Model-based design and schedulability analysis for avionic applications on multicore platforms

> Wenceslas GODARD, Airbus Group Innovations Geoffrey NELISSEN, ISEP

Ada-Europe 2016 - Industrial Workshop

Reliable Software

June 16th, 2016

- CONCERTO (ARTEMIS project)
- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions

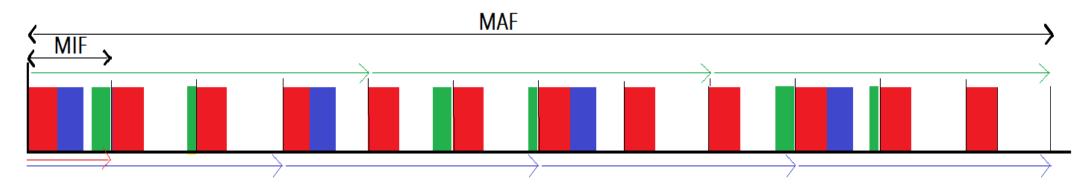
CONCERTO (ARTEMIS project)

- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions

A Word on CONCERTO

"Guaranteed Component Assembly with Round Trip Analysis for Energy Efficient High-integrity Multi-core Systems"

- An ARTEMIS project, built on top of CHESS, a component-based modelling framework
- Several application domains: telecare, space, avionics, automotive, petroleum
- For the avionics use case:
 - Use of UML/MARTE profile (timing annotations)
 - Behavior description (activity)
 - Assignment to hardware
 - Response time analysis with MAST
- Ended in April 2016
- Results transferred to Polarsys ("CHESS")


- CONCERTO (ARTEMIS project)
- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions

Avionic concepts

Integrated Modular Avionics (IMA) architecture

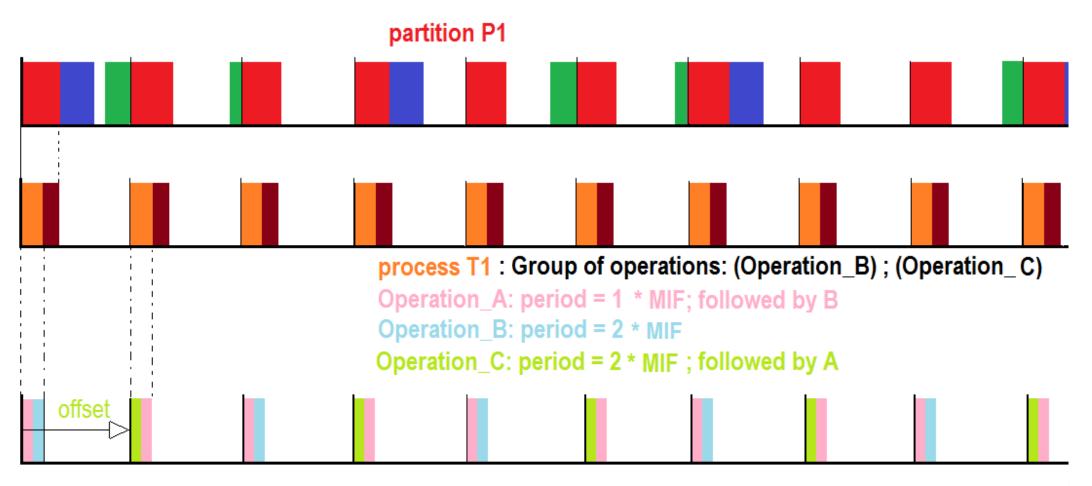
Based on robust partitioning (time, memory, IO) With focus on timing aspects: Major and Minor Frames (MAF and MIF) for each processing unit.

P1: period = 1; P2 = period =3; P3: period =4 MIF = GCD(1,3,4) = 1 MAF = LCM (1,3,4)= 12

Avionic concepts

Definitions:

- A partition is a group of tasks (ARINC-653 processes)
- A process is composed of several functions, with optional information for exclusion relation
- An operation is related to piece of code, a function. It can have a rate and precedence constraints


Scheduling is two-level:

- Periodic and fixed at partition level (activation windows)
- Priority based at process level

Avionic concepts

Operations precedence and exclusions:

- CONCERTO (ARTEMIS project)
- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions

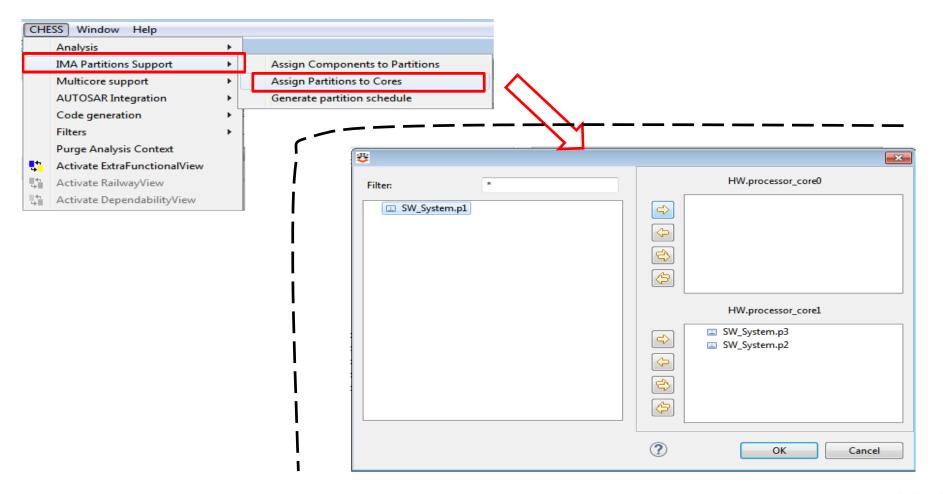
Multicore

Pros:

Power, weight and size reduction

Cons:

- Each core has its own partitions and schedule
- Each core interfere with each other: partitioning is broken
- Explosion of the complexity to find an optimal allocation


Solution in CONCERTO:

- Do not take into account the penalty from sharing resource (no support for interference awareness)
- Based on basic representation: number of cores. A graphical interface for static allocation of partitions to cores
- Generate partition schedules and compute response times

Multicore

Allocation of partitions to cores can be done manually...or automatically

- CONCERTO (ARTEMIS project)
- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions

Schedule generation

What is generated?

	Inputs	Ouptuts
Partition	Tasks allocated; [assigned core]*	Assigned core; MIF, MAF per core; Time-table for partition schedule (activation windows);
Process	Period; WCET; Priority; Deadline; Group of operations	
Operation	Deadline; WCET; [following operation] Rate	Priority; Phase

Response time analysis

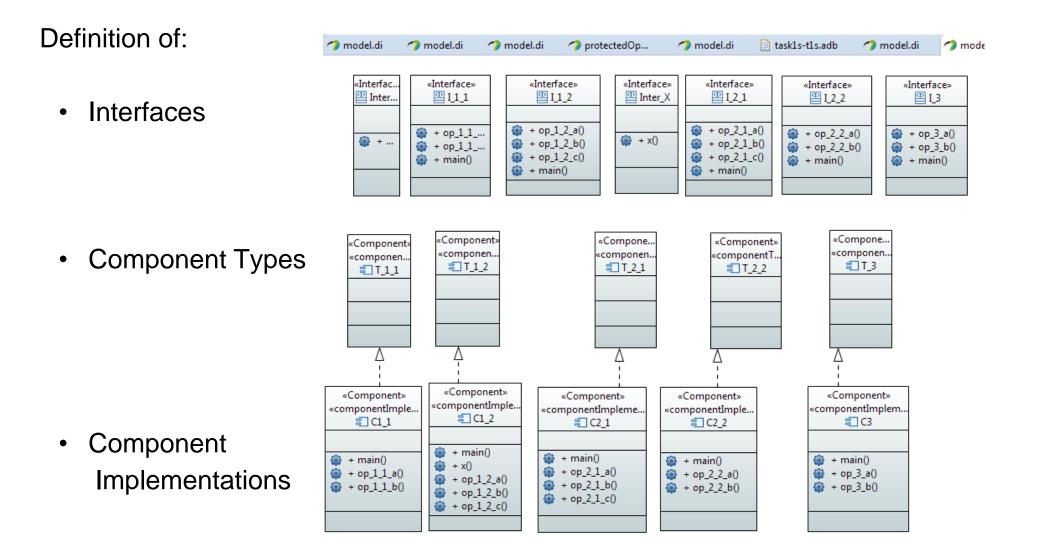
System is schedulable if all operations respect their deadline

Extension of MAST (<u>http://mast.unican.es/</u>):

- Taking into account multicore
- Model partition, processes and operations
- Transformation (to) and backpropagation (from)

Exact worst-case response time of each operation is computed

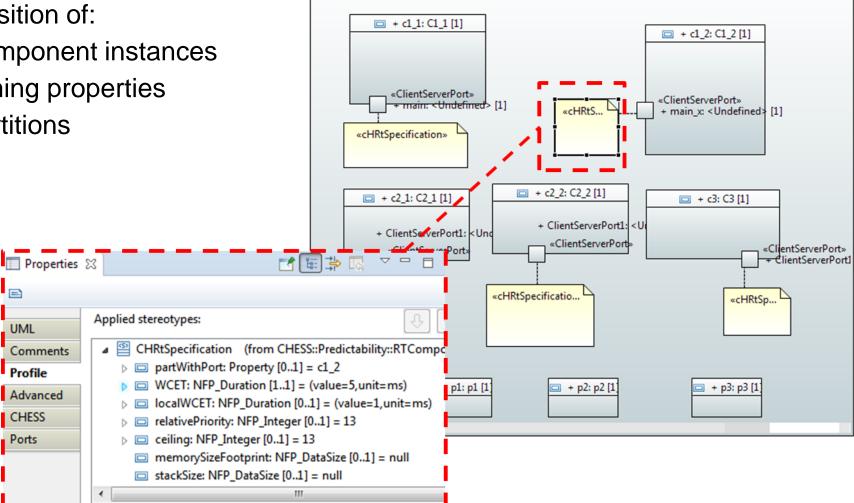
- CONCERTO (ARTEMIS project)
- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions



Experimentations

- Currently at research level (ARTEMIS project)
- Most input data from a real application specification manually "extracted"
- Assumptions made on the WCET for operations and processes (no code)
- Subset implemented (tutorial is in preparation)
- Dissemination made and planned in and outside Airbus Group and its divisions

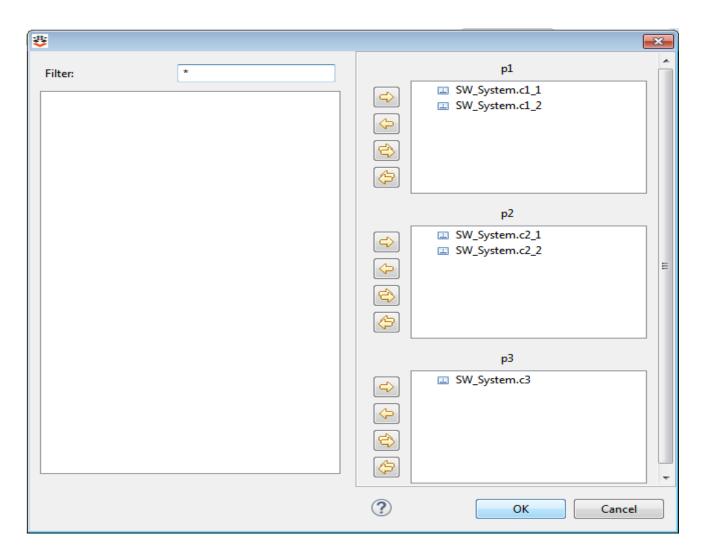
Experimentations – demo (1/6)



Composition of:

- **Component instances** •
- **Timing properties**

Partitions •



«Component» SW_System

Experimentations – demo (3/6)

Assignment of Processes to Partitions

Experimentations – demo (4/6)

Allocation of Partitions to Cores

					
Filter:	HW.processor_core0				
	Image: SW_System.p2 Image: SW_System.p3 Image: SW_System.p3 Image: SW_System.p3 Image: SW_System.p3 Image: SW_System.p3				
	HW.processor_core1				
	SW_System.p1				
	OK Cancel				

AIRBUS GROUP INNOVATIONS

Experimentations – demo (5/6)

Properties 🛛				
C «FunctionalPartitio	n» p1			
	tionalPartition (from CHESS::Cor (tilization: NFP_Real [0.1] = null	mponentModel)		•
Advanced CHESS	AF: NFP_Integer [11] = Mult AF: NFP_Integer [11] = AF: NFP_Integer [11] = AIF: NFP_Integer [11] = chedulingTable: NFP_String [11]] = p1 CHESS Window Help Analysis IMA Partitions Support	· · · · · · · · · · · · · · · · · · ·	nents to Partitions
•	m	Multicore support Multicore support AUTOSAR Integration Multicore support Code generation Multicore support	Assign Partition Generate partition	s to Cores
Properties 🛛				J L
OML Image: Comments Profile Image: Check Share Advanced Image: Check Share Ports Image: Check Share	d stereotypes: FunctionalPartition (from C utilization: NFP_Real [01] base_Component: Compo MAF: NFP_Integer [11] = MIF: NFP_Integer [11] = (= null onent [11] = p1 0.1 0.025 ing [11] = (Offset=(value=0.0, unit=s),	SchedulingTable	(Offset=(value=0.0, unit=s), Length=(value=0.019727, unit=s)), (Offset=(value=0.025, unit=s), Length=(value=0.019727, unit=s)), (Offset=(value=0.05, unit=s), Length=(value=0.019727, unit=s)), (Offset=(value=0.019727, unit=s), Length=(value=0.019727, unit=s))
	Papyrus Partitions sch	hedule has been generated.		

AIRBUS GROUP INNOVATIONS

Experimentations – demo (6/6)

nalysis MA Partitions Support	>	Dependability Formal Verification		\$\$ ♥ 1		_ ☆ -	O -		
fulticore support	•	Real-Time Analysis		Schedulability Analysis					
UTOSAR Integration	· · F			End-To-End	Scenario	Analysis			
		😇 Schedulability A	Analysis Repo	ort		4	•		
		The system	n is sch	nedulable					
		HW Instance	Utilizat	tion Result					
		HW.processor_co	re0 64.00%	6 ОК					
		HW.processor_co	re1 25.00%	бОК					
		SW Instance	Operation	Response Time	Deadline	Result			
		SW_System.c1_1	op_1_1_a	0.079819s	0.1s	OK			
		SW_System.c1_1	op_1_1_b	0.039273s	0.05s	OK			
		SW_System.c1_2		0.001000s	0.05s	OK			
		SW_System.c1_2		0.003000s	0.05s	OK			
		SW_System.c1_2		0.004000s	0.05s	OK			
		SW_System.c1_2		0.002000s	0.05s	OK			
		SW_System.c2_2		0.006000s	0.05s	OK			
		SW_System.c2_2		0.008000s	0.05s	ОК			
		SW_System.c2_1		0.006000s	0.05s	ОК			
		SW_System.c2_1		0.010000s	0.05s	ОК			
		SW_System.c2_1		0.008000s	0.05s	OK			
		SW_System.c3	op_3_a	0.015079s	0.1s	OK			
		SW_System.c3	op_3_b	0.011079s	0.1s	ОК			
								ОК	Cance

- CONCERTO (ARTEMIS project)
- Avionic concepts modeling support
- Multicore modeling support
- Partition schedule generation and response time analysis
- Experimentations
- Conclusions

Conclusions

Summary

Extension of CHESS environment with an extension of modelling and verification supporting IMA partitioning (SW + HW) Includes response time analysis with backpropagation from MAST++ Formal approach, as recommended by certification authorities

Future:

Complete the modelling objects to be able to represent : ARINC-653 OS services as operations so that it can be linked with real software by code generation Bind interference for multicore memory accesses (and caches) Test real HW platform (ARINC-653 OS configuration according with this methodology)

Check out other use cases: http://www.concerto-project.org/

AIRBUS GROUP INNOVATIONS

Airbus Group Innovations (Head Offices)

Willy-Messerschmitt-Straße 85521 Ottobrunn Germany

12 rue Pasteur – BP 76 92152 Suresnes cedex France

www.airbus-group.com

© Airbus Group All rights reserved.

This document and all information contained herein is the sole property of Airbus Group. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the consent of Airbus Group. This document and its content shall not be used for any purpose other than that for which it is supplied.

