

The CONCERTO project: a open source methodology for designing, deploying, and operating reliable and safe CPS systems

Silvia Mazzini, Intecs

ARTEMIS JU project

Call 2012

Technical Coordinator

Intecs

Partners 15

Countries 8

Start May 2013

End April 2016

Total cost 9,6 M €

CONCERTO Partners

- Industrial Partners
 - Thales Communications & Security (F)
 - ♦ EADS (F)
 - Oilfield Technology Group (N)
 - Aensys Informatikai (BU)
 - Intecs (I)
 - X/Open Company Limited-The Open Group (UK)
 - ♦ ATEGO (F)
 - AICAS (D)
 - ◆ CSW (P)

- Research Centres
 - ♦ ISEP (P)
 - ♦ SINTEF (N)
- Universities
 - University of Padua (I)
 - Maelardalen University (SW)
 - University of Florence (I)
 - Budapest University of Technology and Economics (BU)

CONCERTO Objectives

- "Guaranteed Component Assembly with Round Trip Analysis for Energy Efficient Highintegrity Multi-core Systems"- ARTEMIS JU Call 2012
 - Correctness-by-construction for multicore systems through model-driven engineering
 - Advanced hardware modelling capabilities
 - Enhanced hierarchical, multi-domain component model
 - Support for separation of concerns into the multi-domain, multicore environment
 - Wider coverage of industrial domains
- Building on the results of the CHESS project (ARTEMIS-2008-1-100022)

CONCERTO application areas

- Space
- Avionics
- Petroleum
- Medical
- Telecom
- Automotive

CONCERTO

CONCERTO industrial use cases

- Medical by AENSys
- Petroleum by OTG
- Telecom by Intecs Telecom
- Automotive Multi-criticality Infotainment by Critical Software
- Automotive AUTOSAR conformance by Intecs
- Avionics by AIRBUS
- Space by Thales for Thales Alenia Space
- Space by AIRBUS for ASTRIUM SAT

Building on the CHESS technical approach

- A multi-view, hierarchical cross-domain design space for complex next generation platforms
- Correctness-byconstruction, iterative and incremental development
- Hardware modelling facilities equipped for partitioned, mixed criticality and multicore platforms
- Early model-based analysis, with automated back propagation
- Automated code generation
- Run-time monitoring of non-functional properties

The Modeling Language

Standard profile for System (and Requirements) Modeling Standard Unified Modeling Language

Standard profile for Modeling and Analysis of Real-Time and Embedded Systems

Imports subsets of standard languages
✓ avoid redundancy
✓ fix semantic variation points

Integrates
OMG langu

Integrates and extends standard OMG languages

Introduces a **Dependability Profile**

The component model

Exposes a set of cohesive functional services

Component A

A component is a pure functional unit

enables

Declares the functional services required from other components or the system to operate correctly

Declares the applicable extrafunctional constraints and requirements in terms of *annotations* of its functional interface Reuse of components under different extra-functional concerns → increased reuse potential

The source code of components is pure sequential code.

Extra-functional concerns are realized (and warranted) by the component model infrastructure

CHESS container and connector

- -Wrapper responsible for the declared extrafunctional attributes (e.g. the realization of tasking, timing behavior, fault containment and fault tolerance)
- Provides the component with a mediated connection with the execution platform and the system in general

Connector

- Addresses interaction concerns
- Decouples the component from the other end-point(s) of a communication
- Realizes connection properties (best-effort, at most once, exactly once)
- E.g. procedure/function call, remote message passing, I/O file operation, ...

The CONCERTO process

1. You construct a PIM to represent your solution to your problem, independent of any specific implementation.

1-2a. Dependability/safety analysis is performed at PIM system/SW and platform specification level, with back propagation of analysis results.

4. Real-time relevant analysis is performed on the PSM

5-6. The analysis results are back propagated to the PSM and to the PIM

The user iterates the 1-6 cycle as many times as needed

CONCERTO

12

Cross-domain Core Methodology

- Reaching the final version of the CONCERTO Methodology and Toolset
 - Consolidation of the CONCERTO Modelling Language and Multi-concern Component Methodology
 - Matlab/Simulink Synchronous Block Diagrams (SBDs) support
 - Inter-component interactions and end-to-end response time analysis
 - Multicore deployment
 - Timing analysis for multicore: scheduling and workload analysis
 - Dependability profile and analysis
 - Modeling criticality

Intecs

- Run-time monitoring, with back propagation
- CONCERTO Failure Logic Analysis (FLA)
- Extensions to State Based Analysis
- Migration to Polarsys/Maturation of the toolset
 - Most of the tools are delivered to Polarsys

Specialized and Domain-specific Features

- Petroleum domain
 - Modelling and analysis for monitoring of safety barriers of petroleum installations
- Telecare domain
 - Definition of a specific profile
 - Sirius integration in the CONCERTO framework
 - Dependability analysis
 - Code generation
- Automotive domain
 - AUTOSAR conformance
 - ASIL association
 - Mixed criticality for infotainment
- Avionics Domain

Intecs

Conformance with the ARINC-653 IMA principles

MyCCM and ARTISAN

- Transfer of CONCERTO concepts to MyCCM
 - Extensions for modelling of component behaviour and execution environment
 - Enhanced MyCCM Generation Chain
- Extensions to PTC's Integrity Modeler
 - Support to the CONCERTO Methodology
 - Target to MyCCM

Future Extensions

Within the AMASS Project

- Extensions of the contract-based approach
- Formalization of multi concern assurance properties of the architectural components
- Integration with the AMASS assurance framework and toolchain
- Improve reuse support

Questions?