(in	parallel)

The	Receiver
Ø Maintains	a	dedicated	real-time	thread	which	is	used	

to	receive	data	from	a	source,	e.g.,	a	TCP/IP	socket

Ø Maintains	a	buffer	that	stores	the	received	data
• When	enough	data	has	arrived	it	notifies	the	

Handler,	and
• Reset	the	next	timeout

The	Timer
Ø Manages	when	the	next	timeout	occurs	

• When	fired,	the	next	fire	time	is	automatically	
reset

The	Handler
Ø Contains	the	user-defined	processing	logic	for	each	

micro	batch	using	Java	8	Streams
• Once	notified,	it	retrieves	data	from	the	receiver	

as	a	Collection	and	performs	the	processing	logic

Bounding	the	Impact	of	data	Streaming
• Typically	data	flow	processing	is	computationally	intensive
• Usually	occurs	within	a	soft	real-time	task
• Running	it	at	the	lowest	priority	->	bad	response	times
• Running	it	at	too	high	a	priority	->	cause	critical	activities	to	

miss	their	deadlines

Servers	are	typically	used	to	support	computationally	intensive	
soft	real-time	tasks	to	give	them	good	response	times	but	
bound	their	impact	on	hard	real-time	tasks

We	use	the	approach	suggested	by	Wellings and	Kim	[2]	to	
allow	a	range	of	servers	to	be	associated	with	our	data	
processing	tasks

[2] Wellings, Andy, and MinSeong Kim. "Processing group parameters in the real-time specification for Java." Proceedings of the
6th international workshop on Java technologies for real-time and embedded systems. ACM, 2008.

Bounding	the	Impact	of	data	Streaming

RT	Data	Streaming	Framework	Example
long count = 0;

BatchedStream<String> textStreaming = new BatchedStream<>(
new StringSocketRealtimeReceiver(...),
new RelativeTime(5000,0), /* timeout = 5s */
new PriorityParameters(26), /* priority */
new DeferrableServer(...), /* execution-time server */
p -> p.flatMap(line -> Stream.of(line.split("\\W+"))).count());

textStreaming.setCallback(r -> count += (long) r);
textStreaming.start();

Evaluation
1. Latency	of	Stream	Processing
2. Different	Data	Flow	Rates	
3. Burst	Handling	
4. Parallel	Processing

Latency	of	Stream	Processing	
• A	BachtedStream(Mid	Priority)	processing	a	data	flow	on	Processor	2

• Period	of	micro	batching:	10	milliseconds
• Buffer	size:	1024	data	elements

• Data	Flow:	MIT=200,	MAT=400,	WCET=34,	Deadline=60,	generate	
from	Processor	1	(illustrating	the	computationally	intensive	nature	of	
the	processing	required)

• Processor	2	also	executes	three	periodic	real-time	threads	at	the	
same	time:

Name Priority WCET First Release Period Deadline

T1 Low 28 0 100 100

T2 Low 28 130 200 200

T3 Low 28 50 400 400

Latency	of	Stream	Processing	

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

La
te
nc
y	(
M
illi
se
co
nd
s)

Data	Element	Number

Data	Elements	Processing	Latency

RTStreaming JavaStreaming

Difference	Data	Flow	Rates
Considers	the	impact	of	different	arrival	rate:	medium	(M),	high	(H)	and	
overload	(O)	workloads
Period	of	micro	batching:	90	milliseconds; Buffer	size:	1024	data	elements
Name Processing	Framework MIT MAT Burst	Size WCET Deadline

RT(M) RTSJ	RT	ForkJoin Pool 100 200 0 28 150

Java(M) Standard Java	ForkJoin Pool 100 200 0 28 150

RT(H) RTSJ	RT	ForkJoin Pool 50 100 0 28 150

Java(H) Standard Java	ForkJoin Pool 50 100 0 28 150

RT(O) RTSJ	RT	ForkJoin Pool 20 40 0 28 150

Java(O) Standard Java	ForkJoin Pool 20 40 0 28 150

RT(B) RTSJ	RT	ForkJoin Pool 200 400 4 28 150

Java(B) Standard Java	ForkJoin Pool 200 400 4 28 150

Difference	Data	Flow	Rates

RT(M) Java(M) RT(H) Java(H) RT(O) Java(O) RT(B) Java(B)

0

150

400

600

800

1000

1200

1400

1600

1800

2000

Difference	Data	Flow	Rates

RT(M) Java(M) RT(H) Java(H) RT(O) Java(O) RT(B) Java(B)

0

150

400

600

800

1000

1200

1400

1600

1800

2000

Burst	Handling	
Vary	the	buffer	size	to	enable	data	to	be	processed	immediately	
when	bursts	occur	

The	buffer	size	of	the	BatchedStreamis	configured	to	be	4	
elements,	i.e.,	the	burst	size,	and	redo	the	experiment

Burst	Handling	

RT(Buffer&Timer) RT(Timer) Java(Buffer&Timer) Java(Timer)
0

30

150

200

300

350

Parallel	Processing
A	stream	whose	MIT	is	20	and	MAT	is	40	milliseconds	cannot	be	
guaranteed	to	meet	the	deadline	because	the	system	is	
overloaded	

Allocating	another	processor	(Processor	3)	to	the	
BatchedStream’sunderlying	processing	infrastructure

Parallel	Processing

RT(Sequential) Java(Sequential) RT(Parallel) Java(Parallel)

30

150

400

600

800

1000

Conclusion	&	Future	Work
§ Proposed	a	framework	for	real-time	streaming	data	processing	based	

on	micro-batching	
§ BatchedStreamsenable	a	real-time	stream	processing	job	to	be	

defined	with	concise	code	
§ Evaluation	shows	that	the	BatchedStreamsframework	are	

predictable	

o Response	time	analysis	of	a	BatchedStreamon	a	fixed	priority	
global/partitioned	scheduling	system

Thank	You

Micro-Batching

o Optimised push	models	of	streaming	data	collect	the	
individual	data	items	into	micro	batches	in	order	to	
improve	the	processing	efficiency

o Make	it	possible	for	users	to	use	Java	8	(Parallel)	
Stream	operations,	e.g.	map,	filter,	reduce etc.,	when	
processing	data	flows	in	real-time

Deadline	Miss	When	Bursts	Occurs
When	releases	of	each	micro	batch	within	the	BatchedStreamwas	
purely	triggered	by	timeouts
The	reason	is	that	the	waiting	time	of	a	data	element	can	result	in	
deadline	misses
For	example,	d1,	d2,	d3,	d4	arrive	in	the	system	at	time	t	when	a	burst	
occurs,	while	the	next	timeout	is	t	+	90,	thus,	the	latency	of	the	last	data	
element:
Latencyd4 =	100	+	ResponseTimed4

=	100	+		28	+	28	+	28	+	28
=	212

