The Structure of the Booch Components

The Booch Components cover several issues: 

· Time and Space semantics 

· Storage Management policies 

· Exceptions 

· Idioms for iteration 

· Synchronization forms 

Macro Organization

The Booch Components emphasize separation of policy from implementation. For this reason, abstract classes are declared for every major component type. Also, the Support category provides the common low-level features used in constructing the different components, in order to help the "power user" create new components or extend existing ones. 

Class Families

Each abstract base class has several derived concrete forms, each designed to support specific needs for time and space semantics. The user selects the concrete form most appropriate to their needs. 

There are two very common variations of structure management: bounded and unbounded. A third form was added to the Booch Components: dynamic. This form represents a heap structure which behaves (basically) as a dynamic array. Its performance lies between that of a bounded and unbounded structure. The array can grow or shrink in multiples of a chunk size. [Note, this becomes less valuable given Ada's support for user-defined storage pools.] 

The selection rules are: 

Bounded 

Use where size is statically known or allocation from the heap is prohibited. 

Dynamic 

Average storage size of each instance must be considered when setting chunk size. Indexing is as efficient as bounded, but insertion other than at the front or back of a structure is less efficient than the unbounded form. 

Unbounded 

Space efficient, but requires memory allocation for each new item added (unless the storage management policy is "Managed", see later discussions). The most recently accessed item is cached. 

There is also variations for the presence of multiple threads of control. A component can take on a form of Sequential, Guarded, or Synchronous. These forms will be discussed later.

Micro Organization

Each Abstract Base Class generally follows the same form of derivation: 

(Each level is a derivation via inheritance. Each class is a generic using Item as the container parameter) 

The Guarded forms are created by instantiating BC.Guarded with the concrete form, whereas the Synchronized forms have to be provided individually. 

Time and Space Semantics

The fundamental difference between the Unbounded and Bounded forms is that the unbounded form is essentially a time efficient linked-list, but is not very space efficient. The bounded form uses a packed array base class, which is space efficient, but can become time inefficient if adding items into the middle of the array. 

Bounded forms have two parameters for their generics: Item and Maximum_Size. Dynamic and Unbounded forms have Item and the actual Storage Pool for parameters.

Storage Management

By treating the storage manager as an argument to all the dynamic and unbounded concrete structures, we effectively decouple storage management policy from its implementation, and make it possible for library users to insert their own storage management policy without changing the library. This is a classic example of extensibility through instantiation instead of inheritance. 

The only requirement we place upon storage managers is that they provide the same well-defined protocol. This is defined by the standard package Ada.Storage_Pools. 

Two predefined managers are available: 

BC.Support.Standard_Storage.Pool
is effectively the default heap manager.

BC.Support.Managed_Storage.Pool (Chunk_Size)
provides management of store within a pool whose unit (chunk) size is specified when the pool is created.

Note that the supplied BC.Support.Managed_Storage will not support allocation of items larger than its chunk size.

Exceptions

All exceptions for the Booch Components are placed in the topmost package, BC. This precludes the user from having to include a separate "Exceptions" package. 

As well as the exceptions from the parent C++ Components, an exception Should_Have_Been_Overridden is possible. It will only be raised if the implementor has forgotten to override a private subprogram of an abstract class (such subprograms can't be abstract, see RM95 3.9.3(10)).

Iteration

Separate types act as agents responsible for iterating across a structure. This was done for two reasons: 

· By providing separate iterator types, we make it possible to have several iterator objects working upon the same object. 

· Iteration slightly breaks the encapsulation of an object's state; by separating the behaviour of iteration from the rest of an abstraction's protocol, we provide a much cleaner separation of the two. 

There are two forms: active and passive. Active iteration requires the client to explicitly advance the iterator. For passive, the client supplies a single procedure Apply to work across the structure. 

In both forms, mechanisms are provided (where appropriate) to allow access to the actual contained object rather than just to its value. 

Synchronization

Those components that provide structural sharing ("polylithic") exist only in unprotected forms. Concurrent access by multiple tasks requires the user to provide her own access control. 

Other components provide access control, when required, in one of two forms: 

· guarded 

· synchronized 

Guarded forms

Clients of guarded objects must follow the simple protocol of first Seizing the object, operating on it, and then Releasing it (even if exceptions occur). 

Seizing a guarded object and failing to release it blocks the object's use indefinitely; releasing an object never seized is improper; and ignoring the protocol altogether is likely to result in interleaved tasks corrupting the state of the object. 

Guarded forms are created by instantiating the package BC.Containers.Guarded with 

· a Container derived from BC.Containers.Container (ie, any of the supported Containers) 

· a type derived from Semaphore_Base (in BC.Support.Synchronisation) 

A standard Semaphore is supplied, using which will cause each object to have its own guard; an alternative possibility would be to create a new Semaphore type such that each object of that type accesses a common actual Semaphore. Using such a strategy, a global lock could be obtained on a whole group of objects in one operation. 

Note particularly that the standard Guard will not work as you expect for "polylithic" structures (Graphs, Lists, Binary and Multiway Trees). 

Synchronized forms

For synchronized objects, each operation on the object becomes an atomic transaction; clients don't have to worry about maintaining the proper protocol. 

This is very much easier for the developer; however, if it's necessary to invoke several operations on one object as a single atomic transaction, the Guarded protocol should be used. Alternatively, the developer can implement the protocols required in terms of tasks and protected objects, using the Components only as implementation technology.

Supported forms

Component
Unbounded
Bounded
Dynamic
Guarded
Synchronized

Bags
(
(
(
(


Collections
(
(
(
(


Collections (ordered)
(
(
(
(


Dequeues
(
(
(
(


Graphs (directed)
(





Graphs (undirected)
(





Lists (single)
(





Lists (double)
(





Maps
(
(
(
(
(

Queues
(
(
(
(
(

Queues (ordered)
(
(
(
(


Rings
(
(
(
(


Sets
(
(
(
(


Stacks
(
(
(
(


Trees (AVL)
(


(


Trees (binary)
(





Trees (multiway)
(





